
Pilkington Library

• • Lo~ghb.orough
.Umverslty

AuthorlFiling Title .N.~.':'! .. ~.:?:-.... :'f.~.'f:~

Vo!. No. Class Mark T

Please note that fines are charged on ALL
overdue items.

0402452410

11111111111111111 I 111111111111

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j

j
j
j

j

j
j
j

GBIT/SECOND

LOSSLESS DATA COMPRESSION

HARDWARE

By

Jose Luis Nunez Yanez

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of

Doctor of Philosophy of Loughborough University

June 2001

© by Jose Luis Nunez Yanez 2001

U Lrn.!l:.hborough i 1 ." • " ~nr.lr'~1ty
l" .\~ra!'Y " . .' -- ,

Date "J-tl, . 01.-
~ .. - ,..

Class ,
.~,~,~- .. " .•. '~'.~

. Ace
(N:o'l..,d1. i \ , No.

__ :o':"T':;:-:r.!""O"'"lII"'o:-..,. ::r-... ~ ••

Abstract

This thesis investigates how to improve the perfonnance of lossless data compression hardware

as a tool to reduce the cost per bit stored in a computer system or transmitted over a

communication network.

Lossless data compression allows the exact reconstruction of the original data after

decompression. Its deployment in some high-bandwidth applications has been hampered due to

perfonnance limitations in the compressing hardware that needs to match the perfonnance of the

original system to avoid becoming a bottleneck. Advancing the area oflossless data compression

hardware, hence, offers a valid motivation with the potential of doubling the perfonnance of the

system that incorporates it with minimum investment.

This work starts by presenting an analysis of current compression methods with the objective of

identifying the factors that limit perfonnance and also the factors that increase it. The X-Match

method is selected as a promising technique because it offers a level of parallelism not present in

other methods combined with low latency. The algorithm analysis focuses on improving its

compression ratio typically halving the original uncompressed size. The hardware development

phase designs a high-perfonnance architecture that is then implemented in silicon using a non­

volatile reprogrammable ProASIC FPGA as our prototyping technology. The device is fully

tested at speed to verify its high-perfonnance characteristics achieving over I Gbitlsecond

throughput with a 33 MHz clock frequency and latency of only 5 cycles. The

compression/decompression engine is then extended to a full-dupIex architecture that can handle

compressed and uncompressed data streams simultaneously and uses a simple coprocessor-style

interface. The full-duplex device offers a combined compression and decompression perfonnance

of 3.2 Gbitlsecond in Xilinx Virtex or Altera Apex FPGA's technologies but its complexity in

tenns of logic elements is comparable to the half-duplex architecture because the decompression

architecture is based on RAM memory readily available in modern FPGA's. This work

concludes comparing our device with other high-performance architectures and showing that our

chip, named X-MatchPRO, offers unprecedented levels of throughput in a hardware

implementation of a general application lossless data compression algorithm. It, therefore,

enables the usage of data compression in areas that were traditionally out of reach in previous

research.

I

Acknowledgements

Firstly, I would like to start by thanking my supervisor Professor Simon Jones for

offering me the opportunity of registering for a PhD degree while working as a research

assistant. It is clear that without his help and guidance this endeavour will not have come

to a good end.

Secondly, I would like to acknowledge all the support obtained from Dr Stephen

Bateman and his group at ActellGatefield corporation. Thanks to them for offering me

the chance of spending a very fruitful time at Fremont (California) where I was enlighten

to the challenges of hardware testing.

Thirdly, to all the people of the System Design Group at Loughborough University.

Especially, to Claudia Feregrino and Rene Curnplido with whom I have shared the same

working enviromnent for the last 3 and a half years.

Fourthly, thanks to myoid friend Oscar Fernandez who made the uncertainties ofthe first

year much more manageable.

Finally, to my dad Luis NUil.ez for always having faith on me and to my fiance Nicoleta

Capet for transforming the last year into a very promising one.

II

Table of Contents

1 Introduction

1. 1. Research aim

I.2.Basics on data compression

1.3 Effects of compressing data

1.4 Current applications of

lossless data compression technology in

communication networks and storage systems

1.5 Advances in communication/storage technology

1

1

1

2

4

generate a motivation for new compression methods 6

1.6 Objectives to be achieved in this research 9

1.7 Thesis structure and method 10

2 Lossless Data Compression Review 12

2.1 Objectives of chapter 12

2.2 Data compression basic definitions 12

2.3 Elements of a lossless data compression system 14

2.3.1 Compression (Modelling, Coding, Packing) 14

2.3.2 Decompression (Unpacking, Decoding, Modelling) 15

2.4 Statistical and Dictionary-based

lossless data compression methods

2.4.1 Statistical methods

16

18

IV

2.4.1.1 Statistical modelling 18

2.4.1.1.1 Finite-context modelling 19

2.4.1.1.2 Finite-state modelling 21

2.4.1.2 Statistical coding 21

2.4.1.2.1 Whole-bit coding 22

2.4.1.2.1.1 Shannon-Fano coding 22

2.4.1.2.1.2 Hu.fJman coding 23

2.4.1.2.1.3 Golomb, Rice, Elias,

Fiala coding

2.4.1.2.2 Fractional-bit coding

2.4.1.2.2.1 Full-precision

arithmetic coding

2.4.1.2.2.2 Low-precision

24

25

26

arithmetic coding 28

2.4.2 Dictionary-based methods 30

2.4.2.1 Dictionary-based modelling 30

2.4.2.1.1 Lempel-Ziv 77 (LZ77, LZl) modelling 31

2.4.2.1.2 Lempel-Ziv 78 (LZ78, LZ2) modelling 32

2.4.2.1.3 BSTWmodelling 33

2.4.2.2 Dictionary-based coding 34

2.4.2.2.1 Phased binary coding 35

2.4.2.2.2 Run length coding 35

2.4.3 Other methods 36

v

2.5 Lossless data compression hardware 37

2.5.1 Statistical hardware 37

2.5.1.1 Binary arithmetic hardware 38

2.5.1.2 Multi-alphabet arithmetic hardware 42

2.5.1.3 Tree-based hardware 46

2.5.2 Dictionary-based hardware 48

2.5.2.1 LZ1 Hardware 48

2.5.2.2 LZ2 Hardware 53

2.5.2.3 Other dictionary-style hardware 55

2.5.3 Other hardware 55

2.6 Summary 56

3 The X-Match method 61

3.1 Objectives o/Chapter 61

3.2 Features o/the X-Match lossless data compression method 62

3.2.11ntroduction 62

3.2.2 X-Match algorithm description 63

3.2.3 X-Match hardware analysis 65

3.2.3.1 Compressor architecture 65

3.2.3.2 Decompressor architecture 66

3.2.3.3 Hardware peiformance 67

3.3 Mapping o/research objectives to X-Match 68

3.3.1 How can we produce a/aster X-Match? 68

3.3.2 How can we produce a better compressing X-Match? 69

VI

3.3.3 How can we prove the feasibility of our solutions?

3.4 Conclusions

4 Experimental framework

4.1 Objectives of Chapter

4.2 Data set selection

4.3 Hardware selection

4.4 Software selection

4.5 Technology selection

4.6 Measurement definitions

4.7 Conclusions

5 Focus on compression efficiency

5.1 Objectives of Chapter

5.2 X-Match compression efficiency

5.3 Dictionary-based approach

5.3.1 Introduction

5.3.2 The dictionary-based model

5.3.3 The dictionary-based coder/decoder

5.3.3.1 Introduction

5.3.3.2 Match location coding techniques

5.3.3.3 Run-length coding techniques

5.3.3.4 Conclusions

5.4 Compression performance comparison

5.4.1 Canterbury data set compression

69

70

71

71

71

75

76

77

78

79

80

80

81

82

82

82

83

83

83

87

94

96

VII

performance comparison

5.4.2 Disc data set compression

performance comparison

5.4.3 Memory data set compression

performance comparison

5.5 Conclusions

6 Focus on compression throughput

6.1 Objectives of Chapter

6.2 Introduction

6.3 Model architecture

6.3.1 Out of Date Adaptation (ODA) description

6.4 Coder/Decoder architecture

6.4.1 Run Length Internal (RLI) description

6.5 PackerlUnpacker architecture

6.6 Compression/Decompression core throughput evaluation

6.6.1 Serial test methodology

6.6.2 Parallel test methodology

6.7 Conclusions

7 X-MatchPRO lossless data compression technology

7.1 Objectives of Chapter

7.2 Full-duplex processing

7.3 Width adaptation logic

7.4 Full-duplex X-MatchP RO architecture

96

97

97

98

99

99

99

100

104

108

llO

114

ll8

ll8

120

124

125

125

125

131

133

VIII

7.5 X-MatchPRO operation

7.5.1 X-MatchPRO interface

7.5.2 Register bank description

7.6 X-MatchPRO threshold value

7.7 X-MatchPRO latency

7.B X-MatchPRO operational modes

7.B.l Compression mode

7.B.2 Decompression mode

7.B.3 X-MatchPRO special conditions

7.B.3.1 Buffer coding overjlow

7.B.3.2 Buffer coding underjlow

7.B.3.3. Decoding buffer overjlow

7.B.3.4 Decoding buffer underflow

7.9 FPGA-based X-MatchPRO: complexity and performance

7.10 Conclusions

8 Conclusions

B.l Objectives of Chapter

B.2 Summary of the objectives and the research flow

B.3 Summary of the X-Match compression method

B.4 Main contributions achieved in this research:

The X-MatchPRO hardware

B.5 Other contributions achieved in this research

B.6 Measurement of success

136

136

13B

139

140

141

141

142

143

143

144

144

144

145

150

151

151

151

152

153

156

15B

IX

8.7 Limitations of research

8.8 Future work

8.9 Summary

References

Publications & Patent Applications

158

159

160

161

173

x

Chapter I Introduction

Chapter 1

Introduction

1.1 Research aim

This thesis aims to understand how to improve lossless data compression hardware as a

means of boosting the performance of high-speed storage systems and communication

networks.

1.2 Basics on data compression

Data compression in a digital system is a process that comprises the removal of redundancy

and/or information present in a block of data with the objective of obtaining a reduction in the

number of bits that must be transmitted or stored [Be1l90). [Lelewer87). This process can be

done in a lossless or lossy way.

Lossless compression allows the reconstruction of the original data after decompression since

all the information remains in the compressed block and only redundancy is discarded. Lossy

methods on the other hand allow only partial reconstruction since these methods not only

remove redundancy but also information. The objective of a lossy compression algorithm is

then to remove only information that is of little interest for the intended application. Lossy

compression is useful for digital data types that are an approximation to data analogue in

nature such as images or voice. Lossless compression can be used with any data type since it

is completely reversible and it must be used in data types such as textual or executable data

where all the bits are critical. Lossy compression can achieve much higher compression ratios

than lossless precisely because there is not a requirement to maintain all the information

content of the data source. It is usually possible to define a quality factor that determines the

1

Chapter I Introduction

compression ratio and the fidelity with which the compressed data represents the original

data. Lossy compression methods such as the popular image compressors JPEGIMPEG

[Wallace9lJ. [MPEG-2J exploit the fact that information can be selectively eliminated from

the image during compression as long as the viewer does not perceive the degradation after

decompression. The basics of lossless and lossy compression are quite different and many

lossy algorithms include a lossless version to be used with those data types such as medical or

military image information that cannot accept any quality lost. Lossy compression can

achieve typical ratios of 20:1 with good quality. This in contrast with lossless compression

where something between 213: 1 is the standard.

This thesis is wholly concerned with lossless compression methods so by compression we

will mean lossless compression unless the contrary is stated. It will also imply

compression/decompression since any useful compressor system has a corresponding

decompressor.

1.3 Effects of compressing data

Compressing a block of data has 2 main positive effects when applied to computer systems

that have to manipulate large amounts of digital information.

• Compression improves throughput in communication applications by increasing the

bandwidth available in the transmission links hence the same equipment can achieve a

significant increase in the transfer rate. Alternatively. simpler lower bandwidth equipment

can replace the high bandwidth one to maintain the transfer rate while using a more

economical solution.

• Compression increases the capacity of the physical media in storage applications hence

more data can be kept in the same device. It also increases the speed of information

storage and retrieval since the time required to access uncompressed data from storage

can be significant higher than that of compressed data using fewer bits.

Although data compression has a lot of potential to improve the performance of a digital

system it could actually have a negative impact if it is not deployed properly. A number of

issues must be taken into account when introducing compression in a data pipe.

2

Chapter I Introduction

• Compression must be done avoiding compressing data already compressed or

compressing encrypted data. These 2 events can result in data expansion and degrade the

performance of the system unless a detection mechanism is included.

• The compression method must be able to outperform the throughput of the original

system. Otherwise compression becomes a bottleneck and the data pipe becomes empty

waiting for the compressor to process data. If the compressor can only match the

performance of the original system then throughput will be the same but an economical

advantage can be obtained with fewer or slower transmission links.

• The uncompressed system throughput (UST), the compressor throughput (Cf) and the

expected compression ratio (ECR) must be balanced (CT ~ USTIECR) to obtain optimal

performance [Hilfn97J. For example if a data pipe supports 10 Mbytesls and the

compressor is expected to halve the data traffic its throughput should be 20 Mbytes/s to

avoid bubbles where the data pipe becomes empty of any useful content. The effective

throughput of the original data pipe plus compression is then 20 Mbytesls and other

components attached to it will forward data to the data pipe at this ratio. If the

instantaneous compression ratio is worst than the predicted compression ratio a

mechanism must be used to prevent the data pipe from overflowing. Throughput will

degrade accordingly but an improvement will be noticeable as long as data expansion is

avoided. If the instantaneous compression ratio is better than the expected compression

ratio bubbles will appear in the data pipe but the effective throughput will still remain at

20 Mbytesls.

• Compression produces a variable length output depending on how much redundancy is

present in the input data. A more complex management method is required to store and

retrieve this data because it is not possible to have an exact knowledge of the capacity of

the compressed media.

• Full-duplex technology can carry data in both directions simultaneously. If only software

compression mapped to a general-purpose processor or half-duplex hardware

compression are available provision must be made to compress part of the time and

decompress the rest increasing the throughput requirements of the compression method.

• The increase in latency resulting of applying a compression algorithm could prevent any

benefit and data could take longer to arrive to the destination point if the transmission

3

Chapter 1 Introduction

time includes latency plus transmission and a mechanism is not available to do both

operations concurrently masking latency with transmission time.

1.4 Current applications of data compression technology in

communication networks and storage systems

It has been widely accepted that the performance of a storage system or a communication

network can be improved by a typical factor between 2/3 by the use of lossless data

compression [Hilfu97], [CycladesOO], [Jung98], [MoguI97], [MiteIOO]. Indeed nowadays data

compression is widely used in communication devices such as routers, bridges and modems

to increase the bandwidth of networks such as LAN, WAN and wireless [AlliedTelesynOO],

[InteIOO], [CiscoOO], [DicksonOO]. Storage systems such as file servers, solid state storage,

hard disk drives, tape drives use data compression not only to increase capacity but also to

increase the available bandwidth to move data in and out of the device [VanDuineOO],

[Cressman94]. Compression is also useful in other applications that benefit from a reduction

in the amount of data that must be stored or moved such as printers, copiers and scanners.

The use of data compression methods has thrived thanks to the exponential growth in

bandwidth and storage requirements combined with the need to keep costs within a budget. It

seems that, although technology advances are constantly increasing the bandwidth and

capacity of transmission and storage media, the applications that run on them always find

ways to use all the resources available and create a need for more. The consequence is that

sometimes the technology is not available or the cost of its implementation is uneconomical.

Compression is an effective way to alleviate this problem. Figure 1.1 obtained from

[CycladesOO] uses an example to illustrate the cost benefits of data compression applied to a

wide area network (WAN).

Line Speed Approximate Cost Effective Throughput Cost per Kbps

56 Kbps $1251 month 112 Kbps (with data $1.1

compression)

128 Kpbs $325lmonth 128 Kbps (no data $2.5

compression)

Figure 1.1. Savings introduced by compression in a wide area network.

Figure 1.1 shows that a similar bandwidth can be obtained with a lower speed line halving the

costs of the line rental.

4

Chapter I Introduction

A typical network configuration includes a group of high-speed LAN's interconnected using a

low-speed WAN network. The expensive WAN can easily be a bottleneck because it

concentrates the data traffic exchange among the LAN networks. Modern routers use

compression to optimise WAN efficiency but there is not a unique standard dealing with the

compression method to use. This means that some form of negotiation based on a

compression control protocol must be established between receiver and transmitter to agree

which compression method to use. Nevertheless, the LZS [Hilfu96], [Hilfu99] algorithm a

LZl (Lempel-Ziv-l) [Ziv77] derivative from Hilfu has emerged as the preferable method in

many cases because of its high throughput and good compression ratios. Popular router

manufactures such as Cisco [CiscoOO] and Intel [InteIOO] support LZS compression. LZS has

been accepted as standards ANSI x3.24l-1994 (American National Standards Institute), QIC-

122 (Quarter Inch Cartridge), IETF RFCl974 (Internet Engineering Task Force), FRF.9

(Frame Relay Forum) [Hilfu96] among others for storage and communication applications.

Compression is routinely used in modems thanks to the v.42bis standard proposed by the

ccm (Comite Consultatif International Telephonique et Telegraphique) [Thomborson92],

[Acorn92]. The v.42bis standard uses a variant of the LZW [Welch84] compression algorithm

also used in the UNIX utility' Compress' and itself a derivative of the LZ2 (Lempel-Ziv-2)

[Ziv78] algorithm to increase data throughput. It is meant to be implemented in modem

hardware but it is also possible to include it in the software that interfaces to a non­

compressing modem. The algorithm defines a way to monitor compression efficiency and

switch to transparent mode when data expands.

Something that WAN and modem compression have in common is that the speed

requirements are quite low. The V90 [InteIOl] standard for modems defines a throughput of

56 Kbytesls while typical WAN throughputs such as T1 WAN [Tanenbaum96] are in the

order of 1.5 Mbytesls . This means that in many cases compression can be supported in

software running in the same CPU that handles the rest of the functions present in the

communication protocol. If this is not enough a coprocessor processing in the order of Mbits/s

will suffice.

Another data compression method that has achieved commercial success is the ALDC

algorithm, another LZl derivative developed by IBM [IBM94], [Cheng95], and also available

from AHA (Advanced Hardware Architectures) [AHA97]. It has been accepted as standards

ISOIIEC 15200 (International Organisation for Standardisation! International Electrotechnical

Commission), ECMA-222 (European Computer Manufacture Association), ANSI x3.280-

5

Chapter I Introduction

1996, QIC-154 [Craft98]. The mM AS/400 family of high perfonnance server's

[VanDuineOO] able to handle terabytes of data distributed over a number of hard disks and

tape drives use ALDC compression integrated in the storage controller. This is quite a unique

solution because the use of compression in hard disk devices remains something of an ad-hoc

technique. The dedicated compression chip brings an important capacity gain factor 2 to 4 and

minimizes any performance impact if compared with a software-based solution. The overhead

of the compression process is higher than that of the decompression process so data

compression is better used with read intensive applications such as databases.

The most popular way to introduce compression in a hard disk in user transparent mode is

controlled by the operating system and based in software such as those present in MS-DOS

DoubleSpace and Stacker or Windows DriveSpace. This compression technology has

generated some controversy on its reliability in the past [Halfi1l94]. Popular compression

utilities like WinZIP, ARJ, PkZIP are file compressors not designed to work in a blocked

mode which is needed to allow fast random access to the uncompressed data. They are

especially useful for backup purposes where speed is not an important issue. Their main

inconvenience is that they are user initiated and too slow to be applied in real-time

environments.

Compression is commonly present in tape drive technology such as QIC (Quarter Inch

Cartridge), DAT (Digital Audio Tape) and DLT (Digital Linear Tape) with the main objective

of increasing data capacity. Tape drives concentrate on offering high data capacity for back­

up purposes and not for on-line access. Speeds of 6 Mbytesls with a compressed capacity of

80 Gbytes are offered in the high-performance DLT8000 [Quantum99] products. The DCLZ

[AHA96] algorithm, a LZ-2 derivative developed by HewlettlPacker [Bianchi89] has been

accepted as standards QIC-130, ECMA-151, ANSI-X3.223, ISO/IEC-\1558 [AHA95]. This

method seems to be the preferred choice for tape compression [Cressman94], [Seagate97].

AHA (Advanced Hardware Architectures) acquired DCLZ technology from HewlettlPacker

and it currently offers several devices with throughputs around 20 Mbytesls [AHA97b].

1.5 Advances in communication/storage technology generate a

motivation for new compression methods

Recent advances in networking technology and the significant requirements for bandwidth

and data capacity generated by applications such as real-time video conferencing, 3D

animation modelling, Internet telephony, virtual reality, video on demand, etc have made

6

Chapter 1 Introduction

some storage/communications equipment to operate at speeds in excess of 1 Gbitls. Optical

communications are a good example of the sort of systems where Gbitls throughputs are

reached. Gigabit networking [Vandalore95] has been made possible thanks to fibre optic

signalling equipment able to transmit at a bandwidth of several Gigabitls over long distances

with low error rates. Storage equipment has benefit from technology such as RAID

(Redundant Array of Inexpensive Disks) [StorageOO] to achieve over 1 Gbitls bandwidth

performance.

There are 3 popular networking technologies working at speeds in the order of Gbitls:

Gigabit Ethernet (IEEE 802.3z): Gigabit Ethernet [GEA97] specifies the data link layer (layer

2) of the OS! (Open System Interconnection) [Tanenbaum96] protocol model and it has been

the most widely-used high-bandwidth LAN networking technology for the past few years. It

has been endorsed by major companies in the field such as Cisco systems and 3Com and also

by legions of start-ups. Since Ethernet (IEEE S02.3 at 10 Mbits/s) and FastEthernet (IEEE

S02.3u at lOO Mbits/s) are the most popular LAN technologies a gigabitls version offers a

smooth upgrade path since it is cost effective and it does not required new specific training. It

uses the same IEEE S02.3 frame format and flow control methods which means that it is

simple to connect a LAN using Gigabit Ethemet as the backbone to a number of

servers/terminals internally using Ethernet devices running at lower speeds. There is also an

effort to include specifications for MAN (Metropolitan Area Network) and WAN (Wide Area

Networks) in future versions of high-speed Ethernet [Carus099a]. The requirement to keep

compatibility with older technologies has created some performance problems such as failing

to deliver true QoS (Quality of Service) required by some applications like video on demand.

Although work has been undertaken in providing QoS at higher layers than the link layer with

the use of network protocols such as RSVP (Resource Reservation Protocol) it remains a best

effort protocol. This has prevented Gigabit Ethernet from offering a complete solution to the

bandwidth problem.

ATM (Asynchronous Transfer Mode): ATM [Pivotal97] is also a link layer protocol like

Ethemet. It was introduced earlier than Gigabit Ethernet to be used in LAN's as well as

WAN's in those applications demanding a lot of bandwidth. It initially offered 155 Mbits/s in

ATM OC-3 with a path up to ATM QC-12S offering 6.4 Gbits/s. ATM was thought to be the

perfect solution to the bandwidth problem but that did not happen. In ATM it is possible to

guarantee QoS, very important in applications such as video on demand, but it is more

expensive and the migration path is more complex than using Ethernet. A TM uses fixed

length cells of 53 bytes enabling extremely fast hardware-based switching in direct contrast

7

Chapter J Introduction

with Ethemet where packet length varies from 64 to 1514 bytes. The ATM protocol includes

standards that provide LAN emulation of networks such as Ethemetffoken Ring so it is

possible for an application to communicate to an Ethemet network unaware of using A TM.

In many cases ATM offers a best solution if it is used as a backbone of a WAN joining

together different LAN's where Ethernet technology is at its best.

Fibre Channel: Fibre channel [Burton95) defines a complete multi-layered stack of functional

levels from the physical layer to the upper-level application interfaces. It can run at speeds up

to 1062 Mbits/s. It seems to be the preferred solution to attached storage devices to a host

computer forming Storage Area Networks (SAN). Its use as a gigabit networking technology

is not as popular [Mace98). Storage Area Networks are formed by a series of storage nodes

and server nodes sharing a common pool of data that can be physically separately up to 10

Km using Fiber channel based on fibre optic cables or 30 meters over copper wires. The

storage nodes can be external rack-mounted RAID subsystems formed by a number of SCSI

drives to offer capacities of terabits of data. SCSI ultra-2 disk drives run up to 80 Mbytes/s

while more recent SCSI ultra-3 technology offers a throughput of 160 Mbytes/s well over 1

Gbitls. Recent RAID storage solutions are offering throughputs over 200 Mbytes/s

[StorageOO). RAID technology [De1l99) is a method of combining several hard drives in a

single unit offering a higher level of fault tolerance and throughput. Fault tolerance is

achieved by writing the same block of data to a pair of disk. Improved performance is

achieved by distributing data evenly across the disks to equalise disk accesses. If multiple

disks in a RAID subsystem are being accessed simultaneously performance improves

proportionally. The RAID controller portrays the multiple disks as a single unit to the

application.

Other Gbitls networking technologies include serial HiPPI: (High Performance Parallel

Interface) [Djumin97) that operates within the physical and link layers at speeds of 1.2 Gbitls

over distances up to 10 Km. It offers Gbitls performance and high reliability at the physical

layer whilst other protocols relay in higher layers for data lost detection. Also there has been

recent interest in mapping directly IP-over-SONET [Trillium97) to avoid the overhead

incurred by the mapping IP-over-A TM and then over SONET. While IP (Internet Protocol) is

the typical network protocol in layer 3 in the OSI model SONET (Synchronous Optical

Network) is a physical layer protocol (layer I). These efforts have given way to future trends

towards 10 Gbitls standards. 10-Gigabitls Ethemet [Carus099b) and 10-Gigabitls SONET are

2 examples of where high-speed networking seems to be heading. These technologies should

be available within the next few years.

8

Chapter 1 Introduction

Data compression is not currently being used to its full advantage in these systems due to

performance limitations encounter in the data compression hardware, although if properly

deployed it could double the performance and capacity of storage/communication systems

with minimum investment. Storage Area Networks (SAN) using fibre channel to

communicate high-capacity and high-speed disk arrays or a Gigabit Ethemet backbone

connecting a group of Ethemet LAN's running at lower speeds are current examples where

present compression technologies fail to deliver the require performance for successful

integration. To realise fully the benefits of data compression in these areas requires a

compression technology that matches the throughput of the original system.

1.6 Objectives to be achieved in this research

The overall aim of this research is to improve the speed and compression of lossless data

compression hardware. In order to achieve these aims we can identify the research objectives

and then we can map them into the thesis structure.

1. The first work to be undertaken is the identification of the factors that improve/limit

current lossless data compression hardware. A survey on current compression technology

will provide us with common limitations that hamper performance and also the features

that boost it.

2. We will then develop solutions that will try to avoid the common bottlenecks found in

current technology and improve the factors that define the efficiency of a compression

method namely;

• The speed at which the compression/decompression processes are executed.

• The average compression ratio that the method can achieve on typical data.

3. Once we have identified a set of solutions that we believe achieve the aim of improving

compression technology we will demonstrate the feasibility of these solutions by

developing a practical hardware architecture and mapping it into available silicon. The

final output and the core to evaluate how well we have achieved our initial aim will be the

performance figures obtained by this hardware device.

9

Chapter 1 Introduction

1. 7 Thesis structure and method

The research objectives can be mapped into the thesis structure as follows.

Chapter 1 is an introduction whose objectives are as follows: Firstly to brief the reader on the

basic concepts on lossless and lossy compression methods. Secondly to establish the

motivation of this work based on the applications and current state of compression

technology. Finally to propose a set of objectives and the methodology to be followed to

achieve them.

Chapter 2 is concerned with a background revision and systematic classification on previous

research efforts. This review will show the features that limit and boost compression

performance and will help us to identify a suitable way to progress further.

Chapter 3 involves the selection of a research vehicle to base our experimentation. We will

use the information provided in chapter 2 to justify the selection of a method that shows high

performance characteristics.

Chapter 4 selects a common development framework to base the experimentation. The

selection identifies the data sets and compression methods to be used for the compression

ratio and compression speed figures and justifies their selection. The process aims to select

state-of-the-art methods so a meaningful comparison can be done between them and our own

method. The technology to be used for the hardware implementation is also chosen.

Chapter 5 focuses on improving the compression efficiency defined as the average

compression ratio output/input on the typical data sets selected in chapter 4. A set of solutions

and their implications on complexity and speed will be described. We will select some of

these solutions to progress further based on 3 interrelated parameters: compression, speed,

and complexity. Since our overall goal is to identify a feasible architecture and to demonstrate

it in hardware it is important that complexity does not exceed that of currently or soon

available hardware.

Chapter 6 focuses on improving the compression speed defined as a function of 2 variables:

throughput and latency. Throughput is defined as the constant and data independent

uncompressed data rate and it is measure in bits/second. Latency is defined as the time it

elapses since the last input symbol enters the device until the devices is ready to start a new

10

Chapter J Introduction

operation and it is measured in cycles. Again the 3 factors must be taken into account since it

is usually possible to increase throughput by reducing compressing efficiency. The

importance of each factor is dependent on the application but it is possible to guide the

process by a selection of figures: typical lossless compression that halves the original

uncompressed data, throughput over 1 Gbitls, latency around 10's of cycles and complexity in

the order of lOO's of thousands of gates. Finally, the proposed core architecture is mapped to

our silicon test bench and tested to prove their benefits.

Chapter 7 extends the compression engine developed in chapter 6 to a full self-contained

lossless data compressor coprocessor and maps it into the technologies selected in Chapter 4.

A final comparison is made between the features of our device against other high

performance lossless data compressor chips.

Chapter 8 concludes this thesis evaluating how well we have achieved the objectives initially

proposed. It also shows the limitations of the current work and identifies a path where future

work could be undertaken.

11

Chapter 2 Lossless Data Compression Review

Chapter 2

Lossless Data Compression Review

2.1 Objectives of Chapter

This chapter presents a review on the area of lossless data compression. The objective is to

analyse current lossless data compression methods and then to select a set of interesting

concepts for further research in the following chapters.

Firstly, we will introduce some basic concepts on data compression and assess the main

components present in a lossless data compression system, then continue with an

investigation on recent advances in software and hardware data compression and finally

conclude highlighting the features common to high performance lossless compression

methods.

2.2 Data compression basic definitions

Lossless data compression is possible because some of the bits that form a symbol contain

redundancy. It is possible then to devise a mechanism to eliminate the redundant bits and still

maintain the complete meaning of such a symbol. The amount of information in bits of a

symbol a is given by the expression:

number _of _bits = -Iog2(probability(a» [2.lJ

where probability(a) is the probability of occurrence of symbol a. This for example means

that if the probability of occurrence of a symbol a is I then the information content of that

12

Chapter 2 Lossless Data Compression Review

symbol is 0 and 0 bits are needed to code it because in essence no other symbol can happen in

the receiver end. On the other hand if the probability of occurrence of a symbol b is 0 then

from equation [2.1] infinite bits would be needed to code it and in essence the coding

operation can not take place. This will happen with an alphabet with infinite number of

symbols that cannot be coded. Using equation [2.1] the minimum number of bits needed to

represent a symbol c with probability 0.9 is 0.152. If the symbol is a single bit an optimal

coder will be able to remove 0.848 bits and the decoder in the receiving end will still be able

to know if a 0 or 1 was transmitted. The information content of a block of data that uses an

alphabet of size n can be obtained weighting the information content of each symbol with its

probability of occurrence producing the expression:

•
H = - 'L)probability(Ui) * log2(probability(Ui» [2.2l

I-I

These 2 expressions [2.1] and [2.2] are due to Shannon [Shannon48]. H is known as the

entropy or information content of a data source and forms the basis of the information theory

due to the same author. It represents the minimum number of bits needed on average to code

an input symbol using a given probability distribution and a lower bound to measure the

efficiency of any coding method. The equations made a clear distinction between model and

coder. The model is a collection of data that identifies where the redundancy is located in a

message while the coder is a mechanism to exploit this information to reduce the number of

bits needed to represent the original message. Equation [2.2] establishes that lossless

compression is possible because some symbols or groups of symbols have a higher chance of

occurrence (probability) than others. As a direct consequence true random data is impossible

to compress because it contains no redundancy and all the symbols have the same probability

p=/Ia/phabet_size producing a flat probability distribution with a value of H that equals

/ogla/phabet_size). A useful definition to measure the efficiency of a compression method

is the compression ratio (CR) of equation [2.3] where compressed output and uncompressed

input are measured in number of bits. Compression is obtained whenever the CR is in the

range of (0,1). This measurement will be used in the rest of this work.

CR = Compressed OufputlUncompressed Input {2.3]

13

Chapter 2 Lossless Data Compression Review

2.3 Elements of a lossless data compression system

In any lossless compression system it is possible to identify 3 components with different

functionality. These are: the model, the coder and the packer. The same 3 elements are present

in the decompressor but their function is now opposite in 2 of them (the unpacker and the

decoder) whilst the model is used in the same way.

The separation between model and coder is particularly useful to classify the 2 main families

of lossless data compression methods: dictionary-based methods and statistical methods. It

reflects the fact that once we have decided which modelling technique to use for our data, the

coding method is not fixed and a wide range of techniques remain available to choose from .

Although some coding methods map better than others depending on the chosen model , many

dilTerent combinations are possible.

These 3 components must be applied in the right order as shown in Figure 2.1.

Compression System EIernen1s

Decompression System Elements

Qnpgaod
Urpoo/IBr ...

Figure 2.I.Elements of a Lossless Data Compression System

2.3.1 Compression (Modelling, Coding, Packing)

• The function of the model during the compression process is to identify where the

redundancy is located in the data source and to signal repetitive data sequences to the

coder. The model uses past experience obtained from processing the input data source to

guide these 2 tasks. The model performs the same function in compression and

decompression and it must be maintained in synchrony matching all the compression

states during decompression to ensure proper decoding.

14

Chapter 2 Lossless Data Compression Review

• The function of the coder is to assign a number of bits to each event notified by the

model. A non-trivial coder will use the information passed by the model to code more

common data using fewer bits than to code less common data and therefore to increase

the compression efficiency of the method. A trivial coder will assign the same number of

bits to each event.

• Finally the packer is used to group the variable or fixed length codes output of the coder

in fi xed length units depending on the word width of the system before they are output as

compressed data.

Models can be adaptive, semi-adaptive or static:

• In adaptive models the adaptation or leaming process takes place concurrently to the

compression process. The model dynamically changes the information it stores depending

on the properties of the data source. After receiving a symbol an adaptive model obtains

the information that describes it using its intemal history and passes this information to

the coder. It then performs an adaptation function modifying its intemal hi story to renect

the symbol just seen.

• Semi-adaptive models use a two-pass approach where in the first pass the model adapts

and in the second pass compression takes place with a static model providing the

information to the coder.

• Static models use the same information to process any data source. Its usefulness is

limited because for example a general model obtained from compressing text might offer

a very inaccurate representation of an image file .

Adaptive models are usually preferred because they offer superior performance. They avoid

the overhead of having to process the data source twice and/or the need to transmit model

information to the decoder. This work is mainly concemed with adaptive models.

2.3.2 Decompression (Unpacking, Decoding, Modelling)

• The unpacker function is to break the compressed input data stream into units where the

boundaries correspond to compressed symbols. The unpacker needs information about

the compressed length of the previously uncompressed symbol that must be provided by

15

Chapler 2 Lossless Data Compression Review

the decoder before it can disregard the bits used in the previous decoding step and shift in

new compressed data for a new cycle. This property of the decoding process creates a

feedback loop between coder and unpacker and it means that it is quite difficult to

pipel ine these 2 stages. The job of the packer/unpacker in some dictionary-based

techniques that obtain compression by replacing variable-length groups of symbols with

fixed-length codes can, however, become trivial. This variable-to-fixed way of operation

means that the boundaries between compressed symbols are fixed so the previously

mentioned feedback loop does not exist.

• The decoder transforms the compressed data into indices or pointers to tables where the

uncompressed data can be found in the model. These pointers could be addresses to

dictionary locations in dictionary-based methods or arithmetic values in the range

between 0 and I in statistical methods.

• The model uses the index information provided by the decoder to obtain the

corresponding uncompressed data and output it. The uncompressed data could be a group

of symbols in a dictionary-based method or a single symbol in a statistical method. The

model also uses the uncompressed data to perform the same adaptation function as the

compression model to keep in synchrony and maintain correct operation.

2.4 Statistical and dictionary-based lossless data compression

methods

Statistical methods show a more clear separation between model and coder. Statistical models

are based on assign ing a value to symbols depending on their probability using the rule: the

higher the va lue the higher the probability. The accuracy in which this frequency assignment

reflects reality determines the efficiency of the model. The model passes this frequency

information in form of symbol count and total count to the coder. The coder objective is to

use few bits to code symbols with high probability and vice versa. Compression is obtained if

the symbols that get assigned shorter codewords prove to be most popular in the input data

source. Again adaptive models are preferred because they offer superior performance and

since they start with an empty state they do not need to transmit the model as part of the

compressed data. These methods are also called symbol wise methods because they process

each input symbol independently in contrast with dictionary methods that group symbols

together. Statistical methods tend to use a form of a dictionary to hold the active subset of the

working alphabet and thi s concept should not be confused with dictionary-based modelling.

16

Chapter 2 Loss/ess Data Compression Review

The dictionary used in a statistical method has frequency counts associated to its locations and

this is not true in dictionary-based methods.

Dictionary methods try to replace a group of symbols by a dictionary location code or

dictionary address that points to a dictionary position that stores the same group of symbol s.

Compress ion is obtained as long as the location code uses fewer bits than the group of

symbols it replaces. It is characteristic in these methods to give the modelling stage an extra

importance whi lst the coding stage is simplified . They are simpler than statistica l methods and

tend to run fa ster with good compression ratios. For this reason dictionary compression

remains as the most popular both in hardware and software although the best compression

ratios are found in the area of stat istical compression [BeIl89]. The information pass to the

coder by the model is a dictionary location plus information relating to the match length. This

information can be sent to the bit packer directly without further processing by the coder or

the coder can try to assign shorter codes to those index/length combinations that prove to be

more popular.

Hybrids are also quite popular with combinations mainly between dictionary models with

statistical coders. Figure 2.2 shows a classification of modelling and coding techniques for

lossless data compression and examples in each category.

Losslcss Compression Systcms

MODEL CODER

j
Statistical or
Symbolwise

Finilc-conlCXI Finite-state

j
PPM DMC

[Cleory841 [Co<mok87J
Fixcd-contcxt

Q-Codcr

[Penneboker881

I

Su .. . ~ (.s"" , ~" c" l)
M"".:h ..,..." "
MUlc h Lo:"a1h (D lello .. "ry l

Dictionary or
Substitutional

Statistical or
Symbolwisc

~l
LJICllonary or
Substitutional

ARJ. PKZIP.
ALOC.

ISlottElfy981 •
llS 12-78

[HVfn99J

[
Others

Bsnv Tree-based
[Bentley86J Coding

X·Match
IKjelso95J

Fractional-bit

Arithmetic
Coding

Phased
Binary
Coding

CZL
[Nusinov94J'

Unironn
Binary
Coding

AWC.
X-Match

LZW.JWelch841
OCLZ [8lonchy89J

l-IuITman.
Elias.
Golomb,
Rice,
Coding

Full
Precision

Low

Run
Length
Coding
BLOC

[Cratt98J
Precision

j
Multi-symbol

PKZIP, Alphabets
I..ZW CAM Muhi-symbol

)WItten87J Alphabets

Quasi
ArilhlT'Clic
Coding

Binary
Alphabets

j
Q·Codcr

Figure 2.2. Lossless data compression systems classification [HOWOld93J 17

Chapter 2 Lossless Data Compression Review

2.4.1 Statistical metbods

1.4.1.1 Statistica/lllodellillg

Statistical models are based in doing predictions on the expected next symbol using the

statistical information gather during the processing of previous data. Simple statistical

modelling is based on assigning a count higher than 0 to any possible symbol in the alphabet

and then to increase these counts according to the symbols being processed. This modelling

strategy is usually called a context-free statistical model. In this simple model it is important

to start the model with a count hi gher than 0 for any possible input symbol to avoid the zero

frequency problem [Cleary95a], [Witten9 1]. The zero frequency problem occurs when the

coder tries to code a symbol with a count of 0 because the equation that drives the coder -

log,(probability) fails if probability = O.

The value of the probability for a symbol 'a' is given by:

b b 'l () symbol COl/lit of a
pro a Ilty a =

total _ symbol count
[2.4}

The information that the coder requires from the model is the probability of the symbol 'a '. It

then becomes the responsibi lity of the coder to use thi s information efficiently to obtain

compression. If the probability information provided by the model is inaccurate the coder

will fail to compress the symbol and it might even expand it (use more bits than in its original

representation) thus showing the importance of good modelling.

This simple context-free modelling technique does not use the concept of dictionary because

all the input symbols are present in the system from the start. The concept of a dictionary in a

statistical method appears when not all the possible input symbols are assigned a freq uency

count higher than 0 and an escape mechanism is enabled to avoid the zero frequency problem.

Statistical models use dictionaries when the alphabet is too large to be handled simultaneously

(for example if system granularity is words instead of bytes) or if a context-based technique is

being used. In these cases a dictionary is used to hold the a lphabet subset that is active at that

moment. The dictionary locations in a statistical model have frequency counts associated with

them and this feature avoids confusion with dictionary-based modelling that will be discussed

in section 2.4.2.

Context-free modelling offers modest compression ratios because the probabilities tend to

have low and similar values with values approach ing I for a symbol being rare since all the

18

Chapter 2 Lossless Data Compressioll Review

other symbols in the alphabet must also be accommodated. Probability values approaching I

can be obtained by exploiting the concept of context-based modelling. Context-based

techniques exploit the fact that a prediction can be made with much more certainty by

observing the symbols that have just preceded the current symbol. They will be analysed in

the following sections.

2.4.1.1.1 Finile-cO/ilexl modelling

A real breakthrough in statistical modelling came with the introduction of context-based

prediction and context-blending techniques in [Cleary84] with the PPM (Prediction by Partial

Matching) algorithm.

PPM methods extract the redundancy present in a block of data using a variable-order

context-based statistical model. A key concept in PPM is model order. The order of the model

defines the maximum number of symbols that can be used to predict the next symbol. The

symbols that are used to predict the next symbol are called context. In other words, a context

is formed by symbols and the maximum number of them defines the order of the model. For

example a first order model working with English text will find that the probability of 'h'

following a ', ' is much higher than the probability of an 'h ' on its own. Then after activating

context '(' because a 't' has been received the system will predict that an 'h ' will follow with

a 95% probability. If a 'h ' does follow much greater compression will be achieved. Assuming

a 256 symbols alphabet an optimal coder will assign to symbol 'h' only - log,(0.95) = 0.07

bits which is a big reduction over the original 8 bits. Of course, if the prediction fail s and for

example not symbol 'h' but symbol 'w' follows more bits will be needed to code a symbol

with low probability and indeed no data compression but data expansion could take place.

Any symbol predicted with probability lower than 1/256 = 0.004 (0.4 %) will expand when

coded because - log,(J 1256) = 8 bits.

The PPM methodology assumes that the higher the order the more precise the prediction

would be and fewer the bits needed to code it. For example, let 's imagine an extreme case

where the order of a model was as high as all the letters contained in a book except the last

one. A prediction on the last letter using this context would be made with almost 100%

certainty and would not create almost any output since no 2 books are the same but the last

letter. The only uncertainty will be left to spelling errors . This system is un feasible but

illustrates the idea of prediction with high orders.

19

ChaTJIer 2 Lossless Data Compression Review

PPM methods do not assign a count higher than 0 to aIJ the possible input symbols, only to

those that have been seen after a particular context. To avoid the zero frequency problem

described in section 2.4.1.1 an escape technique is used so the system can vary its order

faIJing from a higher order to a lower order if a valid prediction is not possible in the first one.

This variable-order feature is enabled by the escape mechanism that effectively blends

together aIJ the different orders present in the system. When a particular order fails to make a

prediction because the item being predicted is new to that context the escape mechanism is

activated. The model tries to use the next lower order and so on until the item is successfuIJy

predicted or the oth order, where the context is empty, is used. The Oth order has to be

implemented in a way that any possible input symbol has a count higher than o. The context­

free model described in section 2.4.1.1 corresponds to a Oth order model. Depending on the

implementation an order -I where aIJ the possible symbols have the same fixed probability

could be defined. In this case Oth order is aIJowed to fail to make a valid prediction an escape

to order-I.

The size of the alphabet is typicaIJy byte-based to exploit the fact that most data exhibits a

byte granUlarity. Binary alphabets are also popular due to its simplicity mainly in hardware

implementations. PPM word-based compression has also been analysed by [Moffat89) with a

word defined as maximal sequence of alphabetic characters and a non-word as maximal

sequence of non-alphabetic characters keeping statistics separately for both distributions. His

results show an important compression benefit when replacing a Oth order model with a I SI

order model. Higher-order modelling shows no advantage for word-based compression.

Several variations from the original PPMA and PPMB methods described in [Cleary84) have

appeared modifying how the escape probabilities are calculated to improve how the orders

blend together. This research has produced methods such as PPMC [Moffat90) and PPMD

[Howard93a) each of them offering some improvement over the previous one.

A lot of research has been done in choosing an optimal maximum context length. The

classical approach based on byte alphabets uses an upper bound with a context length of 4 or

5 symbols while showing that further extensions of context length damage compression due

to an excessive use of the escaping mechanism. However a more recent approach named

PPM* [Cleary95b) uses unbounded context lengths to achieve superior performance.

Unbounded-length contexts are formed by aIJ the symbols that have been seen in the input

stream and used efficient data structures to maintain complexity under reasonable limits. They

also exploit the use of deterministic contexts or contexts that make a single prediction. Other

refinements aimed at improving compression is the inclusion of a local order estimation

20

Chapter 2 Lossless Data Compression Review

(LOE) technique that makes a prediction based on the input stream characteristics on which

context length should be used for the next symbol.

These techniques have been utilised in PPMZ [Bloom98]. PPMZ uses LOE to choose a

context length between 12 and 0 when a deterministic unbounded-length context has failed to

make a prediction. PPMZ is considered to be one of the best data compressors available in the

literature but it achieves this by imposing high demands on memory resources and CPU

performance. Execution is measured around I symbol every 20K CPU cycles while the

demand on memory resources is around 30 times the size of the file being compressed.

2.4.1.1.2 Finite-state modelling

Finite-state modelling is based on a state transition graph formed by nodes representing states

and edges leaving and entering the nodes representing transition probabilities between the

states. Finite-state models can construct the fmite-context models of the previous section with

ease. For example a single node can represent a simple byte-based Oth order context-free

model with 256 transitions leaving and entering the node. Each edge would be associated with

the probability of a byte occurring. A byte-based I SI order finite-context model would have a

finite-state equivalent model formed by 256 nodes each of them with 256 transitions leaving

the node and entering the same node and the other 255 nodes. Finite-state modelling can also

built more complex structures to reflect data behaviour that can not be adequately represented

with finite-context modelling. The draw back with finite-state adaptive models is that their

construction and maintenance is more difficult with techniques based on heuristics instead of

mathematical analysis [BeIl89]. Adaptive model construction is usually based on starting with

a simple model with a single node and then duplicate or clone the node based on parameters

related to node usage. If a transition to a particular node from different nodes proves to be

popular it is duplicated to capture which states contribute the most. The more popular

implementations of finite-state modelling are based on binary alphabets where each node or

state has only 2 possible next states [Cormak87]. This simplifies the managing of the model

and also suits arithmetic coding since binary coders are much simpler to implement.

2.4.1.2 Statistical coding

The function of a statistical coder is to use the frequency information provided by the model

to produce a minimal number of bits an obtain compression. A good coder will output a

number of bits close but never fewer than -log2(probability) for a given model since this

21

Chapter 2 Lossless Data Compression Review

quantity defines the infonnation content or entropy of the model and it is the optimal code

length.

The spectrum of statistical coding techniques expands from the fast but sub-optimal prefix

coders to the slow but optimal arithmetic coders with a range of coding techniques located

somewhere in between trading speed for coding efficiency.

The prefix coders or whole-bit coders which are derived from the well known Huffinan

[Huffman51] codes are sub-optimal because they only produce an optimal output when the

probability distribution of the input symbol matches exactly 11(2'} where x is an integer and

positive number.

The arithmetic coders belong to the class of fractional-bit coders and are known as being

optimal because their output can be arbitrarily close to infonnation content of the model by

controlling their precision.

2.4.1.2.1 Whole-bit coding

Whole-bit coding assigns an integer number of bits bigger than 0 to each coding event so the

codes assigned to each input symbol are independent and disjoint from each other. This

technique is also called prefix-free coding because a valid codeword can never be the prefix

of other valid codeword. This means that the coder immediately knows when all the bits

corresponding to a codeword have been received and therefore knows where the next

codeword starts. If the prefix-free property is not respected the code can not be decoded

without errors. Unifonn binary coding (UBC) where each symbol in the alphabet is assigned a

codeword length loglalphabet_size} bits is the trivial fonn of prefix-free coding. UBC can

not obtain compression in a statistical method because it assumes that all the symbols have

the same invariable probability of occurrence p=llalphabet_size. UBC is useful in dictionary­

based methods when it is used as a dictionary address and the dictionary data width is larger

than logldictionary _length}. The prefix-free property considerably simplifies coding and

decoding operations and enables fast parallel implementations.

2.4.1.2.1.1 Shannon-Fano coding

Shannon-Fano Coding is considered to be the first well-known modem method for efficiently

coding a group of symbols [Shannon48]. It uses the probability of each symbol to assign more

bits to symbols with low probability and fewer bits to symbols with high probability. The

22

Chapter 2 Lossless Data Compression Review

construction method, however, can not guarantee producing a whole-bit optimal code and 3

years after its invention it was quickly superseded by the more efficient Huffman codes.

2.4.1.2.1.2 Huffinan coding

Huffman coding was presented in [Huffman51] and since then it has enjoyed a widespread

popUlarity. It is a whole-bit optimal code meaning that it can never be improved on by other

whole-bit coder. Although its performance in many cases is close to that of Shannon-Fano

coding it can never be worse and it is usually better.

To construct a Huffinan code for an alphabet formed by n symbols we need to build a tree

!mowing the probability distribution of these n symbols in our data source. Firstly, we list

these symbols in decreasing (or increasing) order of probability forming the leaves of our

future Huffman tree. Secondly, we repeatedly select the 2 leaves with smallest probabilities

forming a sub-tree whose probability is the sum of the 2 leaves. Finally, we continue this

process with the sub-trees until only one tree remains. The Huffman code for a symbol n, is

obtained traversing the tree from the root to the leaf assigned to that symbol and adding a bit 1

or 0 to the code depending if we go left or right at every branch of the tree. A Huffinan tree

for an alphabet of 6 symbols is illustrated in Figure 2.3. The tree is constructed using the

symbol probability distribution P= {2/41, 3/41, 5/41, 7/41, ll/41, 13/41} for our alphabet r =

if, e, d, c, b, a}. For example to code the message 'aaba' the output of the Huffman coder

would be '00000100'. Since our example alphabet has 6 symbols a uniform binary code

would need at least 3 bits per symbol. Then a total of 12 bits would be needed to code the 4

symbols. The output of the Huffman coder is 8 bits so we have a reduction of 4 bits.

Root

\

17-7+10
1

Leaves

S'/rTt>OI COdetIoIds

A 00
8 01
C 10
o 110
E 1110
F 1111

Figure 2.3. Huffman Tree Example

E
""'~

23

Chapter 2 Lossless Data Compression Review

Following this procedure and using a fixed model a fixed Huffman tree is quite trivial to

construct. More challenging is the adaptive model case when we want to dynamically adapt

the coding tree to changes in the model induced by variations in the statistical properties of

the input data source. Small variations in the model could force important changes in the tree

structure resulting in a very time-consuming process of reconstructing the tree after each input

symbol. Dynamic Huffman Coding has been subject of study in [Vitter87], [Knuth85] where

the tree updating procedure is done by traversing the tree from the leave to the root in

constant time proportional to the encoding length. These methods require in the order of

n+r+H time to encode a file ofn symbols with an alphabet of size r. His the number of bits

produced. This means that if H is much bigger than nand H is much bigger than r then

n+r+H =: H and every bit is output in I cycle so in each coding cycle is possible to obtain

one bit of output including the updating process of the tree. This measure of throughput

depends on the number of compressed bits produced and therefore on the instantaneous

compression ratio. This is an undesirable characteristic because it is not possible to guarantee

a constant data rate in the uncompressed port.

Huffman coding is an optimal-code when the probabilities produced by the model for n

symbols are given by p(nJ= 11]' where x is an integer number bigger than O. In this case the

minimum possible number of bits to code a symbol n, is -[og2(l1]') = x. This quantity is an

integer number bigger than zero that a Huffman code can output. The problem arises when a

good model produces probabilities for a symbol close to I that would need a fraction of a bit

to be coded (x is closed to 0). A Huffman code must output at least I bit and always an

integer number of bits as its codeword. The coder in this situation outputs redundancy with

the worst case being of 1 extra bit per symbol.

2.4.1.2.1.3 Golomb, Rice, Elias, Fiala Coding

Golomb, Rice, Elias and Fiala coding can be considered variations in the Huffman coding

theme since it is possible to construct a Huffman tree for them. They offer less compression

than Huffman codes but their simplicity and speed makes them attractive as an alternative to

unifonn binary coding. Golomb codes [Golomb66] are built by arranging the symbols of the

alphabet in descending probability order and assigning positive integers to them. Golomb

codes are based on the use of a coding parameter m that changes the shape of the code.

Smaller values of m should be used for more skewed probability distributions because very

few bits are assigned to more probable symbol but many more to less probable symbols. To

encode an integer n using the Golomb code with parameter m we obtain nlm and output this

as an integer unary code. Then we obtain n mod m and output this value using a binary code.

24

Chapter 2 Lossless Data Compression Review

For example if n = 10 and m = 4 then nlm = 2 = '11' and n mod m = 2 = '010' so the code

is '11010'. We could have not used' 10' to represent 2 because then the resulting code '1110'

would have not respected the prefix free property. This means that the binary code needs to be

adjusted to avoid extending the unary code. Rice coding [Rice83] is a subset of Golomb

coding because only parameters m that are power of 2 are allowed (m=?). Rice coding is

specially suitable for hardware implementation because nI(2~ can be calculated by shifting

and n mod :r by setting to 0 all the bits in n but the less significant k bits. The following Table

2.1 hows an example of Golomb and Rice codes.

Elias codes [Elias75] are similar to Golomb and Rice codes but they do not use a parameter m

so they offer little flexibility and compression performance is limited. Elias describes 2 codes

y and 15. In code y an integer n is coded as a unary code for 1 +!Og2(1'l) bits followed by a code

of log2(1'l) in length coding n-2 *[Og2(1'l) in binary. The 15 replaces the suffix unary code by a y

code.

The Fiala codes [Fiala89] are known as [start, step, stop} codes because they use these 3

parameters to construct many different possible codes. Symbol n is coded as ni's followed

by a 0 and then followed by a field of size start+n ·step. If this value is equal to the stop value

then the preceeding 0 can be omitted. The example in Figure 2.4 corresponds to a Fiala code

with the following parameters [0,1,5].

Position Rice K-O K-I K-2 r {O,I,5]
Parameter Elias Fiala

code code
Golomb M-I M-2 M-3 M-4

Parameter
0 0 00 00 000 ID 0
I ID 01 OlD DOl llO lOO
2 llO lOO all 010 llll 101
3 IllO 101 lOO Oll lllOO /l000
4 ll/lO /lOO /010 1000 lllOI llOOI

Table 2.1. Prefix-Free codes example

These codes need the symbols in the alphabet to be organised in decreasing order of

probability so fewer bits are assigned to the most probable symbol.

2.4.1.2.1 Fractional-bit coding

Fractional bit coders have the ability of mapping a symbol to a fraction of a bit. This means

that if the probability of a symbol is close to I very little output is needed to code this symbol.

25

Chapter 2 Lossless Data Compression Review

On the other hand a whole-bit coder needs at least I bit and always an integer number of

them. Fractional-bit coders are usually called arithmetic coders [Witten87]. [Langdon84]

because they required arithmetic operations such as divisions and multiplications to code a

symbol. Arithmetic coders produced a single and unique codeword for the whole message

being processed and therefore lack the direct correspondence between bits in the codeword

and symbols in the message. They are not prefix-free codes like the whole-bit coders

described in the previous section. They are optimal in the sense that they produce an output as

close to the entropy of the model as desired by controlling their precision. This optimality

comes with the price of higher complexity. The dependencies that appear between the

coding/decoding of a symbol and the coding/decoding of next symbol make a parallel

implementation a difficult problem. Fast approximations to arithmetic coders using low

precision multiplication-free arithmetic speed-up the process at the expense of compression.

Current research aims to solve the problem with the lack of parallel execution of the coding

and decoding processes.

2.4.1.2.2.1 Full-precision arithmetic coding

Full precision arithmetic coding replaces a stream of input symbols with a single output

number less than I and greater than or equal to 0 using exact precision multiplications and

divisions. A general encoding algorithm to accomplish this follows:

Set low_old to 0.0

Set high_old to 1.0

While there are still input symbols do

Get input symbol

range_old = high_old-low_old

high_new = low_old + range_old·Pcumi

low_new = low_old + range_old· Pcumi_1

End of While

Output low

The next graphical example of Figure 2.4 shows the result of processing the message' aaba'

with an alphabet r = if, e, d, c, b, a} using the same probability distribution P = {2/41, 3/41,

5/41, 7/41, 11/41, 13/41} = {0.05, 0.07, 0.122, 0.170, 0.261, 0.317} as in Figure 2.3 for the

Huffman coder. The Pcum are the cumulative probabilities of the symbols Pcum = {0.05,

0.13,0.252,0.422, 0.683, 0.999}. The example shows how the subinterval [0,1) is subdivided

in sections proportional to the probability of the symbol that they represent.

26

Chapter 2 Lossless Data Compression Review

<l

b

c

d

•

<l

1.0 --

0.683

0.422

0.252

0.13

0.05
0.0

HIgh - 1.0

l<>w- 0.0

Ra"Ig& - 1.0

a
1.0

0.896341

0.813604

0.759714

0.72104

0.69885

0.683

HIgh - 1.0

l<>w - 0.683

Ralgo - 0.317

b

" J
0.966103507

0.939048508

0.921426478

0.90878008

0.90162395

0.896341

H\11- 1.0

Low - 0.896341

Ralgo - O.10361S9

a
0.966103607

0.967256522319

0.96019516758

0.94559581775

0.94229670188

0.94040125795

0.939048608

HIgh - 0.966103507

l<>w - D.939048508

Ralgo - 0.D27054999

Figure 2.4.Arithmetic coding example

0.9661=7

0.967266622319

H\11- 0.9661=7

Low - 0.967256522319

Ralgo - 0.008846984681

Then we can use any value between the last high and low to represent the string. If we chose

0.96 then we can represent the string in 7 bits obtaining I bit reduction if comparing with the

Huffman code.

To decode the compressed stream we use an algorithm as follows:

Get encoded number

Do

Find symboli whose range straddles encoded number

Output the symbol

range = Pcumi - PCUmi_i

Substract Pcumi_i from encoded number

Divide encoded number by range

Until no more symbols

In the previous example the encoded number is 0.96 so we know that first symbol to be output

is 'a' then we subtract symbol low value from encoded number to obtain 0.277. Then we

divide by the range 0.317 and the resulting value is 0.873817. Then we know that the second

symbol is another 'a '. We continue by subtracting symbol low value from encoded number to

obtain 0.190817. Then we divide by the range 0.317. We now obtain 0.601946 so the next

symbol is 'b'. The process continues until no more symbols are left to decode. To detect

when to stop either a special termination character can be encoded (not done in this example)

27

Chapter 2 Lossless Data Compression Review

or the length of the uncompressed string can be concatenated to the compressed message. If

the uncompressed length is large enough the overhead is small.

The previous example shows a practical problem with arithmetic coding related to precision.

If the message continues for a few more symbols we would have run out of bits to hold the

required precision. It also seems to show that the whole message needs to be processed before

the compressed codeword is known. These problems have been solved in practical

implementations so only integer arithmetic is required and incremental transmission is

possible.

A practical arithmetic coder is reported in [Witten87]. His implementation outputs a bit of

codeword as soon as it is known and replaces the floating point arithmetic for integer

arithmetic so the interval [0,1) is replaced by [O.N) with N being as large as 65536. The

cumulative probabilities provided by the model are also stored using integer numbers in form

of cumulative frequency counts so Pcum of example 2.4 becomes Fcum = { 2. 5. 10. 17. 28.

41} so the Pcum/ is obtained dividing the Fcum/ by Fcumn where n is the last symbol that

stores the total, in the example symbol 'a' with Fcum = 41. When the low and high values are

close together some more significant bits are equal. These bits are added to the output and

then the interval is scaled up so it keeps large enough to assign some range to all the possible

input symbols. This is necessary to avoid having underflow conditions. When low and high

straddle 0.5 the next bit output is not known but a follow-on procedure is used to keep track

of the number of cycles the mechanism is used. Operation continues until the interval falls

above or bellow 0.5. If the interval is above 0.5 then a 1 is output together with a number of

O's as indicated by the follow-on mechanism. If the interval is beIlow 0.5 a 0 is output

together with a number of 1's as indicated by the follow-on mechanism. Other similar

mechanism for incremental transmission and fixed precision arithmetic have been developed

by [Guazz080]. The mM bit stuffing idea of [Pennebaker88] that consists in inserting zeros to

block carry propagation fulfils the same function as the follow-on procedure described above.

2.4.1.2.2.2 Low-precision arithmetic coding

Low precision arithmetic coding aims to replace the slow multiplications and in some cases

divisions necessary to implement the full precision algorithm for some simpler alternative. It

comes in 2 main fashions. Techniques that replace the slow multiplications by shifts and adds

and techniques that perform all the calculations ahead of time and store the results in look-up

tables.

28

Chapter 2 Lossless Data Compression Review

Quasi-arithmetic coding is based on performing all the calculations ahead of time and it is

described using a binary alphabet in [Howard93b]. The number N in the interval [O,N)

generates a number of possible states in the coder that equals 3*NI16. If N is small the

number of states is small and it is possible to precompute all the possible state transitions and

outputs and stored them in a table. If N=4 then the number of states is 3. Quasi-arithmetic

coding shows that if compared with an exact arithmetic coder the number of extra bits output

per input symbol is at most 5. 7711N. This means that a larger value of N improves the

efficiency but also increases the complexity. In practical terms values between 32 and 128 are

used. The proposed way to extend the binary coder to a multi-alphabet coder is to assign the

symbols of the alphabet to the leaves of a binary tree. Then the coding of a symbol is

decomposed in the coding of a binary decision at each level of the tree. A binary Quasi­

arithmetic coder can be used in each level of the tree.

The method proposed in [Rissanen89] and used in the Q-coder [pennebaker88] simplifies the

multiplication and divisions operations by scaling the range and the total count of the model

to the same interval [0.75, 1.5). The implementation replaces storing the high_new value by

storing the range_new so the original equations:

become:

high_new = low_old + range_old*Pcumi

low_new = low_old + range_old * Pcuml.1

range_new = range_old *(Pcum,-Pcumi_l)

low_new = low_old + range_old * Pcumi_1

[2.5]

[2.6]

The algorithm then makes the approximation rangelFcum. ,;; 1 and since Pcum,-Pcumi_1 =

(Fcuml- Fcumi_I)/Fcum. equation set [2.6] is simplified to:

range_new = Fcumi-Fcumi_1

low_new = low_old + Fcumi_1

Multiplications and divisions are not longer present in equation set [2.7].

[2.7]

The analysis in [Lei95] shows that the error of the Rissanen method depends on the value

(Fcum.-Fcum._dIFcum • . The error is larger when this value is smaller so the most probable

symbol is placed in the last position to force Fcum.-Fcum._1 to have a large value. The

conclusion is that the degradation of the method is significant when the count of the most

probable symbol is small. An extension of the method is proposed so the approximation

29

Chapter 2 Lossless Data Compression Review

range!Fcumn E: 1 after scaling both quantities to the interval [1,2) is replaced by a number b =

{0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2} = {O.JOO, 0.J01, 0.110, 0.111, 1.000, 1.0JO,

1.JOO, 1.110, 1.lll} . The multiplication times b can be done shifting and adding with the

following values of b = {22
, 22+2°, 22+i, 23_2°, 23

, 23+21
, 23+22

, 2'_21
, 2'_2°}. This is

particularly well suited to fast software and hardware implementations. The simplified

equations are now:

range_new = b·(Fcuml-FcumJ./)

low_new = low_old + b*Fcum'.1

[2.8]

This better approximation improves the method and the results show a degradation of 1.04%

compared with a full precision implementation while Rissanen method increases the

degradation up to 6.06%.

2.4.2 Dictionary-based methods

2.4.2.1 Dictionary-based modelling

Dictionary-based modelling is a concept easier to understand than statistical modelling. The

model stores a collection of symbols expected in the input data source in the form of a

dictionary. It then tries to replace occurrences of these symbols in the data being processed by

indexes to the dictionary locations where the same data can be found. These methods try to

group symbols together and replace them by a single index to improve compression. They are

string oriented and not symbol oriented like the previous statistical methods. As long as the

index size is smaller than the string size compression is obtained. The larger the dictionary

size the higher the chance of finding the input symbol in it but also more bits are needed for

the index.

Most of the dictionary modelling techniques have their roots in the work published in 1977

[Ziv77] and 1978 [Ziv78] by J. Ziv and A. Lempel. The LZ77 (LZl) and LZ78 (LZ2) vary in

the way the dictionary is built and maintained and how the indexes referenced the information

stored in the model. They emerged as valid alternatives to classical statistical Huffman

methods and generated plenty of research and variants on the LZ theme.

30

Chapter 2 Lossless Data Compression Review

2.4.2.1.1 LempeZ-Ziv 77 (LZ77, LZ1) modelling

An LZ77 dictionary is based on dynamically keeping a window of symbols seen previously in

the input data source with a typical window length that varies between 512 and 16K bytes.

The window slides over the data maintaining strings of symbols together forming phrases. A

buffer is concatenated to the dictionary window that contains symbols that have not been

processed yet. The buffer size is typically between 16 and 64 bytes. The buffer contents are

compared against the dictionary contains to find the longest matching string. LZ77

compression is based on outputting three items: an index to the dictionary indicating where

the match started, an offset indicating the length of the match and finally the first character in

the input that did not find a match in the window. Figure 2.5 shows an example of how LZ77

works.

11 !i1l!iilaaab 11 Dllli1lb

Dictionary window Buffer being processed
Figure 2.5. LZ77 Example

The dictionary matches the first 4 symbols of the buffer starting at position O. The output of

the dictionary model is (O,4,b). Symbol b is the first symbol in the buffer that it is not found

in the dictionary. This method presents 2 major inefficiencies. Firstly, ifno match is found the

output of the model is still 3 items. For example if symbol y does not exist in the dictionary

the output is (O,O,y). It is common to have many misses during the initial stages of

compression so this effect would degrade compression significantly. Secondly, it always

requires an extra character to be added to the output. This could be quite inefficient if this

character could be made part of the next compressed token instead of explicitly adding it to

the output.

These inefficiencies were dealt with in the LZSS implementation [Storer82]. This algorithm

uses a single bit concatenated to every output token indicating a hit or a miss. If a miss the

non-matching character is appended to this single match bit. If a hit the match location and

match lengths are appended to the match bit. In this algorithm the output of the model is also

the output of the coder since uniform binary coding (UBe) is used directly. LZS is a very

popular hardware implementation similar to the LZSS version. LZS adds more complex

coding techniques for the index and the match length to improve compression. We will

discuss LZS in the hardware section.

31

Chapter 2 Lossless Data Compression Review

Decoding is simpler than coding since time consuming searching is not necessary and the data

provided in the compressed input can be used directly to fetch the uncompressed output from

the dictionary.

The fast execution and simplicity of the LZ77 algorithm together with the good compression

ratios obtained by their improved derivatives have made the LZ77 algorithm to become the

most successful general application lossless data compressor. Popular software

implementations such as PkZIP from PKW ARE and ARJ from ARJ Software illustrate this

fact.

2.4.2.1.2 LempeZ-Ziv 78 (LZ78, LZ2) modelling

LZ78 creates dictionary entries formed by complete phrases by concatenating the first

unmatched symbol to the previously matched phrase. The dictionary initial state is formed by

only I phrase that is the empty string. The first symbol being processed is replaced by a pair

formed by a reference to the empty string plus the symbol in explicit form. Then the symbol is

added to the dictionary forming a new phrase. The output of the encoder is always formed by

a reference to the longest matching string in the dictionary plus the symbol that stopped the

match. This symbol is always added to the previously matched string forming a new phrase

that it is then added to the dictionary. Figure 2.6 shows the dictionary state after processing

'aabaaaab' and then string 'aaba' is received. The longest matching string is 'aab' at

location 4 and the new phrase 'aaba' is added at location 5. The output of the LZ78 algorithm

is (4,a).

Dictionary

Location Contents

,------ -.------~---
o Empty

a

2 ab

3 aa

4 cab

5

Input Data: aaba

Encoded Ouput : 4.0

Phrase number 5 : aaba

Figure 2.6. LZ78 example

32

Chapter 2 Lossless Data Compression Review

The data structure that stores the dictionary can grow unboundedly and some means of

controlling its size must be implemented to avoid using too many memory resources. When a

predefmed maximum dictionary size is reached, the dictionary can be frozen so adaptation

stops or it can be reinitialised to an initial or an intennediate state to improve compression

efficiency. Some other policies can also be used such as LRU (Least Recently Used)

eliminating the dictionary entry that has not been used for the longest time.

A popular derivative of the LZ78 algorithm is the LZW [Welch84] variant that avoids the

need to explicitly transmit the non-matching character by starting with an initial dictionary

state where all the possible input symbols have already been included. An LZW derivative

named LZC was implemented in the Unix utility 'compress' with extra tuning of the coding

process to improve compression performance. In. this case the match location is not coded as a

simple uniform binary code but as phased binary code to avoid adding extra bits to the output

when only a few dictionary locations are valid.

2.4.2.1.3 BSTW modelling

The BSTW algorithm [BentJey86] follows a different approach to dictionary modelling when

it is compared with LZ models. In. general, LZ models try to assign a fixed-length code to a

variable-length group of input symbols. On the other hand BSTW modelling tries to assign a

variable-length code to a single input symbol defined as a word where the term word has a

predefined meaning. [Bentley86] implementation defines a word as the longest sequences of

alphanumeric and non-alphanumeric characters but other definitions are possible. BSTW

keeps 2 distinct dictionaries for the 2 independent word streams maintained using a move-to­

front (MTF) strategy. The MTF forces more popular words to appear closer to the top of the

dictionary and this feature can be exploited to use fewer bits to code them. A prefix-free code

such as a Huffrnan code can be used to achieve this effect with locations closer to the top of

the dictionary being also closer to the root of the Huffinan tree. New words are always added

to the top of the dictionary and the oldest word locat.ed at the bottom of the dictionary is

removed when it becomes full. The experimental results show that the larger the dictionary

the better the compression. They also show that this simple single-pass MTF dictionary

maintenance strategy plus fixed Huffinan coding offers a similar performance to a two-pass

Huffman scheme where the first pass is used to construct the Huffman tree and the second

pass to produce compression.

33

Chapter 2 Loss/ess Data Compression Review

Figure 2.7 shows an example of BSTW coding and adaptation.

Dic tionary at time t Dictionary at time t+ 1

Location Contents Location Contents

0 The 0 car
e- T-

car 1 The

2 In 2 In

3 the 3

I
the

-
4 shop 4 shop

5 5 1=

Input Data at time t : c or

Encoded Ouput at time t : 1

Figure 2.7. BSTW example.

The MTF strategy is highly suitable for hardware implementation because the serial process

of modifying the dictionary in software can be done in I cycle in hardware using a highly

regular array of dictionary elements.

2.4.2.2 Dictio/lary-base(/ codi/lg

The function of the dictionary-based coder is to replace the uniform binary indexes produced

by a dictionary model for other more efficient form of coding and therefore enhance

compression . This form of coding tends to be much simpler than statistical coding because it

does not handle probabi li ty information. Dictionary-based coding is in many cases trivial

because the uniform binary codes that form the output of the model are used directly as the

output of the system after being assembled in the bit packer. Uniform binary coding assigns a

binary code of length !og,(dictioIlGlY size) bits to each dictionary location and its decoding is

trivial.

It is also frequent to use a statistical coder to code the output of a dictionary model creating a

new form of hybrid. The idea is that the output of the dictionary model has biased statistical

properties and some dictionary references are more frequent than others. This feature can be

exploited by an statistical coder working as a back-end such as arithmetic or a Huffman coder

to further process the output of the di ctionary model and enhance compression [Moffat94).

Dictionary-based coders can be based on techniques like phase binary coding (PBC) or run

length coding (RLC). Phased binary coding outputs a code whose length is dependent on how

34

Chapter 2 Lossless Data Compression Review

many entries are valid in the dictionary and the dictionary grows by a single location at a

time. Run length coding groups repetitive sequences of indexes output by the model. Other

popular form of dictionary-based coding is to use a dictionary that grows in powers of 2. Then

a uniform binary code can be adjusted to use only those bits needed to code the active section

of the dictionary. Since misses prove to be very popular outputs from the model it is common

to use a single bit prefIx to the code to make a distinction between a match and a miss.

2.4.2.2.1 Phased Binary Coding

Phased binary coding is useful when not all the locations in the dictionary require a codeword

to be assigned. This is a typical situation when the initial dictionary state is in an empty state

and entries are added to the dictionary simultaneously to the input data being processed. In

this case a more compact set of codewords can be used saving bits in the output. The basic

phased binary coding algorithm follows:

If (1<MAX- VALID)

Code 1 using a binary code oj(Log](VALID) 7-1 bits;

else

Code J+MAX-VALID using a binary code of fLog2(VALID) 7 bits;

Where MAX is 2(Log](VAUD) 7 and VALID is the number of dictionary locations valid in a

particular instant. For example if MAX = 128 and VALID = 127 then if the dictionary

location to be coded is I < 128-127 = 1 (location 0) only 6 bits are needed whilst 7 bits are

needed for the rest of the locations. Phased binary coding tends to assign fewer bits to

locations closer to location 0 so it is useful that the maintenance of the dictionary makes these

locations more probable than those closer to the bottom. When the dictionary is full (in our

example VALID = 128) there is no difference between using a phased binary code or a

uniform binary code.

2.4.2.2.2 Run Length Coding

Run length coding is a simpler coding technique based on replacing repetitive sequences of

the same symbol with a pair formed by a code indicating the repeating symbol plus a code

indicating the length or number of repetitions that were seen. This method of coding is of

limited usefulness for general compression. It can achieved, however, good results in some

specifIc types of data where long runs of the same symbol are common such as repetitions of

O's in memory pages or fax pages. If the input to a simple run length coder is the string 'aaba'

35

Chapter 2 Lossless Data Compression Review

the output will be (a,2,b,J,a,I). This example shows that the input to the run length coder is

directly the input data so in this case no modelling is being performed on the data. It is also

perfectly valid to include a dictionary-based model so the output of the model and input to the

run length coder is a stream of dictionary location indexes. If the same dictionary location is

reference more than twice effective run length coding can take place.

2.4.3 Other methods

The BWT (Burrows-Wheeler Transform) block-sorting algorithm described in [Nelson96]

deserves special mention. This is a new modelling method based on a transformation function

that converts a block of data using a sorting algorithm into a new block of data extremely well

suited for data compression. The new block has exactly the same elements as the original

block but the new organisation shows clumps of identical symbols grouped together. The

transformation is reversible so the original block can be recovered. Compression is obtained

by exploiting the increase in redundancy generated by the sorting algorithm using typically a

Huffman coder or arithmetic coder preceded by a run length coder. The BWT algorithm

combined with standard coding techniques produces a compression that rivals with that

obtained by the finite-context modelling methods of section 2.4. I. I. I. The transformation

function consists simply in shifting and sorting the input block of data so no complex

arithmetic is involved. The main drawback of the method is that it needs to operate in a whole

block of data simultaneously and therefore it does not support incremental reception or

transmission. The blocks of data must be of at least 250 Kbytes to give good results. If the

block sizes are reduced to a more manageable value of 4 Kbytes the sorting algorithm is

inefficient and the extra bits of overhead needed in each block to ensure that block-un-sorting

can be done degrade compression. In general the BWT modelling technique can be used as a

front-end of a general compressor since it will improve the performance of the existing

compressor by increasing the redundancy of the input data.

Other approach to efficient modelling of an input data source is the neural networks presented

in [Jiang96b]. Two neural networks are described to perform lossless data compression.

The first one uses a single-layer of processing elements and it achieves a compression

performance of 0.7. Each neuron in the system stores a data element fixed in length that

corresponds to a possible input string. The input string is compared with this value and the

output of the neuron goes to 0 if a match is found. A coding technique based on a Huffrnan

code derivative such as those described in section 2.4.1.2.1.3 is used to assign fewer bits to

neurons that are more successful in finding matches. The neurons are assigned an index that

36

Chapter 2 Lossless Data Compression Review

increases from left to right and the network is maintain shifting neurons left after each input

data is processed using the following method. Successful neurons are promoted to right side

of the neural network. New input data is always added in this right side. Unsuccessful neurons

are discarded when the reach the left side. The compression performance of the algorithm is

low because matches have to be in full and partial matches that happen when part of the input

string matches in one neuron and the other part in another neuron are not allowed.

To solve this problem a second example is developed that extends the initial model by adding

a second layer of processing elements and improves compression typically to a value of 0.4.

The second layer of neurons is design based on a 2-byte input string to detect partial matches

of the MSB in one neuron and LSB in another neuron. It also extends the initial technique by

coding runs of matches in multiple neurons using a single code. Although the technique has

potential for a hardware implementation to exploit the massive parallelism present in neural

networks this possibility is only indicated in the paper and no details are given on a hardware

implementation. It is possible to identify the typical features of a high performance hardware

system such as doing all the comparisons in a single cycle and using a simple adaptation

mechanism.

2.5 Lossless Data Compressor Hardware

The same classification method as in software can be applied to the lossless data compressor

hardware world with a separation between statistical hardware and dictionary-based

hardware. There is an even clearer domination of dictionary-based methods over statistical

methods in hardware. The reason is that statistical methods can not currently compete in

speed and although the compression performance is theoretically superior this can be only be

achieved with very high complexity. This complexity again degrades speed and makes them

unfeasible for many applications. Although some implementations have been very successful,

such as those based on binary alphabets from IBM, the simplifications that made them

possible have limit their application to systems with low throughput requirements in the order

of a few Mbitsls.

2.5.1 Statistical hardware

Statistical hardware is limited to simple Oth order modelling using multi-symbol alphabets that

limits compression or simple high-order modelling using binary alphabets that limits speed.

Coding is usually done with Huffman or arithmetic coding the later being preferred because

of its compression efficiency.

37

Chapter 2 Lossless Data Compression Review

2.5.1.1 Binary arithmetic Hardware

The Q-coder [Pennebaker88]. [Arps88] from IBM is one of the best known examples in this

category. It consists of a 7th order binary finite-context statistical model associated to a

corresponding binary arithmetic coder. It is important to notice that this is a fixed-order model

and not a variable-order model such as the PPM method of section 2.4.1.1. This means that

always the same number of symbols (same context length) are used to predict a new symbol

and a prediction can never fail. A variable-order model does not apply to a binary alphabet

since a single probability value p defines both symbols 0 (P) and 1 (l-p) and predictions are

always possible (no escaping). On the other hand PPM blends different orders together so if a

prediction fails in a particular order the next lower order is used. No variable order models

have been reported in hardware using either binary or multi-symbol alphabets to the best of

our knowledge.

In the coding section the binary arithmetic coder uses the renorrnalization approximation

introduced by Rissanen in [Rissanen89] and discussed in section 2.4.1.2.2.2 to avoid the

complex multiplications. The range is divided between the 2 symbols LPS (Least Probable

Symbol) and MPS (Most Probable Symbol). LPS is assigned to the lower part of the range A

and MPS to the upper part of the range A. Renorrnalizations are used to expand the interval

range A and to keep it large enough to accommodate both symbols using fixed precision

arithmetic. Every renorrnalization produces an output bit. A is renorrnalized between 0.75 and

1.5 and approximated to 1 so no multiplications are needed as seen in section 2.4.1.2.2.2. In

the modelling section the probability estimation process is adaptive and based on a state

machine with 60 states k. A more probable symbol 1 uses 30 states and a more probable

symbol 0 uses another 30 states. Each state k has associated a less probable symbol

probability estimate Qe(k) that would be used by the coder. When a LPS renorrnalization

takes place the probability estimate Qe is increased since a LPS was just coded. After a MPS

renorrnalization the estimate Qe is decreased what corresponds with an increase of the

estimate of the MPS (J -Qe). This means that the renorrnalization process associated to the

arithmetic coder and the state machine with different Qe values associated to the model are

used to replace the explicit symbol counting mechanism used in other methods. An index

value identifying a state and pointing to a Qe table position is kept for each different context

whilst a single table stores all the probability estimate values Qe. Good compression results

are presented using a 7th order model with 128 contexts based on the 7 neighbouring pels

(bits) for facsimile compression. The Q-coder algorithm is also known as Adaptive Bilevel

Image Compressor (ABIC). The simple multiplication-free arithmetic coder and simple

dynamic probability adaptation enables a fast hardware implementation with high clock rates.

38

Chapter 2 Lossless Data Compression Review

On the other hand the Q-coder has a symbol granularity of a single bit what means that at

most 1 bit can be processed per clock cycle. This is a maximum performance throughput that

is usually degraded by the characteristics of the data source. Experimentation [Kampf98]

shows a worst case performance of 0.8 bit per clock cycle. The reason is that the arithmetic

coding process can require multiple renorrnalizations (interval range expansions) per bit so

throughput is not data independent. Moreover, the probability Qe table is derived from

processing black and white (hi-level) image files what should limit the compression efficiency

if using the Q-coder as a general-purpose compressor. The QM-coder is a variation of the Q­

coder used in the Joint Bi-Ievel Image Experts Group (JBIG) compression algorithm

[Arps88]. The QM-coder uses a different software optimised convention and allocates the

MPS to the lower part ofthe range and LPS to the upper part ofthe range. The context in the

QM-coder is formed by 10 bits generating 1024 different contexts. The worst case throughput

performance is 0.73 bits per clock cycle. A recent VLSI implementation of the QM-coder and

Q-coder has been done in [Slattery98a]. The device called the Qx-coder can implement both

algorithms and clocks at 75 MHz with a throughput of approximately 64 Mbitsis using a

CMOS SS (0.35 urn) technology from mM [Marks98].

[Jiang96a] describes a parallel binary arithmetic coder derived from the mM Q-coder. The

parallel implementation processes 4-bits in parallel using a tree of processing elements where

each processing element corresponds to a modified Q-coder. The number of levels in the tree

corresponds to the number of input bits being processed in parallel and in principle it only

affects the latency. The equations that the processing elements have to implement are more

complex than the Q-coder and include multiplications so the appealing multiplication-free

feature of the Q-coder is lost. The author suggests performing the multiplications using a

hierarchical structure of adders in each processing element to affect only latency and not

speed but this should have a negative impact in complexity. Adaptation is also modified since

it only happens every 4 input bits and not after every bit like in the Q-coder. This should have

an impact on compression efficiency although the reported results show minimum differences

in this aspect. Parallel decoding is possible because there are only 24 = 16 possible input

combinations. The pointer code can be used to directly perform a direct comparison with 16

values corresponding to all the possible combinations and the correct string can be found in

parallel. The paper only gives compression results based on a C language implementation of

the algorithm while hardware details are minimal.

[Kuang98] presents a 10th order finite-context statistical model with associated binary

arithmetic coder. A variant from the bit stuffing technique of mM is presented to solve both

the carry-over problems and the termination condition. A couple of bits are set to 0 after

39

Chapter 2 Lossless Data Compression Review

receiving 16 consecutive bits set to 1. If there is a carry-over the second bit always blocks the

propagation while the first bit is used to signal tennination when set to I. If the decoder

receives 17 consecutive bits set to 1 then it knows operation must be terminated. The

overhead of the method is 17 bits only at the end of the process plus the stuffing bits that are

only needed in very few occasions. The other way to solve the termination condition is by

adding an extra end of file (EOF) character that it is only coded once. This has the

disadvantage that a third symbol is introduced in the system increasing the algorithm

complexity. It is also possible to concatenate to the compressed block the original

uncompressed size so the decoder stops once this uncompressed size is reached. This is the

simplest solution although there could be a problem if the uncompressed size is not known at

the beginning ofthe compression operation and incremental transmission is required.

The adaptive modelling unit is based on calculating a range of possible probabilities for

symbol 0 and stored them in a table named Probo . Then other table Ad with 1024 entries

corresponding to all the possible contexts generated in a 10th order model is used to address

this table Probo and obtain a conditional probability Po for the arithmetic coder. After

receiving an input symbol the adaptation mechanism uses 2 offset tables to obtain a new

address to the Probo table. This address is stored in table Ad so the probability associated to

the active context changes. This address will point to a position in the Probo table with a

higher value of Po if a 0 was received or the other way around otherwise. A simplified

multiplier is used to perform the Po * A operation where A is the range. The technique reduces

the hardware complexity in half by discarding the half least significant bits result of the

multiplication. It is important to notice that arithmetic coding can also involve a division to

obtain a probability value if frequency counts and not probabilities are used in the model. This

method like the Q-coder deals directly with pre-calculated probabilities stored in tables

obviating the need for this operation. Again the presence of the renormalization loop in the

arithmetic coder makes throughput data dependent.

The simulation results presented in the paper suggest that on average the renorrnalization loop

uses only 0.5 cycles because in many cases is not needed. Adding this value to 8 cycles fixed

time to for the rest of the chip operation produces an average value of 8.5 cycles to process a

bit of input data. The clock rate is 25 MHZ (using a 0.8 pm single-poly double-metal (SPDM)

technology) and therefore the throughput is 25/8.5 approximately 3 Mbitls. The

renormalization loop could, however, take up to 7 cycles to complete. Then it could take up to

IS cycles to process a bit of input data for a worst case throughput of 1.67 Mbitls . The

compression ratio based on the experimental results shown in the paper using a combination

of text, image and binary files seems to be in the order of 0.5.

40

Chapter 2 Lossless Data Compression Review

The same research group presents a variation on the previous device in [Jou99]. A finite­

context lOth order statistical model associated to a binary arithmetic coder forms the device.

The coder is essentially the same as in [Kuang98] but an additional tuning step is included in

the model to improve compression efficiency. The model uses the same concept of having 2

tables: the first table is used to store the most probable 128 conditional probabilities for

symbol 0 called Probo that eliminates the need for a division, the second table Ad is used to

store 1024 addresses to this Probo table to reflect that the probability of the symbol 0 changes

depending on which context is active. Offsets tables are used to calculate the new probability

of symbol 0 after completing the current coding step. A probability-tuning step is introduced

in this stage so depending on the characteristics of the data source being compressed a

different pointer to Probo is stored in Ad. A total of 5 different tuning steps are pre-calculated

and the results stored in 5 different offsets tables. A fuzzy inference process based on the past

behaviour of the processed data is used to select one of these 5 offsets tables to perform the

adaptation in the model. The complexity of the model is higher than if it is compared with

[Kuang98] but compression improves because the probability tuning step is used to reflect the

characteristics of different data sources such as bi-level image data, colour image data,

greyscale image data, binary data and text data. Compression results are shown on different

data types and consistently outperform a Oth order context-free multi-alphabet model plus

arithmetic coder. An average compression ratio slightly better than 0.5 is achieved. The

performance of the design is equivalent to the [Kuang98] since the same coder is used and the

multiplication is again the limiting factor in speed.

A parallel architecture for arithmetic coding is presented in [Lee96]. The description does not

include any references to the modelling stage only to a way of reorganising the basic

arithmetic equations to incorporate parallel processing. The algorithm processes a number of

N symbols in parallel but not in a single cycle because the dependency between 2 different

group of symbols is present. The width of the symbol is not indicated but since the number of

arithmetic operations (multiplications and additions) is considerable it will probably fit better

a binary alphabet. The basic idea is to obtain the arithmetic equations state for low and range

after processing N symbols and then reorganize them to replace N operations for !Og2(N) so a

tree-shape parallel architecture can perform them. The processing of N symbols must be

completed before the next N symbols can access the architecture. Pipelining is not possible

because the resulting state of low and range must be input together with the probability values

of the N symbols. Hardware details are minimal.

41

Chapter 2 Lossless Data Compression Review

2.5.1.2 Multi-alphabet arithmetic hardware

[B0098] describes a Oth order context-free multi-alphabet statistical model associated to an

arithmetic coder for coding of multilevel images. The alphabet size is 256 and frequency

counts are dynamically maintained in the model for each of the symbols in the alphabet. We

have already discussed that arithmetic coding needs cumulative frequency counts to properly

identify the range the symbol uses in the [0,1) interval. This means that a worst case in the

adaptation process would need to increase all the cumulative frequencies stored in the model

resulting in a large number of additions. To alleviate this problem the scheme implemented in

the paper stores a subset of 16 cumulative frequencies named reference cumulative

probabilities while the rest are stored in normal non-cumulative form. To calculate the

cumulative frequency needed by the arithmetic coder for a symbol k it is necessary to use a

reference cumulative frequency h plus a few frequency counts h+l, h+2, ... ,k-l if k < h+8 or

cumulative frequency h+ 16 minus a few frequency counts h+ 15, h+ 14, ... , k. The worst case

needs 9 additions or subtractions corresponding to 8 symbol probabilities and I reference

probability. This technique simplifies the adaptation process, since now in the worst case only

16 reference cumulative frequencies need to be updated plus one symbol frequency, but it

adds more operations to the calculation of the cumulative frequencies. The arithmetic coding

process has been simplified by truncating the multiplier to a small number of most significant

bits, which is a trade-off between complexity and compression efficiency. The architecture is

evaluated using a 0.7 /Lm CMOS standard-cell library [Peon97] and the non-pipelinable

critical path is found to have a delay 26 ns in the interval updating formed by the

multiplication and normalization process. Therefore the maximum clock frequency is reported

in 39 MHz with a total area of 31 mm'.

The paper seems to deal with the concept of symbol probability and symbol frequency count

indistinctly. However to obtain a symbol probability it is necessary to divide its frequency

count by the total frequency count. The total frequency count is usually the cumulative

frequency count of the last symbol. This division is usually done as a table look-up using a

few more significant bits from both operands as address since divisions are even more

undesirable than multiplications. This problem is not addressed properly in the proposed

architecture that seems to use symbol frequency counts in the multiplication operation as if

there were directly equivalent to symbol probabilities. The paper does not provide any results

on compression performance. Compression performance should be limited since Oth order

models perform poorly in most situations.

The same technique described in section 2.5.1.1 [Jiang96a] for a binary parallel coder is used

in [Jiang94] to obtain a parallel implementation of a multi-alphabet arithmetic coder.

42

Chapter 2 Lossless Data Compression Review

Although the arithmetic coder is associated with a Oth order model to evaluate the performance

of the coder, the model implementation is not dealt with in hardware. The system processes 8

bytes at a time instead of 4 bits at a time using a hierarchical tree structure with 5 levels.

Parallel decoding in this case is unfeasible because the number of possible input combinations

to decode 8 symbols in parallel with and alphabet of 256 symbols is 2568
.• This means that

the complexity of the parallel decoding hardware is too high. A sequential decoder is

designed to work with the parallel coder. Most applications are read biased, which means that

they tend to decompress more often than compress. The lack of parallel execution in the

decoding process constitutes a major limitation in the implementation. There are 2 types of

processing elements realising 2 different sets of equations in the tree structure. Both sets of

equations involved multiplications and divisions. The proposed processing element has 1

level with 6 14-bit multipliers and 6 levels of adders for a total of 20 adders. It is obvious that

the complexity of this PE is very high. These levels can be pipelined but since there are at

least 5 levels of PE's in the whole coder the resulting latency would be very high degrading

speed accordingly. One set of PE's involved the division by a fixed value of the initial range

16384 that can be readily implemented by shifting left the 14 least significant bits. The other

equation involves the division by the total cumulative frequency count that always increases

with each adaptation cycle and that in this implementation can have a maximum value of

8192. This division does not seem to be dealt with properly in the algorithm description. A

typical solution is that, as in other implementations, the cumulative frequency count of the

symbol and the total cumulative count are used to address a table and obtain the cumulative

probability count resulting from dividing these 2 values. Hardware details are minimal. They

are limited to a few block diagrams and not data is reported on complexity. The simulation

results, which are based on a software model, seem to suggest that compression performance

is not affected if comparing this parallel implementation with a sequential one. It is important

to notice, however, that the adaptive model is updated every 8 symbols instead of every

symbol as in classical sequential coders. The paper also acknowledges the need for higher

order context-based modelling to improve compression. Unfortunately, the complexity of

higher-order context-based modelling using multi-symbol alphabets has precluded any

examples in hardware up to now.

The work presented by the same author in [Jiang95] is the implementation of a multi-alphabet

arithmetic coder using a modification in the basic equations. These modification consist in not

using the values of high and low to define the state of the coder but instead using the values of

low and range where range equals high - low. The paper claims that this change brings a

simplification in the renormalisation process so that it can be control testing only when the

value of range is less than half the initial range. This single condition test aIIows the

43

Chapter 2 Lossless Data Compression Review

incremental generation of output bits and range expansion to avoid underflows and to allow

coding to continue indefinitely using fixed-length registers. The criticism in [Moffat97] is

based on several problems that seem not to be properly addressed in the original paper. A loss

of coding efficiency is introduced by rounding errors and also the decoder is more complex

since 2 values must be calculated. The paper gives no details on the model that should feed

the arithmetic coder although the compression results are based on using a Oth order one.

Hardware details are again minimal, limited to a few block diagrams that makes it difficult to

draw any conclusions in terms of speed or complexity. The new algorithm equations are

design to handle multiplications and divisions and no effort is made on simplifying these

operations. These unresolved issues should limit a hardware realisation.

[Hsieh98] describes a multi-alphabet Oth order context-free model associated to a

corresponding arithmetic coder for video compression. The modelling unit uses a limited past

history model implemented as a first-in first-out buffer used to store a window of symbols

from the input data source. This window buffer allows the modelling unit to pick up the local

statistics of the data being compressed, thanks to the principle of locality of reference, thus

increasing compression efficiency. A small buffer size improves the speed of adaptation but it

could damage compression if not enough data is available to construct an accurate model.

This limited-past history model overestimates the probability of a symbol by J /(p+ M) where

p is the alphabet size and M is the buffer size. The overestimation is caused because all the

possible input symbols in Oth order modelling must be assigned an initial count higher than 0

to prevent the coding from failing when a symbol is processed for the first time. The total

frequency count is p+M. If the buffer size M is small this error is larger. To alleviate this

problem a weighted limited-past history model is proposed so the overestimation value

becomes 1I(p+M*W). If the weight W increases, the error decreases although a large value of

W will also damage compression because the probability of a symbol not yet seen in the data

source (the overestimation) could become very small. The best trade-off seems to be a weight

of 16 and a buffer size of 112. The modelling unit also ensures that the denominator of the

cumulative frequency is a power of 2 so that the division required to obtain the cumulative

probability can be done by shifting. The algorithm uses the multiplication-free solution

proposed by Rissanen [Rissanen89] to perform the arithmetic coding itself. The normalisation

is done in a single step by counting the number of positions that the range and lower pointer

should shift to maintain these values in the correct range [0.75, 1.5) used in Rissanen

arithmetic coder [Rissanen89]. This technique avoids a data dependent throughput because it

eliminates the need for a variable number of cycles to normalize the range. In the hardware

implementation a similar technique to [Boo98] is used to store the frequency model using

some frequency counts as base and others as variations from the base. In this case the

44

Chapter 2 Lossless Data Compression Review

variations are not stored as the true frequency counts but as offsets from the base. This

technique means that to obtain the true cumulative count of a symbol only 2 values a base and

a offset must be added whilst in [Bo098] 9 values could be needed in a worst case. On the

other hand the adaptation process must change in a worst case 16 bases and 16 offsets whilst

[B0098] only needs to change 16 bases and one true value. This adaptation process can be

done in parallel using 32 counters but it increases hardware complexity.

The limited past history model means that in each cycle one symbol enters the buffer and one

symbol leaves the buffer. Then 2 symbols one adding I count and other decreasing I count

must adapt the cumulative frequency array adding cycles to the operation. In the decoding

process only 16 comparators are needed to decode a symbol in parallel. This is an important

reduction in complexity since a 256 symbol alphabet needs 256 comparators if a bank model

is not used. During an initial cycle the pointer is compared with the bases and once the correct

bank has been identified a second cycle is used to compare the pointer with the offsets inside

the base. The scheme incurs again in a performance penalty since the decoding operation uses

2 cycles instead of 1. The results obtained after compressing a series of images suggest a

compression performance of 0.5. The results show a clear advantage over the mM Q-coder

that only manages a best of 0.9 when processing the same set of images. This compares a 7th

order context-based binary model with a Oth order context-free byte model and seems to

indicate that the second one wins. The mM Q-coder is targeted to bi-level images and its

model is hardwired to this objective. A bi-level image has a symbol granularity of one bit and

therefore it is very efficient to predict a whole symbol using 7 preceding symbols as the Q­

coder does. If the symbol granUlarity is the byte, however, this rationality is lost and the

system performance degrades. The compression ratio of the weighted limited past history

model plus arithmetic coder is modest at 0.5. The reason is not in the implementation itself

but the original concept of modelling a data source with a Oth order context-free model.

Unfortunately no details are given in the hardware section on gate count or throughput but the

complexity of the algorithm is considerable.

[Printz93] presents a non-adaptive Oth order context-free multi-alphabet model with an

arithmetic coder. The modelling unit is fixed and is implemented as a look-up table that

produces 2 values for each of the 256 possible inputs corresponding to its cumulative symbol

probability and symbol probability. The system eliminates the need for a division because it

handles probabilities directly. The modelling unit is therefore extremely simple and fast but

since it is non-adaptive it will provide arbitrarily inaccurate statistics if it is used in a general

compression application. The coder needs to perform 2 multiplications one for each of the 2

45

Chapter 2 Lossless Data Compression Review

equations involved in updating the interval range A (range_new) and the code point C

(low_new). See equation set [2.6].

The first equation that deals with the interval range is completely embedded in a look-up table

that also calculates the multiplication factor for the second equation. A special index-based

non-arithmetic representation of A reduces the size of the table. The second equation uses a

special re-timed circuitry to obtain a cycle time equivalent to a single 2 bit adder. The design

has been implemented in a special hardware prototyping board formed by a group of FPGA's

plus memory. It clocks around 32 MHz and since 2 cycles are needed for each byte due to

multiplexing and memory access time the throughput is 128 Mbitsls . The compression results

are compared against the Q-coder using a combination of image files, text and binary data

where it seems to offer some advantage. The design uses data tailored to the file that is going

to be compressed to initially construct its probability model. The necessary decoder is not

available in this publication although it is pointed out as future work together with adding

adaptation capacity in the model. The author estimates a decoder speed 4 times slower than

the encoder speed.

2.5.1.3 Tree-based Hardware

The chip described in [Mukhetjee93] does not use arithmetic coding but tree-based codes and

the byte as symbol granUlarity. Huffman coding is the most popular tree-based code. The code

is static and it does not adapt to variations in the statistical properties of the data source, but,

because it is not hardwired but mapped to a memory device, it can be changed to suit the

application. For example a different code could be devised ifthe expected data is image data,

text data or binary data. This is an advantage over a hardwired code but its performance is

limited, for example, to finding a suitable code to process multiple images that could have

very different statistical properties. If the switching process is done very often speed will be

lower. Most of the paper is devoted of how to obtain an efficient mapping of the tree code to

the memory device. All the formulation is based on a single tree code what means that the

associated model is Oth order. If for example the model was 1 SI order 256 different tree codes

will exist one for each possible context. The device complexity would be greatly increase

with 256 memory devices plus more complex coding and decoding functions to multiplex

among them. The context is expected to change after processing every input symbol so to use

a single memory and to load it with the corresponding tree-code stored outside the device is

not a sensible option.

The tree has the property that 2 bits are associated to each edge extending from parent node to

child node so fewer interactions are needed to reach the leaf nodes starting at the root. The

chip has been fabricated using a 2-/Lm SCMOS technology with a clocking frequency of 83.3

46

Chapter 2 Lossless Data Compression Review

MHz. The limiting factor is the memory access cycle time since several accesses are needed

to code each input symbol.

A compression ratio of 0.5 is assumed so each byte of input generates 4 bits of output. Each

tree edge generates 2 bits of output so around 2 memory accesses are required to generate the

4 output bits. This assumption is used to report a performance of 95.2 Mbits/s for

compression and 60.6 Mbits/s for decompression. The throughput is highly dependent on the

input data source since it would be halved if the compression ratio drops to 1.0 because

around 4 memory cycles will be needed to process each input symbol. It is unlikely that a

static Huffman coder plus a Oth order model achieved a compression ratio of 0.5 if used as

general compressors.

An adaptive Huffman coder implementation in hardware is presented in [Liu95]. Adaptive

Huffman coding involves modifying the Huffman tree after each symbol is coded or decoded.

This could be a very time consuming task since each coding step could produce a very

different Huffman tree. The adaptive algorithm uses a tree tuning strategy that does not

rebuild the tree. It also uses a parallel technique to perform both tasks: generate the codeword

and adapt the tree visiting the nodes only one time from leaf to root. This technique has the

potential of halving the processing time if compared with a sequential approach. A scheme is

devised to avoid interference between the code generation and tree tuning process. This

interference could result in incorrect operation. The design is based on using CAM modules

to store the information associated to each node and to speed up the tree adaptation process.

The coding process can generate almost one bit of codeword per cycle. This measure of

throughput is related to the output of the coding algorithm and not the raw input data as usual

since it depends on the length of the codeword. If the input are bytes and a compression ratio

of 0.5 is achieved then an input symbol would be processed in 4 cycles but this value would

degrade to 8 cycles if the compression ratio is 1.0. A worst case expansion will affect

throughput even more. No hardware details are given so it is not possible to know the clock

frequency of the design. The decoding process is more complicated than the coding process

because the dependencies present in the algorithm prevent it from using the same parallel

technique. Therefore a sequential decoder is adopted. A frequency preset approach is

proposed so only a few nodes need adjusting to tune the tree after it has been traversed to

decode the codeword. The best case scenario processes one bit of input per cycle but this

could degrade to 0.5 bits of input per cycle if all the nodes need adjusting. Moreover this

figure again refers to input compressed data throughput and not as usual to the output

uncompressed data throughput so it is data dependent. The output uncompressed data

throughput is highly dependent on the data compressibility because even if a bit of input

compressed data is decoded per cycle the output throughput will be determined by the

47

Chapter 2 Lossless Data Compression Review

compression ratio. Worst compression ratio implies more cycles to decode a symbol and

therefore a lower throughput. Finally, the model is a Oth order model which should produce a

modest compression ratio when combined with a Huffman coder.

2.5.2 Dictionary-based hardware

Dictionary methods try to replace a symbol or group of symbols by a dictionary location code.

The modelling stage is given extra importance while coding is simplified. Some dictionary­

based techniques use simple uniform binary codes to process the information supplied by the

model. Hardware dictionary-based compression is very popular and successful, achieving

excellent throughput and competitive compression ratios.

2.5.2.1 LZ1 Hardware

LZl (LZ77) derivative devices have achieved significant commercial success. Chips

implementing the ALDC algorithm (Adaptive Losless Data Compressor) by mM

[Slattery98b) and LZS (LZ STAC) algorithm by Hifu [Hilfu96) (previously STAC

Electronics) illustrate this situation. The usage of these devices to improve system

performance is well accepted. The fundamental reasons are that LZl derivatives achieve

competitive compression with low complexity using multi-symbol alphabets. This in turn

allows high throughputs in the order of Mbytesls and not Mbitsls as with the previously

discussed statistical approaches. Although the compression ratio of statistical methods is in

theory superior to dictionary-based methods this is only true when using complex algorithms

such as those described in section 2.4.1.1.1. These methods are unsuitable for fast hardware

implementations.

The ALDC compression algorithm uses the same principles as the IBMLZl [Cheng95) chip.

The model is based on a CAM used to store the history data. Several versions are available

where the CAM varies in size from 512 bytes to 2048 bytes depending on the complexity and

compression required. The dictionary is maintained as a circular buffer that keeps the sliding­

window functionality typical ofLZl algorithms. If 2 or more bytes are matched consecutively

in the CAM a match is detected and the output is formed by 2 fields preceded by a single bit

indicating a match condition. The first field is the match length that is coded using a

logarithmic code derivative from a Huffman code. The maximum match length is 271 which

is found to be the best value after extensive simulation results. The second field is the position

in the CAM where the match starts and it is coded using simple uniform binary coding. If a

match is not detected the symbol is added in literal form to the output preceded by a single bit

48

Charter 2 Lossless Data Compression Review

indicating a miss. This operational mode limits expansion to 12.5% when each 8-bit input

symbol misses and becomes 9 bits in the output. The ALOC algorithm was implemented in a

0.8 pm CMOS technology and clocks at 40 MHz to obtain a throughput of 320 Mbitsls with a

complexity of75 Kgates. This device is called ALOCI-40S [mM94] and it is available as a

hardcore from mM microelectronics. mM literature [Craft98] also reports that using a more

recent technology such as mM CMOS 5 (standard cell/gate array 0.35 p,m, 6 levels of metal)

the critical path located in the CAM searching operation can be further reduced to only IOns.

The compression/decompression throughput is then 800 Mbitsls with a clock frequency of

100 MHz. A license version of the ALOC algorithm is also available from AHA in the

AHA3521 chip [AHA97a]. This chip is implemented in a 0.5 p,m and clocks at 40 MHz for a

160 Mbits/s throughput because 2 cycles are used to process each byte. Some algorithm

extensions to the ALOC method are also reported in [Craft98] to produce 2 variants named

BLDC and cLOC algorithms. These extensions are based on using a front-end run-length

coder pre-processor to feed the ALOC chip and improve compression without affecting

speed.

mM also introduces in [Franaszek96] a method for obtaining parallel LZ 1 compression using

cooperative dictionary construction. The idea is that the input data block is divided into a

number of sub-blocks (typically 4) and these are processed in parallel using independent

coders. The result is concatenated in a single block and a prefix area is added to indicate the

decompressor how the single compressed file must be split to feed the independent decoders.

To alleviate the problem of a decrease in compression efficiency the dictionary is shared

among the coders and maintained in common. The effect is that more data is available as

history data for each sub-block and compression improves. This simple concept can not

provide the same level of compression as a single device solution because the history data

available to compress a symbol n with a dictionary size m is not the m symbols that preceded

symbol n but gaps exist in the history buffer corresponding to data assigned to the other

coders and not yet processed. Also this solution precludes the use of incremental reception

and transmission of data since the entire data block must be available before the compression

operation can be initiated and all the compressed data must be available before the header can

be added and transmission started. Therefore a higher latency is added with this technique.

The Hi/fn devices realize in hardware the LZS [Hilfn96] algorithm developed by the same

company. The LZS lossless data compression algorithm is a LZl derivative that uses a 2

Kbyte history buffer. The coding format of the LZS algorithm is similar to ALDC. A match is

coded as 2 fields preceded by a single bit indicating a match condition. The first field is the

offset or pointer to the buffer location where the match starts. The offset can be coded as a 7-

49

Chapter 2 Lossless Data Compression Review

bit offset or ll-bit offset preceded by a single bit to differentiate between both. This is in

contrast with ALDC where the offset was not coded. This coding scheme improves

compression by assuming that short offsets to a maximum length of 128 are more common

than offsets to the beginning of the buffer. The algorithm exploits the locality of reference

effect that establishes that data that has just been seen is more probable to be seen again. The

second field is the match length. This is coded using a prefix free code similar to a static

Huffman code. A miss is coded by adding the literal to the output preceded by a single bit like

in the ALDC algorithm. Expansion is limited to 12.5% when all the 8 bit literals are

transformed into 9 bit codewords.

A RAM is used in some low-end LZS hardware products from Hilfu to realise the history

'buffer. A tuneable feature is included so the amount of searching done in the buffer can be

externally controlled trading throughput for compression. Compression throughput is limited

when using RAM to 64 Mbitsls but since RAM tends to be plentiful it is easy to include

multiple-history support. Multiple-history support means that different history buffers are

maintained independently for different communication channels improving compression. The

algorithm switches among them depending on which channel is active. The high-end products

use a CAM to implement the history buffer. In this case searching is done exhaustively in a

single cycle. A CAM-based device has been fabricated in a 0.5 pm CMOS technology and it

is available from Hi/fu with the name 9610 [Hilfu98b] Data Compressor Processor. It clocks

at 50 MHz with a throughput of 400 Mbits/s. A more recent version named 9600 [Hi/fu99]

has been fabricated in 0.35 pm CMOS technology with a maximum throughput of 640

Mbitsls when the internal logic is clocked at 80 MHz. This device includes also the novelty

of being a full-duplex device so compression and decompression can be done simultaneously

for a combined performance of 1.25 Gbits/s. All the other devices discussed in this section are

half-duplex which means that the processor must compress part of the active time and

decompress the rest. Full-duplex functionality is becoming a feature of data communication

standards such as Gbitls Ethernet. This network when running in full-duplex mode can carry

each way I Gbit of data per second so full-duplex functionality in a single

compression/decompression chip is a useful feature.

[Surk97] presents a PE-based (Processing Element) VLSI architecture for the LZI algorithm.

Each PE compares the incoming input symbol with the symbol it stores in I cycle and shifts

the symbol to its neighbour. The single dimension array of PE's behaves in a mode similar to

a modified CAM-based design if the CAM cells are redesign to input data from their

immediate neighbours. New data is input in the right most PE and the data located in the left

most PE is eliminated from the history buffer. When a PE maintains its match signal active

50

Chapter 2 Lossless Data Compression Review

for more than 1 cycle a string match is detected. The output identifies the PE position and the

match length that equals the number of cycles the PE maintained its match signal active. The

are a total of 1024 PE's and this value also defines the history buffer size. The maximum

match length is limited to 16. This should affect compression since values around 256 are in

general more appropriate for this process [Cheng95]. The miss problem is dealt in the

traditional way of preceding all the codewords with a single bit. The basic symbol is 7-bits

wide so the compressor as described is only suitable to compress ASCII coded text. The data

input rate is constant and post-layout simulation indicates a performance of 700 Mbitsls using

a 0.5 triple-metal CMOS technology and a 100 MHz clock.

[Jung98] presents another YLSI LZI implementation for optimisation of wireless local area

networks. Much of the paper is devoted to analyse the effects of lossless data compression in

wireless networks. The LZl algorithm codeword format has the classical 2 fields: offset plus

match length but this time the codewords are of fixed length 16 bits which means that uniform

binary coding is used for both values. Dictionary length is 512 so 9 bits are used for the match

location while 7 bits are left for the match length. If a match is of length less than 3 then 2

bytes in literal form are added to the output. A single byte is added to 8 2 byte codewords to

distinguish between compressed codewords and uncompressed literals. This technique limits

expansion to 6.25% but it also increases latency since 8 2-byte codewords must be stored

intemaIly before any output is produced. No details are given on compression performance

but an average compression of 0.5 is assumed for this type of compressors working on typical

network data. A paraIlel architecture is presented using 512 PE's organised in a single­

dimension array. This architecture uses the same CAM principles as [Surk97] to process 1

byte of raw data per cycle. This architecture is deemed not suitable to support multi-channel

compression because the overhead of switching the dictionaries is considered too high if a

different dictionary must be uploaded in the CAM each time the compression channel

changes. The authors proposed a different mapping of the original algorithm to base the

algorithm in RAM and enable multi-channel support. The resulting design is simulated using

a 1.2 pm CMOS technology and it clocks at 100 MHz producing a throughput of 50 Mbits/s.

The complexity is reported of around 36K transistors.

[Chen98] presents a linear systolic array YLSI design for LZl compression. The systolic

array includes a dictionary buffer with 512 characters distributed over 64 systolic ceIls. Each

ceIl compares an input character concurrently with the 8 character dictionary section that it

holds in that cycle. The systolic ceIl outputs to the neighbouring ceIl the character to be coded

plus the longest match string that started with that character. The design has been

implemented in a 0.6 pm standard ceIl library and it uses around 90 Kgates. The operating

51

Chapter 2 Lossless Data Compression Review

frequency can reach 91 MHz with a throughput of 728 Mbitsls. The architecture needs a

number of comparators equal to dictionary size but it can operate at a frequency

independently of the dictionary size. The reason is that cell frequency is not affected by the

number of cells present in the systolic array. Latency is proportional to the number of cells

present in the array so this architecture using a 512-character dictionary has a latency of 64

cycles. It offers a compromise between the single cycle operation of CAM architectures

where a high fanout could prevent dictionary extension and the high latency of PE-based

architectures with a single comparison is done in each PE.

[Nusinov94] also presents a VLSI LZI derivative for multi-channel compression. The LZl

proprietary implementation is called Codex Ziv-Lempel (CZL) algorithm. The dictionary

length can be of maximum of 1024 bytes. The codewords are organised in the 2-field format:

length plus location. The match length is coded using a Huffman-style conversion table while

the location is coded using a phased binary coding so when only a few dictionary locations

are active the chip obtains improved compression. A match is considered valid if the length

field is at least 2. Otherwise a miss is coded using a length 0 plus the byte in literal form

replacing the location field. This approach differs from the previously discussed techniques

and deals with the expansion problem in a less efficient way. It is probable that the conversion

table used for the match length assigns very few bits to the match length 0 to minimise the

expansion problem but no information is available in the paper. Multiple dictionaries up to a

maximum of 2000 are stored externally in RAM. During coding the appropriate one is

uploaded in internal CAM (Content Addressable Memory) memory to allow parallel

searching. The overhead of uploading an external dictionary with 1024 bytes to internal

CAM should be very high since only an 8-bit bus interface is available. The internal CAM

accounts for most of the logic in the chip and it does not include shifting capabilities. A CAM

cell can only activate its match signal if the neighbouring CAM cell did so in the previous

compare cycle. This mechanism allows the input string to be progressively matched along the

CAM dictionary. Updating is done simultaneously in the internal CAM and external RAM so

there is not need to download the CAM contents after compression switches to a different

channel. During decoding the external RAM is used directly. The need to update the external

RAM after every compare cycle means that two cycles are needed to process each byte. The

chip clocks at 20 MHz and has a throughput of 80 Mbitsls. Compression is reported to be

around 0.5 to 0.33 for typical data but no experimental results are provided. The chip has been

fabricated using a 0.8 J.lm CMOS technology but no details are available on gate count or

transistor count.

52

Chapter 2 Lossless Data Compression Review

2.5.2.2 LZ2 Hardware

The LZ2 algorithm was developed 1 year later than the LZl variant and it has not become as

widely used as this one. The reason is that it uses a more complex dictionary structure where

dictionary entries are formed by concatenating the next incoming data character after using a

dictionary entry to that entry forming a new dictionary entry. The LZ2 algorithm produces an

output code specifying dictionary locations where data and length can be found. This code

output can be simple uniform binary coding where the number of bits is the

log,(differentyossible_codes) or more refmed coding strategies can be used. Although

theoretically superior to the LZl algorithm, LZ2 is at a disadvantage when compressing small

packets of data and requires more complex structures that hampers its throughput.

The DCLZ [AHA96] family of compressors from AHA (Advanced Hardware Architectures)

are LZ2 derivatives. The DCLZ (Data Compression Lempel Ziv) was originally developed by

Hewlett-Packer laboratories around 1989 and used in their tape drive [Bianchi89]. The

hardware DCLZ works by storing a dictionary of 4096 entries organised as a linked-list with

the first 256 values assigned to the ASCII values. Each entry in the dictionary contains 23

bits: 8 bits are assigned to hold an ASCII value, 12 bits are assigned to hold a location value

and the rest are used as flags. New dictionary entries are added to the dictionary storing the

byte that stopped the string matching procedure in an unused position. The location loaded in

this position is a pointer to the dictionary location that holds the previous byte part of the

string. The string is linked in this way and eventually a location address points to the byte that

originated the string in the first 256 positions. This simplifies dictionary structure since the

width of the array is fixed. The AHA3l0l chip stores the dictionary in the device and when it

becomes full dictionary adaptation freezes. Periodic resets of the dictionary are done when

compression performance degrades.

The codewords output by the algorithm are simple dictionary locations addressing the

location that holds the byte that terminated the string. There is no need for match location

lengths as in LZ1. There is no special handling of a miss condition since misses are coded as

pointers to the first 256 locations where the ASCII code is stored. The dictionary needs a 12-

bit pointer locations when full and this means that a worst case expansion transforms 8-bit

input symbols into l2-bit ouput codewords. The worst case expansion is then 50% that could

be unacceptable in many applications. The expansion activated reset mechanism should avoid

this situation because when the dictionary is empty only 9 bits are used for the codeword. The

dictionary codewords are of length 9 to 12 bits depending on how many entries in the

53

Charter 2 Lossless Data Compression Review

dictionary are active. This mechanism is not as efficient as phased binary coding (PBC) where

the location length is optimal for a dictionary that grows one position at a time. For example if

513 locations in the dictionary have been used PBC assigns 9 bits the first 5 I 1 locations and

10 bits to the other 2 but the previous scheme will always use 10 bits. The throughput is

affected by the compression ratio and it is therefore data dependent. It is worst under

expansion conditions since it is necessary to access the external memory more often to

perform updates. Since the device is based on RAM the searching operations are also very

time consuming. The throughput of the AHA31 0 1 is on average 20 Mbits/s.

A more recent addition to the DCLZ family of devices is the AHA3211 [AHA97b]. This chip

uses internal CAM to replace the external RAM and to improve the searching and adaptation

speed. It clocks at 40 MHz and it has a data independent throughput of 160 Mbits/s. It has

been fabricated using a 0.5 p.m CMOS technology.

[Bunton92] presents another LZ2 implementation that improves upon the [Bianchi89] DCLZ

LZ2. The [Bunton92] algorithm uses a similar dictionary structure to [Bianchi89] but offers a

more advanced dictionary maintenance mechanism where a tag is attached to each dictionary

location to identify which node should be eliminated once the dictionary becomes full. The

tag mechanism implements a Least-Recently-Used (LRU) policy so the oldest node in the

linked-list dictionary and always a leaf in the corresponding virtual trie is declared free to

continue dictionary adaptation indefinitely after it becomes full. Removing a non-leaf node

will fail the algorithm because trie branches would be unconnected. This technique improves

over a dictionary that stops adapting and resets if compression degrades when no more empty

nodes are available. Better performance is obtained with a similar size dictionary or

alternatively the dictionary can be made smaller for the same performance target. The

hardware realisation uses only lK different locations but it performs similar to a 64K resetting

technique. Since the dictionary is much smaller the codewords output from the coder have a

fixed-width of 10 bits because growing-dictionaries combined with short start-up phases offer

little benefit. The hardware complexity is around 210K transistors using a 2J1m CMOS

process plus 20 Kbits of off-chip static RAM to store the tag information. An internal CAM is

used to stored the dictionary. This implementation achieves a data independent throughput of

108.8 Mbits/s. This rate can be improved up to 160 Mbits/s in the same technology if the

RAM's are placed on-chip eliminating the need for off-chip communication. This scheme

seems to offer better compression and less complexity (IK dictionary against the 4K in

DCLZ) than the [Bianchi89] device. The speed is also very competitive for a 2 I'm CMOS

technology. It is, however, the Hewlett-Packer device the one that has achieved commercial

success and it is in use today in many tape drive storage applications [Cressman94].

54

Chapter 2 Lossless Data Compression Review

2.5.2.3 Other dictionary-style hardware

A very simple lossless data compressor is the run-length coder of [Xiong97] where the output

is the data byte and a number byte indicating how many times the data byte has been seen.

Although little information is provided in the paper it is obvious that such a simple

compression technique can produce high throughput at the expense of a low compression

ratio.

The X-Match family of devices developed at Loughborough University [Jones92], [Kjels095],

[Kjels096], [JonesOO] belongs to the category of dictionary-based compressors but they are

not LZ derivatives. The X-Match model follows the principles of the BSTW algorithm

discussed in section 2.4.3. The X-Match model is based on a 4-byte wide CAM dictionary and

outputs a dictionary location indicating where a match was found and match type indicating

which bytes out of a maximum of 4 where found. This partial matching characteristic gives

name to the method. The X -Match coder uses a phased binary code (PBC) for the match

locations and a static Huffman code for the match types. The X-Match coder offers single

cycle operation and data independent throughput combined with a very low latency, the

features of a high performance compressor. Since it processes 4 bytes of input raw data per

cycle it can achieve high throughputs with modest clock frequencies due to its parallelism.

Pre-layout simulation indicates a performance of 800 Mbits/s clocking at 25 Mhz using a 0.6

pm gate array CMOS technology. Complexity is around 100 Kgates.

2.5.3 Other Hardware

Other work that can not be classified in the range of statistical or dictionary-based methods

corresponds to the genetic algorithm developed in the DCP chip [DCP95]. There is little

information on the features of the genetic algorithm although a dictionary table is used. The

developers claim very high compression ratios that outperform the LZS algorithm from

HilFn. The figures in the DCP documentation show an advantage of the DCP algorithm over

LZS of around 25 % and in some cases up to 100% better compression when processing

databases although the improvement decreases if targeting text and binary data. When

compressing standard data such as the Calgary corpus the compression advantage is around

20%. Worst case expansion is limited to 3%. This chip is implemented in a 1 pm CMOS

technology and has a throughput of around 1.64 Mbits/s clocking at 40 MHz. The chip named

DCP8l6 has a complexity of around 15K gates. It supports up to 64 channels of

compression/decompression and it uses 512 Kbytes of external RAM per dictionary/channel.

55

Chapter 2 Lossless Data Compression Review

It needs on average 190 clock cycles to process one byte of input data so the algoritlun

complexity seems to be very high and far from the single cycle operation of other compressor

solutions.

The hardware presented in [Sakanashi98] for printer image compression is based on

evolvable hardware (EH) and genetic algorithm (GA) paradigms. Evolvable hardware

technology is able to change the hardware structure depending on the requirements of the

target task and it is normally associated to reconfigurable hardware such as an FPGA. The

work presented aims to improve the performance of the JBIG standard based on the mM

QM-coder. The QM-coder compresses a bit of data using a context formed by 10 surrounding

bits. The shape of the template that defines which bits are chosen as context can be modified

only slightly in the QM-coder. The evolvable hardware chip has 2 main hardware

components: A RISe processor and a QM-coder. There are 2 modes of operation, the learning

mode and the compression mode. The objective of the GA is to use the learning mode to

select the template that offers the best compression ratio for a portion of the image. The GA

runs in the RIse processor where it selects different templates to perform compression and

uses the amount of data output by the QM-coder to choose the best one. In compression mode

a context generator uses the previously selected template for each image portion to provide

the QM-coder with a context and a pixel to be coded. Compression ratio using this

combination of GA and QM-coder is twice as good as the one obtained by the QM-coder on

its own. The algoritlun throughput is, however, very Iow because the learning mode is very

time consuming since the QM-coder has to run several times, one time for each template

tested. Compression throughput is around 12 Kbits/s. The paper does not present the

corresponding decompressor. Unfortunately, the evolvable hardware feature in the chip

description cannot be properly identified. The use of a GA to select an optimal template for

each image portion is clear and well understood. On the other hand the process of context

selection based on different pre-calculated templates during image compression seems more

of a multiplexing technique than a technique based on selecting a new hardware architecture

and downloading it into an FPGA.

2.6 Summary

This chapter has reviewed the current state of lossless data compression. This section

highlights the conclusions of the chapter.

56

Chapter 2 Lossless Data Compression Review

• Current software-base lossless data compression offers compression ratio levels that it

would be difficult to improve upon in the future.

Statistical techniques such as PPMZ have brought lossless compression ratios to a value close

of 0.2. These figures are considered to be very close to the theoretical entropy limit with

limited (if any) room for improvements. Further advances will always obey the diminishing

returns rule that means that it is easier to improve compression from 0.8 to 0.6 than from 0.2

to 0.19 and complexity increases exponentially. These methods achieve their performance

using a lot of resources and have very low throughputs. They do not achieve their optimal

working conditions until blocks of data in the order of Mbytes are compressed as single

entities because adaptation is slow and their multiple internal data structures use plenty of

data.

• Statistical PPM-style algorithms offer compression superior to dictionary-based

algorithms but the complex nature of the operations involved and the variable number of

them per symbol made them unsuitable for high-speed on-line hardware-based data

compression.

As a rule statistical software compression focuses on very good compression ratios while

speed is given a second order importance. Dictionary-based software compression is still

more popular and commercial algorithms such as PKZIP and ARJ are illustrative examples.

The reason is that although their compression is not as good their simplicity and related speed

becomes more important in many real applications. It is also true that PKZIP and ARJ have

been around longer than PPM style algorithms. These are something of a novelty because

until recently there was not suitable hardware in the public domain which sufficient power to

execute them.

• Current hardware-based statistical compression is either slow using binary alphabets or

offers poor compression performance using Oth order models. Complexity and speed

limitations prevents the use of multi-alphabet arithmetic coding (to get speed) and high­

order context-based modelling (to get compression) in hardware.

Statistical compression in hardware is rare because the main objective is usually throughput

and this is not something in the nature of a statistical method. The limitations on complexity

are also harder to break. The most popular statistical hardware chip is the mM Q-coder whose

performance is in the order of Mbitsls which is far from the requirements of Gbitls established

in chapter I. The Q-coder is a successful example of a binary fixed-order context-based

57

Chapter 2 Lossless Data Compression Review

model plus aritlunetic coder in hardware. The main limitation for speed in this case is the bit

symbol granularity. Although research has been done to use wider alphabets the compression

ratios are poor because complexity (and therefore throughput) requirements prevent from

using high-order modelling. The Oth order context-free models used in all the multi-alphabet

implementations seen so far are simply not powerful enough to compete with dictionary­

based hardware compression. Multi-alphabet variable-order finite-context models such as

PPMC or PPMZ currently do not exist in hardware.

• Dictionary-based hardware data compression is popular and well accepted as a means of

improving the performance of an electronic system. It offers competitive compression and

high-speed to successfully operate on-line in storage and network environments if their

speed requirements do not exceed the value of I Gbitls.

Dictionary-based hardware is popular and successful with examples such as LZS(HilFn),

ALDC (IBM), DCLZ (AHA) currently improving the performance of data communication

networks and storage systems. Attractive compression ratios in the order of 0.5 offer the

possibility of doubling the capacity of and electronic system with minimum investment.

These algoritluns are based on byte alphabets and process one byte of input data per clock

cycle. The HilFn device can run up to 640 Mbits/s with a complexity of around 100 Kgates

and it offers full-duplex functionality. This is the fastest device that is commercially available

today as a single lossless data compression solution. The IBM devices are limited to 320

Mbits/s because their chips are based on an older technology (0.8 urn) although IBM offers

them as synthesible cores to be added to a more complex SoC (System On a Chip) device. A

throughput up to 800 Mbits/s is expected if using a more up-to-date technology (IBM CMOS

50.35 urn).

In general these devices lack the performance to support a >Gbitls compressed network and

could become the bottleneck in the system. Their operational mode also adds considerable

data latency because they multiplex pins to get compressed and uncompressed data in and out

of the chip

58

Chapter 2 Lossless Data Compression Review

• Common to these high-perfonnance dictionary-based devices is the use of a CAM

(Content Addressable Memory) circuit instead of a RAM circuit to store the dictionary.

CAM's enable single cycle search and adaptation of the entire model unit whilst RAM

based models processed only a dictionary location per cycle.

Table 2.2 shown in the following page summaries the features of the most significant lossless

data compression hardware implementations. Only those designs where silicon is available

are reported in Table 2.2. It is clear from the throughput measurements of column 11 in Table

2.2 that all the current implementations fall short of the Gbitls benchmark. There is also an

order of magnitude difference between the throughput obtained by the dictionary-based

implementations and their statistical counterparts. The reason is that although a similar clock

frequency can be obtained with similar technologies the dictionary-based compressors process

at least I byte per cycle while the statistical implementations are typically limited to I bit per

cycle.

The following acronyms are used:

BAC= Binary Arithmetic Coder

EHW = Evolvable HardWar

GA = Genetic Algorithm.

ASM = Adaptive Statistical Model

FSM = Fixed Statistical Model

MAC= Multi-alphabet Arithmetic Code

FHC=Fixed Huffman Coder

ADM=Adaptive Dictionary Model

FHSC=Fixed Huffman-Style Coder

PBC = Phased Binary Coder

UBC= Uniform Binary Coder

59

Chapter 2

IARPS881

DEC 1993

corporation

IPRINTZ931

3521

AHA AHA 1997

3211

9600

IGOOCH961 1996

INUSINOV941

0.8 I'm

ASIC

Prototype

Board

DECPeRLe-1

0.5 I'm

ASIC

0.5 I'm

CMOS

ASIC

0.35 I'm

ASIC

CMOS

0.6 urn

ASIC

0.8 urn

ASIC

25

8 Xlllnx 32

xc3090

FPGA's

40

gates

lOOK lOO

gates

lOO

Table 2_2_ Summary of lossless data compression hardware.

Loss/ess Data Compression Review

'-'~

QM-coder

ASM BAC NolNo 3

FSM MAC NolNo 128

-LZ1 UBC

DCLZ ADM UBC NoiYel 160

-LZl

-LZ1

X-Matcb ADM-

BSTW PBC

ADM- UBC Yes/No SO

LZI

LZI PBC

60

Chapter 3 The X-Match Method

Chapter 3

The X-Match method

3.1 Objectives of Chapter

The objective of this chapter is to select a research vehicle to progress further the area of

lossless data compression hardware. The basis of this selection is to choose a system or a

concept that shows high perfonnance features to enable us to achieve the throughput and

compression requirements stated in chapter 1.

These requirements can be summarised as follows:

• Low latency. Most application environments are sensible to latency that should be kept as

small as possible. Latency is one of the variables together with throughput that defined

the speed of a compression method. Incremental transmission is also very important so

the compressor can start compressing data before the whole data block has been received

and transmission of compressed data can start before the whole block has been

compressed.

• Data independent throughput. It is important to have a constant and data independent

throughput in the uncompressed port to ease system integration. In this way the

uncompressed section of the system can be kept unaware that a compression element has

been introduced in the data path leaving aside a significant increase in throughput. The

data throughput in the compressed port is data dependent since it depends on the

instantaneous compression ratio.

61

Chapter 3 The X-Match Method

• Over 1 Gbitls throughput. The throughput in the uncompressed port should be higher than

I Gbitls to be able to handle current high performance storage devices and

communication networks. The throughput requirements are expected to grow to 10 Gbitls

in the next few years.

• Compression ratio of 0.5 on typical computer data. The higher the compression the better

but a lossless compressor that doubles the performance of the system where it is

integrated clearly justifies the use of compression. This compression ratio must be

achieved also when operating with small data blocks since many digital systems work

with data blocks ranging in size from >=32 bytes to <=4 Kbytes.

• Low complexity. Although the number of gates available in a silicon chip is constantly

growing the final aim is to produce an architecture feasible in current or soon to be

available technology. Low complexity produces a cost effective solution with the added

advantage of low power consumption. FPGA technology is a valuable tool to evaluate the

benefits of our design so the constraints of this programmable hardware must be taken

into account.

3.2 Features of the X-Match loss less data compression method

3.2.1 Introduction

X-Match was already introduced in chapter 2 as a fast dictionary-based compression

algorithm suitable for hardware implementation. We will further analyse its positive and

negative points in this section as a possible selection to advance the field of lossless data

compression. The main reason to choose X-Match as a valid candidate is that it shows a clear

performance advantage if compared with other solutions discussed in chapter 2. None of the

binary arithmetic coders of chapter 2 are close to a figure of 1 Gbitls and they tend to exhibit

dependencies between data compressibility and data throughput. The multi-alphabet

arithmetic coders do not offer the compression performance because they are limited to

context-free models. The dictionary-based machines get closer to I Gbitls but they still

struggle because processing is limited to I byte per cycle so they need high clock ratios and

depend on advance technology. X-match can achieve good throughput with modest

technology because it gets its performance from processing multiple symbols per clock cycle

and not from high clock ratios.

62

Charter 3 The X-Match Method

3.2.2 X-Match algorithm description

The X-Match algorithm uses a dictionary of previously seen data and it attempts to match the

current data element with a data element present in the dictionary. It obtains compression

when this matching is successful. These are the key features of the algorithm:

• Fixed width dictionary of 4 byte words named tuples to provide high, data independent

throughput.

• Variable length dictionary that dynamically grows when unknown data elements are

processed. This means that during an initial stage only a valid subset of the dictionary

locations are assigned codewords. This feature provides good compression ratio when

processing small data blocks.

• A partial matching strategy to improve compression so not all the bytes need to match in

a dictionary location for the match to be considered valid.

• Data expansion limited to 3.125% when no valid match is found in the dictionary

because a single bit is added to the new tuple (32 bits are translated into 33 bits).

The result of searching the dictionary can be a match or a miss. Since the algorithm uses a

partial matching strategy several types of matches are possible where all or some of the bytes

at different positions inside the tuple match. Those bytes that do not match are transmitted

literally. This partial match concept gives the name to the procedure - the X referring to

'don't care'. At least 2 bytes have to match and when no valid match is generated a miss is

codified adding a single bit to the literal. The dictionary is maintained using a move-to-front

(MTF) strategy [Bentley86] whereby a new tuple is placed at the front of the dictionary while

the rest move down one position. When the dictionary becomes full the tuple placed in the

last position is discarded leaving space for a new one.

The coding function for a match is required to code 4 separate fields as follows:

• A first bit set to 0 indicating a match.

• The match location. It uses PBC (phased Binary Code) as seen in section

2.4.2.2.1, chosen for its suitability for hardware implementation. PBC is

63

Chapter 3 The X-Match Method

characterised by using smaller codes during the growing stage of the dictionary

that starts in an initial empty state.

• A match type. That indicates which bytes of the incoming tuple have matched.

This is codified using a static Huffman code as seen in section 2.4.1.2.1.2 based

on the statistics obtained through extensive simulation.

• Any extra characters that did not match transmitted in literal form.

The coding function for a miss is required to code 2 separate fields as follows:

• A first bit set to 1 indicating a miss.

• The 4 non-matching characters in literal form.

The algorithm is given as pseudo-code in Figure 3.1.

Clear the dictionary;
Set the next free location (NFL) to 0;
DO

{

}

read in tuple T from the data stream;
search the dictionary for tuple T;
IF (full or partial hit)

ELSE

{

}

{

}
IF (full hit)

detennine the best match location ML and the match type MT;
output '0';
output phased code for ML;
output Huffman code for MT;
output any required literal characters of T;

IF (T is not the frrst tuple)
output '1 ';

output tuple T;

move dictionary entries 0 to ML-l by one location;
ELSE

{

}

move all dictionary entries down by one location;
increment NFL (if dictionary is not full);

copy tuple T to dictionary location 0;

WHILE (more data is to be compressed);.

Figure 3.1. The X-Match algorithm

64

Chapter 3 The X-Match Method

Initially all the entries in the dictionary are empty and a tuple is added to the front of the

dictionary while the rest move one position down if a full match has not occurred. The move­

to-front technique is only applied when dealing with full matches. In this case the tuples from

the first location until the location previous to the matching tuple move down one location

while the matching tuple is placed at the front of the dictionary. The number of entries in the

dictionary grows dynamically, thus if the input data only contains a few different tuples then

the dictionary remains small. Since the number of bits needed to code each location address is

a function of the dictionary size greater compression is obtained in comparison to the case

where a fixed size dictionary uses fixed address codes for a partially full dictionary. Only one

full match can occur at any time in the dictionary since the algorithm makes sure that no 2

locations contain the same data. Several partial matches are possible simultaneously so the

one that produces a shorter output is selected as valid.

3.2.3 X-Match hardware analysis

The architecture is based around a block of CAM to realize the dictionary. This is necessary

since the search operation must be done in parallel in all the entries in the dictionary to allow

high throughput. Latency is also kept to a minimum because the result of the search operation

at time t is available at time t+ J for further processing. The size of the CAM is 128 words

with 32 bits per word and it has to be selectively shiftable to be able to reorder itself adapting

to the incoming stream of data. The selectively shiftable characteristic implies that each word

of the CAM maintains its data or loads the data of the previous word depending on the value

of its associated bit in the adaptation vector produced by the dictionary maintenance

functions.

3.2.3.1. Compressor architecture

An overview of the compressor architecture is presented in Figure 3.2. The tuple to be coded

searches the CAM array trying to find a match. The output of this process is passed to the

best-match decision logic that resolves which of the possible matches (if any) is the best.

Then the match location is coded using a PBC that depends on how many entries are valid in

the dictionary as indicated by the next-free-Iocation (NFL) counter and the match type is

coded using a Huffman code. Any needed literal characters are added and the result is passed

to the assembly logic which packs groups of 64 bits together before indicating the availability

of compressed data. The shift control logic generates the adaptation vector to rearrange the

dictionary in the next cycle based on the match information.

65

Chapter 3 The X-Match Method

T~ IN

SEARCH "'TCH
m>E

"SO!."" -2..., "'TCH J HUFFMAN I-m>E
-.!.., MATCH ·1 CODER

CAM CODE e_DA~OIJT

DECISION ASSEMBLER
ARRAY PHASED -LOGIC BINARY

...1l4 CODER

OO<T CODER
fREE

SHIFT
LOCATlOO

~ NFL
'"'FT CONTROL

LOGIC IIRESOlVED
r.lATCH
LOCATION

Figure 3.2. Architecture of the compressor

3.2.3.2 Decompressor architecture

Figure 3.3 shows the decompressor architecture. The compressed data enters the decoder to

produce a match location and a match type in the phased binary decoder and Huffman

decoder. The byte disassembler is used to shift in the correct number of bits of input data as a

function of the variable-length codes found. The match location is used to multiplex out a

specific position in the CAM array and the match type determines what literal characters (if

any) are needed to recreate the original data. The shift control logic generates the adaptation

vector to rearrange the dictionary following the same pattern as in compression.

SHIFT

~
CAM

NFL CONTROL +--
ARRAY

NEXT LOGIC fREE
LOCATION

'l'J'l ~~ ",TA
C OATA IN BYTE _ PHASED

MULTIPLEXORJ DISASSEMBLER BINARY
'''''CH DECODER LOCA1l(lN

! "',,"ED "",.
LENGTH

HUFFMANI "'''" I OUTPUT I
DECODER 1 1 ASSEMBLER J .",-OUT

LENGTH

DECODER
LfTER.I.l CHARACTERS

Figure 3.3. Architecture of the decompressor

66

Chapter 3 The X-Match Method

3.2.3.3 Hardware performance

X-Match has been synthesised into a 0.6 pm gate array technology. Pre-Iayout simulation

results estimated a maximum clock frequency in the compression section of 25 MHz for a

data independent throughput of 800 Mbits/s. The decompression section can clock at 35 MHz

and the throughput is 1120 Mbits/s . In practice, a single clock should be used for

compression and decompression so the overall throughput is 100 Mbytes/s . The slowest

critical path extends from the search data, through the CAM array, match decision logic, shift

control logic and back to the CAM array to provide the necessary information to reorder the

dictionary. The latency of the device due to pipelining is 5 clock cycles during compression.

Decompression latency is 2 cycles. Figure 3.4 shows the critical path.

0" f.Bns 2.9ns 5.3n5 28.0ns 27.1 ns 34.2ns 38.5l1s

Figure 3.4. X-Match critical path.

The compression process is usually slower than the decompression process because the

extensive search operation in the dictionary to find a possible match is replaced during

decompression by a simpler look-up operation using the match location to address the

dictionary.

The X-Match description includes logic to interface to SRAM compression memory where 64

bits of compressed data are written in each access cycle during compression or read during

decompression. An internal register must be loaded with the uncompressed block size at the

start of the operation. An internal counter is enabled at the start of the compression or

decompression process and the device stops when the count value equals the uncompressed

block size. Several uncompressed block sizes can be used or the chip can run in unblocked

mode. Since 14 bits are used to interface to the compressed SRAM the maximum compressed

block size allowed is 214 x 64 bits = 128 Kbytes. The algorithm does not insert any special

termination marker in the compressed stream so the design relies in knowing the

uncompressed block size to detect when to stop uncompressing data. The same device can

67

Chapter 3 The X-Match Method

perfonn compression and decompression but not simultaneously. Figure 3.5 shows the pin­

out of the X-Match design. The need for a 64-bit wide compressed bus is due to expansion

conditions where the 32-bit input word is transfonned into a 33-bit output word. A bottleneck

could appear in the compressed data port if the device uses a 32-bit wide bus because no

buffering exists to handle a consecutive series of misses.

The estimated gate count of the design is 100 Kgates including the pipeline registers but

excluding additional logic for production testing. The estimated die size is 13.0 x 13.0 mm.

Most of the logic (80 Kgates) corresponds to the 128 x 4 bytes CAM logic.

X·Match Interface

CLEAR

ClK~
~

STAIj.

STO~ CPU PORT

-.>--. .. --.. _._. .0 •• ___ ••••

_DAT~I.
32 COMPRESSION CHANNEl

U

MEMORY

U _DATAOUT
INTERFACE

41(:;2
MPRESSING

DECOMPRESSION CHANNEL 41(
DECO

Figure 3. 5. X-Match interface.

BS_IN

41(1 ;

FINISHE~

~ ECO

ESS

MPRESS

C DATAOU T
-tl~

COMPRESSI NG

FlUSHltt

ADD~
,,'4 ~
CE ~
OE ~

RW~

-i_DAT-'J

i4
N

3.3 Mapping of research objectives to X-Match

3.3.1 How can we produce a faster X-Match?

The 3 elements present in a compression system, namely: Model, Coder and Packer

introduced in section 2.3 affect speed. It is important to identify which one is the perfonnance

bottleneck so our efforts can be directed. The original X-Match estimates a bottleneck in the

adaptation process in the model as mention in section 3.2.3.3. To identify and solve this

68

Chapter 3 The X-Match Method

bottleneck is therefore a priority before further analysis is carried out in the other components

of the system.

X-Match is targeted to main memory compression where a single bus is used to transfer data

to and from main memory. Full-duplex operation is becoming increasingly popular in

network standards able to transmit and received data simultaneously. It is also useful in other

applications such as a printer that receives data in uncompressed format, compresses it to

store it temporarily in local memory and then concurrently decompresses it when the print

engine requires more data. This application does not use compression to increase the

bandwidth of the data pipe but to increase the storage capacity of local memory. It is

important to analyse the possibility of developing a full-duplex solution so both processes

compression and decompression can be executed simultaneously for a combined performance

twice as high as a half-duplex device.

3.3.2 How can we produce a better compressing X-Match?

Coding better or modelling better can improve compression efficiency. The third element of a

compression system, the packer, does not have an impact on compression. Its function is to

assemble variable length codes into fixed length codes without affecting the total number of

bits. There is a strong interdependency between models and coders so more efficient

modelling such as the high-order context-base models of section 2.4.1.1.1 requires more

efficient coding such as the arithmetic coders of section 2.4.1.2.1 able to exploit the high

accurate information passed by the model. In chapter 2 statistical modellers and coders were

classified as those with higher compression performance but they were also found to be

particular slow. Arithmetic coding is slow not only because operations involved are complex

but also because no feasible parallel implementations are available. The idea of introducing

statistical concepts in X-Match is interesting but it is also necessary to study possible ways to

improve the compression efficiency of the dictionary-based models and coders already

present in the system. This analysis should also evaluate the likely impact on speed of the

different solutions proposed to improve compression.

3.3.3 How can we prove the feasibility of our solutions?

System integration is also an important issue. It is necessary to produce a

compression/decompression engine not only fast and efficient but also friendly to use from an

application point of view. A coprocessor-style interface will make the device a sensible

component to be integrated in a computer system data path. The complexity of the whole

69

Charter 3 The X-Match Method

design should not exceed that available in current hardware. ASIC's using advanced

processes offer plenty of resources and high speed but they are unattractive for first silicon

because of their high development costs and lack of flexibility. Recent advances in FPGA

technology have produced levels of gate density and speed that enable the migration of the X­

Match method to an FPGA implementation. FPGA's with densities ofK hundred of gates and

manufacture using advanced deep submicron processes enable a full working solution instead

of just mere prototyping. The concept of desktop foundry suits our needs to prove the

working characteristics of our design whilst ASIC's still remain available as an alternative if

higher levels of performance and integration are required.

3.4 Conclusions

The X-Match compression method originates in the research carried out by the System

Design Group at Loughborough University using partial matching CAM circuits and

multiple-symbol processing to improve speed and compression efficiency. X-Match complies

with the high-performance features of section 3.1 and it is therefore a suitable candidate for

further research aiming to advance the current state of lossless data compression hardware.

The intention of the rest of this work is to design a general-purpose lossless data compressor

coprocessor using the X-Match design as its foundation. The research studies ways to

improve the compression performance and the compression throughput of lossless data

compression hardware and it also studies ways to ease system integration. Working silicon

will be obtained using state-of-the-art FPGA hardware. Finally, a rigorous verification

methodology will be used to prove the working aspect of the design.

70

Chapter 4 Experimental framework

Chapter 4

Experimental framework

4.1 Objectives of Chapter

The objective of this chapter is to select a common development framework on which to base

the experimentation. The selection must include the data sets and softwarelhardware lossless

data compression algorithms needed to compare the compression ratio obtained by our own

algorithms. It must also select the lossless data compression chips to be used to compare the

throughput figures and the technology to be used to develop the hardware implementation.

4.2 Data set selection

Data set selection is always a complex issue because it is difficult to obtain a data set

representative of the data that the compressor will encounter when it is deployed in an

electronic system. This problem is exacerbated when the compressor is not aimed to compress

a particular data type such as text or images but as a general-purpose compressor.

We have selected 3 data sets to base our experiments: the memory data set, the disc data set

and the Canterbury data set.

. The memory data set was assembled in the System Design Group at Loughborough

University. Much of the previous research uses it so it is easier to compare the new solutions

with previous work done in X-Match. The memory data set is formed by data captured

directly from main memory in a UNIX workstation whilst running applications. The original

data set includes around 100 Mbytes of data but it was reduced to around 10 Mbytes to have

sensible processing times and memory resource requirements in some of the highly complex

71

Chapter 4 Experimental framework

context-based statistical algorithms. These state-of-the-art software-based algorithms are

useful to find out the entropy or information content in the data sets and to establish a

reference point. The 9 files that fonn the data set have the same size of 0.97 Mbytes (1 Mbyte

= 1024xl024 bytes) and this corresponds to the first 1024000 bytes of data in each of the

original files.

Category No of Files Size (Kbytes)

Xman - Unix manual page 1 1000

Text - Textedit with a small C source file open. 1 1000

Ghos - Ghoscript postscript viewer with a technical paper 1 1000

open.

Emac - Emacs text editor with an elaborate set-up a few 1 1000

buffers open.

Nets - Netscape world-wide-web viewer after some 'net- 1 1000

surfing' activity.

Vlab - VlabPlus analogue simulator from Intergraph 1 1000

during extraction and spice simulation of a parallel multiplier

Suno - Approximation to the operating system SunOS 1 1000

working set.

Matl - Matlab matrix laboratory running a benchmark 1 1000

program.

Logs - Logsyn logic synthesis tool from Intergraph during 1 1000

logic optimisation of a parallel multiplier.

Total 9 9000

Table 4.1. Memory data set

The disc data set was also assembled in the research group. It is fonned by typical data

structured in 4 categories found in the hard disk of a workstation used in an engineering

environment. The 4 categories correspond to: application data, executable data, general data

and user data.

The application category corresponds to data required by applications to correctly function

such as database files and setup files and excludes any data generated during program

execution.

72

Chapter 4 Experimental framework

Category No of Files Size (Kbytes)

Library files from Cadence CAE system 5 1211

Component files from Intergraph CAB system 5 959

Simulation libraries from Intergraph CAB system 4 1649

VHDL libraries from Intergraph CAE system 6 785

Logic synthesis libraries from Intergraph CAE system 8 39

Matlab function libraries 6 259

Simulation libraries from Synopsys CAB system 9 1232

Parts files from Unigraphics mechanical CAD/CAM system 3 988

Data files from Visilog image processing system 2 779

Parts files from Xilinx CAE system 4 77

Total 52 8675

Table 4.2. Application disc data set

The executable category corresponds to engineering, user written and general use application.

Category No of Files Size (Kbytes)

General applications (ghostview, tin, xups and matlab) 4 4546

CAB applications from Intergraph and Xilinx 3 4841

System Applications (sed, awk, xcal, gtar) 4 633

User programs 5 189

Total 16 10209

Table 4.3. Executable disc data set.

The general category consists of data used by the operating system, textual files and graphical

image files.

73

Chapter 4 Experimental framework

Category No of Files Size (Kbytes)

System font and keyboard definition files 10 863

System library files 6 758

General operating system files 7 2085

Manual pages 9 748

Documents in either postscript, html or pdf format 12 2357

ASCII text files 3 372

Total 47 7183

Table 4.4. General disc data set.

The user category consists of data created by the user such as schematic diagrams, word

processing documents and results files.

Category No of Files Size (Kbytes)

CAE files from Intergraph and Xilinx 10 5942

Microsoft Excel spreadsheet files 3 328

Graphics files using Coredraw, Drawperfect and Microsoft 5 1360

powerpoint

ASCII textual files (C and VHDL source code and a mail 7 290

folder)

Results/statistics files 5 528

Word processing files from Wordperfect and Microsoft Word 4 2175

Total 34 10623

Table 4.5. User disc data set.

The Canterbury data set [Arnold97] has been recently introduced as a standard so the data

compression research community can use it as a common reference. It was developed to

replace the ageing Calgary data set [BeIl90] and to include representative data found in

modem computer systems. The authors conclude in [Arnold97] that the compression results

obtained using the new Canterbury corpus can not be considered absolute measures of

compression because the deviation in compression ratio if the current set of files is replaced

by a bigger set of files is too high. The Canterbury corpus is, however, a useful tool for

74

Chapter 4 Experimental ftamework

relative measures of compression because the variations in compression using different

methods are maintained if the data set is increased. The final conclusion is that the Calgary

corpus and the Canterbury corpus offer very similar results so the new corpus does not

invalidate the results obtained with the previous one.

Category No of Files Size (Kbytes)

alice29.txt - English text I 148

ptttS - Fax images I SOl

Fields.c - C source code 1 11.3

Kennedy.xls - Spreadsheet files 1 1003.5

Sum - SP ARC executables 1 37.3

LeellO.lxt - Technical documents I 416

Plrabnl2.lxt - English poetry 1 470

Cp.html - html 1 24.6

Grammar.1sp - lisp source code 1 3.72

Xargs.l - GNU manual pages 1 4.23

Asyoulik. Ixt - Plays 1 126

Total 11 2745.65

Table 4.6. Canterbury data set.

4.3 Hardware selection

The hardware selection was based on using commercially available chips that offer software

routines to run them on our data sets. We selected the LZS (LZI) algorithm used in HilFn

devices, the DCLZ algorithm (LZ2) firstly introduced by Hewlett-Packard and now being

developed by AHA and the ALDC (LZI) algorithm from IBM. The lossless data compression

chips that realise these algorithms have achieved commercial success because they combined

good compression ratios and high speed. Table 4.7 shows a summary of the features of these

software routines. A summary of the hardware details of the devices that implement these

algorithms can be found in Table 2.2.

They are all dictionary-based compressors but this reflects that hardware statistical

implementations are few and far between and none of them are closed to the throughput

75

Chapter 4 Experimental framework

requirements of Gbitls as seen in Chapter 2. The software routines that have been used for

the compression performance measurements are DOS and Windows applications that can be

obtained from the web pages of the respective companies. We have used in all the cases the

default configuration of the algorithm.

Name Developer Type Software Software Software Overhead

Command Version Year

ALDC mM LZl ENC 1.70 1993 o bytes

LZS STAC/Hilfn LZl LZSdemo 3.1 1992 4 bytes

DCLZ HP/AlIA LZ2 DCLZ 2.0 1992 2 bytes

Table 4. 7. Hardware-based lossless data compression algorithms selection.

The overhead measure corresponds to algorithm identification headers added by some of the

routines. One of our objectives is to measure compression performance when processing

small data blocks, therefore, a header overhead should be removed to avoid distorting the

compression ratios. The overheads shown in tables 4.7 and 4.8 correspond to invariable data

bytes found at the start of the compressed files produced by the algorithms.

4.4 Software selection

The software selection is done because it is useful to learn how hardware compares against

software in terms of compression. We selected the popular PKZIP as a representative of

advanced dictionary-based software compression. We selected a state-of-the-art

representative from the statistical compression world - The PPMZ algorithm review in section

2.4.1.1.1. PPMZ is considered to be one of the best lossless data compression algorithms that

exists today. It combines high-order context-based modelling with an arithmetic coder. PPMZ

is useful because its compression ratio is considered to be close to the theoretical limit that it

is possible to obtain with lossless techniques. PPMZ throughput is very low with one byte

being processed every 20 K CPU cycles. We also selected a powerful hybrid that aims to

obtain the compression performance of statistical methods and the speed of dictionary-based

methods - The HA algorithm. HA is a technique that combines a sliding-window dictionary

plus an arithmetic coder. It is in essence a hybrid of a dictionary model plus a statistical coder.

It illustrates how techniques from both domains can be successfully combined. Table 4.8

shows a summary of the main features of these algorithms.

76

Chapter 4 Experimental framework

PKZIP does not include options to tune compression performance. HA includes 3 different

switches: switch 0 only copy files (no compression), switch I specifies a sliding window

dictionary model LZI-style plus an arithmetic coder and it is the one use in our experiments,

switch 2 uses a variable 4-order model plus an arithmetic coder known as PPMC. Switch 2

defmes a more powerful compression technique than switch I but the third selected algorithm

PPMZ supersedes PPMC. PPMZ can select a model order to start making predictions with

the use of LOE (Local Order Estimation). There are different coders available that specify a

different maximum model order. Coder 9 is the default option in the algorithm and the one

used in these experiments. It uses LOE to select a starting order to predict the next symbol

that can be as high as 8th order.

Name Developer Type Software Software Software Overhead

Command Version Year

PKZIP PKWARE Dictionary PKZIP 2.50 1999 14 bytes

Inc

HA Harry Hybrid HA 0.98 1993 38 bytes

Hirvola

PPMZ Charles Statistical PPMZ 9.1 1997 28 bytes

Bloom

Table 4.8. Software-based lossless data compression algorithms selection.

4.5 Technology selection

The reduction in feature size and constant advances in the manufacture process have made

FPGA technology get closer than ever to ASIC performance allowing the migration of whole

systems to a single chip. The development of the prototype core is based on ProASIC FPGA

[ActeIOO] technology from ActellGatefield corporation. The reason to choose this technology

is partly found on resource availability and also on particular interesting features present in

their new non-volatile Flash-based ProASIC devices that suit the flipflop-rich X-Match

architecture better than other RAM-based devices. We also selected the Apex [AIteraOI] and

Virtex [XilinxOI] family recently introduced by AItera and Xilinx Corporations respectively

with densities in the order of million of gates and 0.18 p.m feature size. Table 4.9 shows a

summary of these technologies.

77

Chapter 4 Experimental framework

Technology Density (Highest in family)

Manufacture Process Family (Device) System Typical RAM Logic

gates(k) gates(k) bits (k) elements

Gatefield / FLASH- A500K 1,100 410 138 51,200

Actel CMOS (A500K510)

0.25 J.IlIl

Altera SRAM-CMOS APEX20K 2,392 1,500 432 51,840

0.18 J.IlIl (EP20KI500E)

Xilinx SRAM-CMOS VIRTEX 4,074 Not 851 73,008

0.18J.1m (XCV3200E) stated

Table 4.9. Technology selection.

4.6 Measurement definitions

Compression ratio (CR): Compression ratio is defined as the ratio CR =
output_bits/input_bits in the algorithm. This means that the srnal1er the figure the better the

compression. A value larger than I implies that data expansion but not data compression took

place. Compression is obtained whenever the CR value is in the range (0, I). For example if

the CR = 0.5 means that 100 Mbytes of uncompressed input data are compressed to 50

Mbytes of compressed data.

Compression gain (CO): Compression gain of algorithm b over algorithm a is a percentage

defined as the value CO = JOO*(CR. - CRiJI CRb• This means that the bigger the number the

higher the compression improvement and that a negative value brings compression

degradation. For example if an algorithm b has a CR = 0.25 and algorithm a has a CR = 0.5

the CG = 100*(0.5-0.25)/0.25 = 100 % better compression of b over a.

Block size (BS): Different input block sizes are used to evaluate the performance of the

compression algorithms as function of the amount of data to be compressed as an independent

block. The experimental methodology uses the fol1owing block sizes: 256 bytes, IK, 4K,

16K, File.

78

Chapter 4 Experimental framework

Dictionary size (DS): Different dictionary sizes are used to evaluate the trade off between

complexity and compression performance of the algorithms. The experimental methodology

uses the following dictionary sizes: 16,32,64,256,512,1024.

4.7 Conclusions

This chapter has selected a set of tools to help to carry out the experimental work of chapters

5,6 and 7.

• To measure the compression perfonnance we have selected 3 different data sets for a total

of 48 Mbytes of data.

• To compare hardware-based performance we have selected 3 commercially available

high-performance lossless data compression chips.

• To reference compression performance we have selected 3 state-of-the-art software-based

lossless data compressionn algorithms.

• To develop our hardware implementation we have selected 3 state-of-the-art FPGA

technologies.

These selections together with the measurement definitions will be used in the following 3

chapters that deal with improving the compression efficiency, improving the throughput and

finally proving that the solution proposed is feasible and meets the requirements introduced in

chapter 1.

79

Chapter 5 Focus on compression efficiency

Chapter 5

Focus on compression efficiency

5.1 Objectives of Chapter

This chapter deals with the problem of improving compression efficiency whilst maintaining

a high throughput. These 2 variables are strongly related since it is usually possible to

improve compression by using more complex modelling and coding techniques but this extra

complexity has a negative effect on speed. It is also true that simplifYing the algorithm tends

to enable higher operational speeds. A trivial example is to think of a system that copies

directly the input to the output. The speed of such a method could be considered optimal and

impossible to improve upon. The compression ratio of the system would be 1.0 and it will be

of no use from a compression point of view.

The main body of results are reported based on a single corpus. The Canterbury corpus has

been selected because its small size enables fast execution of some of the more complex

algorithms. The data mixture that forms the Canterbury corpus is accepted as representative

of the data types found in modern computer systems. The final results will be validated using

the other 2 corpuses introduced in chapter 4: the memory data set and the disc data set.

Our final aim is to produce a feasible architecture ready to be implemented in current or soon

to be available hardware. This means that although the main objective of this chapter is to

produce algorithmic techniques that improve the compression performance of X-Match

complexity cannot be disregarded. The final algorithm must not only be computationally

feasible but it must also be hardware amenable.

80

•

Chapter 5 Focus 011 compression efficiencY

5.2 X-Match compression effici ency

The original X-Match algorithm was described in chapter 3. This section analyses its

compression efficiency on the Canterbury corpus. The hardware design uses a dictionary size

of 128 locations. The original software version of X-Match uses a dictionary with 1024

locations. Dictionary size can vary with minimal impact on speed but important effects on

complexity and compression ratio .

0.8

0.7

0.6

5 0.5

0.4

0.3

0.2

256 bytes

X·Match Compression

1 Kb 4 Kb

Block size

16 Kb File

64 ---126 ---256 --512 -+- 1024

Dictionary size

Figure S. 1. X-Match compression on the Canterbury corpus.

From Figure 5. 1 it is clear that the compression efficiency of X-Match on the Canterbury

corpus is modest. One of the main reasons is that this corpus contains a large amount of

textual data . The are I I files in the Canterbury corpus. The IXI extension is present in 4 of

these whilst the other 4 have also a textual nature such as html, C or Li sp source code .

Textual data is heavi ly byte oriented and the rationality of process ing groups of 4 bytes

together does not hold .

Figure 5.1 al so shows that the compression efficiency of X-Match grows with dictionary s ize

and block size. A larger dictionary increases the chances of having a match in one of its

locations. Figure 5. I shows that for any block size compress ion increases or remains the same

if the dictionary size increases. If the block size has only 256 bytes a dictionary size of 64

81

Chapter 5 Focus on compression efficiency

locations is enough to store the whole block internally and further increases in dictionary size

do not improve compression.

A larger block size means that more data is available to bui ld the dictionary and in

consequence better modelling of the input data so urce can be achieved. This is particularly

true if a large block size is combined with a large dictionary size. Small dictionaries saturate

quickl y and this limits their capacity to adapt the extra data avai lable in large block sizes.

Figure 5.1 illustrates thi s effect with a 16 location dictionary whose compression remains

largely invariant with increases in block size. Figure 5.1 also shows that maintain ing the same

dictionary size and increasing the block size always improves compression except in file­

based compression where some minor degradation can take place. The reason is that the

combination of PBC plus periodically resetting the dictionary can have a positive effect on

compression. The effect of PBC in X-Match is that the dictionary always starts with an empty

state to compress a block so only a few bits are needed to code a partially full dictionary. This

is use ful when processing small data blocks but in fi le-based compression the effect is negible

because once the dictionary is full all the locations need to be assigned a code. The periodical

resetting of the dictionary, that is equivalent to breaking the file in smaller blocks, reactivates

the PBC strategy and can improve compression because it increases the adaptability of the

model to the loca l characteristics of the input data source . This effect is called locality of

reference [Bentley86J. It means that in a typical data block a symbol can be heavily used in a

block section but then it can fall in disuse in another block section.

5.3 Dictionary-based approach

5.3.1 Introduction

The dictionary-based approach investigates how the dictionary-based models and coders

presented in the X-Match method can be improved to obtain better compression whilst

maintaining the high throughput.

5.3.2 The dictionary-based model

The dictionary-based model of X-Match uses a CAM that stores the last 128 tuples (I tuple =

4 bytes) as its compression history. The move-to-front (MTF) replacement policy is a least­

recently-used (LRU) pol icy that removes from the dictionary the tuple that was used less

recently. Thi s techn ique in effect forms a sli ding window of history data that moves over the

82

Chapter 5 Focus 0 11 compression efflciency

input data source but it avoids data duplication at different locations of the history window.

This policy tends to be more effective than a least-fTequently-used (LFU) policy at exploiting

the locolity 0/ re/erellce effect. A typical inefficiency of LFU is that it could assign a high

fTequency to a popular tuple during the compression of the first section of a block of data but

then the same tuple could fa ll in disuse during the second section. This tuple remains in the

dictionary because it achieved a high count during the initial stage but since it is not used

duri ng the second stage it wastes coding space. Combinatorial searching strategies do not

improve compression because the extra bits added to the output to di stinguish which

combination matches offset the extra number of matches [Gooch96J . Better modelling can be

achieved by increasing the CAM -size so a larger compression history is maintained. The 128

position CAM represents already 70% of the logic in the chip so the complexity implication

of using larger CAM 's must be taken into account.

5.3.3 The dictionary-based coder/decoder

5.3.3.1IlItroductioll

X-Match uses a static Huffman coder to code the match types and a phased binary coder to

code the match locations. To code the bytes that are not found in the dictionary X-Match does

not use any coding technique but instead the bytes are added to the codeword in literal form.

These bytes could also be coded to improve compression but parallel decoding wi ll be then

very difficult to implement in hardware. Since the lengths of the individual codes are not

known in advance multiple decoders should decode in parallel all the possible length

combinations of the 4 coded bytes. A lypical Huffman code generates 7 different lengths for a

256·symbol alphabet so a total of 7°+7'+7'+7'=400 independent decoders are needed . The

first decoder decodes the first symbol. The next 7 decoders decode 7 possible symbols

depending on the first symbol. The next 49 decoders deal with the third symbol and the fina l

343 decoders dea l with the fourth symbol. The technique is unfeasible because of its scaling

complexity.

5.3.3.2 Match locatioll codillg techlliques

Phased binary coding is a techniq ue used to code the dictionary locations of a dictionary that

starts empty and then it grows accommodating new data fou nd in the block being compressed.

The advantage is that a smaller dictionary uses fewer bits to code its positions so there is a

compression gain during the growing stage. This advantage is lost once the dictionary

becomes full after a number cycles. The number o f cycles that it takes before the dictionary

83

Chapter 5 Focus 011 compression efflciency

fi lls depends on its maximum size and the redundancy of the original data since only tuples

that are not fu lly matched increase the size of the dictionary. This is done to maintain a high

dictionary efficiency because each location stores unique data. If the dictionary size is small

the gains obtained with PBC are negible because the dictionary fi ll s very quickly. This means

that a simpler form of coding such as uniform binary coding (UBC) where every position uses

log2(dictiollGlY size) bits can be used. Figure 5.5 shows the compression gain (defined in

section 4.6) obtained by PBC compared against an alternative using UBC processing the

Canterbury corpus.

% oorrpression gain PBC

16

14

12

10

>$ 8

6

4

2

0
2S6 bytes 1Kb 4Kb 16Kb File

BOO< size

64 ""*"" 128 256 --512 -+- 1024

Dictionary size

Figure 5.5. Compression gain PBC versus UBC in X-Match processing the Ca nterbury corpus.

PBC shows itself as a use ful technique main ly when coding small to medium size block sizes

and using large dictionaries. A large dictionary uses a large number of bits to code its

locations if all them are active from the stalt . If the block size is small these locations remain

empty because there is not enough data to fill the dictionary but they waste coding space

because dictionary addresses remain assigned to them. This is the reason the compression

gain obtained by PBC against UBC is so significant with small block sizes and large

dictionaries. For a typical block size of 4 Kb PBC does not show any significant advantage

until a dictionary larger than 64 locations is used. The reason is that a small dictionary fill s

quickly and once it is full there is no different between UBC and PBC.

84

Chapter 5 Focus Oil compression efficiency

An alternative to PBC for the match locations is to use a Huffman code based on the fact that

the LRU maintenance policy forces more common data to be stored closer to the top of the

dictionary. The probability of having a match in these locations is higher than the locations

closer to the bottom. A static Huffman tree can be designed based on thi s property with

dictionary locations closer to the top of the dictionary al so closer to the root of the Huffman

tree. The match frequency distribution in the dictionary has been used to generate Huffman

trees varying the dictionary size. For a typical dictionary size of 256 elements the Huffman

codes varied in size from 2 bits for location 0 to 12 bits for location 255. Figure 5.6 shows the

tree shapes obtained after processing our data sets.

The shape of the trees remains largely invariant independently with the data sets because all

the compressible data sets exhibit locality of refereJl ce that increases the probability of having

matches closer to the top of the dictionary. A static Huffman code is a good solution to code

this match distribution because the tree shape is largely data independent. An adaptive

technique will not provide any significant advantage.

Tree Shapes

12 1
10

•
Number of bits

2

o
o 25 50 75 100 125 150 175 200 225 250

l oca tion
- Memory - Disc Can te rbu ry

Figure 5.6. Buffma n tree shapes.

Figure 5.6 shows that the 3 different data sets produce similar tree shapes. The disc data set

shape is obtained as an average among the 4 data set components: executable, general,

application and user. This is the reason why the disc 'shape' exhibits some noise.

Figure 5.7 shows the compression gain obtained by X-match when using a Huffrnan code for

the match locations.

85

Chapler 5 Focus on compression efficiency

% compression gain Huffman

16

14

12

10 .. 8

n ~ :~ , . ,

256 bytes 1 Kb 4 Kb 16 Kb File

Block size

64 --*- 128 -+-256

Dictionary size

Figure 5.7. Compression gain Huffman versus UBC in X-Match processing the Canterbury
corpus.

The dictionary size is limited to 256 locations because the tree generator used in the

experiments cannot handle trees larger than 256 leaves. The largest code in this case is 12 bits

which means that an already complex 4096 positions look-up table is needed for the

decoding. Figure 55 and Figure 5.7 show that Huffma n coding offers a small compression

gain over PBC when handling large block sizes but PBC is more efficient when compressing

small blocks. PBC is also simpler s ince no large look-up tables are needed. Huffman coding

like PBC al so needs a dictionary size larger than 64 locations to offer any significant gain.

A combination of the concepts of both Huffman coding and PBC creates a Phased Huffman

Coder (PHC). This implementation uses a growing dictionary and a number of Huffman trees

equal to !ogldicliOl1aty size). The dictionary grows in powers of 2 and depending on how

many dictionary entries are valid a different tree is used. The rational e is to have the good

performance of PBC with smaller block sizes and Huffman coding with large block sizes

respectively. Extra complexity is added in the coding and decoding processes because the

system must stored a number of Huffman coding a decoding look-up tabl es and efficiently

switch among them when the next dictionary size is activated. Figure 5.8 shows the

compression gain of PHC.

The phased Huffman coder offers better compression than Huffman coding for the 256 bytes

block sizes and also better compression than PBC for file-based compression. On the other

86

Chapter 5 Focus 01/ compress ion efflciellcv

hand its performance is inferior to PBC for any practical block size smaller than 16 Kbytes.

The complexity impact of PHC is also considerable because for a 256 location dictionary it is

necessary to store and manage 8 independent Huffman trees.

% compression gain PHuffman

16

14

12

10

... 8

6

4

2

0 :..:
256 bytes 1 Kb 4 Kb 16 Kb File

Block size

64 --128 ---256

Dictionary size

Figure 5.8. Compression gain PHuffman versus UBC in X-Match processing the Ca nterbury
corpus.

This concept of a phased Huffman coder is closed to other alternatives such as the hardware

amenable Rice coding of section 2.4.1.2.1.3. Rice codes are in essence Huffman codes that

can be adjusted using a parameter that modifies the shape of the tree. This parameter would

be controlled by the dictionary size in our case. Rice codes offer less flexibility than Huffman

codes because the alphabet size is unbounded and their performance is limited. The alphabet

size is unbounded because a maximum size it is not defined when constructing the Rice code.

5.3.3.3 RUI/-lellgth codillg techlliques

Run length coding can also be used to improve the coding efficiency of the dictionary-based

coder. Run length coding is based on signalling repetitive patterns and code them together

indicating the pattern that was found and how many times it repeated. The erfect of a run

length coding applied to X-Match is to code repeating patterns of 32 bits in a single code

because of its tuple granularity. Several solutions are possible depending on where the run

length coder is placed relative to the other functions present in the algorithm.

87

Chapter 5 Focus 011 compression efficiency

In principle there are 3 different locations for a run length coder in the X-Match algorithm

depending on what sorts of runs it aims to code: front (Run Length Front: RLF), middle (Run

Length Internal : RLI), back (Run Length Back : RLB). To add a run length coder to the back

of the algorithm is not a sensible option for a simple reason: the effect of compression is to

produce a randomised output where run lengths are non-existent. After packing the

codewords get disaligned so a run length coder wi ll be unable to detect 32 bit repeating

aligned patterns. We will now study the other 2 options: RLF and RLI.

Our RLF alternative is sensitive to 32-bit repeating patterns of the same byte for example

'aaaa '. This way on ly one byte is needed in the RLF code to know which byte was repeating

('a '). It is necessary to determine which is the minimum run length that must activate the

RLF technique. Fo llowing the X-Match a lgorithm described in chapter 3 and assuming a

maximum run of 255 repetitions the output generated by a run of length 2 wi ll be: I bit for the

match, log, (dictionary size) bits for the RLF code, 8 bits for the repeating byte and 8 bits to

indicate the length. The total is 17+log, (dictionary s ize) bits.

A non-RL output when data is not in the dictionary wi ll be an initial mi ss of 33 bits and a fu ll

match of3 + log,(d ictionary size) bits (I bit match, log, (dictionary size) bits matc h location, 2

bits match type). If we assume a practical dictionary size of 256 locations RLF improves

compression because it outputs 25 bits and the non-RL output is 44 bits. On the other hand if

the data is indeed in the dictionary RLF wi ll fai l to improve compression because it wi ll still

output 17+ log,{dictionary_size) bits whilst a non-RL alternative wi ll output 2 codes of 3+

log,(dictionary_size) bits = 6+21og, (dictionary_size) bits. For a practical dictionary size of

256 locations thi s is 25 bits> 22 bits. Therefore depending on how often data is found in the

dictionary RLF can be made sensi tive to runs of length 2 or not. Figure 5.9 shows the

distribution of fu ll matches, partial matches and misses over the Canterbury corpus with

different block sizes and a practi cal dictionary size of256 locations.

88

Chapler 5 Focus 011 compression efficiencY

M iss , Partial Match , Full Match distribution

0 .7 1
0 .6 ,

0 .5

0.4 •
"" 0.3

0 .2

0 .1

0
256 1024 4096

Block Size

16384 File

---+-- M isses

~Full Matches

P a rti al Matches

Figure 5.9. Distribution of Misses, partial nmtc hes and full matches over the Canterbury
corpus.

Assuming a worst case for the run length option we select a di stribution of 0.05% misses,

0.36% full matches and 0 .59% partial matches that corresponds to a block size of 16 Kbytes

or bigger. Then, we can compare the number of bits produce by a RLF alternative sensiti ve

and non-sensitive to runs of length 2. We call x = 10gl(diclionGlY size) and we assume steady

state. A fu ll match outputs a match location code of x bits, a single bit indicating a match

and 2 bits indicating a full match type. A miss outputs a single bit indicating a miss and 32

bi ts of literal characters. The number of bits produced by a partial match depends on the type

of match. For the calculation we assume again a worst case for run length so the number of

bits produced by the paltial match is minimum: I bit for the match, x bits for the match

location code, 3 bits for the match type and only I mi ssing byte added = 12 bits.

No oJ bils (lIoll -sensitive) =
= 0.05(33) + 0.36(3+x) + 0.59{12 +x)+ (3+x) = 1.95x + 12.81

No oJ bits (sensitive) = 17+x

12.81 + 1.95x > 17+x => x > 4.41 > 5 =>

=> No oJ bits(lIon-sellsitive) > No oJ bits(sensitive)

[5. I}

[5.2}

[5.3}

From equation [5.3] RLF can be made sensitive to repetitions of length 2 if the dictionary

size is larger than 2' = 32. Equation [5 . 1] depicts a worst case for RLF because it measures

the minimum number of bits produced by a non-RL alternative. It assumes a miss probability

based on a 256-location dictionary however if the dictionary is smaller than 256 locations the

89

Chapter 5 Focus 011 compression efflciellcy

percentage of misses increases and therefore the number of bits in equation [5.1] increases

reinforcing the result of equation [5.3]. Equation [5.1] also assumes that all the partial

matches are matches of 3 bytes and they only need one missing byte to be added to the code.

If partial matches of only 2 bytes are inc luded in the ca lculation the number of bits produced

in equation [5 .1] increases again reinforcing the result of equation [5.3].

We will now study the RLI alternative. RLI combines with MTF to efficiently run length

code any repeating 32 bit pattern. Since the MTF dictionary maintenance policy forces any

repeating pattern to be located at position 0 (top of dictionary), RLI detects and run length

codes any tuple that is fully matched at the top of the dictionary 2 or more times. The tuple

always has to be present in the dictionary in location 0 for the RLI event to become active

because RLI codes runs of full match at location 0 and not runs of repeating tuples. This

means that the first tuple in the input data source that starts a run of repetitions is stored in

location 0 and only the following repeating tuples can be coded as part of a RLI event. The

output of a RLI code is always 9+ log,(dictionary_size) (I bit indicating a match,

log,(dictionary_size) bits for the RLI code, 8 bits for the run length). The following set of

equations is obtained comparing the output produce by a RLI sensitive and non-sensitive to

repetitions of length 2.

No of bits (non-sensitive) = 6 + 2x

No of bits (sellsitive) = 9 + x

6 + 2x > 9 +x => x > 3 => No ofbits(lIoll -sellsitive) > No ofbits(sellsitive)

[5.4}

[5.5}

[5.6}

From equation [5.6] RLI can be made sensitive to repetitions of length 2 because it saves bits

for any dictionary size bigger than 23 = 8.

The most common repeating pattern (in our experience) is a run of zeros, however other

repeating patterns also exist like the space character in a text file or a constant background in

a picture. This situation is illustrated in Figure 5.9 that shows an accumulative distribution of

run lengths. The X ax is is the repetition length of the run whi le the Yaxis is an accumulative

distribution that specifies a repetition length frequency.

90

Chapter 5 FOCllS 0 11 compression efficiency

- zero
- rest

- zero
- rest

Figure 5.9. Repetition distribution on data sets.

The results of the analysis of the repetitiveness of 32-bit patterns in 2 of our data sets show

that most of the runs are of length 15 or less whi lst the contribution made by longer runs is

small. Figure 5.9 shows that the distribution line stops growing around a va lue of repetition

length around 15. On the other hand long runs offer more compression advantage because

more bits are coded in a single codeword. The memory data set in Figure 5.9 is formed by

around 9 Mbytes of data obtained from the main memory of a workstation used in an

engineering environment. The most common event that uses RLI codes is the tuple formed by

32 zeros although other patterns account for 20% of the RLI codes. The executab le data set in

Figure 5.9 is formed by 35 Mbytes of executable data fi les fo und in the hard disk of the same

workstation this si tuation is inverted an non-zero 32-bit repeating patterns are predominant

with 60% of the total.

A disadvantage of RLI is that it requires at least a repetition length of va lue 3 to be activated

because the first tuple is used to place the match location at position O. RLI is on ly sensible to

matches at location 0 unaware of the data that generates the match. On the other hand a RLF

91

Chapter 5 Focus 011 compression efflciellcy

(Run Length Front) located at the entrance of the dictionary could be acti vated with only 2

repetitions.

Both techniques RLI and RLF are experts at di fferent data sources. RLI is activated by any

32-bit repeating pattern of length minimum 3 while RLF codes any 32-b it repeating pattern of

the same byte of length minimum 2.

RL codin g techniques DI C=256

5

4

~. 3
X= : Q ~ ,

U - x x
• •

;i< 2

o r

256 bytes I Kb 4 Kb 16 Kb File

Block size

-+-- RLI - RLF(a ll) RLF(same byte) ~ RLF(zeros)

Figure 5.10. Run length coding techniques in X-Match processing the Canterbury corpus.

Figure 5. 10 shows the compression ga in of these RL coding techniques appli ed to X-Match

versus a non-RL alternative over the Canterbury corpus. We use a typical dictionary size of

256 locations. RLF(same byte) is the technique described previously that needs I byte to

identify the repeating tuple. We have include 2 variants of the run length front technique of

the same byte for completeness: RLF(zeros) is only sensitive to repetitions of zeros, so no

extra byte is needed to indicate the repeating tuple. RLF (all) is sensitive to repetitions of any

byte li ke RLI but it needs to have the whole repeating tuple (4 bytes) added to the RLF code

so the decoder knows which tuple originated the run.

From Figure 5.10 RLF(zeros), RLF(same byte) and RLI offer the best results. RLF(all) has a

better performance for very small block sizes but its performance degrades with larger blocks.

The compression gain is not very significant because the Canterbury corpus is textual bias

and it does not contain the long runs ty pical of binary data. As we will see in the following

sections performance improves with the other 2 data sets. We have chosen RLI to be

developed in hardware because it integrates neatly in the X-Match architecture and shares the

92

Chapter 5 FoclIS 011 compression efflciellcy

dictionary logic to perform the comparisons keeping complex ity to a minimum. Figure 5.1 1

shows the effects of dictionary length on run length coding efficiency for the RLI alternati ve.

RU versus non_Rl

4: I
~ ~

4

r:C! 3.5

3 f Cl
Cl 2.5
<f.

2 • • • • • 1.5 •
1

__ l • • •
0.5

0 ~

256 by1es 1 Kb 4 Kb 16 Kb File

Block size

-+-16 ----32 64 --"- 128 ---256 --512 --+- 1024

Dictionary size

Figure S.ii.Compression gain of RLi versus non-RL in X-Match processing the Canterbury
corpus.

From Figure 5. 11 it is clear that the effectiveness of run length coding improves with

dictionary size but is largely invariant with block size. The maximum number of repetitions

that can be coded together is 255 in this implementation. We have found that thi s offers the

best compression . Using 7 or 9 bit counters damages compression . A RLI code is coded as a 0

indicating a match follow by the binary code corresponding to the last location in the

c1ictionary and follow by and 8·bit code with the number of repetitions. This means that the

dictionary reserves one location to code RLI events and consequently has one word less to

store freq uent 32-bit vectors. This is one of the reasons that justify with RLI works better with

large dictionaries because the effect of losing one dictionary location has a more significant

impact on compression with sma ll di ctionaries. It is al so true that a large dictionaries has a

better compression ratio and in consequence the compression gai n obtained by RLI measure

as a percentile improvement (I OOx(CR"'fo,,- CR,n" 1 CR,n,,») is more noticeable when CR is

small. Assuming a dictionary size of 256 locations a maximum compression ratio of

17/(255*4* 8) = 0.002 is enabled by the RLI module when a full run of 255 repetitions is

encountered. The maximum compression ratio achievable by X-Match without RLI is limited

to 11 /(4*8) = 0.34.

93

Chapler 5 Focus Oil compression efficiency

5.3.3.4 COllclusiolls

PBe seems to be the best overall solution for the dictionary-based match location coder

because it combines good performance on small to medium block sizes and simple

implementation. PBe should be used if the dictionary size is larger than 64 locations to avoid

damaging compression when processing small data blocks. If thi s is not the case, simpler

UBe will suffice to implement the match location coder. RLI offers a compression gain over

a non-RL alternative with minimum investment on extra complexity because only a counting

mechanism and a way of detecting full matches at location zero are needed to enable the

technique. RLI can be used with any dictionary size but its efficiency improves with

dictionary size. A dictionary length of 256 offers a good trade-off complexity/performance

and it effectively uses the PBC and RLI techniques. Figure 5.12 shows that the performance

improvement in X-RLI with 512 and 1024 dictionary locations is within a narrow margin of

the 256 dictionary locations solution. A dictionary size of 256 is therefore selected for the

compress ion performance measurements of section 5.5 .

X·RLI compression

08 j
~ 0.7 ;

06

1
" u 0.5 1

•

0.4

0.3

0.2

256 bytes 1 Kb 4 Kb 16 Kb File

BlOCk size

64 "'*- 128 -!If- 2S6 -+-512 -+-1024

Dictionary size

Figure 5.12. X-RLI compression on the Canterbury corpus.

Figure 5.13 shows the new algorithm named X-RLI in pseudo-code format that uses PBC and

RLI. The instructions shown in bold letter are not present in the original X-Match algorithm.

94

Chapter 5 Focus 0 11 compression efficiency

Set the dictionary to its initial state;
Set next free location counter ~ 0;
Run length count ~ 0;
DO
{

read in tuple T from the data stream;
search the dictionary for tuple T;
[F (full hit at location zero)

ELSE
{

increment run length count by one;

IF (run length count ~ I)
{

}

output '0';
output phased binary code for ML 0;
output Huffman code for MT 0;

IF (run length count > I)
{

output '0';
output phased biliary code for ML MAX_TABLE_ENTRlES-l;
output Binary code for rUII length;

}

}

}
set run length count to 0;
IF (full or partial hit)
{

}
ELSE
{

}

determine the best match location ML and the match type MT;
output '0';
output phased binary code code for ML;
output Huffman code for MT;
output any required literal characters ofT;

output ' 1 ';
output tupl e T;

IF (full hit)

ELS E
{

}

move dictionary entries 0 to ML- l by one location;

move all dictionary entries dOlVn by one location;
increase next free location counter by one;

copy tuple T to dictionary location 0;

WHILE (more data is to be compressed);

Figure 5.13. The X-RLI algorithm

95

Chapter 5 Focus 011 comnression efficiencY

5.4 Compression performance comparison

This section analyses the compression performance of the X-RLI algorithm of section 5.4.3.4

with a dictionary size of 256 locations. We test the compression performance of this

algorithm against the software and hardware based algorithms se lected in sections 4.3 and 4.4

using the data sets selected in section 4.2 . We have also included the original PBC-based X­

Match extended to a dictionary size of 256 locations for the sake of completeness.

5.4.1 Canterbury data set compression performance comparison

Figure 5.14 shows the compression ratios achieved by our software and hardware based

compression algorithms on the Canterbury corpus. We can c learl y identify 3 ma in areas.

The 3 software-based compression algorithms offer the best compression with simi lar results.

PPMZ is the top performance whilst the behaviour of the algorithms HA and PKzrr is

remarkably similar once the block size reaches I Kb. These 2 a lgorithms use a similar

dictionary-based sliding-window modell ing technique but HA uses an arithmetic coder as the

back-end of the algorithm. HA only manages to improve PKz rr marginally. We have

removed the overhead effects by deleting the bytes that do not form part of the compressed

code as described in section 4.3 .

The 3 commercially avai lable hardware algorithms offer very similar performance whi lst X­

RLI fa ll s behind . The textua l nature of the Canterbury corpus can explain the limited

performance ofX-RLI over this type of data.

Canterbury Compression

0.8

5 0.5

0.4

0.3

0.2 l

256 bytes 1 Kb 4 Kb 16 Kb

BlOCk size

File

-+- PKlIP

-+- PPMl

HA

-+-AlDC

-+-LZS

--DCll

-+-X-RLI

- X-Match

Figure 5.14. Canterbury corpus co mpression performance.

96

Chapter 5 Focus Oil compression efficiellcy

5.4.2 Disc data set compress ion performance compar ison

Figure 5.15 shows the compression performance on the disc data set. The performance of the

DCLZ and X-RLI algorithms is quite similar main ly when dealing with small block sizes. The

performance of the ALDC and LZS algorithms is superior to the previous ones and s imi lar

between them. The disc data set has 4 components and as expected the performance ofX-RLI

was particu larl y good when compressing the executable component of the data set due to its

32-bit granularity.

0.8

0.7

0.6

0: 0.5 ()

0.4

0.3

0.2

Disc compression

~

~ ,
~ :

256 bytes t Kb 4 Kb t 6 Kb

Block size

File

-+- PKlIP

"""" PPMl

HA
~ALDC

......... llS

...... Dell

-+-X-RLI

- X-Match

Figure S.IS. Disc data set compression performance.

5.4.3 Memory data set compression performance comparison

Figure 5.16 shows the performance of the algorithms on the memory data set.

0.8

0 .7

0.6 I

0:
05 j u

0.4 I
0.3

0.2

256 bytes 1 Kb

Memory Corn pression

4 Kb

Block size

~

16 Kb

-+-PKZIP

-e-PPMZ

HA
.....w.... AlDC

~
--LZS
~DClZ

-+-X-RLI
--X-Match

File

Figure 5.16. Memory data set compression performance. 97

Chapter 5 Focus on compression efficiency

There are again 3 areas in Figure 5. 16 although there are closer to each other than in the other

2 data sets. The 3 software algorithms offer very si milar performance whilst DCZL gives the

worst results . X-RLI is competitive with the ALDC and LZS versions and performs better

with smaller block sizes . The memory data set is formed wi th data found in the main memory

of a workstation running different applications. This binary data is well suited to X-RLI

compression because it has a 32-bit granularity not present in the other data sets. The new

RLI technique include in X-RLI proves more use ful in the di sc data set and memory data set

where the compression improvement of X-RLI over X-Match is more noticeable than in the

case of the Canterbury corpus.

5.5 Conclusions

This chapter has proposed a number of techniques to improve the X-Match compression

performance. Increasing dictionary size and introducing an internal run length coding

technique can improve the dictionary-based modeller and coder without affecting speed. We

select the X-RLI algorithm for further research because it is able to obtain meaningful

compression ratio in our data sets, it is hardware amenable and it has a parallel single-cyc le

execution that enables the throughputs required in section 3.1 .

98

Chapter 6 Focus on compression throughput

Chapter 6

Focus on compression throughput

6.1 Objectives of Chapter

This chapter deal s with the issue of increasing the throughput of the design whil st maintaining

the compression ratio. High throughput was identified as one of the main motivations to

undertake this research so the outcome of thi s chapter is fundamental.

6.2 Introduction

The 3 elements that form part of the compression/decompression engine: Model ,

Coder/Decoder, PackerlUnpacker have a direct effect on throughput. The method followed to

improve the X-Match performance consists of a rigorous analysis of each of these

components to solve possible bottlenecks present in the architecture. Our design

methodology has accessed the structural VHDL description of the ori ginal blocks present in

X-Match [Gooch96]. The redesign architecture is described in VHDL using a structural and

hierarchical approach to obtain a more predictable outp ut from the FPGA-based synthesi s

engines used to synthesise and map the VHDL to a technology-dependant netli st. The reports

provided by these tools are used to guide the optimisation process. To be able to validate our

sol utions in hardware we use the ProASIC FPGA 's manufactured by Actel corporation as our

silicon test bench. The experimental methodology is based around a dictionary size of 16

tuples to be able to target the A500K I 30 ProASIC FPGA for rapid prototyping. The ProASIC

A500KI30 is one of the first devices to become available in the high-density A500K family .

Th is device constitutes an invaluable tool to validate our designs. Its ASIC-style archi tecture,

re-programmability and non-volatility features couple with its test capabi liti es enable us to

99

Chapler 6 Focus 011 compression throughput

test In hardware circuits that otherwise will be only proven through simulation. The

architecture of the new engi ne is described using PBC because chapter 5 proved that this

coding strategy is a valuable technique to improve the performance of medium and big

dictionaries. The prototype is based on a dictionary with 16 locations to be able to target the

available A500K 130 device. Chapter 5 showed that a 16,32 and 64-tuple dictionaries do not

benefit from PBC so, in order to further reduce the resource requirements in the A500KI30

FPGA, the prototype implemented in section 6.6 to eval uate throughput uses simpler UBC for

the match locations. Thi s is a compromise we need to make to va lidate our design in the

avai lable sil icon. The design scales up easily with technology and the modifications needed to

add PBC when the technology density enables the use of dictionaries larger than 64 locations

are small, as we wi ll see in the next sections.

6.3 Model architecture

Figure 6. 1 shows the architecture of the model in the X-Match design .

U dataln

32

4
r-- -'-- -, 16' 4 MATCH I------:Ma~~-:-..

DICTIONARY
(16 X 4 bytes)

OECISIONI-_-, TYPe
Match l OGIC

MatctJ Locallon

16

Match
Loc

16
Move

MatchType 4

Uteral Data 32

Figure 6.1. X-Match model architecture.

100

Chapler 6 Focus 011 compressiolllhroughput

An initial effort to map X-Match to FPGA technology [Nunez99) reveals that the same

critical path depicted in chapter 3 for the adaptation process holds in the FPGA

implementation. The signals depicted in red colour correspond to compression related signals,

those in blue colour relate to decompression related signals and those in green colour are

shared by both channels. Dotted lines are used for critical paths. This colour scheme is

maintained for the rest of the work.

The model comprises the fo llowing blocks:

• Dicliol/Gly: CAM-based dictionary with 16 tuples. The 16-tuple dictionary is formed

by a total of 16x32 = 512 CAM cell s. Figure 6.2 shows a section of the dictionary

architecture with 4 tuples.

P'reWJusjn-l) Seorct'(n-l) Prevlous(O) seach(O)

j j I I I .---

.
CAMe .. CAMe .. CAM ceI

"""'" """'" M<Ne

Movo{3) l r: l
Mo!ch(3) Moteh N •• Moteh NM j MoICh(3)

~""""' ~ Previous _~ ~""""' F --
- - - - -

CAMe" CAMc<>I CAMceI
M<M>

~, r McNe{2)r

MoICt/21 """ jMoICh N"" !MoIct """ ! ~2)

~""""' ~
"'"""'"
~ ~"""'" ~ • •

CAMceI CAMceu CAMceI
MoW

~ r Movo{l) F '

Motch(lj Ne" jMoIe """ !Maleh
Ne"1

!
~oMov I Seaeh ~0'A0us SeaCh Sea,"" ~0'A0us

Molehi ll

CAM cell CAM cell CAM~I
M<Ne

~. ~. """OlD) .c
MaTch(O MoICh !Motch j MotCh(O)

•

Figure 6.2. CAM-based dictionary architectu re section.

P revious MOVO ~esal C lear 5eorcI"I

:1\ .•
'.lJ. Matc h

o
FF

Noxt

Figure 6.3. CAM-cell architecture.
tOI

Chapter 6 Focus 011 compression throughput

Each tuple is fonned by a row of 32 identical CAM cells. The CAM cell is illustrated

in Figure 6.3. Each cell stores one bit of a data tuple. The cell can maintain its content

or load the value store in the north neighbouring cell available in the previous input as

indicated by the move input. The bit stored in the cell is compared with the bit present

in the search input using a xor gate. This bit is also avai lable to the south

neighbouring cell in the next output.

• Match decision logic: Logic that assigns a different priority to each possible match

type in the dictionary and selects one of the matches as the best for compression.

• Move generation logic: Generation of the adaptation vector depending on the match

type (full match or partial match) and the match location.

• Selection multiplexor: Logic that selects one data tuple from the dictionary to be input

in the output tuple assembler during decompression .

• Output tuple assembler: Module that assembles a decompressed tuple usmg

dictionary information and any literal characters present in the code.

The critical path involves a feedback loop that extends from the search register, first

multiplexor, CAM dictionary, best match decision logic, second mutiplexor, movement

generation logic and back to the CAM dictionary to provide the necessary infonnation to

reorder the dictionary. The feedback loop prevents us from inserting a simple pipeline regi ster

without affecting the algorithm functiona lity. This feedback loop is illustrated with a dotted

line in Figure 6.1.

Careful study of thi s path reveals that the vector that defines how the dictionary adapts to the

data can be generated much earlier at no extra cost in tenns of area. The reason is that the

shift down operation is only loca l to some dictionary positions when a full match occurs.

Therefore it is not necessary to resolve the best match to know how to shift the dictionary. It

is only necessary to know if a full match has happened and where to be able to generate the

adaptation vector. If there is not full match the shi ft affects all the locations and if there is a

full match this is known before accessing the best match location logic . This change together

with moving the search multiplexor out of the critical path leaves the architecture as shown in

Figure 6.4 where the match decision logic has been split into 2 components: the priority logic

and the match decision logic.

102

Chapter 6 Focus 0 11 compressioll throughput

• The priority logic: This logic assigns a different priority to each of the possible

matches and it was originally embedded in the match decision logic.

• The lIIatch decisiolllogic: It uses the priority information to select one best match and

it moves out of the critical feedback loop.

After this modification the critical path is approx imately 10% faster but it still remains the

slowest part of the device. Although the search operation in the CAM dictionary and the

priority assignation are parallel processes the generation of the adaptation vector by the move

generation logic involves propagating the match location up so a ll the locations on top of the

match location can move down. This propagation is critical and the number of levels of logic

depends on dictionary size with the expression O(log,(dictioIlOlY size)) . The timing of the

search operation is also affected by the dictionary s ize because of the higher fa nout associated

to larger dictionaries.

U datain 32

~~
SEARCH
REGlSTER

, ...

I'IMlus ~ ,., Ma: 1 M1y

DICTIONARY
16x 4 bytesl

U_dataoo1 - ------,'-'

16

MATOi
IEISIOO Ma""
LOOIC Type

'6

LJonj Da1a 32 ..

Figu re 6.4. Modified X-Match model architecture.

103

Chapter 6 Focus Oil compression throughput

6.3.1 Out of Date Adaptation (ODA) description

To improve further the critical path it is necessary to mod ify the algorithm functiona lity by

introducing an Out of Date Adaptation (ODA) mechani sm in the model. ODA implies that

adaptation at time t+ 2 takes place with the information provided by the previously processed

tuple at time 1 and not the one at time t+ I . This technique breaks the fundamental feedback

critical loop effectively in 2. T he danger is that dictionary efficiency could be lost if the ODA

technique duplicates the same tuple in different pos itions in the dictionary. In the architecture

depicted in Figure 6.1 and 6.4 the adaptation vector at time 1 provides information to reorder

the dictionary at time 1+ I and makes sure that tuples are unique in the dictionary. In ODA the

adaptation vector at time 1 is not effecti ve until time 1+2 so adaptation at time 1+ I could insert

a tuple in the dictionary that already ex ists in some other dictionary location degrading

dictionary e ffi ciency. Dictionary efficiency is quickly lost if the same data is duplicated in

di fferent positions of a sma ll dictionary. The way to avoid this is by forcing the current

adaptation vector to adapt not only to the CAM as before but a lso the next adaptation vector.

Figure 6.5 ill ustrates thi s process. T he on ly negative effect is then that the dictionary behaves

like it has one entry less but data dupli cation is restricted to position O.

ODA 10Jt at Dote Adaptation) mechanism desc~PIIon

Search tuples ~ aU alJ rv_ hung

• Ihe_

o~
o hung

• ,

1 FuI Match \1

•
o

~. I at I 1 Furl Match 11

• •
I at_I 0 Ful Match 11

•
0 i>J1g 0

• , • • aI_' rv_ ,
• • • • 1 aI_' alJ

•
hung

•
0 1 hung 1 E ' Ful Match 11

o

, , '
Cunenl

AdapTation

rv_

Ooto

Slep I

hung

•
i>J1g

•
'e

o
, , ,

Next
AdaptallOn

•

0 1

~ '.j J

Current
Adaptotion

1
Fut Maich 'I

•
0

• •

'~ 0 0

• 1 ho.ng 0 FuI tvknch 11 0

\ ; I ' \ ~' J \ v J

CUlfent Ooto NeXT CurrenT
Adaptation Adaptation Adaptation

SIep 5

rv_

Dolo

step 2

<Ne<

•
i>J1g

•
hung

rv_

aI_'

Dolo

Step 6

• Adaptation '" I "" > Load dota Irom previous position

Figure 6.S. ODA mechanism.

0

, I
Next

Adaptation

,

•

•

1 MISs III

.,
Next

Adaptation

0 1 !=Ut Match 11 • • rv_ ,
fY_ 0

, ., ,
\ y ' . '\ -I '

Currant Ooto Next ClKrent Ooto Next
AdaptatiOn Adaptation Adaptation Adoptoflon

Step 3 step 4

""'" _ung

1 I
• • • • (Ne(, Ful Match 11 CHe' 1

• • • •
hung 0 eve<

• • • •
rv_ 0 0 Pa1ial Match 11

• • aI_' 0 0 rv_
\ ,

\. , ,. '\ -..; 1 , ,
Current Ooto Next CLKranl Ooto Next

Adaptation AdaptatiOn Adaptation Adaptotlon
Step 7 stepS

104

Chapler 6 Focus 0 11 compression through{}1iI

Figure 6.5 shows how a simple dictionary o f only 4 positions adapts to the incoming data

source using the ODA technique. Every step corresponds to a different cycle. The yellow

boxes show how poss ible full matches occurred simultaneously at position 0 and position

bigger than zero but in thi s cases match at position zero is always selected as valid . The next

adaptation vector depicted at the right of the dictionary depends exclusively on this match

information. The figure shows how the ODA technique adapts the dictionary at time /+2

using a modified adaptation vector originally generated at time t and how data duplication is

restricted to position O. For example, the current adaptation vector depicted at the left of the

dictionary for step 3 is generated shifting down the next adaptation vector of step 2 as

indicated by the current adaptation vector of step 2. The current adaptation vector at step 3

wi ll adapt the dictionary for step 4. By using thi s s imple technique the effect of ODA on the

compress ion ratio is negligible because in the worst case only one dictionary position contains

repeated infomlation and in the best case all dictionary positions contain different data.

Table 6.1 explains the steps of Figure 6.5 .

Step number Action

I • Full match detected at position I.

• Next adaptation vector set to I at positions 0 and I.

• Current adaptation vector loads search tuple in position O.

2 • Full match detected at position 0 and I .

• The algorithm selects the one c loser to the top as valid (position 0).

• Next adaptation vector is set to I at position O.

• Current adaptation vector loads position 0 in position I and search tuple in

position O. It also shifts next adaptation vector one position down.

3 • Full match detected at position 3.

• Next adaptation vector is set to I all positions from 0 to 3.

• Current adaptation vector loads position 0 in position I and search tuple in

position O.

4 • Full match detected at position 2.

• Next adaptation vector is set to one in positions 0,1 and 2.

• Current adaptation vector shifts down all the data one position, loads

search tup le in position 0 and also shifts down the next adaptation vector.

Table 6.1. ODA description (Continued next page).

105

5

6

7

8

Chapler 6 Focus 011 compression throughput

• Full match detected at positions 0 and 3.

• Position 0 selected as valid.

• Current adaptation vector shifts down all the data one position, loads

search tuple and it also shifts the next adaptation vector.

• Miss detected.

• A miss sets all the bits in the next adaptation vector to I.

• Adaptation is as previous cycles.

• Full match at position O.

• Adaptation is as previous cycles.

• Partial match at position 2 .

• Partial matches are dealt with as misses for adaptation purposes.

• Adaptation is as previous cycles.

Table 6.1. ODA desc ro p toon (End).

Figure 6.6 shows the new architecture with one component added:

• The ODA logic: It uses a multiplexor and a register to store the next adaptation vector

shifting it down one position as indicated by the current adaptation vector. The

register breaks the feedback loop.

ODA proves a very effective technique to ensure that data duplication at position 0 is only

effective for one cycle and this technique mainta ins the original dictionary efficiency. The

logic cost of ODA is small because only a register and a multiplexor of length equal to

dictionary length are required. The control bus in Figure 6.6 decides if the new adaptation

vector is loaded directly or one position down. This operation is critical to guaranty that a data

tuple duplicated at time / wi ll be quickly deleted fTom the dictionary at time / + I. Figure 6.6

shows with a dotted line how the original critical path has been split into 2 non-critical paths

that correspond to the search operation and the adaptation operation. These two paths have

been balanced to have a similar delay. The ODA-based architecture is approximately 100%

faster that the non-ODA of figure 6.4.

ODA could also be applied to improving the performance of on-chip cache memories that use

a least-recently-used algorithm [Tanenbaum90] to know which cache line should be evicted

once the cache becomes full. This problem arises in full-associative or multiple-way set­

associative caches where different cache lines can be allocated to the same data item. There is

a third type of cache organisation: the direct-mapped cache where the selection of the data

106

Chapler 6 Focus 011 comeression throughput

item for eviction is trivial because the new data item can only be stored in one particular

cache line. Associative caches offer a higher hit ratio than direct-mapped caches [Drach95)

but many cache designs use the second ones due to their fast access time and ease of

implementation [McFarling9l). This means that a lot of research has been carried out in

improving the performance of direct-mapped caches or caches wi th low-associativity (2-way

to 4-way) aiming to maintain their simplicity whilst improving their hit ratios [Wilson97) ,

[McFarling9 1], [Jou90] , [Wolf9 I] . Associative caches are kept simple by using in many cases

a random policy to select one cache line for eviction but it is generally accepted that a more

sophisticated policies [HallnorOO] such as least-recentl y-used increase the hit rate at the

expense of a higher access time. ODA can effectively decrease the amount of time needed to

select one cache line for eviction enabling hi gher-levels of associativity. (> 8-way). This area

remains for future research.

32

,
, ,

DICTIONARY
(16 x 4 byles) t-..

16

Move

16

L~~~~-~--- --.~'--~-
Match Localion

SeIeood

T""

Figure 6,6, ODA-based X-Match model architecture,

107

Chapter 6 Focus all compression throughput

6.4 CoderlDecoder architecture

Figure 6.7 shows the components of the code/decode logic, namely:

• 16-10-4 encoder, 4-/0- /6 decoder: Logic that assigns a 4-bit binary code to the 16-bit

match location vector or a 16-bit match location vector to a 4-bit binary code

respectively.

• Binmy code generator: Logic that generates a phased binary code (PBC) or a uniform

binary code (UBC) depending on the implementation and concatenates it with a bit

indicating a match. It also supplies the length of this match location code.

Pipeline
R1C

Match
Type 4

Search
Data

32

~

Match
,-- Miss

literal 3f literal code ,
Character

~ Literal width Assemble
Type 5

Match COde, . - f)

Type CodeJ~ 3 0 4
Generato u ~ ro

c
~

~J.
1l -Loc

1" Binary ug
Code ~(Comp-. 16 $I

~ Lee

-

;6
Match Location

Match Type
4

32

Literal Data

enerator Code

PIpeline
R1D

r-- l ocation

<DO; 4
~1l

.$irl
"0 Miss

L-

8
-

MAIN
DECODER

I

Pipeline
R2C

Code Word

33

6

Code Length

Code Word
33

(« I

6

MatchW~th

Figure 6.7. X-Match code r/decoder a rchitecture.

108

Chapter 6 Focus all compressioll throughput

• Match type code generator: Logic that assigns a static Huffinan code to each possible

match type. There are II possible different match type combinations of 2,3 or 4 bytes

matching in the tuple. The Huffman tree obtained after extensive simulation has only

4 different code lengths of2,3,4 and 5 bits. The full match is the most probable match

type and its Huffman code is only 2-bit long. Matches of 3 non-consecutive bytes are

the most improbable and they are assigned 5-bit long Huffinan codes.

• Literal character assembler: Logic the uses the match type information to produce a

code formed by the bytes that are not part of the match .

• Code concatel/ators : Logic that con catenates the codeword components into a single

code to be supplied to the bit packer.

• Mail/ decoder: The main decoder obtains a match type and a match location from the

code word supplied by the bit unpacker. The first bit defines if a miss or a match

follows. If a match is detected the next following bits in the codeword define the

match location and the number of them depends on how many entries are valid in the

dictionary if using PBC. This number is fixed at log,(dictionary_size) in a UBC

implementation. The match type code follows the match location code. If the match is

partial the missing bytes follow the match type. If instead of a full or partial match a

miss is detected the next 32 bits following the first bit correspond to the 4 missing

bytes.

The coding operations in X-Match are not time critical because only II different static

Huffman codes are used for the match types and the PBC codes are, in essence, UBC codes

which lengths depend on how many entries are valid in the dictionary and on where the match

is located. None of these techniques require complex or slow operations. There are also no

feedback loops (as Figure 6.7 il lustrates) so pipeline registers can be inserted if required. The

position of the pipeline regi sters is also shown in Figure 6.7. The coding logic also assembles

these codeword components into a single codeword before they are made available to the bit

packer. Decoding is also si mple but in this case a feedback loop exist between the decoder

and the unpacker. The reason is that the unpacker needs to know the number of bits used by a

codeword before it can shift out old bits and concatenate new bits to the uncompressed code.

The number of bits used by a codeword is not known until the codeword has been decoded in

109

Chapter 6 Focus all compression throughput

the decoder. The Feedback signallllatch width in Figure 6.7 carri es this inFormation to the bi t

unpacker. Section 6.5 deals with thi s Feedback loop.

6.4.1 Run Length Internal (RLI) description

The new coder/decoder adds extra functionality because the RLI technique that codes

multiple Full matches at location zero into a single run-length code is embedded in the

archi tecture. Figure 6.8 shows the coder/decoder architecture with the RLllogic added.

32 Pipeline
~ R1C

Search _data

32 l1teral_ axle r--Uteral -.' ~
4 Character

Match Assembler 3 Uteral width
Match

Type -.' ~ ,---lot ~ RlI

It
Type ~ ~} ~

RlI

+ Code Word
5 r- 10 °E

Foo'" COO'" /---. Maid! ~ A- ~ B 6/ 6 h ~
Type Coc 3 ~ -7-~ Conbd -7-~ Gene",'o _d~ - ~ ~ Regisl9C'

r- Miss " t:: '------ Unit CoceUength

a: ~~ r '--~:" B lnary ~. fi .. ~ ~ g Code Com ~ C::

~ u f.it: flen"",'o Coc.
ffi loo '--
~

RU

Pipeijne Full match a\ zero
Cooot .. R2D

CM! Coo. ~.J "" ~DIIecIed I
- loca'" Iy y locationr- location

16 ",l; I
RU

~(• MAIN
I H III DECODER Code Word

Match l ocation Miss -.. Match Twe -. MalchType l3

Match Type 4 - Cam> r- I ' - 4

IJIt Miss
32

~---+- Miss L...-- I 6 Uteral Data I
MatchWldlh

~ ~
Seller<j1t to Zoo

Figure 6.8. RLI-based X-Match coderldecoder architecture.

RLI adds the following components:

• RLl coding register: Bu FFers the codeword before it enters the bit packer logic. This

buFFering function is necessary to enabl e resetting the pipeline from a full match at

position zero that wi ll be coded as part of an RLI event. The pipel ine wi ll not be reset

110

Chapter 6 FOCllS 011 compression throughput

• if the RLI counter does not exceed the count of I. If the count remains at one, then, a

single full match at location zero has been detected and a valid RLI event is not

present.

• RLf coding control unit: The RLI coding control unit monitors the output of the RLI

counter. If this value is equal or bigger than 2 then a RLI event is detected as valid.

• RLf COllllter: The RLI counter changes its operational mode if compressing or

decompressing. In compression it counts consecutive full matches at location zero in

the dictionary up to a maximum value of 255. In decompression it is loaded with a

value that indicates the length of the run and then it counts up unti l this value is

reached.

• RLf decoding register: Buffers the output of the main decoder before it enters the RLI

decoding control unit. This buffering effect is needed to allow the timing of the signa l

sel length to zero to be correct. Set length to zero signals that an RLI event is active

and the bit unpacker must maintain its current state as many times as indicated by the

length of the run .

• RLf decoding control unit: The RLI decoding control unit monitors the existence of

the binary code corresponding to the last position in the dictionary. This code is

reserved for RLI events. If this code is detected the run length va lue is loaded in the

RLI counter and the RLI control logic outputs full match at posi tion 0 until the run is

exhausted.

An 8 bit counter is shared by the coding and decoding RLI logic. In compression mode this

counter does not use any specific technique to detect an overflow condition if a pattern

repeats more than 255 times. The count si mply loops back to zero . This condition is detected

by the RLI control logic as an end of run and a RLI code is output. The next code after a RL I

code is always a normal code even if the pattern continues repeating. If this is the case the 8-

bit counter exceeds the count of I again and the run length detection signal is reactivated .

This simple mode of operation simplifies the RLI control logic. Figure 6.8 illustrates how the

RLllogic is neatly integrated with the rest of the coder/decoder logic.

In compression mode the output of RIC is used to code the match location using a 4 bit

(2'= 16) binary code and the match type using a static Huffman code. Any needed literal

characters are added and the result accesses the RLI coding logic. If the following tuple t+ I to

III

Chapter 6 Focus 01/ compression throughput

access the match decision logic keeps the RLI counter enable an RLI event is detected as

valid because at least 2 tuples have generated consecutive fu ll matches at location zero . This

means that the compressed code corresponding to tuple I is eli minated from the pipeline and

replaced by an RLI code where tuples [, [+ 1, .. . , [+RLf _Iellg[h will be efficiently coded.

The RLI event remains active for as long as the fu ll match at zero signal is set or for a

maximum of 255 repetitions. Then, the RLI code is output always followed by the normal

code of the tuple that terminated the run length. The result accesses the bit packing logic. In

decompression mode the compressed data enters the main decoder to produce a match

location and a match type and any possible RLI events are promptly detected . A RLI

condition is signal to the RLI decoding control unit which changes its mode of operation. The

output of the RLI decoding logic is pipelined in register R2D after decoding the match

location in the 4-to- 16 decoder.

Figure 6.9 shows an example of the RLI process.

Match Address Molch !',pe UfQlas

, I ' a

RU (RIJl tong!h IntomoQ ~fIcn

Match Address Match type LITerals
I 2 3 Is

Match Address ~ch tvpej utero" j
, 2 0 _

SeoCCh 1\.pIe$ = oU • • rv_ this at-' •
, ,

0u!pU1
,

Qu!pU1 1 a
, a ""- Oul"" a at_, a '"1- "'"

,~
, , , , Ful Match 11 1 mo_ ,

MISS 11 '"1-at-,
• • ,

1 2
hrng a 2 hung 2 "",,,,,

NIoTch 11 -- -- • --.., a IOco1lon a J IOco1lon a J

""""'" a J location ' U loslgnol '" coon'''' 'oslgnol

'" """" 'U '0 slgnol
IlU '"'" coon'" '" "'" c,,-,,""

nu "" corn'''' '" "'" , , , , ,
""""allon Addresses Data

$lep2 St.., , Vac'''' SIep 3 "eo ,
Match Address Molch type Ut6fOO Match fdd6SS /lActch type UI€tfols, Match I Addressl Match type, Uteras , a a

01-' • 01_'

a~ Qu!pU1 a

'"" a
""

2 '"l- a
.." "

RUAct1ve 11 2 '"l-

Jlpelne -- ' -~"'1 - ' ' [J IOco1lon 2 J tt,,,,,"
U IO slgnol IO slg""
XlUller RU

R\J "'"
, RUtu"IS corn, ..

• ..,5 Slep6

• AOopIOIIon - 1 = > L<X>d doto ITom previous posillOn
AdoplQ1\on - 0 = > Keep CU'fent dolo

Figure 6.9. RLI mechanism.

• at_' • oI_v

a~ , at-'
. Qu!pU1 Qu!pU1

a "" a
"" • •

2 a '"l- a '"1-

[J It J - --'" """"'" a J k>Callon

corn'''' tosignol 'U 10 slgnol

""""'" 'U "'" nu "'" nu RnIShesIl

"",,7 Flush RU code
Slop 8

Qu!pU1

•
fUllv1a!ch tI

llu> """" """'"'
Molch Address RLI'1 length , J J

""'CO, """'j Molch """ t"""'" 1
1 0 1 v

•
Portk) Match 11

Oul""

•

I,

11 2

Chapler 6 Focus 011 compressiolllhroughpul

An RLI coding event is active in steps 5,6 and 7. The RLI output is generated at step 8 when

the run stops with a length of 3. Figure 6.9 shows that the counter only incre ments when the

search data is present at position O. The code generated at step 5 is deleted from the pipe line

when the RLI count exceeds I because it wi ll be coded as part of the run-length . Table 6.2

explains the RLI process.

Step number Action

I • Full match found at position I.

• Normal output.

• RLI counter=O.

2 • Miss detected .

• Normal output.

3 • Partial match detected at position 2.

• Normal output.

4 • Full match detected at position 2.

• Normal output.

5 • Full match detected at position O.

• Normal output but possible start of internal run length.

• RLI Counter = I

6 • Full match detected at position O.

• Valid run length detected.

• Empty pipeline fro m the previous code. No output.

• RLI Counter = 2.

7 • Full match detected at pos ition O.

• Valid run length continue. No output.

• RLI Counter = 3.

8 • Partial match detected at position O.

• Run length fini shes.

• Flush run length code .

• RLI Counter = O.

• Normal output of data terminating the run length.

Table 6.2. RLt description.

113

Chapler 6 Focus on compression throughput

6.5 Packer/Unpacker architecture

Figure 6. 10 shows the packer architecture with the foll owing components:

• Code cOl/calenalor: Logic that concatenates the cUlTent buffer codewords with a new

codeword produce by the coder. The coder produces a new variable-length codeword

each cyc le. This logic assembles this variable-length codewords in 64-bit fixed-length

codes than are then output to the compressed bus. The logic requires a 64-bit output

bus because the maximum codeword length is 33-bit when a miss is detected and a

32-bit output bus could create a bottleneck.

• Regisler : Logic that buffers a maximum o f 96 bits of code plus the number of valid

bits in th is code. A 96-bi t register is necessary because in the worst case there could

be 63 bits in the buffer waiting to be output and a 33 bits codeword could be

generated (63+33 = 96). The acti ve code length is stored in 7 extra flip-flops.

Current code

Current width

CUrTenl code 96
Current width 7

Current underf10w

r-
Next
~erflo

~ Next Code
~ ~ ~k Concaten ate

eword ~
~~

and Shift

r3-L-- er

'-- 6 i
Match Width

...
~-

~

b"----:~
64

C datain

Figure 6.10. Packer/unpacker X-Match architecture

Figure 6.10 shows the unpacker architecture with the following components:

114

Chapler 6 Focus on compression throughput

• Code concalenale and shift: This logic unpacks 64 bits of compressed data into

variable-length codewords. To be able to shift out old data and concatenate new data

the codeword length must be suppli ed by the decoder logic using the signal lIIalch

widlh. This forms a critical feedback loop difficult to improve.

• Register: Regi ster that buffers the current code before accessing the decoding logic.

At least 33 bits of data must be va lid in each cycle to prevent the decoder from

failing. A regi ster of 96 bits is needed because a new 64-bit compressed code must be

added to the internal code when 32 or fewer bits are valid (32+64 = 96). The

unpacker uses 7 extra flip-flops to store the active code length like the packer.

The architecture has been redesigned to reduce the logic present in the critical path and,

hence, to improve its timing characteristi cs. Figure 6. 11 shows a block diagram of the logic

involved in the critical path and how the ca lculation of the match length must precede the

concatenation of new data to the data not used in the previous uncompressing cycle. The

critical path is depicted as dotted line .

Old Length

I~~
.------~--,~F-~-is-te-r -----,

. ___ -Js"o

7 ·bit Register

Decoder

95 .. 88
I

95 .. 0

Old Data

,.

IpBVLen~ 1
~====~~=~/~5~ .. 0:...:::Ma[ch Length

__ , 6 .. 0 _______ .

Valid Data Length

New Length

63 .. 0

' Compressed Data

Assemble New Data
and

Shift Out Old Data

New Data

Figure 6.11. DecoderiU npacker feedback loop.

J

11 5

Chapter 6 Focus on compression throughput

The red box defines logic present in the decoder and illustrates how the feedback loop extends

from the unpacker, to the decoder and then back to the unpacker to supply the malch lenglh

signal. The match length is then subtracted from the old length to obtain the valid data lellgth

and thi s information is used to shift old data and to concatenate new data . This last step is

very complex because it involves multiple multiplexing logic . If valid data length is bigger

than 32 the input is shifted to eliminate data already used in the un compressed cycle but new

data is not added. If data valid length ranges from 0 to 32 new compressed data is

con catenated to the right position of old data and a shi fting operation takes place to eliminate

data already used.

The redesigned architecture is based on concatenating new data in the assemble lIew data

logic in parallel and independently to the process of calcu lating the decoded length in the

decoder. Figure 6.12 illustrates the new architecture.

6 .. 0

'f

7-1>it Register I 129-M Register I
: Compressed oata'---='::';:":~ l.:.c

26
"' .. O:'::O'-I-d oa- ta-----' Decoder

Old Length f 6 .. 0
63 .. 0 95~i" .. O~-E~~~C=~L-I

'1 ~ I 1~~·l l~~1

6 .. 0
I

129 .. 96 J
t950 I pB:Le~r ! I 7

w

ShiflOut
Old Data

NewLe~

Match length r
5 .. 0

)28 .. 0 New Oeta

Figure 6.12. Decoder/unpacker modified feedback loop.

The new design uses old lellgth to add new data when the number of valid bits is less than 66.

This means that if there is at least 66 valid bits no concatenation of new data takes places for

the next decoding cycle. The current decoding cyc le can consume a maximum value of 33

bits so at least 33 bits (66-33) are left as va lid in the regi ster and the next decoding operation

116

Chapler 6 Foclls on compression throughput

can take place independently of how many bits are decoded in the current cycle. Since 64 bits

are added to old dala when the number of valid bits is less than 66 the decoding register is

extended from 96 bits to 129 bits (65+64 ; 129 bits). The complexity of the logic in the

critical path is now simplified because the new sirifi out old dala logic does not perform a

con catenation operation which is parallel to the decoding process. The logic is simpler

because it needs to perform only a shifting function , therefore, the resulting circuit is smaller

and can run faster. The lIIatcir lengtir signal suppl ied by the decoder controls how the shifting

is done.

This redesign speeds up the unpacking process with an estimated critical path 40% faster in

Figure 6. 12 compared with Figure 6.11. Jt remains, however, a critical component for

performance since the feedback loop from the decoder is sti ll present. Figure 6.12 shows with

a dotted line the new critical path that does not include the subtracting operation or the decode

logic. Figure 6.13 shows the new architecture of the unpacker. The same components are

present but with different data widths. The inclusion of the RLI logic adds an extra control

signal to the unpacker the setlengtir to zero signal. This signal is active when an RLI event is

active and indicates to the bit unpacker that it must copy the contents of its registers directly

without shifting data until the RLI event finishes.

Cumrncocie

Current width

7

64

- Current code 1¥9 -
Current width 7

Current undectow

r-

~

33
.... --y-

CodewonI

f !:7 Code -~ eo.a_
Next and Shift ~-

- """.129 C da1aIn

~

6 i
Match WidttI

Figure 6.13. PackerfU npacker modified X-Match architecture.

117

Chapter 6 FoclIS all compression throughput

6.6 Compression/decompression core throughput evaluation

The 3 components described in the previous chapter formed the core or engine of the lossless

data compressor. This new algorithm and architecture have been renamed X-MatchPRO as

the next generation of the X-Match fami ly of high speed lossless data compressors. To

validate our architectural solutions in silicon we have synthesised and placed&routed the

architecture into an A500Kl30 FPGA. The test of the FPGA is split into 2 different phases

after post-layout back-annotated simulation is completed successfull y. The first phase aims to

verify that the functionality of the device is correct. The second one aims to verify that the

timing characteristics reported after performing timing analysis in the placed&routed netlist

are met in real operating conditions.

6.6.1 Serial test methodology

The functional test of the device uses a low cost PC-based test methodology and the JT AG

port available in the FPGA. A text fi le is written automatica lly by a PERL script translating

the original test vectors to the standard JAM [Altera98] programming and test language. JAM

is a vendor-and-platform-independent interpreted language for programming and testing

devices via the IEEE standard 11 49.1 TAP controller, commonly known as JTAG. This file

contains the test vectors and JAM instructions ready to be executed by the Gatefield ProASIC

JAM player [Gatefi eld99] that controls the JTAG port shi fti ng in the input test vectors

clocking the device and shi fting out the output test vectors. These vectors are compared with

the expected output and fai l or pass is reported . The same test vectors used during the

simulation phased are now used in this verification phase to maintain consistency during the

whole testing process. Figure 6.14 shows how the JAM player applies the test vectors to the

JT AG port and reads back the clocked results.

-
Vector 1 contains the expected output from applying vector 0

Vector 0

SconO

•
strobe OUtput

Data In

SCan 1

..
•
New Data
Out

Vector 1 -
Scon 0 Scan 1

Data VoIId • . ..
SfTobe Output New Data

Data In Out

Figure 6.14. Serial test methodology

118

Chapter 6 Focus 01/ compression throughput

Each original test vector is decomposed into 2 vectors one corresponds to clock cycle low and

the other to clock cycle high. After some propagation time showed as a shaded area in yellow

and red the output of the circuit is ready to be strobed and scan out.

Figure 6. 15.a shows the setup of main components present in the serial test hardware. The

following components are present:

• A relay board used to switch voltages depending if the system is being used for

programming or testing.

• A HewlettlPacker E3611A DC power supply which is used to power the relay board at 8

volts.

• A HewlettlPacker programmable E3631 A DC power supply that provides the right

voltages to the device.

• A National In struments IEEE-488 GPm controller board that connects the programmable

power supply to the PC.

• A Corel is Corporation JT AG controller board that it is used to control the JTAG port of

the FPGA.

• A PC where the JAM player an rest of the software are executed.

Figure 6.IS.b shows a close-up on the ASOOK 130 ProASIC FPGA and the ISP (In System

Programming) module that holds the device during testing and programming cycles. This test

allows us to verify the correct functionality of the device but since it is done serially at low

speed it does not provide any information on the timing characteristics of the implementation.

Figure 6.1S.a. Seria l test hardwa re Figure 6.1S.h. Close-up on

programming/test module and ASOOK130

device.

119

Chapter 6 Focus 01/ compression throughput

6.6.2 Parallel test methodology

To evaluate the performance of the FPGA we make use of the Credence VistaLOG IC L TIIO I parallel

tester shown in Figure 6. 16.

Figure 6.16. View of the VistaLogic LTllOl parallel test system.

This test system enables the identification of the max imum operating frequency changing

variables such as strobe time, cycle time and operating cond itions (supply voltage and room

temperature).

Figure 6.17 corresponds to the SHMOO plots obtained in the tester with typical operating

conditions of room temperature of 25 ·C and supply voltage 3.3 volts. The X axis is the clock

rising time (CRT) (The device is triggered with the positive edge of the clock) and the Yaxis

is the strobe time (when we read the output). All time figures are measured from the negati ve

edge of the clock as illustrated in Figure 6.18.

The cycle time (CT) in figure 6. 17.a is fixed at 27 ns but the duty cycle varies with the clock

rising time. The area in green color corresponds to the va lid working area. The 'star ' zone

si tuated on top of the green area corresponds to an strobe time higher than clock rising time

and it is indicated in yellow in Figure 6.18. The output of the device is sti ll being compared

120

Chapler 6 Focus 011 compression throughput

correctly with the expected output because none of the output buffers have started changing

its value but a new cycle has already started so it can not be considered a va lid working area.

40n s .. .
I .
I ·
I ·
I ·

,/

. . . ,.
·1
·1
·1
· 1

40n6 t

I ·
I ·
I ·
I ·

....... ·· .. ·~·l
• ••• • " 0 ••••••••••

~ -.......
30ns

I .
I · /

, ,
./ • •• • . • •. +

· 1
·1
I

30ns
I ·
I ·
I ·
I ·

....... 1
~ -.................. .

• I ·
E I ·

20ns ...

i I

· 1 ~
. ... i= 20ns ..

· 1 B I ·
· 1 g I ·

:::::': .. :: ::: :::::: :::::::::: :::11

........
• • • ••• •• " • • • • • 0 • ••••• • • • •• • • • • • •

0 • •• • • • • • •• • , •• • •• •• • ••• ••• •••••
I
I

9 .99999n9 ...

. Point B
· 1 ~ I

I I ·
'9.99999n5 I .

I · ·1 I .
I · ·1 I
I · · 1 . Point A

· 1
· 1
· 1
I I FtinlA .1 I ·

OS + ~[rrrr rrrrrrrr rr rrrrrrrrrrrrrrrrrrr rrrrrrrrrrr rrrrr+ Os +rrr+
.---------+---------.-----.---... -----.- .. ~ .. -.. --- . ~

~--.------+--------- + ----- ... -+-.---- .. -+.--.-----+
o. 10ns 20ns 40ns 50ns

0, 10ns 20ns 30ns 40ns 50ns

ClOck Rising nrre Oock Rising iirre

Cycle Time = 27 ns CyCle nme ,. lOOns

Figu re 6.1 7 •. SHMOO with 27 ns fixed cycle time. Figure 6.1 7.b. SHMOO with 100 ns fixed cycle time

Figure 6.18 illustrates operational point A in figure 6.17.a . Point A defines the minimum

clock rising time and the minimum strobe time needed for the circuit to work. The circuit

stops working in points located left of point A because the setup time avai lable for the input

vector to access the input buffers and reach the intemal flip-flops before the circuit is clocked

is not enough. The circuit stops working in points located south of point A because the strobe

time that defi nes when the output is read is not enough for the output buffers to change and

get stable . Point A is indicated in fi gure 6.18 in the transition from the red area to the green

area and defines the minimum strobe time (mst). The area in green and yellow corresponds to

moving north from poi nt A in figure 6.17.a. The maxi mum strobe time (MST) maintaining

constant the clock rising time at 17 ns is 25 ns. This point is not a valid working point because

it corresponds to a new cyc le. Figure 6.18 shows this point as a transition fro m yellow to red

areas. The red area in Figure 6.1 8 corresponds to any other point in Figure 6.17 outside the

'star ' area.

Point B in Figure 6.1 7.a con'esponds to the maximum clock ri sing time. The device stops

working in points located ri ght of point B because the hold time available from the rising

edge of the clock to the time a new vector is set in the input buffers is not enough. Vectors are

always set with the fa lling edge of the clock as illustrated in Figure 6.1 8. The vector must be

121

Chapter 6 Focus all comnression througJzput

stable in the input buffers for some time after the rising edge of the clock before it can be

replaced by a new vector.

The strobe time increases when moving from point A to point B because of the increase in the

clock rising time. The cycle, that extends from one positive edge to the next, starts later and

therefore the output has to be strobe later as well for the circuit to operate.

Figure 6.17.b relaxes the clock cycle from 27 ns to 100 ns and as expected increases the valid

working area shown in green. The minimum strobe time remains constant at IOns because of

the time required to reset the circuit during the first cyc le before the output is stable at 0 and it

can be compared correctly with the expected output. Otherwise the strobe time should be 0 ns

because the time elapsed from the positive edge of the clock to the negative edge of the clock

(between 100 ns to 50 ns in Figure 6.17.b) is more than enough to account for the propagate

time of the output buffers.

VeclOl 1 contains the expected outpul hom oppIvhg voclOl 0

Vector 0

Do1o~

·;.'~:·~I
", ... ~

•
Set vector 1

•

Vector 1

Do1o~

• ',",lA

• •

-

~~ ______ az-~ __________ ~

- -msT 16 ns

- -cm 17 ns - -MS' 25 ns

CT 27 ns r

Figure 6.18. Til11ing relations al working point A.

Figure 6.19 corresponds to the SHMOO plots obtained in the tester with typical and worst

operating conditions. The typical operating conditions correspond as in figure 6. 17 to room

temperature of25 ·C and supply voltage 3.3 volts. The worst operaling condition correspond

to a room temperature of 70 ·C and supply vo ltage 2.5 volts. The X axis is the strobe time

(when we read the output) and the Y axis is the cycle time (clock period). The low time of

clock is fixed at 20 ns while the cycle time varies from 20 ns to 50 ns.

122

SOns

40ns

I

30ns

20 ns

Chaprer 6 FoclIS on compression throughput

+-rTITITITIm 1 ~ ' + SOns + ...•...... ,..n-.-rn,,-;/ <r" • ~ +

I .
I .
I .
I .

;'-.,. .. iI,,· • .,..,. ..
/r,,* .. " .. Ir".". ..

t ,. -t * * * tTt ..

*"' * ;~ .. *"

" "~.

't ,, * ...
t .. ft

'" " le ..

. 1
· 1
· I
. 1

I .
I .
I .
I ·

., "" **,.1d·" k 1
't+"'lt*~' .t* **ot-. "'* .1
If* _ t; "" t :t . 1
+"'**+**1"1r " .. " . 1

t•.. **.** " Ir*** I- " ., ..• , .. .• , .+ <l> 40ns t,.~•...... +

I .
I .
I .
I .

"",*k".Ir*"'"

** .. *******
1r**III**/r-J.** , ... * • • ",.*

* ... **
l

-to ""* *
~ ~ '" ~

· I .£;
. 1 ~

Si
. 1 ~

I .
I .
I .
I .

. 1

. 1

. 1

. 1
· I U 30ns

t...~~~ __ -'~*'-''-',-*,-*,...~~ ~ .. '~ ••.. . +
'-_ _______ ~~~~ .. r~~+ •.••••• •••• ••• +

I ·
I .
I .

' I
• I

I ~ ",n t • ... I

.H
I . io .. ,. .. ~ 00- t I

' I
I . .' •• " ~ I

>1 .
> I . • 1<

~ 1< 20n5 +rrrrrrr rrrr!r r r rrrrr rrrrrrrrrrrrrrrrrrrr +
trrr r rrrrrrrrrr rrrr rr rrrrrrrrrr r rr r rr rrrr+ t---------t--------- ---------t ---------t t -- -------+--------- ----- ---- t --------- t

Os I Ons

R~irg edge at 20 ns

20ns
Strobe lime

30ns 40ns
Os l Ons

R~ing edge 01 20 ns

Ons
Strobe lime

30:15

Figure 6.1 9.a. Typica l conditions SHMOO Figure 6.19.b. Worst conditions SHMOO.

The ' star ' area in Figure 6.19 corresponds to the zone where the behavior of the device is as

expected. The chosen operating point is marked with an 'X ' in figure 6.19.a. Figure 619.b

shows that under worst conditions our operating point gets closer to the non-functional ily area

but it is still within a safe margi n. This operating point corresponds to the transition between

green and yellow areas in Figure 6.20.

Vector 1 conta ins !he oxpecled 0UIpUI from applying voctor 0

Vector 0 Vector 1
~~

Set Vector 0 Set Vector 1

, T _Dolo
QuI

T

I

-l r,.; i
• I

I

"'Obe"""'" Slfobe OUtput
Dolo" 'i"

~ ~ I 20", - ~ ,, '"
~, ~

""'" """
Figure 6.20. Para llel test methodology

123

40ns

Chapter 6 FoclIS 011 compression throughput

The figure also shows that whi lst the clock cycle could be reduce down to 25 ns and the

operating point will still be inside the 'star ' area the strobe time does not allow us to do that.

The following relation must hold strobe lime <= 20 I/S otherwise data is read in the yellow

area after the clock has gone high and the current cycle has completed. Although figure 6.19.b

shows a ' star ' area extending from 20 ns to 27 ns strobe time this zone corresponds already to

a new cycle and it should not be used. This area is shown in yellow in Figure 6.20. The area

shown in red in Figure 6.20 corresponds to any other point outside the 'star ' area of Figure

6.19.

6.7 Conclusions

This chapter has focused on analysing the throughput performance of the 3 main components

of the architecture: Model, Coder/Decoder, PackerfUnpacker decomposing them into their

simple components. A performance bottleneck has been identified in the model due to the

existence of a feedback loop in the search and adaptation process. A novel solution based on

adapting the dictionary using out of date information without losing dictionary efficiency has

been shown to effectively remove the feedback loop. Another critical feedback loop has been

identified between the decoder and the unpacker because the last one needs to know from the

first one how many bits form the variable length codeword before old data can be shift out

and new data added. The architecture of the unpacker has been redesigned to increase its level

of parallelism and speed up the circuitry. The inclusion of the RLI functionality depicted in

chapter 5 in the coder/decoder has been carefully executed to obtain the required behaviour

avoiding generating throughput bottlenecks in thi s circuitry.

Finally, we have proven the correct functionality and good timing characteristics of the design

using a A500K 130 FPGA as our silicon testbench . A conservative operating point under

worst-case operation conditions with a cycle time of 30 ns enables a 33 MHz clock cycle

producing a data independent throughput of I Gbitls (132 Mbytes/s). These tests validate the

compression/decompression core design as meeting the requirements of section 3. 1.

124

Chapter 7 X-Match PRO lossless data compress ion technology

Chapter 7

X-MatchPRO

lossless data compression technology

7.1 Obj ectives of Chapter

Chapter 6 described in detail the architecture and performance of the new X-MatchPRO

compression/decompression core and targeted an A500K I 30 ProASIC FPGA for its

implementation. This was particularly useful to validate the correct functionality and benefits

of the design. This chapter investigates the extension of the half-duplex to a full-duplex

architecture minimising the impact on complexity. It also aims to expand the engine to a

coprocessor-style architecture by adding a suitable system interface. Finally, it introduces the

other 2 FPGA technologies of chapter 5 (Xilinx Virtex and Altera Apex) and val idates

X-MatchPRO as a high-performance portable design.

7.2 Full-duplex processing

Full-duplex processing is a valuable extension to the X-MatchPRO architecture to enable

handling of both a compression and a decompression data streams simultaneously. in

principle full-duplex functionality can be readily achieved by duplicating the dictionary so 2

independent dictionaries are used by compression and decompression. The decompression

dictionary does not need to be a CAM because no parallel searching is needed to read the

dictionary location pointed to by the match location component of the codeword. The

decompression dictionary needs, however, to be able to shift the data to model the move-to­

front (MTF) replacement policy used in the CAM. This feature prevents a straightforward

125

Chapter 7 X-MmchPRO lossless data compression reehnology

RAM-based implementation of the decompression dictionary. A shift-enable decompression

dictionary based on flip-flops needs a total of dicliollary lellgth x 32 storage elements and it

almost doubles the device complexity. The cha llenge is then to realise a shi ft-enable

dictionary based on RAM . Embedded RAM is plentiful and ready to use in modem FPGA 's

such as the A500K, Apex or Virtex families so its usage does not have a direct impact on

complex ity. The design uses a pointer array logic to model the move-to-fTont replacement

strategy used by the compression CAM shifting addresses to the dictionary data instead of the

dictionary data itself. The width of the pointer word (4 bits in a l6-word dictionary, 6 bits in a

64-word dictionary) is a fraction of the width of the data word (32 bits) so the savings in logic

are sign i fican!.

32 ,
" RAMData • Control

-- .I 16

Wote Move _I OODA I~ Addr~ '" ~ Generatio
RAM

w POINTER Logic logic

~~ '" DICTIONARY
<I)

~ ~ .!. ARRAY SelWole <1) -,
~ w'" 16 (16 x 4 bytes) "''' 16

00 <I)

~ ~w
'-- Sel Read ,

4 16

Read-'
Read
Address Match Location - -

1
Address

~
Match Type 4

~ "' 0:

Selected u literal Data 32
]'uple

z
>-
<I)

32, -
OUTPUT ~
lUi't.E

ASSEMBlER

32

OUT

ut
REGISTER

32

Figure 7.1. RAM-based decompression mod et.

Figure 7. 1 shows a diagram of the RAM-based decompression model that comprises the

fo llowing components:

Ram dicliollwy: Fully synchronous RAM-based dictionary that stores the hi story data during

a decompression operation. The contents of the RAM dictionary during decompression must

be same as the contents of the CAM dictionary during compression in each cycle. Adaptation

must take place in exactly the same way to enable correct decompression of the compressed

t26

Chapter 7 X-Match PRO lossless data comnression lecim%gv

block. The initialisation of the compression CAM sets all words to O. Thi s means that a

possible input word formed by O's will generate multiple fu ll matches in different locations.

The algorithm simply selects the full match closer to the top. This operational mode initialises

the dictionary to a state where all the words with location address bigger than 0 are declared

invalid without the need for extra logic. The reason is that location x can never generate a

match unti l the data contents of location x-I are different from 0 because locations closer to

the top have higher priority generating matches. The MTF adaptation mechanism shifts down

the dictionary when fu ll matches are not detected and, therefore, ensures that the last word

from this initial state to be deleted from the dictionary is always the word located at location 0

at time O. This operational mode in compression enables the decompression RAM dictionary

to have only location 0 loaded with value 0 during the initialisation phase because references

to a RAM location y higher than 0 are not possible before the contents of the previous

locations y-I. y-2 0 are updated. This technique avoids having a long overhead equal to

dictionary_size cycles to initial ise each position in the RAM to a predefined value before each

decompression operation.

Pointer array: The po inter array logic performs an indirection function over the read and

write addresses that access the RAM dictionary. It models the MTF maintenance policy of the

CAM dictionary moving pointers instead of data. The pointer array enables mapping the

CAM dictionary to RAM for decompression. Since the pointer array is much smaller than the

CAM dictionary the savings in complex ity allow having the full-duplex architecture in a

single device. Each position in the pointer array is reset in a single cycle to a va lue the same

as its physical location in the array before each decompression operation.

SyIlC reg: The syllc registers form part of a pipeline level partially embedded in the RAM

dictionary. From Figure 7. 1 the read address does not have a ~yllc register. The syllc register

corresponding to the read address has been embedded in the RAM to obtain fu lly synchronous

RAM operation in the read and write ports. The algorithm maps naturally to a RAM read in

asynchronous mode and written in synchronous mode because this is the mode the CAM is

read and written in compression. This asynchronous mode of operation, although possible,

results in a less portable and less robust design. A fu lly synchronous design can target

different FPGA and ASIC technologies with a higher degree of confidence.

Address equal: This logic monitors the read and write addresses. If both addresses are the

same the algorithm needs to read the data that is going to be written in that common address.

This data is not present in the memory yet but it is present in the RAM data ill bus. The RAM

data ill bus is written in the memory normally but it is also latched temporarily in the temp

127

Chanter 7 X-MatchPRO loss/ess data compressiolllechn%gy

register. The multiplexor associated to the address equal logic selects the input coming from

the temp register instead of the input coming from the memory when the same address is

being read and written . The address equal logic also modifies the read address to make it

different from the write address and avoid corrupting the RAM contents.

Move generation : This logic generates the move vector depending on the match type and

match location. The move vector adapts the CAM dictionary in compression and the pointer

array in decompression.

DODA (Decompression Out of Date Adaptation) logic: This component forces the dictionary

to adapt with previous match information and breaks the compression critical path improving

speed. The ODA logic in decompression is used to replicate the adaptation process in the

compression dictionary. They have exactly the same functionality although its usage to

improve the timing characteri stics of the design is restricted to the compression channel.

Temp reg : This register is used to hold a copy of the last data tuple written in the

synchronous memory.

Olllput tuple assembler: Module that assembles a decompressed tuple uSing dictionary

information and any literal characters present in the code.

Olll register: Register that outputs the uncompressed data to the system.

Figure 7.2 shows how the indirection function works on the RAM dictionary and how the data

contents of the decompression RAM are the same as the data contents of the compression

CAM of Figure 6.5 in each cycle. In Figure 7.2 the yellow areas relate to read operations in

the RAM dictionary. Blue areas relate to write operations in the RAM dictionary.

The presence of current and next adaptation vectors is due to the ODA policy described in

section 6.3. 1. It is possible to verify that decompression is taken place correctly because the

output uncompressed data is the same as the input compressed data of Figure 6.5. The only

exceptions are steps 6 and 8 that required extra data not present in the dictionary that must be

obtained from the codeword literals. These 2 steps correspond to a miss and a partial match

event respecti vely.

128

Chapter 7 X-MatchPRO lossless data compression technology

RAM·based decornpession description

"Pressed code ::::) F,l

Sel Sel

Compressed code => F,Q
Sel Sel

R~ite I

Compressed code ::::) F,3
Sel Sel
ReactWr'e 1

Corrpressed code ::::) F,2
~ ~

Write

o o Ihe_

01 1 o 0 • UncomJjl€SS
~-L __ ~ __ ~__ Dmo

o 0 0 2 !>Jng 0

o 0 0 3 re 0

<;! \::::p\~.:::: ,J

:urrent PoInter Data Next

I 1 0

1 0 I

o 0 0

o 0 0

y-,

0 aU 1

I '
1 oU 0

2 hung 0

3 re 0

,
~ -.,-V

oU
•

Uncompressed
Data

Current PointerDota Next

iliA
"

1 o 0 I au] 1

,
1 o 1 0 atl 1

0002 hung I

~tf-!-I ,-0~1~3-+-I_ry __ ---!:-I---,1 uncE:,~ess
":;.;.1 ¥~\¥ Dota

CUrrent PointerDota Next

ReocM.'rite
~.i!;

" 1 0 0 0 ry_ 1

I 0 0 1 01_1 1 I
,

2 1

,
1 I 0 hung 1

3 - r ,
1 0 1 0

El(I ry-

'¥ 'cvd'~~
Current PointerData Next

hung

•
Uncompressed

Dmo

Adaptation Adaptation

SIep2
q>10I1on Adqltollon Adaptation Adaptation Adq:>totion Adaptation

Slep 1

Corf1)fessed code::::) EO
Sel Sel
Re:oc:#.'Irite
r"fIq

1 1 0 3 'V_ I

I 0 0
0 1

01_1 0

,

CorT'pressed code ::::) M
~ Sel

~Wr'e
r \1*1

I 0 0 2 re 1

110

,
1 3 01 1 I

o 0 0 0 hung 1

Slep 3

SIep2
Corrpressed code ::::) F,D

Sel Sel
R rite , '*1
I 1 0 3 'V_

1002 0'-' 0

step 4

Slep2
Corrpressed code ::::) 82

Sel Sel
Re<Ja¥lrile
~"A .,-

1 0 0 1 ry_ I

110

-,--

1 3 cver 1

hung
I 0 0 I hung 0 000

,
hung 0 01' 1 0 2 hung 1 • Uncompressed ,

1 0 1 2 hung 0

,

hung
•

o 0

Uncompressed,-

0 I !>Jng 1

L.;,.,d'_y-- Y ';J '---'\ ~,J Dmo "f
, ~ --.,-' '1'- Current PointerData Next

o
,
o

Y ¥\--y:::I'b,..1
Current Pointer Data Next

cve<
• Uncompressed

o 0 0 0 CNe(1

Dmo '¥ 'cvd'=,-/<,rJ
Current PointerData Next

Data

.urren! PoinlerData Next Adaptation Adaptation
Ioplation Adaptation Step 6

Step 5
Adaptation Adaptation Adaptation Adaptation

Step 7 Step 8

Idoplction = 1 = > Load data frcm previous posiHoo
\daplaHon = 0 => Keep current data

Figure 7.2. RAM-based decompression model mechanism.

Step number Action

• Compressed code indicates fu ll match at location I .

• The next adaptation vector is generated as defined by location I .

• The pointer array contains address I at location I for reading. The un compressed code

I
' at_ I' is read from the memory.

• The current adaptation vector points at location 0 in the pointer array. The pointer array

contains address 0 at location 0 for writing. ' aU ' is written at RAM position O.

• The current adaptation vector shifts the pointer array and the next adaptation vector.

Table 7.l.a. RAM-based decompression descr iption (Continued nexl page)

129

Chapter 7 X-Match PRO loss/ess data compressioll technology

Step number Action

• Compressed code indicates full match at location O.

• The next adaptation vector is generated as defined by location O.

• The pointer array contain address 0 at location 0 for reading. The uncompressed code

' at_1' is read from the memory.

2 • The current adaptation vector points at location I in the pointer array. The pointer array

contains address I at location I for writing. 'aU' is written at RAM position I.

• The current adaptation vector shi fts the pointer array and the next adaptation vector.

• Compressed code indicates full match at location 3.

• The next adaptation vector is generated as defined by location 3.

• The pointer array contains address 3 at location 3 for reading. The uncompressed code

'ry_' is read from the memory.

3 • The current adaptation vector points at location I in the pointer array. The pointer array

contains address 0 at location I for writing. 'ry_' is written at RAM position O.

• The current adaptation vector shifts the pointer array and the next adaptation vector.

• Compressed code indicates full match at location 2.

• The next adaptation vector is generated as defined by location 2.

• The pointer array contains address 2 at location 2 for reading. The un compressed code

4 ' hung' is read from the memory.

• The current adaptation vector points at location 3 in the pointer array. The pointer array

contains address 3 at location 3 for writing. ' hung' is written at RAM position 3.

• The current adaptation vector shifts the pointer array and the next adaptation vector.

• Compressed code indicates full match at location O.

• The next adaptation vector is generated is defined by location O.

• The pointer array contains address 3 as location 0 for reading. The uncompressed code

5 ' hung' is read from the memory.

• The current adaptation vector points at location 3 in the pointer array. The pointer array

contains address 2 at location 3 for writing. 'hung' is written at RAM position 2.

• The current adaptation vector shifts the pointer array and the next adaptation vector.

Table 7.l.b. RAM-based decompression description (Continued next page)

130

Chapter 7 X-Match PRO lassless data compression technology

Step number Action

• Compressed code indicates miss.

• A miss sets to I all bits in the next adaptation vector.

• No reading

6 • The current adaptation vector points at location I in the pointer array. The pointer array

contains address 3 at location I for writing. ' over' obtained from a literal codeword is

written at RAM position 3.

• The current adaptation vector shifts the pointer array and the next adaptation vector.

• Compressed code indicates fu ll match at location O.

• The next adaptation vector is generated as defined by location O.

• The pointer array contains address 3 at location 0 for reading. The uncompressed code

'over ' is read from the memory.

7 • The current adaptation vector points at location 3 in the pointer array. The pointer array

contains address I at location 3 for writing. ' over' is written at RAM position I.

• The current adaptation vector shifts the pointer array and the next adaptation vector.

• Compressed code indicates partial match at location 2.

• A partial match sets to I all the bits in the next adaptation vector.

• The pointer array contains address 2 at location 2 for reading. The uncompressed code

' hung ' is read from the memory. ' hung ' wi ll be used to partially reconstruct the

8 compressed code as indicated by the match type to obtained '_ung '.

• The current adaptation vector points at location I in the pointer array. The pointer array

contains address 3 at location I for writing. '_ung ' is written at RAM position 3.

• The current adaptation vector shi fts the pointer array and the next adaptation vector.

Table 7.l.c. RAM-based decompression description (End)

7.3 Width Adaptation Logic

The use of a different bus width for the uncompressed data port (32 bits) and compressed data

port (64 bits) complicates system integration. A single data bus width will enable the device

to form part of a data path with minimum disruption to the original system. The variable

nature of the data flow in the compressed port needs also to be addressed. Compressed data is

requested or produced at discrete instants. A buffering function in the compressed port will

smooth the data flow in an out of the device efficiently using the externa l system bus. The

un compressed port does not have a variable data rate but a constant and independent rate of

131

Chapter 7 X-MalchPRO lossless data compression technology

32 bits per cycle. This means that the device wi ll consume 32 bits of un compressed data every

clock cycle during compression and it will produce 32 bits of un compressed data every clock

cyc le during decompression. A buffering function is not needed in the uncompressed data port

because of its synchronous nature. Figure 7.3 shows the architecture of the width adaptation

logic in the compressed port. This logic serves a dual purpose. It transforms the 64-bit data

bus from the compression engine or to the decompression engine into a more manageable 32-

bit data bus. It al so buffers the data smoothing the compressed data flow. A total of 4 Kbytes

of RAM are present in this logic. The compression section uses 2 Kbytes and the

decompression section uses the other 2 Kbytes. Both sections are completely independent to

allow simultaneous operation in full-duplex mode . The compression buffer is organized in 2

blocks of 256 locations and 32 bits per location. The compression engine writes 64 bits of

data in parallel to the 2 blocks. 32 bits of data are read from memory each cycle alternating

read operations on each block. A threshold value determines how many 64-bit compressed

words must be available in the buffer before compressed data is output to the 32-bit

compressed bus. The decompression buffer has an equivalent organization but thi s time 32

bits of data are written each cycle to each block alternatively. Data is read from the buffer to

the decompression engine 64-bit at a time. A threshold value controls how many 64-bit words

of compressed data must be available in the decompression buffer before the decompression

engine is activated. The threshold va lue offers a compromise between a smooth data flow

using a high threshold setting or a small latency using a low threshold setting. The with

adaptation logic comprises the following components:

• Address read, Address wrile: Counters that generate the read and write addresses for the

coding. The write address must always precede the read address otherwise invalid data is

output from the buffers.

• RAM 256x32: The buffers are organized in 4 blocks to enable a direct interface of the

coding buffer with the compression engine. The RAM is fully-synchronous dual-port

RAM so reading and writing operations can be done simultaneously.

• Coding buffer conlrol unil, Decoding buffer conlrol unit: These control units are used to

enable the reading and writing of the memories when required and they also detect

possible overflow and underflow conditions in the buffers.

132

Chapter 7 X-Ma tch PRO lossless da ta compression technology

B CommIUnl

...
64

~ 32 32

RAM ~~ Wrile RAM

256 x 32

~
256 x 32

Rood

I
~

r

c:± 32 Cdata_out

1£ 32 C_datar.

RAM RAM

256 x 32 256 x 32

+ 32 32
'1'-

~

Engine underllow Decoding blJtrer

~
Control Unit

... Buffer underflow

Figure 7.3.Width adaptation logic.

7.4 Full-duplex X-MatchPRO architecture

Figure 7.4.a depicts the global X-MatchPRO full-duplex compression architecture that

compri ses 3 major components: Compression Model, Coder, and Packer. Figure 7.4.b dep icts

the global X-MatchPRO full-duplex decompression architecture that al so comprises 3 major

components: The Decompression Model, Decoder and Unpacker. The model of secti on 6.3

has been spl it into 2 independent entities to accommodate the full-duplex processing: The

CAM-based compression model that uses the compression elements of the section 6.3 model

and the RAM-based decompression model of section 7.2. The Coder and Decoder architecture

remains unchanged from section 6.4 but the RLI counter that was initially shared by both

components has been dupl icated to enable simultaneous operation of the compression and

decompression channels. The Packer and Unpacker components of section 6.5 have been

extended to include the width adaptation logic or section 7.3.

133

W
J>.

" x :!1 0 ,
3 s: ..

"C " .., "
..,

'" - '" ~ "
~ ". :.. 0 ." ..,

" " " 0 ..,
" ~
". "

Compression CAM-based roodeJ a g. Packer
u da~~ 32 ~ "Eo
- ----/~ ~ ~

Pipeline
l' ROC Col", boJI'.

S~CH ~Um
REGISTER 1+--- , I

T J2 'pe:., 64 , I R1C <lm<i1Dle 1..---f'--,rrT"J2---I+---.{T'"32

I "" "'" Coder ~
32
r

CAIIIln 1

16

" ~ 4 ~ 32Llaa.1DIe - 0-: J ~ ~ ~
.j. u ~ Ma:drl Assent" 3 lI".YoidIl l:~ 1 J!!. 1 RAM ~~ RAM

~~. Cl IS' S [f'l"l' Type '--- ,_ , 7- o. '
,,= I 0 "'" 9 RlJ' 1I!x1' 256 x 31 r--§ 156 x 31 ~ " ' 33 RlJ -f. '~ ! !16 MI"" '----MaIJil ~ """ .. , _ Type 5 G g 1_:">_. 33 ~ S I ~ -=z Rea:! -----,.

CAM Q ~Idl -~ Maldl ~ ~ ~ i IT' Co<i'9 coo", J. 8 8 • I

DICTIONARY ~ 16 Male Lt< .~:~ ~ u 8 ~~ ~ .;. eoo;a *~ 8 -:. .~ I T
116x4b)1es) CiYrJdt.. ~ ~'--- • _ _ um '-J '-

~ wl S:- ~ 4 1 .j..j. C<I''''',1
1--_'"lG«~.t:CDDAcM, JJ\I4-_-l1 1 0 " Nty "-D~ ,... "" _ 32 , ' .

16 ionio:tP, 0 CoIe 7-""',!,~ ~
IiI1i ~. ..,-- r coo.

'--- wlDc - _

.", I ~ I

, ~

"

7-
~
f;

~
Cl

[
~
'"' '>. .,
" 8
~

" I~
'" g"

~ c
c

Chapter 7

Pi

~
x

1tl
~ T

LI ~ 1 ~ ~=

,l. --r
~
~

~
x

18
~

.-1=

I J
- ~
I j

X-March PRO lossless dara compression technology

Figure 7.4.b

X-Match PRO full-duplex

decompresso r architecture

i

135

Chapler 7 X-MatchPRO loss/ess data compression technology

7.5 X-Match PRO operation

The architecture of chapter 6 lacks an appropriate coprocessor-style system interface where a

main CPU can issue compression and decompression commands to the compressor, monitor

the compression/decompression operation, and communicate with the device using a single

control bus.

7.5.1 X-M atchPRO interface

Figure 7.5 illustrates the new X-MatchPRO interface.

cs

rw ~

FINISHED_D
...

FINISHED_C ...
CONTIlOL

... /
16

ADDRESS
.{ ~

CODING OVERFLOW ... -

U DATAOUJ ... - to
DECOMPRESSING ...

U DATA VAUD •

X·MotchPROv4 Interlace

CPU PORT

CC»APRESSION CH.A.NNEt

DECOMPRESSKJN CHAf\II.IEl

CLEAR ...
CLK ...

BUS REQUEST _ C

~

BUS ACK/'IK)'MfDGE C ...
BUS_REQUESl_D

~

BUS ACKNOWlEDGE_D ...
C DATAOUT
-.f ~

COMPRESSING

~

FLUSHING
~

C DATA VALID - - ~

DECODING OVERFlOW
~

C OATAlN ... - /
32

Figure 7.5. X-Match PRO interface.

X-MatchPRO uses a simple coprocessor style interface to communicate with the rest of the

system. Compression and decompression commands are issued through a common 16-bit

control bus. A 3-bit address is used to access the internal regi sters that store the commands

plus information related to compressed and uncompressed block sizes. A total of 6 registers

form the register bank. 3 registers are used to contro l the compression channel and the other 3

for the decompression channel. The first bit in the address line indicates if the read/write

operation accesses compression or decompression registers. The chip is designed to compress

136

Chapter 7 X-MatchPRO lossless data compress ion technology

any block size rangmg from 8 bytes to 32 Kbytes. A decompression operation can be

requested in the middle of a compression operation and vice versa. Table 7.2 describes the

functionality of these signals. There are a total of 162 pins in the device. All the signals are

active low and full y synchronous.

Signal name Direction Width Function

CS IN I Enable access to the internal registers.

RW IN I Enable read ing or writing the internal registers.

ADDRESS IN 3 Internal register address.

CLK IN I System clock. Positive edge active.

CLEAR IN I Asynchronous clear of all the storage elements.

BUS_ACKNOWLEDGE_C IN I The system grants the compressed data out bus.

BUS_ACKNOWLEDG E_D IN I The system grants the compressed data in bus.

BUS_REQUEST_C OUT I The chip requests the compressed data out bus.

Compressed data ready to be output.

BUS_REQUEST_D OUT I The chip requests the compressed data m bus. The

chip request compressed data to be decompressed.

FIN ISH_C OUT I The chip signals end of a compression operation.

FIN ISH_D OUT I The chip signals end of a decompression operation.

CONTROL INOUT 16 Common control bus to issue compressIOn and

decompression commands to the chip. The control bus

is also used to write or read the compressed and

uncompressed block size registers ifrequired.

U_DATA_IN IN 32 Uncompressed data input during compression.

C_DATA_OUT OUT 32 Compressed data output during compression.

CODING_OVERFLOW OUT I Data overflow in the coding buffers. Error condition

C_DATA_VALID OUT I Valid compressed data present in the compressed data

out bus.

COMPRESSING OUT I Compression engine active .

C_DATA_IN IN 32 Compressed data input during decompression.

U_DATA_OUT OUT 32 Un compressed data output during decompression.

FLUSHING OUT I Compression engine inactive emptying the coding

buffers.

Table 7.2.a. Clllp plD-out.(Conhnued next page)

137

Chapter 7 X-Match PRO lossless data compression technology

Signa l name Direction Width Function

DECODING_OVERFLOW OUT I Overflow in the decoding buffers. Stop inputting

un compressed data until the bus is requested again .

Engine continues decompressing data . No error

condition.

U DATA VAUD OUT I Uncompressed data valid in the uncompressed data - -

out bus.

DECOMPRESSING OUT I Decompression engine active.

Table 7.2.b. Chip pill-out. (End)

7.5.2 Reg ister bank description

A total of 6 registers form the register bank that controls the compression/decompression

engines and coding/decoding buffers. These registers are accessed using the address bus and

the control bus and can be read or written. Table 7.3 and Figure 7.6 show the foomat of these

registers.

Address Channel Register Function

000 Decompression CRD Command Register Activates or stops the decompression

Decompression channel

001 Decompression UBSRD Uncompressed Sets the number of bytes of the

Block Size Register uncompressed block after decompression

Decompression

010 Decompression CBSRD Compressed Block Sets the number of bytes of the compressed

Size Register block before decompression

Decompression

100 Compression CRC Command Regi ster Activates or stops the compression channel

Compression

101 Compression UBSRC Un compressed Sets the number of bytes of the

Block Size Register uncompressed block before compression

Compression

11 0 Compression CBSRC Compressed Block Sets the number of bytes of the compressed

Size Register Compression block after compression

Table 7.3. Register access description.

138

Chapter 7 X-Match PRO lossless data compression technology

Com_ Command Register Foonat

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

1 1

Exanples:

='~~ 1 0 11 1 0 1 xl 0 10 1 010 111 01 010 Ix 1 x Ix 1 x 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

1 1

Exanples:

stcrt~eosk>o 1 0 11 1 x 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 x 1 x 1 x 1 x 1
1tveshoid = 8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

~15~1 4I Bs l ~Bsl ~ Bsll~10 1Bs9 1 Bs8 I Bs7 1 Bs.\ rss lBs4 ~ 1&2 1&1 IBsO I

Compressed BbcI< SIze (DecompreosloolCcrnpreosIon)Regoter Foonat

Figure 7.6. Register for mat.

7.6 X-MatchPRO threshold value

RegoterOlC

Register CRD

Register USSRD
cnd

ReglsterUBSRC

Regoter CBSIlD
cnd

RegoterCBSRC

The threshold value is input with the command and written In the command register. [t

defines a programmable latency. A small value means a low latency but it is more probable

that coding and decoding underflows will take place. A larger va lue introduces more latency

but these conditi ons are not so frequent. The reason for coding underflows with small

threshold va lues is that during compression the coding buffer is emptied very rapid ly if little

data is present when the read operation starts. In decompression the underflow can take place

if the buffer is emptied because the data expanded instead of compressed during the

compression operation. This means that the decompression engine consumes more data that

139

Chapler 7 X-Match PRO lossless data compression leclm%gy

can be written in the buffer and eventually the buffer becomes emptied. After an underflow in

the coding or decoding buffer the threshold value also defines the distance between write and

read addresses before more compressed data is output or requested respectively. Under flow

conditions are not error conditions but they will generate bubbles where valid data is not

present in the compressed or uncompressed data out stTeams during compression or

decompression respectively.

The threshold can have any value between I and 128. A threshold of I implies minimum

latency => Ix64 bits of data are written in the buffer before the bus is requested during

compression to output compressed data or before the decompression engine is started to

produce uncompressed data during compression. A threshold of 128 implies maximum

latency or blocked operational mode => 128x64 bits of data are written in the buffer before

the bus is requested during compression to output compressed data or before the

decompression engine is started to produce uncompressed data during decompression .

7.7 X-MatchPRO latency

In compression latency is defined as the number of cycles found between the moment the

compression engine stops inputting data and the coding buffers finish emptying the buffers

(=> chip ready to start a new operation). The compression latency has 2 components one fixed

and one variable. The fixed component of 4 cycles is defined by the levels of regi sters located

between the input search register and the coding buffers (5 levels) and the variable component

is defined by how much data is present in the internal buffers when the compression engine

fin ishes its operation (flushing operation). The probability of having a long flushing operation

is small when the threshold value setting is smal l. This variable component depends, however,

in the input data. If the data expands the latency wi ll grow because more data will be left in

the buffers to be output during the flushing operation.

In decompression latency is more predictable. Latency can be defined as the number of cycles

that elapse between the first tuple of compressed data enters the chip and the first tuple of

uncompressed data leaves the chip. There are again 2 components but both are fixed . The

levels of registers (5 leve ls) between the decoding buffers and the output register in the device

introduced a fixed component of 4 cycles. The decod ing buffer introduces the other

component and it depends on the threshold value. A threshold value of 8 introduces a latency

of 16 because 16 32-bit tuples must be written in the buffer before the number of 64-bit words

exceeds the threshold value and the decompression engine is activated.

140

Chapter 7 X-Match PRO lossless data comeression technology

7.8 X-MatchPRO operational modes

The following figures show the device running in half-duplex mode . The letter C shou ld be

added to the control signals : bus request. bus acknowledge and fillished and registers CR,

UBSR and CBSR for the compression channel and D for the decompression channel to obtain

the fu ll-duplex equivalents.

7.8.1 Compression mode

Figure 7.7 corresponds to a typical compression operation. To start a compression operation

the CPU must write 2 registers: The uncompressed block size register (UBSR) must be written

first and the command register (CR) must be written second. The UBSR tells the compression

engine when it must stop after processing all the bytes of data present in the block. The UBSR

specifies the number of bytes present in the block and can be any va lue between 8 and 32768.

The CR puts the device in compression mode and it also contains the threshold va lue to

control the coding buffer. The chip requests the compressed bus when the number of 64-bit

words available in the coding buffer is larger than the threshold value.

0N1/10If15:0)

fWJUN(31 :0)

WAOIJ7131:0)

OMPf/ESSlNG

lUSJIEQUEST

,y :/
:' '------< ';::==t'~==t==:t==--== ==t< i;r-\(!

--"7 .~ . i

:\~~ (. .-
: i :,)(

CO, •

Com~
data avolbble

COmpressed bus request
--~~--~~~l ~ ! ;

CorIlpressed bus acknovi\Odge
--+----..;.--+---'''-''7'''''1/1 !

~~ L. ~ ____ ~_

~--~--~--~--~
i co.:j co., /. CD.,)(CD. i X

i : . Fi1lsh ufTent operation
: 1/ r--

C",*",essIon ~he lirishes . ! '\ .:

-:--- JJ Errplv\"9 lhe'buffers

i - If-'/~. _..,...: _-'~_-+-

Figure 7.7. Compression operation

141

Chapter 7 X-Match PRO lossless data compressioll lechllologv

The system is responsible to set a new 32-bit of uncompressed data in the uncompressed bus

in the immediate cycle after the CR is written and in every cycle thereafter. When the device

produces compressed data in the compressed bus it asserts the compressed data valid signal

active. The engine is known to be active because the compressing signal is active. The chip

stops processing data when the value stored in UBSR is reached. Then a flushing signal is

activated to indicate that any remaining compressed data in the coding buffers is being

flushed out. When the buffers are emptied of their contents the device asserts the signal

finished active for one cycle. The system can read the compressed block size register (CBSR)

at the end of a compression operation to obtain the resulting compressed block size in bytes.

This value could be compared with the original uncompressed block size to evaluate the

compressIon efficiency. After this cycle the device is ready to start a new compression

operation.

7.8.2 Decompression mode

Figure 7.8 shows a typical decompression cycle. To start a decompression operation the

system must write 3 registers. The UBSR and the CR have the same function as in

compression. The CBSR must be written with the value of the compressed block size that the

decompressor is going to process. This must be done to avoid the decoding buffer requesting

more data when the decompression engine is still running but all the data has already been

written in the decoding buffers. Alternatively the register could be set to FFFF. This means

that when the systern denies the bus the device wiIJ assume that all the compressed data is

present in its internal buffers.

The device requests the bus with the bus request signal and the bus is granted with the bus

acknowledge signal. The decompression engine is activated when the number of 64 bit words

of compressed data in the decoding buffer is larger than the threshold value. The bus request

during decompression is equivalent to a compressed data request. Once the bus is granted the

system is responsible to make available 32 bits of compressed data per cycle as long as the

bus request signal is maintained active. The bus acknowledge signal cannot go inactive until

all the compressed data has been loaded in the chip. The device uses the event of the bus

acknowledge signal going inactive to know when all the compressed data is present in its

internal buffers.

142

Chapler 7 X-Match PRO lossless data compression technology

U JJATAyAJ.D

FIMSHfD

DfCOMPflfSSING

BUS JIfQIJEST

--'----i-----if Com"'~ bus ~ 1.-' . [
; Compiessed bui oc~

--~--~--~I / · .
ISjV:::XMYM£DGf .

Figure 7.8. Decompression operat ion

7.8.3 X-MatcbPRO special conditions

7.8.3.1 BufJer Coding Overflow

.1

A coding overflow condition should never be encountered under normal operating conditions.

It can never happen if these 2 conditions are met: the uncompressed block size is less than 32

Kbytes and once the compressed bus is requested during compression it is granted in less than

256 - theshold value cycles. This value is obtained after solving the following 2 equations:

33xTe+1xTb <= 256x64 <= 16384 bits

32x(Te + Tb) <= block size <= 32768x8<= 262144 bits

These 2 equations can be simplified to:

33xTe + Tb <= 16384 bits

Te + Tb <= 8192 bits

[7.1}

[7.2]

[7.3]

[7A}

Where Te is the number of cycles the engine is compressing data but the buffer is not

outputting data whi lst Tb is the number of cycles the engine is compressing data and the

143

Chapter 7 X-Match PRO lossless data compression technology

buffer is also outputting data. The block size is set to a maximum 32768x8 bits. The value of

Te is 256 after solving the equations.

If this condition is not met an overflow could take place in the coding buffer. This is an error

condition detected by the coding oveljlolV signal going active. This means that there is no

room in the buffers to write new compressed data being produced by the compression engine

and the operation fails. This si tuation could arise if the engine is continuously expanding the

data instead of compressing the data because in that situation the engine produces 33 bits of

data per cycle but only 32 bits of data can be read from the buffer per cycle.

7.B.3.2 Buffer Coding underflow

Coding undernow cannot be considered a special case because it is the normal consequence

of compression. If compression is taking place the coding buffer outputs data faster than it

receives data from the compression engine. With a typical compression ratio of 0.5 the engine

writes on average 16 bits of data to the coding buffer per cycle and 32 bits of data are read

from the buffer per cycle. This under now condition is signa l with the bus request signal going

inacti ve and the compressed data valid signal going inactive. The bus will not be requested

again until the number of valid 64·bit compressed words in the coding buffer is bigger than

the threshold value.

7.B.3.3 Decoding Buffer Overflow

Buffer decoding overnow is an occasional condition that can take place when compression is

very good. [n this case the decompression engine consumes little data but the decoding buffer

gets 32 bits of compressed data each cycle from the compressed bus. If a decoding overnow

takes place the decompression engine keeps working at full speed unaware of the overflow

condition in the buffer. The device stops requesting the bus (stops requesting data) and this is

indicated by bus request signal going inactive. The buffer will request more compressed data

once the gap between the write address and the read address is bigger than the threshold

value. The system must stop putting compressed data in the compressed bus since this data

will not be written to a buffer under an overnow condition.

7. B. 3.4 Decoding Buffer Underflow

A decoding buffer undernow is an infrequent condition that could take place when the

decompression engine requests compressed data to the decoding buffer but no data is

144

Chapter 7 X-Match PRO lassless data compression technologv

available in the buffer to sati sfy thi s request. Th is condition can happen with data expansion.

In this case the decompression engine consumes 33 bits of data per cycle but the buffer can

only get 32 bits per cyc le. After some cycles the decompression engine request data to the

buffer but the buffer is empty. Under these circumstances the decompression engine empties

its pipeline and maintains its current state and data request until compressed data is available

from the buffer. The engine stops uncompressing data until more data is available. The

uncompressed port will see a few cycles where no uncompressed data is available. The

u11co111pressed dala valid signal will go inacti ve to indicate this condition.

It is important to notice that a decompression engine underflow is a different condition from a

decoding buffer underflow. A decompression engine underflow is a normal internal condition

that could generate a decoding buffer underflow if the buffer is empty. A decompression

engine underflow happens when fewer than 66 bits are valid in the 129 bit (65+64 = 129)

decompression register. An special case is when the decompression engine underflow can not

be satisfi ed from the buffer because all the compressed data in the block has been written in

the buffer but it is now exhausted . This is a normal termination of the decompression

operation and it does not generate a decoding buffer underflow. The decompression engine

must continue to decode the last few bits of compressed data «66 bits) remaining in the

decompression register until 0 bits are valid . This termination condition is controlled by the

bus acknowledge signal going inactive or by an internal counter reaching the value stored in

the compressed block size register. Buffer decoding underflow generation is di sabled when

the device reaches this termination condition .

7.9 FPGA-based X-MatchPRO: complexity and performance

Table 7.4 shows a summary of the FPGA-Based X-MatchPRO fami ly targeting Actel, Altera

and Xilinx FPGA's. These data was obtained after mapping the design to each technology

using a synthesis engine and then performing placing and routing using vendor-spec ific tools.

The figures shown in Table 7.4 were extracted from the post-layout reports provided by the

place&route too ls.

The validity of these timing reports was verified using backannotated simulation and a full

test vector data set formed by around lOOk vectors. These vectors were obtained from a cycle

accurate C++ model of X-MatchPRO and were specifically designed to test all the operating

modes and special conditions of the device.

t45

., ...
" ~ <J

.;!

" =
'" ~

-.; -<J -«

'" ...
'" -<

>< c

~

Chapter 7 X-MatchPRO lossless data compression technology

Technology

Complexity

Full-duplex X-MatcItPRO FPGA details
~

'" '" '"
..c '" :0
bi.

.,
'" ~ (.:J ., "' "' "' ~

~

c - - ,., '" '" - " 'is on "' ~ -0 ~ c :0 ...
'" 0 " - 'is -e ... t ~ " S >. 8 = - '" Cl. >. 0 ... " '" ... '" '"

... ., <J .,
'" Q, ~ '" 's. 0

" '" c r:;:i 8 ~ '" Cl. 's. <rJ .. .:: 0 .g ...l ., "' 0 - ~ ~ ~ (.:J " >< ...l
'" = = e:- '" i:5

.,
~

0.25 urn Pro

Flaslt- 16 9039 70 40960 lOO 214 ASICI 287 12.8 0.8

CMOS Ti les A500KI Tiles

FPGA 30BG456

0.1 8 urn Apex!

SRAM- 16 5063 60 40960 38 N/A 20K 526 8.32 1.6

CMOS LE 's 200EFC4 LE' s

FPGA 84-1

0.18um Virtex!

SRAM- 16 5295 55 40960 25 210 XCV 570 9.6 1.6

CM OS LC' s 400EBG LC's

FPGA 432-8

Table 7.4. X-MatchPRO technology.

Logic unit in column 4 is the basic logic unit in the architecture of the selected technology.

The complexity of this logic unit varies among the different technologies. Actel ProASIC

devices [ActelOOl use a logic unit call Tile, Altera call these units logic elements (LE's)

[AlteraOI] and Xi linx call them logic ce ll s (LC's) [XilinxOI]. Actel ProASIC ti les are simple

blocks that can implement a logic function with 3 inputs and I output such as an AND gate or

a flip-flop. Actel ProASIC architecture is very flat and tiles are repeated across the device

forming a matrix of identical logic elements. Dedicated memory blocks are grouped in one

the sides of the device. Each memory block can implement 2304 bits of fully-synchronous

dual port RAM. Xi linx Virtex architecture uses a more complex LC that includes a 4 input

Look-Up Table (LUT), a carry function and a storage element. A Configurable Logic Block

(CLB) is formed by 4 of these LC's plus some extra logic (I CLB is eq uivalent to 4.5 LC's).

The CLB 's are repeated across the devi ce forming a matrix of logic. Additionally dedicated

146

~

i
"" '" 0

0

25

50

50

Chapter 7 X-March PRO loss less data compression technology

memory blocks are inserted at different positions in the CLB matrix . Each Virtex memory

block can implement 4096 bits of fully-synchronous dual port RAM. Altera Apex LE's are

quite similar to Xilinx LC's. Each Apex LE has a 4 input LUT, a storage element, carry chain

logic and some extra functions. A group of 10 LE' s forms a Logic Array Block (LAB) that

also includes an Embedded System Block (ESB). Each ESB can be used to construct a variety

of memory functions and includes up to 2048 memory bits. A group of 16 LAB's forms a

MegaLAB that are repeated across the device.

FPGA vendors use different measurements to translate their technology components into gate

equiva lents and, in general, it is more accurate to give complexity in terms of FPGA elements

and usage percentage. When avai lable the gate count equivalent obtained from the

place&route tool is given for reference in column 8. The total gate count includes memory

and logic but only around 14% of the gates (30 K) correspond to logic whilst the rest 86%

(180 K) correspond to the gate count equivalent of the 40 Kbits of memory. The percentage of

column 5 measures how much of the logic available in the selected FPGA part given in

column 9 is used by the design. This measurement only refers to utilization of logic elements

and not embedded RAM . The amount of embedded RAM used by the designs measure in bits

is given in column 6 whilst the percentage of memory utilization is available in column 7. The

throughput of column 12 measures the raw uncompressed data throughput of the device .

These are the number of bits of raw un compressed data that will be consumed by the device

during compression or produced during decompression . These figure is obtained mult iplying

the clock frequency of column 13 times the number of bits processed by cycle (32). The

throughput performance of the Altera and Xilinx devices is comparable because they are

si milar SRAM-based technologies using the same feature size. The number of logic elements

used in both techno logies is very similar. This means that LC's and LE's perform very similar

functions. Table 7.4 shows that the complexity of the Xilinx Virtex device and Altera Apex

devices are comparable. More logic e lements are needed in the Actel ProASIC devices

because their Tiles are smaller than LC's or LE's and they can implement only a simple logic

function each of them. The most efficient implementation in terms of area is achieved in the

Actel device since this device is roughly half the size of the other 2 FPGA's in terms of

maximum system gates and it would not be possible to fit the design in the Altera or Xilinx

chips if on ly half of the current resources were available. The performance of the Actel

implementation is lower than the other 2 devices due to 2 main reasons: Firstly the feature

size is bigger which degrades performance, secondly the routing complexity increases in these

fine granularity devices because they lack the architectural hierarchy of the other 2 FPGA's

[Betz98] . ProASIC architecture is nat so the routing scheme is more complex.

147

Chapter 7 X-Match PRO lossless data compression fecim%gv

Table 7.5 presents a summary of the X-MatchPRO features compared against the ASIC

compressors selected in section 4.3 . The table compares different ASIC technologies but

these correspond to the fa stest silicon currently available from the respective manufactures.

The ASIC figures have been obtained from the data sheets provided by the manufactures

while our own figures are based on post-layout repons. The Hi/ fn 9600 device is implemented

in the most advance technology in the li st and offers the highest throughput among the ASIC

devices . This architecture is able to process one byte per clock cycle and its throughput in bits

per second can be readily obtained multiplying the clock frequency times S. This is also true

in the IBM device but in the case of the AHA devices the previous value has to be divided by

two because their less efficient intemal architecture needs two clock cycles to process each

byte.

It is possible to perform a direct comparison of the Hi/fn 9600 that is based on a 0.35 um

AS IC technology an clocks at SO MHz with the Hi/fn 9610 (see table 2.2). The Hi/fn 9600

implements the same LZS algorithm but it is based on an older 0.5 um technology and clocks

at 50 MHz. Therefore, an increase in throughput of 60% is achieved migrating from 0.5 um

to a 0.35 um feature size. Further reductions in feature size should increase the clocking

frequency of the device but it is also important to take into account that interconnect

overheads and deep sub-micron effects mean that the speed-up factor is not linear. The IBM

device can achieve a similar clocking frequency of 100 MH z if mapped to a comparable 0.35

um technology as reponed in IBM literature [Craft9S]. In general, these two LZl derivatives

achieve a similar throughput because they are based on the same LZI algorithm and they are

limited by the fac t the only I byte is processed per cycle. The main advantage of X­

MatchPRO is that 4 bytes and not I byte are processed in each clock cycle.

The table shows that X-MatchPRO exceeds by a factor of 2 the throughput of the other ASIC

compressors. It is expected that X-MatchPRO throughput will improve by a factor of 2-3

[Betz9S] if replacing the FPGA technology for an ASIC technology with a similar feature

size. This means that X-MatchPRO based on an ASIC should be able to match the clock

frequency of any of the other previous ASIC's if implemented in the same technology. A

throughput gain of a factor of 4 will be obtained by X-MatchPRO under these circumstances

thanks to its abili ty to process 4 symbols per clock cyc le.

It is also interesting to compare the X-MatchPRO design with the previous X-Match design in

terms of throughput. The original X-Match design has a critical path in the search and

adaptation process that limits its performance to 6 MHz (192 Mbitsls throughput) in a 0.6 um

ProASIC FPGA technology as seen in our paper [Nunez99]. This is a direct implementation

148

Chapter 7 X- Match PRO lossless data compression tecJm%gv

of X-Match in an FPGA with little architectural enhancements. Our research reveals that thi s

performance improves to 14 MHz (448 Mbits/s throughput) when targeting the X-Match

design to the more up-to-date 0.25 urn ProASlC FPGA used by X-MatchPRO in table 7.4.

X-MatchPRO does not contain a critical path in the search and adaptation process thanks to

ODA as seen in section 6.3 but it is limited by the unpacker/decoder feedback loop as seen in

section 6.5. The new critical path limits the performance of X-MatchPRO in a ProASIC

technology to 25 MHz (800 Mbitsls) . This is approximately twice the throughput of the

original X-Match architecture (448 Mbits/s -+ 800 Mbits/s) .

DEVELOPERS IBM Advance Hilfn System Design
Hardware Group

Architectures Loughborough
(AEA) University

CHlP ALDCI- AHA AHA Hi/fn X-MatchPRO
40S 352 1 323 1 9600
mM 0.1 8 micron 0.18 micron 0.25 micron

CMOS 0.5 0.5 0.35 SRAM- SRAM- FLASH-

'" 0.8 micron mIcron mIcron CMOS CMOS CMOS '" r.l micron CMOS CMOS gate FPGA FPGA FPGA U
0 triple- array/st Xi linx Altera Actel
~ level gate d cell VIRTEX-E APEX20KE A500K ~

>- array/ ProASIC

" std cell 0'"

i5~ ;:.
70 N/A N/A 100 5367 LUT's 5040 LC's 9039 TILE's

~~ .. ~ S(." >. Kgates Kgates 55 % ofa 60 % ofa 70% ofa U Q
r.l 0 " XCV400EB EP20K200 A500K1 30-r.l -l .. C 0
~ ~ 0.0 G432-8 EFC484-1 BG456
~ u
~.-o ."

U

CLOCK
(MHz)

40
40 40 80 50 50 25

THROUGHPUT 320 160 160 640 1600 1600 800
(Mbits/s)

FULL-DUPLEX
PERFORMANCE N/A N/A N/A 1280 3200 3200 1600

(Mbits/s)

X- X- X-
ALGORITHM ALDC ALDC DCZL LZS MatchPRO MatchPRO MatchPRO

Table 7.5. X-Match PRO comparison.

149

Chapter 7 X-MatchPRO lossless data compression technologv

7.10 Conclusions

This chapter has extended the compression/decompression engine of chapter 6 by adding a

suitable system interface and a buffering function. Moreover, a highly compact full-duplex

implementation has been obtained by mapping the decoding dictionary to embedded RAM

instead of distributed flip-flops so the complexity of the half-duplex and full-duplex devices is

comparable in terms of logic gates. The resulting design has been implemented and its

functionality proved to be correct using timing simulation in 3 different FPGA technologies.

The multiple technology implementation qualifies the design as portable. The performance

figures of the FPGA-based X-MatchPRO exceed those of other ASIC compressors and match

the requirements of chapter 3.1.

150

Chapter 8 Conclusions

Chapter 8

Conclusions

8.1 Objectives of chapter

This chapter concludes this thesis with a summary of the research objectives, an evaluation on

how well we achieve those objectives, the limitations of the current work and finally a

proposed path for future research.

8.2 Summary ofthe objectives and the research flow

As stated in chapter 1 this thesis aimed to advance the field of lossless hardware data

compression by providing higher throughputs and better compression ratios. The motivation

for this research was found in that current solutions do not provide the levels of performance

required in high-speed communication and storage applications. Lossless data compression is

currently a tool commonly used to double the bandwidth and storage capacity of systems

running in the order of Mbits/s such as wide area networks in communication applications

and tape drives in storage applications. Its usage in systems that involve higher transfer rates

is not as popular because of the performance impact that the compression process introduces.

The same benefits should be expected if properly deployed in applications where data

movement is measured in Gbitls such as RAID drives and local area networks.

After establishing the usefulness of Gbitls lossless data compression hardware in chapter I the

research continued with an analysis of the current state of lossless data compression in

chapter 2. Chapter 2 reviewed recent advances in software and hardware compression

analysing the benefits and limitations of each method. Chapter 3 continued with the selection

151

Chapter 8 Conclusions

of the X-Match hardware-friendly algorithm because it exhibited high-performance features

including parallelism, single cycle execution and low latency. Chapter 3 was used as a pivotal

point that clearly specified the starting point of our investigations. Chapter 4 described the

experimental framework as a set of tools to be used to carry out the investigations. This set of

tools included the data sets to be used in the compression efficiency measurements and a

selection of lossless data compression methods representative of high performance software

and hardware-based compression. Chapter 5 focused on compression efficiency analysis and

optimisation using the data sets and methods of Chapter 4. It studied ways of increasing

model and coder efficiency without affecting throughput. A dictionary-based approach was

used because of its inherent simplicity and hardware amenability. Chapter 6 focused on

increasing the performance throughput of the hardware architecture without affecting the

compression ratio. Chapter 6 produced a new core architecture for the compression and

decompression engines. The architecture was mapped and verified in ProASIC FPGA

technology, selected as a silicon test-bench, to prove the high performance characteristics of

the design. Chapter 7 extended the core developed in chapter 6 to a full-duplex self­

contained coprocessor architecture named X-MatchPRO. X-MatchPRO was efficiently

mapped to 3 FPGA devices from 3 different manufactures. Post-layout backannotation was

used to obtain exact data on performance and complexity.

8.3 Summary of the X-Match compression method

The X-Match design of chapter 3 describes the basic architecture of a high-performance

lossless data compressor based on storing data commonly seen in a dictionary and matching

incoming data with data present in the dictionary. A move-to-front adaptation policy is used

to maintain dictionary efficiency avoiding storing duplicated data words. The dictionary is

based on a CAM circuit that allows single cycle search and adaptation. The CAM feature that

enables configuring its columns as selectively shiftable registers implements the move-to­

front technique. The data words called tuples are fixed in width with 4 bytes per data word.

The width of 4 bytes is found to be optimal generating more compression than other

alternatives whilst it naturally maps to a parallel high-throughput architecture. The dictionary

length grows from an initial value of 0 to a maximum value of 128 each time a tuple is not

fully matched in the CAM. A partial matching (X-matching) strategy is used to improve

compression so only 2 bytes out of maximum of 4 are required to match for the dictionary hit

to be considered valid. A match is coded as a single bit set to 0 followed by a PBC (Phased

Binary Code) indicating the match location followed by a Huffrnan code indicating a match

type and any non-matching characters in literal form. A miss is coded as a single bit followed

152

Chapter 8 Conclusions

by the 4 non-matching characters in literal form. Combinatorial searching strategies (where

the byte at location n in the search tuple is allowed to match a dictionary byte located at a

position different to n in the CAM) do not improve compression but affect complexity and

throughput. The CAM circuit supports compression and decompression but not

simultaneously. Pre-Iayout results after mapping the design in a 0.6/Lm gate array technology

shows a data independent throughput of 100 Mbytes/s clocking at 25 MHz with complexity

around 100 Kgates.

8.4 Main contributions achieved in this research:

The X-MatchPRO hardware

The X-MatchPRO chip developed in chapters 5, 6 and 7 describes a dual-channel full-duplex

high-performance lossless data compressor coprocessor with enhanced compression and

throughput features.

X-MatchPRO enhances compression ratio by adding an internal run length coding technique

named RLI. In its original configuration described in Chapter 5 RLI combines with Phased

Binary Coding (PBC) to obtain a compression improvement between 3-10 % depending on

data sets. Chapter 5 addresses the best location for a run-length coder in X-Match with 2

options being investigated internal and front. Although the compression performance of both

solutions is very similar RLI adds a very neat solution from a hardware point of view because

it integrates in the architecture and shares the dictionary logic keeping complexity to a

minimum. RLI is particular effective in a hardware implementation because it is not target to

code repetitions of a particular data pattern but repetitions of matches in data location O. RLI

can effectively code any repeating 32-bit pattern without any data identification information

because the move-to-front adaptation policy places repeating data in location o. The last

dictionary codeword is reserved to indicate RLI events which can code up to 255 4-byte

repetitions in a single code. The last dictionary codeword varies in a PBC-based coder

because dictionary length is variable but it is fixed in a UBC-based coder because all the

dictionary locations are active after the first cycle. The maximum compression ratio enable by

the combination of PBC and RLI is 10/(255*4*8) = 0.00122 when 1020 repetitions of the

same byte are found after a dictionary reset.

The move-to-front technique used in model adaptation generates a non-uniform distribution

of matches that a more complex technique than uniform binary coding can used to increase

compression. PBC offers slightly better performance than Huffman coding derivatives. PBC

153

Chapter 8 Conclusions

is useful when compressing small data packets using dictionaries larger than 64 locations

otherwise with dictionary sizes of 16, 32 and 64 locations simpler UBC suffices. This is

because small dictionaries fill up with data quickly and PBC losses its advantage once the

dictionary becomes full.

X-MatchPRO can adapt its complexity requirements to the available hardware resources

trading dictionary length for compression efficiency. X-MatchPRO does not require a large

dictionary because it maintains a highly efficient history state by quickly eliminating any data

duplication in a single cycle. It obtains compression with dictionaries as small as 16 locations

whilst a 256 locations dictionary offers the best trade-off between complexity and

performance.

X-MatchPRO compression improves gradually increasing block size from 256 bytes to 4

Kbytes but remains largely invariant with further increases in block size due to dictionary

saturation. Small block sizes increase the effect of locality of reference and periodically

activated a technique like PBC so they suit well X-MatchPRO.

X-MatchPRO enhances throughput with a new redesigned architecture that includes an Out of

Date Adaptation (ODA) policy. A critical feedback loop is identified in the search and

adaptation circuitry because after a search operation, the best match must be solved and an

adaptation vector generated in time I before the dictionary is ready to start a new cycle in time

1+ 1. ODA breaks the critical feedback loop in the search and adaptation circuitry so the

dictionary adapts at time 1+1 with match information generated at time 1-1. ODA does not

affect compression negatively because dictionary elements are unique at all times except the

dictionary element at the top of the dictionary that can be duplicated. Dictionary data

duplication is restricted to location 0 and duplicated data is eliminated in a single cycle

maintaining dictionary efficiency. The complexity impact of ODA is very small, requiring

only a few hundred gates.

A second feedback loop is identified in the bit disassembly logic because a variable-length

codeword must be decoded before new data can be added and old data eliminated from the

active part of the buffer. This is characteristic of data compression methods based on mapping

a fixed length symbol to a variable length codeword. Packing and unpacking is trivial when

the codewords have the same length and their position in the compressed stream can be easily

identified. This loop is optimised increasing the level of parallelism during the concatenation

of new data and the shifting out of old data as described in chapter 6.

154

Chapter 8 Conclusions

X-MatchPRO is a dual-channel full-duplex coprocessor architecture that includes simple

interfacing, buffering functions and 2 independent compression and decompression channels

that can operate simultaneously. Full-duplex functionality adds an useful feature to the design

because it is becoming a characteristic of high performance networks to carry information in

both directions simultaneously. The challenge is to design 2 independent channels keeping

complexity to a minimum. The RAM-based decompression model achieves this by

eliminating the need for an expensive shift register file to store the data. The higher priority

given to matches closer to the top of the dictionary is a key technique in the full duplex

architecture. It enables the RAM-based decompression dictionary to have only location 0

initialised in the first cycle as long as the same value is used to initialise in a single cycle all

the locations of the CAM-based compression dictionary. A pointer array stores addresses to

the dictionary locations following the same move to front strategy used by the data in the

CAM-based compression model. The pointer array is a fraction of the size of the dictionary

because the basic pointer word width varies from 4 to 8 bits depending on dictionary length

whilst the dictionary word width is 32 bits. The elimination of the multiplexors associated to

the CAM for decompression in the half-duplex implementation provides enough resources to

implement the pointer array and maintains logic complexity almost constant. The

decompression circuitry avoids interference between ODA and the pointer array to enable

both compression and decompression dictionaries to be in synchrony at all times.

A buffering function is introduced in the packing and unpacking logic to fulfil a dual purpose.

It smoothes the data flow out and in the chip in the compressed port and it allows a width

adaptation from the 64 bits used out and in the compression and decompression engines

respectively to a more manageable 32 bits out and in the chip.

X-MatchPRO FPGA-based hardware proves the high-performance features of the design in

silicon. The FPGA-based hardware is based on a l6-location dictionary using UBC coding

for the match locations to reduce the resource requirements on the FPGA prototype. A

detailed post-layout verification of the compressor/decompressor core is done in chapter 6

using a Actel ProASIC FPGA as the silicon test-bench. The core is extended to a full-duplex

coprocessor architecture and mapped to FPGA devices from Acte1, Xilinx and Altera

corporations. These multiple technologies validate the portability of the design and make use

of alternative FPGA architectures with different strong and weak points. Actel ProASIC

devices provide an excellent prototyping platform because they are reprogramrnable and non­

volatile and their high granularity technology offers a smooth migration path to ASIC

technology with predictable results. Xilinx Virtex and Altera Apex devices offer an advance

155

Chapter 8 Conclusions

process, very high densities and a sophisticated tool set to obtain very high performance. Both

Altera and Xilinx implementations are very similar in logic cell count and performance.

8.5 Other contributions achieved in this research

A systematic analysis and classification of the lossless compression methods is done in

Chapter 2 with special emphasis in hardware. The classification is based on dividing lossless

data compression in 3 independent stages, namely: modelling, coding and packing and using

the first 2 stages to structure the review. Modelling and coding separation is usually reserved

to statistical methods but it can be applied successfully to dictionary-based methods as well.

The following conclusions can be drawn from the first part of this research:

Compression improves by:

1. The use of high-order statistical modelling. The optimal maximum order increases with

increases in symbol granularity: I SI order for word alphabets, 4th order for byte alphabets

and lOth order or higher for binary alphabets.

2. The use of arithmetic coding as an optimal method to extract the redundancy identified by

the model. Arithmetic coding is optimal for a given model because no other coding

method can improve on it. On the other hand if the model feeding the coder is inaccurate

the global performance will be poor. Arithmetic coding needs accurate modelling. If this

is not the case simpler and therefore faster coding could be a better alternative.

3. PPM is one of the best compression methods currently available and it combines points 1

and 2 in an complex algorithm made possible in the last couple of decades with the arrival

of powerful general-purpose processors and plentiful memory resources.

4. The use of an algorithm granularity compatible with data granularity. For example text is

clearly byte oriented or word oriented and compresses better with algorithms where the

basic input is 8 bits or with methods that parse the input data stream into natural words.

Throughput improves by:

1. The use of hardware amenable algorithms that do not required too many memory or logic

resources to run. Application specific hardware chips based their power in single cycle

156

Chapter 8 Conclusions

execution and high clock ratios obtained from efficiently mapping an algorithm to silicon.

LZ derivatives are dominant in the field of hardware compression.

2. The use of algorithms that can offer a constant data independent throughput in the

uncompress port. Throughput in the compressed port depends on the instantaneous

compression ratio but the uncompressed port should be able to consume or produce the

same number of uncompressed bits per cycle. Otherwise a worst case throughput

measurement should be used when throughput depends on data type.

3. The use of wider symbols like bytes or words instead of bits. The definition of word can

change from natural words to 4-byte words like in X-Match. Increasing the level of

parallelism by widening the basic input symbol improves throughput but finding the

redundancy becomes a more difficult task.

4. The use of CAM-based circuit to store the history data so fast single cycle searching can

be done during compression. Systolic architectures based on pipelined CAM's where the

input symbol is compared with a different position of the dictionary in each cycle can

obtain higher throughputs and they have excellent scalability properties. On the other

hand they suffer from high latency and this makes them unattractive in many real-time

application environments.

5. The elimination of dependencies between the modelling, coding and packing processes so

deep pipeline architectures can be implemented. Algorithms that map fixed length

symbols to variable length codewords such as X-Match suffer from a dependency

between the decoding and the unpacking process difficult to improve. LZ algorithms map

variable length symbol sequences to fixed length codewords and avoid this problem.

6. Model adaptation tends to be a typical perfonnance bottleneck in many compression

algorithms because in statistical methods a set of cumulative frequencies must be

incremented or a tree must be reconstructed and in dictionary methods the dictionary

must be rearrange introducing new symbols and deleting old symbols.

Another contribution is the development of a compression perfonnance database using

software and hardware algorithms that correspond to state-of-the-art technology. A total of 3

different data sets are used to represent data commonly found in computer systems: the

memory data set, the disc data set and the Canterbury data set. It is common in this type of

research to do comparisons using obscure or out-of-grade algorithms and data sets with the

\57

Charter 8 Conclusions

negative effect that further analysis becomes very difficult. We decided to choose state-of­

the-art lossless data compression algorithms implemented in both hardware and software. The

LZS, ALDC and DCLZ hardware-based algorithms are commercially successful chips used in

many networking and storage applications. The PkZlP software-based algorithm is known by

anybody who has downloaded a file compressed in ZIP format from the Internet and routinely

used for archiving and distribution of data. HA and PPMZ software-based algorithms define

the current limits of lossless data compression and illustrate how the diminishing returns rule

makes any significant compression improvements in the future a big challenge.

8.6 Measurement of success

The first objective was an identification of the factors that limit or improve the performance

of lossless data compression methods. The concepts of compression speed and compression

ratio were used to define the performance of a method. An analysis of current compression

solutions was done in Chapter 2 where it was identified that the highest throughput combined

with lower latency was achieved in hardware using CAM circuits and single cycle operation.

The higher compression was found in software in methods based on variable-order statistical

modelling. Limitations in speed were mainly due to small symbol width like in systems based

on binary alphabets. Limitations on compression were due to poor modelling or coding. It

was also clear that compression and speed were highly dependent on each other with better

compression done by the slowest algorithms and vice-versa.

The second and third objectives were to find solutions to these limitations and to prove them

in real silicon to advance the field of lossless data compression. Our work was based on

hardware and it naturally stressed the point of speed over compression. The developed X­

MatchPRO lossless data compression chip offers Gbit's full-duplex data compression

performance and improved compression using the X-Match method. It can handle the data

streams found in Gbit's applications where no other solution is currently available. It achieves

its objectives using low-cost FPGA technology while a custom solution is expected to obtain

a typical increase in throughput of a factor of 3. It, therefore, advances the field of lossless

data compression hardware and achieves the main objective ofthis work.

8.7 Limitations of research

Our initial research revealed that statistical modelling based on variable-order models and

arithmetic coders is a compression methodology able to achieve a performance close to the

158

Charter 8 Conclusions

entropy limit. It seems reasonable to investigate how some of these statistical concepts can be

introduced in X-Match. This path of research involves the development of parallel arithmetic

coders. Parallel arithmetic coding offering incremental transmission does not have a current

satisfactory solution because of the data dependencies that exist between 2 consecutive

symbols. This is particularly true when analysing the decompression stage of the algorithm.

Limitations in time prevented a thorough investigation of parallel arithmetic coding since it

constitutes a PhD on its own.

Compression performance of the X-MatchPRO method is somehow limited mainly when

targeting data textual in nature. The reason is that this data exhibits single-byte granularity

and it maps badly to the 32-bit granularity of X-MatchPRO. Redundancy in this type of data

is easily picked by a byte-based LZ derivative but it fails to be found by X-MatchPRO

because bytes are not aligned in groups of 4. The alternative of increasing compression

performance in X-MatchPRO by coding the literal characters part of partial-match codewords

or misses was found to be unfeasible because of its direct impact on complexity and more

important throughput.

8.8 Future work

The fabrication of a custom ASIC solution will have a positive impact on speed typically

improving throughput by a factor of 3 if compared with a similar feature size FPGA. A much

more compact device is possible because FPGA gates scale down considerable when

translated into ASIC gates.

The integration of the FPGA-based X-MatchPRO in a real application such as Gbit Ethernet

will prove an invaluable tool to verity the benefits of high-speed lossless data compression.

The development of a form of parallel arithmetic coding will open the way to a variable-order

X-Match model that could achieve the best of both worlds: high speed and excellent

compression.

It is also interesting the idea of a variable-width X-MatchPRO dictionary extending the

concept of variable-length. This means that the algorithm would be able to adapt its internal

granularity to the data granularity. For example, text compression will improve significantly

ifthe data word width could be adjusted to the natural word width.

159

Chapter 8 Conclusions

Further increases in throughput are possible if several X-MatchPRO are combined into a

single chip. The challenge is to design a multiple compressor chip that uses the same interface

as a single compressor chip so the application only sees a significant increase in perfonnance.

8.9 Summary

This thesis has addressed the problem of high-speed lossless data compression in hardware. It

has produced the X-MachPRO chip that with a combined compression and decompression

performance of 3.2 Gbitls in a Xilinx or Altera FPGA's can outperform any other ASIC chips

currently available.

160

References

References

[Acorn92] 'Is v42 the Answer?', Acorn User Magazine Comms, September, 1992.

[ActeIOO] 'ProASICTM 500K Family', Data sheet, Actel corporation, 955 East Arques

Avenue, Sunnyvale, CA, 2000.

[AHA95] , AHA Data Compression and Forward Error Correction Standards', Application

Brief, Advanced Hardware Architectures Inc, 2635 Hopkins Court, Pullman, WA, 1995.

[AHA96] 'Primer: Data Compression (DCLZ)', Application Note, Advanced Hardware

Architectures Inc, 2635 Hopkins Court, Pullman, W A, 1996.

[AHA97a] 'AHA3521 40 Mbytesls ALDC Data Compression Coprocessor IC', Product

Brief, Advanced Hardware Architectures Inc, 2635 Hopkins Court, Pullman, WA, 1997.

[AHA97b] 'AHA3211 20 Mbytesls DCLZ Data Compression Coprocessor IC', Product

Brief, Advanced Hardware Architectures Inc, 2635 Hopkins Court, Pullman, W A, 1997.

[AlIiedTelesynOO] 'Link Compression Facilities in the Network iQ Router', AlIiedTelesyn

Corporation, Technical Notes, 960 Stewart Drive, Sunnyvale, CA, 2000.

[Altera98] 'JAM Programming & Test Language Specification Version 2.0', Altera

Corporation, Altera corporation, 10 I Innovation Drive, San Jose, CA 1998.

[AlteraOI] 'APEX20K Progranunable Logic Device Family', Data sheet, Altera corporation,

101 Innovation Drive, San Jose, CA, 2001.

[Arnold97] R. Arnold, T.Bell, 'A Corpus for tbe Evaluation of Lossless Compression

Algoritbms', Data Compression Conference, pp. 201-210,1997.

[Arps88] R. Arps, T.Truong, D. Lu, R. Pasco, T. Freidman, , A Multi-Purpose VLSI Chip for

Adaptive Data Compression of Bilevel Images', mM Journal of Research and Development,

Vo1.32, No. 6, pp-775-795, 1988.

161

References

[Be1l89] T. C. Bell, I.. H. Witten, J. G. Cleary, 'Modelling for Text Compression', ACM

Computing Surveys, Vol. 21, No. 4, pp. 557-591,1989.

[Be1l90] T. C. Bell, J. G. Cleary and I. H. Witten, 'Text Compression', ,Prentice-Hall, NJ,

1990.

[Bentley86] J. 1. Bentley, D. D. Sleator, R. E. Tmjan, V. K. Wei, 'A Locally Adaptive Data

Compression Scheme', Communications of the ACM, Vol. 29, No. 4, pp. 320-330, 1986.

[Betz98] V.Betz, J.Rose, 'How Much Logic Should Go in an FPGA Logic Block?', IEEE

Design & Test of Computers, pp. 10-15, January-March, 1998.

[Bianchi89] M. Bianchi, J. Katto, D. Van Maren, 'Data Compression in a Half-inch Reel-to­

reel Tape Drive', Hewlett-Packard Journal, Vol. 40, No. 6, pp. 26-31,1989.

[Bloom98] C. Bloom, 'Solving the Problems of Context Modelling',

http://www.cbloom.com/paperslindex.html. 1998.

[Boo98] M. Boo, J.D. Bruguera and T. Lang, 'A VLSI Architecture for Arithmetic Coding of

Multilevel Images', IEEE Transactions on Circuits and Systems-IT: Analog and Digital Signal

Processing, Vol. 45, No. I, pp. 163-168, January 1998.

[Bunton92] S. Bunton, G. Borriello, 'Practical Dictionary Management for Hardware Data

Compression', Communications of the ACM, Vol. 35, No. I, pp. 95-104,1992.

[Burton95] R. C. Burton, 'Fiber Channel', www.cis.ohio-state.edul-jainlcis788-
95//iber _ channel/index.html, 1995.

[Carus099a] J. Caruso, 'Gigabit Ethemet Ventures Into the Land Beyond LAN', Network

World, 118 Turpike Rd, Southborough, MA, October, 1999.

[Carus099b] J. Caruso, 'lOG Ethemet WANs', Network World, 118 Turpike Rd,

Southborough, MA, August, 1999.

[Cheng95] J.M.Cheng and L.M.Duyanovich, 'Fast and Highly Reliable IDMLZI

Compression Chip and Algorithm for Storage' ,Hot Chips VII Symposium, August 14-15, pp.

155-165,1995

162

References

[Chen98] Jin-Ming Chen, Che-Ho Wei, 'A Novel VLSI Design for Ziv-Lempel Data

Compression', The 1998 IEEE Asia-Pacific Conference on Circuits and Systems, pp. 739-

742,1998.

[CiscoOO] 'Data Compression AIM for the Cisco 2600 Series', Cisco Product Catalogue,

Cisco Systems Inc, 170 West Tasman Drive, San Jose, CA, December 2000.

[Cleary84] J. Cleary, I. Witten, 'Data Compression Using Adaptive Coding and Partial String

Matching', IEEE Transactions on Communications, Vol. 32, No. 4, pp. 396-402, 1984.

[Cleary95a] J. G. Cleary, W. J. Teahan, 'Experiments on the Zero Frequency Problem',

Department of Computer Science, University ofWaikato, 1995.

[Cleary95b] J. G. Clearly, W. J. Teahan, I. H. Witten, 'Unbounded Length Contexts for

PPM', Data Compression Conference, pp. 52-61, 1995

[Cormak87] G. V. Cormack, 'Data Compression Using Dynamic Markov Modelling', The

Computer Journal, Vol. 30, No. 6, pp. 541-549, 1987.

[Craft98] D. J. Craft, 'A Fast Hardware Data Compression Algorithm and Some Algorithmic

Extensions', IBM Journal of Research and Development, Vol. 42, No. 6, pp. 733-745,1998.

[Cressman94] D. C. Cressman, 'Analysis of Data Compression in the DLT2000 Tape Drive',

Digital Technical Journal, Vol. 6, No. 2, 1994.

[CycladesOO] 'Data Compression & Frame Relay', White Paper, Cyclades Corporation,

41829 Albrae Street, Freemont, CA, 2000.

[DCP95] 'DCP816', Data sheet, DCP Research Corp, 8923 - 148 St, Edmonton, Alberta,

1995.

[De1l99] 'RAID Technology', White Paper, DeIl Computer Corporation, One Dell Way,

Round Rock, Texas, March, 1999.

[DicksonOO] K. Dickson, "Cisco IOS Data Compression", White paper, Cisco Systems Inc,

170 West Tasman Drive, San Jose, CA, 2000.

163

References

[Djumin97] S. Djumin, 'Gigabit Networking: High Speed Routing and Switching',

www2.cis.ohio-state.edul-jain/cis788-97/gigabit nets/index.htm, 1997.

[Drach95] N.Drach, A. Seznec, D. Windheiser, 'Direct-Mapped Versus Set-Associative

Pipelined Caches', Proceedings of PACT' 95 (Parallel Architectures and Compiler

Techniques), Chypre, June 1995.

[Elias75] P. Elias, 'Universal Codeword Sets and Representation of Integers', IEEE

Transactions on Information Theory, Vol. 21, pp. 194-203, 1975.

[Fan049] R. M. Fano, R. M., 'Transmission of Information'. Cambridge, MA: M.I.T. Press,

1949.

[Fiala89] E. R. Fiala, D. H. Greene, 'Data Compression with Finite Windows',

Communications of the ACM, Vol. 32, No. 4, pp. 490-505, 1989.

[Franaszek96] P. Franaszek, P. Robinson, J. Thomas, ' Parallel Compression With Adaptive

Dictionary Construction', Proceedings of the Data Compression Conference, pp. 200-209,

1996.

[Gatefield99] 'Using the Gatefield JAM Player', Gatefield corporation, 47436 Fremont B1vd,

Fremont, CA, 1999.

[GEA97] 'Gigabit Ethernet Overview', White Paper, Gigabit Ethernet Alliance,

http://www.gigabit-ethernet.org/technology/whitepapers/gige97/papers97toc.html. 1997.

[Golomb66] S. W. Golomb, 'Run-Length Encodings', IEEE Transactions on Information

Theory, IT -12, pp. 399-40 I, July 1966.

[Gooch96] M. Gooch, 'High Performance Lossless Data Compression Hardware', PhD

Thesis, Loughborough University, VK, 1996.

[Guazz080] M. Guazzo, 'A General Minimum-Redundancy Source Coding Algorithm', IEEE

Transactions on Information Theory, IT-26, pp. 15-25, Jan 1980.

164

References

[Halfi1l94] T. H. Halfill, 'How Safe Is Data Compression?', Byte Magazine, Vo!. 19, No. 2,

pp.56-74,1994.

[HallnorOO] E. G. Hallnor, S. K. Reinhardt, 'A Fully Associative Software-Managed Cache

Design', Proceedings of the 27th International Symposium on Computer Architecture, pp.

107-116,2000.

[Hilfu96] 'How LZS Data Compression Works', Application Note, Hilfu Inc, 750 University

Avenue, Los Gatos, CA, 1996.

[Hilfu97] 'Data Compression Analysis in Data Communications', Application Note, Hilfu

Inc, 750 University Avenue, Los Gatos, CA, 1997.

[Hilfu98a] 'The First Book of Compression Encryption', Hilfu primers, 750 University

Avenue, Los Gatos, CA, Hi/fu Inc, 1998.

[Hi/fu98b] '9610 Data Compression Processor', Data Sheet, Hilfn Inc, 750 University

Avenue, Los Gatos, CA, 1998.

[Hilfu99] '9600 Data Compression Processor', Data Sheet, Hilfu Inc, 750 University Avenue,

Los Gatos, CA, 1999.

[Howard92] P. G. Howard, J. S. Vitter, ' Analysis of Arithmetic Coding for Data

Compression', Information Processing and Management, Vo!. 28, No. 6, pp. 749-763,

November 1992.

[Howard93a] P.G. Howard, 'The Design and Analysis of Efficient Loss1ess Data

Compression Systems', Technical report CS-93-28, Brown university, Providence, Rhde

Island, 1993.

[Howard93b] P. G. Howard, J. S. Vitter, ' Design and Analysis of Fast Text Compression

Based on Quasy-arithmetic Coding', Proceedings of the IEEE Computer Society, Data

Compression Conference, Snowbird, Utah, pp. 98-107, March 30-Apri11 1993.

[Huffman51] D. A. Huffman, 'A Method for the Construction of Minimum Redundancy

Codes', Proceddings of IRE, Vo!. 40, pp. 1098-1101, 1951.

165

References

[Hsieh98] M. Hsieh, C. Wei, 'An adaptative Multialphabet Arithmetic Coding for Video

Compression', IEEE Transactions on Circuits and Systems for Video Technology', Vo!. 8,

No. 2, pp 130-137, April 1998.

[mM94] 'ALDCI-40S-M', Data sheet, mM Microelectronics Division, 15080 Route 52,

Bldg 504 Hopewell Junction, NY, 1994.

[InteIOO] 'Intel Express 9500 Routers", Data Sheet, Intel corporation, 2200 Mission College

Blvd, Santa Clara, CA, 2000.

[InteIOI] '56K Modem Technology: Faster Communication Over Standard Telephone Lines',

Intel

Networking White Papers, Intel Corporation, 2200 Mission College Blvd, Santa Clara, CA,

2001.

[JAM98] 'JAM Programming & Test Language Specification Version 2.0', Altera
corporation, 101 Innovation Drive, San Jose, CA, 1998.

[Jiang94] J. Jiang, S. Jones. 'Parallel Design of Arithmetic Coding', Proceedings IEE, Part E,

Vo1141, pp 327-333, November 1994.

[Jiang95] J. Jiang, 'Novel design of Arithmetic Coding for Data Compression', IEE Proc.­

Comput. Digit. Tech., Vo!. 142, No. 6, pp 419-424, November 1995.

[Jiang96a] J. Jiang, 'A Novel Parallel Design of a Codec for Black and White Image

Compression', Signal Processing: Image Communication(8), No. 5, pp. 465-474,1996.

[Jiang96b] J. Jiang, 'Design of Neural Networks for Lossless Data Compression', Optical

Engineering, Vo!. 35, No. 7, pp. 1837-1843, 1996.

[Jones92] S.Jones, 'IOOMbitls Adaptive Data Compressor Design Using Selectively Shiftable

Content-Addressable Memory', Proceedings IEE (Part G), vo!.139, noA, ppA98-502, 1992.

[JonesOO] S. Jones, 'Partial-matching Lossless Data Compression Hardware', IEE Proc.­

Comput. Digit. Tech., Vo!. 147, No. 5, pp.329-334, 2000.

166

References

[Jou90] N. P. Jouppi, 'Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers', Proceedings 17th Symposium on

Computer Architecture, 1990.

[Jou99] J. M. Jou, P. Y. Chen, 'A Fast and Efficient Lossless Data Compression Method',

IEEE Transactions on Communications, Vol. 47, No. 9, pp. 1278-1283, September 1999.

[Jung98] B. Jung, W. P. Burlesson, 'Performance Optimization of Wireless Local Area

Networks Through VLSI Data Compression', Wireless Networks, Vol. 4, pp. 27-39, 1998.

[Kampf98] F. A. Kampf, 'Performance as a Function of Compression', IBM Journal of

Research and Development, Vol. 42, No. 6, pp. 759-766, 1998.

[Wilson97] K. M. Wilson, K. Olukotun, 'Designing High Bandwidth On-Chip Caches',

Proceedings of the 24th international symposium on Computer architecture, Denver, CO, pp.

121-132, 1997.

[Kjelso95] M. Kjelso, M. Gooch, U. Simm, S. Jones, 'Hardware Data Compression and

Memory Management for Flash-Memory Disks', Proceedings ISIC-95, 6th International

Symposium on IC Technology, Systems and Applications, IEEE Press, pp 161-165, 1995.

(Kjelso96] M.Kjelso, M.Gooch, SJones, 'Design & Performance of a Main Memory

Hardware Data Compressor', Proceedings 22·d EuroMicro Conference, pp. 423-430,

September 1996, Prague, Czech Republic.

[Knuth85] D. E. Knuth, 'Dynamic Huffrnan Coding', J.Algorithms, Vol. 6, pp. 163-180, June

1985.

[Kuang98] S. Kuang, J. Jou, Y. Chen, 'The Design of an Adaptive On-Line Binary

Arithmetic- Coding Chip', IEEE Transactions on Circuits and Systems-I: Fundamental

Theory and Applications, Vol. 45, No. 7, pp 693-706, July 1998.

[Langdon84] G. G. Langdon, 'An Introduction to Arithmetic Coding', IBM Journal of

Research and Development, Vol. 28, No. 2, pp. 135-149, 1984.

167

References

[Lee96] Hom-Yeon Lee et aI, ' A Parallel Architecture for Arithmetic Coding and its VLSI

Implementation', IEEE 39th Midwest Symposium on Circuits and Systems, Vol. 3, pp. 1309-

1312,1996.

[Lei95] S. M. Lei, 'Efficient Multiplication-Free Arithmetic Codes', IEEE Transactions on

Communications', Vol. 43, No. 12, pp. 2950-2958, 1995.

[Lelewer87] D. A. Lelewer, D. S. Hirschberg, 'Data Compression' , ACM computing

surveys, Vol. 19, No. 3, pp. 261-297, 1987.

[Liu95] Y. Liu at aI, 'Design and Hardware Architectures for Dynamic Huffrnan Coding',

lEE Proc.-Comput.Digit.Tech., Vol. 142, No. 6, pp 411-418, November 1995.

[Mace98] S. Mace, 'Faster SCSI and Fibre Channel SANs set the stage for servers that run

and run', Byte magazine, January 1998.

[Marks98] K. M. Marks, 'A JBIG-ABIC Compression Engine for Digital Docurnent

Processing', mM Journal of Research and Development, Vol. 42, No. 6, pp. 753-758,1998.

[MiteIOO] 'Data compression', white paper, Mitel Remote Access Solutions, Mitel Networks,

350 Legget Drive, Kanata, Ontario, 2000.

[Moffat89] A. Moffat, 'Word-based Text Compression', Software-Practice and Experience,

V01.19, No. 2, pp. 185-198, 1989.

[Moffat90] A. Moffat, 'Implementing the PPM Data Compression Scheme', IEEE

Transactions on Communications, Vol. 38, No. 11, pp. 1917-1921, 1990.

[Moffat94] A.Moffat, N.Sharman, I.Witten, T.Bell, 'An Empirical Evaluation of Coding

Methods for Multi-symbol Alphabets', Information Processing & Management, Vol. 30, No

6, pp. 791-804,

1994.

[Moffat97] A. Moffat, 'Critique of the paper 'Novel Design of Arithmetic Coding for Data

Compression',lEE Proc-Comput. Digit. Tech, Vol 144, No. 6, pp 394-396,1997.

168

References

[MoguI97] J. C. Mogul, F. Douglis, 'Potential Benefits of Delta Encoding and Data

Compression for HTIP', In Proceedings of the ACM SIGCOMM '97 Symposium, Cannes,

France, 1997.

[MukheIjee93] A. MukheIjee, N. Ranganathan, J. Flieder, T. Acharya, 'MARVLE: A VLSI

Chip for Data Compression Using Tree-Based Codes', IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, Vo!. 1, No. 2, pp 203-213, June 1993.

[MPEG-2] MPEG-2 video, Draft Int. Standard ISOIIEC DIS 13818-2.

[Nelson91] M. Nelson, 'The Data Compression Book' ,Prentice Hall, 1991.

[Nelson96] M. Nelson, 'Data Compression with the Burrows-Wheeler Transform', Dr.

Dobb's Journal, September 1996.

[Nunez99] J.L NUflez, C. Feregrino, S. Bateman, S. Jones, 'The X-MatchLITE FPGA-Based

Data Compressor', Proceedings of the 25th EUROMICRO Conference, Digital Systems

Design: Architectures, Methods and Tools, pp. 126-132, September, 1999.

[Nusinov94] E. Nusinov, J. Pasco-Anderson, 'High Performance Multi-channel Data

Compression Chip', IEEE Custom Integrated Circuits Conference, pp. 203-206, 1994.

[Pennebaker88] W.B. Pennebaker et ai, 'An overview of the Basic Principles of the Q-coder

Adaptive Binary Arithmetic Coder' mM J. Res. Develop, Vol 32, No. 6, pp 717-725,

November 1988.

[Peon97] M. Peon, R,R Osorio, J. D. Bruguera, 'A VLSI Implementation of an Arithmetic

Coder for Image Compression', Proceedings of the 23n1 EUROMICRO Conference, pp. 591-

598, 1997.

[PivotaI97] 'LAN & WAN Technologies Overview', White Paper, Pivotal Corporation, 300-

224 West Esplanade, Vancouver, BC, 1997.

[Printz93] H. Printz, P. Stubley, 'Multialphabet Arithmetic Coding at 16 Mbytes/sec',

Proceedings of the 3n1 Data Compression Conference, Snowbird Utah, pp. 128-137, 1993.

169

References

[Quantum99] 'Quantum DLT 8000', Data Sheet, Quantum Corporation, 500 McCarthy Blvd,

Milpitas, 1999.

[Rice83] R. F. Rice, 'Some Practical Universal Noiseless Coding Techniques', Jet Propulsion

Laboratory, JPL, publication 83-17, Pasadena, California, 1983.

[Rice91] P. S. Yeh, R. F. Rice, W. Miller, 'On the Optimality of Code Options for a Universal

Noiseless Coder', Jet Propulsion Laboratory, JPL, Publication 91-2, Pasadena, California, Feb

1991.

[Rissanen89] J. J. Rissanen, K. M. Mohiuddin, 'A Multiplication-Free Multialphabet

Arithmetic Coder', IEEE Transactions on Communications, Vol. 37, pp. 93-98, February

1989.

[Sakanashi98] H. Sakanashi et ai, 'Evolvable Hardware Chip for High Precision Printer

Image Compression', Lectures Notes in Computer Science, Vol. 1478, pp 106-114, 1998.

[McFarling91] S. McFarling, 'Cache Replacement with Dynamic Exclusion', Technical Note

TN-22, Western Research Laboratory, 250 University Avenue, Palo Alto, California, 94301

USA.

[Seagate97] 'Seagate Technologies 2000,4000, 8000 Series DAT Drives', Product

Description Manual, Seagate Technology, 920 Disc Drive, Scotts Valley, CA, 1997.

[Shannon48] C. E. Shannon, 'A Mathematical Theory of Communication', Bell. Sys. Tech. J,

Vol. 27, pp. 398-403, July 1948.

[Slattery98a] M. J. Slattery, J. L. Mitchell, 'The Qx-coder', IBM Journal of Research and

Development, Vol. 42, No. 6, pp. 767-784, 1998.

[Slattery98b] M. J. Slattery, F. A. Kampf, 'Design Considerations for the ALDC Cores', IBM

Journal of Research and Development, Vol. 42, No. 6, pp. 747-752,1998.

[Storer82] J. A. Storer, T. G. Szymanski, 'Data Compression via Textual Substitution',

Journal of ACM, Vol. 29, No. 4, pp.928-951, October 1982.

[StorageOO] 'FibreRAID 2000 200 MB/sec Highest Performance RAID', Data Sheet, Storage

Concepts Inc, 14352 Chambers Road, Tustin, CA, 2000.

170

References

[Surk97] Y. Surk, T. Young, K. Park, 'A Novel PE-Based Architecture for Lossless LZ

Compression', IEICE Trans. Fundamentals, Vo\. E80-A, No. I, pp. 233-237, January 1997.

[Tanenbaum90] A. S. Tanenbaum, 'Structure Computer Organization', Prentice Hall

International Editions, pp.209-215, 1990.

[Tanenbaum96] A. S. Tanenbaum, 'Computer Networks', Third edition, Prentice-Hall Inc,

1996.

[Thomborson92] C. Thomborson, "The V.42bis standard for data-compression modems",

IEEE Micro, pp. 41-53, October, 1992.

[Trillium97] 'Comparison ofIP-over-SONET and IP-over-ATM technologies', White Paper,

Trillium Digital Systems Inc, 12100 Wi1shire Blvd, Los Angeles, CA, November, 1997.

[Vandalore95] B. Vandalore, 'Gigabit Networking Survey', www.cis.ohio-

state.edu/-jainlcis788-95/gigabitlindex.html, 1995.

[VanDuineOO] R. VanDuine, 'Integrated Storage' Technical Paper, IBM Corporation, 3605

North Highway 52, Rochester, MN, 2000.

[Vitter87] J. Vitter, 'Design and Analysis of Dinamic Huffman Codes', Journal of the

Association for Computing Machinery', Vo1.34, No. 4, pp. 825-845, 1987.

[Wallace91] G. K. Wallace, "The JPEG still picture compression standard", Communications

of the ACM, Vo\. 34, No. 4, pp. 30-44, April, 1991.

[Welch84] T. A. Welch, 'A Technique for High Performance Data Compression', IEEE

Computer, Vo117, No.6, pp. 8-19, June, 1984.

[Witten87] I. H. Witten et aI, 'Arithmetic Coding for Data Compression', Communications of

the ACM, Vo\. 30, No. 6, pp. 520-540, 1987.

[Witten91] I. H. Witten, 'The Zero-Frequency Problem', IEEE Transactions on Information

Theory, Vo\. 37, No. 4, pp. 1085-1094, 1991.

171

References

[Wolf9l] M. E. Wolf, M. S. Lam, 'A data locality optimizing algorithm', Proceedings of the

ACM SIGPLAN '91 Conference on Programming Language Design and Implementation, pp.

30-44,1991.

[XilinxOI] 'VIRTEXTM·E 1.8 v Field Programmable Gate Arrays', Data sheet, Xilinx Inc,

2100 Logic Drive, San Jose, CA, February 2001.

[Xiong97] J. Xiong, W. Zhang, J. Cao, 'A new type of Dynamic Data Compression Chip',

International Symposium on Test, and Measurement Conference Proceedings, ch 184, pp

243·245, 1997

[Ziv77] J. Ziv, A. Lempel, ' A Universal Algorithm for Sequential Data Compression' IEEE

Trans. Inf. Theory, Vol. IT·23, pp. 337·343, 1977

[Ziv78] J. Ziv, A. Lempel, 'Compression of Individual Sequences Via Variable Rate Coding',

IEEE Transactions on Information Theory, IT·24, pp. 530·536, 1978.

172

Publications

Jose Luis Nuiiez, Claudia Feregrino, Stephen Bateman, Simon Jones,'The X-MatchLITE

FPGA-Based Data Compressor', Proceedings of the 25th EUROMICRO Conference,

Digital Systems Design: Architectures, Methods and Tools, pp. 126-132, September,

1999.

Jose Luis Nuiiez, Simon Jones,'The X-MatchPRO 100 Mbyteslsecond FPGA-Based

Lossless Data Compressor', Proceedings of Design, Automation and Test in Europe,

DATE Conference 2000, pp.139-142, March, 2000.

Jose Luis Nuiiez, Simon Jones, Stephen Bateman, 'X-MatchPRO: A high performance

full-duplex lossless data compressor on a ProASIC FPGA', to appeared in Intelligent

Data Acquisition and Advanced Computing Systems: Technology and Applications

IDAACS'2001.

Riad Stefo, Jose Luis Nuiiez, Claudia Feregrino, Sudipta Mahapatra, Simon Jones,

'FPGA-based modelling unit for high speed lossless arithmetic coding', to appeared in

11 th International Conference on Field Programmable Logic and Applications FPL'200 1.

Patent Applications

Simon Jones, Jose Luis Nuiiez, 'Data Compression Having Improved Compression

Speed', UK Application No. GBOOOI711.1, Jan. 25, 2000.

Simon Jones, Jose Luis Nuiiez, 'Data Compression Having More Effective

Compression' , UK Application No. GBOOOI707.9, Jan. 25, 2000.

173

