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Abstract 

This thesis investigates how to improve the perfonnance of lossless data compression hardware 

as a tool to reduce the cost per bit stored in a computer system or transmitted over a 

communication network. 

Lossless data compression allows the exact reconstruction of the original data after 

decompression. Its deployment in some high-bandwidth applications has been hampered due to 

perfonnance limitations in the compressing hardware that needs to match the perfonnance of the 

original system to avoid becoming a bottleneck. Advancing the area oflossless data compression 

hardware, hence, offers a valid motivation with the potential of doubling the perfonnance of the 

system that incorporates it with minimum investment. 

This work starts by presenting an analysis of current compression methods with the objective of 

identifying the factors that limit perfonnance and also the factors that increase it. The X-Match 

method is selected as a promising technique because it offers a level of parallelism not present in 

other methods combined with low latency. The algorithm analysis focuses on improving its 

compression ratio typically halving the original uncompressed size. The hardware development 

phase designs a high-perfonnance architecture that is then implemented in silicon using a non­

volatile reprogrammable ProASIC FPGA as our prototyping technology. The device is fully 

tested at speed to verify its high-perfonnance characteristics achieving over I Gbitlsecond 

throughput with a 33 MHz clock frequency and latency of only 5 cycles. The 

compression/decompression engine is then extended to a full-dupIex architecture that can handle 

compressed and uncompressed data streams simultaneously and uses a simple coprocessor-style 

interface. The full-duplex device offers a combined compression and decompression perfonnance 

of 3.2 Gbitlsecond in Xilinx Virtex or Altera Apex FPGA's technologies but its complexity in 

tenns of logic elements is comparable to the half-duplex architecture because the decompression 

architecture is based on RAM memory readily available in modern FPGA's. This work 

concludes comparing our device with other high-performance architectures and showing that our 

chip, named X-MatchPRO, offers unprecedented levels of throughput in a hardware 

implementation of a general application lossless data compression algorithm. It, therefore, 

enables the usage of data compression in areas that were traditionally out of reach in previous 

research. 
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Chapter I Introduction 

Chapter 1 

Introduction 

1.1 Research aim 

This thesis aims to understand how to improve lossless data compression hardware as a 

means of boosting the performance of high-speed storage systems and communication 

networks. 

1.2 Basics on data compression 

Data compression in a digital system is a process that comprises the removal of redundancy 

and/or information present in a block of data with the objective of obtaining a reduction in the 

number of bits that must be transmitted or stored [Be1l90). [Lelewer87). This process can be 

done in a lossless or lossy way. 

Lossless compression allows the reconstruction of the original data after decompression since 

all the information remains in the compressed block and only redundancy is discarded. Lossy 

methods on the other hand allow only partial reconstruction since these methods not only 

remove redundancy but also information. The objective of a lossy compression algorithm is 

then to remove only information that is of little interest for the intended application. Lossy 

compression is useful for digital data types that are an approximation to data analogue in 

nature such as images or voice. Lossless compression can be used with any data type since it 

is completely reversible and it must be used in data types such as textual or executable data 

where all the bits are critical. Lossy compression can achieve much higher compression ratios 

than lossless precisely because there is not a requirement to maintain all the information 

content of the data source. It is usually possible to define a quality factor that determines the 
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Chapter I Introduction 

compression ratio and the fidelity with which the compressed data represents the original 

data. Lossy compression methods such as the popular image compressors JPEGIMPEG 

[Wallace9lJ. [MPEG-2J exploit the fact that information can be selectively eliminated from 

the image during compression as long as the viewer does not perceive the degradation after 

decompression. The basics of lossless and lossy compression are quite different and many 

lossy algorithms include a lossless version to be used with those data types such as medical or 

military image information that cannot accept any quality lost. Lossy compression can 

achieve typical ratios of 20:1 with good quality. This in contrast with lossless compression 

where something between 213: 1 is the standard. 

This thesis is wholly concerned with lossless compression methods so by compression we 

will mean lossless compression unless the contrary is stated. It will also imply 

compression/decompression since any useful compressor system has a corresponding 

decompressor. 

1.3 Effects of compressing data 

Compressing a block of data has 2 main positive effects when applied to computer systems 

that have to manipulate large amounts of digital information. 

• Compression improves throughput in communication applications by increasing the 

bandwidth available in the transmission links hence the same equipment can achieve a 

significant increase in the transfer rate. Alternatively. simpler lower bandwidth equipment 

can replace the high bandwidth one to maintain the transfer rate while using a more 

economical solution. 

• Compression increases the capacity of the physical media in storage applications hence 

more data can be kept in the same device. It also increases the speed of information 

storage and retrieval since the time required to access uncompressed data from storage 

can be significant higher than that of compressed data using fewer bits. 

Although data compression has a lot of potential to improve the performance of a digital 

system it could actually have a negative impact if it is not deployed properly. A number of 

issues must be taken into account when introducing compression in a data pipe. 

2 



Chapter I Introduction 

• Compression must be done avoiding compressing data already compressed or 

compressing encrypted data. These 2 events can result in data expansion and degrade the 

performance of the system unless a detection mechanism is included. 

• The compression method must be able to outperform the throughput of the original 

system. Otherwise compression becomes a bottleneck and the data pipe becomes empty 

waiting for the compressor to process data. If the compressor can only match the 

performance of the original system then throughput will be the same but an economical 

advantage can be obtained with fewer or slower transmission links. 

• The uncompressed system throughput (UST), the compressor throughput (Cf) and the 

expected compression ratio (ECR) must be balanced (CT ~ USTIECR) to obtain optimal 

performance [Hilfn97J. For example if a data pipe supports 10 Mbytesls and the 

compressor is expected to halve the data traffic its throughput should be 20 Mbytes/s to 

avoid bubbles where the data pipe becomes empty of any useful content. The effective 

throughput of the original data pipe plus compression is then 20 Mbytesls and other 

components attached to it will forward data to the data pipe at this ratio. If the 

instantaneous compression ratio is worst than the predicted compression ratio a 

mechanism must be used to prevent the data pipe from overflowing. Throughput will 

degrade accordingly but an improvement will be noticeable as long as data expansion is 

avoided. If the instantaneous compression ratio is better than the expected compression 

ratio bubbles will appear in the data pipe but the effective throughput will still remain at 

20 Mbytesls. 

• Compression produces a variable length output depending on how much redundancy is 

present in the input data. A more complex management method is required to store and 

retrieve this data because it is not possible to have an exact knowledge of the capacity of 

the compressed media. 

• Full-duplex technology can carry data in both directions simultaneously. If only software 

compression mapped to a general-purpose processor or half-duplex hardware 

compression are available provision must be made to compress part of the time and 

decompress the rest increasing the throughput requirements of the compression method. 

• The increase in latency resulting of applying a compression algorithm could prevent any 

benefit and data could take longer to arrive to the destination point if the transmission 
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Chapter 1 Introduction 

time includes latency plus transmission and a mechanism is not available to do both 

operations concurrently masking latency with transmission time. 

1.4 Current applications of data compression technology in 

communication networks and storage systems 

It has been widely accepted that the performance of a storage system or a communication 

network can be improved by a typical factor between 2/3 by the use of lossless data 

compression [Hilfu97], [CycladesOO], [Jung98], [MoguI97], [MiteIOO]. Indeed nowadays data 

compression is widely used in communication devices such as routers, bridges and modems 

to increase the bandwidth of networks such as LAN, WAN and wireless [AlliedTelesynOO], 

[InteIOO], [CiscoOO], [DicksonOO]. Storage systems such as file servers, solid state storage, 

hard disk drives, tape drives use data compression not only to increase capacity but also to 

increase the available bandwidth to move data in and out of the device [VanDuineOO], 

[Cressman94]. Compression is also useful in other applications that benefit from a reduction 

in the amount of data that must be stored or moved such as printers, copiers and scanners. 

The use of data compression methods has thrived thanks to the exponential growth in 

bandwidth and storage requirements combined with the need to keep costs within a budget. It 

seems that, although technology advances are constantly increasing the bandwidth and 

capacity of transmission and storage media, the applications that run on them always find 

ways to use all the resources available and create a need for more. The consequence is that 

sometimes the technology is not available or the cost of its implementation is uneconomical. 

Compression is an effective way to alleviate this problem. Figure 1.1 obtained from 

[CycladesOO] uses an example to illustrate the cost benefits of data compression applied to a 

wide area network (WAN). 

Line Speed Approximate Cost Effective Throughput Cost per Kbps 

56 Kbps $1251 month 112 Kbps (with data $1.1 

compression) 

128 Kpbs $325lmonth 128 Kbps (no data $2.5 

compression) 

Figure 1.1. Savings introduced by compression in a wide area network. 

Figure 1.1 shows that a similar bandwidth can be obtained with a lower speed line halving the 

costs of the line rental. 
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A typical network configuration includes a group of high-speed LAN's interconnected using a 

low-speed WAN network. The expensive WAN can easily be a bottleneck because it 

concentrates the data traffic exchange among the LAN networks. Modern routers use 

compression to optimise WAN efficiency but there is not a unique standard dealing with the 

compression method to use. This means that some form of negotiation based on a 

compression control protocol must be established between receiver and transmitter to agree 

which compression method to use. Nevertheless, the LZS [Hilfu96], [Hilfu99] algorithm a 

LZl (Lempel-Ziv-l) [Ziv77] derivative from Hilfu has emerged as the preferable method in 

many cases because of its high throughput and good compression ratios. Popular router 

manufactures such as Cisco [CiscoOO] and Intel [InteIOO] support LZS compression. LZS has 

been accepted as standards ANSI x3.24l-1994 (American National Standards Institute), QIC-

122 (Quarter Inch Cartridge), IETF RFCl974 (Internet Engineering Task Force), FRF.9 

(Frame Relay Forum) [Hilfu96] among others for storage and communication applications. 

Compression is routinely used in modems thanks to the v.42bis standard proposed by the 

ccm (Comite Consultatif International Telephonique et Telegraphique) [Thomborson92], 

[Acorn92]. The v.42bis standard uses a variant of the LZW [Welch84] compression algorithm 

also used in the UNIX utility' Compress' and itself a derivative of the LZ2 (Lempel-Ziv-2) 

[Ziv78] algorithm to increase data throughput. It is meant to be implemented in modem 

hardware but it is also possible to include it in the software that interfaces to a non­

compressing modem. The algorithm defines a way to monitor compression efficiency and 

switch to transparent mode when data expands. 

Something that WAN and modem compression have in common is that the speed 

requirements are quite low. The V90 [InteIOl] standard for modems defines a throughput of 

56 Kbytesls while typical WAN throughputs such as T1 WAN [Tanenbaum96] are in the 

order of 1.5 Mbytesls . This means that in many cases compression can be supported in 

software running in the same CPU that handles the rest of the functions present in the 

communication protocol. If this is not enough a coprocessor processing in the order of Mbits/s 

will suffice. 

Another data compression method that has achieved commercial success is the ALDC 

algorithm, another LZl derivative developed by IBM [IBM94], [Cheng95], and also available 

from AHA (Advanced Hardware Architectures) [AHA97]. It has been accepted as standards 

ISOIIEC 15200 (International Organisation for Standardisation! International Electrotechnical 

Commission), ECMA-222 (European Computer Manufacture Association), ANSI x3.280-
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1996, QIC-154 [Craft98]. The mM AS/400 family of high perfonnance server's 

[VanDuineOO] able to handle terabytes of data distributed over a number of hard disks and 

tape drives use ALDC compression integrated in the storage controller. This is quite a unique 

solution because the use of compression in hard disk devices remains something of an ad-hoc 

technique. The dedicated compression chip brings an important capacity gain factor 2 to 4 and 

minimizes any performance impact if compared with a software-based solution. The overhead 

of the compression process is higher than that of the decompression process so data 

compression is better used with read intensive applications such as databases. 

The most popular way to introduce compression in a hard disk in user transparent mode is 

controlled by the operating system and based in software such as those present in MS-DOS 

DoubleSpace and Stacker or Windows DriveSpace. This compression technology has 

generated some controversy on its reliability in the past [Halfi1l94]. Popular compression 

utilities like WinZIP, ARJ, PkZIP are file compressors not designed to work in a blocked 

mode which is needed to allow fast random access to the uncompressed data. They are 

especially useful for backup purposes where speed is not an important issue. Their main 

inconvenience is that they are user initiated and too slow to be applied in real-time 

environments. 

Compression is commonly present in tape drive technology such as QIC (Quarter Inch 

Cartridge), DAT (Digital Audio Tape) and DLT (Digital Linear Tape) with the main objective 

of increasing data capacity. Tape drives concentrate on offering high data capacity for back­

up purposes and not for on-line access. Speeds of 6 Mbytesls with a compressed capacity of 

80 Gbytes are offered in the high-performance DLT8000 [Quantum99] products. The DCLZ 

[AHA96] algorithm, a LZ-2 derivative developed by HewlettlPacker [Bianchi89] has been 

accepted as standards QIC-130, ECMA-151, ANSI-X3.223, ISO/IEC-\1558 [AHA95]. This 

method seems to be the preferred choice for tape compression [Cressman94], [Seagate97]. 

AHA (Advanced Hardware Architectures) acquired DCLZ technology from HewlettlPacker 

and it currently offers several devices with throughputs around 20 Mbytesls [AHA97b]. 

1.5 Advances in communication/storage technology generate a 

motivation for new compression methods 

Recent advances in networking technology and the significant requirements for bandwidth 

and data capacity generated by applications such as real-time video conferencing, 3D 

animation modelling, Internet telephony, virtual reality, video on demand, etc have made 
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some storage/communications equipment to operate at speeds in excess of 1 Gbitls. Optical 

communications are a good example of the sort of systems where Gbitls throughputs are 

reached. Gigabit networking [Vandalore95] has been made possible thanks to fibre optic 

signalling equipment able to transmit at a bandwidth of several Gigabitls over long distances 

with low error rates. Storage equipment has benefit from technology such as RAID 

(Redundant Array of Inexpensive Disks) [StorageOO] to achieve over 1 Gbitls bandwidth 

performance. 

There are 3 popular networking technologies working at speeds in the order of Gbitls: 

Gigabit Ethernet (IEEE 802.3z): Gigabit Ethernet [GEA97] specifies the data link layer (layer 

2) of the OS! (Open System Interconnection) [Tanenbaum96] protocol model and it has been 

the most widely-used high-bandwidth LAN networking technology for the past few years. It 

has been endorsed by major companies in the field such as Cisco systems and 3Com and also 

by legions of start-ups. Since Ethernet (IEEE S02.3 at 10 Mbits/s) and FastEthernet (IEEE 

S02.3u at lOO Mbits/s) are the most popular LAN technologies a gigabitls version offers a 

smooth upgrade path since it is cost effective and it does not required new specific training. It 

uses the same IEEE S02.3 frame format and flow control methods which means that it is 

simple to connect a LAN using Gigabit Ethemet as the backbone to a number of 

servers/terminals internally using Ethernet devices running at lower speeds. There is also an 

effort to include specifications for MAN (Metropolitan Area Network) and WAN (Wide Area 

Networks) in future versions of high-speed Ethernet [Carus099a]. The requirement to keep 

compatibility with older technologies has created some performance problems such as failing 

to deliver true QoS (Quality of Service) required by some applications like video on demand. 

Although work has been undertaken in providing QoS at higher layers than the link layer with 

the use of network protocols such as RSVP (Resource Reservation Protocol) it remains a best 

effort protocol. This has prevented Gigabit Ethernet from offering a complete solution to the 

bandwidth problem. 

ATM (Asynchronous Transfer Mode): ATM [Pivotal97] is also a link layer protocol like 

Ethemet. It was introduced earlier than Gigabit Ethernet to be used in LAN's as well as 

WAN's in those applications demanding a lot of bandwidth. It initially offered 155 Mbits/s in 

ATM OC-3 with a path up to ATM QC-12S offering 6.4 Gbits/s. ATM was thought to be the 

perfect solution to the bandwidth problem but that did not happen. In ATM it is possible to 

guarantee QoS, very important in applications such as video on demand, but it is more 

expensive and the migration path is more complex than using Ethernet. A TM uses fixed 

length cells of 53 bytes enabling extremely fast hardware-based switching in direct contrast 
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with Ethemet where packet length varies from 64 to 1514 bytes. The ATM protocol includes 

standards that provide LAN emulation of networks such as Ethemetffoken Ring so it is 

possible for an application to communicate to an Ethemet network unaware of using A TM. 

In many cases ATM offers a best solution if it is used as a backbone of a WAN joining 

together different LAN's where Ethernet technology is at its best. 

Fibre Channel: Fibre channel [Burton95) defines a complete multi-layered stack of functional 

levels from the physical layer to the upper-level application interfaces. It can run at speeds up 

to 1062 Mbits/s. It seems to be the preferred solution to attached storage devices to a host 

computer forming Storage Area Networks (SAN). Its use as a gigabit networking technology 

is not as popular [Mace98). Storage Area Networks are formed by a series of storage nodes 

and server nodes sharing a common pool of data that can be physically separately up to 10 

Km using Fiber channel based on fibre optic cables or 30 meters over copper wires. The 

storage nodes can be external rack-mounted RAID subsystems formed by a number of SCSI 

drives to offer capacities of terabits of data. SCSI ultra-2 disk drives run up to 80 Mbytes/s 

while more recent SCSI ultra-3 technology offers a throughput of 160 Mbytes/s well over 1 

Gbitls. Recent RAID storage solutions are offering throughputs over 200 Mbytes/s 

[StorageOO). RAID technology [De1l99) is a method of combining several hard drives in a 

single unit offering a higher level of fault tolerance and throughput. Fault tolerance is 

achieved by writing the same block of data to a pair of disk. Improved performance is 

achieved by distributing data evenly across the disks to equalise disk accesses. If multiple 

disks in a RAID subsystem are being accessed simultaneously performance improves 

proportionally. The RAID controller portrays the multiple disks as a single unit to the 

application. 

Other Gbitls networking technologies include serial HiPPI: (High Performance Parallel 

Interface) [Djumin97) that operates within the physical and link layers at speeds of 1.2 Gbitls 

over distances up to 10 Km. It offers Gbitls performance and high reliability at the physical 

layer whilst other protocols relay in higher layers for data lost detection. Also there has been 

recent interest in mapping directly IP-over-SONET [Trillium97) to avoid the overhead 

incurred by the mapping IP-over-A TM and then over SONET. While IP (Internet Protocol) is 

the typical network protocol in layer 3 in the OSI model SONET (Synchronous Optical 

Network) is a physical layer protocol (layer I). These efforts have given way to future trends 

towards 10 Gbitls standards. 10-Gigabitls Ethemet [Carus099b) and 10-Gigabitls SONET are 

2 examples of where high-speed networking seems to be heading. These technologies should 

be available within the next few years. 
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Data compression is not currently being used to its full advantage in these systems due to 

performance limitations encounter in the data compression hardware, although if properly 

deployed it could double the performance and capacity of storage/communication systems 

with minimum investment. Storage Area Networks (SAN) using fibre channel to 

communicate high-capacity and high-speed disk arrays or a Gigabit Ethemet backbone 

connecting a group of Ethemet LAN's running at lower speeds are current examples where 

present compression technologies fail to deliver the require performance for successful 

integration. To realise fully the benefits of data compression in these areas requires a 

compression technology that matches the throughput of the original system. 

1.6 Objectives to be achieved in this research 

The overall aim of this research is to improve the speed and compression of lossless data 

compression hardware. In order to achieve these aims we can identify the research objectives 

and then we can map them into the thesis structure. 

1. The first work to be undertaken is the identification of the factors that improve/limit 

current lossless data compression hardware. A survey on current compression technology 

will provide us with common limitations that hamper performance and also the features 

that boost it. 

2. We will then develop solutions that will try to avoid the common bottlenecks found in 

current technology and improve the factors that define the efficiency of a compression 

method namely; 

• The speed at which the compression/decompression processes are executed. 

• The average compression ratio that the method can achieve on typical data. 

3. Once we have identified a set of solutions that we believe achieve the aim of improving 

compression technology we will demonstrate the feasibility of these solutions by 

developing a practical hardware architecture and mapping it into available silicon. The 

final output and the core to evaluate how well we have achieved our initial aim will be the 

performance figures obtained by this hardware device. 

9 



Chapter 1 Introduction 

1. 7 Thesis structure and method 

The research objectives can be mapped into the thesis structure as follows. 

Chapter 1 is an introduction whose objectives are as follows: Firstly to brief the reader on the 

basic concepts on lossless and lossy compression methods. Secondly to establish the 

motivation of this work based on the applications and current state of compression 

technology. Finally to propose a set of objectives and the methodology to be followed to 

achieve them. 

Chapter 2 is concerned with a background revision and systematic classification on previous 

research efforts. This review will show the features that limit and boost compression 

performance and will help us to identify a suitable way to progress further. 

Chapter 3 involves the selection of a research vehicle to base our experimentation. We will 

use the information provided in chapter 2 to justify the selection of a method that shows high 

performance characteristics. 

Chapter 4 selects a common development framework to base the experimentation. The 

selection identifies the data sets and compression methods to be used for the compression 

ratio and compression speed figures and justifies their selection. The process aims to select 

state-of-the-art methods so a meaningful comparison can be done between them and our own 

method. The technology to be used for the hardware implementation is also chosen. 

Chapter 5 focuses on improving the compression efficiency defined as the average 

compression ratio output/input on the typical data sets selected in chapter 4. A set of solutions 

and their implications on complexity and speed will be described. We will select some of 

these solutions to progress further based on 3 interrelated parameters: compression, speed, 

and complexity. Since our overall goal is to identify a feasible architecture and to demonstrate 

it in hardware it is important that complexity does not exceed that of currently or soon 

available hardware. 

Chapter 6 focuses on improving the compression speed defined as a function of 2 variables: 

throughput and latency. Throughput is defined as the constant and data independent 

uncompressed data rate and it is measure in bits/second. Latency is defined as the time it 

elapses since the last input symbol enters the device until the devices is ready to start a new 
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operation and it is measured in cycles. Again the 3 factors must be taken into account since it 

is usually possible to increase throughput by reducing compressing efficiency. The 

importance of each factor is dependent on the application but it is possible to guide the 

process by a selection of figures: typical lossless compression that halves the original 

uncompressed data, throughput over 1 Gbitls, latency around 10's of cycles and complexity in 

the order of lOO's of thousands of gates. Finally, the proposed core architecture is mapped to 

our silicon test bench and tested to prove their benefits. 

Chapter 7 extends the compression engine developed in chapter 6 to a full self-contained 

lossless data compressor coprocessor and maps it into the technologies selected in Chapter 4. 

A final comparison is made between the features of our device against other high 

performance lossless data compressor chips. 

Chapter 8 concludes this thesis evaluating how well we have achieved the objectives initially 

proposed. It also shows the limitations of the current work and identifies a path where future 

work could be undertaken. 
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Chapter 2 

Lossless Data Compression Review 

2.1 Objectives of Chapter 

This chapter presents a review on the area of lossless data compression. The objective is to 

analyse current lossless data compression methods and then to select a set of interesting 

concepts for further research in the following chapters. 

Firstly, we will introduce some basic concepts on data compression and assess the main 

components present in a lossless data compression system, then continue with an 

investigation on recent advances in software and hardware data compression and finally 

conclude highlighting the features common to high performance lossless compression 

methods. 

2.2 Data compression basic definitions 

Lossless data compression is possible because some of the bits that form a symbol contain 

redundancy. It is possible then to devise a mechanism to eliminate the redundant bits and still 

maintain the complete meaning of such a symbol. The amount of information in bits of a 

symbol a is given by the expression: 

number _of _bits = -Iog2(probability(a» [2.lJ 

where probability(a) is the probability of occurrence of symbol a. This for example means 

that if the probability of occurrence of a symbol a is I then the information content of that 
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symbol is 0 and 0 bits are needed to code it because in essence no other symbol can happen in 

the receiver end. On the other hand if the probability of occurrence of a symbol b is 0 then 

from equation [2.1] infinite bits would be needed to code it and in essence the coding 

operation can not take place. This will happen with an alphabet with infinite number of 

symbols that cannot be coded. Using equation [2.1] the minimum number of bits needed to 

represent a symbol c with probability 0.9 is 0.152. If the symbol is a single bit an optimal 

coder will be able to remove 0.848 bits and the decoder in the receiving end will still be able 

to know if a 0 or 1 was transmitted. The information content of a block of data that uses an 

alphabet of size n can be obtained weighting the information content of each symbol with its 

probability of occurrence producing the expression: 

• 
H = - 'L)probability(Ui) * log2(probability(Ui» [2.2l 

I-I 

These 2 expressions [2.1] and [2.2] are due to Shannon [Shannon48]. H is known as the 

entropy or information content of a data source and forms the basis of the information theory 

due to the same author. It represents the minimum number of bits needed on average to code 

an input symbol using a given probability distribution and a lower bound to measure the 

efficiency of any coding method. The equations made a clear distinction between model and 

coder. The model is a collection of data that identifies where the redundancy is located in a 

message while the coder is a mechanism to exploit this information to reduce the number of 

bits needed to represent the original message. Equation [2.2] establishes that lossless 

compression is possible because some symbols or groups of symbols have a higher chance of 

occurrence (probability) than others. As a direct consequence true random data is impossible 

to compress because it contains no redundancy and all the symbols have the same probability 

p=/Ia/phabet_size producing a flat probability distribution with a value of H that equals 

/ogla/phabet_size). A useful definition to measure the efficiency of a compression method 

is the compression ratio (CR) of equation [2.3] where compressed output and uncompressed 

input are measured in number of bits. Compression is obtained whenever the CR is in the 

range of (0,1). This measurement will be used in the rest of this work. 

CR = Compressed OufputlUncompressed Input {2.3] 
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2.3 Elements of a lossless data compression system 

In any lossless compression system it is possible to identify 3 components with different 

functionality. These are: the model, the coder and the packer. The same 3 elements are present 

in the decompressor but their function is now opposite in 2 of them (the unpacker and the 

decoder) whilst the model is used in the same way. 

The separation between model and coder is particularly useful to classify the 2 main families 

of lossless data compression methods: dictionary-based methods and statistical methods. It 

reflects the fact that once we have decided which modelling technique to use for our data, the 

coding method is not fixed and a wide range of techniques remain available to choose from . 

Although some coding methods map better than others depending on the chosen model , many 

dilTerent combinations are possible. 

These 3 components must be applied in the right order as shown in Figure 2.1. 

Compression System EIernen1s 

Decompression System Elements 

Qnpgaod ..... 
Urpoo/IBr ... 

Figure 2.I.Elements of a Lossless Data Compression System 

2.3.1 Compression (Modelling, Coding, Packing) 

• The function of the model during the compression process is to identify where the 

redundancy is located in the data source and to signal repetitive data sequences to the 

coder. The model uses past experience obtained from processing the input data source to 

guide these 2 tasks. The model performs the same function in compression and 

decompression and it must be maintained in synchrony matching all the compression 

states during decompression to ensure proper decoding. 
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• The function of the coder is to assign a number of bits to each event notified by the 

model. A non-trivial coder will use the information passed by the model to code more 

common data using fewer bits than to code less common data and therefore to increase 

the compression efficiency of the method. A trivial coder will assign the same number of 

bits to each event. 

• Finally the packer is used to group the variable or fixed length codes output of the coder 

in fi xed length units depending on the word width of the system before they are output as 

compressed data. 

Models can be adaptive, semi-adaptive or static: 

• In adaptive models the adaptation or leaming process takes place concurrently to the 

compression process. The model dynamically changes the information it stores depending 

on the properties of the data source. After receiving a symbol an adaptive model obtains 

the information that describes it using its intemal history and passes this information to 

the coder. It then performs an adaptation function modifying its intemal hi story to renect 

the symbol just seen. 

• Semi-adaptive models use a two-pass approach where in the first pass the model adapts 

and in the second pass compression takes place with a static model providing the 

information to the coder. 

• Static models use the same information to process any data source. Its usefulness is 

limited because for example a general model obtained from compressing text might offer 

a very inaccurate representation of an image file . 

Adaptive models are usually preferred because they offer superior performance. They avoid 

the overhead of having to process the data source twice and/or the need to transmit model 

information to the decoder. This work is mainly concemed with adaptive models. 

2.3.2 Decompression (Unpacking, Decoding, Modelling) 

• The unpacker function is to break the compressed input data stream into units where the 

boundaries correspond to compressed symbols. The unpacker needs information about 

the compressed length of the previously uncompressed symbol that must be provided by 

15 



Chapler 2 Lossless Data Compression Review 

the decoder before it can disregard the bits used in the previous decoding step and shift in 

new compressed data for a new cycle. This property of the decoding process creates a 

feedback loop between coder and unpacker and it means that it is quite difficult to 

pipel ine these 2 stages. The job of the packer/unpacker in some dictionary-based 

techniques that obtain compression by replacing variable-length groups of symbols with 

fixed-length codes can, however, become trivial. This variable-to-fixed way of operation 

means that the boundaries between compressed symbols are fixed so the previously 

mentioned feedback loop does not exist. 

• The decoder transforms the compressed data into indices or pointers to tables where the 

uncompressed data can be found in the model. These pointers could be addresses to 

dictionary locations in dictionary-based methods or arithmetic values in the range 

between 0 and I in statistical methods. 

• The model uses the index information provided by the decoder to obtain the 

corresponding uncompressed data and output it. The uncompressed data could be a group 

of symbols in a dictionary-based method or a single symbol in a statistical method. The 

model also uses the uncompressed data to perform the same adaptation function as the 

compression model to keep in synchrony and maintain correct operation. 

2.4 Statistical and dictionary-based lossless data compression 

methods 

Statistical methods show a more clear separation between model and coder. Statistical models 

are based on assign ing a value to symbols depending on their probability using the rule: the 

higher the va lue the higher the probability. The accuracy in which this frequency assignment 

reflects reality determines the efficiency of the model. The model passes this frequency 

information in form of symbol count and total count to the coder. The coder objective is to 

use few bits to code symbols with high probability and vice versa. Compression is obtained if 

the symbols that get assigned shorter codewords prove to be most popular in the input data 

source. Again adaptive models are preferred because they offer superior performance and 

since they start with an empty state they do not need to transmit the model as part of the 

compressed data. These methods are also called symbol wise methods because they process 

each input symbol independently in contrast with dictionary methods that group symbols 

together. Statistical methods tend to use a form of a dictionary to hold the active subset of the 

working alphabet and thi s concept should not be confused with dictionary-based modelling. 
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The dictionary used in a statistical method has frequency counts associated to its locations and 

this is not true in dictionary-based methods. 

Dictionary methods try to replace a group of symbols by a dictionary location code or 

dictionary address that points to a dictionary position that stores the same group of symbol s. 

Compress ion is obtained as long as the location code uses fewer bits than the group of 

symbols it replaces. It is characteristic in these methods to give the modelling stage an extra 

importance whi lst the coding stage is simplified . They are simpler than statistica l methods and 

tend to run fa ster with good compression ratios. For this reason dictionary compression 

remains as the most popular both in hardware and software although the best compression 

ratios are found in the area of stat istical compression [BeIl89]. The information pass to the 

coder by the model is a dictionary location plus information relating to the match length. This 

information can be sent to the bit packer directly without further processing by the coder or 

the coder can try to assign shorter codes to those index/length combinations that prove to be 

more popular. 

Hybrids are also quite popular with combinations mainly between dictionary models with 

statistical coders. Figure 2.2 shows a classification of modelling and coding techniques for 

lossless data compression and examples in each category. 
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2.4.1 Statistical metbods 

1.4.1.1 Statistica/lllodellillg 

Statistical models are based in doing predictions on the expected next symbol using the 

statistical information gather during the processing of previous data. Simple statistical 

modelling is based on assigning a count higher than 0 to any possible symbol in the alphabet 

and then to increase these counts according to the symbols being processed. This modelling 

strategy is usually called a context-free statistical model. In this simple model it is important 

to start the model with a count hi gher than 0 for any possible input symbol to avoid the zero 

frequency problem [Cleary95a], [Witten9 1]. The zero frequency problem occurs when the 

coder tries to code a symbol with a count of 0 because the equation that drives the coder -

log,(probability) fails if probability = O. 

The value of the probability for a symbol 'a' is given by: 

b b 'l () symbol COl/lit of a 
pro a Ilty a = 

total _ symbol count 
[2.4} 

The information that the coder requires from the model is the probability of the symbol 'a '. It 

then becomes the responsibi lity of the coder to use thi s information efficiently to obtain 

compression. If the probability information provided by the model is inaccurate the coder 

will fail to compress the symbol and it might even expand it (use more bits than in its original 

representation) thus showing the importance of good modelling. 

This simple context-free modelling technique does not use the concept of dictionary because 

all the input symbols are present in the system from the start. The concept of a dictionary in a 

statistical method appears when not all the possible input symbols are assigned a freq uency 

count higher than 0 and an escape mechanism is enabled to avoid the zero frequency problem. 

Statistical models use dictionaries when the alphabet is too large to be handled simultaneously 

(for example if system granularity is words instead of bytes) or if a context-based technique is 

being used. In these cases a dictionary is used to hold the a lphabet subset that is active at that 

moment. The dictionary locations in a statistical model have frequency counts associated with 

them and this feature avoids confusion with dictionary-based modelling that will be discussed 

in section 2.4.2. 

Context-free modelling offers modest compression ratios because the probabilities tend to 

have low and similar values with values approach ing I for a symbol being rare since all the 
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other symbols in the alphabet must also be accommodated. Probability values approaching I 

can be obtained by exploiting the concept of context-based modelling. Context-based 

techniques exploit the fact that a prediction can be made with much more certainty by 

observing the symbols that have just preceded the current symbol. They will be analysed in 

the following sections. 

2.4.1.1.1 Finile-cO/ilexl modelling 

A real breakthrough in statistical modelling came with the introduction of context-based 

prediction and context-blending techniques in [Cleary84] with the PPM (Prediction by Partial 

Matching) algorithm. 

PPM methods extract the redundancy present in a block of data using a variable-order 

context-based statistical model. A key concept in PPM is model order. The order of the model 

defines the maximum number of symbols that can be used to predict the next symbol. The 

symbols that are used to predict the next symbol are called context. In other words, a context 

is formed by symbols and the maximum number of them defines the order of the model. For 

example a first order model working with English text will find that the probability of 'h' 

following a ', ' is much higher than the probability of an 'h ' on its own. Then after activating 

context '( ' because a 't' has been received the system will predict that an 'h ' will follow with 

a 95% probability. If a 'h ' does follow much greater compression will be achieved. Assuming 

a 256 symbols alphabet an optimal coder will assign to symbol 'h' only - log,(0.95) = 0.07 

bits which is a big reduction over the original 8 bits. Of course, if the prediction fail s and for 

example not symbol 'h' but symbol 'w' follows more bits will be needed to code a symbol 

with low probability and indeed no data compression but data expansion could take place. 

Any symbol predicted with probability lower than 1/256 = 0.004 (0.4 %) will expand when 

coded because - log,(J 1256) = 8 bits. 

The PPM methodology assumes that the higher the order the more precise the prediction 

would be and fewer the bits needed to code it. For example, let 's imagine an extreme case 

where the order of a model was as high as all the letters contained in a book except the last 

one. A prediction on the last letter using this context would be made with almost 100% 

certainty and would not create almost any output since no 2 books are the same but the last 

letter. The only uncertainty will be left to spelling errors . This system is un feasible but 

illustrates the idea of prediction with high orders. 
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PPM methods do not assign a count higher than 0 to aIJ the possible input symbols, only to 

those that have been seen after a particular context. To avoid the zero frequency problem 

described in section 2.4.1.1 an escape technique is used so the system can vary its order 

faIJing from a higher order to a lower order if a valid prediction is not possible in the first one. 

This variable-order feature is enabled by the escape mechanism that effectively blends 

together aIJ the different orders present in the system. When a particular order fails to make a 

prediction because the item being predicted is new to that context the escape mechanism is 

activated. The model tries to use the next lower order and so on until the item is successfuIJy 

predicted or the oth order, where the context is empty, is used. The Oth order has to be 

implemented in a way that any possible input symbol has a count higher than o. The context­

free model described in section 2.4.1.1 corresponds to a Oth order model. Depending on the 

implementation an order -I where aIJ the possible symbols have the same fixed probability 

could be defined. In this case Oth order is aIJowed to fail to make a valid prediction an escape 

to order-I. 

The size of the alphabet is typicaIJy byte-based to exploit the fact that most data exhibits a 

byte granUlarity. Binary alphabets are also popular due to its simplicity mainly in hardware 

implementations. PPM word-based compression has also been analysed by [Moffat89) with a 

word defined as maximal sequence of alphabetic characters and a non-word as maximal 

sequence of non-alphabetic characters keeping statistics separately for both distributions. His 

results show an important compression benefit when replacing a Oth order model with a I SI 

order model. Higher-order modelling shows no advantage for word-based compression. 

Several variations from the original PPMA and PPMB methods described in [Cleary84) have 

appeared modifying how the escape probabilities are calculated to improve how the orders 

blend together. This research has produced methods such as PPMC [Moffat90) and PPMD 

[Howard93a) each of them offering some improvement over the previous one. 

A lot of research has been done in choosing an optimal maximum context length. The 

classical approach based on byte alphabets uses an upper bound with a context length of 4 or 

5 symbols while showing that further extensions of context length damage compression due 

to an excessive use of the escaping mechanism. However a more recent approach named 

PPM* [Cleary95b) uses unbounded context lengths to achieve superior performance. 

Unbounded-length contexts are formed by aIJ the symbols that have been seen in the input 

stream and used efficient data structures to maintain complexity under reasonable limits. They 

also exploit the use of deterministic contexts or contexts that make a single prediction. Other 

refinements aimed at improving compression is the inclusion of a local order estimation 
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(LOE) technique that makes a prediction based on the input stream characteristics on which 

context length should be used for the next symbol. 

These techniques have been utilised in PPMZ [Bloom98]. PPMZ uses LOE to choose a 

context length between 12 and 0 when a deterministic unbounded-length context has failed to 

make a prediction. PPMZ is considered to be one of the best data compressors available in the 

literature but it achieves this by imposing high demands on memory resources and CPU 

performance. Execution is measured around I symbol every 20K CPU cycles while the 

demand on memory resources is around 30 times the size of the file being compressed. 

2.4.1.1.2 Finite-state modelling 

Finite-state modelling is based on a state transition graph formed by nodes representing states 

and edges leaving and entering the nodes representing transition probabilities between the 

states. Finite-state models can construct the fmite-context models of the previous section with 

ease. For example a single node can represent a simple byte-based Oth order context-free 

model with 256 transitions leaving and entering the node. Each edge would be associated with 

the probability of a byte occurring. A byte-based I SI order finite-context model would have a 

finite-state equivalent model formed by 256 nodes each of them with 256 transitions leaving 

the node and entering the same node and the other 255 nodes. Finite-state modelling can also 

built more complex structures to reflect data behaviour that can not be adequately represented 

with finite-context modelling. The draw back with finite-state adaptive models is that their 

construction and maintenance is more difficult with techniques based on heuristics instead of 

mathematical analysis [BeIl89]. Adaptive model construction is usually based on starting with 

a simple model with a single node and then duplicate or clone the node based on parameters 

related to node usage. If a transition to a particular node from different nodes proves to be 

popular it is duplicated to capture which states contribute the most. The more popular 

implementations of finite-state modelling are based on binary alphabets where each node or 

state has only 2 possible next states [Cormak87]. This simplifies the managing of the model 

and also suits arithmetic coding since binary coders are much simpler to implement. 

2.4.1.2 Statistical coding 

The function of a statistical coder is to use the frequency information provided by the model 

to produce a minimal number of bits an obtain compression. A good coder will output a 

number of bits close but never fewer than -log2(probability) for a given model since this 
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quantity defines the infonnation content or entropy of the model and it is the optimal code 

length. 

The spectrum of statistical coding techniques expands from the fast but sub-optimal prefix 

coders to the slow but optimal arithmetic coders with a range of coding techniques located 

somewhere in between trading speed for coding efficiency. 

The prefix coders or whole-bit coders which are derived from the well known Huffinan 

[Huffman51] codes are sub-optimal because they only produce an optimal output when the 

probability distribution of the input symbol matches exactly 11(2'} where x is an integer and 

positive number. 

The arithmetic coders belong to the class of fractional-bit coders and are known as being 

optimal because their output can be arbitrarily close to infonnation content of the model by 

controlling their precision. 

2.4.1.2.1 Whole-bit coding 

Whole-bit coding assigns an integer number of bits bigger than 0 to each coding event so the 

codes assigned to each input symbol are independent and disjoint from each other. This 

technique is also called prefix-free coding because a valid codeword can never be the prefix 

of other valid codeword. This means that the coder immediately knows when all the bits 

corresponding to a codeword have been received and therefore knows where the next 

codeword starts. If the prefix-free property is not respected the code can not be decoded 

without errors. Unifonn binary coding (UBC) where each symbol in the alphabet is assigned a 

codeword length loglalphabet_size} bits is the trivial fonn of prefix-free coding. UBC can 

not obtain compression in a statistical method because it assumes that all the symbols have 

the same invariable probability of occurrence p=llalphabet_size. UBC is useful in dictionary­

based methods when it is used as a dictionary address and the dictionary data width is larger 

than logldictionary _length}. The prefix-free property considerably simplifies coding and 

decoding operations and enables fast parallel implementations. 

2.4.1.2.1.1 Shannon-Fano coding 

Shannon-Fano Coding is considered to be the first well-known modem method for efficiently 

coding a group of symbols [Shannon48]. It uses the probability of each symbol to assign more 

bits to symbols with low probability and fewer bits to symbols with high probability. The 
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construction method, however, can not guarantee producing a whole-bit optimal code and 3 

years after its invention it was quickly superseded by the more efficient Huffman codes. 

2.4.1.2.1.2 Huffinan coding 

Huffman coding was presented in [Huffman51] and since then it has enjoyed a widespread 

popUlarity. It is a whole-bit optimal code meaning that it can never be improved on by other 

whole-bit coder. Although its performance in many cases is close to that of Shannon-Fano 

coding it can never be worse and it is usually better. 

To construct a Huffinan code for an alphabet formed by n symbols we need to build a tree 

!mowing the probability distribution of these n symbols in our data source. Firstly, we list 

these symbols in decreasing (or increasing) order of probability forming the leaves of our 

future Huffman tree. Secondly, we repeatedly select the 2 leaves with smallest probabilities 

forming a sub-tree whose probability is the sum of the 2 leaves. Finally, we continue this 

process with the sub-trees until only one tree remains. The Huffman code for a symbol n, is 

obtained traversing the tree from the root to the leaf assigned to that symbol and adding a bit 1 

or 0 to the code depending if we go left or right at every branch of the tree. A Huffinan tree 

for an alphabet of 6 symbols is illustrated in Figure 2.3. The tree is constructed using the 

symbol probability distribution P= {2/41, 3/41, 5/41, 7/41, ll/41, 13/41} for our alphabet r = 

if, e, d, c, b, a}. For example to code the message 'aaba' the output of the Huffman coder 

would be '00000100'. Since our example alphabet has 6 symbols a uniform binary code 

would need at least 3 bits per symbol. Then a total of 12 bits would be needed to code the 4 

symbols. The output of the Huffman coder is 8 bits so we have a reduction of 4 bits. 
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Following this procedure and using a fixed model a fixed Huffman tree is quite trivial to 

construct. More challenging is the adaptive model case when we want to dynamically adapt 

the coding tree to changes in the model induced by variations in the statistical properties of 

the input data source. Small variations in the model could force important changes in the tree 

structure resulting in a very time-consuming process of reconstructing the tree after each input 

symbol. Dynamic Huffman Coding has been subject of study in [Vitter87], [Knuth85] where 

the tree updating procedure is done by traversing the tree from the leave to the root in 

constant time proportional to the encoding length. These methods require in the order of 

n+r+H time to encode a file ofn symbols with an alphabet of size r. His the number of bits 

produced. This means that if H is much bigger than nand H is much bigger than r then 

n+r+H =: H and every bit is output in I cycle so in each coding cycle is possible to obtain 

one bit of output including the updating process of the tree. This measure of throughput 

depends on the number of compressed bits produced and therefore on the instantaneous 

compression ratio. This is an undesirable characteristic because it is not possible to guarantee 

a constant data rate in the uncompressed port. 

Huffman coding is an optimal-code when the probabilities produced by the model for n 

symbols are given by p(nJ= 11]' where x is an integer number bigger than O. In this case the 

minimum possible number of bits to code a symbol n, is -[og2(l1]') = x. This quantity is an 

integer number bigger than zero that a Huffman code can output. The problem arises when a 

good model produces probabilities for a symbol close to I that would need a fraction of a bit 

to be coded ( x is closed to 0). A Huffman code must output at least I bit and always an 

integer number of bits as its codeword. The coder in this situation outputs redundancy with 

the worst case being of 1 extra bit per symbol. 

2.4.1.2.1.3 Golomb, Rice, Elias, Fiala Coding 

Golomb, Rice, Elias and Fiala coding can be considered variations in the Huffman coding 

theme since it is possible to construct a Huffman tree for them. They offer less compression 

than Huffman codes but their simplicity and speed makes them attractive as an alternative to 

unifonn binary coding. Golomb codes [Golomb66] are built by arranging the symbols of the 

alphabet in descending probability order and assigning positive integers to them. Golomb 

codes are based on the use of a coding parameter m that changes the shape of the code. 

Smaller values of m should be used for more skewed probability distributions because very 

few bits are assigned to more probable symbol but many more to less probable symbols. To 

encode an integer n using the Golomb code with parameter m we obtain nlm and output this 

as an integer unary code. Then we obtain n mod m and output this value using a binary code. 
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For example if n = 10 and m = 4 then nlm = 2 = '11' and n mod m = 2 = '010' so the code 

is '11010'. We could have not used' 10' to represent 2 because then the resulting code '1110' 

would have not respected the prefix free property. This means that the binary code needs to be 

adjusted to avoid extending the unary code. Rice coding [Rice83] is a subset of Golomb 

coding because only parameters m that are power of 2 are allowed (m=?). Rice coding is 

specially suitable for hardware implementation because nI(2~ can be calculated by shifting 

and n mod :r by setting to 0 all the bits in n but the less significant k bits. The following Table 

2.1 hows an example of Golomb and Rice codes. 

Elias codes [Elias75] are similar to Golomb and Rice codes but they do not use a parameter m 

so they offer little flexibility and compression performance is limited. Elias describes 2 codes 

y and 15. In code y an integer n is coded as a unary code for 1 +!Og2(1'l) bits followed by a code 

of log2(1'l) in length coding n-2 *[Og2(1'l) in binary. The 15 replaces the suffix unary code by a y 

code. 

The Fiala codes [Fiala89] are known as [start, step, stop} codes because they use these 3 

parameters to construct many different possible codes. Symbol n is coded as ni's followed 

by a 0 and then followed by a field of size start+n ·step. If this value is equal to the stop value 

then the preceeding 0 can be omitted. The example in Figure 2.4 corresponds to a Fiala code 

with the following parameters [0,1,5]. 

Position Rice K-O K-I K-2 r {O,I,5] 
Parameter Elias Fiala 

code code 
Golomb M-I M-2 M-3 M-4 

Parameter 
0 0 00 00 000 ID 0 
I ID 01 OlD DOl llO lOO 
2 llO lOO all 010 llll 101 
3 IllO 101 lOO Oll lllOO /l000 
4 ll/lO /lOO /010 1000 lllOI llOOI 

Table 2.1. Prefix-Free codes example 

These codes need the symbols in the alphabet to be organised in decreasing order of 

probability so fewer bits are assigned to the most probable symbol. 

2.4.1.2.1 Fractional-bit coding 

Fractional bit coders have the ability of mapping a symbol to a fraction of a bit. This means 

that if the probability of a symbol is close to I very little output is needed to code this symbol. 
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On the other hand a whole-bit coder needs at least I bit and always an integer number of 

them. Fractional-bit coders are usually called arithmetic coders [Witten87]. [Langdon84] 

because they required arithmetic operations such as divisions and multiplications to code a 

symbol. Arithmetic coders produced a single and unique codeword for the whole message 

being processed and therefore lack the direct correspondence between bits in the codeword 

and symbols in the message. They are not prefix-free codes like the whole-bit coders 

described in the previous section. They are optimal in the sense that they produce an output as 

close to the entropy of the model as desired by controlling their precision. This optimality 

comes with the price of higher complexity. The dependencies that appear between the 

coding/decoding of a symbol and the coding/decoding of next symbol make a parallel 

implementation a difficult problem. Fast approximations to arithmetic coders using low 

precision multiplication-free arithmetic speed-up the process at the expense of compression. 

Current research aims to solve the problem with the lack of parallel execution of the coding 

and decoding processes. 

2.4.1.2.2.1 Full-precision arithmetic coding 

Full precision arithmetic coding replaces a stream of input symbols with a single output 

number less than I and greater than or equal to 0 using exact precision multiplications and 

divisions. A general encoding algorithm to accomplish this follows: 

Set low_old to 0.0 

Set high_old to 1.0 

While there are still input symbols do 

Get input symbol 

range_old = high_old-low_old 

high_new = low_old + range_old·Pcumi 

low_new = low_old + range_old· Pcumi_1 

End of While 

Output low 

The next graphical example of Figure 2.4 shows the result of processing the message' aaba' 

with an alphabet r = if, e, d, c, b, a} using the same probability distribution P = {2/41, 3/41, 

5/41, 7/41, 11/41, 13/41} = {0.05, 0.07, 0.122, 0.170, 0.261, 0.317} as in Figure 2.3 for the 

Huffman coder. The Pcum are the cumulative probabilities of the symbols Pcum = {0.05, 

0.13,0.252,0.422, 0.683, 0.999}. The example shows how the subinterval [0,1) is subdivided 

in sections proportional to the probability of the symbol that they represent. 
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<l 

b 

c 

d 

• 

<l 

1.0 --

0.683 

0.422 

0.252 

0.13 

0.05 
0.0 

HIgh - 1.0 

l<>w- 0.0 

Ra"Ig& - 1.0 

a 
1.0 

0.896341 

0.813604 

0.759714 

0.72104 

0.69885 

0.683 

HIgh - 1.0 

l<>w - 0.683 

Ralgo - 0.317 

b 

" J 
0.966103507 

0.939048508 

0.921426478 

0.90878008 

0.90162395 

0.896341 

H\11- 1.0 

Low - 0.896341 

Ralgo - O.10361S9 

a 
0.966103607 

0.967256522319 

0.96019516758 

0.94559581775 

0.94229670188 

0.94040125795 

0.939048608 

HIgh - 0.966103507 

l<>w - D.939048508 

Ralgo - 0.D27054999 

Figure 2.4.Arithmetic coding example 

0.9661=7 

0.967266622319 

H\11- 0.9661=7 

Low - 0.967256522319 

Ralgo - 0.008846984681 

Then we can use any value between the last high and low to represent the string. If we chose 

0.96 then we can represent the string in 7 bits obtaining I bit reduction if comparing with the 

Huffman code. 

To decode the compressed stream we use an algorithm as follows: 

Get encoded number 

Do 

Find symboli whose range straddles encoded number 

Output the symbol 

range = Pcumi - PCUmi_i 

Substract Pcumi_i from encoded number 

Divide encoded number by range 

Until no more symbols 

In the previous example the encoded number is 0.96 so we know that first symbol to be output 

is 'a' then we subtract symbol low value from encoded number to obtain 0.277. Then we 

divide by the range 0.317 and the resulting value is 0.873817. Then we know that the second 

symbol is another 'a '. We continue by subtracting symbol low value from encoded number to 

obtain 0.190817. Then we divide by the range 0.317. We now obtain 0.601946 so the next 

symbol is 'b'. The process continues until no more symbols are left to decode. To detect 

when to stop either a special termination character can be encoded (not done in this example) 
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or the length of the uncompressed string can be concatenated to the compressed message. If 

the uncompressed length is large enough the overhead is small. 

The previous example shows a practical problem with arithmetic coding related to precision. 

If the message continues for a few more symbols we would have run out of bits to hold the 

required precision. It also seems to show that the whole message needs to be processed before 

the compressed codeword is known. These problems have been solved in practical 

implementations so only integer arithmetic is required and incremental transmission is 

possible. 

A practical arithmetic coder is reported in [Witten87]. His implementation outputs a bit of 

codeword as soon as it is known and replaces the floating point arithmetic for integer 

arithmetic so the interval [0,1) is replaced by [O.N) with N being as large as 65536. The 

cumulative probabilities provided by the model are also stored using integer numbers in form 

of cumulative frequency counts so Pcum of example 2.4 becomes Fcum = { 2. 5. 10. 17. 28. 

41} so the Pcum/ is obtained dividing the Fcum/ by Fcumn where n is the last symbol that 

stores the total, in the example symbol 'a' with Fcum = 41. When the low and high values are 

close together some more significant bits are equal. These bits are added to the output and 

then the interval is scaled up so it keeps large enough to assign some range to all the possible 

input symbols. This is necessary to avoid having underflow conditions. When low and high 

straddle 0.5 the next bit output is not known but a follow-on procedure is used to keep track 

of the number of cycles the mechanism is used. Operation continues until the interval falls 

above or bellow 0.5. If the interval is above 0.5 then a 1 is output together with a number of 

O's as indicated by the follow-on mechanism. If the interval is beIlow 0.5 a 0 is output 

together with a number of 1's as indicated by the follow-on mechanism. Other similar 

mechanism for incremental transmission and fixed precision arithmetic have been developed 

by [Guazz080]. The mM bit stuffing idea of [Pennebaker88] that consists in inserting zeros to 

block carry propagation fulfils the same function as the follow-on procedure described above. 

2.4.1.2.2.2 Low-precision arithmetic coding 

Low precision arithmetic coding aims to replace the slow multiplications and in some cases 

divisions necessary to implement the full precision algorithm for some simpler alternative. It 

comes in 2 main fashions. Techniques that replace the slow multiplications by shifts and adds 

and techniques that perform all the calculations ahead of time and store the results in look-up 

tables. 
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Quasi-arithmetic coding is based on performing all the calculations ahead of time and it is 

described using a binary alphabet in [Howard93b]. The number N in the interval [O,N) 

generates a number of possible states in the coder that equals 3*NI16. If N is small the 

number of states is small and it is possible to precompute all the possible state transitions and 

outputs and stored them in a table. If N=4 then the number of states is 3. Quasi-arithmetic 

coding shows that if compared with an exact arithmetic coder the number of extra bits output 

per input symbol is at most 5. 7711N. This means that a larger value of N improves the 

efficiency but also increases the complexity. In practical terms values between 32 and 128 are 

used. The proposed way to extend the binary coder to a multi-alphabet coder is to assign the 

symbols of the alphabet to the leaves of a binary tree. Then the coding of a symbol is 

decomposed in the coding of a binary decision at each level of the tree. A binary Quasi­

arithmetic coder can be used in each level of the tree. 

The method proposed in [Rissanen89] and used in the Q-coder [pennebaker88] simplifies the 

multiplication and divisions operations by scaling the range and the total count of the model 

to the same interval [0.75, 1.5). The implementation replaces storing the high_new value by 

storing the range_new so the original equations: 

become: 

high_new = low_old + range_old*Pcumi 

low_new = low_old + range_old * Pcuml.1 

range_new = range_old *( Pcum,-Pcumi_l) 

low_new = low_old + range_old * Pcumi_1 

[2.5] 

[2.6] 

The algorithm then makes the approximation rangelFcum. ,;; 1 and since Pcum,-Pcumi_1 = 

(Fcuml- Fcumi_I)/Fcum. equation set [2.6] is simplified to: 

range_new = Fcumi-Fcumi_1 

low_new = low_old + Fcumi_1 

Multiplications and divisions are not longer present in equation set [2.7]. 

[2.7] 

The analysis in [Lei95] shows that the error of the Rissanen method depends on the value 

(Fcum.-Fcum._dIFcum • . The error is larger when this value is smaller so the most probable 

symbol is placed in the last position to force Fcum.-Fcum._1 to have a large value. The 

conclusion is that the degradation of the method is significant when the count of the most 

probable symbol is small. An extension of the method is proposed so the approximation 
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range!Fcumn E: 1 after scaling both quantities to the interval [1,2) is replaced by a number b = 

{0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2} = {O.JOO, 0.J01, 0.110, 0.111, 1.000, 1.0JO, 

1.JOO, 1.110, 1.lll} . The multiplication times b can be done shifting and adding with the 

following values of b = {22
, 22+2°, 22+i, 23_2°, 23

, 23+21
, 23+22

, 2'_21
, 2'_2°}. This is 

particularly well suited to fast software and hardware implementations. The simplified 

equations are now: 

range_new = b·(Fcuml-FcumJ./) 

low_new = low_old + b*Fcum'.1 

[2.8] 

This better approximation improves the method and the results show a degradation of 1.04% 

compared with a full precision implementation while Rissanen method increases the 

degradation up to 6.06%. 

2.4.2 Dictionary-based methods 

2.4.2.1 Dictionary-based modelling 

Dictionary-based modelling is a concept easier to understand than statistical modelling. The 

model stores a collection of symbols expected in the input data source in the form of a 

dictionary. It then tries to replace occurrences of these symbols in the data being processed by 

indexes to the dictionary locations where the same data can be found. These methods try to 

group symbols together and replace them by a single index to improve compression. They are 

string oriented and not symbol oriented like the previous statistical methods. As long as the 

index size is smaller than the string size compression is obtained. The larger the dictionary 

size the higher the chance of finding the input symbol in it but also more bits are needed for 

the index. 

Most of the dictionary modelling techniques have their roots in the work published in 1977 

[Ziv77] and 1978 [Ziv78] by J. Ziv and A. Lempel. The LZ77 (LZl) and LZ78 (LZ2) vary in 

the way the dictionary is built and maintained and how the indexes referenced the information 

stored in the model. They emerged as valid alternatives to classical statistical Huffman 

methods and generated plenty of research and variants on the LZ theme. 
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2.4.2.1.1 LempeZ-Ziv 77 (LZ77, LZ1) modelling 

An LZ77 dictionary is based on dynamically keeping a window of symbols seen previously in 

the input data source with a typical window length that varies between 512 and 16K bytes. 

The window slides over the data maintaining strings of symbols together forming phrases. A 

buffer is concatenated to the dictionary window that contains symbols that have not been 

processed yet. The buffer size is typically between 16 and 64 bytes. The buffer contents are 

compared against the dictionary contains to find the longest matching string. LZ77 

compression is based on outputting three items: an index to the dictionary indicating where 

the match started, an offset indicating the length of the match and finally the first character in 

the input that did not find a match in the window. Figure 2.5 shows an example of how LZ77 

works. 

11 !i1l!iilaaab 11 Dllli1lb 

Dictionary window Buffer being processed 
Figure 2.5. LZ77 Example 

The dictionary matches the first 4 symbols of the buffer starting at position O. The output of 

the dictionary model is (O,4,b). Symbol b is the first symbol in the buffer that it is not found 

in the dictionary. This method presents 2 major inefficiencies. Firstly, ifno match is found the 

output of the model is still 3 items. For example if symbol y does not exist in the dictionary 

the output is (O,O,y). It is common to have many misses during the initial stages of 

compression so this effect would degrade compression significantly. Secondly, it always 

requires an extra character to be added to the output. This could be quite inefficient if this 

character could be made part of the next compressed token instead of explicitly adding it to 

the output. 

These inefficiencies were dealt with in the LZSS implementation [Storer82]. This algorithm 

uses a single bit concatenated to every output token indicating a hit or a miss. If a miss the 

non-matching character is appended to this single match bit. If a hit the match location and 

match lengths are appended to the match bit. In this algorithm the output of the model is also 

the output of the coder since uniform binary coding (UBe) is used directly. LZS is a very 

popular hardware implementation similar to the LZSS version. LZS adds more complex 

coding techniques for the index and the match length to improve compression. We will 

discuss LZS in the hardware section. 
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Decoding is simpler than coding since time consuming searching is not necessary and the data 

provided in the compressed input can be used directly to fetch the uncompressed output from 

the dictionary. 

The fast execution and simplicity of the LZ77 algorithm together with the good compression 

ratios obtained by their improved derivatives have made the LZ77 algorithm to become the 

most successful general application lossless data compressor. Popular software 

implementations such as PkZIP from PKW ARE and ARJ from ARJ Software illustrate this 

fact. 

2.4.2.1.2 LempeZ-Ziv 78 (LZ78, LZ2) modelling 

LZ78 creates dictionary entries formed by complete phrases by concatenating the first 

unmatched symbol to the previously matched phrase. The dictionary initial state is formed by 

only I phrase that is the empty string. The first symbol being processed is replaced by a pair 

formed by a reference to the empty string plus the symbol in explicit form. Then the symbol is 

added to the dictionary forming a new phrase. The output of the encoder is always formed by 

a reference to the longest matching string in the dictionary plus the symbol that stopped the 

match. This symbol is always added to the previously matched string forming a new phrase 

that it is then added to the dictionary. Figure 2.6 shows the dictionary state after processing 

'aabaaaab' and then string 'aaba' is received. The longest matching string is 'aab' at 

location 4 and the new phrase 'aaba' is added at location 5. The output of the LZ78 algorithm 

is (4,a). 

Dictionary 

Location Contents 

,------ -.------~---
o Empty 

a 

2 ab 

3 aa 

4 cab 

5 

Input Data: aaba 

Encoded Ouput : 4.0 

Phrase number 5 : aaba 

Figure 2.6. LZ78 example 
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The data structure that stores the dictionary can grow unboundedly and some means of 

controlling its size must be implemented to avoid using too many memory resources. When a 

predefmed maximum dictionary size is reached, the dictionary can be frozen so adaptation 

stops or it can be reinitialised to an initial or an intennediate state to improve compression 

efficiency. Some other policies can also be used such as LRU (Least Recently Used) 

eliminating the dictionary entry that has not been used for the longest time. 

A popular derivative of the LZ78 algorithm is the LZW [Welch84] variant that avoids the 

need to explicitly transmit the non-matching character by starting with an initial dictionary 

state where all the possible input symbols have already been included. An LZW derivative 

named LZC was implemented in the Unix utility 'compress' with extra tuning of the coding 

process to improve compression performance. In. this case the match location is not coded as a 

simple uniform binary code but as phased binary code to avoid adding extra bits to the output 

when only a few dictionary locations are valid. 

2.4.2.1.3 BSTW modelling 

The BSTW algorithm [BentJey86] follows a different approach to dictionary modelling when 

it is compared with LZ models. In. general, LZ models try to assign a fixed-length code to a 

variable-length group of input symbols. On the other hand BSTW modelling tries to assign a 

variable-length code to a single input symbol defined as a word where the term word has a 

predefined meaning. [Bentley86] implementation defines a word as the longest sequences of 

alphanumeric and non-alphanumeric characters but other definitions are possible. BSTW 

keeps 2 distinct dictionaries for the 2 independent word streams maintained using a move-to­

front (MTF) strategy. The MTF forces more popular words to appear closer to the top of the 

dictionary and this feature can be exploited to use fewer bits to code them. A prefix-free code 

such as a Huffrnan code can be used to achieve this effect with locations closer to the top of 

the dictionary being also closer to the root of the Huffinan tree. New words are always added 

to the top of the dictionary and the oldest word locat.ed at the bottom of the dictionary is 

removed when it becomes full. The experimental results show that the larger the dictionary 

the better the compression. They also show that this simple single-pass MTF dictionary 

maintenance strategy plus fixed Huffinan coding offers a similar performance to a two-pass 

Huffman scheme where the first pass is used to construct the Huffman tree and the second 

pass to produce compression. 
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Figure 2.7 shows an example of BSTW coding and adaptation. 

Dic tionary at time t Dictionary at time t+ 1 

Location Contents Location Contents 

0 The 0 car 
e- T-

car 1 The 

2 In 2 In 

3 the 3 

I 
the 

-
4 shop 4 shop 

5 5 1= 

Input Data at time t : c or 

Encoded Ouput at time t : 1 

Figure 2.7. BSTW example. 

The MTF strategy is highly suitable for hardware implementation because the serial process 

of modifying the dictionary in software can be done in I cycle in hardware using a highly 

regular array of dictionary elements. 

2.4.2.2 Dictio/lary-base(/ codi/lg 

The function of the dictionary-based coder is to replace the uniform binary indexes produced 

by a dictionary model for other more efficient form of coding and therefore enhance 

compression . This form of coding tends to be much simpler than statistical coding because it 

does not handle probabi li ty information. Dictionary-based coding is in many cases trivial 

because the uniform binary codes that form the output of the model are used directly as the 

output of the system after being assembled in the bit packer. Uniform binary coding assigns a 

binary code of length !og,(dictioIlGlY size) bits to each dictionary location and its decoding is 

trivial. 

It is also frequent to use a statistical coder to code the output of a dictionary model creating a 

new form of hybrid. The idea is that the output of the dictionary model has biased statistical 

properties and some dictionary references are more frequent than others. This feature can be 

exploited by an statistical coder working as a back-end such as arithmetic or a Huffman coder 

to further process the output of the di ctionary model and enhance compression [Moffat94). 

Dictionary-based coders can be based on techniques like phase binary coding (PBC) or run 

length coding (RLC). Phased binary coding outputs a code whose length is dependent on how 
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many entries are valid in the dictionary and the dictionary grows by a single location at a 

time. Run length coding groups repetitive sequences of indexes output by the model. Other 

popular form of dictionary-based coding is to use a dictionary that grows in powers of 2. Then 

a uniform binary code can be adjusted to use only those bits needed to code the active section 

of the dictionary. Since misses prove to be very popular outputs from the model it is common 

to use a single bit prefIx to the code to make a distinction between a match and a miss. 

2.4.2.2.1 Phased Binary Coding 

Phased binary coding is useful when not all the locations in the dictionary require a codeword 

to be assigned. This is a typical situation when the initial dictionary state is in an empty state 

and entries are added to the dictionary simultaneously to the input data being processed. In 

this case a more compact set of codewords can be used saving bits in the output. The basic 

phased binary coding algorithm follows: 

If (1<MAX- VALID) 

Code 1 using a binary code oj(Log](VALID) 7-1 bits; 

else 

Code J+MAX-VALID using a binary code of fLog2(VALID) 7 bits; 

Where MAX is 2(Log](VAUD) 7 and VALID is the number of dictionary locations valid in a 

particular instant. For example if MAX = 128 and VALID = 127 then if the dictionary 

location to be coded is I < 128-127 = 1 (location 0) only 6 bits are needed whilst 7 bits are 

needed for the rest of the locations. Phased binary coding tends to assign fewer bits to 

locations closer to location 0 so it is useful that the maintenance of the dictionary makes these 

locations more probable than those closer to the bottom. When the dictionary is full (in our 

example VALID = 128) there is no difference between using a phased binary code or a 

uniform binary code. 

2.4.2.2.2 Run Length Coding 

Run length coding is a simpler coding technique based on replacing repetitive sequences of 

the same symbol with a pair formed by a code indicating the repeating symbol plus a code 

indicating the length or number of repetitions that were seen. This method of coding is of 

limited usefulness for general compression. It can achieved, however, good results in some 

specifIc types of data where long runs of the same symbol are common such as repetitions of 

O's in memory pages or fax pages. If the input to a simple run length coder is the string 'aaba' 
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the output will be (a,2,b,J,a,I). This example shows that the input to the run length coder is 

directly the input data so in this case no modelling is being performed on the data. It is also 

perfectly valid to include a dictionary-based model so the output of the model and input to the 

run length coder is a stream of dictionary location indexes. If the same dictionary location is 

reference more than twice effective run length coding can take place. 

2.4.3 Other methods 

The BWT (Burrows-Wheeler Transform) block-sorting algorithm described in [Nelson96] 

deserves special mention. This is a new modelling method based on a transformation function 

that converts a block of data using a sorting algorithm into a new block of data extremely well 

suited for data compression. The new block has exactly the same elements as the original 

block but the new organisation shows clumps of identical symbols grouped together. The 

transformation is reversible so the original block can be recovered. Compression is obtained 

by exploiting the increase in redundancy generated by the sorting algorithm using typically a 

Huffman coder or arithmetic coder preceded by a run length coder. The BWT algorithm 

combined with standard coding techniques produces a compression that rivals with that 

obtained by the finite-context modelling methods of section 2.4. I. I. I. The transformation 

function consists simply in shifting and sorting the input block of data so no complex 

arithmetic is involved. The main drawback of the method is that it needs to operate in a whole 

block of data simultaneously and therefore it does not support incremental reception or 

transmission. The blocks of data must be of at least 250 Kbytes to give good results. If the 

block sizes are reduced to a more manageable value of 4 Kbytes the sorting algorithm is 

inefficient and the extra bits of overhead needed in each block to ensure that block-un-sorting 

can be done degrade compression. In general the BWT modelling technique can be used as a 

front-end of a general compressor since it will improve the performance of the existing 

compressor by increasing the redundancy of the input data. 

Other approach to efficient modelling of an input data source is the neural networks presented 

in [Jiang96b]. Two neural networks are described to perform lossless data compression. 

The first one uses a single-layer of processing elements and it achieves a compression 

performance of 0.7. Each neuron in the system stores a data element fixed in length that 

corresponds to a possible input string. The input string is compared with this value and the 

output of the neuron goes to 0 if a match is found. A coding technique based on a Huffrnan 

code derivative such as those described in section 2.4.1.2.1.3 is used to assign fewer bits to 

neurons that are more successful in finding matches. The neurons are assigned an index that 
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increases from left to right and the network is maintain shifting neurons left after each input 

data is processed using the following method. Successful neurons are promoted to right side 

of the neural network. New input data is always added in this right side. Unsuccessful neurons 

are discarded when the reach the left side. The compression performance of the algorithm is 

low because matches have to be in full and partial matches that happen when part of the input 

string matches in one neuron and the other part in another neuron are not allowed. 

To solve this problem a second example is developed that extends the initial model by adding 

a second layer of processing elements and improves compression typically to a value of 0.4. 

The second layer of neurons is design based on a 2-byte input string to detect partial matches 

of the MSB in one neuron and LSB in another neuron. It also extends the initial technique by 

coding runs of matches in multiple neurons using a single code. Although the technique has 

potential for a hardware implementation to exploit the massive parallelism present in neural 

networks this possibility is only indicated in the paper and no details are given on a hardware 

implementation. It is possible to identify the typical features of a high performance hardware 

system such as doing all the comparisons in a single cycle and using a simple adaptation 

mechanism. 

2.5 Lossless Data Compressor Hardware 

The same classification method as in software can be applied to the lossless data compressor 

hardware world with a separation between statistical hardware and dictionary-based 

hardware. There is an even clearer domination of dictionary-based methods over statistical 

methods in hardware. The reason is that statistical methods can not currently compete in 

speed and although the compression performance is theoretically superior this can be only be 

achieved with very high complexity. This complexity again degrades speed and makes them 

unfeasible for many applications. Although some implementations have been very successful, 

such as those based on binary alphabets from IBM, the simplifications that made them 

possible have limit their application to systems with low throughput requirements in the order 

of a few Mbitsls. 

2.5.1 Statistical hardware 

Statistical hardware is limited to simple Oth order modelling using multi-symbol alphabets that 

limits compression or simple high-order modelling using binary alphabets that limits speed. 

Coding is usually done with Huffman or arithmetic coding the later being preferred because 

of its compression efficiency. 
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2.5.1.1 Binary arithmetic Hardware 

The Q-coder [Pennebaker88]. [Arps88] from IBM is one of the best known examples in this 

category. It consists of a 7th order binary finite-context statistical model associated to a 

corresponding binary arithmetic coder. It is important to notice that this is a fixed-order model 

and not a variable-order model such as the PPM method of section 2.4.1.1. This means that 

always the same number of symbols (same context length) are used to predict a new symbol 

and a prediction can never fail. A variable-order model does not apply to a binary alphabet 

since a single probability value p defines both symbols 0 (P) and 1 (l-p) and predictions are 

always possible (no escaping). On the other hand PPM blends different orders together so if a 

prediction fails in a particular order the next lower order is used. No variable order models 

have been reported in hardware using either binary or multi-symbol alphabets to the best of 

our knowledge. 

In the coding section the binary arithmetic coder uses the renorrnalization approximation 

introduced by Rissanen in [Rissanen89] and discussed in section 2.4.1.2.2.2 to avoid the 

complex multiplications. The range is divided between the 2 symbols LPS (Least Probable 

Symbol) and MPS (Most Probable Symbol). LPS is assigned to the lower part of the range A 

and MPS to the upper part of the range A. Renorrnalizations are used to expand the interval 

range A and to keep it large enough to accommodate both symbols using fixed precision 

arithmetic. Every renorrnalization produces an output bit. A is renorrnalized between 0.75 and 

1.5 and approximated to 1 so no multiplications are needed as seen in section 2.4.1.2.2.2. In 

the modelling section the probability estimation process is adaptive and based on a state 

machine with 60 states k. A more probable symbol 1 uses 30 states and a more probable 

symbol 0 uses another 30 states. Each state k has associated a less probable symbol 

probability estimate Qe(k) that would be used by the coder. When a LPS renorrnalization 

takes place the probability estimate Qe is increased since a LPS was just coded. After a MPS 

renorrnalization the estimate Qe is decreased what corresponds with an increase of the 

estimate of the MPS (J -Qe). This means that the renorrnalization process associated to the 

arithmetic coder and the state machine with different Qe values associated to the model are 

used to replace the explicit symbol counting mechanism used in other methods. An index 

value identifying a state and pointing to a Qe table position is kept for each different context 

whilst a single table stores all the probability estimate values Qe. Good compression results 

are presented using a 7th order model with 128 contexts based on the 7 neighbouring pels 

(bits) for facsimile compression. The Q-coder algorithm is also known as Adaptive Bilevel 

Image Compressor (ABIC). The simple multiplication-free arithmetic coder and simple 

dynamic probability adaptation enables a fast hardware implementation with high clock rates. 
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On the other hand the Q-coder has a symbol granularity of a single bit what means that at 

most 1 bit can be processed per clock cycle. This is a maximum performance throughput that 

is usually degraded by the characteristics of the data source. Experimentation [Kampf98] 

shows a worst case performance of 0.8 bit per clock cycle. The reason is that the arithmetic 

coding process can require multiple renorrnalizations (interval range expansions) per bit so 

throughput is not data independent. Moreover, the probability Qe table is derived from 

processing black and white (hi-level) image files what should limit the compression efficiency 

if using the Q-coder as a general-purpose compressor. The QM-coder is a variation of the Q­

coder used in the Joint Bi-Ievel Image Experts Group (JBIG) compression algorithm 

[Arps88]. The QM-coder uses a different software optimised convention and allocates the 

MPS to the lower part ofthe range and LPS to the upper part ofthe range. The context in the 

QM-coder is formed by 10 bits generating 1024 different contexts. The worst case throughput 

performance is 0.73 bits per clock cycle. A recent VLSI implementation of the QM-coder and 

Q-coder has been done in [Slattery98a]. The device called the Qx-coder can implement both 

algorithms and clocks at 75 MHz with a throughput of approximately 64 Mbitsis using a 

CMOS SS (0.35 urn) technology from mM [Marks98]. 

[Jiang96a] describes a parallel binary arithmetic coder derived from the mM Q-coder. The 

parallel implementation processes 4-bits in parallel using a tree of processing elements where 

each processing element corresponds to a modified Q-coder. The number of levels in the tree 

corresponds to the number of input bits being processed in parallel and in principle it only 

affects the latency. The equations that the processing elements have to implement are more 

complex than the Q-coder and include multiplications so the appealing multiplication-free 

feature of the Q-coder is lost. The author suggests performing the multiplications using a 

hierarchical structure of adders in each processing element to affect only latency and not 

speed but this should have a negative impact in complexity. Adaptation is also modified since 

it only happens every 4 input bits and not after every bit like in the Q-coder. This should have 

an impact on compression efficiency although the reported results show minimum differences 

in this aspect. Parallel decoding is possible because there are only 24 = 16 possible input 

combinations. The pointer code can be used to directly perform a direct comparison with 16 

values corresponding to all the possible combinations and the correct string can be found in 

parallel. The paper only gives compression results based on a C language implementation of 

the algorithm while hardware details are minimal. 

[Kuang98] presents a 10th order finite-context statistical model with associated binary 

arithmetic coder. A variant from the bit stuffing technique of mM is presented to solve both 

the carry-over problems and the termination condition. A couple of bits are set to 0 after 
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receiving 16 consecutive bits set to 1. If there is a carry-over the second bit always blocks the 

propagation while the first bit is used to signal tennination when set to I. If the decoder 

receives 17 consecutive bits set to 1 then it knows operation must be terminated. The 

overhead of the method is 17 bits only at the end of the process plus the stuffing bits that are 

only needed in very few occasions. The other way to solve the termination condition is by 

adding an extra end of file (EOF) character that it is only coded once. This has the 

disadvantage that a third symbol is introduced in the system increasing the algorithm 

complexity. It is also possible to concatenate to the compressed block the original 

uncompressed size so the decoder stops once this uncompressed size is reached. This is the 

simplest solution although there could be a problem if the uncompressed size is not known at 

the beginning ofthe compression operation and incremental transmission is required. 

The adaptive modelling unit is based on calculating a range of possible probabilities for 

symbol 0 and stored them in a table named Probo . Then other table Ad with 1024 entries 

corresponding to all the possible contexts generated in a 10th order model is used to address 

this table Probo and obtain a conditional probability Po for the arithmetic coder. After 

receiving an input symbol the adaptation mechanism uses 2 offset tables to obtain a new 

address to the Probo table. This address is stored in table Ad so the probability associated to 

the active context changes. This address will point to a position in the Probo table with a 

higher value of Po if a 0 was received or the other way around otherwise. A simplified 

multiplier is used to perform the Po * A operation where A is the range. The technique reduces 

the hardware complexity in half by discarding the half least significant bits result of the 

multiplication. It is important to notice that arithmetic coding can also involve a division to 

obtain a probability value if frequency counts and not probabilities are used in the model. This 

method like the Q-coder deals directly with pre-calculated probabilities stored in tables 

obviating the need for this operation. Again the presence of the renormalization loop in the 

arithmetic coder makes throughput data dependent. 

The simulation results presented in the paper suggest that on average the renorrnalization loop 

uses only 0.5 cycles because in many cases is not needed. Adding this value to 8 cycles fixed 

time to for the rest of the chip operation produces an average value of 8.5 cycles to process a 

bit of input data. The clock rate is 25 MHZ (using a 0.8 pm single-poly double-metal (SPDM) 

technology) and therefore the throughput is 25/8.5 approximately 3 Mbitls. The 

renormalization loop could, however, take up to 7 cycles to complete. Then it could take up to 

IS cycles to process a bit of input data for a worst case throughput of 1.67 Mbitls . The 

compression ratio based on the experimental results shown in the paper using a combination 

of text, image and binary files seems to be in the order of 0.5. 
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The same research group presents a variation on the previous device in [Jou99]. A finite­

context lOth order statistical model associated to a binary arithmetic coder forms the device. 

The coder is essentially the same as in [Kuang98] but an additional tuning step is included in 

the model to improve compression efficiency. The model uses the same concept of having 2 

tables: the first table is used to store the most probable 128 conditional probabilities for 

symbol 0 called Probo that eliminates the need for a division, the second table Ad is used to 

store 1024 addresses to this Probo table to reflect that the probability of the symbol 0 changes 

depending on which context is active. Offsets tables are used to calculate the new probability 

of symbol 0 after completing the current coding step. A probability-tuning step is introduced 

in this stage so depending on the characteristics of the data source being compressed a 

different pointer to Probo is stored in Ad. A total of 5 different tuning steps are pre-calculated 

and the results stored in 5 different offsets tables. A fuzzy inference process based on the past 

behaviour of the processed data is used to select one of these 5 offsets tables to perform the 

adaptation in the model. The complexity of the model is higher than if it is compared with 

[Kuang98] but compression improves because the probability tuning step is used to reflect the 

characteristics of different data sources such as bi-level image data, colour image data, 

greyscale image data, binary data and text data. Compression results are shown on different 

data types and consistently outperform a Oth order context-free multi-alphabet model plus 

arithmetic coder. An average compression ratio slightly better than 0.5 is achieved. The 

performance of the design is equivalent to the [Kuang98] since the same coder is used and the 

multiplication is again the limiting factor in speed. 

A parallel architecture for arithmetic coding is presented in [Lee96]. The description does not 

include any references to the modelling stage only to a way of reorganising the basic 

arithmetic equations to incorporate parallel processing. The algorithm processes a number of 

N symbols in parallel but not in a single cycle because the dependency between 2 different 

group of symbols is present. The width of the symbol is not indicated but since the number of 

arithmetic operations (multiplications and additions) is considerable it will probably fit better 

a binary alphabet. The basic idea is to obtain the arithmetic equations state for low and range 

after processing N symbols and then reorganize them to replace N operations for !Og2(N) so a 

tree-shape parallel architecture can perform them. The processing of N symbols must be 

completed before the next N symbols can access the architecture. Pipelining is not possible 

because the resulting state of low and range must be input together with the probability values 

of the N symbols. Hardware details are minimal. 
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2.5.1.2 Multi-alphabet arithmetic hardware 

[B0098] describes a Oth order context-free multi-alphabet statistical model associated to an 

arithmetic coder for coding of multilevel images. The alphabet size is 256 and frequency 

counts are dynamically maintained in the model for each of the symbols in the alphabet. We 

have already discussed that arithmetic coding needs cumulative frequency counts to properly 

identify the range the symbol uses in the [0,1) interval. This means that a worst case in the 

adaptation process would need to increase all the cumulative frequencies stored in the model 

resulting in a large number of additions. To alleviate this problem the scheme implemented in 

the paper stores a subset of 16 cumulative frequencies named reference cumulative 

probabilities while the rest are stored in normal non-cumulative form. To calculate the 

cumulative frequency needed by the arithmetic coder for a symbol k it is necessary to use a 

reference cumulative frequency h plus a few frequency counts h+l, h+2, ... ,k-l if k < h+8 or 

cumulative frequency h+ 16 minus a few frequency counts h+ 15, h+ 14, ... , k. The worst case 

needs 9 additions or subtractions corresponding to 8 symbol probabilities and I reference 

probability. This technique simplifies the adaptation process, since now in the worst case only 

16 reference cumulative frequencies need to be updated plus one symbol frequency, but it 

adds more operations to the calculation of the cumulative frequencies. The arithmetic coding 

process has been simplified by truncating the multiplier to a small number of most significant 

bits, which is a trade-off between complexity and compression efficiency. The architecture is 

evaluated using a 0.7 /Lm CMOS standard-cell library [Peon97] and the non-pipelinable 

critical path is found to have a delay 26 ns in the interval updating formed by the 

multiplication and normalization process. Therefore the maximum clock frequency is reported 

in 39 MHz with a total area of 31 mm'. 

The paper seems to deal with the concept of symbol probability and symbol frequency count 

indistinctly. However to obtain a symbol probability it is necessary to divide its frequency 

count by the total frequency count. The total frequency count is usually the cumulative 

frequency count of the last symbol. This division is usually done as a table look-up using a 

few more significant bits from both operands as address since divisions are even more 

undesirable than multiplications. This problem is not addressed properly in the proposed 

architecture that seems to use symbol frequency counts in the multiplication operation as if 

there were directly equivalent to symbol probabilities. The paper does not provide any results 

on compression performance. Compression performance should be limited since Oth order 

models perform poorly in most situations. 

The same technique described in section 2.5.1.1 [Jiang96a] for a binary parallel coder is used 

in [Jiang94] to obtain a parallel implementation of a multi-alphabet arithmetic coder. 
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Although the arithmetic coder is associated with a Oth order model to evaluate the performance 

of the coder, the model implementation is not dealt with in hardware. The system processes 8 

bytes at a time instead of 4 bits at a time using a hierarchical tree structure with 5 levels. 

Parallel decoding in this case is unfeasible because the number of possible input combinations 

to decode 8 symbols in parallel with and alphabet of 256 symbols is 2568 
.• This means that 

the complexity of the parallel decoding hardware is too high. A sequential decoder is 

designed to work with the parallel coder. Most applications are read biased, which means that 

they tend to decompress more often than compress. The lack of parallel execution in the 

decoding process constitutes a major limitation in the implementation. There are 2 types of 

processing elements realising 2 different sets of equations in the tree structure. Both sets of 

equations involved multiplications and divisions. The proposed processing element has 1 

level with 6 14-bit multipliers and 6 levels of adders for a total of 20 adders. It is obvious that 

the complexity of this PE is very high. These levels can be pipelined but since there are at 

least 5 levels of PE's in the whole coder the resulting latency would be very high degrading 

speed accordingly. One set of PE's involved the division by a fixed value of the initial range 

16384 that can be readily implemented by shifting left the 14 least significant bits. The other 

equation involves the division by the total cumulative frequency count that always increases 

with each adaptation cycle and that in this implementation can have a maximum value of 

8192. This division does not seem to be dealt with properly in the algorithm description. A 

typical solution is that, as in other implementations, the cumulative frequency count of the 

symbol and the total cumulative count are used to address a table and obtain the cumulative 

probability count resulting from dividing these 2 values. Hardware details are minimal. They 

are limited to a few block diagrams and not data is reported on complexity. The simulation 

results, which are based on a software model, seem to suggest that compression performance 

is not affected if comparing this parallel implementation with a sequential one. It is important 

to notice, however, that the adaptive model is updated every 8 symbols instead of every 

symbol as in classical sequential coders. The paper also acknowledges the need for higher 

order context-based modelling to improve compression. Unfortunately, the complexity of 

higher-order context-based modelling using multi-symbol alphabets has precluded any 

examples in hardware up to now. 

The work presented by the same author in [Jiang95] is the implementation of a multi-alphabet 

arithmetic coder using a modification in the basic equations. These modification consist in not 

using the values of high and low to define the state of the coder but instead using the values of 

low and range where range equals high - low. The paper claims that this change brings a 

simplification in the renormalisation process so that it can be control testing only when the 

value of range is less than half the initial range. This single condition test aIIows the 
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incremental generation of output bits and range expansion to avoid underflows and to allow 

coding to continue indefinitely using fixed-length registers. The criticism in [Moffat97] is 

based on several problems that seem not to be properly addressed in the original paper. A loss 

of coding efficiency is introduced by rounding errors and also the decoder is more complex 

since 2 values must be calculated. The paper gives no details on the model that should feed 

the arithmetic coder although the compression results are based on using a Oth order one. 

Hardware details are again minimal, limited to a few block diagrams that makes it difficult to 

draw any conclusions in terms of speed or complexity. The new algorithm equations are 

design to handle multiplications and divisions and no effort is made on simplifying these 

operations. These unresolved issues should limit a hardware realisation. 

[Hsieh98] describes a multi-alphabet Oth order context-free model associated to a 

corresponding arithmetic coder for video compression. The modelling unit uses a limited past 

history model implemented as a first-in first-out buffer used to store a window of symbols 

from the input data source. This window buffer allows the modelling unit to pick up the local 

statistics of the data being compressed, thanks to the principle of locality of reference, thus 

increasing compression efficiency. A small buffer size improves the speed of adaptation but it 

could damage compression if not enough data is available to construct an accurate model. 

This limited-past history model overestimates the probability of a symbol by J /(p+ M) where 

p is the alphabet size and M is the buffer size. The overestimation is caused because all the 

possible input symbols in Oth order modelling must be assigned an initial count higher than 0 

to prevent the coding from failing when a symbol is processed for the first time. The total 

frequency count is p+M. If the buffer size M is small this error is larger. To alleviate this 

problem a weighted limited-past history model is proposed so the overestimation value 

becomes 1I(p+M*W). If the weight W increases, the error decreases although a large value of 

W will also damage compression because the probability of a symbol not yet seen in the data 

source (the overestimation) could become very small. The best trade-off seems to be a weight 

of 16 and a buffer size of 112. The modelling unit also ensures that the denominator of the 

cumulative frequency is a power of 2 so that the division required to obtain the cumulative 

probability can be done by shifting. The algorithm uses the multiplication-free solution 

proposed by Rissanen [Rissanen89] to perform the arithmetic coding itself. The normalisation 

is done in a single step by counting the number of positions that the range and lower pointer 

should shift to maintain these values in the correct range [0.75, 1.5) used in Rissanen 

arithmetic coder [Rissanen89]. This technique avoids a data dependent throughput because it 

eliminates the need for a variable number of cycles to normalize the range. In the hardware 

implementation a similar technique to [Boo98] is used to store the frequency model using 

some frequency counts as base and others as variations from the base. In this case the 
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variations are not stored as the true frequency counts but as offsets from the base. This 

technique means that to obtain the true cumulative count of a symbol only 2 values a base and 

a offset must be added whilst in [Bo098] 9 values could be needed in a worst case. On the 

other hand the adaptation process must change in a worst case 16 bases and 16 offsets whilst 

[B0098] only needs to change 16 bases and one true value. This adaptation process can be 

done in parallel using 32 counters but it increases hardware complexity. 

The limited past history model means that in each cycle one symbol enters the buffer and one 

symbol leaves the buffer. Then 2 symbols one adding I count and other decreasing I count 

must adapt the cumulative frequency array adding cycles to the operation. In the decoding 

process only 16 comparators are needed to decode a symbol in parallel. This is an important 

reduction in complexity since a 256 symbol alphabet needs 256 comparators if a bank model 

is not used. During an initial cycle the pointer is compared with the bases and once the correct 

bank has been identified a second cycle is used to compare the pointer with the offsets inside 

the base. The scheme incurs again in a performance penalty since the decoding operation uses 

2 cycles instead of 1. The results obtained after compressing a series of images suggest a 

compression performance of 0.5. The results show a clear advantage over the mM Q-coder 

that only manages a best of 0.9 when processing the same set of images. This compares a 7th 

order context-based binary model with a Oth order context-free byte model and seems to 

indicate that the second one wins. The mM Q-coder is targeted to bi-level images and its 

model is hardwired to this objective. A bi-level image has a symbol granularity of one bit and 

therefore it is very efficient to predict a whole symbol using 7 preceding symbols as the Q­

coder does. If the symbol granUlarity is the byte, however, this rationality is lost and the 

system performance degrades. The compression ratio of the weighted limited past history 

model plus arithmetic coder is modest at 0.5. The reason is not in the implementation itself 

but the original concept of modelling a data source with a Oth order context-free model. 

Unfortunately no details are given in the hardware section on gate count or throughput but the 

complexity of the algorithm is considerable. 

[Printz93] presents a non-adaptive Oth order context-free multi-alphabet model with an 

arithmetic coder. The modelling unit is fixed and is implemented as a look-up table that 

produces 2 values for each of the 256 possible inputs corresponding to its cumulative symbol 

probability and symbol probability. The system eliminates the need for a division because it 

handles probabilities directly. The modelling unit is therefore extremely simple and fast but 

since it is non-adaptive it will provide arbitrarily inaccurate statistics if it is used in a general 

compression application. The coder needs to perform 2 multiplications one for each of the 2 
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equations involved in updating the interval range A (range_new) and the code point C 

(low_new). See equation set [2.6]. 

The first equation that deals with the interval range is completely embedded in a look-up table 

that also calculates the multiplication factor for the second equation. A special index-based 

non-arithmetic representation of A reduces the size of the table. The second equation uses a 

special re-timed circuitry to obtain a cycle time equivalent to a single 2 bit adder. The design 

has been implemented in a special hardware prototyping board formed by a group of FPGA's 

plus memory. It clocks around 32 MHz and since 2 cycles are needed for each byte due to 

multiplexing and memory access time the throughput is 128 Mbitsls . The compression results 

are compared against the Q-coder using a combination of image files, text and binary data 

where it seems to offer some advantage. The design uses data tailored to the file that is going 

to be compressed to initially construct its probability model. The necessary decoder is not 

available in this publication although it is pointed out as future work together with adding 

adaptation capacity in the model. The author estimates a decoder speed 4 times slower than 

the encoder speed. 

2.5.1.3 Tree-based Hardware 

The chip described in [Mukhetjee93] does not use arithmetic coding but tree-based codes and 

the byte as symbol granUlarity. Huffman coding is the most popular tree-based code. The code 

is static and it does not adapt to variations in the statistical properties of the data source, but, 

because it is not hardwired but mapped to a memory device, it can be changed to suit the 

application. For example a different code could be devised ifthe expected data is image data, 

text data or binary data. This is an advantage over a hardwired code but its performance is 

limited, for example, to finding a suitable code to process multiple images that could have 

very different statistical properties. If the switching process is done very often speed will be 

lower. Most of the paper is devoted of how to obtain an efficient mapping of the tree code to 

the memory device. All the formulation is based on a single tree code what means that the 

associated model is Oth order. If for example the model was 1 SI order 256 different tree codes 

will exist one for each possible context. The device complexity would be greatly increase 

with 256 memory devices plus more complex coding and decoding functions to multiplex 

among them. The context is expected to change after processing every input symbol so to use 

a single memory and to load it with the corresponding tree-code stored outside the device is 

not a sensible option. 

The tree has the property that 2 bits are associated to each edge extending from parent node to 

child node so fewer interactions are needed to reach the leaf nodes starting at the root. The 

chip has been fabricated using a 2-/Lm SCMOS technology with a clocking frequency of 83.3 
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MHz. The limiting factor is the memory access cycle time since several accesses are needed 

to code each input symbol. 

A compression ratio of 0.5 is assumed so each byte of input generates 4 bits of output. Each 

tree edge generates 2 bits of output so around 2 memory accesses are required to generate the 

4 output bits. This assumption is used to report a performance of 95.2 Mbits/s for 

compression and 60.6 Mbits/s for decompression. The throughput is highly dependent on the 

input data source since it would be halved if the compression ratio drops to 1.0 because 

around 4 memory cycles will be needed to process each input symbol. It is unlikely that a 

static Huffman coder plus a Oth order model achieved a compression ratio of 0.5 if used as 

general compressors. 

An adaptive Huffman coder implementation in hardware is presented in [Liu95]. Adaptive 

Huffman coding involves modifying the Huffman tree after each symbol is coded or decoded. 

This could be a very time consuming task since each coding step could produce a very 

different Huffman tree. The adaptive algorithm uses a tree tuning strategy that does not 

rebuild the tree. It also uses a parallel technique to perform both tasks: generate the codeword 

and adapt the tree visiting the nodes only one time from leaf to root. This technique has the 

potential of halving the processing time if compared with a sequential approach. A scheme is 

devised to avoid interference between the code generation and tree tuning process. This 

interference could result in incorrect operation. The design is based on using CAM modules 

to store the information associated to each node and to speed up the tree adaptation process. 

The coding process can generate almost one bit of codeword per cycle. This measure of 

throughput is related to the output of the coding algorithm and not the raw input data as usual 

since it depends on the length of the codeword. If the input are bytes and a compression ratio 

of 0.5 is achieved then an input symbol would be processed in 4 cycles but this value would 

degrade to 8 cycles if the compression ratio is 1.0. A worst case expansion will affect 

throughput even more. No hardware details are given so it is not possible to know the clock 

frequency of the design. The decoding process is more complicated than the coding process 

because the dependencies present in the algorithm prevent it from using the same parallel 

technique. Therefore a sequential decoder is adopted. A frequency preset approach is 

proposed so only a few nodes need adjusting to tune the tree after it has been traversed to 

decode the codeword. The best case scenario processes one bit of input per cycle but this 

could degrade to 0.5 bits of input per cycle if all the nodes need adjusting. Moreover this 

figure again refers to input compressed data throughput and not as usual to the output 

uncompressed data throughput so it is data dependent. The output uncompressed data 

throughput is highly dependent on the data compressibility because even if a bit of input 

compressed data is decoded per cycle the output throughput will be determined by the 
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compression ratio. Worst compression ratio implies more cycles to decode a symbol and 

therefore a lower throughput. Finally, the model is a Oth order model which should produce a 

modest compression ratio when combined with a Huffman coder. 

2.5.2 Dictionary-based hardware 

Dictionary methods try to replace a symbol or group of symbols by a dictionary location code. 

The modelling stage is given extra importance while coding is simplified. Some dictionary­

based techniques use simple uniform binary codes to process the information supplied by the 

model. Hardware dictionary-based compression is very popular and successful, achieving 

excellent throughput and competitive compression ratios. 

2.5.2.1 LZ1 Hardware 

LZl (LZ77) derivative devices have achieved significant commercial success. Chips 

implementing the ALDC algorithm (Adaptive Losless Data Compressor) by mM 

[Slattery98b) and LZS (LZ STAC) algorithm by Hifu [Hilfu96) (previously STAC 

Electronics) illustrate this situation. The usage of these devices to improve system 

performance is well accepted. The fundamental reasons are that LZl derivatives achieve 

competitive compression with low complexity using multi-symbol alphabets. This in turn 

allows high throughputs in the order of Mbytesls and not Mbitsls as with the previously 

discussed statistical approaches. Although the compression ratio of statistical methods is in 

theory superior to dictionary-based methods this is only true when using complex algorithms 

such as those described in section 2.4.1.1.1. These methods are unsuitable for fast hardware 

implementations. 

The ALDC compression algorithm uses the same principles as the IBMLZl [Cheng95) chip. 

The model is based on a CAM used to store the history data. Several versions are available 

where the CAM varies in size from 512 bytes to 2048 bytes depending on the complexity and 

compression required. The dictionary is maintained as a circular buffer that keeps the sliding­

window functionality typical ofLZl algorithms. If 2 or more bytes are matched consecutively 

in the CAM a match is detected and the output is formed by 2 fields preceded by a single bit 

indicating a match condition. The first field is the match length that is coded using a 

logarithmic code derivative from a Huffman code. The maximum match length is 271 which 

is found to be the best value after extensive simulation results. The second field is the position 

in the CAM where the match starts and it is coded using simple uniform binary coding. If a 

match is not detected the symbol is added in literal form to the output preceded by a single bit 
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indicating a miss. This operational mode limits expansion to 12.5% when each 8-bit input 

symbol misses and becomes 9 bits in the output. The ALOC algorithm was implemented in a 

0.8 pm CMOS technology and clocks at 40 MHz to obtain a throughput of 320 Mbitsls with a 

complexity of75 Kgates. This device is called ALOCI-40S [mM94] and it is available as a 

hardcore from mM microelectronics. mM literature [Craft98] also reports that using a more 

recent technology such as mM CMOS 5 (standard cell/gate array 0.35 p,m, 6 levels of metal) 

the critical path located in the CAM searching operation can be further reduced to only IOns. 

The compression/decompression throughput is then 800 Mbitsls with a clock frequency of 

100 MHz. A license version of the ALOC algorithm is also available from AHA in the 

AHA3521 chip [AHA97a]. This chip is implemented in a 0.5 p,m and clocks at 40 MHz for a 

160 Mbits/s throughput because 2 cycles are used to process each byte. Some algorithm 

extensions to the ALOC method are also reported in [Craft98] to produce 2 variants named 

BLDC and cLOC algorithms. These extensions are based on using a front-end run-length 

coder pre-processor to feed the ALOC chip and improve compression without affecting 

speed. 

mM also introduces in [Franaszek96] a method for obtaining parallel LZ 1 compression using 

cooperative dictionary construction. The idea is that the input data block is divided into a 

number of sub-blocks (typically 4) and these are processed in parallel using independent 

coders. The result is concatenated in a single block and a prefix area is added to indicate the 

decompressor how the single compressed file must be split to feed the independent decoders. 

To alleviate the problem of a decrease in compression efficiency the dictionary is shared 

among the coders and maintained in common. The effect is that more data is available as 

history data for each sub-block and compression improves. This simple concept can not 

provide the same level of compression as a single device solution because the history data 

available to compress a symbol n with a dictionary size m is not the m symbols that preceded 

symbol n but gaps exist in the history buffer corresponding to data assigned to the other 

coders and not yet processed. Also this solution precludes the use of incremental reception 

and transmission of data since the entire data block must be available before the compression 

operation can be initiated and all the compressed data must be available before the header can 

be added and transmission started. Therefore a higher latency is added with this technique. 

The Hi/fn devices realize in hardware the LZS [Hilfn96] algorithm developed by the same 

company. The LZS lossless data compression algorithm is a LZl derivative that uses a 2 

Kbyte history buffer. The coding format of the LZS algorithm is similar to ALDC. A match is 

coded as 2 fields preceded by a single bit indicating a match condition. The first field is the 

offset or pointer to the buffer location where the match starts. The offset can be coded as a 7-
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bit offset or ll-bit offset preceded by a single bit to differentiate between both. This is in 

contrast with ALDC where the offset was not coded. This coding scheme improves 

compression by assuming that short offsets to a maximum length of 128 are more common 

than offsets to the beginning of the buffer. The algorithm exploits the locality of reference 

effect that establishes that data that has just been seen is more probable to be seen again. The 

second field is the match length. This is coded using a prefix free code similar to a static 

Huffman code. A miss is coded by adding the literal to the output preceded by a single bit like 

in the ALDC algorithm. Expansion is limited to 12.5% when all the 8 bit literals are 

transformed into 9 bit codewords. 

A RAM is used in some low-end LZS hardware products from Hilfu to realise the history 

'buffer. A tuneable feature is included so the amount of searching done in the buffer can be 

externally controlled trading throughput for compression. Compression throughput is limited 

when using RAM to 64 Mbitsls but since RAM tends to be plentiful it is easy to include 

multiple-history support. Multiple-history support means that different history buffers are 

maintained independently for different communication channels improving compression. The 

algorithm switches among them depending on which channel is active. The high-end products 

use a CAM to implement the history buffer. In this case searching is done exhaustively in a 

single cycle. A CAM-based device has been fabricated in a 0.5 pm CMOS technology and it 

is available from Hi/fu with the name 9610 [Hilfu98b] Data Compressor Processor. It clocks 

at 50 MHz with a throughput of 400 Mbits/s. A more recent version named 9600 [Hi/fu99] 

has been fabricated in 0.35 pm CMOS technology with a maximum throughput of 640 

Mbitsls when the internal logic is clocked at 80 MHz. This device includes also the novelty 

of being a full-duplex device so compression and decompression can be done simultaneously 

for a combined performance of 1.25 Gbits/s. All the other devices discussed in this section are 

half-duplex which means that the processor must compress part of the active time and 

decompress the rest. Full-duplex functionality is becoming a feature of data communication 

standards such as Gbitls Ethernet. This network when running in full-duplex mode can carry 

each way I Gbit of data per second so full-duplex functionality in a single 

compression/decompression chip is a useful feature. 

[Surk97] presents a PE-based (Processing Element) VLSI architecture for the LZI algorithm. 

Each PE compares the incoming input symbol with the symbol it stores in I cycle and shifts 

the symbol to its neighbour. The single dimension array of PE's behaves in a mode similar to 

a modified CAM-based design if the CAM cells are redesign to input data from their 

immediate neighbours. New data is input in the right most PE and the data located in the left 

most PE is eliminated from the history buffer. When a PE maintains its match signal active 
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for more than 1 cycle a string match is detected. The output identifies the PE position and the 

match length that equals the number of cycles the PE maintained its match signal active. The 

are a total of 1024 PE's and this value also defines the history buffer size. The maximum 

match length is limited to 16. This should affect compression since values around 256 are in 

general more appropriate for this process [Cheng95]. The miss problem is dealt in the 

traditional way of preceding all the codewords with a single bit. The basic symbol is 7-bits 

wide so the compressor as described is only suitable to compress ASCII coded text. The data 

input rate is constant and post-layout simulation indicates a performance of 700 Mbitsls using 

a 0.5 triple-metal CMOS technology and a 100 MHz clock. 

[Jung98] presents another YLSI LZI implementation for optimisation of wireless local area 

networks. Much of the paper is devoted to analyse the effects of lossless data compression in 

wireless networks. The LZl algorithm codeword format has the classical 2 fields: offset plus 

match length but this time the codewords are of fixed length 16 bits which means that uniform 

binary coding is used for both values. Dictionary length is 512 so 9 bits are used for the match 

location while 7 bits are left for the match length. If a match is of length less than 3 then 2 

bytes in literal form are added to the output. A single byte is added to 8 2 byte codewords to 

distinguish between compressed codewords and uncompressed literals. This technique limits 

expansion to 6.25% but it also increases latency since 8 2-byte codewords must be stored 

intemaIly before any output is produced. No details are given on compression performance 

but an average compression of 0.5 is assumed for this type of compressors working on typical 

network data. A paraIlel architecture is presented using 512 PE's organised in a single­

dimension array. This architecture uses the same CAM principles as [Surk97] to process 1 

byte of raw data per cycle. This architecture is deemed not suitable to support multi-channel 

compression because the overhead of switching the dictionaries is considered too high if a 

different dictionary must be uploaded in the CAM each time the compression channel 

changes. The authors proposed a different mapping of the original algorithm to base the 

algorithm in RAM and enable multi-channel support. The resulting design is simulated using 

a 1.2 pm CMOS technology and it clocks at 100 MHz producing a throughput of 50 Mbits/s. 

The complexity is reported of around 36K transistors. 

[Chen98] presents a linear systolic array YLSI design for LZl compression. The systolic 

array includes a dictionary buffer with 512 characters distributed over 64 systolic ceIls. Each 

ceIl compares an input character concurrently with the 8 character dictionary section that it 

holds in that cycle. The systolic ceIl outputs to the neighbouring ceIl the character to be coded 

plus the longest match string that started with that character. The design has been 

implemented in a 0.6 pm standard ceIl library and it uses around 90 Kgates. The operating 
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frequency can reach 91 MHz with a throughput of 728 Mbitsls. The architecture needs a 

number of comparators equal to dictionary size but it can operate at a frequency 

independently of the dictionary size. The reason is that cell frequency is not affected by the 

number of cells present in the systolic array. Latency is proportional to the number of cells 

present in the array so this architecture using a 512-character dictionary has a latency of 64 

cycles. It offers a compromise between the single cycle operation of CAM architectures 

where a high fanout could prevent dictionary extension and the high latency of PE-based 

architectures with a single comparison is done in each PE. 

[Nusinov94] also presents a VLSI LZI derivative for multi-channel compression. The LZl 

proprietary implementation is called Codex Ziv-Lempel (CZL) algorithm. The dictionary 

length can be of maximum of 1024 bytes. The codewords are organised in the 2-field format: 

length plus location. The match length is coded using a Huffman-style conversion table while 

the location is coded using a phased binary coding so when only a few dictionary locations 

are active the chip obtains improved compression. A match is considered valid if the length 

field is at least 2. Otherwise a miss is coded using a length 0 plus the byte in literal form 

replacing the location field. This approach differs from the previously discussed techniques 

and deals with the expansion problem in a less efficient way. It is probable that the conversion 

table used for the match length assigns very few bits to the match length 0 to minimise the 

expansion problem but no information is available in the paper. Multiple dictionaries up to a 

maximum of 2000 are stored externally in RAM. During coding the appropriate one is 

uploaded in internal CAM (Content Addressable Memory) memory to allow parallel 

searching. The overhead of uploading an external dictionary with 1024 bytes to internal 

CAM should be very high since only an 8-bit bus interface is available. The internal CAM 

accounts for most of the logic in the chip and it does not include shifting capabilities. A CAM 

cell can only activate its match signal if the neighbouring CAM cell did so in the previous 

compare cycle. This mechanism allows the input string to be progressively matched along the 

CAM dictionary. Updating is done simultaneously in the internal CAM and external RAM so 

there is not need to download the CAM contents after compression switches to a different 

channel. During decoding the external RAM is used directly. The need to update the external 

RAM after every compare cycle means that two cycles are needed to process each byte. The 

chip clocks at 20 MHz and has a throughput of 80 Mbitsls. Compression is reported to be 

around 0.5 to 0.33 for typical data but no experimental results are provided. The chip has been 

fabricated using a 0.8 J.lm CMOS technology but no details are available on gate count or 

transistor count. 
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2.5.2.2 LZ2 Hardware 

The LZ2 algorithm was developed 1 year later than the LZl variant and it has not become as 

widely used as this one. The reason is that it uses a more complex dictionary structure where 

dictionary entries are formed by concatenating the next incoming data character after using a 

dictionary entry to that entry forming a new dictionary entry. The LZ2 algorithm produces an 

output code specifying dictionary locations where data and length can be found. This code 

output can be simple uniform binary coding where the number of bits is the 

log,(differentyossible_codes) or more refmed coding strategies can be used. Although 

theoretically superior to the LZl algorithm, LZ2 is at a disadvantage when compressing small 

packets of data and requires more complex structures that hampers its throughput. 

The DCLZ [AHA96] family of compressors from AHA (Advanced Hardware Architectures) 

are LZ2 derivatives. The DCLZ (Data Compression Lempel Ziv) was originally developed by 

Hewlett-Packer laboratories around 1989 and used in their tape drive [Bianchi89]. The 

hardware DCLZ works by storing a dictionary of 4096 entries organised as a linked-list with 

the first 256 values assigned to the ASCII values. Each entry in the dictionary contains 23 

bits: 8 bits are assigned to hold an ASCII value, 12 bits are assigned to hold a location value 

and the rest are used as flags. New dictionary entries are added to the dictionary storing the 

byte that stopped the string matching procedure in an unused position. The location loaded in 

this position is a pointer to the dictionary location that holds the previous byte part of the 

string. The string is linked in this way and eventually a location address points to the byte that 

originated the string in the first 256 positions. This simplifies dictionary structure since the 

width of the array is fixed. The AHA3l0l chip stores the dictionary in the device and when it 

becomes full dictionary adaptation freezes. Periodic resets of the dictionary are done when 

compression performance degrades. 

The codewords output by the algorithm are simple dictionary locations addressing the 

location that holds the byte that terminated the string. There is no need for match location 

lengths as in LZ1. There is no special handling of a miss condition since misses are coded as 

pointers to the first 256 locations where the ASCII code is stored. The dictionary needs a 12-

bit pointer locations when full and this means that a worst case expansion transforms 8-bit 

input symbols into l2-bit ouput codewords. The worst case expansion is then 50% that could 

be unacceptable in many applications. The expansion activated reset mechanism should avoid 

this situation because when the dictionary is empty only 9 bits are used for the codeword. The 

dictionary codewords are of length 9 to 12 bits depending on how many entries in the 
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dictionary are active. This mechanism is not as efficient as phased binary coding (PBC) where 

the location length is optimal for a dictionary that grows one position at a time. For example if 

513 locations in the dictionary have been used PBC assigns 9 bits the first 5 I 1 locations and 

10 bits to the other 2 but the previous scheme will always use 10 bits. The throughput is 

affected by the compression ratio and it is therefore data dependent. It is worst under 

expansion conditions since it is necessary to access the external memory more often to 

perform updates. Since the device is based on RAM the searching operations are also very 

time consuming. The throughput of the AHA31 0 1 is on average 20 Mbits/s. 

A more recent addition to the DCLZ family of devices is the AHA3211 [AHA97b]. This chip 

uses internal CAM to replace the external RAM and to improve the searching and adaptation 

speed. It clocks at 40 MHz and it has a data independent throughput of 160 Mbits/s. It has 

been fabricated using a 0.5 p.m CMOS technology. 

[Bunton92] presents another LZ2 implementation that improves upon the [Bianchi89] DCLZ 

LZ2. The [Bunton92] algorithm uses a similar dictionary structure to [Bianchi89] but offers a 

more advanced dictionary maintenance mechanism where a tag is attached to each dictionary 

location to identify which node should be eliminated once the dictionary becomes full. The 

tag mechanism implements a Least-Recently-Used (LRU) policy so the oldest node in the 

linked-list dictionary and always a leaf in the corresponding virtual trie is declared free to 

continue dictionary adaptation indefinitely after it becomes full. Removing a non-leaf node 

will fail the algorithm because trie branches would be unconnected. This technique improves 

over a dictionary that stops adapting and resets if compression degrades when no more empty 

nodes are available. Better performance is obtained with a similar size dictionary or 

alternatively the dictionary can be made smaller for the same performance target. The 

hardware realisation uses only lK different locations but it performs similar to a 64K resetting 

technique. Since the dictionary is much smaller the codewords output from the coder have a 

fixed-width of 10 bits because growing-dictionaries combined with short start-up phases offer 

little benefit. The hardware complexity is around 210K transistors using a 2J1m CMOS 

process plus 20 Kbits of off-chip static RAM to store the tag information. An internal CAM is 

used to stored the dictionary. This implementation achieves a data independent throughput of 

108.8 Mbits/s. This rate can be improved up to 160 Mbits/s in the same technology if the 

RAM's are placed on-chip eliminating the need for off-chip communication. This scheme 

seems to offer better compression and less complexity (IK dictionary against the 4K in 

DCLZ) than the [Bianchi89] device. The speed is also very competitive for a 2 I'm CMOS 

technology. It is, however, the Hewlett-Packer device the one that has achieved commercial 

success and it is in use today in many tape drive storage applications [Cressman94]. 
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2.5.2.3 Other dictionary-style hardware 

A very simple lossless data compressor is the run-length coder of [Xiong97] where the output 

is the data byte and a number byte indicating how many times the data byte has been seen. 

Although little information is provided in the paper it is obvious that such a simple 

compression technique can produce high throughput at the expense of a low compression 

ratio. 

The X-Match family of devices developed at Loughborough University [Jones92], [Kjels095], 

[Kjels096], [JonesOO] belongs to the category of dictionary-based compressors but they are 

not LZ derivatives. The X-Match model follows the principles of the BSTW algorithm 

discussed in section 2.4.3. The X-Match model is based on a 4-byte wide CAM dictionary and 

outputs a dictionary location indicating where a match was found and match type indicating 

which bytes out of a maximum of 4 where found. This partial matching characteristic gives 

name to the method. The X -Match coder uses a phased binary code (PBC) for the match 

locations and a static Huffman code for the match types. The X-Match coder offers single 

cycle operation and data independent throughput combined with a very low latency, the 

features of a high performance compressor. Since it processes 4 bytes of input raw data per 

cycle it can achieve high throughputs with modest clock frequencies due to its parallelism. 

Pre-layout simulation indicates a performance of 800 Mbits/s clocking at 25 Mhz using a 0.6 

pm gate array CMOS technology. Complexity is around 100 Kgates. 

2.5.3 Other Hardware 

Other work that can not be classified in the range of statistical or dictionary-based methods 

corresponds to the genetic algorithm developed in the DCP chip [DCP95]. There is little 

information on the features of the genetic algorithm although a dictionary table is used. The 

developers claim very high compression ratios that outperform the LZS algorithm from 

HilFn. The figures in the DCP documentation show an advantage of the DCP algorithm over 

LZS of around 25 % and in some cases up to 100% better compression when processing 

databases although the improvement decreases if targeting text and binary data. When 

compressing standard data such as the Calgary corpus the compression advantage is around 

20%. Worst case expansion is limited to 3%. This chip is implemented in a 1 pm CMOS 

technology and has a throughput of around 1.64 Mbits/s clocking at 40 MHz. The chip named 

DCP8l6 has a complexity of around 15K gates. It supports up to 64 channels of 

compression/decompression and it uses 512 Kbytes of external RAM per dictionary/channel. 
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It needs on average 190 clock cycles to process one byte of input data so the algoritlun 

complexity seems to be very high and far from the single cycle operation of other compressor 

solutions. 

The hardware presented in [Sakanashi98] for printer image compression is based on 

evolvable hardware (EH) and genetic algorithm (GA) paradigms. Evolvable hardware 

technology is able to change the hardware structure depending on the requirements of the 

target task and it is normally associated to reconfigurable hardware such as an FPGA. The 

work presented aims to improve the performance of the JBIG standard based on the mM 

QM-coder. The QM-coder compresses a bit of data using a context formed by 10 surrounding 

bits. The shape of the template that defines which bits are chosen as context can be modified 

only slightly in the QM-coder. The evolvable hardware chip has 2 main hardware 

components: A RISe processor and a QM-coder. There are 2 modes of operation, the learning 

mode and the compression mode. The objective of the GA is to use the learning mode to 

select the template that offers the best compression ratio for a portion of the image. The GA 

runs in the RIse processor where it selects different templates to perform compression and 

uses the amount of data output by the QM-coder to choose the best one. In compression mode 

a context generator uses the previously selected template for each image portion to provide 

the QM-coder with a context and a pixel to be coded. Compression ratio using this 

combination of GA and QM-coder is twice as good as the one obtained by the QM-coder on 

its own. The algoritlun throughput is, however, very Iow because the learning mode is very 

time consuming since the QM-coder has to run several times, one time for each template 

tested. Compression throughput is around 12 Kbits/s. The paper does not present the 

corresponding decompressor. Unfortunately, the evolvable hardware feature in the chip 

description cannot be properly identified. The use of a GA to select an optimal template for 

each image portion is clear and well understood. On the other hand the process of context 

selection based on different pre-calculated templates during image compression seems more 

of a multiplexing technique than a technique based on selecting a new hardware architecture 

and downloading it into an FPGA. 

2.6 Summary 

This chapter has reviewed the current state of lossless data compression. This section 

highlights the conclusions of the chapter. 

56 



Chapter 2 Lossless Data Compression Review 

• Current software-base lossless data compression offers compression ratio levels that it 

would be difficult to improve upon in the future. 

Statistical techniques such as PPMZ have brought lossless compression ratios to a value close 

of 0.2. These figures are considered to be very close to the theoretical entropy limit with 

limited (if any) room for improvements. Further advances will always obey the diminishing 

returns rule that means that it is easier to improve compression from 0.8 to 0.6 than from 0.2 

to 0.19 and complexity increases exponentially. These methods achieve their performance 

using a lot of resources and have very low throughputs. They do not achieve their optimal 

working conditions until blocks of data in the order of Mbytes are compressed as single 

entities because adaptation is slow and their multiple internal data structures use plenty of 

data. 

• Statistical PPM-style algorithms offer compression superior to dictionary-based 

algorithms but the complex nature of the operations involved and the variable number of 

them per symbol made them unsuitable for high-speed on-line hardware-based data 

compression. 

As a rule statistical software compression focuses on very good compression ratios while 

speed is given a second order importance. Dictionary-based software compression is still 

more popular and commercial algorithms such as PKZIP and ARJ are illustrative examples. 

The reason is that although their compression is not as good their simplicity and related speed 

becomes more important in many real applications. It is also true that PKZIP and ARJ have 

been around longer than PPM style algorithms. These are something of a novelty because 

until recently there was not suitable hardware in the public domain which sufficient power to 

execute them. 

• Current hardware-based statistical compression is either slow using binary alphabets or 

offers poor compression performance using Oth order models. Complexity and speed 

limitations prevents the use of multi-alphabet arithmetic coding (to get speed) and high­

order context-based modelling (to get compression) in hardware. 

Statistical compression in hardware is rare because the main objective is usually throughput 

and this is not something in the nature of a statistical method. The limitations on complexity 

are also harder to break. The most popular statistical hardware chip is the mM Q-coder whose 

performance is in the order of Mbitsls which is far from the requirements of Gbitls established 

in chapter I. The Q-coder is a successful example of a binary fixed-order context-based 
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model plus aritlunetic coder in hardware. The main limitation for speed in this case is the bit 

symbol granularity. Although research has been done to use wider alphabets the compression 

ratios are poor because complexity (and therefore throughput) requirements prevent from 

using high-order modelling. The Oth order context-free models used in all the multi-alphabet 

implementations seen so far are simply not powerful enough to compete with dictionary­

based hardware compression. Multi-alphabet variable-order finite-context models such as 

PPMC or PPMZ currently do not exist in hardware. 

• Dictionary-based hardware data compression is popular and well accepted as a means of 

improving the performance of an electronic system. It offers competitive compression and 

high-speed to successfully operate on-line in storage and network environments if their 

speed requirements do not exceed the value of I Gbitls. 

Dictionary-based hardware is popular and successful with examples such as LZS(HilFn), 

ALDC (IBM), DCLZ (AHA) currently improving the performance of data communication 

networks and storage systems. Attractive compression ratios in the order of 0.5 offer the 

possibility of doubling the capacity of and electronic system with minimum investment. 

These algoritluns are based on byte alphabets and process one byte of input data per clock 

cycle. The HilFn device can run up to 640 Mbits/s with a complexity of around 100 Kgates 

and it offers full-duplex functionality. This is the fastest device that is commercially available 

today as a single lossless data compression solution. The IBM devices are limited to 320 

Mbits/s because their chips are based on an older technology (0.8 urn) although IBM offers 

them as synthesible cores to be added to a more complex SoC (System On a Chip) device. A 

throughput up to 800 Mbits/s is expected if using a more up-to-date technology (IBM CMOS 

50.35 urn). 

In general these devices lack the performance to support a >Gbitls compressed network and 

could become the bottleneck in the system. Their operational mode also adds considerable 

data latency because they multiplex pins to get compressed and uncompressed data in and out 

of the chip 
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• Common to these high-perfonnance dictionary-based devices is the use of a CAM 

(Content Addressable Memory) circuit instead of a RAM circuit to store the dictionary. 

CAM's enable single cycle search and adaptation of the entire model unit whilst RAM 

based models processed only a dictionary location per cycle. 

Table 2.2 shown in the following page summaries the features of the most significant lossless 

data compression hardware implementations. Only those designs where silicon is available 

are reported in Table 2.2. It is clear from the throughput measurements of column 11 in Table 

2.2 that all the current implementations fall short of the Gbitls benchmark. There is also an 

order of magnitude difference between the throughput obtained by the dictionary-based 

implementations and their statistical counterparts. The reason is that although a similar clock 

frequency can be obtained with similar technologies the dictionary-based compressors process 

at least I byte per cycle while the statistical implementations are typically limited to I bit per 

cycle. 

The following acronyms are used: 

BAC= Binary Arithmetic Coder 

EHW = Evolvable HardWar 

GA = Genetic Algorithm. 

ASM = Adaptive Statistical Model 

FSM = Fixed Statistical Model 

MAC= Multi-alphabet Arithmetic Code 

FHC=Fixed Huffman Coder 

ADM=Adaptive Dictionary Model 

FHSC=Fixed Huffman-Style Coder 

PBC = Phased Binary Coder 

UBC= Uniform Binary Coder 
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Chapter 3 

The X-Match method 

3.1 Objectives of Chapter 

The objective of this chapter is to select a research vehicle to progress further the area of 

lossless data compression hardware. The basis of this selection is to choose a system or a 

concept that shows high perfonnance features to enable us to achieve the throughput and 

compression requirements stated in chapter 1. 

These requirements can be summarised as follows: 

• Low latency. Most application environments are sensible to latency that should be kept as 

small as possible. Latency is one of the variables together with throughput that defined 

the speed of a compression method. Incremental transmission is also very important so 

the compressor can start compressing data before the whole data block has been received 

and transmission of compressed data can start before the whole block has been 

compressed. 

• Data independent throughput. It is important to have a constant and data independent 

throughput in the uncompressed port to ease system integration. In this way the 

uncompressed section of the system can be kept unaware that a compression element has 

been introduced in the data path leaving aside a significant increase in throughput. The 

data throughput in the compressed port is data dependent since it depends on the 

instantaneous compression ratio. 
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• Over 1 Gbitls throughput. The throughput in the uncompressed port should be higher than 

I Gbitls to be able to handle current high performance storage devices and 

communication networks. The throughput requirements are expected to grow to 10 Gbitls 

in the next few years. 

• Compression ratio of 0.5 on typical computer data. The higher the compression the better 

but a lossless compressor that doubles the performance of the system where it is 

integrated clearly justifies the use of compression. This compression ratio must be 

achieved also when operating with small data blocks since many digital systems work 

with data blocks ranging in size from >=32 bytes to <=4 Kbytes. 

• Low complexity. Although the number of gates available in a silicon chip is constantly 

growing the final aim is to produce an architecture feasible in current or soon to be 

available technology. Low complexity produces a cost effective solution with the added 

advantage of low power consumption. FPGA technology is a valuable tool to evaluate the 

benefits of our design so the constraints of this programmable hardware must be taken 

into account. 

3.2 Features of the X-Match loss less data compression method 

3.2.1 Introduction 

X-Match was already introduced in chapter 2 as a fast dictionary-based compression 

algorithm suitable for hardware implementation. We will further analyse its positive and 

negative points in this section as a possible selection to advance the field of lossless data 

compression. The main reason to choose X-Match as a valid candidate is that it shows a clear 

performance advantage if compared with other solutions discussed in chapter 2. None of the 

binary arithmetic coders of chapter 2 are close to a figure of 1 Gbitls and they tend to exhibit 

dependencies between data compressibility and data throughput. The multi-alphabet 

arithmetic coders do not offer the compression performance because they are limited to 

context-free models. The dictionary-based machines get closer to I Gbitls but they still 

struggle because processing is limited to I byte per cycle so they need high clock ratios and 

depend on advance technology. X-match can achieve good throughput with modest 

technology because it gets its performance from processing multiple symbols per clock cycle 

and not from high clock ratios. 
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3.2.2 X-Match algorithm description 

The X-Match algorithm uses a dictionary of previously seen data and it attempts to match the 

current data element with a data element present in the dictionary. It obtains compression 

when this matching is successful. These are the key features of the algorithm: 

• Fixed width dictionary of 4 byte words named tuples to provide high, data independent 

throughput. 

• Variable length dictionary that dynamically grows when unknown data elements are 

processed. This means that during an initial stage only a valid subset of the dictionary 

locations are assigned codewords. This feature provides good compression ratio when 

processing small data blocks. 

• A partial matching strategy to improve compression so not all the bytes need to match in 

a dictionary location for the match to be considered valid. 

• Data expansion limited to 3.125% when no valid match is found in the dictionary 

because a single bit is added to the new tuple ( 32 bits are translated into 33 bits). 

The result of searching the dictionary can be a match or a miss. Since the algorithm uses a 

partial matching strategy several types of matches are possible where all or some of the bytes 

at different positions inside the tuple match. Those bytes that do not match are transmitted 

literally. This partial match concept gives the name to the procedure - the X referring to 

'don't care'. At least 2 bytes have to match and when no valid match is generated a miss is 

codified adding a single bit to the literal. The dictionary is maintained using a move-to-front 

(MTF) strategy [Bentley86] whereby a new tuple is placed at the front of the dictionary while 

the rest move down one position. When the dictionary becomes full the tuple placed in the 

last position is discarded leaving space for a new one. 

The coding function for a match is required to code 4 separate fields as follows: 

• A first bit set to 0 indicating a match. 

• The match location. It uses PBC (phased Binary Code) as seen in section 

2.4.2.2.1, chosen for its suitability for hardware implementation. PBC is 
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characterised by using smaller codes during the growing stage of the dictionary 

that starts in an initial empty state. 

• A match type. That indicates which bytes of the incoming tuple have matched. 

This is codified using a static Huffman code as seen in section 2.4.1.2.1.2 based 

on the statistics obtained through extensive simulation. 

• Any extra characters that did not match transmitted in literal form. 

The coding function for a miss is required to code 2 separate fields as follows: 

• A first bit set to 1 indicating a miss. 

• The 4 non-matching characters in literal form. 

The algorithm is given as pseudo-code in Figure 3.1. 

Clear the dictionary; 
Set the next free location (NFL) to 0; 
DO 

{ 

} 

read in tuple T from the data stream; 
search the dictionary for tuple T; 
IF (full or partial hit) 

ELSE 

{ 

} 

{ 

} 
IF (full hit) 

detennine the best match location ML and the match type MT; 
output '0'; 
output phased code for ML; 
output Huffman code for MT; 
output any required literal characters of T; 

IF (T is not the frrst tuple) 
output '1 '; 

output tuple T; 

move dictionary entries 0 to ML-l by one location; 
ELSE 

{ 

} 

move all dictionary entries down by one location; 
increment NFL ( if dictionary is not full); 

copy tuple T to dictionary location 0; 

WHILE (more data is to be compressed);. 

Figure 3.1. The X-Match algorithm 
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Initially all the entries in the dictionary are empty and a tuple is added to the front of the 

dictionary while the rest move one position down if a full match has not occurred. The move­

to-front technique is only applied when dealing with full matches. In this case the tuples from 

the first location until the location previous to the matching tuple move down one location 

while the matching tuple is placed at the front of the dictionary. The number of entries in the 

dictionary grows dynamically, thus if the input data only contains a few different tuples then 

the dictionary remains small. Since the number of bits needed to code each location address is 

a function of the dictionary size greater compression is obtained in comparison to the case 

where a fixed size dictionary uses fixed address codes for a partially full dictionary. Only one 

full match can occur at any time in the dictionary since the algorithm makes sure that no 2 

locations contain the same data. Several partial matches are possible simultaneously so the 

one that produces a shorter output is selected as valid. 

3.2.3 X-Match hardware analysis 

The architecture is based around a block of CAM to realize the dictionary. This is necessary 

since the search operation must be done in parallel in all the entries in the dictionary to allow 

high throughput. Latency is also kept to a minimum because the result of the search operation 

at time t is available at time t+ J for further processing. The size of the CAM is 128 words 

with 32 bits per word and it has to be selectively shiftable to be able to reorder itself adapting 

to the incoming stream of data. The selectively shiftable characteristic implies that each word 

of the CAM maintains its data or loads the data of the previous word depending on the value 

of its associated bit in the adaptation vector produced by the dictionary maintenance 

functions. 

3.2.3.1. Compressor architecture 

An overview of the compressor architecture is presented in Figure 3.2. The tuple to be coded 

searches the CAM array trying to find a match. The output of this process is passed to the 

best-match decision logic that resolves which of the possible matches (if any) is the best. 

Then the match location is coded using a PBC that depends on how many entries are valid in 

the dictionary as indicated by the next-free-Iocation (NFL) counter and the match type is 

coded using a Huffman code. Any needed literal characters are added and the result is passed 

to the assembly logic which packs groups of 64 bits together before indicating the availability 

of compressed data. The shift control logic generates the adaptation vector to rearrange the 

dictionary in the next cycle based on the match information. 
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Figure 3.2. Architecture of the compressor 

3.2.3.2 Decompressor architecture 

Figure 3.3 shows the decompressor architecture. The compressed data enters the decoder to 

produce a match location and a match type in the phased binary decoder and Huffman 

decoder. The byte disassembler is used to shift in the correct number of bits of input data as a 

function of the variable-length codes found. The match location is used to multiplex out a 

specific position in the CAM array and the match type determines what literal characters (if 

any) are needed to recreate the original data. The shift control logic generates the adaptation 

vector to rearrange the dictionary following the same pattern as in compression. 
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Figure 3.3. Architecture of the decompressor 
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3.2.3.3 Hardware performance 

X-Match has been synthesised into a 0.6 pm gate array technology. Pre-Iayout simulation 

results estimated a maximum clock frequency in the compression section of 25 MHz for a 

data independent throughput of 800 Mbits/s. The decompression section can clock at 35 MHz 

and the throughput is 1120 Mbits/s . In practice, a single clock should be used for 

compression and decompression so the overall throughput is 100 Mbytes/s . The slowest 

critical path extends from the search data, through the CAM array, match decision logic, shift 

control logic and back to the CAM array to provide the necessary information to reorder the 

dictionary. The latency of the device due to pipelining is 5 clock cycles during compression. 

Decompression latency is 2 cycles. Figure 3.4 shows the critical path. 

0" f.Bns 2.9ns 5.3n5 28.0ns 27.1 ns 34.2ns 38.5l1s 

Figure 3.4. X-Match critical path. 

The compression process is usually slower than the decompression process because the 

extensive search operation in the dictionary to find a possible match is replaced during 

decompression by a simpler look-up operation using the match location to address the 

dictionary. 

The X-Match description includes logic to interface to SRAM compression memory where 64 

bits of compressed data are written in each access cycle during compression or read during 

decompression. An internal register must be loaded with the uncompressed block size at the 

start of the operation. An internal counter is enabled at the start of the compression or 

decompression process and the device stops when the count value equals the uncompressed 

block size. Several uncompressed block sizes can be used or the chip can run in unblocked 

mode. Since 14 bits are used to interface to the compressed SRAM the maximum compressed 

block size allowed is 214 x 64 bits = 128 Kbytes. The algorithm does not insert any special 

termination marker in the compressed stream so the design relies in knowing the 

uncompressed block size to detect when to stop uncompressing data. The same device can 
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perfonn compression and decompression but not simultaneously. Figure 3.5 shows the pin­

out of the X-Match design. The need for a 64-bit wide compressed bus is due to expansion 

conditions where the 32-bit input word is transfonned into a 33-bit output word. A bottleneck 

could appear in the compressed data port if the device uses a 32-bit wide bus because no 

buffering exists to handle a consecutive series of misses. 

The estimated gate count of the design is 100 Kgates including the pipeline registers but 

excluding additional logic for production testing. The estimated die size is 13.0 x 13.0 mm. 

Most of the logic (80 Kgates) corresponds to the 128 x 4 bytes CAM logic. 
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Figure 3. 5. X-Match interface. 
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3.3 Mapping of research objectives to X-Match 

3.3.1 How can we produce a faster X-Match? 

The 3 elements present in a compression system, namely: Model, Coder and Packer 

introduced in section 2.3 affect speed. It is important to identify which one is the perfonnance 

bottleneck so our efforts can be directed. The original X-Match estimates a bottleneck in the 

adaptation process in the model as mention in section 3.2.3.3. To identify and solve this 
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bottleneck is therefore a priority before further analysis is carried out in the other components 

of the system. 

X-Match is targeted to main memory compression where a single bus is used to transfer data 

to and from main memory. Full-duplex operation is becoming increasingly popular in 

network standards able to transmit and received data simultaneously. It is also useful in other 

applications such as a printer that receives data in uncompressed format, compresses it to 

store it temporarily in local memory and then concurrently decompresses it when the print 

engine requires more data. This application does not use compression to increase the 

bandwidth of the data pipe but to increase the storage capacity of local memory. It is 

important to analyse the possibility of developing a full-duplex solution so both processes 

compression and decompression can be executed simultaneously for a combined performance 

twice as high as a half-duplex device. 

3.3.2 How can we produce a better compressing X-Match? 

Coding better or modelling better can improve compression efficiency. The third element of a 

compression system, the packer, does not have an impact on compression. Its function is to 

assemble variable length codes into fixed length codes without affecting the total number of 

bits. There is a strong interdependency between models and coders so more efficient 

modelling such as the high-order context-base models of section 2.4.1.1.1 requires more 

efficient coding such as the arithmetic coders of section 2.4.1.2.1 able to exploit the high 

accurate information passed by the model. In chapter 2 statistical modellers and coders were 

classified as those with higher compression performance but they were also found to be 

particular slow. Arithmetic coding is slow not only because operations involved are complex 

but also because no feasible parallel implementations are available. The idea of introducing 

statistical concepts in X-Match is interesting but it is also necessary to study possible ways to 

improve the compression efficiency of the dictionary-based models and coders already 

present in the system. This analysis should also evaluate the likely impact on speed of the 

different solutions proposed to improve compression. 

3.3.3 How can we prove the feasibility of our solutions? 

System integration is also an important issue. It is necessary to produce a 

compression/decompression engine not only fast and efficient but also friendly to use from an 

application point of view. A coprocessor-style interface will make the device a sensible 

component to be integrated in a computer system data path. The complexity of the whole 
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design should not exceed that available in current hardware. ASIC's using advanced 

processes offer plenty of resources and high speed but they are unattractive for first silicon 

because of their high development costs and lack of flexibility. Recent advances in FPGA 

technology have produced levels of gate density and speed that enable the migration of the X­

Match method to an FPGA implementation. FPGA's with densities ofK hundred of gates and 

manufacture using advanced deep submicron processes enable a full working solution instead 

of just mere prototyping. The concept of desktop foundry suits our needs to prove the 

working characteristics of our design whilst ASIC's still remain available as an alternative if 

higher levels of performance and integration are required. 

3.4 Conclusions 

The X-Match compression method originates in the research carried out by the System 

Design Group at Loughborough University using partial matching CAM circuits and 

multiple-symbol processing to improve speed and compression efficiency. X-Match complies 

with the high-performance features of section 3.1 and it is therefore a suitable candidate for 

further research aiming to advance the current state of lossless data compression hardware. 

The intention of the rest of this work is to design a general-purpose lossless data compressor 

coprocessor using the X-Match design as its foundation. The research studies ways to 

improve the compression performance and the compression throughput of lossless data 

compression hardware and it also studies ways to ease system integration. Working silicon 

will be obtained using state-of-the-art FPGA hardware. Finally, a rigorous verification 

methodology will be used to prove the working aspect of the design. 
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Chapter 4 

Experimental framework 

4.1 Objectives of Chapter 

The objective of this chapter is to select a common development framework on which to base 

the experimentation. The selection must include the data sets and softwarelhardware lossless 

data compression algorithms needed to compare the compression ratio obtained by our own 

algorithms. It must also select the lossless data compression chips to be used to compare the 

throughput figures and the technology to be used to develop the hardware implementation. 

4.2 Data set selection 

Data set selection is always a complex issue because it is difficult to obtain a data set 

representative of the data that the compressor will encounter when it is deployed in an 

electronic system. This problem is exacerbated when the compressor is not aimed to compress 

a particular data type such as text or images but as a general-purpose compressor. 

We have selected 3 data sets to base our experiments: the memory data set, the disc data set 

and the Canterbury data set. 

. The memory data set was assembled in the System Design Group at Loughborough 

University. Much of the previous research uses it so it is easier to compare the new solutions 

with previous work done in X-Match. The memory data set is formed by data captured 

directly from main memory in a UNIX workstation whilst running applications. The original 

data set includes around 100 Mbytes of data but it was reduced to around 10 Mbytes to have 

sensible processing times and memory resource requirements in some of the highly complex 
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context-based statistical algorithms. These state-of-the-art software-based algorithms are 

useful to find out the entropy or information content in the data sets and to establish a 

reference point. The 9 files that fonn the data set have the same size of 0.97 Mbytes ( 1 Mbyte 

= 1024xl024 bytes) and this corresponds to the first 1024000 bytes of data in each of the 

original files. 

Category No of Files Size ( Kbytes) 

Xman - Unix manual page 1 1000 

Text - Textedit with a small C source file open. 1 1000 

Ghos - Ghoscript postscript viewer with a technical paper 1 1000 

open. 

Emac - Emacs text editor with an elaborate set-up a few 1 1000 

buffers open. 

Nets - Netscape world-wide-web viewer after some 'net- 1 1000 

surfing' activity. 

Vlab - VlabPlus analogue simulator from Intergraph 1 1000 

during extraction and spice simulation of a parallel multiplier 

Suno - Approximation to the operating system SunOS 1 1000 

working set. 

Matl - Matlab matrix laboratory running a benchmark 1 1000 

program. 

Logs - Logsyn logic synthesis tool from Intergraph during 1 1000 

logic optimisation of a parallel multiplier. 

Total 9 9000 

Table 4.1. Memory data set 

The disc data set was also assembled in the research group. It is fonned by typical data 

structured in 4 categories found in the hard disk of a workstation used in an engineering 

environment. The 4 categories correspond to: application data, executable data, general data 

and user data. 

The application category corresponds to data required by applications to correctly function 

such as database files and setup files and excludes any data generated during program 

execution. 
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Category No of Files Size (Kbytes) 

Library files from Cadence CAE system 5 1211 

Component files from Intergraph CAB system 5 959 

Simulation libraries from Intergraph CAB system 4 1649 

VHDL libraries from Intergraph CAE system 6 785 

Logic synthesis libraries from Intergraph CAE system 8 39 

Matlab function libraries 6 259 

Simulation libraries from Synopsys CAB system 9 1232 

Parts files from Unigraphics mechanical CAD/CAM system 3 988 

Data files from Visilog image processing system 2 779 

Parts files from Xilinx CAE system 4 77 

Total 52 8675 

Table 4.2. Application disc data set 

The executable category corresponds to engineering, user written and general use application. 

Category No of Files Size (Kbytes) 

General applications (ghostview, tin, xups and matlab) 4 4546 

CAB applications from Intergraph and Xilinx 3 4841 

System Applications (sed, awk, xcal, gtar) 4 633 

User programs 5 189 

Total 16 10209 

Table 4.3. Executable disc data set. 

The general category consists of data used by the operating system, textual files and graphical 

image files. 
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Category No of Files Size (Kbytes) 

System font and keyboard definition files 10 863 

System library files 6 758 

General operating system files 7 2085 

Manual pages 9 748 

Documents in either postscript, html or pdf format 12 2357 

ASCII text files 3 372 

Total 47 7183 

Table 4.4. General disc data set. 

The user category consists of data created by the user such as schematic diagrams, word 

processing documents and results files. 

Category No of Files Size (Kbytes) 

CAE files from Intergraph and Xilinx 10 5942 

Microsoft Excel spreadsheet files 3 328 

Graphics files using Coredraw, Drawperfect and Microsoft 5 1360 

powerpoint 

ASCII textual files (C and VHDL source code and a mail 7 290 

folder) 

Results/statistics files 5 528 

Word processing files from Wordperfect and Microsoft Word 4 2175 

Total 34 10623 

Table 4.5. User disc data set. 

The Canterbury data set [Arnold97] has been recently introduced as a standard so the data 

compression research community can use it as a common reference. It was developed to 

replace the ageing Calgary data set [BeIl90] and to include representative data found in 

modem computer systems. The authors conclude in [Arnold97] that the compression results 

obtained using the new Canterbury corpus can not be considered absolute measures of 

compression because the deviation in compression ratio if the current set of files is replaced 

by a bigger set of files is too high. The Canterbury corpus is, however, a useful tool for 
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relative measures of compression because the variations in compression using different 

methods are maintained if the data set is increased. The final conclusion is that the Calgary 

corpus and the Canterbury corpus offer very similar results so the new corpus does not 

invalidate the results obtained with the previous one. 

Category No of Files Size (Kbytes) 

alice29.txt - English text I 148 

ptttS - Fax images I SOl 

Fields.c - C source code 1 11.3 

Kennedy.xls - Spreadsheet files 1 1003.5 

Sum - SP ARC executables 1 37.3 

LeellO.lxt - Technical documents I 416 

Plrabnl2.lxt - English poetry 1 470 

Cp.html - html 1 24.6 

Grammar.1sp - lisp source code 1 3.72 

Xargs.l - GNU manual pages 1 4.23 

Asyoulik. Ixt - Plays 1 126 

Total 11 2745.65 

Table 4.6. Canterbury data set. 

4.3 Hardware selection 

The hardware selection was based on using commercially available chips that offer software 

routines to run them on our data sets. We selected the LZS (LZI) algorithm used in HilFn 

devices, the DCLZ algorithm (LZ2) firstly introduced by Hewlett-Packard and now being 

developed by AHA and the ALDC (LZI) algorithm from IBM. The lossless data compression 

chips that realise these algorithms have achieved commercial success because they combined 

good compression ratios and high speed. Table 4.7 shows a summary of the features of these 

software routines. A summary of the hardware details of the devices that implement these 

algorithms can be found in Table 2.2. 

They are all dictionary-based compressors but this reflects that hardware statistical 

implementations are few and far between and none of them are closed to the throughput 
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requirements of Gbitls as seen in Chapter 2. The software routines that have been used for 

the compression performance measurements are DOS and Windows applications that can be 

obtained from the web pages of the respective companies. We have used in all the cases the 

default configuration of the algorithm. 

Name Developer Type Software Software Software Overhead 

Command Version Year 

ALDC mM LZl ENC 1.70 1993 o bytes 

LZS STAC/Hilfn LZl LZSdemo 3.1 1992 4 bytes 

DCLZ HP/AlIA LZ2 DCLZ 2.0 1992 2 bytes 

Table 4. 7. Hardware-based lossless data compression algorithms selection. 

The overhead measure corresponds to algorithm identification headers added by some of the 

routines. One of our objectives is to measure compression performance when processing 

small data blocks, therefore, a header overhead should be removed to avoid distorting the 

compression ratios. The overheads shown in tables 4.7 and 4.8 correspond to invariable data 

bytes found at the start of the compressed files produced by the algorithms. 

4.4 Software selection 

The software selection is done because it is useful to learn how hardware compares against 

software in terms of compression. We selected the popular PKZIP as a representative of 

advanced dictionary-based software compression. We selected a state-of-the-art 

representative from the statistical compression world - The PPMZ algorithm review in section 

2.4.1.1.1. PPMZ is considered to be one of the best lossless data compression algorithms that 

exists today. It combines high-order context-based modelling with an arithmetic coder. PPMZ 

is useful because its compression ratio is considered to be close to the theoretical limit that it 

is possible to obtain with lossless techniques. PPMZ throughput is very low with one byte 

being processed every 20 K CPU cycles. We also selected a powerful hybrid that aims to 

obtain the compression performance of statistical methods and the speed of dictionary-based 

methods - The HA algorithm. HA is a technique that combines a sliding-window dictionary 

plus an arithmetic coder. It is in essence a hybrid of a dictionary model plus a statistical coder. 

It illustrates how techniques from both domains can be successfully combined. Table 4.8 

shows a summary of the main features of these algorithms. 
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PKZIP does not include options to tune compression performance. HA includes 3 different 

switches: switch 0 only copy files (no compression), switch I specifies a sliding window 

dictionary model LZI-style plus an arithmetic coder and it is the one use in our experiments, 

switch 2 uses a variable 4-order model plus an arithmetic coder known as PPMC. Switch 2 

defmes a more powerful compression technique than switch I but the third selected algorithm 

PPMZ supersedes PPMC. PPMZ can select a model order to start making predictions with 

the use of LOE (Local Order Estimation). There are different coders available that specify a 

different maximum model order. Coder 9 is the default option in the algorithm and the one 

used in these experiments. It uses LOE to select a starting order to predict the next symbol 

that can be as high as 8th order. 

Name Developer Type Software Software Software Overhead 

Command Version Year 

PKZIP PKWARE Dictionary PKZIP 2.50 1999 14 bytes 

Inc 

HA Harry Hybrid HA 0.98 1993 38 bytes 

Hirvola 

PPMZ Charles Statistical PPMZ 9.1 1997 28 bytes 

Bloom 

Table 4.8. Software-based lossless data compression algorithms selection. 

4.5 Technology selection 

The reduction in feature size and constant advances in the manufacture process have made 

FPGA technology get closer than ever to ASIC performance allowing the migration of whole 

systems to a single chip. The development of the prototype core is based on ProASIC FPGA 

[ActeIOO] technology from ActellGatefield corporation. The reason to choose this technology 

is partly found on resource availability and also on particular interesting features present in 

their new non-volatile Flash-based ProASIC devices that suit the flipflop-rich X-Match 

architecture better than other RAM-based devices. We also selected the Apex [AIteraOI] and 

Virtex [XilinxOI] family recently introduced by AItera and Xilinx Corporations respectively 

with densities in the order of million of gates and 0.18 p.m feature size. Table 4.9 shows a 

summary of these technologies. 
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Technology Density (Highest in family) 

Manufacture Process Family (Device) System Typical RAM Logic 

gates(k) gates(k) bits (k) elements 

Gatefield / FLASH- A500K 1,100 410 138 51,200 

Actel CMOS (A500K510) 

0.25 J.IlIl 

Altera SRAM-CMOS APEX20K 2,392 1,500 432 51,840 

0.18 J.IlIl (EP20KI500E) 

Xilinx SRAM-CMOS VIRTEX 4,074 Not 851 73,008 

0.18J.1m (XCV3200E) stated 

Table 4.9. Technology selection. 

4.6 Measurement definitions 

Compression ratio (CR): Compression ratio is defined as the ratio CR = 
output_bits/input_bits in the algorithm. This means that the srnal1er the figure the better the 

compression. A value larger than I implies that data expansion but not data compression took 

place. Compression is obtained whenever the CR value is in the range (0, I). For example if 

the CR = 0.5 means that 100 Mbytes of uncompressed input data are compressed to 50 

Mbytes of compressed data. 

Compression gain (CO): Compression gain of algorithm b over algorithm a is a percentage 

defined as the value CO = JOO*(CR. - CRiJI CRb• This means that the bigger the number the 

higher the compression improvement and that a negative value brings compression 

degradation. For example if an algorithm b has a CR = 0.25 and algorithm a has a CR = 0.5 

the CG = 100*(0.5-0.25)/0.25 = 100 % better compression of b over a. 

Block size (BS): Different input block sizes are used to evaluate the performance of the 

compression algorithms as function of the amount of data to be compressed as an independent 

block. The experimental methodology uses the fol1owing block sizes: 256 bytes, IK, 4K, 

16K, File. 
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Dictionary size (DS): Different dictionary sizes are used to evaluate the trade off between 

complexity and compression performance of the algorithms. The experimental methodology 

uses the following dictionary sizes: 16,32,64,256,512,1024. 

4.7 Conclusions 

This chapter has selected a set of tools to help to carry out the experimental work of chapters 

5,6 and 7. 

• To measure the compression perfonnance we have selected 3 different data sets for a total 

of 48 Mbytes of data. 

• To compare hardware-based performance we have selected 3 commercially available 

high-performance lossless data compression chips. 

• To reference compression performance we have selected 3 state-of-the-art software-based 

lossless data compressionn algorithms. 

• To develop our hardware implementation we have selected 3 state-of-the-art FPGA 

technologies. 

These selections together with the measurement definitions will be used in the following 3 

chapters that deal with improving the compression efficiency, improving the throughput and 

finally proving that the solution proposed is feasible and meets the requirements introduced in 

chapter 1. 
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Chapter 5 

Focus on compression efficiency 

5.1 Objectives of Chapter 

This chapter deals with the problem of improving compression efficiency whilst maintaining 

a high throughput. These 2 variables are strongly related since it is usually possible to 

improve compression by using more complex modelling and coding techniques but this extra 

complexity has a negative effect on speed. It is also true that simplifYing the algorithm tends 

to enable higher operational speeds. A trivial example is to think of a system that copies 

directly the input to the output. The speed of such a method could be considered optimal and 

impossible to improve upon. The compression ratio of the system would be 1.0 and it will be 

of no use from a compression point of view. 

The main body of results are reported based on a single corpus. The Canterbury corpus has 

been selected because its small size enables fast execution of some of the more complex 

algorithms. The data mixture that forms the Canterbury corpus is accepted as representative 

of the data types found in modern computer systems. The final results will be validated using 

the other 2 corpuses introduced in chapter 4: the memory data set and the disc data set. 

Our final aim is to produce a feasible architecture ready to be implemented in current or soon 

to be available hardware. This means that although the main objective of this chapter is to 

produce algorithmic techniques that improve the compression performance of X-Match 

complexity cannot be disregarded. The final algorithm must not only be computationally 

feasible but it must also be hardware amenable. 
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5.2 X-Match compression effici ency 

The original X-Match algorithm was described in chapter 3. This section analyses its 

compression efficiency on the Canterbury corpus. The hardware design uses a dictionary size 

of 128 locations. The original software version of X-Match uses a dictionary with 1024 

locations. Dictionary size can vary with minimal impact on speed but important effects on 

complexity and compression ratio . 

0.8 

0.7 

0.6 

5 0.5 

0.4 

0.3 

0.2 

256 bytes 

X·Match Compression 

1 Kb 4 Kb 

Block size 

16 Kb File 

64 ---126 ---256 --512 -+- 1024 

Dictionary size 

Figure S. 1. X-Match compression on the Canterbury corpus. 

From Figure 5. 1 it is clear that the compression efficiency of X-Match on the Canterbury 

corpus is modest. One of the main reasons is that this corpus contains a large amount of 

textual data . The are I I files in the Canterbury corpus. The IXI extension is present in 4 of 

these whilst the other 4 have also a textual nature such as html, C or Li sp source code . 

Textual data is heavi ly byte oriented and the rationality of process ing groups of 4 bytes 

together does not hold . 

Figure 5.1 al so shows that the compression efficiency of X-Match grows with dictionary s ize 

and block size. A larger dictionary increases the chances of having a match in one of its 

locations. Figure 5. I shows that for any block size compress ion increases or remains the same 

if the dictionary size increases. If the block size has only 256 bytes a dictionary size of 64 

81 



Chapter 5 Focus on compression efficiency 

locations is enough to store the whole block internally and further increases in dictionary size 

do not improve compression. 

A larger block size means that more data is available to bui ld the dictionary and in 

consequence better modelling of the input data so urce can be achieved. This is particularly 

true if a large block size is combined with a large dictionary size. Small dictionaries saturate 

quickl y and this limits their capacity to adapt the extra data avai lable in large block sizes. 

Figure 5.1 illustrates thi s effect with a 16 location dictionary whose compression remains 

largely invariant with increases in block size. Figure 5.1 also shows that maintain ing the same 

dictionary size and increasing the block size always improves compression except in file­

based compression where some minor degradation can take place. The reason is that the 

combination of PBC plus periodically resetting the dictionary can have a positive effect on 

compression. The effect of PBC in X-Match is that the dictionary always starts with an empty 

state to compress a block so only a few bits are needed to code a partially full dictionary. This 

is use ful when processing small data blocks but in fi le-based compression the effect is negible 

because once the dictionary is full all the locations need to be assigned a code. The periodical 

resetting of the dictionary, that is equivalent to breaking the file in smaller blocks, reactivates 

the PBC strategy and can improve compression because it increases the adaptability of the 

model to the loca l characteristics of the input data source . This effect is called locality of 

reference [Bentley86J. It means that in a typical data block a symbol can be heavily used in a 

block section but then it can fall in disuse in another block section. 

5.3 Dictionary-based approach 

5.3.1 Introduction 

The dictionary-based approach investigates how the dictionary-based models and coders 

presented in the X-Match method can be improved to obtain better compression whilst 

maintaining the high throughput. 

5.3.2 The dictionary-based model 

The dictionary-based model of X-Match uses a CAM that stores the last 128 tuples (I tuple = 

4 bytes) as its compression history. The move-to-front (MTF) replacement policy is a least­

recently-used (LRU) pol icy that removes from the dictionary the tuple that was used less 

recently. Thi s techn ique in effect forms a sli ding window of history data that moves over the 
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input data source but it avoids data duplication at different locations of the history window. 

This policy tends to be more effective than a least-fTequently-used (LFU) policy at exploiting 

the locolity 0/ re/erellce effect. A typical inefficiency of LFU is that it could assign a high 

fTequency to a popular tuple during the compression of the first section of a block of data but 

then the same tuple could fa ll in disuse during the second section. This tuple remains in the 

dictionary because it achieved a high count during the initial stage but since it is not used 

duri ng the second stage it wastes coding space. Combinatorial searching strategies do not 

improve compression because the extra bits added to the output to di stinguish which 

combination matches offset the extra number of matches [Gooch96J . Better modelling can be 

achieved by increasing the CAM -size so a larger compression history is maintained. The 128 

position CAM represents already 70% of the logic in the chip so the complexity implication 

of using larger CAM 's must be taken into account. 

5.3.3 The dictionary-based coder/decoder 

5.3.3.1IlItroductioll 

X-Match uses a static Huffman coder to code the match types and a phased binary coder to 

code the match locations. To code the bytes that are not found in the dictionary X-Match does 

not use any coding technique but instead the bytes are added to the codeword in literal form. 

These bytes could also be coded to improve compression but parallel decoding wi ll be then 

very difficult to implement in hardware. Since the lengths of the individual codes are not 

known in advance multiple decoders should decode in parallel all the possible length 

combinations of the 4 coded bytes. A lypical Huffman code generates 7 different lengths for a 

256·symbol alphabet so a total of 7°+7'+7'+7'=400 independent decoders are needed . The 

first decoder decodes the first symbol. The next 7 decoders decode 7 possible symbols 

depending on the first symbol. The next 49 decoders deal with the third symbol and the fina l 

343 decoders dea l with the fourth symbol. The technique is unfeasible because of its scaling 

complexity. 

5.3.3.2 Match locatioll codillg techlliques 

Phased binary coding is a techniq ue used to code the dictionary locations of a dictionary that 

starts empty and then it grows accommodating new data fou nd in the block being compressed. 

The advantage is that a smaller dictionary uses fewer bits to code its positions so there is a 

compression gain during the growing stage. This advantage is lost once the dictionary 

becomes full after a number cycles. The number o f cycles that it takes before the dictionary 
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fi lls depends on its maximum size and the redundancy of the original data since only tuples 

that are not fu lly matched increase the size of the dictionary. This is done to maintain a high 

dictionary efficiency because each location stores unique data. If the dictionary size is small 

the gains obtained with PBC are negible because the dictionary fi ll s very quickly. This means 

that a simpler form of coding such as uniform binary coding (UBC) where every position uses 

log2(dictiollGlY size) bits can be used. Figure 5.5 shows the compression gain (defined in 

section 4.6) obtained by PBC compared against an alternative using UBC processing the 

Canterbury corpus. 
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Figure 5.5. Compression gain PBC versus UBC in X-Match processing the Ca nterbury corpus. 

PBC shows itself as a use ful technique main ly when coding small to medium size block sizes 

and using large dictionaries. A large dictionary uses a large number of bits to code its 

locations if all them are active from the stalt . If the block size is small these locations remain 

empty because there is not enough data to fill the dictionary but they waste coding space 

because dictionary addresses remain assigned to them. This is the reason the compression 

gain obtained by PBC against UBC is so significant with small block sizes and large 

dictionaries. For a typical block size of 4 Kb PBC does not show any significant advantage 

until a dictionary larger than 64 locations is used. The reason is that a small dictionary fill s 

quickly and once it is full there is no different between UBC and PBC. 
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An alternative to PBC for the match locations is to use a Huffman code based on the fact that 

the LRU maintenance policy forces more common data to be stored closer to the top of the 

dictionary. The probability of having a match in these locations is higher than the locations 

closer to the bottom. A static Huffman tree can be designed based on thi s property with 

dictionary locations closer to the top of the dictionary al so closer to the root of the Huffman 

tree. The match frequency distribution in the dictionary has been used to generate Huffman 

trees varying the dictionary size. For a typical dictionary size of 256 elements the Huffman 

codes varied in size from 2 bits for location 0 to 12 bits for location 255. Figure 5.6 shows the 

tree shapes obtained after processing our data sets. 

The shape of the trees remains largely invariant independently with the data sets because all 

the compressible data sets exhibit locality of refereJl ce that increases the probability of having 

matches closer to the top of the dictionary. A static Huffman code is a good solution to code 

this match distribution because the tree shape is largely data independent. An adaptive 

technique will not provide any significant advantage. 
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Figure 5.6. Buffma n tree shapes. 

Figure 5.6 shows that the 3 different data sets produce similar tree shapes. The disc data set 

shape is obtained as an average among the 4 data set components: executable, general, 

application and user. This is the reason why the disc 'shape' exhibits some noise. 

Figure 5.7 shows the compression gain obtained by X-match when using a Huffrnan code for 

the match locations. 
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Figure 5.7. Compression gain Huffman versus UBC in X-Match processing the Canterbury 
corpus. 

The dictionary size is limited to 256 locations because the tree generator used in the 

experiments cannot handle trees larger than 256 leaves. The largest code in this case is 12 bits 

which means that an already complex 4096 positions look-up table is needed for the 

decoding. Figure 55 and Figure 5.7 show that Huffma n coding offers a small compression 

gain over PBC when handling large block sizes but PBC is more efficient when compressing 

small blocks. PBC is also simpler s ince no large look-up tables are needed. Huffman coding 

like PBC al so needs a dictionary size larger than 64 locations to offer any significant gain. 

A combination of the concepts of both Huffman coding and PBC creates a Phased Huffman 

Coder (PHC). This implementation uses a growing dictionary and a number of Huffman trees 

equal to !ogldicliOl1aty size). The dictionary grows in powers of 2 and depending on how 

many dictionary entries are valid a different tree is used. The rational e is to have the good 

performance of PBC with smaller block sizes and Huffman coding with large block sizes 

respectively. Extra complexity is added in the coding and decoding processes because the 

system must stored a number of Huffman coding a decoding look-up tabl es and efficiently 

switch among them when the next dictionary size is activated. Figure 5.8 shows the 

compression gain of PHC. 

The phased Huffman coder offers better compression than Huffman coding for the 256 bytes 

block sizes and also better compression than PBC for file-based compression. On the other 
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hand its performance is inferior to PBC for any practical block size smaller than 16 Kbytes. 

The complexity impact of PHC is also considerable because for a 256 location dictionary it is 

necessary to store and manage 8 independent Huffman trees. 
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Figure 5.8. Compression gain PHuffman versus UBC in X-Match processing the Ca nterbury 
corpus. 

This concept of a phased Huffman coder is closed to other alternatives such as the hardware 

amenable Rice coding of section 2.4.1.2.1.3. Rice codes are in essence Huffman codes that 

can be adjusted using a parameter that modifies the shape of the tree. This parameter would 

be controlled by the dictionary size in our case. Rice codes offer less flexibility than Huffman 

codes because the alphabet size is unbounded and their performance is limited. The alphabet 

size is unbounded because a maximum size it is not defined when constructing the Rice code. 

5.3.3.3 RUI/-lellgth codillg techlliques 

Run length coding can also be used to improve the coding efficiency of the dictionary-based 

coder. Run length coding is based on signalling repetitive patterns and code them together 

indicating the pattern that was found and how many times it repeated. The erfect of a run 

length coding applied to X-Match is to code repeating patterns of 32 bits in a single code 

because of its tuple granularity. Several solutions are possible depending on where the run 

length coder is placed relative to the other functions present in the algorithm. 
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In principle there are 3 different locations for a run length coder in the X-Match algorithm 

depending on what sorts of runs it aims to code: front (Run Length Front: RLF), middle (Run 

Length Internal : RLI), back (Run Length Back : RLB). To add a run length coder to the back 

of the algorithm is not a sensible option for a simple reason: the effect of compression is to 

produce a randomised output where run lengths are non-existent. After packing the 

codewords get disaligned so a run length coder wi ll be unable to detect 32 bit repeating 

aligned patterns. We will now study the other 2 options: RLF and RLI. 

Our RLF alternative is sensitive to 32-bit repeating patterns of the same byte for example 

'aaaa '. This way on ly one byte is needed in the RLF code to know which byte was repeating 

('a '). It is necessary to determine which is the minimum run length that must activate the 

RLF technique. Fo llowing the X-Match a lgorithm described in chapter 3 and assuming a 

maximum run of 255 repetitions the output generated by a run of length 2 wi ll be: I bit for the 

match, log, (dictionary size) bits for the RLF code, 8 bits for the repeating byte and 8 bits to 

indicate the length. The total is 17+log, (dictionary s ize) bits. 

A non-RL output when data is not in the dictionary wi ll be an initial mi ss of 33 bits and a fu ll 

match of3 + log,(d ictionary size) bits ( I bit match, log, (dictionary size) bits matc h location, 2 

bits match type). If we assume a practical dictionary size of 256 locations RLF improves 

compression because it outputs 25 bits and the non-RL output is 44 bits. On the other hand if 

the data is indeed in the dictionary RLF wi ll fai l to improve compression because it wi ll still 

output 17+ log,{dictionary_size) bits whilst a non-RL alternative wi ll output 2 codes of 3+ 

log,(dictionary_size) bits = 6+21og, (dictionary_size) bits. For a practical dictionary size of 

256 locations thi s is 25 bits> 22 bits. Therefore depending on how often data is found in the 

dictionary RLF can be made sensi tive to runs of length 2 or not. Figure 5.9 shows the 

distribution of fu ll matches, partial matches and misses over the Canterbury corpus with 

different block sizes and a practi cal dictionary size of256 locations. 
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Figure 5.9. Distribution of Misses, partial nmtc hes and full matches over the Canterbury 
corpus. 

Assuming a worst case for the run length option we select a di stribution of 0.05% misses, 

0.36% full matches and 0 .59% partial matches that corresponds to a block size of 16 Kbytes 

or bigger. Then, we can compare the number of bits produce by a RLF alternative sensiti ve 

and non-sensitive to runs of length 2. We call x = 10gl(diclionGlY size) and we assume steady 

state. A fu ll match outputs a match location code of x bits, a single bit indicating a match 

and 2 bits indicating a full match type. A miss outputs a single bit indicating a miss and 32 

bi ts of literal characters. The number of bits produced by a partial match depends on the type 

of match. For the calculation we assume again a worst case for run length so the number of 

bits produced by the paltial match is minimum: I bit for the match, x bits for the match 

location code, 3 bits for the match type and only I mi ssing byte added = 12 bits. 

No oJ bils (lIoll -sensitive) = 
= 0.05(33) + 0.36(3+x) + 0.59{12 +x)+ (3+x) = 1.95x + 12.81 

No oJ bits (sensitive) = 17+x 

12.81 + 1.95x > 17+x => x > 4.41 > 5 => 

=> No oJ bits(lIon-sellsitive) > No oJ bits(sensitive) 

[5. I} 

[5.2} 

[5.3} 

From equation [5.3] RLF can be made sensitive to repetitions of length 2 if the dictionary 

size is larger than 2' = 32. Equation [5 . 1] depicts a worst case for RLF because it measures 

the minimum number of bits produced by a non-RL alternative. It assumes a miss probability 

based on a 256-location dictionary however if the dictionary is smaller than 256 locations the 
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percentage of misses increases and therefore the number of bits in equation [5.1] increases 

reinforcing the result of equation [5.3]. Equation [5.1] also assumes that all the partial 

matches are matches of 3 bytes and they only need one missing byte to be added to the code. 

If partial matches of only 2 bytes are inc luded in the ca lculation the number of bits produced 

in equation [5 .1 ] increases again reinforcing the result of equation [5.3]. 

We will now study the RLI alternative. RLI combines with MTF to efficiently run length 

code any repeating 32 bit pattern. Since the MTF dictionary maintenance policy forces any 

repeating pattern to be located at position 0 (top of dictionary), RLI detects and run length 

codes any tuple that is fully matched at the top of the dictionary 2 or more times. The tuple 

always has to be present in the dictionary in location 0 for the RLI event to become active 

because RLI codes runs of full match at location 0 and not runs of repeating tuples. This 

means that the first tuple in the input data source that starts a run of repetitions is stored in 

location 0 and only the following repeating tuples can be coded as part of a RLI event. The 

output of a RLI code is always 9+ log,(dictionary_size) (I bit indicating a match, 

log,(dictionary_size) bits for the RLI code, 8 bits for the run length). The following set of 

equations is obtained comparing the output produce by a RLI sensitive and non-sensitive to 

repetitions of length 2. 

No of bits (non-sensitive) = 6 + 2x 

No of bits (sellsitive) = 9 + x 

6 + 2x > 9 +x => x > 3 => No ofbits(lIoll -sellsitive) > No ofbits(sellsitive) 

[5.4} 

[5.5} 

[5.6} 

From equation [5.6] RLI can be made sensitive to repetitions of length 2 because it saves bits 

for any dictionary size bigger than 23 = 8. 

The most common repeating pattern (in our experience) is a run of zeros, however other 

repeating patterns also exist like the space character in a text file or a constant background in 

a picture. This situation is illustrated in Figure 5.9 that shows an accumulative distribution of 

run lengths. The X ax is is the repetition length of the run whi le the Yaxis is an accumulative 

distribution that specifies a repetition length frequency. 
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Figure 5.9. Repetition distribution on data sets. 

The results of the analysis of the repetitiveness of 32-bit patterns in 2 of our data sets show 

that most of the runs are of length 15 or less whi lst the contribution made by longer runs is 

small. Figure 5.9 shows that the distribution line stops growing around a va lue of repetition 

length around 15. On the other hand long runs offer more compression advantage because 

more bits are coded in a single codeword. The memory data set in Figure 5.9 is formed by 

around 9 Mbytes of data obtained from the main memory of a workstation used in an 

engineering environment. The most common event that uses RLI codes is the tuple formed by 

32 zeros although other patterns account for 20% of the RLI codes. The executab le data set in 

Figure 5.9 is formed by 35 Mbytes of executable data fi les fo und in the hard disk of the same 

workstation this si tuation is inverted an non-zero 32-bit repeating patterns are predominant 

with 60% of the total. 

A disadvantage of RLI is that it requires at least a repetition length of va lue 3 to be activated 

because the first tuple is used to place the match location at position O. RLI is on ly sensible to 

matches at location 0 unaware of the data that generates the match. On the other hand a RLF 
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(Run Length Front) located at the entrance of the dictionary could be acti vated with only 2 

repetitions. 

Both techniques RLI and RLF are experts at di fferent data sources. RLI is activated by any 

32-bit repeating pattern of length minimum 3 while RLF codes any 32-b it repeating pattern of 

the same byte of length minimum 2. 

RL codin g techniques DI C=256 

5 

4 

~. 3 
X= : Q ~ , 

U - x x 
• • 

;i< 2 

o r 

256 bytes I Kb 4 Kb 16 Kb File 

Block size 

-+-- RLI - RLF(a ll) RLF(same byte) ~ RLF(zeros) 

Figure 5.10. Run length coding techniques in X-Match processing the Canterbury corpus. 

Figure 5. 10 shows the compression ga in of these RL coding techniques appli ed to X-Match 

versus a non-RL alternative over the Canterbury corpus. We use a typical dictionary size of 

256 locations. RLF(same byte) is the technique described previously that needs I byte to 

identify the repeating tuple. We have include 2 variants of the run length front technique of 

the same byte for completeness: RLF(zeros) is only sensitive to repetitions of zeros, so no 

extra byte is needed to indicate the repeating tuple. RLF (all) is sensitive to repetitions of any 

byte li ke RLI but it needs to have the whole repeating tuple (4 bytes) added to the RLF code 

so the decoder knows which tuple originated the run. 

From Figure 5.10 RLF(zeros), RLF(same byte) and RLI offer the best results. RLF(all) has a 

better performance for very small block sizes but its performance degrades with larger blocks. 

The compression gain is not very significant because the Canterbury corpus is textual bias 

and it does not contain the long runs ty pical of binary data. As we will see in the following 

sections performance improves with the other 2 data sets. We have chosen RLI to be 

developed in hardware because it integrates neatly in the X-Match architecture and shares the 
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dictionary logic to perform the comparisons keeping complex ity to a minimum. Figure 5.1 1 

shows the effects of dictionary length on run length coding efficiency for the RLI alternati ve. 
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Figure S.ii.Compression gain of RLi versus non-RL in X-Match processing the Canterbury 
corpus. 

From Figure 5. 11 it is clear that the effectiveness of run length coding improves with 

dictionary size but is largely invariant with block size. The maximum number of repetitions 

that can be coded together is 255 in this implementation. We have found that thi s offers the 

best compression . Using 7 or 9 bit counters damages compression . A RLI code is coded as a 0 

indicating a match follow by the binary code corresponding to the last location in the 

c1ictionary and follow by and 8·bit code with the number of repetitions. This means that the 

dictionary reserves one location to code RLI events and consequently has one word less to 

store freq uent 32-bit vectors. This is one of the reasons that justify with RLI works better with 

large dictionaries because the effect of losing one dictionary location has a more significant 

impact on compression with sma ll di ctionaries. It is al so true that a large dictionaries has a 

better compression ratio and in consequence the compression gai n obtained by RLI measure 

as a percentile improvement ( I OOx(CR"'fo,,- CR,n" 1 CR,n,,» ) is more noticeable when CR is 

small. Assuming a dictionary size of 256 locations a maximum compression ratio of 

17/(255*4* 8) = 0.002 is enabled by the RLI module when a full run of 255 repetitions is 

encountered. The maximum compression ratio achievable by X-Match without RLI is limited 

to 11 /(4*8) = 0.34. 
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5.3.3.4 COllclusiolls 

PBe seems to be the best overall solution for the dictionary-based match location coder 

because it combines good performance on small to medium block sizes and simple 

implementation. PBe should be used if the dictionary size is larger than 64 locations to avoid 

damaging compression when processing small data blocks. If thi s is not the case, simpler 

UBe will suffice to implement the match location coder. RLI offers a compression gain over 

a non-RL alternative with minimum investment on extra complexity because only a counting 

mechanism and a way of detecting full matches at location zero are needed to enable the 

technique. RLI can be used with any dictionary size but its efficiency improves with 

dictionary size. A dictionary length of 256 offers a good trade-off complexity/performance 

and it effectively uses the PBC and RLI techniques. Figure 5.12 shows that the performance 

improvement in X-RLI with 512 and 1024 dictionary locations is within a narrow margin of 

the 256 dictionary locations solution. A dictionary size of 256 is therefore selected for the 

compress ion performance measurements of section 5.5 . 
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Figure 5.12. X-RLI compression on the Canterbury corpus. 

Figure 5.13 shows the new algorithm named X-RLI in pseudo-code format that uses PBC and 

RLI. The instructions shown in bold letter are not present in the original X-Match algorithm. 
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Set the dictionary to its initial state; 
Set next free location counter ~ 0; 
Run length count ~ 0; 
DO 
{ 

read in tuple T from the data stream; 
search the dictionary for tuple T; 
[F (full hit at location zero) 

ELSE 
{ 

increment run length count by one; 

IF (run length count ~ I) 
{ 

} 

output '0'; 
output phased binary code for ML 0; 
output Huffman code for MT 0; 

IF ( run length count > I) 
{ 

output '0'; 
output phased biliary code for ML MAX_TABLE_ENTRlES-l; 
output Binary code for rUII length; 

} 

} 

} 
set run length count to 0; 
IF (full or partial hit) 
{ 

} 
ELSE 
{ 

} 

determine the best match location ML and the match type MT; 
output '0'; 
output phased binary code code for ML; 
output Huffman code for MT; 
output any required literal characters ofT; 

output ' 1 '; 
output tupl e T; 

IF (full hit) 

ELS E 
{ 

} 

move dictionary entries 0 to ML- l by one location; 

move all dictionary entries dOlVn by one location; 
increase next free location counter by one; 

copy tuple T to dictionary location 0; 

WHILE (more data is to be compressed); 

Figure 5.13. The X-RLI algorithm 
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5.4 Compression performance comparison 

This section analyses the compression performance of the X-RLI algorithm of section 5.4.3.4 

with a dictionary size of 256 locations. We test the compression performance of this 

algorithm against the software and hardware based algorithms se lected in sections 4.3 and 4.4 

using the data sets selected in section 4.2 . We have also included the original PBC-based X­

Match extended to a dictionary size of 256 locations for the sake of completeness. 

5.4.1 Canterbury data set compression performance comparison 

Figure 5.14 shows the compression ratios achieved by our software and hardware based 

compression algorithms on the Canterbury corpus. We can c learl y identify 3 ma in areas. 

The 3 software-based compression algorithms offer the best compression with simi lar results. 

PPMZ is the top performance whilst the behaviour of the algorithms HA and PKzrr is 

remarkably similar once the block size reaches I Kb. These 2 a lgorithms use a similar 

dictionary-based sliding-window modell ing technique but HA uses an arithmetic coder as the 

back-end of the algorithm. HA only manages to improve PKz rr marginally. We have 

removed the overhead effects by deleting the bytes that do not form part of the compressed 

code as described in section 4.3 . 

The 3 commercially avai lable hardware algorithms offer very similar performance whi lst X­

RLI fa ll s behind . The textua l nature of the Canterbury corpus can explain the limited 

performance ofX-RLI over this type of data. 
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-+-X-RLI 
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Figure 5.14. Canterbury corpus co mpression performance. 
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5.4.2 Disc data set compress ion performance compar ison 

Figure 5.15 shows the compression performance on the disc data set. The performance of the 

DCLZ and X-RLI algorithms is quite similar main ly when dealing with small block sizes. The 

performance of the ALDC and LZS algorithms is superior to the previous ones and s imi lar 

between them. The disc data set has 4 components and as expected the performance ofX-RLI 

was particu larl y good when compressing the executable component of the data set due to its 

32-bit granularity. 
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Figure S.IS. Disc data set compression performance. 

5.4.3 Memory data set compression performance comparison 

Figure 5.16 shows the performance of the algorithms on the memory data set. 
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Figure 5.16. Memory data set compression performance. 97 
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There are again 3 areas in Figure 5. 16 although there are closer to each other than in the other 

2 data sets. The 3 software algorithms offer very si milar performance whilst DCZL gives the 

worst results . X-RLI is competitive with the ALDC and LZS versions and performs better 

with smaller block sizes . The memory data set is formed wi th data found in the main memory 

of a workstation running different applications. This binary data is well suited to X-RLI 

compression because it has a 32-bit granularity not present in the other data sets. The new 

RLI technique include in X-RLI proves more use ful in the di sc data set and memory data set 

where the compression improvement of X-RLI over X-Match is more noticeable than in the 

case of the Canterbury corpus. 

5.5 Conclusions 

This chapter has proposed a number of techniques to improve the X-Match compression 

performance. Increasing dictionary size and introducing an internal run length coding 

technique can improve the dictionary-based modeller and coder without affecting speed. We 

select the X-RLI algorithm for further research because it is able to obtain meaningful 

compression ratio in our data sets, it is hardware amenable and it has a parallel single-cyc le 

execution that enables the throughputs required in section 3.1 . 

98 



Chapter 6 Focus on compression throughput 

Chapter 6 

Focus on compression throughput 

6.1 Objectives of Chapter 

This chapter deal s with the issue of increasing the throughput of the design whil st maintaining 

the compression ratio. High throughput was identified as one of the main motivations to 

undertake this research so the outcome of thi s chapter is fundamental. 

6.2 Introduction 

The 3 elements that form part of the compression/decompression engine: Model , 

Coder/Decoder, PackerlUnpacker have a direct effect on throughput. The method followed to 

improve the X-Match performance consists of a rigorous analysis of each of these 

components to solve possible bottlenecks present in the architecture. Our design 

methodology has accessed the structural VHDL description of the ori ginal blocks present in 

X-Match [Gooch96]. The redesign architecture is described in VHDL using a structural and 

hierarchical approach to obtain a more predictable outp ut from the FPGA-based synthesi s 

engines used to synthesise and map the VHDL to a technology-dependant netli st. The reports 

provided by these tools are used to guide the optimisation process. To be able to validate our 

sol utions in hardware we use the ProASIC FPGA 's manufactured by Actel corporation as our 

silicon test bench. The experimental methodology is based around a dictionary size of 16 

tuples to be able to target the A500K I 30 ProASIC FPGA for rapid prototyping. The ProASIC 

A500KI30 is one of the first devices to become available in the high-density A500K family . 

Th is device constitutes an invaluable tool to validate our designs. Its ASIC-style archi tecture, 

re-programmability and non-volatility features couple with its test capabi liti es enable us to 
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test In hardware circuits that otherwise will be only proven through simulation. The 

architecture of the new engi ne is described using PBC because chapter 5 proved that this 

coding strategy is a valuable technique to improve the performance of medium and big 

dictionaries. The prototype is based on a dictionary with 16 locations to be able to target the 

available A500K 130 device. Chapter 5 showed that a 16,32 and 64-tuple dictionaries do not 

benefit from PBC so, in order to further reduce the resource requirements in the A500KI30 

FPGA, the prototype implemented in section 6.6 to eval uate throughput uses simpler UBC for 

the match locations. Thi s is a compromise we need to make to va lidate our design in the 

avai lable sil icon. The design scales up easily with technology and the modifications needed to 

add PBC when the technology density enables the use of dictionaries larger than 64 locations 

are small, as we wi ll see in the next sections. 

6.3 Model architecture 

Figure 6. 1 shows the architecture of the model in the X-Match design . 

U dataln 

32 

4 
r-- -'-- -, 16' 4 MATCH I------:Ma~~-:-.. 

DICTIONARY 
(16 X 4 bytes) 

OECISIONI-_-, TYPe 
Match l OGIC 

MatctJ Locallon 

16 

Match 
Loc 

16 
Move 

MatchType 4 

Uteral Data 32 

Figure 6.1. X-Match model architecture. 
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An initial effort to map X-Match to FPGA technology [Nunez99) reveals that the same 

critical path depicted in chapter 3 for the adaptation process holds in the FPGA 

implementation. The signals depicted in red colour correspond to compression related signals, 

those in blue colour relate to decompression related signals and those in green colour are 

shared by both channels. Dotted lines are used for critical paths. This colour scheme is 

maintained for the rest of the work. 

The model comprises the fo llowing blocks: 

• Dicliol/Gly: CAM-based dictionary with 16 tuples. The 16-tuple dictionary is formed 

by a total of 16x32 = 512 CAM cell s. Figure 6.2 shows a section of the dictionary 

architecture with 4 tuples. 
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Each tuple is fonned by a row of 32 identical CAM cells. The CAM cell is illustrated 

in Figure 6.3. Each cell stores one bit of a data tuple. The cell can maintain its content 

or load the value store in the north neighbouring cell available in the previous input as 

indicated by the move input. The bit stored in the cell is compared with the bit present 

in the search input using a xor gate. This bit is also avai lable to the south 

neighbouring cell in the next output. 

• Match decision logic: Logic that assigns a different priority to each possible match 

type in the dictionary and selects one of the matches as the best for compression. 

• Move generation logic: Generation of the adaptation vector depending on the match 

type (full match or partial match) and the match location. 

• Selection multiplexor: Logic that selects one data tuple from the dictionary to be input 

in the output tuple assembler during decompression . 

• Output tuple assembler: Module that assembles a decompressed tuple usmg 

dictionary information and any literal characters present in the code. 

The critical path involves a feedback loop that extends from the search register, first 

multiplexor, CAM dictionary, best match decision logic, second mutiplexor, movement 

generation logic and back to the CAM dictionary to provide the necessary infonnation to 

reorder the dictionary. The feedback loop prevents us from inserting a simple pipeline regi ster 

without affecting the algorithm functiona lity. This feedback loop is illustrated with a dotted 

line in Figure 6.1. 

Careful study of thi s path reveals that the vector that defines how the dictionary adapts to the 

data can be generated much earlier at no extra cost in tenns of area. The reason is that the 

shift down operation is only loca l to some dictionary positions when a full match occurs. 

Therefore it is not necessary to resolve the best match to know how to shift the dictionary. It 

is only necessary to know if a full match has happened and where to be able to generate the 

adaptation vector. If there is not full match the shi ft affects all the locations and if there is a 

full match this is known before accessing the best match location logic . This change together 

with moving the search multiplexor out of the critical path leaves the architecture as shown in 

Figure 6.4 where the match decision logic has been split into 2 components: the priority logic 

and the match decision logic. 
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• The priority logic: This logic assigns a different priority to each of the possible 

matches and it was originally embedded in the match decision logic. 

• The lIIatch decisiolllogic: It uses the priority information to select one best match and 

it moves out of the critical feedback loop. 

After this modification the critical path is approx imately 10% faster but it still remains the 

slowest part of the device. Although the search operation in the CAM dictionary and the 

priority assignation are parallel processes the generation of the adaptation vector by the move 

generation logic involves propagating the match location up so a ll the locations on top of the 

match location can move down. This propagation is critical and the number of levels of logic 

depends on dictionary size with the expression O(log,(dictioIlOlY size)) . The timing of the 

search operation is also affected by the dictionary s ize because of the higher fa nout associated 

to larger dictionaries. 
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Figu re 6.4. Modified X-Match model architecture. 
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6.3.1 Out of Date Adaptation (ODA) description 

To improve further the critical path it is necessary to mod ify the algorithm functiona lity by 

introducing an Out of Date Adaptation (ODA) mechani sm in the model. ODA implies that 

adaptation at time t+ 2 takes place with the information provided by the previously processed 

tuple at time 1 and not the one at time t+ I . This technique breaks the fundamental feedback 

critical loop effectively in 2. T he danger is that dictionary efficiency could be lost if the ODA 

technique duplicates the same tuple in different pos itions in the dictionary. In the architecture 

depicted in Figure 6.1 and 6.4 the adaptation vector at time 1 provides information to reorder 

the dictionary at time 1+ I and makes sure that tuples are unique in the dictionary. In ODA the 

adaptation vector at time 1 is not effecti ve until time 1+2 so adaptation at time 1+ I could insert 

a tuple in the dictionary that already ex ists in some other dictionary location degrading 

dictionary e ffi ciency. Dictionary efficiency is quickly lost if the same data is duplicated in 

di fferent positions of a sma ll dictionary. The way to avoid this is by forcing the current 

adaptation vector to adapt not only to the CAM as before but a lso the next adaptation vector. 

Figure 6.5 ill ustrates thi s process. T he on ly negative effect is then that the dictionary behaves 

like it has one entry less but data dupli cation is restricted to position O. 
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Figure 6.5 shows how a simple dictionary o f only 4 positions adapts to the incoming data 

source using the ODA technique. Every step corresponds to a different cycle. The yellow 

boxes show how poss ible full matches occurred simultaneously at position 0 and position 

bigger than zero but in thi s cases match at position zero is always selected as valid . The next 

adaptation vector depicted at the right of the dictionary depends exclusively on this match 

information. The figure shows how the ODA technique adapts the dictionary at time /+2 

using a modified adaptation vector originally generated at time t and how data duplication is 

restricted to position O. For example, the current adaptation vector depicted at the left of the 

dictionary for step 3 is generated shifting down the next adaptation vector of step 2 as 

indicated by the current adaptation vector of step 2. The current adaptation vector at step 3 

wi ll adapt the dictionary for step 4. By using thi s s imple technique the effect of ODA on the 

compress ion ratio is negligible because in the worst case only one dictionary position contains 

repeated infomlation and in the best case all dictionary positions contain different data. 

Table 6.1 explains the steps of Figure 6.5 . 

Step number Action 

I • Full match detected at position I. 

• Next adaptation vector set to I at positions 0 and I. 

• Current adaptation vector loads search tuple in position O. 

2 • Full match detected at position 0 and I . 

• The algorithm selects the one c loser to the top as valid (position 0). 

• Next adaptation vector is set to I at position O. 

• Current adaptation vector loads position 0 in position I and search tuple in 

position O. It also shifts next adaptation vector one position down. 

3 • Full match detected at position 3. 

• Next adaptation vector is set to I all positions from 0 to 3. 

• Current adaptation vector loads position 0 in position I and search tuple in 

position O. 

4 • Full match detected at position 2. 

• Next adaptation vector is set to one in positions 0,1 and 2. 

• Current adaptation vector shifts down all the data one position, loads 

search tup le in position 0 and also shifts down the next adaptation vector. 

Table 6.1. ODA description (Continued next page). 
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• Full match detected at positions 0 and 3. 

• Position 0 selected as valid. 

• Current adaptation vector shifts down all the data one position, loads 

search tuple and it also shifts the next adaptation vector. 

• Miss detected. 

• A miss sets all the bits in the next adaptation vector to I. 

• Adaptation is as previous cycles. 

• Full match at position O. 

• Adaptation is as previous cycles. 

• Partial match at position 2 . 

• Partial matches are dealt with as misses for adaptation purposes. 

• Adaptation is as previous cycles. 

Table 6.1. ODA desc ro p toon (End). 

Figure 6.6 shows the new architecture with one component added: 

• The ODA logic: It uses a multiplexor and a register to store the next adaptation vector 

shifting it down one position as indicated by the current adaptation vector. The 

register breaks the feedback loop. 

ODA proves a very effective technique to ensure that data duplication at position 0 is only 

effective for one cycle and this technique mainta ins the original dictionary efficiency. The 

logic cost of ODA is small because only a register and a multiplexor of length equal to 

dictionary length are required. The control bus in Figure 6.6 decides if the new adaptation 

vector is loaded directly or one position down. This operation is critical to guaranty that a data 

tuple duplicated at time / wi ll be quickly deleted fTom the dictionary at time / + I. Figure 6.6 

shows with a dotted line how the original critical path has been split into 2 non-critical paths 

that correspond to the search operation and the adaptation operation. These two paths have 

been balanced to have a similar delay. The ODA-based architecture is approximately 100% 

faster that the non-ODA of figure 6.4. 

ODA could also be applied to improving the performance of on-chip cache memories that use 

a least-recently-used algorithm [Tanenbaum90] to know which cache line should be evicted 

once the cache becomes full. This problem arises in full-associative or multiple-way set­

associative caches where different cache lines can be allocated to the same data item. There is 

a third type of cache organisation: the direct-mapped cache where the selection of the data 
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item for eviction is trivial because the new data item can only be stored in one particular 

cache line. Associative caches offer a higher hit ratio than direct-mapped caches [Drach95) 

but many cache designs use the second ones due to their fast access time and ease of 

implementation [McFarling9l). This means that a lot of research has been carried out in 

improving the performance of direct-mapped caches or caches wi th low-associativity (2-way 

to 4-way) aiming to maintain their simplicity whilst improving their hit ratios [Wilson97) , 

[McFarling9 1], [Jou90] , [Wolf9 I] . Associative caches are kept simple by using in many cases 

a random policy to select one cache line for eviction but it is generally accepted that a more 

sophisticated policies [HallnorOO] such as least-recentl y-used increase the hit rate at the 

expense of a higher access time. ODA can effectively decrease the amount of time needed to 

select one cache line for eviction enabling hi gher-levels of associativity. (> 8-way). This area 

remains for future research. 
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6.4 CoderlDecoder architecture 

Figure 6.7 shows the components of the code/decode logic, namely: 

• 16-10-4 encoder, 4-/0- /6 decoder: Logic that assigns a 4-bit binary code to the 16-bit 

match location vector or a 16-bit match location vector to a 4-bit binary code 

respectively. 

• Binmy code generator: Logic that generates a phased binary code (PBC) or a uniform 

binary code (UBC) depending on the implementation and concatenates it with a bit 

indicating a match. It also supplies the length of this match location code. 
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• Match type code generator: Logic that assigns a static Huffinan code to each possible 

match type. There are II possible different match type combinations of 2,3 or 4 bytes 

matching in the tuple. The Huffman tree obtained after extensive simulation has only 

4 different code lengths of2,3,4 and 5 bits. The full match is the most probable match 

type and its Huffman code is only 2-bit long. Matches of 3 non-consecutive bytes are 

the most improbable and they are assigned 5-bit long Huffinan codes. 

• Literal character assembler: Logic the uses the match type information to produce a 

code formed by the bytes that are not part of the match . 

• Code concatel/ators : Logic that con catenates the codeword components into a single 

code to be supplied to the bit packer. 

• Mail/ decoder: The main decoder obtains a match type and a match location from the 

code word supplied by the bit unpacker. The first bit defines if a miss or a match 

follows. If a match is detected the next following bits in the codeword define the 

match location and the number of them depends on how many entries are valid in the 

dictionary if using PBC. This number is fixed at log,(dictionary_size) in a UBC 

implementation. The match type code follows the match location code. If the match is 

partial the missing bytes follow the match type. If instead of a full or partial match a 

miss is detected the next 32 bits following the first bit correspond to the 4 missing 

bytes. 

The coding operations in X-Match are not time critical because only II different static 

Huffman codes are used for the match types and the PBC codes are, in essence, UBC codes 

which lengths depend on how many entries are valid in the dictionary and on where the match 

is located. None of these techniques require complex or slow operations. There are also no 

feedback loops (as Figure 6.7 il lustrates) so pipeline registers can be inserted if required. The 

position of the pipeline regi sters is also shown in Figure 6.7. The coding logic also assembles 

these codeword components into a single codeword before they are made available to the bit 

packer. Decoding is also si mple but in this case a feedback loop exist between the decoder 

and the unpacker. The reason is that the unpacker needs to know the number of bits used by a 

codeword before it can shift out old bits and concatenate new bits to the uncompressed code. 

The number of bits used by a codeword is not known until the codeword has been decoded in 
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the decoder. The Feedback signallllatch width in Figure 6.7 carri es this inFormation to the bi t 

unpacker. Section 6.5 deals with thi s Feedback loop. 

6.4.1 Run Length Internal (RLI) description 

The new coder/decoder adds extra functionality because the RLI technique that codes 

multiple Full matches at location zero into a single run-length code is embedded in the 

archi tecture. Figure 6.8 shows the coder/decoder architecture with the RLllogic added. 
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Figure 6.8. RLI-based X-Match coderldecoder architecture. 

RLI adds the following components: 

• RLl coding register: Bu FFers the codeword before it enters the bit packer logic. This 

buFFering function is necessary to enabl e resetting the pipeline from a full match at 

position zero that wi ll be coded as part of an RLI event. The pipel ine wi ll not be reset 
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• if the RLI counter does not exceed the count of I. If the count remains at one, then, a 

single full match at location zero has been detected and a valid RLI event is not 

present. 

• RLf coding control unit: The RLI coding control unit monitors the output of the RLI 

counter. If this value is equal or bigger than 2 then a RLI event is detected as valid. 

• RLf COllllter: The RLI counter changes its operational mode if compressing or 

decompressing. In compression it counts consecutive full matches at location zero in 

the dictionary up to a maximum value of 255. In decompression it is loaded with a 

value that indicates the length of the run and then it counts up unti l this value is 

reached. 

• RLf decoding register: Buffers the output of the main decoder before it enters the RLI 

decoding control unit. This buffering effect is needed to allow the timing of the signa l 

sel length to zero to be correct. Set length to zero signals that an RLI event is active 

and the bit unpacker must maintain its current state as many times as indicated by the 

length of the run . 

• RLf decoding control unit: The RLI decoding control unit monitors the existence of 

the binary code corresponding to the last position in the dictionary. This code is 

reserved for RLI events. If this code is detected the run length va lue is loaded in the 

RLI counter and the RLI control logic outputs full match at posi tion 0 until the run is 

exhausted. 

An 8 bit counter is shared by the coding and decoding RLI logic. In compression mode this 

counter does not use any specific technique to detect an overflow condition if a pattern 

repeats more than 255 times. The count si mply loops back to zero . This condition is detected 

by the RLI control logic as an end of run and a RLI code is output. The next code after a RL I 

code is always a normal code even if the pattern continues repeating. If this is the case the 8-

bit counter exceeds the count of I again and the run length detection signal is reactivated . 

This simple mode of operation simplifies the RLI control logic. Figure 6.8 illustrates how the 

RLllogic is neatly integrated with the rest of the coder/decoder logic. 

In compression mode the output of RIC is used to code the match location using a 4 bit 

(2'= 16) binary code and the match type using a static Huffman code. Any needed literal 

characters are added and the result accesses the RLI coding logic. If the following tuple t+ I to 
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access the match decision logic keeps the RLI counter enable an RLI event is detected as 

valid because at least 2 tuples have generated consecutive fu ll matches at location zero . This 

means that the compressed code corresponding to tuple I is eli minated from the pipeline and 

replaced by an RLI code where tuples [, [+ 1, .. . , [+RLf _Iellg[h will be efficiently coded. 

The RLI event remains active for as long as the fu ll match at zero signal is set or for a 

maximum of 255 repetitions. Then, the RLI code is output always followed by the normal 

code of the tuple that terminated the run length. The result accesses the bit packing logic. In 

decompression mode the compressed data enters the main decoder to produce a match 

location and a match type and any possible RLI events are promptly detected . A RLI 

condition is signal to the RLI decoding control unit which changes its mode of operation. The 

output of the RLI decoding logic is pipelined in register R2D after decoding the match 

location in the 4-to- 16 decoder. 

Figure 6.9 shows an example of the RLI process. 
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An RLI coding event is active in steps 5,6 and 7. The RLI output is generated at step 8 when 

the run stops with a length of 3. Figure 6.9 shows that the counter only incre ments when the 

search data is present at position O. The code generated at step 5 is deleted from the pipe line 

when the RLI count exceeds I because it wi ll be coded as part of the run-length . Table 6.2 

explains the RLI process. 

Step number Action 

I • Full match found at position I. 

• Normal output. 

• RLI counter=O. 

2 • Miss detected . 

• Normal output. 

3 • Partial match detected at position 2. 

• Normal output. 

4 • Full match detected at position 2. 

• Normal output. 

5 • Full match detected at position O. 

• Normal output but possible start of internal run length. 

• RLI Counter = I 

6 • Full match detected at position O. 

• Valid run length detected. 

• Empty pipeline fro m the previous code. No output. 

• RLI Counter = 2. 

7 • Full match detected at pos ition O. 

• Valid run length continue. No output. 

• RLI Counter = 3. 

8 • Partial match detected at position O. 

• Run length fini shes. 

• Flush run length code . 

• RLI Counter = O. 

• Normal output of data terminating the run length. 

Table 6.2. RLt description. 
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6.5 Packer/Unpacker architecture 

Figure 6. 10 shows the packer architecture with the foll owing components: 

• Code cOl/calenalor: Logic that concatenates the cUlTent buffer codewords with a new 

codeword produce by the coder. The coder produces a new variable-length codeword 

each cyc le. This logic assembles this variable-length codewords in 64-bit fixed-length 

codes than are then output to the compressed bus. The logic requires a 64-bit output 

bus because the maximum codeword length is 33-bit when a miss is detected and a 

32-bit output bus could create a bottleneck. 

• Regisler : Logic that buffers a maximum o f 96 bits of code plus the number of valid 

bits in th is code. A 96-bi t register is necessary because in the worst case there could 

be 63 bits in the buffer waiting to be output and a 33 bits codeword could be 

generated (63+33 = 96). The acti ve code length is stored in 7 extra flip-flops. 
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b"----:~ 
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Figure 6.10. Packer/unpacker X-Match architecture 

Figure 6.10 shows the unpacker architecture with the following components: 
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• Code concalenale and shift: This logic unpacks 64 bits of compressed data into 

variable-length codewords. To be able to shift out old data and concatenate new data 

the codeword length must be suppli ed by the decoder logic using the signal lIIalch 

widlh. This forms a critical feedback loop difficult to improve. 

• Register: Regi ster that buffers the current code before accessing the decoding logic. 

At least 33 bits of data must be va lid in each cycle to prevent the decoder from 

failing. A regi ster of 96 bits is needed because a new 64-bit compressed code must be 

added to the internal code when 32 or fewer bits are valid (32+64 = 96). The 

unpacker uses 7 extra flip-flops to store the active code length like the packer. 

The architecture has been redesigned to reduce the logic present in the critical path and, 

hence, to improve its timing characteristi cs. Figure 6. 11 shows a block diagram of the logic 

involved in the critical path and how the ca lculation of the match length must precede the 

concatenation of new data to the data not used in the previous uncompressing cycle. The 

critical path is depicted as dotted line . 
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The red box defines logic present in the decoder and illustrates how the feedback loop extends 

from the unpacker, to the decoder and then back to the unpacker to supply the malch lenglh 

signal. The match length is then subtracted from the old length to obtain the valid data lellgth 

and thi s information is used to shift old data and to concatenate new data . This last step is 

very complex because it involves multiple multiplexing logic . If valid data length is bigger 

than 32 the input is shifted to eliminate data already used in the un compressed cycle but new 

data is not added. If data valid length ranges from 0 to 32 new compressed data is 

con catenated to the right position of old data and a shi fting operation takes place to eliminate 

data already used. 

The redesigned architecture is based on concatenating new data in the assemble lIew data 

logic in parallel and independently to the process of calcu lating the decoded length in the 

decoder. Figure 6.12 illustrates the new architecture. 
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Figure 6.12. Decoder/unpacker modified feedback loop. 

The new design uses old lellgth to add new data when the number of valid bits is less than 66. 

This means that if there is at least 66 valid bits no concatenation of new data takes places for 

the next decoding cycle. The current decoding cyc le can consume a maximum value of 33 

bits so at least 33 bits (66-33) are left as va lid in the regi ster and the next decoding operation 
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can take place independently of how many bits are decoded in the current cycle. Since 64 bits 

are added to old dala when the number of valid bits is less than 66 the decoding register is 

extended from 96 bits to 129 bits (65+64 ; 129 bits). The complexity of the logic in the 

critical path is now simplified because the new sirifi out old dala logic does not perform a 

con catenation operation which is parallel to the decoding process. The logic is simpler 

because it needs to perform only a shifting function , therefore, the resulting circuit is smaller 

and can run faster. The lIIatcir lengtir signal suppl ied by the decoder controls how the shifting 

is done. 

This redesign speeds up the unpacking process with an estimated critical path 40% faster in 

Figure 6. 12 compared with Figure 6.11. Jt remains, however, a critical component for 

performance since the feedback loop from the decoder is sti ll present. Figure 6.12 shows with 

a dotted line the new critical path that does not include the subtracting operation or the decode 

logic. Figure 6.13 shows the new architecture of the unpacker. The same components are 

present but with different data widths. The inclusion of the RLI logic adds an extra control 

signal to the unpacker the setlengtir to zero signal. This signal is active when an RLI event is 

active and indicates to the bit unpacker that it must copy the contents of its registers directly 

without shifting data until the RLI event finishes. 
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6.6 Compression/decompression core throughput evaluation 

The 3 components described in the previous chapter formed the core or engine of the lossless 

data compressor. This new algorithm and architecture have been renamed X-MatchPRO as 

the next generation of the X-Match fami ly of high speed lossless data compressors. To 

validate our architectural solutions in silicon we have synthesised and placed&routed the 

architecture into an A500Kl30 FPGA. The test of the FPGA is split into 2 different phases 

after post-layout back-annotated simulation is completed successfull y. The first phase aims to 

verify that the functionality of the device is correct. The second one aims to verify that the 

timing characteristics reported after performing timing analysis in the placed&routed netlist 

are met in real operating conditions. 

6.6.1 Serial test methodology 

The functional test of the device uses a low cost PC-based test methodology and the JT AG 

port available in the FPGA. A text fi le is written automatica lly by a PERL script translating 

the original test vectors to the standard JAM [Altera98] programming and test language. JAM 

is a vendor-and-platform-independent interpreted language for programming and testing 

devices via the IEEE standard 11 49.1 TAP controller, commonly known as JTAG. This file 

contains the test vectors and JAM instructions ready to be executed by the Gatefield ProASIC 

JAM player [Gatefi eld99] that controls the JTAG port shi fti ng in the input test vectors 

clocking the device and shi fting out the output test vectors. These vectors are compared with 

the expected output and fai l or pass is reported . The same test vectors used during the 

simulation phased are now used in this verification phase to maintain consistency during the 

whole testing process. Figure 6.14 shows how the JAM player applies the test vectors to the 

JT AG port and reads back the clocked results. 
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Figure 6.14. Serial test methodology 
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Each original test vector is decomposed into 2 vectors one corresponds to clock cycle low and 

the other to clock cycle high. After some propagation time showed as a shaded area in yellow 

and red the output of the circuit is ready to be strobed and scan out. 

Figure 6. 15.a shows the setup of main components present in the serial test hardware. The 

following components are present: 

• A relay board used to switch voltages depending if the system is being used for 

programming or testing. 

• A HewlettlPacker E3611A DC power supply which is used to power the relay board at 8 

volts. 

• A HewlettlPacker programmable E3631 A DC power supply that provides the right 

voltages to the device. 

• A National In struments IEEE-488 GPm controller board that connects the programmable 

power supply to the PC. 

• A Corel is Corporation JT AG controller board that it is used to control the JTAG port of 

the FPGA. 

• A PC where the JAM player an rest of the software are executed. 

Figure 6.IS.b shows a close-up on the ASOOK 130 ProASIC FPGA and the ISP (In System 

Programming) module that holds the device during testing and programming cycles. This test 

allows us to verify the correct functionality of the device but since it is done serially at low 

speed it does not provide any information on the timing characteristics of the implementation. 

Figure 6.1S.a. Seria l test hardwa re Figure 6.1S.h. Close-up on 

programming/test module and ASOOK130 

device. 
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6.6.2 Parallel test methodology 

To evaluate the performance of the FPGA we make use of the Credence VistaLOG IC L TIIO I parallel 

tester shown in Figure 6. 16. 

Figure 6.16. View of the VistaLogic LTllOl parallel test system. 

This test system enables the identification of the max imum operating frequency changing 

variables such as strobe time, cycle time and operating cond itions (supply voltage and room 

temperature). 

Figure 6.17 corresponds to the SHMOO plots obtained in the tester with typical operating 

conditions of room temperature of 25 ·C and supply voltage 3.3 volts. The X axis is the clock 

rising time (CRT) (The device is triggered with the positive edge of the clock) and the Yaxis 

is the strobe time (when we read the output). All time figures are measured from the negati ve 

edge of the clock as illustrated in Figure 6.18. 

The cycle time (CT) in figure 6. 17.a is fixed at 27 ns but the duty cycle varies with the clock 

rising time. The area in green color corresponds to the va lid working area. The 'star ' zone 

si tuated on top of the green area corresponds to an strobe time higher than clock rising time 

and it is indicated in yellow in Figure 6.18. The output of the device is sti ll being compared 
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correctly with the expected output because none of the output buffers have started changing 

its value but a new cycle has already started so it can not be considered a va lid working area. 
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Figu re 6.1 7 •. SHMOO with 27 ns fixed cycle time. Figure 6.1 7.b. SHMOO with 100 ns fixed cycle time 

Figure 6.18 illustrates operational point A in figure 6.17.a . Point A defines the minimum 

clock rising time and the minimum strobe time needed for the circuit to work. The circuit 

stops working in points located left of point A because the setup time avai lable for the input 

vector to access the input buffers and reach the intemal flip-flops before the circuit is clocked 

is not enough. The circuit stops working in points located south of point A because the strobe 

time that defi nes when the output is read is not enough for the output buffers to change and 

get stable . Point A is indicated in fi gure 6.18 in the transition from the red area to the green 

area and defines the minimum strobe time (mst). The area in green and yellow corresponds to 

moving north from poi nt A in figure 6.17.a. The maxi mum strobe time (MST) maintaining 

constant the clock rising time at 17 ns is 25 ns. This point is not a valid working point because 

it corresponds to a new cyc le. Figure 6.18 shows this point as a transition fro m yellow to red 

areas. The red area in Figure 6.1 8 corresponds to any other point in Figure 6.17 outside the 

'star ' area. 

Point B in Figure 6.1 7.a con'esponds to the maximum clock ri sing time. The device stops 

working in points located ri ght of point B because the hold time available from the rising 

edge of the clock to the time a new vector is set in the input buffers is not enough. Vectors are 

always set with the fa lling edge of the clock as illustrated in Figure 6.1 8. The vector must be 
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stable in the input buffers for some time after the rising edge of the clock before it can be 

replaced by a new vector. 

The strobe time increases when moving from point A to point B because of the increase in the 

clock rising time. The cycle, that extends from one positive edge to the next, starts later and 

therefore the output has to be strobe later as well for the circuit to operate. 

Figure 6.17.b relaxes the clock cycle from 27 ns to 100 ns and as expected increases the valid 

working area shown in green. The minimum strobe time remains constant at IOns because of 

the time required to reset the circuit during the first cyc le before the output is stable at 0 and it 

can be compared correctly with the expected output. Otherwise the strobe time should be 0 ns 

because the time elapsed from the positive edge of the clock to the negative edge of the clock 

(between 100 ns to 50 ns in Figure 6.17.b) is more than enough to account for the propagate 

time of the output buffers. 

VeclOl 1 contains the expected outpul hom oppIvhg voclOl 0 
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Figure 6.18. Til11ing relations al working point A. 

Figure 6.19 corresponds to the SHMOO plots obtained in the tester with typical and worst 

operating conditions. The typical operating conditions correspond as in figure 6. 17 to room 

temperature of25 ·C and supply voltage 3.3 volts. The worst operaling condition correspond 

to a room temperature of 70 ·C and supply vo ltage 2.5 volts. The X axis is the strobe time 

(when we read the output) and the Y axis is the cycle time (clock period). The low time of 

clock is fixed at 20 ns while the cycle time varies from 20 ns to 50 ns. 
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The ' star ' area in Figure 6.19 corresponds to the zone where the behavior of the device is as 

expected. The chosen operating point is marked with an 'X ' in figure 6.19.a. Figure 619.b 

shows that under worst conditions our operating point gets closer to the non-functional ily area 

but it is still within a safe margi n. This operating point corresponds to the transition between 

green and yellow areas in Figure 6.20. 
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The figure also shows that whi lst the clock cycle could be reduce down to 25 ns and the 

operating point will still be inside the 'star ' area the strobe time does not allow us to do that. 

The following relation must hold strobe lime <= 20 I/S otherwise data is read in the yellow 

area after the clock has gone high and the current cycle has completed. Although figure 6.19.b 

shows a ' star ' area extending from 20 ns to 27 ns strobe time this zone corresponds already to 

a new cycle and it should not be used. This area is shown in yellow in Figure 6.20. The area 

shown in red in Figure 6.20 corresponds to any other point outside the 'star ' area of Figure 

6.19. 

6.7 Conclusions 

This chapter has focused on analysing the throughput performance of the 3 main components 

of the architecture: Model, Coder/Decoder, PackerfUnpacker decomposing them into their 

simple components. A performance bottleneck has been identified in the model due to the 

existence of a feedback loop in the search and adaptation process. A novel solution based on 

adapting the dictionary using out of date information without losing dictionary efficiency has 

been shown to effectively remove the feedback loop. Another critical feedback loop has been 

identified between the decoder and the unpacker because the last one needs to know from the 

first one how many bits form the variable length codeword before old data can be shift out 

and new data added. The architecture of the unpacker has been redesigned to increase its level 

of parallelism and speed up the circuitry. The inclusion of the RLI functionality depicted in 

chapter 5 in the coder/decoder has been carefully executed to obtain the required behaviour 

avoiding generating throughput bottlenecks in thi s circuitry. 

Finally, we have proven the correct functionality and good timing characteristics of the design 

using a A500K 130 FPGA as our silicon testbench . A conservative operating point under 

worst-case operation conditions with a cycle time of 30 ns enables a 33 MHz clock cycle 

producing a data independent throughput of I Gbitls (132 Mbytes/s). These tests validate the 

compression/decompression core design as meeting the requirements of section 3. 1. 
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Chapter 7 

X-MatchPRO 

lossless data compression technology 

7.1 Obj ectives of Chapter 

Chapter 6 described in detail the architecture and performance of the new X-MatchPRO 

compression/decompression core and targeted an A500K I 30 ProASIC FPGA for its 

implementation. This was particularly useful to validate the correct functionality and benefits 

of the design. This chapter investigates the extension of the half-duplex to a full-duplex 

architecture minimising the impact on complexity. It also aims to expand the engine to a 

coprocessor-style architecture by adding a suitable system interface. Finally, it introduces the 

other 2 FPGA technologies of chapter 5 (Xilinx Virtex and Altera Apex) and val idates 

X-MatchPRO as a high-performance portable design. 

7.2 Full-duplex processing 

Full-duplex processing is a valuable extension to the X-MatchPRO architecture to enable 

handling of both a compression and a decompression data streams simultaneously. in 

principle full-duplex functionality can be readily achieved by duplicating the dictionary so 2 

independent dictionaries are used by compression and decompression. The decompression 

dictionary does not need to be a CAM because no parallel searching is needed to read the 

dictionary location pointed to by the match location component of the codeword. The 

decompression dictionary needs, however, to be able to shift the data to model the move-to­

front (MTF) replacement policy used in the CAM. This feature prevents a straightforward 
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RAM-based implementation of the decompression dictionary. A shift-enable decompression 

dictionary based on flip-flops needs a total of dicliollary lellgth x 32 storage elements and it 

almost doubles the device complexity. The cha llenge is then to realise a shi ft-enable 

dictionary based on RAM . Embedded RAM is plentiful and ready to use in modem FPGA 's 

such as the A500K, Apex or Virtex families so its usage does not have a direct impact on 

complex ity. The design uses a pointer array logic to model the move-to-fTont replacement 

strategy used by the compression CAM shifting addresses to the dictionary data instead of the 

dictionary data itself. The width of the pointer word (4 bits in a l6-word dictionary, 6 bits in a 

64-word dictionary) is a fraction of the width of the data word (32 bits) so the savings in logic 

are sign i fican!. 
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Figure 7.1. RAM-based decompression mod et. 

Figure 7. 1 shows a diagram of the RAM-based decompression model that comprises the 

fo llowing components: 

Ram dicliollwy: Fully synchronous RAM-based dictionary that stores the hi story data during 

a decompression operation. The contents of the RAM dictionary during decompression must 

be same as the contents of the CAM dictionary during compression in each cycle. Adaptation 

must take place in exactly the same way to enable correct decompression of the compressed 
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block. The initialisation of the compression CAM sets all words to O. Thi s means that a 

possible input word formed by O's will generate multiple fu ll matches in different locations. 

The algorithm simply selects the full match closer to the top. This operational mode initialises 

the dictionary to a state where all the words with location address bigger than 0 are declared 

invalid without the need for extra logic. The reason is that location x can never generate a 

match unti l the data contents of location x-I are different from 0 because locations closer to 

the top have higher priority generating matches. The MTF adaptation mechanism shifts down 

the dictionary when fu ll matches are not detected and, therefore, ensures that the last word 

from this initial state to be deleted from the dictionary is always the word located at location 0 

at time O. This operational mode in compression enables the decompression RAM dictionary 

to have only location 0 loaded with value 0 during the initialisation phase because references 

to a RAM location y higher than 0 are not possible before the contents of the previous 

locations y-I. y-2 . .... 0 are updated. This technique avoids having a long overhead equal to 

dictionary_size cycles to initial ise each position in the RAM to a predefined value before each 

decompression operation. 

Pointer array: The po inter array logic performs an indirection function over the read and 

write addresses that access the RAM dictionary. It models the MTF maintenance policy of the 

CAM dictionary moving pointers instead of data. The pointer array enables mapping the 

CAM dictionary to RAM for decompression. Since the pointer array is much smaller than the 

CAM dictionary the savings in complex ity allow having the full-duplex architecture in a 

single device. Each position in the pointer array is reset in a single cycle to a va lue the same 

as its physical location in the array before each decompression operation. 

SyIlC reg: The syllc registers form part of a pipeline level partially embedded in the RAM 

dictionary. From Figure 7. 1 the read address does not have a ~yllc register. The syllc register 

corresponding to the read address has been embedded in the RAM to obtain fu lly synchronous 

RAM operation in the read and write ports. The algorithm maps naturally to a RAM read in 

asynchronous mode and written in synchronous mode because this is the mode the CAM is 

read and written in compression. This asynchronous mode of operation, although possible, 

results in a less portable and less robust design. A fu lly synchronous design can target 

different FPGA and ASIC technologies with a higher degree of confidence. 

Address equal: This logic monitors the read and write addresses. If both addresses are the 

same the algorithm needs to read the data that is going to be written in that common address. 

This data is not present in the memory yet but it is present in the RAM data ill bus. The RAM 

data ill bus is written in the memory normally but it is also latched temporarily in the temp 

127 



Chanter 7 X-MatchPRO loss/ess data compressiolllechn%gy 

register. The multiplexor associated to the address equal logic selects the input coming from 

the temp register instead of the input coming from the memory when the same address is 

being read and written . The address equal logic also modifies the read address to make it 

different from the write address and avoid corrupting the RAM contents. 

Move generation : This logic generates the move vector depending on the match type and 

match location. The move vector adapts the CAM dictionary in compression and the pointer 

array in decompression. 

DODA (Decompression Out of Date Adaptation) logic: This component forces the dictionary 

to adapt with previous match information and breaks the compression critical path improving 

speed. The ODA logic in decompression is used to replicate the adaptation process in the 

compression dictionary. They have exactly the same functionality although its usage to 

improve the timing characteri stics of the design is restricted to the compression channel. 

Temp reg : This register is used to hold a copy of the last data tuple written in the 

synchronous memory. 

Olllput tuple assembler: Module that assembles a decompressed tuple uSing dictionary 

information and any literal characters present in the code. 

Olll register: Register that outputs the uncompressed data to the system. 

Figure 7.2 shows how the indirection function works on the RAM dictionary and how the data 

contents of the decompression RAM are the same as the data contents of the compression 

CAM of Figure 6.5 in each cycle. In Figure 7.2 the yellow areas relate to read operations in 

the RAM dictionary. Blue areas relate to write operations in the RAM dictionary. 

The presence of current and next adaptation vectors is due to the ODA policy described in 

section 6.3. 1. It is possible to verify that decompression is taken place correctly because the 

output uncompressed data is the same as the input compressed data of Figure 6.5. The only 

exceptions are steps 6 and 8 that required extra data not present in the dictionary that must be 

obtained from the codeword literals. These 2 steps correspond to a miss and a partial match 

event respecti vely. 
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RAM·based decornpession description 
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Figure 7.2. RAM-based decompression model mechanism. 

Step number Action 

• Compressed code indicates fu ll match at location I . 

• The next adaptation vector is generated as defined by location I . 

• The pointer array contains address I at location I for reading. The un compressed code 

I 
' at_ I' is read from the memory. 

• The current adaptation vector points at location 0 in the pointer array. The pointer array 

contains address 0 at location 0 for writing. ' aU ' is written at RAM position O. 

• The current adaptation vector shifts the pointer array and the next adaptation vector. 

Table 7.l.a. RAM-based decompression descr iption (Continued nexl page) 
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Step number Action 

• Compressed code indicates full match at location O. 

• The next adaptation vector is generated as defined by location O. 

• The pointer array contain address 0 at location 0 for reading. The uncompressed code 

' at_1' is read from the memory. 

2 • The current adaptation vector points at location I in the pointer array. The pointer array 

contains address I at location I for writing. 'aU' is written at RAM position I. 

• The current adaptation vector shi fts the pointer array and the next adaptation vector. 

• Compressed code indicates full match at location 3. 

• The next adaptation vector is generated as defined by location 3. 

• The pointer array contains address 3 at location 3 for reading. The uncompressed code 

'ry_' is read from the memory. 

3 • The current adaptation vector points at location I in the pointer array. The pointer array 

contains address 0 at location I for writing. 'ry_' is written at RAM position O. 

• The current adaptation vector shifts the pointer array and the next adaptation vector. 

• Compressed code indicates full match at location 2. 

• The next adaptation vector is generated as defined by location 2. 

• The pointer array contains address 2 at location 2 for reading. The un compressed code 

4 ' hung' is read from the memory. 

• The current adaptation vector points at location 3 in the pointer array. The pointer array 

contains address 3 at location 3 for writing. ' hung' is written at RAM position 3. 

• The current adaptation vector shifts the pointer array and the next adaptation vector. 

• Compressed code indicates full match at location O. 

• The next adaptation vector is generated is defined by location O. 

• The pointer array contains address 3 as location 0 for reading. The uncompressed code 

5 ' hung' is read from the memory. 

• The current adaptation vector points at location 3 in the pointer array. The pointer array 

contains address 2 at location 3 for writing. 'hung' is written at RAM position 2. 

• The current adaptation vector shifts the pointer array and the next adaptation vector. 

Table 7.l.b. RAM-based decompression description (Continued next page) 
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Step number Action 

• Compressed code indicates miss. 

• A miss sets to I all bits in the next adaptation vector. 

• No reading 

6 • The current adaptation vector points at location I in the pointer array. The pointer array 

contains address 3 at location I for writing. ' over' obtained from a literal codeword is 

written at RAM position 3. 

• The current adaptation vector shifts the pointer array and the next adaptation vector. 

• Compressed code indicates fu ll match at location O. 

• The next adaptation vector is generated as defined by location O. 

• The pointer array contains address 3 at location 0 for reading. The uncompressed code 

'over ' is read from the memory. 

7 • The current adaptation vector points at location 3 in the pointer array. The pointer array 

contains address I at location 3 for writing. ' over' is written at RAM position I. 

• The current adaptation vector shifts the pointer array and the next adaptation vector. 

• Compressed code indicates partial match at location 2. 

• A partial match sets to I all the bits in the next adaptation vector. 

• The pointer array contains address 2 at location 2 for reading. The uncompressed code 

' hung ' is read from the memory. ' hung ' wi ll be used to partially reconstruct the 

8 compressed code as indicated by the match type to obtained '_ung '. 

• The current adaptation vector points at location I in the pointer array. The pointer array 

contains address 3 at location I for writing. '_ung ' is written at RAM position 3. 

• The current adaptation vector shi fts the pointer array and the next adaptation vector. 

Table 7.l.c. RAM-based decompression description (End) 

7.3 Width Adaptation Logic 

The use of a different bus width for the uncompressed data port (32 bits) and compressed data 

port (64 bits) complicates system integration. A single data bus width will enable the device 

to form part of a data path with minimum disruption to the original system. The variable 

nature of the data flow in the compressed port needs also to be addressed. Compressed data is 

requested or produced at discrete instants. A buffering function in the compressed port will 

smooth the data flow in an out of the device efficiently using the externa l system bus. The 

un compressed port does not have a variable data rate but a constant and independent rate of 
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32 bits per cycle. This means that the device wi ll consume 32 bits of un compressed data every 

clock cycle during compression and it will produce 32 bits of un compressed data every clock 

cyc le during decompression. A buffering function is not needed in the uncompressed data port 

because of its synchronous nature. Figure 7.3 shows the architecture of the width adaptation 

logic in the compressed port. This logic serves a dual purpose. It transforms the 64-bit data 

bus from the compression engine or to the decompression engine into a more manageable 32-

bit data bus. It al so buffers the data smoothing the compressed data flow. A total of 4 Kbytes 

of RAM are present in this logic. The compression section uses 2 Kbytes and the 

decompression section uses the other 2 Kbytes. Both sections are completely independent to 

allow simultaneous operation in full-duplex mode . The compression buffer is organized in 2 

blocks of 256 locations and 32 bits per location. The compression engine writes 64 bits of 

data in parallel to the 2 blocks. 32 bits of data are read from memory each cycle alternating 

read operations on each block. A threshold value determines how many 64-bit compressed 

words must be available in the buffer before compressed data is output to the 32-bit 

compressed bus. The decompression buffer has an equivalent organization but thi s time 32 

bits of data are written each cycle to each block alternatively. Data is read from the buffer to 

the decompression engine 64-bit at a time. A threshold value controls how many 64-bit words 

of compressed data must be available in the decompression buffer before the decompression 

engine is activated. The threshold va lue offers a compromise between a smooth data flow 

using a high threshold setting or a small latency using a low threshold setting. The with 

adaptation logic comprises the following components: 

• Address read, Address wrile: Counters that generate the read and write addresses for the 

coding. The write address must always precede the read address otherwise invalid data is 

output from the buffers. 

• RAM 256x32: The buffers are organized in 4 blocks to enable a direct interface of the 

coding buffer with the compression engine. The RAM is fully-synchronous dual-port 

RAM so reading and writing operations can be done simultaneously. 

• Coding buffer conlrol unil, Decoding buffer conlrol unit: These control units are used to 

enable the reading and writing of the memories when required and they also detect 

possible overflow and underflow conditions in the buffers. 
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Figure 7.3.Width adaptation logic. 

7.4 Full-duplex X-MatchPRO architecture 

Figure 7.4.a depicts the global X-MatchPRO full-duplex compression architecture that 

compri ses 3 major components: Compression Model, Coder, and Packer. Figure 7.4.b dep icts 

the global X-MatchPRO full-duplex decompression architecture that al so comprises 3 major 

components: The Decompression Model, Decoder and Unpacker. The model of secti on 6.3 

has been spl it into 2 independent entities to accommodate the full-duplex processing: The 

CAM-based compression model that uses the compression elements of the section 6.3 model 

and the RAM-based decompression model of section 7.2. The Coder and Decoder architecture 

remains unchanged from section 6.4 but the RLI counter that was initially shared by both 

components has been dupl icated to enable simultaneous operation of the compression and 

decompression channels. The Packer and Unpacker components of section 6.5 have been 

extended to include the width adaptation logic or section 7.3. 
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7.5 X-Match PRO operation 

The architecture of chapter 6 lacks an appropriate coprocessor-style system interface where a 

main CPU can issue compression and decompression commands to the compressor, monitor 

the compression/decompression operation, and communicate with the device using a single 

control bus. 

7.5.1 X-M atchPRO interface 

Figure 7.5 illustrates the new X-MatchPRO interface. 
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Figure 7.5. X-Match PRO interface. 

X-MatchPRO uses a simple coprocessor style interface to communicate with the rest of the 

system. Compression and decompression commands are issued through a common 16-bit 

control bus. A 3-bit address is used to access the internal regi sters that store the commands 

plus information related to compressed and uncompressed block sizes. A total of 6 registers 

form the register bank. 3 registers are used to contro l the compression channel and the other 3 

for the decompression channel. The first bit in the address line indicates if the read/write 

operation accesses compression or decompression registers. The chip is designed to compress 
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any block size rangmg from 8 bytes to 32 Kbytes. A decompression operation can be 

requested in the middle of a compression operation and vice versa. Table 7.2 describes the 

functionality of these signals. There are a total of 162 pins in the device. All the signals are 

active low and full y synchronous. 

Signal name Direction Width Function 

CS IN I Enable access to the internal registers. 

RW IN I Enable read ing or writing the internal registers. 

ADDRESS IN 3 Internal register address. 

CLK IN I System clock. Positive edge active. 

CLEAR IN I Asynchronous clear of all the storage elements. 

BUS_ACKNOWLEDGE_C IN I The system grants the compressed data out bus. 

BUS_ACKNOWLEDG E_D IN I The system grants the compressed data in bus. 

BUS_REQUEST_C OUT I The chip requests the compressed data out bus. 

Compressed data ready to be output. 

BUS_REQUEST_D OUT I The chip requests the compressed data m bus. The 

chip request compressed data to be decompressed. 

FIN ISH_C OUT I The chip signals end of a compression operation. 

FIN ISH_D OUT I The chip signals end of a decompression operation. 

CONTROL INOUT 16 Common control bus to issue compressIOn and 

decompression commands to the chip. The control bus 

is also used to write or read the compressed and 

uncompressed block size registers ifrequired. 

U_DATA_IN IN 32 Uncompressed data input during compression. 

C_DATA_OUT OUT 32 Compressed data output during compression. 

CODING_OVERFLOW OUT I Data overflow in the coding buffers. Error condition 

C_DATA_VALID OUT I Valid compressed data present in the compressed data 

out bus. 

COMPRESSING OUT I Compression engine active . 

C_DATA_IN IN 32 Compressed data input during decompression. 

U_DATA_OUT OUT 32 Un compressed data output during decompression. 

FLUSHING OUT I Compression engine inactive emptying the coding 

buffers. 

Table 7.2.a. Clllp plD-out.(Conhnued next page) 
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Signa l name Direction Width Function 

DECODING_OVERFLOW OUT I Overflow in the decoding buffers. Stop inputting 

un compressed data until the bus is requested again . 

Engine continues decompressing data . No error 

condition. 

U DATA VAUD OUT I Uncompressed data valid in the uncompressed data - -

out bus. 

DECOMPRESSING OUT I Decompression engine active. 

Table 7.2.b. Chip pill-out. (End) 

7.5.2 Reg ister bank description 

A total of 6 registers form the register bank that controls the compression/decompression 

engines and coding/decoding buffers. These registers are accessed using the address bus and 

the control bus and can be read or written. Table 7.3 and Figure 7.6 show the foomat of these 

registers. 

Address Channel Register Function 

000 Decompression CRD Command Register Activates or stops the decompression 

Decompression channel 

001 Decompression UBSRD Uncompressed Sets the number of bytes of the 

Block Size Register uncompressed block after decompression 

Decompression 

010 Decompression CBSRD Compressed Block Sets the number of bytes of the compressed 

Size Register block before decompression 

Decompression 

100 Compression CRC Command Regi ster Activates or stops the compression channel 

Compression 

101 Compression UBSRC Un compressed Sets the number of bytes of the 

Block Size Register uncompressed block before compression 

Compression 

11 0 Compression CBSRC Compressed Block Sets the number of bytes of the compressed 

Size Register Compression block after compression 

Table 7.3. Register access description. 
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7.6 X-MatchPRO threshold value 
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The threshold value is input with the command and written In the command register. [t 

defines a programmable latency. A small value means a low latency but it is more probable 

that coding and decoding underflows will take place. A larger va lue introduces more latency 

but these conditi ons are not so frequent. The reason for coding underflows with small 

threshold va lues is that during compression the coding buffer is emptied very rapid ly if little 

data is present when the read operation starts. In decompression the underflow can take place 

if the buffer is emptied because the data expanded instead of compressed during the 

compression operation. This means that the decompression engine consumes more data that 
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can be written in the buffer and eventually the buffer becomes emptied. After an underflow in 

the coding or decoding buffer the threshold value also defines the distance between write and 

read addresses before more compressed data is output or requested respectively. Under flow 

conditions are not error conditions but they will generate bubbles where valid data is not 

present in the compressed or uncompressed data out stTeams during compression or 

decompression respectively. 

The threshold can have any value between I and 128. A threshold of I implies minimum 

latency => Ix64 bits of data are written in the buffer before the bus is requested during 

compression to output compressed data or before the decompression engine is started to 

produce uncompressed data during compression. A threshold of 128 implies maximum 

latency or blocked operational mode => 128x64 bits of data are written in the buffer before 

the bus is requested during compression to output compressed data or before the 

decompression engine is started to produce uncompressed data during decompression . 

7.7 X-MatchPRO latency 

In compression latency is defined as the number of cycles found between the moment the 

compression engine stops inputting data and the coding buffers finish emptying the buffers 

(=> chip ready to start a new operation). The compression latency has 2 components one fixed 

and one variable. The fixed component of 4 cycles is defined by the levels of regi sters located 

between the input search register and the coding buffers (5 levels) and the variable component 

is defined by how much data is present in the internal buffers when the compression engine 

fin ishes its operation (flushing operation). The probability of having a long flushing operation 

is small when the threshold value setting is smal l. This variable component depends, however, 

in the input data. If the data expands the latency wi ll grow because more data will be left in 

the buffers to be output during the flushing operation. 

In decompression latency is more predictable. Latency can be defined as the number of cycles 

that elapse between the first tuple of compressed data enters the chip and the first tuple of 

uncompressed data leaves the chip. There are again 2 components but both are fixed . The 

levels of registers (5 leve ls) between the decoding buffers and the output register in the device 

introduced a fixed component of 4 cycles. The decod ing buffer introduces the other 

component and it depends on the threshold value. A threshold value of 8 introduces a latency 

of 16 because 16 32-bit tuples must be written in the buffer before the number of 64-bit words 

exceeds the threshold value and the decompression engine is activated. 
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7.8 X-MatchPRO operational modes 

The following figures show the device running in half-duplex mode . The letter C shou ld be 

added to the control signals : bus request. bus acknowledge and fillished and registers CR, 

UBSR and CBSR for the compression channel and D for the decompression channel to obtain 

the fu ll-duplex equivalents. 

7.8.1 Compression mode 

Figure 7.7 corresponds to a typical compression operation. To start a compression operation 

the CPU must write 2 registers: The uncompressed block size register (UBSR) must be written 

first and the command register (CR) must be written second. The UBSR tells the compression 

engine when it must stop after processing all the bytes of data present in the block. The UBSR 

specifies the number of bytes present in the block and can be any va lue between 8 and 32768. 

The CR puts the device in compression mode and it also contains the threshold va lue to 

control the coding buffer. The chip requests the compressed bus when the number of 64-bit 

words available in the coding buffer is larger than the threshold value. 
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The system is responsible to set a new 32-bit of uncompressed data in the uncompressed bus 

in the immediate cycle after the CR is written and in every cycle thereafter. When the device 

produces compressed data in the compressed bus it asserts the compressed data valid signal 

active. The engine is known to be active because the compressing signal is active. The chip 

stops processing data when the value stored in UBSR is reached. Then a flushing signal is 

activated to indicate that any remaining compressed data in the coding buffers is being 

flushed out. When the buffers are emptied of their contents the device asserts the signal 

finished active for one cycle. The system can read the compressed block size register (CBSR) 

at the end of a compression operation to obtain the resulting compressed block size in bytes. 

This value could be compared with the original uncompressed block size to evaluate the 

compressIon efficiency. After this cycle the device is ready to start a new compression 

operation. 

7.8.2 Decompression mode 

Figure 7.8 shows a typical decompression cycle. To start a decompression operation the 

system must write 3 registers. The UBSR and the CR have the same function as in 

compression. The CBSR must be written with the value of the compressed block size that the 

decompressor is going to process. This must be done to avoid the decoding buffer requesting 

more data when the decompression engine is still running but all the data has already been 

written in the decoding buffers. Alternatively the register could be set to FFFF. This means 

that when the systern denies the bus the device wiIJ assume that all the compressed data is 

present in its internal buffers. 

The device requests the bus with the bus request signal and the bus is granted with the bus 

acknowledge signal. The decompression engine is activated when the number of 64 bit words 

of compressed data in the decoding buffer is larger than the threshold value. The bus request 

during decompression is equivalent to a compressed data request. Once the bus is granted the 

system is responsible to make available 32 bits of compressed data per cycle as long as the 

bus request signal is maintained active. The bus acknowledge signal cannot go inactive until 

all the compressed data has been loaded in the chip. The device uses the event of the bus 

acknowledge signal going inactive to know when all the compressed data is present in its 

internal buffers. 
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Figure 7.8. Decompression operat ion 

7.8.3 X-MatcbPRO special conditions 

7.8.3.1 BufJer Coding Overflow 

.1 

A coding overflow condition should never be encountered under normal operating conditions. 

It can never happen if these 2 conditions are met: the uncompressed block size is less than 32 

Kbytes and once the compressed bus is requested during compression it is granted in less than 

256 - theshold value cycles. This value is obtained after solving the following 2 equations: 

33xTe+1xTb <= 256x64 <= 16384 bits 

32x(Te + Tb) <= block size <= 32768x8<= 262144 bits 

These 2 equations can be simplified to: 

33xTe + Tb <= 16384 bits 

Te + Tb <= 8192 bits 

[7.1} 

[7.2] 

[7.3] 

[7A} 

Where Te is the number of cycles the engine is compressing data but the buffer is not 

outputting data whi lst Tb is the number of cycles the engine is compressing data and the 
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buffer is also outputting data. The block size is set to a maximum 32768x8 bits. The value of 

Te is 256 after solving the equations. 

If this condition is not met an overflow could take place in the coding buffer. This is an error 

condition detected by the coding oveljlolV signal going active. This means that there is no 

room in the buffers to write new compressed data being produced by the compression engine 

and the operation fails. This si tuation could arise if the engine is continuously expanding the 

data instead of compressing the data because in that situation the engine produces 33 bits of 

data per cycle but only 32 bits of data can be read from the buffer per cycle. 

7.B.3.2 Buffer Coding underflow 

Coding undernow cannot be considered a special case because it is the normal consequence 

of compression. If compression is taking place the coding buffer outputs data faster than it 

receives data from the compression engine. With a typical compression ratio of 0.5 the engine 

writes on average 16 bits of data to the coding buffer per cycle and 32 bits of data are read 

from the buffer per cycle. This under now condition is signa l with the bus request signal going 

inacti ve and the compressed data valid signal going inactive. The bus will not be requested 

again until the number of valid 64·bit compressed words in the coding buffer is bigger than 

the threshold value. 

7.B.3.3 Decoding Buffer Overflow 

Buffer decoding overnow is an occasional condition that can take place when compression is 

very good. [n this case the decompression engine consumes little data but the decoding buffer 

gets 32 bits of compressed data each cycle from the compressed bus. If a decoding overnow 

takes place the decompression engine keeps working at full speed unaware of the overflow 

condition in the buffer. The device stops requesting the bus (stops requesting data) and this is 

indicated by bus request signal going inactive. The buffer will request more compressed data 

once the gap between the write address and the read address is bigger than the threshold 

value. The system must stop putting compressed data in the compressed bus since this data 

will not be written to a buffer under an overnow condition. 

7. B. 3.4 Decoding Buffer Underflow 

A decoding buffer undernow is an infrequent condition that could take place when the 

decompression engine requests compressed data to the decoding buffer but no data is 
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available in the buffer to sati sfy thi s request. Th is condition can happen with data expansion. 

In this case the decompression engine consumes 33 bits of data per cycle but the buffer can 

only get 32 bits per cyc le. After some cycles the decompression engine request data to the 

buffer but the buffer is empty. Under these circumstances the decompression engine empties 

its pipeline and maintains its current state and data request until compressed data is available 

from the buffer. The engine stops uncompressing data until more data is available. The 

uncompressed port will see a few cycles where no uncompressed data is available. The 

u11co111pressed dala valid signal will go inacti ve to indicate this condition. 

It is important to notice that a decompression engine underflow is a different condition from a 

decoding buffer underflow. A decompression engine underflow is a normal internal condition 

that could generate a decoding buffer underflow if the buffer is empty. A decompression 

engine underflow happens when fewer than 66 bits are valid in the 129 bit (65+64 = 129) 

decompression register. An special case is when the decompression engine underflow can not 

be satisfi ed from the buffer because all the compressed data in the block has been written in 

the buffer but it is now exhausted . This is a normal termination of the decompression 

operation and it does not generate a decoding buffer underflow. The decompression engine 

must continue to decode the last few bits of compressed data «66 bits) remaining in the 

decompression register until 0 bits are valid . This termination condition is controlled by the 

bus acknowledge signal going inactive or by an internal counter reaching the value stored in 

the compressed block size register. Buffer decoding underflow generation is di sabled when 

the device reaches this termination condition . 

7.9 FPGA-based X-MatchPRO: complexity and performance 

Table 7.4 shows a summary of the FPGA-Based X-MatchPRO fami ly targeting Actel, Altera 

and Xilinx FPGA's. These data was obtained after mapping the design to each technology 

using a synthesis engine and then performing placing and routing using vendor-spec ific tools. 

The figures shown in Table 7.4 were extracted from the post-layout reports provided by the 

place&route too ls. 

The validity of these timing reports was verified using backannotated simulation and a full 

test vector data set formed by around lOOk vectors. These vectors were obtained from a cycle 

accurate C++ model of X-MatchPRO and were specifically designed to test all the operating 

modes and special conditions of the device. 
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0.25 urn Pro 

Flaslt- 16 9039 70 40960 lOO 214 ASICI 287 12.8 0.8 

CMOS Ti les A500KI Tiles 

FPGA 30BG456 

0.1 8 urn Apex! 

SRAM- 16 5063 60 40960 38 N/A 20K 526 8.32 1.6 

CMOS LE 's 200EFC4 LE' s 

FPGA 84-1 

0.18um Virtex! 

SRAM- 16 5295 55 40960 25 210 XCV 570 9.6 1.6 

CM OS LC' s 400EBG LC's 

FPGA 432-8 

Table 7.4. X-MatchPRO technology. 

Logic unit in column 4 is the basic logic unit in the architecture of the selected technology. 

The complexity of this logic unit varies among the different technologies. Actel ProASIC 

devices [ActelOOl use a logic unit call Tile, Altera call these units logic elements (LE's) 

[AlteraOI] and Xi linx call them logic ce ll s (LC's) [XilinxOI]. Actel ProASIC ti les are simple 

blocks that can implement a logic function with 3 inputs and I output such as an AND gate or 

a flip-flop. Actel ProASIC architecture is very flat and tiles are repeated across the device 

forming a matrix of identical logic elements. Dedicated memory blocks are grouped in one 

the sides of the device. Each memory block can implement 2304 bits of fully-synchronous 

dual port RAM. Xi linx Virtex architecture uses a more complex LC that includes a 4 input 

Look-Up Table (LUT), a carry function and a storage element. A Configurable Logic Block 

(CLB) is formed by 4 of these LC's plus some extra logic ( I CLB is eq uivalent to 4.5 LC's). 

The CLB 's are repeated across the devi ce forming a matrix of logic. Additionally dedicated 
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memory blocks are inserted at different positions in the CLB matrix . Each Virtex memory 

block can implement 4096 bits of fully-synchronous dual port RAM. Altera Apex LE's are 

quite similar to Xilinx LC's. Each Apex LE has a 4 input LUT, a storage element, carry chain 

logic and some extra functions. A group of 10 LE' s forms a Logic Array Block (LAB) that 

also includes an Embedded System Block (ESB). Each ESB can be used to construct a variety 

of memory functions and includes up to 2048 memory bits. A group of 16 LAB's forms a 

MegaLAB that are repeated across the device. 

FPGA vendors use different measurements to translate their technology components into gate 

equiva lents and, in general, it is more accurate to give complexity in terms of FPGA elements 

and usage percentage. When avai lable the gate count equivalent obtained from the 

place&route tool is given for reference in column 8. The total gate count includes memory 

and logic but only around 14% of the gates (30 K) correspond to logic whilst the rest 86% 

(180 K) correspond to the gate count equivalent of the 40 Kbits of memory. The percentage of 

column 5 measures how much of the logic available in the selected FPGA part given in 

column 9 is used by the design. This measurement only refers to utilization of logic elements 

and not embedded RAM . The amount of embedded RAM used by the designs measure in bits 

is given in column 6 whilst the percentage of memory utilization is available in column 7. The 

throughput of column 12 measures the raw uncompressed data throughput of the device . 

These are the number of bits of raw un compressed data that will be consumed by the device 

during compression or produced during decompression . These figure is obtained mult iplying 

the clock frequency of column 13 times the number of bits processed by cycle (32). The 

throughput performance of the Altera and Xilinx devices is comparable because they are 

si milar SRAM-based technologies using the same feature size. The number of logic elements 

used in both techno logies is very similar. This means that LC's and LE's perform very similar 

functions. Table 7.4 shows that the complexity of the Xilinx Virtex device and Altera Apex 

devices are comparable. More logic e lements are needed in the Actel ProASIC devices 

because their Tiles are smaller than LC's or LE's and they can implement only a simple logic 

function each of them. The most efficient implementation in terms of area is achieved in the 

Actel device since this device is roughly half the size of the other 2 FPGA's in terms of 

maximum system gates and it would not be possible to fit the design in the Altera or Xilinx 

chips if on ly half of the current resources were available. The performance of the Actel 

implementation is lower than the other 2 devices due to 2 main reasons: Firstly the feature 

size is bigger which degrades performance, secondly the routing complexity increases in these 

fine granularity devices because they lack the architectural hierarchy of the other 2 FPGA's 

[Betz98] . ProASIC architecture is nat so the routing scheme is more complex. 
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Table 7.5 presents a summary of the X-MatchPRO features compared against the ASIC 

compressors selected in section 4.3 . The table compares different ASIC technologies but 

these correspond to the fa stest silicon currently available from the respective manufactures. 

The ASIC figures have been obtained from the data sheets provided by the manufactures 

while our own figures are based on post-layout repons. The Hi/ fn 9600 device is implemented 

in the most advance technology in the li st and offers the highest throughput among the ASIC 

devices . This architecture is able to process one byte per clock cycle and its throughput in bits 

per second can be readily obtained multiplying the clock frequency times S. This is also true 

in the IBM device but in the case of the AHA devices the previous value has to be divided by 

two because their less efficient intemal architecture needs two clock cycles to process each 

byte. 

It is possible to perform a direct comparison of the Hi/fn 9600 that is based on a 0.35 um 

AS IC technology an clocks at SO MHz with the Hi/fn 9610 (see table 2.2). The Hi/fn 9600 

implements the same LZS algorithm but it is based on an older 0.5 um technology and clocks 

at 50 MHz. Therefore, an increase in throughput of 60% is achieved migrating from 0.5 um 

to a 0.35 um feature size. Further reductions in feature size should increase the clocking 

frequency of the device but it is also important to take into account that interconnect 

overheads and deep sub-micron effects mean that the speed-up factor is not linear. The IBM 

device can achieve a similar clocking frequency of 100 MH z if mapped to a comparable 0.35 

um technology as reponed in IBM literature [Craft9S]. In general, these two LZl derivatives 

achieve a similar throughput because they are based on the same LZI algorithm and they are 

limited by the fac t the only I byte is processed per cycle. The main advantage of X­

MatchPRO is that 4 bytes and not I byte are processed in each clock cycle. 

The table shows that X-MatchPRO exceeds by a factor of 2 the throughput of the other ASIC 

compressors. It is expected that X-MatchPRO throughput will improve by a factor of 2-3 

[Betz9S] if replacing the FPGA technology for an ASIC technology with a similar feature 

size. This means that X-MatchPRO based on an ASIC should be able to match the clock 

frequency of any of the other previous ASIC's if implemented in the same technology. A 

throughput gain of a factor of 4 will be obtained by X-MatchPRO under these circumstances 

thanks to its abili ty to process 4 symbols per clock cyc le. 

It is also interesting to compare the X-MatchPRO design with the previous X-Match design in 

terms of throughput. The original X-Match design has a critical path in the search and 

adaptation process that limits its performance to 6 MHz (192 Mbitsls throughput) in a 0.6 um 

ProASIC FPGA technology as seen in our paper [Nunez99]. This is a direct implementation 
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of X-Match in an FPGA with little architectural enhancements. Our research reveals that thi s 

performance improves to 14 MHz (448 Mbits/s throughput) when targeting the X-Match 

design to the more up-to-date 0.25 urn ProASlC FPGA used by X-MatchPRO in table 7.4. 

X-MatchPRO does not contain a critical path in the search and adaptation process thanks to 

ODA as seen in section 6.3 but it is limited by the unpacker/decoder feedback loop as seen in 

section 6.5. The new critical path limits the performance of X-MatchPRO in a ProASIC 

technology to 25 MHz (800 Mbitsls) . This is approximately twice the throughput of the 

original X-Match architecture (448 Mbits/s -+ 800 Mbits/s) . 

DEVELOPERS IBM Advance Hilfn System Design 
Hardware Group 

Architectures Loughborough 
(AEA) University 

CHlP ALDCI- AHA AHA Hi/fn X-MatchPRO 
40S 352 1 323 1 9600 
mM 0.1 8 micron 0.18 micron 0.25 micron 

CMOS 0.5 0.5 0.35 SRAM- SRAM- FLASH-

'" 0.8 micron mIcron mIcron CMOS CMOS CMOS '" r.l micron CMOS CMOS gate FPGA FPGA FPGA U 
0 triple- array/st Xi linx Altera Actel 
~ level gate d cell VIRTEX-E APEX20KE A500K ~ 

>- array/ ProASIC 

" std cell 0'" 

i5~ ;:. 
70 N/A N/A 100 5367 LUT's 5040 LC's 9039 TILE's 

~~ .. ~ S( ." >. Kgates Kgates 55 % ofa 60 % ofa 70% ofa U Q ... ... 
r.l 0 " XCV400EB EP20K200 A500K1 30-r.l -l .. C .. ... 0 
~ ~ 0.0 G432-8 EFC484-1 BG456 
~ ..... u 
~.-o ." 

U 

CLOCK 
(MHz) 

40 
40 40 80 50 50 25 

THROUGHPUT 320 160 160 640 1600 1600 800 
(Mbits/s) 

FULL-DUPLEX 
PERFORMANCE N/A N/A N/A 1280 3200 3200 1600 

(Mbits/s) 

X- X- X-
ALGORITHM ALDC ALDC DCZL LZS MatchPRO MatchPRO MatchPRO 

Table 7.5. X-Match PRO comparison. 
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7.10 Conclusions 

This chapter has extended the compression/decompression engine of chapter 6 by adding a 

suitable system interface and a buffering function. Moreover, a highly compact full-duplex 

implementation has been obtained by mapping the decoding dictionary to embedded RAM 

instead of distributed flip-flops so the complexity of the half-duplex and full-duplex devices is 

comparable in terms of logic gates. The resulting design has been implemented and its 

functionality proved to be correct using timing simulation in 3 different FPGA technologies. 

The multiple technology implementation qualifies the design as portable. The performance 

figures of the FPGA-based X-MatchPRO exceed those of other ASIC compressors and match 

the requirements of chapter 3.1. 
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Chapter 8 

Conclusions 

8.1 Objectives of chapter 

This chapter concludes this thesis with a summary of the research objectives, an evaluation on 

how well we achieve those objectives, the limitations of the current work and finally a 

proposed path for future research. 

8.2 Summary ofthe objectives and the research flow 

As stated in chapter 1 this thesis aimed to advance the field of lossless hardware data 

compression by providing higher throughputs and better compression ratios. The motivation 

for this research was found in that current solutions do not provide the levels of performance 

required in high-speed communication and storage applications. Lossless data compression is 

currently a tool commonly used to double the bandwidth and storage capacity of systems 

running in the order of Mbits/s such as wide area networks in communication applications 

and tape drives in storage applications. Its usage in systems that involve higher transfer rates 

is not as popular because of the performance impact that the compression process introduces. 

The same benefits should be expected if properly deployed in applications where data 

movement is measured in Gbitls such as RAID drives and local area networks. 

After establishing the usefulness of Gbitls lossless data compression hardware in chapter I the 

research continued with an analysis of the current state of lossless data compression in 

chapter 2. Chapter 2 reviewed recent advances in software and hardware compression 

analysing the benefits and limitations of each method. Chapter 3 continued with the selection 
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of the X-Match hardware-friendly algorithm because it exhibited high-performance features 

including parallelism, single cycle execution and low latency. Chapter 3 was used as a pivotal 

point that clearly specified the starting point of our investigations. Chapter 4 described the 

experimental framework as a set of tools to be used to carry out the investigations. This set of 

tools included the data sets to be used in the compression efficiency measurements and a 

selection of lossless data compression methods representative of high performance software 

and hardware-based compression. Chapter 5 focused on compression efficiency analysis and 

optimisation using the data sets and methods of Chapter 4. It studied ways of increasing 

model and coder efficiency without affecting throughput. A dictionary-based approach was 

used because of its inherent simplicity and hardware amenability. Chapter 6 focused on 

increasing the performance throughput of the hardware architecture without affecting the 

compression ratio. Chapter 6 produced a new core architecture for the compression and 

decompression engines. The architecture was mapped and verified in ProASIC FPGA 

technology, selected as a silicon test-bench, to prove the high performance characteristics of 

the design. Chapter 7 extended the core developed in chapter 6 to a full-duplex self­

contained coprocessor architecture named X-MatchPRO. X-MatchPRO was efficiently 

mapped to 3 FPGA devices from 3 different manufactures. Post-layout backannotation was 

used to obtain exact data on performance and complexity. 

8.3 Summary of the X-Match compression method 

The X-Match design of chapter 3 describes the basic architecture of a high-performance 

lossless data compressor based on storing data commonly seen in a dictionary and matching 

incoming data with data present in the dictionary. A move-to-front adaptation policy is used 

to maintain dictionary efficiency avoiding storing duplicated data words. The dictionary is 

based on a CAM circuit that allows single cycle search and adaptation. The CAM feature that 

enables configuring its columns as selectively shiftable registers implements the move-to­

front technique. The data words called tuples are fixed in width with 4 bytes per data word. 

The width of 4 bytes is found to be optimal generating more compression than other 

alternatives whilst it naturally maps to a parallel high-throughput architecture. The dictionary 

length grows from an initial value of 0 to a maximum value of 128 each time a tuple is not 

fully matched in the CAM. A partial matching (X-matching) strategy is used to improve 

compression so only 2 bytes out of maximum of 4 are required to match for the dictionary hit 

to be considered valid. A match is coded as a single bit set to 0 followed by a PBC (Phased 

Binary Code) indicating the match location followed by a Huffrnan code indicating a match 

type and any non-matching characters in literal form. A miss is coded as a single bit followed 
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by the 4 non-matching characters in literal form. Combinatorial searching strategies (where 

the byte at location n in the search tuple is allowed to match a dictionary byte located at a 

position different to n in the CAM) do not improve compression but affect complexity and 

throughput. The CAM circuit supports compression and decompression but not 

simultaneously. Pre-Iayout results after mapping the design in a 0.6/Lm gate array technology 

shows a data independent throughput of 100 Mbytes/s clocking at 25 MHz with complexity 

around 100 Kgates. 

8.4 Main contributions achieved in this research: 

The X-MatchPRO hardware 

The X-MatchPRO chip developed in chapters 5, 6 and 7 describes a dual-channel full-duplex 

high-performance lossless data compressor coprocessor with enhanced compression and 

throughput features. 

X-MatchPRO enhances compression ratio by adding an internal run length coding technique 

named RLI. In its original configuration described in Chapter 5 RLI combines with Phased 

Binary Coding (PBC) to obtain a compression improvement between 3-10 % depending on 

data sets. Chapter 5 addresses the best location for a run-length coder in X-Match with 2 

options being investigated internal and front. Although the compression performance of both 

solutions is very similar RLI adds a very neat solution from a hardware point of view because 

it integrates in the architecture and shares the dictionary logic keeping complexity to a 

minimum. RLI is particular effective in a hardware implementation because it is not target to 

code repetitions of a particular data pattern but repetitions of matches in data location O. RLI 

can effectively code any repeating 32-bit pattern without any data identification information 

because the move-to-front adaptation policy places repeating data in location o. The last 

dictionary codeword is reserved to indicate RLI events which can code up to 255 4-byte 

repetitions in a single code. The last dictionary codeword varies in a PBC-based coder 

because dictionary length is variable but it is fixed in a UBC-based coder because all the 

dictionary locations are active after the first cycle. The maximum compression ratio enable by 

the combination of PBC and RLI is 10/(255*4*8) = 0.00122 when 1020 repetitions of the 

same byte are found after a dictionary reset. 

The move-to-front technique used in model adaptation generates a non-uniform distribution 

of matches that a more complex technique than uniform binary coding can used to increase 

compression. PBC offers slightly better performance than Huffman coding derivatives. PBC 
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is useful when compressing small data packets using dictionaries larger than 64 locations 

otherwise with dictionary sizes of 16, 32 and 64 locations simpler UBC suffices. This is 

because small dictionaries fill up with data quickly and PBC losses its advantage once the 

dictionary becomes full. 

X-MatchPRO can adapt its complexity requirements to the available hardware resources 

trading dictionary length for compression efficiency. X-MatchPRO does not require a large 

dictionary because it maintains a highly efficient history state by quickly eliminating any data 

duplication in a single cycle. It obtains compression with dictionaries as small as 16 locations 

whilst a 256 locations dictionary offers the best trade-off between complexity and 

performance. 

X-MatchPRO compression improves gradually increasing block size from 256 bytes to 4 

Kbytes but remains largely invariant with further increases in block size due to dictionary 

saturation. Small block sizes increase the effect of locality of reference and periodically 

activated a technique like PBC so they suit well X-MatchPRO. 

X-MatchPRO enhances throughput with a new redesigned architecture that includes an Out of 

Date Adaptation (ODA) policy. A critical feedback loop is identified in the search and 

adaptation circuitry because after a search operation, the best match must be solved and an 

adaptation vector generated in time I before the dictionary is ready to start a new cycle in time 

1+ 1. ODA breaks the critical feedback loop in the search and adaptation circuitry so the 

dictionary adapts at time 1+1 with match information generated at time 1-1. ODA does not 

affect compression negatively because dictionary elements are unique at all times except the 

dictionary element at the top of the dictionary that can be duplicated. Dictionary data 

duplication is restricted to location 0 and duplicated data is eliminated in a single cycle 

maintaining dictionary efficiency. The complexity impact of ODA is very small, requiring 

only a few hundred gates. 

A second feedback loop is identified in the bit disassembly logic because a variable-length 

codeword must be decoded before new data can be added and old data eliminated from the 

active part of the buffer. This is characteristic of data compression methods based on mapping 

a fixed length symbol to a variable length codeword. Packing and unpacking is trivial when 

the codewords have the same length and their position in the compressed stream can be easily 

identified. This loop is optimised increasing the level of parallelism during the concatenation 

of new data and the shifting out of old data as described in chapter 6. 
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X-MatchPRO is a dual-channel full-duplex coprocessor architecture that includes simple 

interfacing, buffering functions and 2 independent compression and decompression channels 

that can operate simultaneously. Full-duplex functionality adds an useful feature to the design 

because it is becoming a characteristic of high performance networks to carry information in 

both directions simultaneously. The challenge is to design 2 independent channels keeping 

complexity to a minimum. The RAM-based decompression model achieves this by 

eliminating the need for an expensive shift register file to store the data. The higher priority 

given to matches closer to the top of the dictionary is a key technique in the full duplex 

architecture. It enables the RAM-based decompression dictionary to have only location 0 

initialised in the first cycle as long as the same value is used to initialise in a single cycle all 

the locations of the CAM-based compression dictionary. A pointer array stores addresses to 

the dictionary locations following the same move to front strategy used by the data in the 

CAM-based compression model. The pointer array is a fraction of the size of the dictionary 

because the basic pointer word width varies from 4 to 8 bits depending on dictionary length 

whilst the dictionary word width is 32 bits. The elimination of the multiplexors associated to 

the CAM for decompression in the half-duplex implementation provides enough resources to 

implement the pointer array and maintains logic complexity almost constant. The 

decompression circuitry avoids interference between ODA and the pointer array to enable 

both compression and decompression dictionaries to be in synchrony at all times. 

A buffering function is introduced in the packing and unpacking logic to fulfil a dual purpose. 

It smoothes the data flow out and in the chip in the compressed port and it allows a width 

adaptation from the 64 bits used out and in the compression and decompression engines 

respectively to a more manageable 32 bits out and in the chip. 

X-MatchPRO FPGA-based hardware proves the high-performance features of the design in 

silicon. The FPGA-based hardware is based on a l6-location dictionary using UBC coding 

for the match locations to reduce the resource requirements on the FPGA prototype. A 

detailed post-layout verification of the compressor/decompressor core is done in chapter 6 

using a Actel ProASIC FPGA as the silicon test-bench. The core is extended to a full-duplex 

coprocessor architecture and mapped to FPGA devices from Acte1, Xilinx and Altera 

corporations. These multiple technologies validate the portability of the design and make use 

of alternative FPGA architectures with different strong and weak points. Actel ProASIC 

devices provide an excellent prototyping platform because they are reprogramrnable and non­

volatile and their high granularity technology offers a smooth migration path to ASIC 

technology with predictable results. Xilinx Virtex and Altera Apex devices offer an advance 
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process, very high densities and a sophisticated tool set to obtain very high performance. Both 

Altera and Xilinx implementations are very similar in logic cell count and performance. 

8.5 Other contributions achieved in this research 

A systematic analysis and classification of the lossless compression methods is done in 

Chapter 2 with special emphasis in hardware. The classification is based on dividing lossless 

data compression in 3 independent stages, namely: modelling, coding and packing and using 

the first 2 stages to structure the review. Modelling and coding separation is usually reserved 

to statistical methods but it can be applied successfully to dictionary-based methods as well. 

The following conclusions can be drawn from the first part of this research: 

Compression improves by: 

1. The use of high-order statistical modelling. The optimal maximum order increases with 

increases in symbol granularity: I SI order for word alphabets, 4th order for byte alphabets 

and lOth order or higher for binary alphabets. 

2. The use of arithmetic coding as an optimal method to extract the redundancy identified by 

the model. Arithmetic coding is optimal for a given model because no other coding 

method can improve on it. On the other hand if the model feeding the coder is inaccurate 

the global performance will be poor. Arithmetic coding needs accurate modelling. If this 

is not the case simpler and therefore faster coding could be a better alternative. 

3. PPM is one of the best compression methods currently available and it combines points 1 

and 2 in an complex algorithm made possible in the last couple of decades with the arrival 

of powerful general-purpose processors and plentiful memory resources. 

4. The use of an algorithm granularity compatible with data granularity. For example text is 

clearly byte oriented or word oriented and compresses better with algorithms where the 

basic input is 8 bits or with methods that parse the input data stream into natural words. 

Throughput improves by: 

1. The use of hardware amenable algorithms that do not required too many memory or logic 

resources to run. Application specific hardware chips based their power in single cycle 
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execution and high clock ratios obtained from efficiently mapping an algorithm to silicon. 

LZ derivatives are dominant in the field of hardware compression. 

2. The use of algorithms that can offer a constant data independent throughput in the 

uncompress port. Throughput in the compressed port depends on the instantaneous 

compression ratio but the uncompressed port should be able to consume or produce the 

same number of uncompressed bits per cycle. Otherwise a worst case throughput 

measurement should be used when throughput depends on data type. 

3. The use of wider symbols like bytes or words instead of bits. The definition of word can 

change from natural words to 4-byte words like in X-Match. Increasing the level of 

parallelism by widening the basic input symbol improves throughput but finding the 

redundancy becomes a more difficult task. 

4. The use of CAM-based circuit to store the history data so fast single cycle searching can 

be done during compression. Systolic architectures based on pipelined CAM's where the 

input symbol is compared with a different position of the dictionary in each cycle can 

obtain higher throughputs and they have excellent scalability properties. On the other 

hand they suffer from high latency and this makes them unattractive in many real-time 

application environments. 

5. The elimination of dependencies between the modelling, coding and packing processes so 

deep pipeline architectures can be implemented. Algorithms that map fixed length 

symbols to variable length codewords such as X-Match suffer from a dependency 

between the decoding and the unpacking process difficult to improve. LZ algorithms map 

variable length symbol sequences to fixed length codewords and avoid this problem. 

6. Model adaptation tends to be a typical perfonnance bottleneck in many compression 

algorithms because in statistical methods a set of cumulative frequencies must be 

incremented or a tree must be reconstructed and in dictionary methods the dictionary 

must be rearrange introducing new symbols and deleting old symbols. 

Another contribution is the development of a compression perfonnance database using 

software and hardware algorithms that correspond to state-of-the-art technology. A total of 3 

different data sets are used to represent data commonly found in computer systems: the 

memory data set, the disc data set and the Canterbury data set. It is common in this type of 

research to do comparisons using obscure or out-of-grade algorithms and data sets with the 
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negative effect that further analysis becomes very difficult. We decided to choose state-of­

the-art lossless data compression algorithms implemented in both hardware and software. The 

LZS, ALDC and DCLZ hardware-based algorithms are commercially successful chips used in 

many networking and storage applications. The PkZlP software-based algorithm is known by 

anybody who has downloaded a file compressed in ZIP format from the Internet and routinely 

used for archiving and distribution of data. HA and PPMZ software-based algorithms define 

the current limits of lossless data compression and illustrate how the diminishing returns rule 

makes any significant compression improvements in the future a big challenge. 

8.6 Measurement of success 

The first objective was an identification of the factors that limit or improve the performance 

of lossless data compression methods. The concepts of compression speed and compression 

ratio were used to define the performance of a method. An analysis of current compression 

solutions was done in Chapter 2 where it was identified that the highest throughput combined 

with lower latency was achieved in hardware using CAM circuits and single cycle operation. 

The higher compression was found in software in methods based on variable-order statistical 

modelling. Limitations in speed were mainly due to small symbol width like in systems based 

on binary alphabets. Limitations on compression were due to poor modelling or coding. It 

was also clear that compression and speed were highly dependent on each other with better 

compression done by the slowest algorithms and vice-versa. 

The second and third objectives were to find solutions to these limitations and to prove them 

in real silicon to advance the field of lossless data compression. Our work was based on 

hardware and it naturally stressed the point of speed over compression. The developed X­

MatchPRO lossless data compression chip offers Gbit's full-duplex data compression 

performance and improved compression using the X-Match method. It can handle the data 

streams found in Gbit's applications where no other solution is currently available. It achieves 

its objectives using low-cost FPGA technology while a custom solution is expected to obtain 

a typical increase in throughput of a factor of 3. It, therefore, advances the field of lossless 

data compression hardware and achieves the main objective ofthis work. 

8.7 Limitations of research 

Our initial research revealed that statistical modelling based on variable-order models and 

arithmetic coders is a compression methodology able to achieve a performance close to the 
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entropy limit. It seems reasonable to investigate how some of these statistical concepts can be 

introduced in X-Match. This path of research involves the development of parallel arithmetic 

coders. Parallel arithmetic coding offering incremental transmission does not have a current 

satisfactory solution because of the data dependencies that exist between 2 consecutive 

symbols. This is particularly true when analysing the decompression stage of the algorithm. 

Limitations in time prevented a thorough investigation of parallel arithmetic coding since it 

constitutes a PhD on its own. 

Compression performance of the X-MatchPRO method is somehow limited mainly when 

targeting data textual in nature. The reason is that this data exhibits single-byte granularity 

and it maps badly to the 32-bit granularity of X-MatchPRO. Redundancy in this type of data 

is easily picked by a byte-based LZ derivative but it fails to be found by X-MatchPRO 

because bytes are not aligned in groups of 4. The alternative of increasing compression 

performance in X-MatchPRO by coding the literal characters part of partial-match codewords 

or misses was found to be unfeasible because of its direct impact on complexity and more 

important throughput. 

8.8 Future work 

The fabrication of a custom ASIC solution will have a positive impact on speed typically 

improving throughput by a factor of 3 if compared with a similar feature size FPGA. A much 

more compact device is possible because FPGA gates scale down considerable when 

translated into ASIC gates. 

The integration of the FPGA-based X-MatchPRO in a real application such as Gbit Ethernet 

will prove an invaluable tool to verity the benefits of high-speed lossless data compression. 

The development of a form of parallel arithmetic coding will open the way to a variable-order 

X-Match model that could achieve the best of both worlds: high speed and excellent 

compression. 

It is also interesting the idea of a variable-width X-MatchPRO dictionary extending the 

concept of variable-length. This means that the algorithm would be able to adapt its internal 

granularity to the data granularity. For example, text compression will improve significantly 

ifthe data word width could be adjusted to the natural word width. 
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Further increases in throughput are possible if several X-MatchPRO are combined into a 

single chip. The challenge is to design a multiple compressor chip that uses the same interface 

as a single compressor chip so the application only sees a significant increase in perfonnance. 

8.9 Summary 

This thesis has addressed the problem of high-speed lossless data compression in hardware. It 

has produced the X-MachPRO chip that with a combined compression and decompression 

performance of 3.2 Gbitls in a Xilinx or Altera FPGA's can outperform any other ASIC chips 

currently available. 
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