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Abstract

This thesis investigates how to improve the performance of lossless data compression hardware
as a tool to reduce the cost per bit stored in a computer system or transmitted over a

communication network,

Lossless data compression allows the exact reconstruction of the original data after
decompression. Its deployment in some high-bandwidth applications has been hampered due to
performance limitations in the compressing hardware that needs to match the performance of the
original system to avoid becoming a bottleneck. Advancing the area of lossless data compression
hardware, hence, offers a valid motivation with the potential of doubling the performance of the

system that incorporates it with minimum investment.

This work starts by presenting an analysis of current compression methods with the objective of
identifying the factors that limit performance and also the factors that increase it. The X-Match
method is selected as a promising technique because it offers a level of parallelism not present in
other methods combined with low latency. The algorithm analysis focuses on improving its
compression ratio typically halving the original uncompressed size. The hardware development
phase designs a high-performance architecture that is then implemented in silicon using a non-
volatile reprogrammable ProASIC FPGA as our prototyping technology. The device is fully
tested at speed to verify its high-performance characteristics achieving over 1 Gbit/second
throughput with a 33 MHz clock frequency and latency of only 5 cycles. The
compression/decompression engine is then extended to a full-duplex architecture that can handle
compressed and uncompressed data streams simultaneously and uses a simple coprocessor-style
interface. The full-duplex device offers a combined compression and decompression performance
of 3.2 Gbit/second in Xilinx Virtex or Altera Apex FPGA'’s technologies but its complexity in
terms of logic elements is comparable to the half-duplex architecture because the decompression
architecture is based on RAM memory readily available in modern FPGA’s. This work
concludes comparing our device with other high-performance architectures and showing that our
chip, named X-MatchPRO, offers unprecedented levels of throughput in a hardware
implementation of a general application lossless data compression algorithm. It, therefore,
enables the usage of data compression in areas that were traditionally out of reach in previous

research,
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Chapter 1 ' Introduction

Chapter 1

Introduction

1.1 Research aim

This thesis aims to understand how to improve lossless data compression hardware as a
means of boosting the performance of high-speed storage systems and communication

networks.

1.2 Basics on data compression

Data compression in a digital system is a process that comprises the removal of redundancy
and/or information present in a block of data with the objective of obtaining a reduction in the
number of bits that must be transmitted or stored [Bell90], [Lelewer87]. This process can be

done in a lossless or lossy way.

Lossless compression allows the reconstruction of the original data after decompression since
all the information remains in the compressed block and only redundancy is discarded. Lossy
methods on the other hand allow only partial reconstruction since these methods not only
remove redundancy but also information. The objective of a lossy compression algorithm is
then to remove only information that is of little interest for the intended application. Lossy
compression is useful for digital data types that are an approximation to data analogue in
nature such as images or voice. Lossless compression can be used with any data type since it
is completely reversible and it must be used in data types such as textual or executable data
where all the bits are critical. Lossy compression can achieve much higher compression ratios
than lossless precisely because there is not a requirement to maintain all the information

content of the data source. It is usually possible to define a quality factor that determines the
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compression ratio and the fidelity with which the compressed data represents the original
data. Lossy compression methods such as the popular image compressors JPEG/MPEG
[Wallace91], [MPEG-2] exploit the fact that information can be selectively eliminated from
the image during compression as long as the viewer does not perceive the degradation after
decompression. The basics of lossless and lossy compression are quite different and many
lossy algorithms include a lossless version to be used with those data types such as medical or
military image information that cannot accept any quality lost. Lossy compression can
achieve typical ratios of 20:1 with good quality. This in contrast with lossless compression

where something between 2/3:1 is the standard.

This thesis is wholly concerned with lossless compression methods so by compression we
will mean lossless compression unless the contrary is stated. It will also imply
compression/decompression since any useful compressor system has a corresponding

decompressor.

1.3 Effects of compressing data

Compressing a block of data has 2 main positive effects when applied to computer systems

that have to manipulate large amounts of digital information.

¢ Compression improves throughput in communication applications by increasing the
bandwidth available in the transmission links hence the same equipment can achieve a
significant increase in the transfer rate. Alternatively, simpler lower bandwidth equipment
can replace the high bandwidth one to maintain the transfer rate while using a more

economical solution.

» Compression increases the capacity of the physical media in storage applications hence
more data can be kept in the same device. It also increases the speed of information
storage and refrieval since the time required to access uncompressed data from storage

can be significant higher than that of compressed data using fewer bits.

Although data compression has a lot of potential to improve the performance of a digital
system it could actually have a negative impact if it is not deployed properly. A number of

issues must be taken into account when introducing compression in a data pipe.
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o (Compression must be done avoiding compressing data already compressed or
compressing encrypted data, These 2 events can result in data expansion and degrade the

performance of the system unless a detection mechanism is included.

e The compression method must be able to outperform the throughput of the original
system. Otherwise compression becomes a bottleneck and the data pipe becomes empty
waiting for the compressor to process data. If the compressor can only match the
performance of the original system then throughput will be the same but an economical

advantage can be obtained with fewer or slower transmission links.

¢ The uncompressed system throughput (UST), the compressor throughput (CT) and the
expected compression ratio (ECR) must be balanced (CT = UST/ECRY) to obtain optimal
performance [Hi/fn97]. For example if a data pipe supports 10 Mbytes/s and the
compressor is expected to halve the data traffic its throughput should be 20 Mbytes/s to
avoid bubbles where the data pipe becomes empty of any useful content. The effective
throughput of the original data pipe plus compression is then 20 Mbytes/s and other
components attached to it will forward data to the data pipe at this ratio. If the
instantaneous compression ratio is worst than the predicted compression ratio a
mechanism must be used to prevent the data pipe from overflowing. Throughput will
degrade accordingly but an improvement will be noticeable as long as data expansion is
avoided. If the instantaneous compression ratio is better than the expected compression
ratio bubbles will appear in the data pipe but the effective throughput will still remain at
20 Mbytes/s.

» Compression produces a variable length output depending on how much redundancy is
present in the input data. A more complex management method is required to store and
retrieve this data because it is not possible to have an exact knowledge of the capacity of

the compressed media.

¢ Full-duplex technology can carry data in both directions simultaneously. If only software
compression mapped to a general-purpose processor or half-duplex hardware
compression are available provision must be made to compress part of the time and

decompress the rest increasing the throughput requirements of the compression method.

* The increase in latency resulting of applying a compression algorithm could prevent any

benefit and data could take longer to arrive to the destination point if the transmission
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time includes latency plus transmission and a mechanism is not available to do both

operations concurrently masking latency with transmission time.

1.4 Current applications of data compression technology in

communication networks and storage systems

It has been widely accepted that the performance of a storage system or a communication
network can be improved by a typical factor between 2/3 by the use of lossless data
compression [Hi/fn97], [Cyclades00], [Jung98], [Mogul97], [Mitel00]. Indeed nowadays data
compression is widely used in communication devices such as routers, bridges and modems
to increase the bandwidth of networks such as LAN, WAN and wireless [AlliedTelesyn00],
{Intel00], {Cisco00], [Dickson00]. Storage systems such as file servers, solid state storage,
hard disk drives, tape drives use data compression not only to increase capacity but also to
increase the available bandwidth to move data in and out of the device [VanDuine00],
[Cressman94]. Compression is also useful in other applications that benefit from a reduction

in the amount of data that must be stored or moved such as printers, copiers and scanners.

The use of data compression methods has thrived thanks to the exponential growth in
bandwidth and storage requirements combined with the need to keep costs within a budget. It
seems that, although technology advances are constantly increasing the bandwidth and
capacity of transmission and storage media, the applications that run on them always find
ways to use all the resources available and create a need for more. The consequence is that
sometimes the technology is not available or the cost of its implementation is uneconomical.
Compression is an effective way to alleviate this problem. Figure 1.1 obtained from
[Cyclades00] uses an example to illustrate the cost benefits of data compression applied to a
wide area network (WAN),

Line Speed Approximate Cost Effective Throughput Cost per Kbps

56 Kbps $125/ month 112 Kbps (with daia } $1.1
compression)

128 Kpbs $325/month 128 Kbps (no data| $2.5
compression)

Figure 1.1. Savings introduced by compression in a wide area network.

Figure 1.1 shows that a similar bandwidth can be obtained with a lower speed line halving the

costs of the line rental.
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A typical network configuration includes a group of high-speed LAN’s interconnected using a
low-speed WAN network. The expensive WAN can easily be a bottleneck because it
concentrates the data traffic exchange among the LAN networks. Modern routers use
compression to optimise WAN efficiency but there is not a unique standard dealing with the
compression method to use. This means that some form of negotiation based on a
compression control protocol must be established between receiver and transmitter to agree
which compression method to use. Nevertheless, the LZS [Hi/fn96], [Hi/fn99] algorithm a
LZ1 (Lempel-Ziv-1) [Ziv77] derivative from Hi/fnh has emerged as the preferable method in
many cases because of its high throughput and good compression ratios. Popular router
manufactures such as Cisco [Cisco(0] and Intel [Intel00] support LZS compression, LZS has
been accepted as standards ANSI x3.241-1994 (American National Standards Institute), QIC-
122 {Quarter Inch Cartridge), IETF RFC1974 (Internet Engineering Task Force), FRF.9

(Frame Relay Forum) [Hi/fn96] among others for storage and communication applications.

Compression is routinely used in modems thanks to the v.42bis standard proposed by the
CCITT (Comite Consultatif International Telephonique et Telegraphique) [Thomborson92],
[Acorn92]. The v.42bis standard uses a variant of the LZW [Welch84] compression algorithm
also used in the UNIX utility ‘Compress” and itself a derivative of the L.Z2 (Lempel-Ziv-2)
[Ziv78] algorithm to increase data throughput. It is meant to be implemented in modem
hardware but it is also possible to include it in the software that interfaces to a non-
compressing modem. The algorithm defines a way to monitor compression efficiency and

switch to transparent mode when data expands.

Something that WAN and modem compression have in common is that the speed
requirements are quite low. The V90 [Intel01] standard for modems defines a throughput of
56 Kbytes/s while typical WAN throughputs such as T1 WAN [Tanenbaum96] are in the
order of 1.5 Mbytes/s . This means that in many cases compression can be supported in
software running in the same CPU that handles the rest of the functions present in the
communication protocol. If this is not enough a coprocessor processing in the order of Mbits/s

will suffice.

Another data compression method that has achieved commercial success is the ALDC
algorithm, another LZ1 derivative developed by IBM [IBM94], [Cheng95], and also available
from AHA (Advanced Hardware Architectures) [AHA97]. It has been accepted as standards
ISO/TEC 15200 (International Organisation for Standardisation/ International Electrotechnical
Commission), ECMA-222 (European Computer Manufacture Association), ANSI x3.280-
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1996, QIC-154 [Craft98]. The IBM AS/400 family of high performance server’s
[VanDuine(0] able to handle terabytes of data distributed over a number of hard disks and
tape drives use ALDC compression integrated in the storage controller. This is quite a unique
solution because the use of compression in hard disk devices remains something of an ad-hoc
technique. The dedicated compression chip brings an important capacity gain factor 2 to 4 and
minimizes any performance impact if compared with a software-based solution. The overhead
of the compression process is higher than that of the decompression process so data

compression is better used with read intensive applications such as databases.

The most popular way to introduce compression in a hard disk in user transparent mode is
controlled by the operating system and based in software such as those present in MS-DOS
DoubleSpace and Stacker or Windows DriveSpace. This compression technology has
generated some controversy on its reliability in the past {Halfill94). Popular compression
utilities like WinZIP, ARJ, PkZIP are file compressors not designed to work in a blocked
mode which is needed to allow fast random access to the uncompressed data. They are
especially useful for backup purposes where speed is not an important issue. Their main
inconvenience is that they are user initiated and too slow to be applied in real-time

environments.

Compression is commonly present in tape drive technology such as QIC (Quarter Inch
Cartridge), DAT (Digital Audio Tape) and DLT (Digital Linear Tape) with the main objective
of increasing data capacity, Tape drives concentrate on offering high data capacity for back-
up purposes and not for on-line access. Speeds of 6 Mbytes/s with a compressed capacity of
80 Gbytes are offered in the high-performance DLT8000 {Quantum99] products. The DCLZ
[AHA96] algorithm, a LZ-2 derivative developed by Hewlett/Packer [Bianchi89] has been
accepted as standards QIC-130, ECMA-151, ANSI-X3.223, ISO/IEC-11558 [AHA95]. This
method seems to be the preferred choice for tape compression [Cressman94], {Seagate97].
AHA (Advanced Hardware Architectures) acquired DCLZ technology from Hewlett/Packer
and it currently offers several devices with throughputs around 20 Mbytes/s [AHA97b].

1.5 Advances in communication/storage technology generate a

motivation for new compression methods

Recent advances in networking technology and the significant requirements for bandwidth
and data capacity generated by applications such as real-time video conferencing, 3D

animation modelling, Internet telephony, virtual reality, video on demand, etc have made
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some storage/communications equipment to operate at speeds in excess of 1 Gbit/s. Optical
communications are a good example of the sort of systems where Gbit/s throughputs are
reached. Gigabit networking [Vandalore95] has been made possible thanks to fibre optic
signalling equipment able to transmit at a bandwidth of several Gigabit/s over long distances
with low error rates. Storage equipment has benefit from technology such as RAID
(Redundant Array of Inexpensive Disks) [Storage00] to achieve over 1 Gbit/s bandwidth

performance.
There are 3 popular networking technologies working at speeds in the order of Gbit/s:

Gigabit Ethernet (IEEE 802.3z): Gigabit Ethernet [GEAS7] specifies the data link layer (layer
2) of the OSI (Open System Interconnection) [Tanenbaum96] protocol model and it has been
the most widely-used high-bandwidth LAN networking technology for the past few years. It
has been endorsed by major companies in the field such as Cisco systems and 3Com and also
by legions of start-ups. Since Ethernet (IEEE 802.3 at 10 Mbits/s) and FastEthernet (IEEE
802.3u at 100 Mbits/s) are the most popular LAN technologies a gigabit/s version offers a
smooth upgrade path since it is cost effective and it does not required new specific training. It
uses the same IEEE 802.3 frame format and flow control methods which means that it is
simple to connect a LAN using Gigabit Ethernet as the backbone to a number of
servers/terminals internally using Ethernet devices running at lower speeds. There is also an
effort to include specifications for MAN (Metropolitan Area Network) and WAN (Wide Area
Networks) in future versions of high-speed Ethernet [Caruso99a]. The requirement to keep
compatibility with older technologies has created some performance problems such as failing
to deliver true QoS (Quality of Service) required by some applications like video on demand.
Although work has been undertaken in providing QoS at higher layers than the link layer with
the use of network protocols such as RSVP (Resource Reservation Protocol) it remains a best
effort protocol. This has prevented Gigabit Ethernet from offering a complete solution to the
bandwidth problem.

ATM (Asynchronous Transfer Mode): ATM [Pivotal97] is also a link layer protocol like
Ethernet. It was introduced earlier than Gigabit Ethernet to be used in LAN’s as well as
WAN’s in those applications demanding a lot of bandwidth. It initially offered 155 Mbits/s in
ATM OC-3 with a path up to ATM 0C-128 offering 6.4 Gbits/s. ATM was thought to be the
perfect solution to the bandwidth problem but that did not happen. In ATM it is possible to
guarantee QoS, very important in applications such as video on demand, but it is more
expensive and the migration path is more complex than using Ethernet. ATM uses fixed

length cells of 53 bytes enabling extremely fast hardware-based switching in direct contrast
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with Ethernet where packet length varies from 64 to 1514 bytes. The ATM protocol includes
standards that provide LAN emulation of networks such as Ethernet/Token Ring so it is
possible for an application to communicate to an Ethernet network unaware of using ATM.
In many cases ATM offers a best solution if it is used as a backbone of a WAN joining

together different LAN’s where Ethernet technology is at its best.

Fibre Channel: Fibre channel [Burton95] defines a complete multi-layered stack of functional
levels from the physical layer to the upper-level application interfaces. It can run at speeds up
to 1062 Mbits/s. It seems to be the preferred solution to attached storage devices to a host
computer forming Storage Area Networks (SAN). Its use as a gigabit networking technology
is not as popular [Mace98). Storage Area Networks are formed by a series of storage nodes
and server nodes sharing a commeon pool of data that can be physically separately up to 10
Km using Fiber channel based on fibre optic cables or 30 meters over copper wires. The
storage nodes can be external rack-mounted RAID subsystems formed by a number of SCSI
drives to offer capacities of terabits of data. SCSI ultra-2 disk drives run up to 80 Mbytes/s
while more recent SCSI ultra-3 technology offers a throughput of 160 Mbytes/s well over 1
Gbit/s. Recent RAID storage solutions are offering throughputs over 200 Mbytes/s
[Storage00]. RAID technology [Dell99] is a method of combining several hard drives in a
single unit offering a higher level of fault tolerance and throughput. Fault tolerance is
achieved by writing the same block of data to a pair of disk. Improved performance is
achieved by distributing data evenly across the disks to equalise disk accesses. If multiple
disks in a RAID subsystem are being accessed simultaneously performance improves
proportionally. The RAID controller portrays the multiple disks as a single unit to the

application,

Other Gbit/s networking technologies include serial HiPPI: (High Performance Parallel
Interface) [Djumin97] that operates within the physical and link layers at speeds of 1.2 Gbit/s
over distances up to 10 Km, It offers Gbit/s performance and high reliability at the physical
layer whilst other protocols relay in higher layers for data lost detection. Also there has been
recent interest in mapping directly IP-over-SONET [Trillium97] to avoid the overhead
incurred by the mapping IP-over-ATM and then over SONET. While IP (Internet Protocol) is
the typical network protocol in layer 3 in the OSI model SONET (Synchronous Optical
Network) is a physical layer protocol (layer 1). These efforts have given way to future trends
towards 10 Gbit/s standards. 10-Gigabit/s Ethernet [Caruso99b] and 10-Gigabit/s SONET are
2 examples of where high-speed networking seems to be heading. These technologies should

be available within the next few years.
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Data compression is not currently being used to its full advantage in these systems due to
performance limitations encounter in the data compression hardware, although if properly
deployed it could double the performance and capacity of storage/communication systems
with minimum investment. Storage Area Networks (SAN) using fibre channel to
communicate high-capacity and high-speed disk arrays or a Gigabit Ethernet backbone
connecting a group of Ethemet LAN’s running at lower speeds are current examples where
present compression technologies fail to deliver the require performance for successful
integration. To realise fully the benefits of data compression in these areas requires a

compression technology that matches the throughput of the original system.

1.6 Objectives to be achieved in this research

The overall aim of this research is to improve the speed and compression of lossless data
compression hardware. In order to achieve these aims we can identify the research objectives

and then we can map them into the thesis structure.

1. The first work to be undertaken is the identification of the factors that improve/limit
current lossless data compression hardware. A survey on current compression technology
will provide us with common limitations that hamper performance and also the features
that boost it.

2. We will then develop solutions that will try to avoid the common bottlenecks found in
current technology and improve the factors that define the efficiency of a compression

method namely:

e The speed at which the compression/decompression processes are executed.

e The average compression ratio that the method can achieve on typical data.

3. Once we have identified a set of solutions that we believe achieve the aim of improving
compression technology we will demonstrate the feasibility of these solutions by
developing a practical hardware architecture and mapping it into available silicon, The
final output and the core to evaluate how well we have achieved our initial aim will be the

performance figures obtained by this hardware device.
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1.7 Thesis structure and method

The research objectives can be mapped into the thesis structure as follows.

Chapter 1 is an introduction whose objectives are as follows; Firstly to brief the reader on the
basic concepts on lossless and lossy compression methods. Secondly to establish the
motivation of this work based on the applications and current state of compression
technology. Finally to propose a set of objectives and the methodology to be followed to

achieve them.

Chapter 2 is concemed with a background revision and systematic classification on previous
research efforts. This review will show the features that limit and boost compression

performance and will help us to identify a suitable way to progress further.

Chapter 3 involves the selection of a research vehicle to base our experimentation. We will
use the information provided in chapter 2 to justify the selection of a method that shows high

performance characteristics.

Chapter 4 selects a common development framework to base the experimentation. The
selection identifies the data sets and compression methods to be used for the compression
ratio and compression speed figures and justifies their selection. The process aims to select
state-of-the-art methods so a meaningful comparison can be done between them and our own

method. The technology to be used for the hardware implementation is also chosen.

Chapter 5 focuses on improving the compression efficiency defined as the average
compression ratio output/input on the typical data sets selected in chapter 4. A set of solutions
and their implications on complexity and speed will be described. We will select some of
these solutions to progress further based on 3 interrelated parameters: compression, speed,
and complexity. Since our overall goal is to identify a feasible architecture and to demonstrate
it in hardware it is important that complexity does not exceed that of currently or soon

available hardware.

Chapter 6 focuses on improving the compression speed defined as a function of 2 variables:
throughput and latency. Throughput is defined as the constant and data independent
uncompressed data rate and it is measure in bits/second. Latency is defined as the time it

elapses since the last input symbol enters the device until the devices is ready to start a new

10
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operation and it is measured in cycles. Again the 3 factors must be taken into account since it
is usually possible to increase throughput by reducing compressing efficiency. The
importance of each factor is dependent on the application but it is possible to guide the
process by a selection of figures: typical lossless compression that halves the original
uncompressed data, throughput over 1 Gbit/s, latency around 10’s of cycles and complexity in
the order of 100’s of thousands of gates. Finally, the proposed core architecture is mapped to

our silicon test bench and tested to prove their benefits.

Chapter 7 extends the compression engine developed in chapter 6 to a full self-contained
lossless data compressor coprocessor and maps it into the technologies selected in Chapter 4.
A final comparison is made between the features of our device against other high

performance lossless data compressor chips.
Chapter 8 concludes this thesis evaluating how well we have achieved the objectives initially

proposed. It also shows the limitations of the current work and identifies a path where future

work could be undertaken.
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Chapter 2

Lossless Data Compression Review

2.1 Objectives of Chapter

This chapter presents a review on the area of lossless data compression. The objective is to
analyse current lossless data compression methods and then to select a set of interesting

concepts for further research in the following chapters.

Firstly, we will introduce some basic concepts on data compression and assess the main
components present in a lossless data compression system, then continuge with an
investigation on recent advances in software and hardware data compression and finally
conclude highlighting the features common to high performance lossless compression

methods.

2.2 Data compression basic definitions

Lossless data compression is possible because some of the bits that form a symbol contain
redundancy. It is possible then to devise a mechanism to eliminate the redundant bits and still
maintain the complete meaning of such a symbol. The amount of information in bits of a

symbol a is given by the expression:
number _of _bits = —log2( probability(a)) 2.1

where probability(a) is the probability of occurrence of symbol a. This for example means

that if the probability of occurrence of a symbol 4 is 1 then the information content of that

12
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symbol is ¢ and 0 bits are needed to code it because in essence no other symbol can happen in
the receiver end. On the other hand if the probability of occurrence of a symbol b is 0 then
from equation [2.1] infinite bits would be needed to code it and in essence the coding
operation can not take place. This will happen with an alphabet with infinite number of
symbols that cannot be coded. Using equation [2.1] the minimum number of bits needed to
represent a symbol ¢ with probability 0.9 is 0.152. If the symbol is a single bit an optimal
coder will be able to remove 0.848 bits and the decoder in the receiving end will still be able
to know if a 0 or 1 was transmitted. The information content of a block of data that uses an
alphabet of size # can be obtained weighting the information content of each symbol with its

probability of occurrence producing the expression:

H= —Z": (probability(ai) * log 2 probability(a:)) [2.2]

i=1

These 2 expressions [2.1] and [2.2] are due to Shannon [Shannon48]. H is known as the
entropy or information content of a data source and forms the basis of the information theory
due to the same author, It represents the minimum number of bits needed on average to code
an input symbol using a given probability distribution and a lower bound to measure the
efficiency of any coding method. The equations made a clear distinction between model and
coder. The model is a collection of data that identifies where the redundancy is located in a
message while the coder is a mechanism to exploit this information to reduce the number of
bits needed to represent the original message. Equation [2.2] establishes that lossless
compression is possible because some symbols or groups of symbols have a higher chance of
occurrence (probability) than others. As a direct consequence true random data is impossible
to compress because it contains no redundancy and all the symbols have the same probability
p=1l/alphabet_size producing a flat probability distribution with a value of H that equals
log)(alphabet_size) . A useful definition to measure the efficiency of a compression method
is the compression ratio (CR) of equation [2.3] where compressed output and uncompressed
input are measured in number of bits. Compression is obtained whenever the CR is in the

range of (0,1). This measurement will be used in the rest of this work.

CR = Compressed Output/Uncompressed Input [2.3]
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2.3 Elements of a lossless data compression system

In any lossless compression system it is possible to identify 3 components with different
functionality. These are: the model, the coder and the packer. The same 3 elements are present
in the decompressor but their function is now opposite in 2 of them (the unpacker and the

decoder) whilst the model is used in the same way.

The separation between model and coder is particularly useful to classify the 2 main families
of lossless data compression methods: dictionary-based methods and statistical methods. It
reflects the fact that once we have decided which modelling technique to use for our data, the
coding method is not fixed and a wide range of techniques remain available to choose from.
Although some coding methods map better than others depending on the chosen model, many
different combinations are possible.

These 3 components must be applied in the right order as shown in Figure 2.1.

Compression System Elements
§ymbal count Comprassed Compressad
“,;,mm Dictionary o Smbois ouput
Decompression Systern Elements
§mbad conf |7 Comprassed
m"w Dictionory indiex Symbos %m

Figure 2.1.Elements of a Lossless Data Compression System

2.3.1 Compression (Modelling, Coding, Packing)

¢ The function of the model during the compression process is to identify where the
redundancy is located in the data source and to signal repetitive data sequences to the
coder. The model uses past experience obtained from processing the input data source to
guide these 2 tasks. The model performs the same function in compression and
decompression and it must be maintained in synchrony matching all the compression

states during decompression to ensure proper decoding.
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e The function of the coder is to assign a number of bits to each event notified by the
model. A non-trivial coder will use the information passed by the model to code more
common data using fewer bits than to code less common data and therefore to increase
the compression efficiency of the method. A trivial coder will assign the same number of

bits to each event.

e Finally the packer is used to group the variable or fixed length codes output of the coder
in fixed length units depending on the word width of the system before they are output as

compressed data.

Models can be adaptive, semi-adaptive or static:

¢ In adaptive models the adaptation or learning process takes place concurrently to the
compression process. The model dynamically changes the information it stores depending
on the properties of the data source. After receiving a symbol an adaptive model obtains
the information that describes it using its internal history and passes this information to
the coder. It then performs an adaptation function modifying its internal history to reflect

the symbol just seen.

e Semi-adaptive models use a two-pass approach where in the first pass the model adapts
and in the second pass compression takes place with a static model providing the

information to the coder.

e Static models use the same information to process any data source. Its usefulness is
limited because for example a general model obtained from compressing text might offer

a very inaccurate representation of an image file.
Adaptive models are usually preferred because they offer superior performance. They avoid
the overhead of having to process the data source twice and/or the need to transmit model
information to the decoder. This work is mainly concerned with adaptive models.
2.3.2 Decompression (Unpacking, Decoding, Modelling)
e The unpacker function is to break the compressed input data stream into units where the

boundaries correspond to compressed symbols. The unpacker needs information about

the compressed length of the previously uncompressed symbol that must be provided by
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the decoder before it can disregard the bits used in the previous decoding step and shift in
new compressed data for a new cycle. This property of the decoding process creates a
feedback loop between coder and unpacker and it means that it is quite difficult to
pipeline these 2 stages. The job of the packer/unpacker in some dictionary-based
techniques that obtain compression by replacing variable-length groups of symbols with
fixed-length codes can, however, become trivial. This variable-to-fixed way of operation
means that the boundaries between compressed symbols are fixed so the previously

mentioned feedback loop does not exist.

e The decoder transforms the compressed data into indices or pointers to tables where the
uncompressed data can be found in the model. These pointers could be addresses to
dictionary locations in dictionary-based methods or arithmetic values in the range

between 0 and 1 in statistical methods.

e The model uses the index information provided by the decoder to obtain the
corresponding uncompressed data and output it. The uncompressed data could be a group
of symbols in a dictionary-based method or a single symbol in a statistical method. The
model also uses the uncompressed data to perform the same adaptation function as the

compression model to keep in synchrony and maintain correct operation.

2.4 Statistical and dictionary-based lossless data compression

methods

Statistical methods show a more clear separation between model and coder. Statistical models
are based on assigning a value to symbols depending on their probability using the rule: the
higher the value the higher the probability. The accuracy in which this frequency assignment
reflects reality determines the efficiency of the model. The model passes this frequency
information in form of symbol count and total count to the coder. The coder objective is to
use few bits to code symbols with high probability and vice versa. Compression is obtained if
the symbols that get assigned shorter codewords prove to be most popular in the input data
source. Again adaptive models are preferred because they offer superior performance and
since they start with an empty state they do not need to transmit the model as part of the
compressed data. These methods are also called symbol wise methods because they process
each input symbol independently in contrast with dictionary methods that group symbols
together. Statistical methods tend to use a form of a dictionary to hold the active subset of the

working alphabet and this concept should not be confused with dictionary-based modelling.
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The dictionary used in a statistical method has frequency counts associated to its locations and

this is not true in dictionary-based methods.

Dictionary methods try to replace a group of symbols by a dictionary location code or
dictionary address that points to a dictionary position that stores the same group of symbols.
Compression is obtained as long as the location code uses fewer bits than the group of
symbols it replaces. It is characteristic in these methods to give the modelling stage an extra
importance whilst the coding stage is simplified. They are simpler than statistical methods and
tend to run faster with good compression ratios. For this reason dictionary compression
remains as the most popular both in hardware and software although the best compression
ratios are found in the area of statistical compression [Bell89]. The information pass to the
coder by the model is a dictionary location plus information relating to the match length. This
information can be sent to the bit packer directly without further processing by the coder or
the coder can try to assign shorter codes to those index/length combinations that prove to be

more popular.

Hybrids are also quite popular with combinations mainly between dictionary models with
statistical coders. Figure 2.2 shows a classification of modelling and coding techniques for

lossless data compression and examples in each category.

Lossless Compression Systems
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Figure 2.2. Lossless data compression systems classification
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2.4.1 Statistical methods

2.4.1.1 Statistical modelling

Statistical models are based in doing predictions on the expected next symbol using the
statistical information gather during the processing of previous data. Simple statistical
modelling is based on assigning a count higher than 0 to any possible symbol in the alphabet
and then to increase these counts according to the symbols being processed. This modelling
strategy 1s usually called a context-free statistical model. In this simple model it is important
to start the model with a count higher than 0 for any possible input symbol to avoid the zero
[frequency problem [Cleary95a], [Witten91]. The zero frequency problem occurs when the
coder tries to code a symbol with a count of 0 because the equation that drives the coder -
log.(probability) fails if probability = 0.

The value of the probability for a symbol ‘a’ is given by:

symbol _count _of a

probability(a) = [2.4]

total _symbol _count

The information that the coder requires from the model is the probability of the symbol ‘a’. It
then becomes the responsibility of the coder to use this information efficiently to obtain
compression. If the probability information provided by the model is inaccurate the coder
will fail to compress the symbol and it might even expand it (use more bits than in its original

representation) thus showing the importance of good modelling.

This simple context-free modelling technique does not use the concept of dictionary because
all the input symbols are present in the system from the start. The concept of a dictionary in a
statistical method appears when not all the possible input symbols are assigned a frequency
count higher than 0 and an escape mechanism is enabled to avoid the zero frequency problem.
Statistical models use dictionaries when the alphabet is too large to be handled simultaneously
(for example if system granularity is words instead of bytes) or if a context-based technique is
being used. In these cases a dictionary is used to hold the alphabet subset that is active at that
moment. The dictionary locations in a statistical model have frequency counts associated with
them and this feature avoids confusion with dictionary-based modelling that will be discussed

in section 2.4.2.

Context-free modelling offers modest compression ratios because the probabilities tend to

have low and similar values with values approaching 1 for a symbol being rare since all the

18



Chapter 2 Lossless Data Compression Review

other symbols in the alphabet must also be accommodated. Probability values approaching 1
can be obtained by exploiting the concept of context-based modelling. Context-based
techniques exploit the fact that a prediction can be made with much more certainty by
observing the symbols that have just preceded the current symbol. They will be analysed in

the following sections.

2.4.1.1.1 Finite-context modelling

A real breakthrough in statistical modelling came with the introduction of context-based
prediction and context-blending techniques in [Cleary84] with the PPM (Prediction by Partial
Matching) algorithm.

PPM methods extract the redundancy present in a block of data using a variable-order
context-based statistical model. A key concept in PPM is model order. The order of the model
defines the maximum number of symbols that can be used to predict the next symbol. The
symbols that are used to predict the next symbol are called context. In other words, a context
is formed by symbols and the maximum number of them defines the order of the model. For
example a first order model working with English text will find that the probability of ‘A’
following a ‘’ is much higher than the probability of an ‘4’ on its own. Then after activating
context ‘t’ because a ‘' has been received the system will predict that an ‘4’ will follow with
a 95% probability. If a *h’ does follow much greater compression will be achieved. Assuming
a 256 symbols alphabet an optimal coder will assign to symbol ‘%’ only —log»(0.95) = 0.07
bits which is a big reduction over the original 8 bits. Of course, if the prediction fails and for
example not symbol ‘4’ but symbol ‘w’ follows more bits will be needed to code a symbol
with low probability and indeed no data compression but data expansion could take place.
Any symbol predicted with probability lower than 1/256 = 0.004 (0.4 %) will expand when
coded because ~log,(1/256) = 8 bits.

The PPM methodology assumes that the higher the order the more precise the prediction
would be and fewer the bits needed to code it. For example, let’s imagine an extreme case
where the order of a model was as high as all the letters contained in a book except the last
one. A prediction on the last letter using this context would be made with almost 100%
certainty and would not create almost any output since no 2 books are the same but the last
letter. The only uncertainty will be left to spelling errors. This system is unfeasible but

illustrates the idea of prediction with high orders.
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PPM methods do not assign a count higher than 0 to all the possible input symbols, only to
those that have been seen after a particular context. To avoid the zero frequency problem
described in section 2.4.1.1 an escape technique is used so the system can vary its order
falling from a higher order to a lower order if a valid prediction is not possible in the first one.
This variable-order feature is enabled by the escape mechanism that effectively blends
together all the different orders present in the system. When a particular order fails to make a
prediction because the item being predicted is new to that context the escape mechanism is
activated. The model tries to use the next lower order and so on until the item is successfully
predicted or the 0™ order, where the context is empty, is used. The 0% order has to be
implemented in a way that any bossible input symbol has a count higher than 0. The context-
free model described in section 2.4.1.1 corresponds to a 0™ order model. Depending on the
implementation an order —1 where all the possible symbols have the same fixed probability
could be defined. In this case 0" order is allowed to fail to make a valid prediction an escape

to order -1.

The size of the alphabet is typically byte-based to exploit the fact that most data exhibits a
byte granularity. Binary alphabets are also popular due to its simplicity mainly in hardware
implementations. PPM word-based compression has also been analysed by [Moffat89] with a
word defined as maximal sequence of alphabetic characters and a non-word as maximal
sequence of non-alphabetic characters keeping statistics separately for both distributions. His
results show an important compression benefit when replacing a 0" order model with a 1*

order model. Higher-order modelling shows no advantage for word-based compression.

Several variations from the original PPMA and PPMB methods described in [Cleary84] have
appeared modifying how the escape probabilities are calculated to improve how the orders
blend together, This research has produced methods such as PPMC [Moffat90] and PPMD

[Howard93a] each of them offering some improvement over the previous one.

A lot of research has been done in choosing an optimal maximum context length. The
classical approach based on byte alphabets uses an upper bound with a context length of 4 or
5 symbols while showing that further extensions of context length damage compression due
to an excessive use of the escaping mechanism. However a more recent approach named
PPM* [Cleary95b] uses unbounded context lengths to achieve superior performance.
Unbounded-length contexts are formed by all the symbols that have been seen in the input
stream and used efficient data structures to maintain complexity under reasonable limits. They
also exploit the use of deterministic contexts or contexts that make a single prediction. Other

refinements aimed at improving compression is the inclusion of a local order estimation
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(LOE) technique that makes a prediction based on the input stream characteristics on which

context length should be used for the next symbol.

These techniques have been utilised in PPMZ [Bloom9%8]. PPMZ uses LOE to choose a
context length between 12 and 0 when a deterministic unbounded-length context has failed to
make a prediction. PPMZ is considered to be one of the best data compressors available in the
literature but it achieves this by imposing high demands on memory resources and CPU
performance. Execution is measured around 1 symbol every 20K CPU cycles while the

demand on memory resources is around 30 times the size of the file being compressed.

2.4.1.1.2 Finite-state modelling

Finite-state modelling is based on a state transition graph formed by nodes representing states
and edges leaving and entering the nodes representing transition probabilities between the
states. Finite-state models can construct the finite-context models of the previous section with
ease. For example a single node can represent a simple byte-based 0™ order context-free
model with 256 transitions leaving and entering the node. Each edge would be associated with
the probability of a byte occurring. A byte-based 1* order finite-context model would have a
finite-state equivalent model formed by 256 nodes each of them with 256 transitions leaving
the node and entering the same node and the other 255 nodes. Finite-state modelling can also
built more complex structures to reflect data behaviour that can not be adequately represented
with finite-context modelling. The draw back with finite-state adaptive models is that their
construction and maintenance is more difficult with techniques based on heuristics instead of
mathematical analysis [Bell89]). Adaptive model construction is usually based on starting with
a simple model with a single node and then duplicate or clone the node based on parameters
related to node usage. If a transition to a particular node from different nodes proves to be
popular it is duplicated to capture which states contribute the most. The more popular
implementations of finite-state modelling are based on binary alphabets where each node or
state has only 2 possible next states [Cormak87]. This simplifies the managing of the model

and also suits arithmetic coding since binary coders are much simpler to implement,
2.4.1.2 Statistical coding
The function of a statistical coder is to use the frequency information provided by the model

to produce a minimal number of bits an obtain compression. A good coder will output a

number of bits close but never fewer than —log,(probability) for a given model since this
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quantity defines the information content or entropy of the model and it is the optimal code

length.

The spectrum of statistical coding techniques expands from the fast but sub-optimal prefix
coders to the slow but optimal arithmetic coders with a range of coding techniques located

somewhere in between trading speed for coding efficiency.

The prefix coders or whole-bit coders which are derived from the well known Huffman
[Huffman51] codes are sub-optimal because they only produce an optimal output when the
probability distribution of the input symbol matches exactly 1/2°) where x is an integer and
positive number.

The arithmetic coders belong to the class of fractional-bit coders and are known as being
optimal because their output can be arbitrarily close to information content of the model by

controlling their precision.
2.4.1.2.1 Whole-bit coding

Whole-bit coding assigns an integer number of bits bigger than 0 to each coding event so the
codes assigned to each input symbol are independent and disjoint from each other. This
technique is also called prefix-free coding because a valid codeword can never be the prefix
of other valid codeword. This means that the coder immediately knows when all the bits
corresponding to a codeword have been received and therefore knows where the next
codeword starts, If the prefix-free property is not respected the code can not be decoded
without errors. Uniform binary coding (UBC) where each symbol in the alphabet is assigned a
codeword length log.(alphabet_size) bits is the trivial form of prefix-free coding. UBC can
not obtain compression in a statistical method because it assumes that all the symbols have
the same invariable probability of occurrence p=1I/alphabet_size. UBC is useful in dictionary-
based methods when it is used as a dictionary address and the dictionary data width is larger
than log (dictionary length). The prefix-free property considerably simplifies coding and

decoding operations and enables fast parallel implementations.
2.4.1.2.1.1 Shannon-Fano coding
Shannon-Fano Coding is considered to be the first well-known modemn method for efficiently

coding a group of symbols [Shannon48]. It uses the probability of each symbol to assign more
bits to symbols with low probability and fewer bits to symbols with high probability. The
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construction method, however, can not guarantee producing a whole-bit optimal code and 3

years after its invention it was quickly superseded by the more efficient Huffman codes.
2.4.1.2.1.2 Huffman coding

Huffman coding was presented in [Huffman51] and since then it has enjoyed a widespread
popularity. It is a whole-bit optimal code meaning that it can never be improved on by other
whole-bit coder. Although its performance in many cases is close to that of Shannon-Fano
coding it can never be worse and it is usually better.

To construct a Huffman code for an alphabet formed by n symbols we need to build a tree
knowing the probability distribution of these # symbols in our data source. Firstly, we list
these symbols in decreasing (or increasing) order of probability forming the leaves of our
future Huffman tree. Secondly, we repeatedly select the 2 leaves with smallest probabilities
forming a sub-tree whose probability is the sum of the 2 leaves. Finally, we continue this
process with the sub-trees until only one iree remains. The Huffman code for a symbol n; is
obtained traversing the tree from the root to the leaf assigned to that symbol and adding a bit 1
or 0 to the code depending if we go left or right at every branch of the tree. A Huffman tree
for an alphabet of 6 symbols is illustrated in Figure 2.3, The tree is constructed using the
symbol probability distribution P= {2/41, 3/41, 5/41, 7/41, 11/41, 13/41} for our alphabet r =
{f. e, d, c b, a}. For example to code the message ‘aaba’ the output of the Huffman coder
would be ‘00000100°. Since our example alphabet has 6 symbols a uniform binary code
would need at least 3 bits per symbol. Then a total of 12 bits would be needed to code the 4
symbols. The output of the Huffman coder is 8 bits so we have a reduction of 4 bits.
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Figure 2.3. Huffman Tree Example

23



Chapter 2 Lossless Data Compression Review

Following this procedure and using a fixed model a fixed Huffman tree is quite trivial to
construct. More challenging is the adaptive model case when we want to dynamically adapt
the coding tree to changes in the model induced by variations in the statistical properties of
the input data source. Small variations in the model could force important changes in the tree
structure resulting in a very time-consuming process of reconstructing the tree after each input
symbol. Dynamic Huffman Coding has been subject of study in [Vitter87], [Knuth85] where
the tree updating procedure is done by traversing the tree from the leave to the root in
constant time proportional to the encoding length. These methods require in the order of
n+r+H time to encode a file of # symbols with an alphabet of size r. H is the number of bits
produced. This means that if H is much bigger than » and H is much bigger than » then
n+r+H = H and every bit is output in 1 cycle so in each coding cycle is possible to obtain
one bit of output including the updating process of the tree. This measure of throughput
depends on the number of compressed bits produced and therefore on the instantaneous
compression ratio. This is an undesirable characteristic because it is not possible to guarantee

a constant data rate in the uncompressed port.

Huffman coding is an optimal-code when the probabilities produced by the model for »
symbols are given by p(n)})=1/2" where x is an integer number bigger than 0. In this case the
minimum possible number of bits to code a symbol n; 1s -log,(1/2") = x. This quantity is an
integer number bigger than zero that a Huffman code can output. The problem arises when a
good model produces probabilities for a symbol close to 1 that would need a fraction of a bit
to be coded ( x is closed to 0). A Huffman code must output at least 1 bit and always an
integer number of bits as its codeword. The coder in this situation outputs redundancy with

the worst case being of 1 extra bit per symbol.

2.4.1.2.1.3 Golomb, Rice, Elias, Fiala Coding

Golomb, Rice, Elias and Fiala coding can be considered variations in the Huffman coding
theme since it is possible to construct a Huffman tree for them. They offer less compression
than Huffman codes but their simplicity and speed makes them attractive as an alternative to
uniform binary coding. Golomb codes [Golombé66] are built by arranging the symbols of the
alphabet in descending probability order and assigning positive integers to them. Golomb
codes are based on the use of a coding parameter m that changes the shape of the code.
Smaller values of m should be used for more skewed probability distributions because very
few bits are assigned to more probable symbol but many more to less probable symbols. To
encode an integer » using the Golomb code with parameter m we obtain #/m and output this

as an integer unary code, Then we obtain n» mod m and output this value using a binary code.
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For example ifn = I0and m = 4thenn/m =2 = ‘II’andnmodm = 2 = 010’ so the code
is ‘71010', We could have not used ‘10’ to represent 2 because then the resulting code ‘1710’
would have not respected the prefix free property. This means that the binary code needs to be
adjusted to avoid extending the unary code. Rice coding [Rice83] is a subset of Golomb
coding because only parameters m that are power of 2 are allowed (m=2). Rice coding is
specially suitable for hardware implementation because #/(2") can be calculated by shifting
and n mod 2* by setting to 0 all the bits in  but the less significant k bits. The following Table
2.1 hows an example of Golomb and Rice codes.

Elias codes [Elias75] are similar to Golomb and Rice codes but they do not use a parameter m
so they offer little flexibility and compression performance is limited. Elias describes 2 codes
v and 8. In code y an integer » is coded as a unary code for /+log,n) bits followed by a code
of log,n) in length coding n-2*log,n) in binary. The 8 replaces the suffix unary code by a ¥
code.

The Fiala codes [Fiala89] are known as [start, step, stop] codes because they use these 3
parameters to construct many different possible codes. Symbol n is coded as » 1°s followed
by a 0 and then followed by a field of size start+n *step. If this value is equal to the stop value
then the preceeding 0 can be omitted. The example in Figure 2.4 corresponds to a Fiala code

with the following parameters [0,1,5].

Position Rice =0 K=1 K= y [0.15]
Parameter Elias | Fiala
code | code
Golomb =1 M= M=3 =4
Parameter
0 00 00 000 10 0
10 01 010 001 1i0 100

110 100 011 010 1111 1101
1110 101 100 011 11100 | 11000
11110 p 1100 1010 § 7000 | 11101 | 11001

LY RS LV b ]

Table 2.1, Prefix-Free codes example

These codes need the symbols in the alphabet to be organiséd in decreasing order of

probability so fewer bits are assigned to the most probable symbol.
2.4.1.2.1 Fractional-bit coding

Fractional bit coders have the ability of mapping a symbol to a fraction of a bit. This means
that if the probability of a symbol is close to 1 very little output is needed to code this symbol.
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On the other hand a whole-bit coder needs at least 1 bit and always an integer number of
them. Fractional-bit coders are usually called arithmetic coders [Witten87], [Langdon84]
because they required arithmetic operations such as divisions and multiplications to code a
symbol. Arithmetic coders produced a single and unique codeword for the whole message
being processed and therefore lack the direct correspondence between bits in the codeword
and symbols in the message. They are not prefix-free codes like the whole-bit coders
described in the previous section. They are optimal in the sense that they produce an output as
close to the entropy of the model as desired by controlling their precision. This optimality
comes with the price of higher complexity. The dependencies that appear between the
coding/decoding of a symbol and the coding/decoding of next symbol make a parallel
implementation a difficult problem. Fast approximations to arithmetic coders using low
precision multiplication-free arithmetic speed-up the process at the expense of compression.
Current research aims to solve the problem with the lack of parallel execution of the coding

and decoding processes.

2.4.1.2.2.1 Full-precision arithmetic coding

Full precision arithmetic coding replaces a stream of input symbols with a single output
number less than 1 and greater than or equal to 0 using exact precision multiplications and

divisions. A general encoding algorithm to accomplish this follows :

Set low_old to 0.0
Set high_old to 1.0
While there are still input symbols do
Get input symbol
range_old = high_old - low_old
high_new = low_old + range_old*Pcum;
low_new =low_old + range_old * Pcum, ;
End of While
Output low

The next graphical example of Figure 2.4 shows the result of processing the message ‘aaba’
with an alphabet r = {f, ¢, d, ¢, b, a} using the same probability distribution P = {2/41, 3/41,
5/41, 7/41, 11/41, 13/41} = {0.05, 0.07, 0.122, 0.170, 0.261, 0.317} as in Figure 2.3 for the
Huffman coder. The Pcum are the cumulative probabilities of the symbols Pecum = {0.05,
0.13,0.252, 0.422, 0.683, 0.999}. The example shows how the subinterval [0, 1) is subdivided
in sections proportional to the probability of the symbol that they represent.
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[+ ]
— 0.483 — 0895341 -1 n5s8103507 —— 0.957256622319 -
b
—— 0422 |- 0813804 L 0.539048508 — 0.95019516758 —+
[+
o 0282 —1 0.759714 —— 0921425478 T 0.94559581775 -
o] 018 T 0.72104 —I- 0.00878008 T~ 0.94229570788 T
(T ocos —— 0.50885 — 0.90152395 T 0.94040125795 T
- o0 ~— 0.683 - pg9saa == 0.930048508 —— 0.957266622319
High = 1.0 Hgh = 1.0 High= 1.0 High = 0.965103507 High = 0964103507
low = 0.0 Low = 0,583 Low = 0.896341 Low = 0.989048508 Low = 0957256622319
Ronge = 1.0 Range = 0.317 Range = 0.103659 Range = 0.027054999 Ronge = 0.008845984481

Figure 2.4.Arithmetic coding example

Then we can use any value between the last high and low to represent the string. If we chose
0.96 then we can represent the string in 7 bits obtaining 1 bit reduction if comparing with the
Huffman code.

To decode the compressed stream we use an algorithm as follows:

Get encoded number
Do
Find symbol, whose range straddles encoded number
Qutput the symbol
range = Pcum; — Pcum,;
Substract Pcum;; from encoded number
Divide encoded number by range

Until no more symbols

In the previous example the encoded number is 0. 96 so we know that first symbol to be output
is ‘@’ then we subtract symbol low value from encoded number to obtain 0.277. Then we
divide by the range 0.377 and the resulting value is 0.873817. Then we know that the second
symbol is another ‘g’. We continue by subtracting symbol low value from encoded number to
obtain 0./90817. Then we divide by the range 0.377. We now obtain 0.607/946 so the next
symbol is ‘b’. The process continues until no more symbols are left to decode. To detect

when to stop either a special termination character can be encoded (not done in this example)
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or the length of the uncompressed string can be concatenated to the compressed message, If

the uncompressed length is large enough the overhead is small.

The previous example shows a practical problem with arithmetic coding related to precision.
If the message continues for a few more symbols we would have run out of bits to hold the
required precision. It also seems to show that the whole message needs to be processed before
the compressed codeword is known. These problems have been solved in practical
implementations so only integer arithmetic is required and incremental transmission is

possible.

A practical arithmetic coder is reported in [Witten87]. His implementation outputs a bit of
codeword as soon as it is known and replaces the floating point arithmetic for integer
arithmetic so the interval f0,1) is replaced by fON) with N being as large as 65536. The
cumulative probabilities provided by the model are also stored using integer numbers in form
of cumulative frequency counts so Pcum of example 2.4 becomes Feum = { 2, 5, 10, 17, 28,
41} so the Pcum, is obtained dividing the Feum; by Feum, where n is the last symbol that
stores the total, in the example symbol ‘a’ with Feum = 41. When the low and high values are
close together some more significant bits are equal. These bits are added to the output and
then the interval is scaled up so it keeps large enough to assign some range to all the possible
input symbols, This is necessary to avoid having underflow conditions. When low and high
straddle 0.5 the next bit output is not known but a follow-on procedure is used to keep track
of the number of cycles the mechanism is used. Operation continues until the interval falls
above or bellow 0.5. If the interval is above 0.5 then a / is output together with a number of
0’s as indicated by the follow-on mechanism. If the interval is bellow 0.5 a 0 is output
together with a number of I’s as indicated by the follow-on mechanism. Other similar
mechanism for incremental transmission and fixed precision arithmetic have been developed
by [Guazzo80]. The IBM bit stuffing idea of [Pennebaker88] that consists in inserting zeros to

block carry propagation fulfils the same function as the follow-on procedure described above.

2.4.1.2.2.2 Low-precision arithmetic coding

Low precision arithmetic coding aims to replace the slow multiplications and in some cases
divisions necessary to implement the full precision algorithm for some simpler alternative. It
comes in 2 main fashions. Techniques that replace the slow multiplications by shifts and adds
and techniques that perform all the calculations ahead of time and store the results in look-up
tables.
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Quasi-arithmetic coding is based on performing all the calculations ahead of time and it is
described using a binary alphabet in [Howard93b). The number N in the interval [O,N}
generates a number of possible states in the coder that equals 3*N*/16. If N is small the
number of states is small and it is possible to precompute all the possible state transitions and
outputs and stored them in a table. If N=4 then the number of states is 3. Quasi-arithmetic
coding shows that if compared with an exact arithmetic coder the number of extra bits output
per input symbol is at most 5.77//N, This means that a larger value of N improves the
efficiency but also increases the complexity. In practical terms values between 32 and 128 are
used. The proposed way to extend the binary coder to a multi-alphabet coder is to assign the
symbols of the alphabet to the leaves of a binary tree. Then the coding of a symbol is
decomposed in the coding of a binary decision at each level of the tree. A binary Quasi-

arithmetic coder can be used in each level of the tree.

The method proposed in [Rissanen89] and used in the Q-coder [Pennebaker88] simplifies the
multiplication and divisions operations by scaling the range and the total count of the model
to the same interval f0.75, 1.5). The implementation replaces storing the sigh_new value by

storing the range_new so the original equations:

high_new = low_old + range_old*Pcum; [2.5]
low_new = low_old + range_old * Pcum,.,

become;
range_new = range_old *( PcumqPcum, ;) [2.6]

low_new = low_old + range_old * Pcum,.,

The algorithm then makes the approximation range/Fcum, = I and since Pcum-Pcum;.; =

(Feum; — Feum;)/Fcum, equation set [2.6] is simplified to:

range_new = Fcum; - Fcum;, [2.7]

low_new = low_old + Feum,,

Muiltiplications and divisions are not longer present in equation set [2.7].

The analysis in [Lei95] shows that the error of the Rissanen method depends on the value
(Feum,-Feum,_;)/Fcum, .The error is larger when this value is smaller so the most probable
symbol is placed in the last position to force Fcum,-Fcum,.; to have a large value. The
conclusion is that the degradation of the method is significant when the count of the most

probable symbol is small. An extension of the method is proposed so the approximation
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range/Feum, = 1 after scaling both quantities to the interval [1,2) is replaced by a number b =
{05, 0625 075 0875, 1, 1.25, 1.5, 1.75, 2} = { 0.100, 0.101, 0.110, 0.111, 1.000, 1.010,
1,100, 1,110, 1.111} . The multiplication times & can be done shifting and adding with the
following values of b = {2°, 2°+2°, 2242, 2°.2° 2, 2P+20, 2P+2°, 2.2', 2.2°). This is
particularly well suited to fast software and hardware implementations. The simplified

equations are now:

range_new = b*(Fcumy— Fcum,.;) [2.8]

low_new = low_old + b*Fcum,;

This better approximation improves the method and the results show a degradation of 1.04%
compared with a full precision implementation while Rissanen method increases the
degradation up to 6.06%.

2.4.2 Dictionary-based methods
2.4.2.1 Dictionary-based modelling

Dictionary-based modelling is a concept easier to understand than statistical modelling. The
model stores a collection of symbols expected in the input data source in the form of a
dictionary. It then tries to replace occurrences of these symbols in the data being processed by
indexes to the dictionary locations where the same data can be found. These methods try to
group symbols together and replace them by a single index to improve compression. They are
string oriented and not symbol oriented like the previous statistical methods, As long as the
index size is smaller than the string size compression is obtained. The larger the dictionary
size the higher the chance of finding the input symbol in it but also more bits are needed for

the index,

Most of the dictionary modelling techniques have their roots in the work published in 1977
[Ziv17] and 1978 [Ziv78] by J. Ziv and A. Lempel. The LZ77 (LZ1) and LZ78 (LZ2) vary in
the way the dictionary is built and maintained and how the indexes referenced the information
stored in the model. They emerged as valid alternatives to classical statistical Huffman

methods and generated plenty of research and variants on the LZ theme.
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2.4.2.1.1 Lempel-Ziv 77 (LZ77, LZI) modelling

An LZ77 dictionary is based on dynamically keeping a window of symbols seen previously in
the input data source with a typical window length that varies between 512 and 16K bytes.
The window slides over the data maintaining strings of symbols together forming phrases. A
buffer is concatenated to the dictionary window that contains symbols that have not been
processed yet. The buffer size is typically between 16 and 64 bytes. The buffer contents are
compared against the dictionary contains to find the longest matching string. LZ77
compression is based on outputting three items: an index to the dictionary indicating where
the match started, an offset indicating the length of the match and finally the first character in
the input that did not find a match in the window. Figure 2.5 shows an example of how LZ77

works.

Hasdaaab | [ b
Dictionary window Buffer belng processed

Figure 2.5. LZ77 Example

The dictionary matches the first 4 symbols of the buffer starting at position 0. The output of
the dictionary model is (0,4,5). Symbol b is the first symbol in the buffer that it is not found
in the dictionary. This method presents 2 major inefficiencies, Firstly, if no match is found the
output of the model is still 3 items, For example if symbol y does not exist in the dictionary
the output is (0,0,y). It is common to have many misses during the initial stages of
compression so this effect would degrade compression significantly. Secondly, it always
requires an extra character to be added to the output. This could be quite ineffictent if this
character could be made part of the next compressed token instead of explicitly adding it to
the output.

These inefficiencies were dealt with in the LZSS implementation [Storer82]. This algorithm
uses a single bit concatenated to every output token indicating a hit or a miss. If a miss the
non-matching character is appended to this single match bit. If a hit the match location and
match lengths are appended to the match bit. In this algorithm the cutput of the model is also
the output of the coder since uniform binary coding (UBC) is used directly. LZS is a very
popular hardware implementation similar to the LZSS version. LZS adds more complex
coding techniques for the index and the match length to improve compression. We will

discuss LZS in the hardware section.
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Decoding is simpler than coding since time consuming searching is not necessary and the data
provided in the compressed input can be used directly to fetch the uncompressed output from
the dictionary.

The fast execution and simplicity of the LZ77 algorithm together with the good compression
ratios obtained by their improved derivatives have made the LZ77 algorithm to become the
most successful general application lossless data compressor. Popular software
implementations such as PkZIP from PKWARE and ARJ from ARJ Software illustrate this
fact.

2.4.2.1.2 Lempel-Ziv 78 (LZ78, LZ2) modelling

LZ78 creates dictionary entries formed by complete phrases by concatenating the first
unmatched symbol to the previously matched phrase. The dictionary initial state is formed by
only ! phrase that is the empty string. The first symbol being processed is replaced by a pair
formed by a reference to the empty string plus the symbol in explicit form. Then the symbol is
added to the dictionary forming a new phrase. The output of the encoder is always formed by
a reference to the longest matching string in the dictionary plus the symbol that stopped the
match. This symbol is always added to the previously matched string forming a new phrase
that it is then added to the dictionary. Figure 2.6 shows the dictionary state after processing
‘aabaaaab’ and then string ‘aaba’ is received. The longest matching string is ‘aab’ at
location 4 and the new phrase ‘aaba’ is added at location 5. The output of the LZ78 algorithm
is (4,a).

Dictioncary

Location Contents
O Empty
1 a
2 akb
3 ada
4 cab
5

INnput Data : aakba
Encoded Cuput: 4,.a

Phrase number 5 | caaba

Figure 2.6, LZ78 example
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The data structure that stores the dictionary can grow unboundedly and some means of
controlling its size must be implemented to avoid using too many memory resources. When a
predefined maximum dictionary size is reached, the dictionary can be frozen so adaptation
stops or it can be reinitialised to an initial or an intermediate state to improve compression
efficiency. Some other policies can also be used such as LRU (Least Recently Used)

eliminating the dictionary entry that has not been used for the longest time,

A popular derivative of the LZ78 algorithm is the LZW [Welch84] variant that avoids the
need to explicitly transmit the non-matching character by starting with an initial dictionary
state where all the possible input symbols have already been included. An LZW derivative
named LZC was implemented in the Unix utility ‘compress’ with extra tuning of the coding
process to improve compression performance. In this case the match location is not coded as a
simple uniform binary code but as phased binary code to avoid adding extra bits to the output

when only a few dictionary locations are valid,

2.4.2.1.3 BSTW modelling

The BSTW algorithm [Bentley86] follows a different approach to dictionary modelling when
it is compared with LZ models. In general, LZ models try to assign a fixed-length code to a
variable-length group of input symbols. On the other hand BSTW modelling tries to assign a
variable-length code to a single input symbol defined as a word where the term word has a
predefined meaning. [Bentley86] implementation defines a word as the longest sequences of
alphanumeric and non-alphanumeric characters but other definitions are possible. BSTW
keeps 2 distinct dictionaries for the 2 independent word streams maintained using a move-to-
front (MTF) strategy. The MTF forces more popular words to appear closer to the top of the
dictionary and this feature can be exploited to use fewer bits to code them. A prefix-free code
such as a Huffman code can be used to achieve this effect with locations closer to the top of
the dictionary being also closer to the root of the Huffman tree. New words are always added
to the top of the dictionary and the oldest word located at the bottom of the dictionary is
removed when it becomes full. The experimental results show that the larger the dictionary
the better the compression. They also show that this simple single-pass MTF dictionary
maintenance strategy plus fixed Huffman coding offers a similar performance to a two-pass
Huffman scheme where the first pass is used to construct the Huffiman tree and the second

pass to produce compression.
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Figure 2.7 shows an example of BSTW coding and adaptation.

Location Contents Location Contents
= The (@] car
1 1 || o Te
2 in o [ In
3 the 3 the
| SRyep el = | . i -
4 shop 4 shop
B s W o

Input Data at time t : car

Encoded OCuput at time t : 1

Figure 2.7. BSTW example.

The MTF strategy is highly suitable for hardware implementation because the serial process
of modifying the dictionary in software can be done in 1 cycle in hardware using a highly

regular array of dictionary elements.

2.4.2.2 Dictionary-based coding

The function of the dictionary-based coder is to replace the uniform binary indexes produced
by a dictionary model for other more efficient form of coding and therefore enhance
compression. This form of coding tends to be much simpler than statistical coding because it
does not handle probability information. Dictionary-based coding is in many cases trivial
because the uniform binary codes that form the output of the model are used directly as the
output of the system after being assembled in the bit packer. Uniform binary coding assigns a
binary code of length log,(dictionary size) bits to each dictionary location and its decoding is
trivial.

It is also frequent to use a statistical coder to code the output of a dictionary model creating a
new form of hybrid. The idea is that the output of the dictionary model has biased statistical
properties and some dictionary references are more frequent than others. This feature can be
exploited by an statistical coder working as a back-end such as arithmetic or a Huffman coder
to further process the output of the dictionary model and enhance compression [Moffat94].
Dictionary-based coders can be based on techniques like phase binary coding (PBC) or run

length coding (RLC). Phased binary coding outputs a code whose length is dependent on how
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many entries are valid in the dictionary and the dictionary grows by a single location at a
time. Run length coding groups repetitive sequences of indexes output by the model. Other
popular form of dictionary-based coding is to use a dictionary that grows in powers of 2. Then
a uniform binary code can be adjusted to use only those bits needed to code the active section
of the dictionary. Since misses prove to be very popular outputs from the model it is common

10 use a single bit prefix to the code to make a distinction between a match and a miss.
2.4.2.2.1 Phased Binary Coding

Phased binary coding is useful when not all the locations in the dictionary require a codeword
to be assigned. This is a typical situation when the initial dictionary state is in an empty state
and entries are added to the dictionary simultaneously to the input data being processed. In
this case a more compact set of codewords can be used saving bits in the output. The basic

phased binary coding algorithm follows:

If (I < MAX - VALID)
Code I using a binary code of [Log(VALID) J- 1 bits;
else

Code I+MAX-VALID using a binary code of [Logy(VALID) ] bits;

Where MAX is 2180427 24q VALID is the number of dictionary locations valid in a
particular instant. For example if MAX = 128 and VALID = 127 then if the dictionary
location to be coded is I < 128-127 = 1 (location 0} only 6 bits are needed whilst 7 bits are
needed for the rest of the locations, Phased binary coding tends to assign fewer bits to
locations closer to location 0 so it is useful that the maintenance of the dictionary makes these
locations more probable than those closer to the bottom. When the dictionary is full (in our
example VALID = 128) there is no difference between using a phased binary code or a

uniform binary code.

2.4.2.2.2 Run Length Coding

Run length coding is a simpler coding technique based on replacing repetitive sequences of
the same symbol with a pair formed by a code indicating the repeating symbol plus a code
indicating the length or number of repetitions that were seen. This method of coding is of
limited usefulness for general compression. It can achiéved, however, good results in some
specific types of data where long runs of the same symbol are common such as repetitions of

0’s in memory pages or fax pages. If the input to a simple run length coder is the string ‘aaba’
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the output will be (a,2,b,1,a,1). This example shows that the input to the run length coder is
directly the input data so in this case no modelling is being performed on the data. It is also
perfectly valid to include a dictionary-based model so the output of the model and input to the
run length coder is a stream of dictionary location indexes. If the same dictionary location is

reference more than twice effective run length coding can take place.

2.4.3 Other methods

The BWT (Burrows-Wheeler Transform) block-sorting algorithm described in [Nelson96]
deserves special mention. This is a new modellixig method based on a transformation function
that converts a block of data using a sorting algorithm into a new block of data extremely well
suited for data compression. The new block has exactly the same elements as the original
block but the new organisation shows clumps of identical symbols grouped together. The
transformation is reversible so the original block can be recovered. Compression is obtained
by exploiting the increase in redundancy generated By the sorting algorithm using typically a
Huffman coder or arithmetic coder preceded by a run length coder. The BWT algorithm
combined with standard coding techniques produces a compression that rivals with that
obtained by the finite-context modelling methods of section 2.4.1.1.1. The transformation
function consists simply in shifting and sorting the input block of data so no complex
arithmetic is involved. The main drawback of the method is that it needs to operate in a whole
block of data simultaneously and therefore it does not support incremental reception or
transmission. The blocks of data must be of at least 250 Kbytes to give good results. If the
block sizes are reduced to a more manageable value of 4 Kbytes the sorting algorithm is
inefficient and the extra bits of overhead needed in each block to ensure that block-un-sorting
can be done degrade compression. In general the BWT modelling technique can be used as a
front-end of a general compressor since it will improve the performance of the existing

compressor by increasing the redundancy of the input data.

Other approach to efficient modelling of an input data source is the neural networks presented

in [Jiang96b]. Two neural networks are described to perform lossless data compression.

The first one uses a single-layer of processing elements and it achieves a compression
performance of 0.7. Each neuron in the system stores a data element fixed in length that
corresponds to a possible input string. The input string is compared with this value and the
output of the neuron goes to ¢ if a match is found. A ceding technique based on a Huffman
code derivative such as those described in section 2.4.1.2.1.3 is used to assign fewer bits to

neurons that are more successful in finding matches. The neurons are assigned an index that
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increases from left to right and the network is maintain shifting neurons left after each input
data is processed using the following method. Successful neurons are promoted to right side
of the neural network. New input data is always added in this right side. Unsuccessful neurons
are discarded when the reach the left side. The compression performance of the algorithm is
low because matches have to be in full and partial matches that happen when part of the input
string matches in one neuron and the other part in another neuron are not allowed.

To solve this problem a second example is developed that extends the initial model by adding
a second layer of processing elements and improves compression typically to a value of 0.4.
The second layer of neurons is design based on a 2-byte input string to detect partial matches
of the MSB in one neuron and LSB in another neuron. It also extends the initial technique by
coding runs of matches in multiple neurons using a single code. Although the technique has
potential for a hardware implementation to exploit the massive parallelism present in neural
networks this possibility is only indicated in the paper and no details are given on a hardware
implementation. It is possible to identify the typical features of a high performance hardware
system such as doing all the comparisons in a single cycle and using a simple adaptation

mechanism.
2.5 Lossless Data Compressor Hardware

The same classification method as in software can be applied to the lossless data compressor
hardware world with a separation between statistical hardware and dictionary-based
hardware. There is an even clearer domination of dictionary-based methods over statistical
methods in hardware. The reason is that statistical methods can not currently compete in
speed and although the compression performance is theoretically superior this can be only be
achieved with very high complexity. This complexity again degrades speed and makes them
unfeasible for many applications. Although some implementations have been very successful,
such as those based on binary alphabets from IBM, the simplifications that made them
possible have limit their application to systems with low throughput requirements in the order
of a few Mbits/s.

2.5.1 Statistical hardware
Statistical hardware is limited to simple 0™ order modelling using multi-symbol alphabets that
limits compression or simple high-order modelling using binary alphabets that limits speed.

Coding is usually done with Huffman or arithmetic coding the later being preferred because

of its compression efficiency.
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2.5.1.1 Binary arithmetic Hardware

The Q-coder [Pennebaker88], [Arps88] from IBM is one of the best known examples in this
category. It consists of a 7™ order binary finite-context statistical model associated to a
corresponding binary arithmetic coder. It is important to notice that this is a fixed-order model
and not a variable-order model such as the PPM method of section 2.4.1.1, This means that
always the same number of symbols (same context length) are used to predict a new symbol
and a prediction can never fail. A variable-order model does not apply to a binary alphabet
since a single probability value p defines both symbols 0 (p) and I (I-p} and predictions are
always possible (no escaping). On the other hand PPM blends different orders together so if a
prediction fails in a particular order the next lower order is used, No variable order models
have been reported in hardware using either binary or multi-symbol alphabets to the best of

our knowledge.

In the coding section the binary arithmetic coder uses the renormalization approximation
introduced by Rissanen in [Rissanen89] and discussed in section 2.4.1.2.2.2 to avoid the
complex multiplications. The range is divided between the 2 symbols LPS (Least Probable
Symbol) and MPS (Most Probable Symbeol). LPS is assigned to the lower part of the range 4
and MPS to the upper part of the range 4. Renormalizations are used to expand the interval
range A and to keep it large enough to accommodate both symbols using fixed precision
arithmetic. Every renormalization produces an output bit. 4 is renormalized between 0.75 and
1.5 and approximated to 1 so no multiplications are needed as seen in section 2.4.1,.2.2,2, In
the modelling section the probability estimation process is adaptive and based on a state
machine with 60 states &. A more probable symbol 1 uses 30 states and a more probable
symbol 0 uses another 30 states. Each state k& has associated a less probable symbol
probability estimate Qe(k) that would be used by the coder. When a LPS renormalization
takes place the probability estimate Qe is increased since a LPS was just coded. After a MPS
renormalization the estimate Qe is decreased what corresponds with an increase of the
estimate of the MPS (7-QOe). This means that the renormalization process associated to the
arithmetic coder and the state machine with different Qe values associated to the model are
used to replace the explicit symbol counting mechanism used in other methods. An index
value identifying a state and pointing to a Qe table position is kept for each different context
whilst a single table stores all the probability estimate values Qe. Good compression results
are presented using a 7® order model with 128 contexts based on the 7 neighbouring pels
(bits) for facsimile compression. The Q-coder algorithm is also known as Adaptive Bilevel
Image Compressor (ABIC). The simple multiplication-free arithmetic coder and simple

dynamic probability adaptation enables a fast hardware implementation with high clock rates.
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On the other hand the Q-coder has a symbol granularity of a single bit what means that at
most 1 bit can be processed per clock cycle. This is a maximum performance throughput that
is usually degraded by the characteristics of the data source. Experimentation [Kamp{98]
shows a worst case performance of 0.8 bit per clock cycle. The reason is that the arithmetic
coding process can require multiple renormalizations (interval range expansions) per bit so
throughput is not data independent. Moreover, the probability Qe table is derived from
processing black and white (bi-level) image files what should limit the compression efficiency
if using the Q-coder as a general-purpose compressor. The QM-coder is a variation of the Q-
coder used in the Joint Bi-level Image Experts Group (JBIG) compression algorithm
[Arps88]. The QM-coder uses a different sofiware optimised convention and allocates the
MPS to the lower part of the range and LPS to the upper part of the range. The context in the
QM-coder is formed by 10 bits generating 1024 different contexts. The worst case throughput
performance is 0.73 bits per clock cycle. A recent VLSI implementation of the QM-coder and
Q-coder has been done in [Slattery98a]. The device called the Qx-coder can implement both
algorithms and clocks at 75 MHz with a throughput of approximately 64 Mbits/s using a
CMOS 58 (0.35 um) technology from IBM [Marks98§].

[Jiang96a] describes a parallel binary arithmetic coder derived from the IBM Q-coder. The
parallel implementation processes 4-bits in parallel using a tree of processing elements where
each processing element corresponds to a modified Q-coder. The number of levels in the tree
corresponds to the number of input bits being processed in parallel and in principle it only
affects the latency. The equations that the processing elements have to implement are more
complex than the Q-coder and include multiplications so the appealing multiplication-free
feature of the Q-coder is lost. The author suggests performing the multiplications using a
hierarchical structure of adders in each processing element to affect only latency and not
speed but this should have a negative impact in complexity. Adaptation is also modified since
it only happens every 4 input bits and not after every bit like in the Q-coder. This should have
an impact on compression efficiency although the reported results show minimum differences
in this aspect. Parallel decoding is possible because there are only 2* = 16 possible input
combinations. The pointer code can be used to directly perform a direct comparison with 16
values corresponding to all the possible combinations and the correct string can be found in
parallel. The paper only gives compression results based on a C language implementation of

the algorithm while hardware details are minimal.
[Kuang98] presents a 10™ order finite-context statistical model with associated binary
arithmetic coder, A variant from the bit stuffing technique of IBM is presented to solve both

the carry-over problems and the termination condition. A couple of bits are set to 0 after
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receiving 16 consecutive bits set to 1. If there is a carry-over the second bit always blocks the
propagation while the first bit is used to signal termination when set to 1. If the decoder
receives 17 consecutive bits set to 1 then it knows operation must be terminated. The
overhead of the method is 17 bits only at the end of the process plus the stuffing bits that are
only needed in very few occasions. The other way to solve the termination condition is by
adding an extra end of file (EOF) character that it is only coded once. This has the
disadvantage that a third symbol is introduced in the system increasing the algorithm
complexity. It is also possible to concatenate to the compressed block the original
uncompressed size so the decoder stops once this uncompressed size is reached. This is the
simplest solution although there could be a problem if the uncompressed size is not known at

the beginning of the compression operation and incremental transmission is required.

The adaptive modelling unit is based on calculating a range of possible probabilities for
symbol 0 and stored them in a table named Prob, . Then other table 4d with 1024 entries
corresponding to all the possible contexts generated in a 10™ order model is used to address
this table Prob, and obtain a conditional probability P, for the arithmetic coder. After
receiving an input symbol the adaptation mechanism uses 2 offset tables to obtain a new
address to the Prob, table. This address is stored in table Ad so the probability associated to
the active context changes. This address will point to a position in the Prob, table with a
higher value of P, if a 0 was received or the other way around otherwise. A simplified
multiplier is used to perform the P,*4 operation where A is the range. The technique reduces
the hardware complexity in half by discarding the half least significant bits result of the
multiplication. It is important to notice that arithmetic coding can also involve a division to
obtain a probability value if frequency counts and not probabilities are used in the model. This
method like the Q-coder deals directly with pre-calculated probabilities stored in tables
obviating the need for this operation. Again the presence of the renormalization loop in the

arithmetic coder makes throughput data dependent.

The simulation results presented in the paper suggest that on average the renormalization loop
uses only 0.5 cycles because in many cases is not needed. Adding this value to 8 cyceles fixed
time to for the rest of the chip operation produces an average value of 8.5 cycles to process a
bit of input data. The clock rate is 25 MHZ (using a 0.8 pm single-poly double-metal (SPDM)
technology) and therefore the throughput is 25/8.5 approximately 3 Mbit/s. The
renormalization loop could, however, take up to 7 cycles to complete. Then it could take up to
15 cycles to process a bit of input data for a worst case throughput of 1.67 Mbit/s . The
compression ratio based on the experimental results shown in the paper using a combination

of text, image and binary files seems to be in the order of 0.5.
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The same research group presents a variation on the previous device in [Jou99]. A finite-
context 10™ order statistical model associated to a binary arithmetic coder forms the device.
The coder is essentially the same as in [Kuang98] but an additional tuning step is included in
the model] to improve compression efficiency. The model uses the same concept of having 2
tables: the first table is used to store the most probable 128 conditional probabilities for
symbol 0 called Prob, that eliminates the need for a division, the second table Ad is used to
store 1024 addresses to this Prob, table to reflect that the probability of the symbol 0 changes
depending on which context is active. Offsets tables are used to calculate the new probability
of symbol 0 after completing the current coding step. A probability-tuning step is introduced
in this stage so depending on the characteristics of the data source being compressed a
different pointer to Prob, is stored in Ad. A total of 5 different tuning steps are pre-calculated
and the results stored in 5 different offsets tables. A fuzzy inference process based on the past
behaviour of the processed data is used to select one of these 5 offsets tables to perform the
adaptation in the model. The complexity of the model is higher than if it is compared with
[Kuang98] but compression improves because the probability tuning step is used to reflect the
characteristics of different data sources such as bi-level image data, colour image data,
greyscale image data, binary data and text data. Compression results are shown on different
data types and consistently outperform a O™ order context-free multi-alphabet model plus
arithmetic coder. An average compression ratio slightly better than 0.5 is achieved. The
performance of the design is equivalent to the [Kuang98] since the same coder is used and the

multiplication is again the limiting factor in speed.

A parallel architecture for arithmetic coding is presented in [Lee96]. The description does not
include any references to the modelling stage only to a way of reorganising the basic
arithmetic equations to incorporate parallel processing., The algorithm processes a number of
N symbols in parallel but not in a single cycle because the dependency between 2 different
group of symbols is present. The width of the symbol is not indicated but since the number of
arithmetic operations (multiplications and additions) is considerable it will probably fit better
a binary alphabet. The basic idea is to obtain the arithmetic equations state for low and range
after processing N symbols and then reorganize them to replace N operations for Jog,(N) so a
tree-shape parallel architecture can perform them. The processing of N symbols must be
completed before the next N symbols can access the architecture. Pipelining is not possible
because the resulting state of low and range must be input together with the probability values

of the N symbols. Hardware details are minimal.
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2.5.1.2 Multi-alphabet arithmetic hardware

[Boo98] describes a 0™ order context-free multi-alphabet statistical model associated to an
arithmetic coder for coding of multilevel images. The alphabet size is 256 and frequency
counts are dynamically maintained in the model for each of the symbols in the alphabet. We
have already discussed that arithmetic coding needs cumulative frequency counts to properly
identify the range the symbol uses in the [0,1) interval. This means that a worst case in the
adaptation process would need to increase all the cumulative frequencies stored in the model
resulting in a large number of additions. To alleviate this problem the scheme implemented in
the paper stores a subset of 16 cumulative frequencies named reference cumulative
probabilities while the rest are stored in normal non-cumulative form. To calculate the
cumulative frequency needed by the arithmetic coder for a symbol £ it is necessary to use a
reference cumulative frequency % plus a few frequency counts A+1, h+2,...,k-1 if k < h+8 or
cumulative frequency A+16 minus a few frequency counts A+135, h+14,..., k. The worst case
needs 9 additions or subtractions corresponding to 8 symbol probabilities and 1 reference
probability. This technique simplifies the adaptation process, since now in the worst case only
16 reference cumulative frequencies need to be updated plus one symbol frequency, but it
adds more operations to the calculation of the cumulative frequencies. The arithmetic coding
process has been simplified by truncating the multiplier to a small number of most significant
bits, which is a trade-off between complexity and compression efficiency. The architecture is
evaluated using a 0.7um CMOS standard-cell library [Peon97] and the non-pipelinable
critical path is found to have a delay 26 ns in the interval updating formed by the
multiplication and normalization process. Therefore the maximum clock frequency is reported
in 39 MHz with a total area of 31 mm?®.

The paper seems to deal with the concept of symbol probability and symbol frequency count
indistinctly, However to obtain a symbol probability it is necessary to divide its frequency
count by the total frequency count. The total frequency count is usually the cumulative
frequency count of the last symbol. This division is usually done as a table look-up using a
few more significant bits from both operands as address since divisions are even more
undesirable than multiplications. This problem is not addressed properly in the proposed
architecture that seems to use symbol frequency counts in the multiplication operation as if
there were directly equivalent to symbol probabilities. The paper does not provide any results
on compression performance. Compression performance should be limited since 0™ order

models perform poorly in most situations.

The same technique described in section 2.5.1.1 [Jiang96a] for a binary parallel coder is used

in [Jiang94] to obtain a parallel implementation of a multi-alphabet arithmetic coder.
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Although the arithmetic coder is associated with a 0™ order model to evaluate the performance
of the coder, the model implementation is not dealt with in hardware. The system processes 8
bytes at a time instead of 4 bits at a time using a hierarchical tree structure with 5 levels.
Parallel decoding in this case is unfeasible because the number of possible input combinations
to decode 8 symbols in parallel with and alphabet of 256 symbols is 256* . This means that
the complexity of the parallel decoding hardware is too high. A sequential decoder is
designed to work with the parallel coder. Most applications are read biased, which means that
they tend to decompress more often than compress. The lack of parallel execution in the
decoding process constitutes a major limitation in the implementation. There are 2 types of
processing elements realising 2 different sets of equations in the tree structure. Both sets of
equations involved multiplications and divisions. The proposed processing element has 1
level with 6 14-bit multipliers and 6 levels of adders for a total of 20 adders. It is obvious that
the complexity of this PE is very high. These Ievels can be pipelined but since there are at
least 5 levels of PE’s in the whole coder the resulting latency would be very high degrading
speed accordingly. One set of PE’s involved the division by a fixed value of the initial range
16384 that can be readily implemented by shifting left the 14 least significant bits. The other
equation involves the division by the total cumulative frequency count that always increases
with each adaptation cycle and that in this implementation can have a maximum value of
8192, This division does not seem to be dealt with properly in the algorithm description. A
typical solution is that, as in other implementations, the cumulative frequency count of the
symbol and the total cumulative count are used to address a table and obtain the cumulative
probability count resulting from dividing these 2 values. Hardware details are minimal. They
are limited to a few block diagrams and not data is reported on complexity. The simulation
results, which are based on a software model, seem to suggest that compression performance
is not affected if comparing this parallel implementation with a sequential one. It is important
to notice, however, that the adaptive model is updated every 8 symbols instead of every
symbol as in classical sequential coders. The paper also acknowledges the need for higher
order context-based modelling to improve compression. Unfortunately, the complexity of
higher-order context-based modelling using multi-symbol alphabets has precluded any

examples in hardware up to now.

The work presented by the same author in [Jiang95] is the implementation of 2 multi-alphabet
arithmetic coder using a modification in the basic equations, These modification constst in not
using the values of Aigh and low to define the state of the coder but instead using the values of
low and range where range equals high — low. The paper claims that this change brings a
simplification in the renormalisation process so that it can be control testing only when the

value of range is less than half the initial range. This single condition test allows the
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incremental generation of output bits and range expansion to avoid underflows and to allow
coding to continue indefinitely using fixed-length registers. The criticism in [Moffat97] is
based on several problems that seem not to be properly addressed in the original paper. A loss
of coding efficiency is introduced by rounding errors and also the decoder is more complex
since 2 values must be calculated. The paper gives no details on the model that should feed
the arithmetic coder although the compression results are based on using a 0™ order one.
Hardware details are again minimal, limited to a few block diagrams that makes it difficult to
draw any conclusions in terms of speed or complexity. The new algorithm equations are
design to handle multiplications and divisions and no effort is made on simplifying these

operations. These unresolved issues should limit a hardware realisation.

[Hsich98] describes a multi-alphabet 0™ order context-free model associated to a
corresponding arithmetic coder for video compression. The modelling unit uses a limited past
history model implemented as a first-in first-out buffer used to store a window of symbols
from the input data source. This window buffer allows the modelling unit to pick up the local
statistics of the data being compressed, thanks to the principle of locality of reference, thus
increasing compression efficiency. A small buffer size improves the speed of adaptation but it
could damage compression if not enough data is available to construct an accurate model.
This limited-past history model overestimates the probability of a symbol by //p+M) where
p is the alphabet size and M is the buffer size. The overestimation is caused because all the
possible input symbols in 0™ order modelling must be assigned an initial count higher than 0
to prevent the coding from failing when a symbol is processed for the first time. The total
frequency count is p+M. If the buffer size M is small this error is larger. To alleviate this
problem a weighted limited-past history model is proposed so the overestimation value
becomes 1/(p+M*W). If the weight W increases, the error decreases although a large value of
W will also damage compression because the probability of a symbol not yet seen in the data
source (the overestimation) could become very small. The best trade-off seems to be a weight
of 16 and a buffer size of 112. The-modelling unit also ensures that the denominator of the
cumulative frequency is a power of 2 so that the division required to obtain the cumulative
probability can be done by shifting. The algorithm uses the multiplication-free solution
proposed by Rissanen [Rissanen89] to perform the arithmetic coding itself. The normalisation
is done in a single step by counting the number of positions that the range and lower pointer
should shift to maintain these values in the correct range [0.75, 1.5) used in Rissanen
arithmetic coder [Rissanen89]. This technique avoids a data dependent throughput because it
eliminates the need for a variable number of cycles to normalize the range. In the hardware
implementation a similar technique to [Boo98] is used to store the frequency model using

some frequency counts as base and others as variations from the base. In this case the
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variations are not stored as the true frequency counts but as offsets from the base. This
technique means that to obtain the true cumulative count of a symbol only 2 values a base and
a offset must be added whilst in [Boo98] 9 values could be needed in a worst case. On the
other hand the adaptation process must change in a worst case 16 bases and 16 offsets whilst
[Boo98] only needs to change 16 bases and one true value. This adaptation process can be

done in parallel using 32 counters but it increases hardware complexity.

The limited past history model means that in each cycle one symbol enters the buffer and one
symbol leaves the buffer. Then 2 symbols one adding 1 count and other decreasing 1 count
must adapt the cumulative frequency array adding cycles to the operation. In the decoding
process only 16 comparators are needed to decode a symbol in parallel. This is an important
reduction in complexity since a 256 symbol alphabet needs 256 comparators if a bank model
is not used. During an initial cycle the pointer is compared with the bases and once the correct
bank has been identified a second cycle is used to compare the pointer with the offsets inside
the base. The scheme incurs again in a performance penalty since the decoding operation uses
2 cycles instead of 1. The results obtained after compressing a series of images suggest a
compression performance of 0.5. The results show a clear advantage over the IBM Q-coder
that only manages a best of 0.9 when processing the same set of images. This compares a 7"
order context-based binary model with a 0" order context-free byte model and seems to
indicate that the second one wins. The IBM Q-coder is targeted to bi-level images and its
model is hardwired to this objective. A bi-level image has a symbol granularity of one bit and
therefore it is very efficient to predict a whole symbol using 7 preceding symbols as the Q-
coder does. If the symbol granularity is the byte, however, this rationality is lost and the
system performance degrades. The compression ratio of the weighted limited past history
model plus arithmetic coder is modest at 0.5. The reason is not in the implementation itself
but the original concept of modelling a data source with a 0" order context-free model.
Unfortunately no details are given in the hardware section on gate count or throughput but the

complexity of the algorithm is considerable,

[Printz93] presents a non-adaptive 0™ order context-free multi-alphabet model with an
arithmetic coder. The modelling unit is fixed and is implemented as a look-up table that
produces 2 values for each of the 256 possible inputs corresponding to its cumulative symbol
probability and symbol probability. The system eliminates the need for a division because it
handles probabilities directly. The modelling unit is therefore extremely simple and fast but
since it is non-adaptive it will provide arbitrarily inaccurate statistics if it is used in a general

compression application. The coder needs to perform 2 multiplications one for each of the 2
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equations involved in updating the interval range A (range_new) and the code point C
(low_new). See equation set [2.6].

The first equation that deals with the interval range is completely embedded in a look-up table
that also calculates the multiplication factor for the second equation. A special index-based
non-arithmetic representation of 4 reduces the size of the table, The second equation uses a
special re-timed circuitry to obtain a cycle time equivalent to a single 2 bit adder. The design
has been implemented in a special hardware prototyping board formed by a group of FPGA’s
plus memory. It clocks around 32 MHz and since 2 cycles are needed for each byte due to
multiplexing and memory access time the throughput is 128 Mbits/s . The compression results
are compared against the Q-coder using a combination of image files, text and binary data
where it seems to offer some advantage. The design uses data tailored to the file that is going
to be compressed to initially construct its probability model. The necessary decoder is not
available in this publication although it is pointed out as future work together with adding
adaptation capacity in the model. The author estimates a decoder speed 4 times slower than

the encoder speed.

2.5.1.3 Tree-based Hardware

The chip described in [Mukherjee93] does not use arithmetic coding but tree-based codes and
the byte as symbol granularity. Huffman coding is the most popular tree-based code. The code
is static and it does not adapt to variations in the statistical properties of the data source, but,
because it is not hardwired but mapped to a memory device, it can be changed to suit the
application. For example a different code could be devised if the expected data is image data,
text data or binary data. This is an advantage over a hardwired code but its performance is
limited, for example, to finding a suitable code to process multiple images that could have
very different statistical properties. If the switching process is done very often speed will be
lower. Most of the paper is devoted of how to obtain an efficient mapping of the tree code to
the memory device. All the formulation is based on a single tree code what means that the
associated model is O™ order. If for example the model was 1% order 256 different tree codes
will exist one for each possible context. The device complexity would be greatly increase
with 256 memory devices plus more complex coding and decoding functions to multiplex
among them. The context is expected to change after processing every input symbol so to use
a single memory and to load it with the corresponding tree-code stored outside the device is
not a sensible option.

The tree has the property that 2 bits are associated to each edge extending from parent node to
child node so fewer interactions are needed to reach the leaf nodes starting at the root. The

chip has been fabricated using a 2-pm SCMOS technology with a clocking frequency of 83.3
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MHz. The limiting factor is the memory access cycle time since several accesses are needed
to code each input symbol.

A compression ratio of 0.5 is assumed so each byte of input generates 4 bits of output. Each
tree edge generates 2 bits of output so around 2 memory accesses are required to generate the
4 output bits. This assumption is used to report a performance of 95.2 Mbits/s for
compression and 60.6 Mbits/s for decompression. The throughput is highly dependent on the
input data source since it would be halved if the compression ratio drops to 1.0 because
around 4 memory cycles will be needed to process each input symbol. It is unlikely that a
static Huffman coder plus a 0™ order model achieved a compression ratio of 0.5 if used as

general compressors.

An adaptive Huffman coder implementation in hardware is presented in [Liu95]. Adaptive
Huffman coding involves modifying the Huffman tree after each symbol is coded or decoded.
This could be a very time consuming task since each coding step could produce a very
different Huffman tree. The adaptive algorithm uses a tree tuning strategy that does not
rebuild the tree. It also uses a parallel technique to perform both tasks: generate the codeword
and adapt the tree visiting the nodes only one time from leaf to root. This technique has the
potential of halving the processing time if compared with a sequential approach. A scheme is
devised to avoid interference between the code generation and tree tuning process. This
interference could result in incorrect operation. The design is based on using CAM modules
to store the information associated to each node and to speed up the tree adaptation process.
The coding process can generate almost one bit of codeword per cycle. This measure of
throughput is related to the output of the coding algorithm and not the raw input data as usual
since it depends on the length of the codeword. If the input are bytes and a compression ratio
of 0.5 is achieved then an input symbol would be processed in 4 cycles but this value would
degrade to 8 cycles if the compression ratio is 1.0. A worst case expansion will affect
throughput even more. No hardware details are given so it is not possible to know the clock
frequency of the design. The decoding process is more complicated than the coding process
because the dependencies present in the algorithm prevent it from using the same parallel
technique. Therefore a sequential decoder is adopted. A frequency preset approach is
proposed so only a few nodes need adjusting to tune the tree after it has been traversed to
decode the codeword. The best case scenario processes one bit of input per cycle but this
could degrade to 0.5 bits of input per cycle if all the nodes need adjusting. Moreover this
figure again refers to input compressed data throughput and not as usual to the output
uncompressed data throughput so it is data dependent. The output uncompressed data
throughput is highly dependent on the data compressibility because even if a bit of input
compressed data is decoded per cycle the output throughput will be determined by the
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compression ratio. Worst compression ratio implies more cycles to decode a symbol and
therefore a lower throughput. Finally, the model is a 0™ order model which should produce a

modest compression ratio when combined with a Huffman coder.
2.5.2 Dictionary-based hardware

Dictionary methods try to replace a symbol or group of symbols by a dictionary location code.
The modelling stage is given extra importance while coding is simplified. Some dictionary-
based techniques use simple uniform binary codes to process the information supplied by the
model. Hardware dictionary-based compression is very popular and successful, achieving

excellent throughput and competitive compression ratios.
2.5.2.1 LZ1 Hardware

LZ1 (LZ77) derivative devices have achieved significant commercial success. Chips
implementing the ALDC algorithm (Adaptive Losless Data Compressor) by IBM
[Slattery98b] and LZS (LZ STAC) algorithm by Hifn [Hi/fn96] (previously STAC
Elcctroniés) illustrate this situation. The usage of these devices to improve system
performance is well accepted. The fundamental reasons are that LZ1 derivatives achieve
competitive compression with low complexity using multi-symbol alphabets. This in turn
allows high throughputs in the order of Mbytes/s and not Mbits/s as with the previously
discussed statistical approaches. Although the compression ratio of statistical methods is in
theory superior to dictionary-based methods this is only true when using complex algorithms
such as those described in section 2.4.1.1.1. These methods are unsuitable for fast hardware

implementations.

The ALDC compression algorithm uses the same principles as the IBMLZ] [Cheng95] chip.
The model is based on 2 CAM used to store the history data. Several versions are available
where the CAM varies in size from 512 bytes to 2048 bytes depending on the complexity and
compression required. The dictionary is maintained as a circular buffer that keeps the sliding-
window functionality typical of LZ1 algorithms. If 2 or more bytes are matched consecutively
in the CAM a match is detected and the output is formed by 2 fields preceded by a single bit
indicating a match condition. The first field is the match length that is coded using a
logarithmic code derivative from a Huffman code. The maximum match length is 271 which
is found to be the best value after extensive simulation results. The second field is the position
in the CAM where the match starts and it is coded using simple uniform binary coding. If a
match is not detected the symbol is added in literal form to the output preceded by a single bit
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indicating a miss. This operational mode limits expansion to 12.5% when each 8-bit input
symbol misses and becomes 9 bits in the output. The ALDC algorithm was implemented in a
0.8 pm CMOS technology and clocks at 40 MHz to obtain a throughput of 320 Mbits/s with a
complexity of 75 Kgates. This device is called ALDC1-40S [IBM94] and it is available as a
hardcore from IBM microelectronics. IBM literature [Craft98] also reports that using a more
recent technology such as IBM CMOS 5 (standard cell/gate array 0.35 um, 6 levels of metal)
the critical path located in the CAM searching operation can be further reduced to only 10 ns,
The compression/decompression throughput is then 800 Mbits/s with a clock frequency of
100 MHz. A license version of the ALDC algorithm is also available from AHA in the
AHA3521 chip [AHASY7a]. This chip is implemented in a 0.5 um and clocks at 40 MHz for a
160 Mbits/s throughput because 2 cycles are used to process each byte. Some algorithm
extensions to the ALDC method are also reported in [Craft98] to produce 2 variants named
BLDC and cLDC algorithms. These extensions are based on using a front-end run-length
coder pre-processor to feed the ALDC chip and improve compression without affecting

speed.

IBM also introduces in [Franaszek96] a method for obtaining parallel LZ1 compression using
cooperative dictionary construction. The idea is that the input data block is divided into a
number of sub-blocks (typically 4) and these are processed in parallel using independent
coders. The result is concatenated in a single block and a prefix area is added to indicate the
decompressor how the single compressed file must be split to feed the independent decoders.
To alleviate the problem of a decrease in compression efficiency the dictionary is shared
among the coders and maintained in common. The effect is that more data is available as
history data for each sub-block and compression improves. This simple concept can not
provide the same level of compression as a single device solution because the history data
available to compress a symbol n with a dictionary size m is not the m symbols that preceded
symbol n but gaps exist in the history buffer corresponding to data assigned to the other
coders and not yet processed. Also this solution precludes the use of incremental reception
and transmission of data since the entire data block must be available before the compression
operation can be initiated and all the compressed data must be available before the header can

be added and transmission started. Therefore a higher latency is added with this technique.

The Hi/fn devices realize in hardware the LZS [Hi/fn96] algorithm developed by the same
company. The LZS lossless data compression algorithm is a LZ1 derivative that uses a 2
Kbyte history buffer. The coding format of the LZS algorithm is similar to ALDC, A match is
coded as 2 fields preceded by a single bit indicating a match condition. The first field is the

offset or pointer to the buffer location where the match starts. The offset can be coded as a 7-
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bit offset or 11-bit offset preceded by a single bit to differentiate between both. This is in
contrast with ALDC where the offset was not coded. This coding scheme improves
compression by assuming that short offsets to a maximum length of 128 are more common
than offsets to the beginning of the buffer. The algorithm exploits the locality of reference
effect that establishes that data that has just been seen is more probable to be seen again. The
second field is the match length. This is coded using a prefix free code similar to a static
Huffman code. A miss is coded by adding the literal to the output preceded by a single bit like
in the ALDC algorithm. Expansion is limited to 12.5% when all the 8 bit literals are

transformed into 9 bit codewords.

A RAM is used in some low-end LZS hardware products from Hi/fn to realise the history
‘buffer. A tuneable feature is included so the amount of searching done in the buffer can be
externally controlled trading throughput for compression. Compression throughput is limited
when using RAM to 64 Mbits/s but since RAM tends to be plentiful it is easy to include
multiple-history support. Multiple-history support means that different history buffers are
maintained independently for different communication channels improving compression. The
algorithm switches among them depending on which channel is active. The high-end products
use a CAM to implement the history buffer, In this case searching is done exhaustively in a
single cycle. A CAM-based device has been fabricated in a 0.5 um CMOS technology and it
is available from Hi/fn with the name 9610 [Hi/fn98b] Data Compressor Processor. It clocks
at 50 MHz with a throughput of 400 Mbits/s. A more recent version named 9600 [Hi/fn99]
has been fabricated in 0.35 um CMOS technology with a maximum throughput of 640
Mbits/s when the internal logic is clocked at 8¢ MHz. This device includes also the novelty
of being a full-duplex device so compression and decompression can be done simultaneously
for a combined performance of 1.25 Gbits/s. All the other devices discussed in this section are
half-duplex which means that the processor must compress part of the active time and
decompress the rest. Full-duplex functionality is becoming a feature of data communication
standards such as Gbit/s Ethernet. This network when running in full-duplex mode can carry
each way 1 Gbit of data per second so full-duplex functionality in a single

compression/decompression chip is a useful feature.

[Surk97] presents a PE-based (Processing Element) VLSI architecture for the LZ1 algorithm.
Each PE compares the incoming input symbol with the symbol it stores in 1 cycle and shifts
the symbol to its neighbour. The single dimension array of PE’s behaves in a mode similar to
a modified CAM-based design if the CAM cells are redesign to input data from their
immediate neighbours. New data is input in the right most PE and the data located in the left

most PE is eliminated from the history buffer. When a PE maintains its match signal active
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for more than 1 cycle a string match is detected. The output identifies the PE position and the
match length that equals the number of cycles the PE maintained its match signal active. The
are a total of 1024 PE’s and this value also defines the history buffer size. The maximum
match length is limited to 16. This should affect compression since values around 256 are in
general more appropriate for this process {Cheng95]. The miss problem is dealt in the
traditional way of preceding all the codewords with a single bit. The basic symbol is 7-bits
wide so the compressor as described is only suitable to compress ASCII coded text. The data
input rate is constant and post-layout simulation indicates a performance of 700 Mbits/s using
a 0.5 triple-metal CMOS technology and a 100 MHz clock.

[Jung98] presents another VLSI LZ1 implementation for optimisation of wireless local area
networks. Much of the paper is devoted to analyse the effects of lossless data compression in
wireless networks. The LZ1 algorithm codeword format has the classical 2 fields : offset plus
match length but this time the codewords are of fixed length 16 bits which means that uniform
binary coding is used for both values. Dictionary length is 512 so 9 bits are used for the match
location while 7 bits are left for the match length. If a match is of length less than 3 then 2
bytes in literal form are added to the output. A single byte is added to 8 2 byte codewords to
distinguish between compressed codewords and uncompressed literals. This technique limits
expansion to 6.25% but it also increases latency since 8 2-byte codewords must be stored
internally before any output is produced. No details are given on compression performance
but an average compression of 0.5 is assumed for this type of compressors working on typical
network data, A parallel architecture is presented using 512 PE’s organised in a single-
dimension array. This architecture uses the same CAM principles as [Surk97] to process 1
byte of raw data per cycle. This architecture is deemed not suitable to support multi-channel
compression because the overhead of switching the dictionaries is considered too high if a
different dictionary must be uploaded in the CAM each time the compression channel
changes. The authors proposed a different mapping of the original algorithm to base the
algorithm in RAM and enable multi-channel support. The resulting design is simulated using
a 1.2 pm CMOS technology and it clocks at 100 MHz producing a throughput of 50 Mbits/s.

The complexity is reported of around 36K transistors.

[Chen98] presents a linear systolic array VLSI design for LZ1 compression. The systolic
array includes a dictionary buffer with 512 characters distributed over 64 systolic cells. Each
cell compares an input character concurrently with the 8 character dictionary section that it
holds in that cycle. The systolic cell outputs to the neighbouring cell the character to be coded
plus the longest match string that started with that character. The design has been
implemented in a 0.6 um standard cell library and it uses around 90 Kgates. The operating

51



Chapter 2 Lossless Data Compression Review

frequency can reach 91 MHz with a throughput of 728 Mbits/s. The architecture needs a
number of comparators equal to dictionary size but it can operate at a frequency
independently of the dictionary size. The reason is that cell frequency is not affected by the
number of cells present in the systolic array. Latency is proportional to the number of cells
present in the array so this architecture using a 512-character dictionary has a latency of 64
cycles. It offers a compromise between the single cycle operation of CAM architectures
where a high fanout could prevent dictionary extension and the high latency of PE-based

architectures with a single comparison is done in each PE.

[Nusinov94] also presents a VLSI LZ1 derivative for multi-channel compression. The LZ1
proprietary implementation is called Codex Ziv-Lempel (CZL) algorithm. The dictionary
length can be of maximum of 1024 bytes. The codewords are organised in the 2-field format:
length plus location. The match length is coded using a Huffman-style conversion table while
the location is coded using a phased binary coding so when only a few dictionary locations
are active the chip obtains improved compression. A match is considered valid if the length
field is at least 2. Otherwise a miss is coded using a length 0 plus the byte in literal form
replacing the location field. This approach differs from the previously discussed techniques
and deals with the expansion problem in a less efficient way. It is probable that the conversion
table used for the match length assigns very few bits to the match Iength 0 to minimise the
expansion problem but no information is available in the paper. Multiple dictionaries up to a
maximum of 2000 are stored externally in RAM. During coding the appropriate one is
uploaded in internal CAM (Content Addressable Memory) memory to allow parallel
searching. The overhead of uploading an external dictionary with 1024 bytes to internal
CAM should be very high since only an 8-bit bus interface is available. The internal CAM
accounts for most of the logic in the chip and it does not include shifting capabilities. A CAM
cell can only activate its match signal if the neighbouring CAM cell did so in the previous
compare cycle. This mechanism allows the input string to be progressively matched along the
CAM dictionary. Updating is done simultaneously in the internal CAM and extemal RAM so
there is not need to download the CAM contents after compression switches to a different
channel. During decoding the external RAM is used directly. The need to update the external
RAM after every compare cycle means that two cycles are needed to process each byte. The
chip clocks at 20 MHz and has a throughput of 80 Mbits/s. Compression is reported to be
around 0.5 to 0.33 for typical data but no experimental results are provided. The chip has been
fabricated using a 0.8 ym CMOS technology but no details are available on gate count or

transistor count.
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2.5.2.2 LZ2 Hardware

The LZ2 algorithm was developed 1 year later than the LZ1 variant and it has not become as
widely used as this one. The reason is that it uses a more complex dictionary structure where
dictionary entries are formed by concatenating the next incoming data character after using a
dictionary entry to that entry forming a new dictionary entry. The LZ2 algorithm produces an
output code specifying dictionary locations where data and length can be found. This code
output can be simple uniform binary coding where the number of bits is the
log(different_possible_codes) or more refined coding strategies can be used. Although
theoretically superior to the LZ1 algorithm, LZ2 is at a disadvantage when compressing small

packets of data and requires more complex structures that hampers its throughput.

The DCLZ [AHA96] family of compressors from AHA (Advanced Hardware Architectures)
are LZ2 derivatives. The DCLZ (Data Compression Lempel Ziv) was originally developed by
Hewlett-Packer laboratories around 1989 and used in their tape drive [Bianchi89]. The
hardware DCLZ works by storing a dictionary of 4096 entries organised as a linked-list with
the first 256 values assigned to the ASCII values. Each entry in the dictionary contains 23
bits; 8 bits are assigned to hold an ASCII value, 12 bits are assigned to hold a location value
and the rest are used as flags. New dictionary entries are added to the dictionary storing the
byte that stopped the string matching procedure in an unused position. The location loaded in
this position is a pointer to the dictionary location that holds the previous byte part of the
string. The string is linked in this way and eventually a location address points to the byte that
originated the string in the first 256 positions. This simplifies dictionary structure since the
width of the array is fixed. The AHA3101 chip stores the dictionary in the device and when it
becomes full dictionary adaptation freezes. Periodic resets of the dictionary are done when

compression performance degrades.

The codewords output by the algorithm are simple dictionary locations addressing the
location that holds the byte that terminated the string. There is no need for match location
lengths as in LZ1. There is no special handling of a miss condition since misses are coded as
pointers to the first 256 locations where the ASCII code is stored. The dictionary needs a 12-
bit pointer locations when full and this means that a worst case expansion transforms 8-bit
input symbols into 12-bit ouput codewords. The worst case expansion is then 50% that could
be unacceptable in many applications. The expansion activated reset mechanism should avoid
this situation because when the dictionary is empty only 9 bits are used for the codeword. The

dictionary codewords are of length 9 to 12 bits depending on how many entries in the
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dictionary are active. This mechanism is not as efficient as phased binary coding (PBC) where
the location length is optimal for a dictionary that grows one position at a time. For example if
513 locations in the dictionary have been used PBC assigns 9 bits the first 511 locations and
10 bits to the other 2 but the previous scheme will always use 10 bits. The throughput is
affected by the compression ratio and it is therefore data dependent. It is worst under
expansion conditions since it is necessary to access the external memory more often to
perform updates. Since the device is based on RAM the searching operations are also very
time consuming. The throughput of the AHA3101 is on average 20 Mbits/s.

A more recent addition to the DCLZ family of devices is the AHA3211 [AHA97b]. This chip
uses internal CAM to replace the external RAM and to improve the searching and adaptation
speed. It clocks at 40 MHz and it has a data independent throughput of 160 Mbits/s. It has
been fabricated using a 0.5 um CMOS technology.

[Bunton92] presents another LZ2 implementation that improves upon the [Bianchi89] DCLZ
LZ2, The [Bunton92] algorithm uses a similar dictionary structure to [Bianchi89] but offers a
more advanced dictionary maintenance mechanism where a tag is attached to each dictionary
location to identify which node should be eliminated once the dictionary becomes full. The
tag mechanism implements a Least-Recently-Used (LRU) policy so the oldest node in the
linked-list dictionary and always a leaf in the corresponding virtual trie is declared free to
continue dictionary adaptation indefinitely after it becomes full. Removing a non-leaf node
will fail the algorithm because trie branches would be unconnected. This technique improves
over a dictionary that stops adapting and resets if compression degrades when no more empty
nodes are available. Better performance is obtained with a similar size dictionary or
alternatively the dictionary can be made smaller for the same performance target. The
hardware realisation uses only 1K different locations but it performs similar to a 64K resetting
technique. Since the dictionary is much smaller the codewords output from the coder have a
fixed-width of 10 bits because growing-dictionaries combined with short start-up phases offer
little benefit. The hardware complexity is around 210K transistors using a Zum CMOS
process plus 20 Kbits of off-chip static RAM to store the tag information. An internal CAM is
used to stored the dictionary. This implementation achieves a data independent throughput of
108.8 Mbits/s. This rate can be improved up to 160 Mbits/s in the same technology if the
RAM’s are placed on-chip eliminating the need for off-chip communication. This scheme
seems to offer better compression and less complexity (1K dictionary against the 4K in
DCLZ) than the [Bianchi89] device. The speed is also very competitive for a 2 pm CMOS
technology. It is, however, the Hewlett-Packer device the one that has achieved commercial

success and it is in use today in many tape drive storage applications [Cressman94].
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2.5.2.3 Other dictionary-style hardware

A very simple lossless data compressor is the run-length coder of {Xiong97] where the output
is the data byte and a number byte indicating how many times the data byte has been seen.
Although little information is provided in the paper it is obvious that such a simple
compression technique can produce high throughput at the expense of a low compression

ratio,

The X-Match family of devices developed at Loughborough University [Jones92], [Kjelso95],
[Kjelso96], [Jones00] belongs to the category of dictionary-based compressors but they are
not LZ derivatives. The X-Match model follows the principles of the BSTW algorithm
discussed in section 2.4.3. The X-Match model is based on a 4-byte wide CAM dictionary and
outputs a dictionary location indicating where a match was found and match type indicating
which bytes out of a maximum of 4 where found. This partial matching characteristic gives
name to the method. The X-Match coder uses a phased binary code (PBC) for the match
locations and a static Huffman code for the match types. The X-Match coder offers single
cycle operation and data independent throughput combined with a very low latency, the
features of a high performance compressor. Since it processes 4 bytes of input raw data per
cycle it can achieve high throughputs with modest clock frequencies due to its parallelism.
Pre-layout simulation indicates a performance of 800 Mbits/s clocking at 25 Mhz using a 0.6
pm gate array CMOS technology. Complexity is around 100 Kgates.

2,5.3 Other Hardware

Other work that can not be classified in the range of statistical or dictionary-based methods
corresponds to the genetic algorithm developed in the DCP chip [DCP95]. There is little
information on the features of the genetic algorithm although a dictionary table is used. The
developers claim very high compression ratios that outperform the LZS algorithm from
Hi/Fn, The figures in the DCP documentation show an advantage of the DCP algorithm over
LZS of around 25 % and in some cases up to 100% better compression when processing
databases although the improvement decreases if targeting text and binary data. When
compressing standard data such as the Calgary corpus the compression advantage is around
20%. Worst case expansion is limited to 3%. This chip is implemented in a 1 yum CMOS
technology and has a throughput of around 1.64 Mbits/s clocking at 40 MHz. The chip named
DCP816 has a complexity of around 15K gates. It supports up to 64 channels of

compression/decompression and it uses 512 Kbytes of external RAM per dictionary/channel.
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It needs on average 190 clock cycles to process one byte of input data so the algorithm
complexity seems to be very high and far from the single cycle operation of other compressor

solutions.

The hardware presented in [Sakanashi98] for printer image compression is based on
evolvable hardware (EH) and genetic algorithm (GA) paradigms. Evolvable hardware
technology is able to change the hardware structure depending on the requirements of the
target task and it is normally associated to reconfigurable hardware such as an FPGA. The
work presented aims to improve the performance of the JBIG standard based on the IBM
QM-coder, The QM-coder compresses a bit of data using a context formed by 10 surrounding
bits. The shape of the template that defines which bits are chosen as context can be modified
only slightly in the QM-coder. The evolvable hardware chip has 2 main hardware
components: A RISC processor and a QM-coder. There are 2 modes of operation, the learning
mode and the compression mode. The objective of the GA is to use the learning mode to
select the template that offers the best compression ratio for a portion of the image. The GA
runs in the RISC processor where it selects different templates to perform compression and
uses the amount of data output by the QM-coder to choose the best one. In compression mode
a context generator uses the previously selected template for each image portion to provide
the QM-coder with a context and a pixel to be coded. Compression ratio using this
combination of GA and QM-coder is twice as good as the one obtained by the QM-coder on
its own. The algorithm throughput is, however, very low because the learning mode is very
time consuming since the QM-coder has to run several times, one time for each template
tested. Compression throughput is around 12 Kbits/s. The paper does not present the
corresponding decompressor. Unfortunately, the evolvable hardware feature in the chip
description cannot be properly identified. The use of a GA to select an optimal template for
each image portion is clear and well understood. On the other hand the process of context
selection based on different pre-calculated templates during image compression seems more
of a multiplexing technique than a technique based on selecting a new hardware architecture

and downloading it into an FPGA.

2.6 Summary

This chapter has reviewed the current state of lossless data compression. This section
highlights the conclusions of the chapter.
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¢ Current software-base lossless data compression offers compression ratio levels that it

would be difficult to improve upon in the future.

Statistical techniques such as PPMZ have brought lossless compression ratios to a value close
of 0.2. These figures are considered to be very close to the theoretical entropy limit with
limited (if any) room for improvements. Further advances will always obey the diminishing
returns rule that means that it is easier to improve compression from 0.8 to 0.6 than from 0.2
to 0.19 and complexity increases exponentially. These methods achieve their performance
using a lot of resources and have very low throughputs. They do not achieve their optimal
working conditions until blocks of data in the order of Mbytes are compressed as single
entities because adaptation is slow and their multiple internal data structures use plenty of
data,

» Statistical PPM-style algorithms offer compression superior to dictionary-based
algorithms but the complex nature of the operations involved and the variable number of
them per symbol made them unsuitable for high-speed on-line hardware-based data

compression.

As a rule statistical software compression focuses on very good compression ratios while
speed is given a second order importance. Dictionary-based software compression is still
more popular and commercial algorithms such as PKZIP and ARJ are illustrative examples.
The reason is that although their compression is not as good their simplicity and related speed
becomes more important in many real applications. It is also true that PKZIP and ARJ have
been around longer than PPM style algorithms. These are something of a novelty because
until recently there was not suitable hardware in the public domain which sufficient power to

execute them,

e Current hardware-based statistical compression is either slow using binary alphabets or
offers poor compression performance using 0" order models. Complexity and speed
limitations prevents the use of multi-alphabet arithmetic coding (to get speed) and high-

order context-based modelling (to get compression) in hardware.

Statistical compression in hardware is rare because the main objective is usually throughput
and this is not something in the nature of a statistical method. The limitations on complexity
are also harder to break. The most popular statistical hardware chip is the IBM Q-coder whose
performance is in the order of Mbits/s which is far from the requirements of Gbit/s established

in chapter 1. The Q-coder is a successful example of a binary fixed-order context-based
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model plus arithmetic coder in hardware. The main limitation for speed in this case is the bit
symbol granularity. Although research has been done to use wider alphabets the compression
ratios are poor because complexity (and therefore throughput) requirements prevent from
using high-order modelling. The 0™ order context-free models used in all the multi-alphabet
implementations seen so far are simply not powerful enough to compete with dictionary-
based hardware compression. Multi-alphabet variable-order finite-context models such as

PPMC or PPMZ currently do not exist in hardware.

¢ Dictionary-based hardware data compression is popular and well accepted as a means of
improving the performance of an electronic system. It offers competitive compression and
high-speed to successfully operate on-line in storage and network environments if their

speed requirements do not exceed the value of 1 Gbit/s.

Dictionary-based hardware is popular and successful with examples such as LZS(Hi/Fn),
ALDC (IBM), DCLZ (AHA) currently improving the performance of data communication
networks and storage systems. Attractive compression ratios in the order of 0.5 offer the
possibility of doubling the capacity of and electronic system with minimum investment.
These algorithms are based on byte alphabets and process one byte of input data per clock
cycle. The Hi/Fn device can run up to 640 Mbits/s with a complexity of around 100 Kgates
and it offers full-duplex functionality. This is the fastest device that is commercially available
today as a single lossless data compression solution. The IBM devices are limited to 320
Mbits/s because their chips are based on an older technology (0.8 um) although IBM offers
them as synthesible cores to be added to a more complex SoC (System On a Chip) device. A
throughput up to 800 Mbits/s is expected if using a more up-to-date technology (IBM CMOS
5 0.35 um).

In general these devices lack the performance to support a >Gbit/s compressed network and
could become the bottleneck in the system. Their operational mode also adds considerable
data latency because they multiplex pins to get compressed and uncompressed data in and out
of the chip
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¢ Common to these high-performance dictionary-based devices is the use of a CAM
(Content Addressable Memory) circuit instead of a RAM circuit to store the dictionary,
CAM’s enable single cycle search and adaptation of the entire model unit whilst RAM

based models processed only a dictionary location per cycle,

Table 2.2 shown in the following page summaries the features of the most significant lossless
data compression hardware implementations. Only those designs where silicon is available
are reported in Table 2.2, It is clear from the throughput measurements of column 11 in Table
2.2 that all the current implementations fall short of the Gbit/s benchmark. There is also an
order of magnitude difference between the throughput obtained by the dictionary-based
implementations and their statistical counterparts. The reason is that although a similar clock
frequency can be obtained with similar technologies the dictionary-based compressors process
at least 1 byte per cycle while the statistical implementations are typically limited to 1 bit per

cycle.

The following acronyms are used:

BAC= Binary Arithmetic Coder
EHW = Evolvable HardWar

GA = Genetic Algorithm,

ASM = Adaptive Statistical Model
FSM = Fixed Statistical Model
MAC= Multi-alphabet Arithmetic Code
FHC=Fixed Huffman Coder
ADM=Adaptive Dictionary Model
FHSC=Fixed Huffman-Style Coder
PBC = Phased Binary Coder
UBC= Uniform Binary Coder
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Table 2.2. Summary of lossless data compression hardware,
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Chapter 3

The X-Match method

3.1 Objectives of Chapter

The objective of this chapter is to select a research vehicle to progress further the area of
lossless data compression hardware. The basis of this selection is to choose a system or a
concept that shows high performance features to enable us to achieve the throughput and
compression requirements stated in chapter 1.

These requirements can be summarised as follows:

e Low latency. Most application environments are sensible to latency that should be kept as
small as possible. Latency is one of the variables together with throughput that defined
the speed of a compression method. Incremental transmission is also very important so
the compressor can start compressing data before the whole data block has been received
and transmission of compressed data can start before the whole block has been

compressed.

e Data independent throughput. It is important to have a constant and data independent
throughput in the uncompressed port to ease system integration. In this way the
uncompressed section of the system can be kept unaware that a compression element has
been introduced in the data path leaving aside a significant increase in throughput. The
data throughput in the compressed port is data dependent since it depends on the

instantaneous compression ratio.
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o Over 1 Gbit/s throughput. The throughput in the uncompressed port should be higher than
1 Gbit/s to be able to handle current high performance storage devices and
communication networks. The throughput requirements are expected to grow to 10 Gbit/s

in the next few years.

o Compression ratio of 0.5 on typical computer data. The higher the compression the better
but a lossless compressor that doubles the performance of the system where it is
integrated clearly justifies the use of compression. This compression ratic must be
achieved also when operating with small data blocks since many digital systems work

with data blocks ranging in size from >=32 bytes to <=4 Kbytes.

» Low complexity. Although the number of gates available in a silicon chip is constantly
growing the final aim is to produce an architecture feasible in current or soon to be
available technology. Low complexity produces a cost effective solution with the added
advantage of low power consumption. FPGA technology is a valuable tool to evaluate the
benefits of our design so the constraints of this programmable hardware must be taken

into account.

3.2 Features of the X-Match lossless data compression method

3.2.1 Introduction

X-Match was already introduced in chapter 2 as a fast dictionary-based compression
algorithm suitable for hardware implementation. We will further analyse its positive and
negative points in this section as a possible selection to advance the field of lossless data
compression. The main reason to choose X-Match as a valid candidate is that it shows a clear
performance advantage if compared with other solutions discussed in chapter 2. None of the
binary arithmetic coders of chapter 2 are close to a figure of 1 Gbit/s and they tend to exhibit
dependencies between data compressibility and data throughput., The multi-alphabet
arithmetic coders do not offer the compression performance because they are limited to
context-free models. The dictionary-based machines get closer to 1 Gbit/s but they still
struggle because processing is limited to 1 byte per cycle so they need high clock ratios and
depend on advance technology. X-match can achieve good throughput with modest
technology because it gets its performance from processing multiple symbols per clock cycle

and not from high clock ratios.
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3.2.2 X-Match algorithm description

The X-Match algorithm uses a dictionary of previously seen data and it attempts to match the
current data element with a data element present in the dictionary. It obtains compression

when this matching is successful. These are the key features of the algorithm:

e Fixed width dictionary of 4 byte words named tuples to provide high, data independent
throughput,

e Variable length dictionary that dynamically grows when unknown data elements are
processed. This means that during an initial stage only a valid subset of the dictionary
locations are assigned codewords. This feature provides good compression ratio when

processing small data blocks.

¢ A partial matching strategy to improve compression so not all the bytes need to match in

a dictionary location for the match to be considered valid.

o Data expansion limited to 3.125% when no valid match is found in the dictionary

because a single bit is added to the new tuple ( 32 bits are translated into 33 bits).

The result of searching the dictionary can be a match or a miss. Since the algorithm uses a
partial matching §trategy several types of matches are possible where all or some of the bytes
at different positions inside the tuple match. Those bytes that do not match are transmitted
literally. This partial match concept gives the name to the procedure — the X referring to
‘don’t care’. At least 2 bytes have to match and when no valid match is generated a miss is
codified adding a single bit to the literal. The dictionary is maintained using a move-to-front
(MTF) strategy [Bentley86] whereby a new tuple is placed at the front of the dictionary while
the rest move down one position. When the dictionary becomes full the tuple placed in the

last position is discarded leaving space for a new one.

The coding function for a match is required to code 4 separate fields as follows:

o A first bit set to 0 indicating a match.

e The match location. Tt uses PBC (Phased Binary Code) as seen in section
2.42.2.1, chosen for its suitability for hardware implementation. PBC is
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characterised by using smaller codes during the growing stage of the dictionary
that starts in an initial empty state.

e A match type. That indicates which bytes of the incoming tuple have matched.
This is codified using a static Huffman code as seen in section 2.4.1.2.1.2 based

on the statistics obtained through extensive simulation.
¢ Any extra characters that did not match transmitted in literal form.
The coding function for a miss is required to code 2 separate fields as follows:
s A first bit set to 1 indicating a miss.

¢ The 4 non-matching characters in literal form.

The algorithm is given as pseudo-code in Figure 3.1.

Clear the dictionary; .
Set the next free location (NFL) to 0;
DO

{

read in tuple T from the data stream;
search the dictionary for tuple T;
IF (full or partial hit)
{
determine the best match location ML and the match type MT;
output ‘0’;
output phased code for ML;
output Huffiman code for MT;
output any required literal characters of T;

1
ELSE
{
IF ( T is not the first tuple)
output ‘1’;
output tuple T;
IF (full hit)
move dictionary entries 0 to ML-1 by one location;
ELSE
{

move all dictionary entries down by one location,;
increment NFL ( if dictionary is not full);

}

copy tuple T to dictionary location 0;

WHILE (more data is to be compressed);.

Figure 3.1. The X-Match algorithm
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Initially all the entries in the dictionary are empty and a tuple is added to the front of the
dictionary while the rest move one position down if a full match has not occurred. The move-
to-front technique is only applied when dealing with full matches. In this case the tuples from
the first location until the location previous to the matching tuple move down one location
while the matching tuple is placed at the front of the dictionary. The number of entries in the
dictionary grows dynamically, thus if the input data only contains a few different tuples then
the dictionary remains small. Since the number of bits needed to code each location address is
a function of the dictionary size greater compression is obtained in comparison to the case
where a fixed size dictionary uses fixed address codes for a partially full dictionary. Only one
full match can occur at any time in the dictionary since the algorithm makes sure that no 2
locations contain the same data. Several partial matches are possible simultaneously so the

one that produces a shorter output is selected as valid.

3.2.3 X-Match hardware analysis

The architecture is based around a block of CAM fo realize the dictionary. This is necessary
since the search operation must be done in parallel in all the entries in the dictionary to allow
high throughput. Latency is also kept to a minimum because the result of the search operation
at time ¢ is available at time ¢+/ for further processing. The size of the CAM is 128 words
with 32 bits per word and it has to be selectively shiftable to be able to reorder itself adapting
to the incoming stream of data. The selectively shiftable characteristic implies that each word
of the CAM maintains its data or loads the data of the previous word depending on the value
of its associated bit in the adaptation vector produced by the dictionary maintenance

functions.

3.2.3.1, Compressor architecture

An overview of the compressor architecture is presented in Figure 3.2. The tuple to be coded
searches the CAM array trying to find a match. The output of this process is passed to the
best-match decision logic that resolves which of the possible matches (if any) is the best.
Then the match location is coded using a PBC that depends on how many entries are valid in
the dictionary as indicated by the next-free-location (NFL) counter and the match type is
coded using a Huffman code. Any needed literal characters are added and the result is passed
to the assembly logic which packs groups of 64 bits together before indicating the availability
of compressed data. The shift control logic generates the adaptation vector to rearrange the

dictionary in the next cycle based on the match information.
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Figure 3.2, Architecture of the compressor

3.2.3.2 Decompressor architecture

Figure 3.3 shows the decompressor architecture. The compressed data enters the decoder to

produce a match location and a match type in the phased binary decoder and Huffman

decoder. The byte disassembler is used to shift in the correct number of bits of input data as a

function of the variable-length codes found. The match location is used to multiplex out a

specific position in the CAM array and the match type determines what literal characters (if

any) are needed to recreate the original data. The shift control logic generates the adaptation

vector to rearrange the dictionary following the same pattern as in compression.
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Figure 3.3. Architecture of the decompressor
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3.2.3.3 Hardware performance

X-Match has been synthesised into a 0.6 gm gate array technology. Pre-layout simulation
results estimated a maximum clock frequency in the compression section of 25 MHz for a
data independent throughput of 800 Mbits/s. The decompression section can clock at 35 MHz
and the throughput is 1120 Mbits/s . In practice, a single clock should be used for
compression and decompression so the overall throughput is 100 Mbytes/s . The slowest
critical path extends from the search data, through the CAM array, match decision logic, shift
control logic and back to the CAM array to provide the necessary information to reorder the
dictionary. The latency of the device due to pipelining is 5 clock cycles during compression.

Decompression latency is 2 cycles. Figure 3.4 shows the critical path,

1818 s
K+ Q 1.8 24ns 207 ns 11ns Tins (setup time)
SEARCH MUX YMATCH | MUX ADAPTION
"|REGISTER W DICTIONARY LOGIC X LOGC DICTIONARY
U DATAIN CUTIAA  SEARCH MATCH € MOC MLOC HLD
4 k)
ons 1.80s 29ns 53ns 28.0n8 2748 M2ns 388ns

Figure 3.4. X-Match critical path.

The compression process is usually slower than the decompression process because the
extensive search operation in the dictionary to find a possible match is replaced during
decompression by a simpler look-up operation using the match location to address the

dictionary.

The X-Match description includes logic to interface to SRAM compression memory where 64
bits of compressed data are written in each access cycle during compression or read during
decompression. An internal register must be loaded with the uncompressed block size at the
start of the operation. An internal counter is enabled at the start of the compression or
decompression process and the device stops when the count value equals the uncompressed
block size. Several uncompressed block sizes can be used or the chip can run in unblocked
mode. Since 14 bits are used to interface to the compressed SRAM the maximum compressed
block size allowed is 2™ x 64 bits = 128 Kbytes. The algorithm does not insert any special
termination marker in the compressed stream so the design relies in knowing the

uncompressed block size to detect when to stop uncompressing data. The same device can
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perform compression and decompression but not simultaneously. Figure 3.5 shows the pin-
out of the X-Match design. The need for a 64-bit wide compressed bus is due to expansion
conditions where the 32-bit input word is transformed into a 33-bit output word. A bottleneck
could appear in the compressed data port if the device uses a 32-bit wide bus because no

buffering exists to handle a consecutive series of misses.

The estimated gate count of the design is 100 Kgates including the pipeline registers but
excluding additional logic for production testing. The estimated die size is 13.0 x 13.0 mm.

Most of the logic (80 Kgates) corresponds to the 128 x 4 bytes CAM logic.
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Figure 3. 5. X-Match interface.

3.3 Mapping of research objectives to X-Match

3.3.1 How can we produce a faster X-Match?

The 3 elements present in a compression system, namely: Model, Coder and Packer
introduced in section 2.3 affect speed. It is important to identify which one is the performance
bottleneck so our efforts can be directed. The original X-Match estimates a bottleneck in the

adaptation process in the model as mention in section 3.2.3.3. To identify and solve this
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bottleneck is therefore a priority before further analysis is carried out in the other components
of the system.

X-Match is targeted to main memory compression where a single bus is used to transfer data
to and from main memory. Full-duplex operation is becoming increasingly popular in
network standards able to transmit and received data simultaneously. It is also useful in other
applications such as a printer that receives data in uncompressed format, compresses it to
store it temporarily in local memory and then concurrently decompresses it when the print
engine requires more data. This application does not use compression to increase the
bandwidth of the data pipe but to increase the storage capacity of local memory. It is
important to analyse the possibility of developing a full-duplex solution so both processes
compression and decompression can be executed simultaneously for a combined performance

twice as high as a half-duplex device.

3.3.2 How can we produce a better compressing X-Match?

Coding better or modelling better can improve compression efficiency. The third element of a
compression system, the packer, does not have an impact on compression. Its function is to
assemble variable length codes into fixed length codes without affecting the total number of
bits. There is a strong interdependency between models and coders so more efficient
modelling such as the high-order context-base models of section 2.4.1.1.1 requires more
efficient coding such as the arithmetic coders of section 2.4.1.2,1 able to exploit the high
accurate information passed by the model. In chapter 2 statistical modellers and coders were
classified as those with higher compression performance but they were also found to be
particular slow. Arithmetic coding is slow not only because operations involved are complex
but also because no feasible parallel implementations are available. The idea of introducing
statistical concepts in X-Match is interesting but it is also necessary to study possible ways to
improve the compression efficiency of the dictionary-based models and coders already
present in the system. This analysis should also evaluate the likely impact on speed of the

different solutions proposed to improve compression.

3.3.3 How can we prove the feasibility of our solutions?

System integration is also an important issue. It is necessary to produce a
compression/decompression engine not only fast and efficient but also friendly to use from an
application point of view. A coprocessor-style interface will make the device a sensible

component to be integrated in a computer system data path. The complexity of the whole
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design should not exceed that available in current hardware. ASIC’s using advanced
processes offer plenty of resources and high speed but they are unattractive for first silicon
because of their high development costs and lack of flexibility. Recent advances in FPGA
technology have produced levels of gate density and speed that enable the migration of the X-
Match method to an FPGA implementation. FPGA’s with densities of K hundred of gates and
manufacture using advanced deep submicron processes enable a full working solution instead
of just mere prototyping. The concept of desktop foundry suits our needs to prove the
working characteristics of our design whilst ASIC’s still remain available as an alternative if

higher levels of performance and integration are required.

3.4 Conclusions

The X-Match compression method originates in the research carried out by the System
Design Group at Loughborough University using partial matching CAM circuits and
multiple-symbol processing to improve speed and compression efficiency. X-Match complies
with the high-performance features of section 3.1 and it is therefore a suitable candidate for

further research aiming to advance the current state of lossless data compression hardware.

The intention of the rest of this work is to design a general-purpose lossless data compressor
coprocessor using the X-Match design as its foundation. The research studies ways to
improve the compression performance and the compression throughput of lossless data
compression hardware and it also studies ways to ease system integration. Working silicon
will be obtained using state-of-the-art FPGA hardware. Finally, a rigorous verification

methodology will be used to prove the working aspect of the design.

70



Chapter 4 Experimental framework

Chapter 4

Experimental framework

4.1 Objectives of Chapter

The objective of this chapter is to select a common development framework on which to base
the experimentation. The selection must include the data sets and software/hardware lossless
data compression algorithms needed to compare the compression ratio obtained by our own
algorithms. It must also select the lossless data compression chips to be used to compare the

throughput figures and the technology to be used to develop the hardware implementation.

4.2 Data set selection

Data set selection is always a complex issue because it is difficult to obtain a data set
representative of the data that the compressor will encounter when it is deployed in an
electronic system. This problem is exacerbated when the compressor is not aimed to compress
a particular data type such as text or images but as a general-purpose compressor.

We have selected 3 data sets to base our experiments: the memory data set, the disc data set
and the Canterbury data set.

The memory data set was assembled in the System Design Group at Loughborough
University. Much of the previous research uses it so it is easier to compare the new solutions
with previous work done in X-Match. The memory data set is formed by data captured
directly from main memory in a UNIX workstation whilst running applications. The original
data set includes around 100 Mbytes of data but it was reduced to around 10 Mbytes to have

sensible processing times and memory resource requirements in some of the highly complex
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context-based statistical algorithms. These state-of-the-art software-based algorithms are
useful to find out the entropy or information content in the data sets and to establish a
reference point. The 9 files that form the data set have the same size of 0.97 Mbytes ( 1 Mbyte
= 1024x1024 bytes) and this corresponds to the first 1024000 bytes of data in each of the

original files.

Category No of Files ] Size ( Kbytes)
Xman - Unix manual page 1 1000

Text - Textedit with a small C source file open. 1 1000

Ghos - Ghoscript postscript viewer with a technical paper | 1 1000

open.

Emac - Emacs text editor with an elaborate set-up a few | 1 1000

buffers open.

Nets - Netscape world-wide-web viewer after some ‘net- | 1 1000

surfing’ activity.

Vlab - Vl0abPlus analogue simulator from Intergraph | 1 1000
during extraction and spice simulation of a parallel multiplier

Suno - Approximation to the operating system SunOS |1 1000
working set.

Matl - Matlab matrix laboratory running a benchmark | 1 1000
program.

Logs - Logsyn logic synthesis tool from Intergraph during | 1 1000

logic optimisation of a parallel multiplier.

Total 9 9000

Table 4,1. Memory data set

The disc data set was also assembled in the research group. It is formed by typical data
structured in 4 categories found in the hard disk of a workstation used in an engineering
environment. The 4 categories correspond to: application data, executable data, general data

and user data.
The application category corresponds to data required by applications to correctly function

such as database files and setup files and excludes any data generated during program

execution.
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Category No of Files | Size (Kbytes)
Library files from Cadence CAE system 5 1211
Component files from Intergraph CAE system 5 959
Simulation libraries from Intergraph CAE system 4 1649

VHDL libraries from Intergraph CAE system 6 785

Logic synthesis libraries from Intergraph CAE system 8 39

Matlab function libraries 6 259
Simulation libraries from Synopsys CAE system 9 1232

Parts files from Unigraphics mechanical CAD/CAM system | 3 988

Data files from Visilog image processing system 2 779

Parts files from Xilinx CAE system 4 77

Total 52 8675

Table 4.2. Application disc data set

The executable category corresponds to engineering, user written and general use application.

Category No of Files | Size (Kbytes)
General applications {ghostview, tin, xups and matlab) 4 4546

CAE applications from Intergraph and Xilinx 3 4841

System Applications (sed, awk, xcal, gtar) 4 633

User programs 5 189

Total 16 10209

Table 4.3. Executable disc data set.

The general category consists of data used by the operating system, textual files and graphical

image files.
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Category No of Files | Size (Kbytes)
System font and keyboard definition files 10 863

System library files 6 758

General operating system files 7 2085

Manual pages 9 748
Documents in either postscript, htm! or pdf format 12 2357

ASCII text files 3 372

Total 47 7183

Table 4.4. General disc data set.

The user category consists of data created by the user such as schematic diagrams, word

processing documents and results files.

Category No of Files | Size (Kbytes)
CAE files from Intergraph and Xilinx 10 5942
Microsoft Excel spreadsheet files 3 328

Graphics files using Coredraw, Drawperfect and Microsoft | 5 1360
powerpoint

ASCII textual files (C and VHDL source code and a mail | 7 290

folder)

Results/statistics files 5 528

Word processing files from Wordperfect and Microsoft Word | 4 2175

Total 34 10623

Table 4.5. User disc data set.

The Canterbury data set [Arnold97] has been recently introduced as a standard so the data
compression research community can use it as a common reference. It was developed to
replace the ageing Calgary data set [Bell90] and to include representative data found in
modern computer systems, The authors conclude in [Arnold97] that the compression results
obtained using the new Canterbury corpus can not be considered absolute measures of
compression because the deviation in compression ratio if the current set of files is replaced

by a bigger set of files is too high. The Canterbury corpus is, however, a useful tool for
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relative measures of compression because the variations in compression using different
methods are maintained if the data set is increased. The final conclusion is that the Calgary
corpus and the Canterbury corpus offer very similar results so the new corpus does not

invalidate the results obtained with the previous one.

Category No of Files | Size (Kbytes)
alice29.txt - English text 1 148
pttts - Fax images 1 501
Fields.c - C source code 1 11.3
Kennedy.xls - Spreadsheet files 1 1003.5
Sum - SPARC executables 1 37.3
Leet10.txt - Technical documents 1 416
Plrabnl12.txt - English poetry 1 470
Cp.htm! - html 1 24.6
Grammar.lsp - lisp source code 1 3.72
Xargs.1 - GNU manual pages 1 4.23
Asyoulik.txt - Plays 1 126
Total 11 2745.65

Table 4.6, Canterbury data set.

4.3 Hardware selection

The hardware selection was based on using commercially available chips that offer software
routines to run them on our data sets. We selected the LZS (LZ1) algorithm used in Hi/Fn
devices, the DCLZ algorithm (LZ2) firstly introduced by Hewlett-Packard and now being
developed by AHA and the ALDC (LLZ1) algorithm from IBM. The lossless data compression
chips that realise these algorithms have achieved commercial success because they combined
good compression ratios and high speed. Table 4.7 shows a summary of the features of these
software routines. A summary of the hardware details of the devices that implement these
algorithms can be found in Table 2.2,

They are all dictionary-based compressors but this reflects that hardware statistical

implementations are few and far between and none of them are closed to the throughput
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requirements of Gbit/s as seen in Chapter 2. The software routines that have been used for
the compression performance measurements are DOS and Windows applications that can be
obtained from the web pages of the respective companies. We have used in all the cases the

default configuration of the algorithm.

Name | Developer Type Software Software Software Overhead
Command | Version Year

ALDC | IBM LZ1 ENC 1.70 1993 0 bytes

LZS STAC/Hi/fn |LZl LZSdemo | 3.1 1992 4 bytes

DCLZ |[HP/AHA LZ2 DCLZ 2.0 1992 2 bytes

Table 4. 7. Hardware-based lossless data compression algorithms selection.

The overhead measure corresponds to algorithm identification headers added by some of the
routines, One of our objectives is to measure compression performance when processing
small data blocks, therefore, a header overhead should be removed to avoid distorting the
compression ratios. The overheads shown in tables 4.7 and 4.8 correspond to invariable data

bytes found at the start of the compressed files produced by the algorithms.

4.4 Software selection

The software selection is done because it is useful to learn how hardware compares against
software in terms of compression. We selected the popular PKZIP as a representative of
advanced dictionary-based software compression. We selected a state-of-the-art
representative from the statistical compression world - The PPMZ algorithm review in section
2.4.1.1.1. PPMZ is considered to be one of the best lossless data compression algorithms that
exists today. It combines high-order context-based modelling with an arithmetic coder. PPMZ
is useful because its compression ratio is considered to be close to the theoretical limit that it
is possible to obtain with lossless techniques. PPMZ throughput is very low with one byte
being processed every 20 K CPU cycles. We also selected a powerful hybrid that aims to
obtain the compression performance of statistical methods and the speed of dictionary-based
methods — The HA algorithm. HA is a technique that combines a sliding-window dictionary
plus an arithmetic coder. It is in essence a hybrid of a dictionary model plus a statistical coder.
It illustrates how techniques from both domains can be successfully combined. Table 4.8

shows a summary of the main features of these algorithms.
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PKZIP does not include options to tune compression performance. HA includes 3 different
switches : switch 0 only copy files (no compression ), switch 1 specifies a sliding window
dictionary model LZ1-style plus an arithmetic coder and it is the one use in our experiments,
switch 2 uses a variable 4-order model plus an arithmetic coder known as PPMC. Switch 2
defines a more powerful compression technique than switch 1 but the third selected algorithm
PPMZ supersedes PPMC. PPMZ can select a model order to start making predictions with
the use of LOE (Local Order Estimation). There are different coders available that specify a
different maximum model order. Coder 9 is the default option in the algorithm and the one
used in these experiments. It uses LOE to select a starting order to predict the next symbol

that can be as high as 8™ order.

Name [ Developer | Type Software Software | Software | Overhead
Command | Version | Year

PKZIP | PKWARE | Dictionary PKZIP 2.50 1999 14 bytes
Inc

HA Harry Hybrid HA 0.98 1993 38 bytes
Hirvola

PPMZ | Charles Statistical PPMZ 9.1 1997 28 bytes
Bloom

Table 4.8. Software-based lossless data compression algorithms selection,

4.5 Technology selection

The reduction in feature size and constant advances in the manufacture process have made
FPGA technology get closer than ever to ASIC performance allowing the migration of whole
systems to a single chip. The development of the prototype core is based on ProASIC FPGA
[Actel00] technology from Actel/Gatefield corporation. The reason to choose this technology
is partly found on resource availability and also on particular interesting features present in
their new non-volatile Flash-based ProASIC devices that suit the flipflop-rich X-Match
architecture better than other RAM-based devices. We also selected the Apex [Altera01] and
Virtex [Xilinx01] family recently introduced by Altera and Xilinx Corporations respectively
with densities in the order of million of gates and 0.18 um feature size. Table 4.9 shows a

summary of these technologies.
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Technology Density (Highest in family)
Manufacture | Process Family (Device) | System | Typical | RAM Logic
gates(k) | gates(k) | bits (k) elements

Gatefield / | FLASH- A500K 1,100 410 138 51,200

Actel CMOS (AS00K510)
0.25 um

Altera SRAM-CMOS | APEX20K 2,392 1,500 432 51,840
0.18 um (EP20K1500E)

Xilinx SRAM-CMOS | VIRTEX 4,074 Not 851 73,008
0.18 um (XCV3200E) stated

Table 4.9, Technology selection.

4.6 Measurement definitions

Compression ratio (CR): Compression ratio is defined as the ratio CR =
output_bits/input_bits in the algorithm. This means that the smaller the figure the better the
compression. A value larger than 1 implies that data expansion but not data compression took
place. Compression is obtained whenever the CR value is in the range (0,1). For example if
the CR = 0.5 means that 100 Mbytes of uncompressed input data are compressed to 50
Mbytes of compressed data.

Compression gain (CG). Compression gain of algorithm b over algorithm a is a percentage
defined as the value CG = [100*(CR, — CR;)/ CR,. This means that the bigger the number the
higher the compression improvement and that a negative value brings compression
degradation. For example if an algorithm b has a CR = 0.25 and algorithm @ has a CR = 0.5
the CG = 100*(0.5-0.25)/0.25 = 100 % better compression of b over a.

Block size (BS): Different input block sizes are used to evaluate the performance of the
compression algorithms as function of the amount of data to be compressed as an independent
block. The experimental methodology uses the following block sizes: 256 bytes, 1K, 4K,
16K, File.
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Dictionary size (DS): Different dictionary sizes are used to evaluate the trade off between
complexity and compression performance of the algorithms, The experimental methodology
uses the following dictionary sizes: 16, 32, 64, 256, 512, 1024,

4,7 Conclusions

This chapter has selected a set of tools to help to carry out the experimental work of chapters
5,6 and 7.

¢ To measure the compression performance we have selected 3 different data sets for a total
of 48 Mbytes of data,

¢ To compare hardware-based performance we have selected 3 commercially available

high-performance lossless data compression chips.

¢ To reference compression performance we have selected 3 state-of-the-art software-based

lossless data compressionn algorithms,

» To develop our hardware implementation we have selected 3 state-of-the-art FPGA

technologies.

These selections together with the measurement definitions will be used in the following 3
chapters that deal with improving the compression efficiency, improving the throughput and
finally proving that the solution proposed is feasible and meets the requirements introduced in

chapter 1.
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Chapter 5

Focus on compression efficiency

5.1 Objectives of Chapter

This chapter deals with the problem of improving compression efficiency whilst maintaining
a high throughput. These 2 variables are strongly related since it is usually possible to
improve compression by using more complex modelling and coding techniques but this extra
complexity has a negative effect on speed. It is also true that simplifying the algorithm tends
to enable higher operational speeds. A trivial example is to think of a system that copies
directly the input to the output. The speed of such a method could be considered optimal and
impossible to improve upon. The compression ratio of the system would be 1.0 and it will be

of no use from a compression point of view.

The main body of results are reported based on a single corpus. The Canterbury corpus has
been selected because its small size enables fast execution of some of the more complex
algorithms. The data mixture that forms the Canterbury corpus is accepted as representative
of the data types found in modern computer systems. The final results will be validated using

the other 2 corpuses introduced in chapter 4: the memory data set and the disc data set.

Our final aim is to produce a feasible architecture ready to be implemented in current or scon
to be available hardware. This means that although the main objective of this chapter is to
produce algorithmic techniques that improve the compression performance of X-Match
complexity cannot be disregarded. The final algorithm must not only be computationally

feasible but it must also be hardware amenable.
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5.2 X-Match compression efficiency

The original X-Match algorithm was described in chapter 3. This section analyses its
compression efficiency on the Canterbury corpus. The hardware design uses a dictionary size
of 128 locations. The original software version of X-Match uses a dictionary with 1024
locations. Dictionary size can vary with minimal impact on speed but important effects on

complexity and compression ratio.

X-Match Compression

08 |
0.7 |
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0.4 |
0.3
0.2 ‘ , ‘
256 bytes 1 Kb 4 Kb 16 Kb File
Block size
—t—15 —8—32 64 =312 =W—256 —@=512 —+—1024
Dictionary size

Figure 5.1. X-Match compression on the Canterbury corpus.

From Figure 5.1 it is clear that the compression efficiency of X-Match on the Canterbury
corpus is modest. One of the main reasons is that this corpus contains a large amount of
textual data. The are 11 files in the Canterbury corpus. The #xt extension is present in 4 of
these whilst the other 4 have also a textual nature such as html, C or Lisp source code.
Textual data is heavily byte oriented and the rationality of processing groups of 4 bytes

together does not hold.

Figure 5.1 also shows that the compression efficiency of X-Match grows with dictionary size
and block size. A larger dictionary increases the chances of having a match in one of its
locations. Figure 5.1 shows that for any block size compression increases or remains the same

if the dictionary size increases. If the block size has only 256 bytes a dictionary size of 64
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locations is enough to store the whole block internally and further increases in dictionary size

do not improve compression.

A larger block size means that more data is available to build the dictionary and in
consequence better modelling of the input data source can be achieved. This is particularly
true if a large block size is combined with a large dictionary size. Small dictionaries saturate
quickly and this limits their capacity to adapt the extra data available in large block sizes.
Figure 5.1 illustrates this effect with a 16 location dictionary whose compression remains
largely invariant with increases in block size. Figure 5.1 also shows that maintaining the same
dictionary size and increasing the block size always improves compression except in file-
based compression where some minor degradation can take place. The reason is that the
combination of PBC plus periodically resetting the dictionary can have a positive effect on
compression. The effect of PBC in X-Match is that the dictionary always starts with an empty
state to compress a block so only a few bits are needed to code a partially full dictionary. This
is useful when processing small data blocks but in file-based compression the effect is negible
because once the dictionary is full all the locations need to be assigned a code. The periodical
resetting of the dictionary, that is equivalent to breaking the file in smaller blocks, reactivates
the PBC strategy and can improve compression because it increases the adaptability of the
model to the local characteristics of the input data source. This effect is called locality of
reference [Bentley86]. It means that in a typical data block a symbol can be heavily used in a

block section but then it can fall in disuse in another block section.

5.3 Dictionary-based approach

5.3.1 Introduction

The dictionary-based approach investigates how the dictionary-based models and coders
presented in the X-Match method can be improved to obtain better compression whilst

maintaining the high throughput.

5.3.2 The dictionary-based model

The dictionary-based model of X-Match uses a CAM that stores the last 128 tuples (1 tuple =
4 bytes) as its compression history. The move-to-front (MTF) replacement policy is a least-
recently-used (LRU) policy that removes from the dictionary the tuple that was used less

recently. This technique in effect forms a sliding window of history data that moves over the
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input data source but it avoids data duplication at different locations of the history window.
This policy tends to be more effective than a least-frequently-used (LFU) policy at exploiting
the locality of reference effect. A typical inefficiency of LFU is that it could assign a high
frequency to a popular tuple during the compression of the first section of a block of data but
then the same tuple could fall in disuse during the second section. This tuple remains in the
dictionary because it achieved a high count during the initial stage but since it is not used
during the second stage it wastes coding space. Combinatorial searching strategies do not
improve compression because the extra bits added to the output to distinguish which
combination matches offset the extra number of matches [Gooch96]. Better modelling can be
achieved by increasing the CAM-size so a larger compression history is maintained. The 128
position CAM represents already 70% of the logic in the chip so the complexity implication

of using larger CAM’s must be taken into account.

5.3.3 The dictionary-based coder/decoder

5.3.3.1 Introduction

X-Match uses a static Huffman coder to code the match types and a phased binary coder to
code the match locations. To code the bytes that are not found in the dictionary X-Match does
not use any coding technique but instead the bytes are added to the codeword in literal form.
These bytes could also be coded to improve compression but parallel decoding will be then
very difficult to implement in hardware. Since the lengths of the individual codes are not
known in advance multiple decoders should decode in parallel all the possible length
combinations of the 4 coded bytes. A typical Huffman code generates 7 different lengths for a
256-symbol alphabet so a total of 7°+7'+7°+7°=400 independent decoders are needed. The
first decoder decodes the first symbol. The next 7 decoders decode 7 possible symbols
depending on the first symbol. The next 49 decoders deal with the third symbol and the final
343 decoders deal with the fourth symbol. The technique is unfeasible because of its scaling

complexity.

5.3.3.2 Match location coding techniques

Phased binary coding is a technique used to code the dictionary locations of a dictionary that
starts empty and then it grows accommodating new data found in the block being compressed.
The advantage is that a smaller dictionary uses fewer bits to code its positions so there is a
compression gain during the growing stage. This advantage is lost once the dictionary

becomes full after a number cycles. The number of cycles that it takes before the dictionary
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fills depends on its maximum size and the redundancy of the original data since only tuples
that are not fully matched increase the size of the dictionary. This is done to maintain a high
dictionary efficiency because each location stores unique data. If the dictionary size is small
the gains obtained with PBC are negible because the dictionary fills very quickly. This means
that a simpler form of coding such as uniform binary coding (UBC) where every position uses
log2(dictionary size) bits can be used. Figure 5.5 shows the compression gain (defined in
section 4.6) obtained by PBC compared against an alternative using UBC processing the

Canterbury corpus.
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Figure 5.5. Compression gain PBC versus UBC in X-Match processing the Canterbury corpus.

PBC shows itself as a useful technique mainly when coding small to medium size block sizes
and using large dictionaries. A large dictionary uses a large number of bits to code its
locations if all them are active from the start. If the block size is small these locations remain
empty because there is not enough data to fill the dictionary but they waste coding space
because dictionary addresses remain assigned to them. This is the reason the compression
gain obtained by PBC against UBC is so significant with small block sizes and large
dictionaries. For a typical block size of 4 Kb PBC does not show any significant advantage
until a dictionary larger than 64 locations is used. The reason is that a small dictionary fills

quickly and once it is full there is no different between UBC and PBC.
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An alternative to PBC for the match locations is to use a Huffman code based on the fact that
the LRU maintenance policy forces more common data to be stored closer to the top of the
dictionary. The probability of having a match in these locations is higher than the locations
closer to the bottom. A static Huffman tree can be designed based on this property with
dictionary locations closer to the top of the dictionary also closer to the root of the Huffman
tree. The match frequency distribution in the dictionary has been used to generate Huffman
trees varying the dictionary size. For a typical dictionary size of 256 elements the Huffman
codes varied in size from 2 bits for location 0 to 12 bits for location 255. Figure 5.6 shows the

tree shapes obtained after processing our data sets.

The shape of the trees remains largely invariant independently with the data sets because all
the compressible data sets exhibit locality of reference that increases the probability of having
matches closer to the top of the dictionary. A static Huffman code is a good solution to code
this match distribution because the tree shape is largely data independent. An adaptive

technique will not provide any significant advantage.

Tree Shapes
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Figure 5.6. Huffman tree shapes.

Figure 5.6 shows that the 3 different data sets produce similar tree shapes. The disc data set
shape is obtained as an average among the 4 data set components: executable, general,
application and user. This is the reason why the disc “shape’ exhibits some noise.

Figure 5.7 shows the compression gain obtained by X-match when using a Huffman code for

the match locations.
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Figure 5.7. Compression gain Huffman versus UBC in X-Match processing the Canterbury
corpus.

The dictionary size is limited to 256 locations because the tree generator used in the
experiments cannot handle trees larger than 256 leaves. The largest code in this case is 12 bits
which means that an already complex 4096 positions look-up table is needed for the
decoding. Figure 5.5 and Figure 5.7 show that Huffman coding offers a small compression
gain over PBC when handling large block sizes but PBC is more efficient when compressing
small blocks. PBC is also simpler since no large look-up tables are needed. Huffman coding

like PBC also needs a dictionary size larger than 64 locations to offer any significant gain.

A combination of the concepts of both Huffman coding and PBC creates a Phased Huffman
Coder (PHC). This implementation uses a growing dictionary and a number of Huffman trees
equal to log,(dictionary size). The dictionary grows in powers of 2 and depending on how
many dictionary entries are valid a different tree is used. The rationale is to have the good
performance of PBC with smaller block sizes and Huffman coding with large block sizes
respectively. Extra complexity is added in the coding and decoding processes because the
system must stored a number of Huffiman coding a decoding look-up tables and efficiently
switch among them when the next dictionary size is activated. Figure 5.8 shows the

compression gain of PHC.

The phased Huffman coder offers better compression than Huffman coding for the 256 bytes

block sizes and also better compression than PBC for file-based compression. On the other
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hand its performance is inferior to PBC for any practical block size smaller than 16 Kbytes.
The complexity impact of PHC is also considerable because for a 256 location dictionary it is

necessary to store and manage 8 independent Huffman trees.
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Figure 5.8. Compression gain PHuffman versus UBC in X-Match processing the Canterbury
corpus.

This concept of a phased Huffman coder is closed to other alternatives such as the hardware
amenable Rice coding of section 2.4.1.2.1.3. Rice codes are in essence Huffman codes that
can be adjusted using a parameter that modifies the shape of the tree. This parameter would
be controlled by the dictionary size in our case. Rice codes offer less flexibility than Huffman
codes because the alphabet size is unbounded and their performance is limited. The alphabet

size is unbounded because a maximum size it is not defined when constructing the Rice code.

5.3.3.3 Run-length coding techniques

Run length coding can also be used to improve the coding efficiency of the dictionary-based
coder. Run length coding is based on signalling repetitive patterns and code them together
indicating the pattern that was found and how many times it repeated. The effect of a run
length coding applied to X-Match is to code repeating patterns of 32 bits in a single code
because of its tuple granularity. Several solutions are possible depending on where the run

length coder is placed relative to the other functions present in the algorithm.
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In principle there are 3 different locations for a run length coder in the X-Match algorithm
depending on what sorts of runs it aims to code: front (Run Length Front : RLF), middle (Run
Length Internal : RLI), back (Run Length Back : RLB). To add a run length coder to the back
of the algorithm is not a sensible option for a simple reason: the effect of compression is to
produce a randomised output where run lengths are non-existent. After packing the
codewords get disaligned so a run length coder will be unable to detect 32 bit repeating

aligned patterns. We will now study the other 2 options: RLF and RLI.

Our RLF alternative is sensitive to 32-bit repeating patterns of the same byte for example
‘aaaa’. This way only one byte is needed in the RLF code to know which byte was repeating
(‘a’). It is necessary to determine which is the minimum run length that must activate the
RLF technique. Following the X-Match algorithm described in chapter 3 and assuming a
maximum run of 255 repetitions the output generated by a run of length 2 will be: 1 bit for the
match, log,(dictionary size) bits for the RLF code, 8 bits for the repeating byte and 8 bits to
indicate the length. The total is 17+log,(dictionary size) bits.

A non-RL output when data is not in the dictionary will be an initial miss of 33 bits and a full
match of 3 + log,(dictionary size) bits (1 bit match, log,(dictionary size) bits match location, 2
bits match type). If we assume a practical dictionary size of 256 locations RLF improves
compression because it outputs 25 bits and the non-RL output is 44 bits. On the other hand if
the data is indeed in the dictionary RLF will fail to improve compression because it will still
output 17+ log,(dictionary_size) bits whilst a non-RL alternative will output 2 codes of 3+
logs(dictionary_size) bits = 6+2log, (dictionary size) bits. For a practical dictionary size of
256 locations this is 25 bits > 22 bits. Therefore depending on how often data is found in the
dictionary RLF can be made sensitive to runs of length 2 or not. Figure 5.9 shows the
distribution of full matches, partial matches and misses over the Canterbury corpus with

different block sizes and a practical dictionary size of 256 locations.
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Figure 5.9. Distribution of Misses, partial matches and full matches over the Canterbury
corpus.

Assuming a worst case for the run length option we select a distribution of 0.05% misses,
0.36% full matches and 0.59% partial matches that corresponds to a block size of 16 Kbytes
or bigger. Then, we can compare the number of bits produce by a RLF alternative sensitive
and non-sensitive to runs of length 2. We call x = log,(dictionary size) and we assume steady
state. A full match outputs a match location code of x bits, a single bit indicating a match
and 2 bits indicating a full match type. A miss outputs a single bit indicating a miss and 32
bits of literal characters. The number of bits produced by a partial match depends on the type
of match. For the calculation we assume again a worst case for run length so the number of
bits produced by the partial match is minimum: 1 bit for the match, x bits for the match

location code, 3 bits for the match type and only 1 missing byte added = 12 bits.

No of bits (non-sensitive) =

=0.05(33) + 0.36(3+x) + 0.59(12 + x)+ (3+x) = 1.95x + 12.81 151
No of bits (sensitive) = ]7+x [5.2]
1281 +1.95x> [7+x =>x>441>5=>

=> No of bits(non-sensitive) > No of bits(sensitive) [5.3]

From equation [5.3] RLF can be made sensitive to repetitions of length 2 if the dictionary
size is larger than 2° = 32. Equation [5.1] depicts a worst case for RLF because it measures
the minimum number of bits produced by a non-RL alternative. It assumes a miss probability

based on a 256-location dictionary however if the dictionary is smaller than 256 locations the
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percentage of misses increases and therefore the number of bits in equation [5.1] increases
reinforcing the result of equation [5.3]. Equation [5.1] also assumes that all the partial
matches are matches of 3 bytes and they only need one missing byte to be added to the code.
If partial matches of only 2 bytes are included in the calculation the number of bits produced

in equation [5.1] increases again reinforcing the result of equation [5.3].

We will now study the RLI alternative. RLI combines with MTF to efficiently run length
code any repeating 32 bit pattern. Since the MTF dictionary maintenance policy forces any
repeating pattern to be located at position 0 (top of dictionary), RLI detects and run length
codes any tuple that is fully matched at the top of the dictionary 2 or more times. The tuple
always has to be present in the dictionary in location O for the RLI event to become active
because RLI codes runs of full match at location 0 and not runs of repeating tuples. This
means that the first tuple in the input data source that starts a run of repetitions is stored in
location 0 and only the following repeating tuples can be coded as part of a RLI event. The
output of a RLI code is always 9+ log,(dictionary size) (1 bit indicating a match,
log,(dictionary_size) bits for the RLI code, 8 bits for the run length). The following set of
equations is obtained comparing the output produce by a RLI sensitive and non-sensitive to

repetitions of length 2.

No of bits (non-sensitive) = 6 + 2x [5.4]
No of bits (sensitive) = 9 + x [5.5]
6 +2x > 9 +x =>x > 3 => No of bits(non-sensitive) > No of bits(sensitive) [3.6]

From equation [5.6] RLI can be made sensitive to repetitions of length 2 because it saves bits

for any dictionary size bigger than 2°= 8.

The most common repeating pattern (in our experience) is a run of zeros, however other
repeating patterns also exist like the space character in a text file or a constant background in
a picture. This situation is illustrated in Figure 5.9 that shows an accumulative distribution of
run lengths. The X axis is the repetition length of the run while the Y axis is an accumulative

distribution that specifies a repetition length frequency.
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Figure 5.9. Repetition distribution on data sets.

The results of the analysis of the repetitiveness of 32-bit patterns in 2 of our data sets show
that most of the runs are of length 15 or less whilst the contribution made by longer runs is
small. Figure 5.9 shows that the distribution line stops growing around a value of repetition
length around 15. On the other hand long runs offer more compression advantage because
more bits are coded in a single codeword. The memory data set in Figure 5.9 is formed by
around 9 Mbytes of data obtained from the main memory of a workstation used in an
engineering environment. The most common event that uses RLI codes is the tuple formed by
32 zeros although other patterns account for 20% of the RLI codes. The executable data set in
Figure 5.9 is formed by 35 Mbytes of executable data files found in the hard disk of the same

workstation this situation is inverted an non-zero 32-bit repeating patterns are predominant
with 60% of the total.

A disadvantage of RLI is that it requires at least a repetition length of value 3 to be activated
because the first tuple is used to place the match location at position 0. RLI is only sensible to

matches at location 0 unaware of the data that generates the match. On the other hand a RLF
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(Run Length Front) located at the entrance of the dictionary could be activated with only 2
repetitions.

Both techniques RLI and RLF are experts at different data sources. RLI is activated by any
32-bit repeating pattern of length minimum 3 while RLF codes any 32-bit repeating pattern of

the same byte of length minimum 2.

RL coding techniques DIC=256
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Figure 5.10. Run length coding techniques in X-Match processing the Canterbury corpus.

Figure 5.10 shows the compression gain of these RL coding techniques applied to X-Match
versus a non-RL alternative over the Canterbury corpus. We use a typical dictionary size of
256 locations. RLF(same byte) is the technique described previously that needs 1 byte to
identify the repeating tuple. We have include 2 variants of the run length front technique of
the same byte for completeness: RLF(zeros) is only sensitive to repetitions of zeros, so no
extra byte is needed to indicate the repeating tuple. RLF (all) is sensitive to repetitions of any
byte like RLI but it needs to have the whole repeating tuple (4 bytes) added to the RLF code
so the decoder knows which tuple originated the run.

From Figure 5.10 RLF(zeros), RLF(same byte) and RLI offer the best results. RLF(all) has a
better performance for very small block sizes but its performance degrades with larger blocks.
The compression gain is not very significant because the Canterbury corpus is textual bias
and it does not contain the long runs typical of binary data. As we will see in the following
sections performance improves with the other 2 data sets. We have chosen RLI to be

developed in hardware because it integrates neatly in the X-Match architecture and shares the
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dictionary logic to perform the comparisons keeping complexity to a minimum. Figure 5.11

shows the effects of dictionary length on run length coding efficiency for the RLI alternative.

RLI versus non_RL
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Figure 5.11.Compression gain of RLI versus non-RL in X-Match processing the Canterbury
corpus.

From Figure 5.11 it is clear that the effectiveness of run length coding improves with
dictionary size but is largely invariant with block size. The maximum number of repetitions
that can be coded together is 255 in this implementation. We have found that this offers the
best compression. Using 7 or 9 bit counters damages compression. A RLI code is coded as a 0
indicating a match follow by the binary code corresponding to the last location in the
dictionary and follow by and 8-bit code with the number of repetitions. This means that the
dictionary reserves one location to code RLI events and consequently has one word less to
store frequent 32-bit vectors. This is one of the reasons that justify with RLI works better with
large dictionaries because the effect of losing one dictionary location has a more significant
impact on compression with small dictionaries. It is also true that a large dictionaries has a
better compression ratio and in consequence the compression gain obtained by RLI measure
as a percentile improvement (100X(CRyefore- CRupier / CRapery ) 18 more noticeable when CR is
small. Assuming a dictionary size of 256 locations a maximum compression ratio of
17/(255*%4*8) = 0.002 is enabled by the RLI module when a full run of 255 repetitions is
encountered. The maximum compression ratio achievable by X-Match without RLI is limited

to 11/(4*8) = 0.34.
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5.3.3.4 Conclusions

PBC seems to be the best overall solution for the dictionary-based match location coder
because it combines good performance on small to medium block sizes and simple
implementation. PBC should be used if the dictionary size is larger than 64 locations to avoid
damaging compression when processing small data blocks. If this is not the case, simpler
UBC will suffice to implement the match location coder. RLI offers a compression gain over
a non-RL alternative with minimum investment on extra complexity because only a counting
mechanism and a way of detecting full matches at location zero are needed to enable the
technique. RLI can be used with any dictionary size but its efficiency improves with
dictionary size. A dictionary length of 256 offers a good trade-off complexity/performance
and it effectively uses the PBC and RLI techniques. Figure 5.12 shows that the performance
improvement in X-RLI with 512 and 1024 dictionary locations is within a narrow margin of
the 256 dictionary locations solution. A dictionary size of 256 is therefore selected for the

compression performance measurements of section 5.5.
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Figure 5.12. X-RLI compression on the Canterbury corpus.

Figure 5.13 shows the new algorithm named X-RLI in pseudo-code format that uses PBC and

RLI. The instructions shown in bold letter are not present in the original X-Match algorithm.
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Set the dictionary to its initial state;
Set next free location counter = 0;
Run length count = 0;
DO
{

read in tuple T from the data stream;

search the dictionary for tuple T;

IF ( full hit at location zero)

increment run length count by one;

ELSE
{
IF ( run length count =1)
{
output ‘0’
output phased binary code for ML 0;
output Huffman code for MT 0;
}
IF ( run length count > 1)
{
output “0’;
output phased binary code for ML MAX_TABLE_ENTRIES-1;
output Binary code for run length;
}
set run length count to 0;
IF (full or partial hit)
d
determine the best match location ML and the match type MT;
output “0’;
output phased binary code code for ML;
output Huffman code for MT;
output any required literal characters of T;
/
ELSE
{
output ‘17;
output tuple T;
f
}
IF (full hit)
move dictionary entries 0 to ML-1 by one location;
ELSE
{

move all dictionary entries down by one location;
increase next free location counter by one;

}

copy tuple T to dictionary location 0;
}
WHILE (more data is to be compressed);

Figure 5.13. The X-RLI algorithm
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5.4 Compression performance comparison

This section analyses the compression performance of the X-RLI algorithm of section 5.4.3.4
with a dictionary size of 256 locations. We test the compression performance of this
algorithm against the software and hardware based algorithms selected in sections 4.3 and 4.4
using the data sets selected in section 4.2. We have also included the original PBC-based X-

Match extended to a dictionary size of 256 locations for the sake of completeness.
5.4.1 Canterbury data set compression performance comparison

Figure 5.14 shows the compression ratios achieved by our software and hardware based
compression algorithms on the Canterbury corpus. We can clearly identify 3 main areas.

The 3 software-based compression algorithms offer the best compression with similar results.
PPMZ is the top performance whilst the behaviour of the algorithms HA and PKZIP is
remarkably similar once the block size reaches 1 Kb. These 2 algorithms use a similar
dictionary-based sliding-window modelling technique but HA uses an arithmetic coder as the
back-end of the algorithm. HA only manages to improve PKZIP marginally. We have
removed the overhead effects by deleting the bytes that do not form part of the compressed
code as described in section 4.3.

The 3 commercially available hardware algorithms offer very similar performance whilst X-
RLI falls behind. The textual nature of the Canterbury corpus can explain the limited
performance of X-RLI over this type of data.
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Figure 5.14. Canterbury corpus compression performance.
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5.4.2 Disc data set compression performance comparison

Figure 5.15 shows the compression performance on the disc data set. The performance of the
DCLZ and X-RLI algorithms is quite similar mainly when dealing with small block sizes. The
performance of the ALDC and LZS algorithms is superior to the previous ones and similar
between them. The disc data set has 4 components and as expected the performance of X-RLI
was particularly good when compressing the executable component of the data set due to its

32-bit granularity.
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Figure 5.15. Disc data set compression performance.

5.4.3 Memory data set compression performance comparison

Figure 5.16 shows the performance of the algorithms on the memory data set.
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Figure 5.16. Memory data set compression performance. 97
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There are again 3 areas in Figure 5.16 although there are closer to each other than in the other
2 data sets. The 3 software algorithms offer very similar performance whilst DCZL gives the
worst results. X-RLI is competitive with the ALDC and LZS versions and performs better
with smaller block sizes. The memory data set is formed with data found in the main memory
of a workstation running different applications. This binary data is well suited to X-RLI
compression because it has a 32-bit granularity not present in the other data sets. The new
RLI technique include in X-RLI proves more useful in the disc data set and memory data set
where the compression improvement of X-RLI over X-Match is more noticeable than in the

case of the Canterbury corpus.

5.5 Conclusions

This chapter has proposed a number of techniques to improve the X-Match compression
performance. Increasing dictionary size and introducing an internal run length coding
technique can improve the dictionary-based modeller and coder without affecting speed. We
select the X-RLI algorithm for further research because it is able to obtain meaningful
compression ratio in our data sets, it is hardware amenable and it has a parallel single-cycle

execution that enables the throughputs required in section 3.1.
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Chapter 6

Focus on compression throughput

6.1 Objectives of Chapter

This chapter deals with the issue of increasing the throughput of the design whilst maintaining
the compression ratio. High throughput was identified as one of the main motivations to

undertake this research so the outcome of this chapter is fundamental.

6.2 Introduction

The 3 elements that form part of the compression/decompression engine: Model,
Coder/Decoder, Packer/Unpacker have a direct effect on throughput. The method followed to
improve the X-Match performance consists of a rigorous analysis of each of these
components to solve possible bottlenecks present in the architecture.  Our design
methodology has accessed the structural VHDL description of the original blocks present in
X-Match [Gooch96]. The redesign architecture is described in VHDL using a structural and
hierarchical approach to obtain a more predictable output from the FPGA-based synthesis
engines used to synthesise and map the VHDL to a technology-dependant netlist. The reports
provided by these tools are used to guide the optimisation process. To be able to validate our
solutions in hardware we use the ProASIC FPGA’s manufactured by Actel corporation as our
silicon test bench. The experimental methodology is based around a dictionary size of 16
tuples to be able to target the AS00K 130 ProASIC FPGA for rapid prototyping. The ProASIC
AS500K 130 1s one of the first devices to become available in the high-density AS00K family.
This device constitutes an invaluable tool to validate our designs. Its ASIC-style architecture,

re-programmability and non-volatility features couple with its test capabilities enable us to

99



Chapter 6 Focus on compression throughput

test in hardware circuits that otherwise will be only proven through simulation. The
architecture of the new engine is described using PBC because chapter 5 proved that this
coding strategy is a valuable technique to improve the performance of medium and big
dictionaries. The prototype is based on a dictionary with 16 locations to be able to target the
available AS00K 130 device. Chapter 5 showed that a 16,32 and 64-tuple dictionaries do not
benefit from PBC so, in order to further reduce the resource requirements in the A5S00K 130
FPGA, the prototype implemented in section 6.6 to evaluate throughput uses simpler UBC for
the match locations. This is a compromise we need to make to validate our design in the
available silicon. The design scales up easily with technology and the modifications needed to
add PBC when the technology density enables the use of dictionaries larger than 64 locations

are small, as we will see in the next sections.

6.3 Model architecture

Figure 6.1 shows the architecture of the model in the X-Match design.
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Figure 6.1. X-Match model architecture.
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An initial effort to map X-Match to FPGA technology [Nunez99] reveals that the same
critical path depicted in chapter 3 for the adaptation process holds in the FPGA
implementation. The signals depicted in red colour correspond to compression related signals,
those in blue colour relate to decompression related signals and those in green colour are
shared by both channels. Dotted lines are used for critical paths. This colour scheme is
maintained for the rest of the work.

The model comprises the following blocks:

o Dictionary: CAM-based dictionary with 16 tuples. The 16-tuple dictionary is formed
by a total of 16x32 = 512 CAM cells. Figure 6.2 shows a section of the dictionary

architecture with 4 tuples.
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Figure 6.2. CAM-based dictionary architecture section.
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Each tuple is formed by a row of 32 identical CAM cells. The CAM cell is illustrated
in Figure 6.3. Each cell stores one bit of a data tuple. The cell can maintain its content
or load the value store in the north neighbouring cell available in the previous input as
indicated by the move input. The bit stored in the cell is compared with the bit present
in the search input using a xor gate. This bit is also available to the south

neighbouring cell in the next output.

® Match decision logic: Logic that assigns a different priority to each possible match

type in the dictionary and selects one of the matches as the best for compression.

e Move generation logic: Generation of the adaptation vector depending on the match

type (full match or partial match) and the match location.

e Selection multiplexor: Logic that selects one data tuple from the dictionary to be input

in the output tuple assembler during decompression.

®  Qutput tuple assembler: Module that assembles a decompressed tuple using

dictionary information and any literal characters present in the code.

The critical path involves a feedback loop that extends from the search register, first
multiplexor, CAM dictionary, best match decision logic, second mutiplexor, movement
generation logic and back to the CAM dictionary to provide the necessary information to
reorder the dictionary. The feedback loop prevents us from inserting a simple pipeline register
without affecting the algorithm functionality. This feedback loop is illustrated with a dotted

line in Figure 6.1.

Careful study of this path reveals that the vector that defines how the dictionary adapts to the
data can be generated much earlier at no extra cost in terms of area. The reason is that the
shift down operation is only local to some dictionary positions when a full match occurs.
Therefore it is not necessary to resolve the best match to know how to shift the dictionary. It
is only necessary to know if a full match has happened and where to be able to generate the
adaptation vector. If there is not full match the shift affects all the locations and if there is a
full match this is known before accessing the best match location logic. This change together
with moving the search multiplexor out of the critical path leaves the architecture as shown in
Figure 6.4 where the match decision logic has been split into 2 components: the priority logic

and the match decision logic.
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e The priority logic: This logic assigns a different priority to each of the possible

matches and it was originally embedded in the match decision logic.

e The match decision logic: It uses the priority information to select one best match and

it moves out of the critical feedback loop.

After this modification the critical path is approximately 10% faster but it still remains the
slowest part of the device. Although the search operation in the CAM dictionary and the
priority assignation are parallel processes the generation of the adaptation vector by the move
generation logic involves propagating the match location up so all the locations on top of the
match location can move down. This propagation is critical and the number of levels of logic
depends on dictionary size with the expression O(log(dictionary size)). The timing of the
search operation is also affected by the dictionary size because of the higher fanout associated

to larger dictionaries.
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6.3.1 Out of Date Adaptation (ODA) description

To improve further the critical path it is necessary to modify the algorithm functionality by
introducing an Out of Date Adaptation (ODA) mechanism in the model. ODA implies that
adaptation at time 7+2 takes place with the information provided by the previously processed
tuple at time ¢ and not the one at time /+/. This technique breaks the fundamental feedback
critical loop effectively in 2. The danger is that dictionary efficiency could be lost if the ODA
technique duplicates the same tuple in different positions in the dictionary. In the architecture
depicted in Figure 6.1 and 6.4 the adaptation vector at time ¢ provides information to reorder
the dictionary at time ¢+/ and makes sure that tuples are unique in the dictionary. In ODA the
adaptation vector at time ¢ is not effective until time 7+2 so adaptation at time ¢+/ could insert
a tuple in the dictionary that already exists in some other dictionary location degrading
dictionary efficiency. Dictionary efficiency is quickly lost if the same data is duplicated in
different positions of a small dictionary. The way to avoid this is by forcing the current
adaptation vector to adapt not only to the CAM as before but also the next adaptation vector.
Figure 6.5 illustrates this process. The only negative effect is then that the dictionary behaves

like it has one entry less but data duplication is restricted to position 0.
QDA (Out of Date Adaptation) mechanism description
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Figure 6.5. ODA mechanism.
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Figure 6.5 shows how a simple dictionary of only 4 positions adapts to the incoming data
source using the ODA technique. Every step corresponds to a different cycle. The yellow
boxes show how possible full matches occurred simultaneously at position 0 and position
bigger than zero but in this cases match at position zero is always selected as valid. The next
adaptation vector depicted at the right of the dictionary depends exclusively on this match
information. The figure shows how the ODA technique adapts the dictionary at time ¢+2
using a modified adaptation vector originally generated at time ¢ and how data duplication is
restricted to position 0. For example, the current adaptation vector depicted at the left of the
dictionary for step 3 is generated shifting down the next adaptation vector of step 2 as
indicated by the current adaptation vector of step 2. The current adaptation vector at step 3
will adapt the dictionary for step 4. By using this simple technique the effect of ODA on the
compression ratio is negligible because in the worst case only one dictionary position contains
repeated information and in the best case all dictionary positions contain different data.

Table 6.1 explains the steps of Figure 6.5.

Step number | Action

1 e Full match detected at position 1.
e Next adaptation vector set to 1 at positions 0 and 1.
e Current adaptation vector loads search tuple in position 0.
2 e  Full match detected at position 0 and 1.
e The algorithm selects the one closer to the top as valid (position 0).
¢ Next adaptation vector is set to 1 at position 0.
¢ Current adaptation vector loads position 0 in position 1 and search tuple in
position 0. It also shifts next adaptation vector one position down.
3 e Full match detected at position 3.
o Next adaptation vector is set to 1 all positions from 0 to 3.
e Current adaptation vector loads position 0 in position 1 and search tuple in
position 0.
4 e Full match detected at position 2.

e Next adaptation vector is set to one in positions 0,1 and 2.

Table 6.1. ODA description (Continued next page).
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5 e Full match detected at positions 0 and 3.
e Position 0 selected as valid.
e  Current adaptation vector shifts down all the data one position, loads

search tuple and it also shifts the next adaptation vector.

6 * Miss detected.
* A miss sets all the bits in the next adaptation vector to 1.

e Adaptation is as previous cycles.

7 e Full match at position 0.

e Adaptation is as previous cycles.

8 e Partial match at position 2.

¢ Partial matches are dealt with as misses for adaptation purposes.

e Adaptation is as previous cycles.

Table 6.1. ODA description (End).

Figure 6.6 shows the new architecture with one component added:

* The ODA logic: It uses a multiplexor and a register to store the next adaptation vector
shifting it down one position as indicated by the current adaptation vector. The

register breaks the feedback loop.

ODA proves a very effective technique to ensure that data duplication at position 0 is only
effective for one cycle and this technique maintains the original dictionary efficiency. The
logic cost of ODA is small because only a register and a multiplexor of length equal to
dictionary length are required. The control bus in Figure 6.6 decides if the new adaptation
vector is loaded directly or one position down. This operation is critical to guaranty that a data
tuple duplicated at time ¢ will be quickly deleted from the dictionary at time ¢+/. Figure 6.6
shows with a dotted line how the original critical path has been split into 2 non-critical paths
that correspond to the search operation and the adaptation operation. These two paths have
been balanced to have a similar delay. The ODA-based architecture is approximately 100%

faster that the non-ODA of figure 6.4.

ODA could also be applied to improving the performance of on-chip cache memories that use
a least-recently-used algorithm [Tanenbaum90] to know which cache line should be evicted
once the cache becomes full. This problem arises in full-associative or multiple-way set-
associative caches where different cache lines can be allocated to the same data item. There is

a third type of cache organisation: the direct-mapped cache where the selection of the data
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item for eviction is trivial because the new data item can only be stored in one particular
cache line. Associative caches offer a higher hit ratio than direct-mapped caches [Drach95]
but many cache designs use the second ones due to their fast access time and ease of
implementation [McFarling91]. This means that a lot of research has been carried out in
improving the performance of direct-mapped caches or caches with low-associativity (2-way
to 4-way) aiming to maintain their simplicity whilst improving their hit ratios [Wilson97],
[McFarling91], [Jou90], [Wolf91]. Associative caches are kept simple by using in many cases
a random policy to select one cache line for eviction but it is generally accepted that a more
sophisticated policies [Hallnor00] such as least-recently-used increase the hit rate at the
expense of a higher access time. ODA can effectively decrease the amount of time needed to
select one cache line for eviction enabling higher-levels of associativity. (> 8-way). This area

remains for future research.
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Figure 6.6. ODA-based X-Match model architecture.
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6.4 Coder/Decoder architecture

Figure 6.7 shows the components of the code/decode logic, namely:

e [6-to-4 encoder, 4-to-16 decoder: Logic that assigns a 4-bit binary code to the 16-bit
match location vector or a 16-bit match location vector to a 4-bit binary code

respectively.

e Binary code generator: Logic that generates a phased binary code (PBC) or a uniform
binary code (UBC) depending on the implementation and concatenates it with a bit

indicating a match. It also supplies the length of this match location code.
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Figure 6.7. X-Match coder/decoder architecture.
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e Match type code generator: Logic that assigns a static Huffman code to each possible
match type. There are 11 possible different match type combinations of 2,3 or 4 bytes
matching in the tuple. The Huffman tree obtained after extensive simulation has only
4 different code lengths of 2,3,4 and 5 bits. The full match is the most probable match
type and its Huffman code is only 2-bit long. Matches of 3 non-consecutive bytes are

the most improbable and they are assigned 5-bit long Huffman codes.

e Literal character assembler: Logic the uses the match type information to produce a

code formed by the bytes that are not part of the match.

» Code concatenators: Logic that concatenates the codeword components into a single

code to be supplied to the bit packer.

e Main decoder: The main decoder obtains a match type and a match location from the
codeword supplied by the bit unpacker. The first bit defines if a miss or a match
follows. If a match is detected the next following bits in the codeword define the
match location and the number of them depends on how many entries are valid in the
dictionary if using PBC. This number is fixed at log,(dictionary size) in a UBC
implementation. The match type code follows the match location code. If the match is
partial the missing bytes follow the match type. If instead of a full or partial match a
miss is detected the next 32 bits following the first bit correspond to the 4 missing

bytes.

The coding operations in X-Match are not time critical because only 11 different static
Huffman codes are used for the match types and the PBC codes are, in essence, UBC codes
which lengths depend on how many entries are valid in the dictionary and on where the match
is located. None of these techniques require complex or slow operations. There are also no
feedback loops (as Figure 6.7 illustrates) so pipeline registers can be inserted if required. The
position of the pipeline registers is also shown in Figure 6.7. The coding logic also assembles
these codeword components into a single codeword before they are made available to the bit
packer. Decoding is also simple but in this case a feedback loop exist between the decoder
and the unpacker. The reason is that the unpacker needs to know the number of bits used by a
codeword before it can shift out old bits and concatenate new bits to the uncompressed code.

The number of bits used by a codeword is not known until the codeword has been decoded in
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the decoder. The feedback signal match width in Figure 6.7 carries this information to the bit

unpacker. Section 6.5 deals with this feedback loop.
6.4.1 Run Length Internal (RLI) description

The new coder/decoder adds extra functionality because the RLI technique that codes
multiple full matches at location zero into a single run-length code is embedded in the

architecture. Figure 6.8 shows the coder/decoder architecture with the RLI logic added.
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Figure 6.8. RLI-based X-Match coder/decoder architecture.

RLI adds the following components:
e RLI coding register: Buffers the codeword before it enters the bit packer logic. This

buffering function is necessary to enable resetting the pipeline from a full match at

position zero that will be coded as part of an RLI event. The pipeline will not be reset
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e if the RLI counter does not exceed the count of 1. If the count remains at one, then, a
single full match at location zero has been detected and a valid RLI event is not

present.

e RLI coding control unit: The RLI coding control unit monitors the output of the RLI

counter. If this value is equal or bigger than 2 then a RLI event is detected as valid.

® RLI counter: The RLI counter changes its operational mode if compressing or
decompressing. In compression it counts consecutive full matches at location zero in
the dictionary up to a maximum value of 255. In decompression it is loaded with a
value that indicates the length of the run and then it counts up until this value is

reached.

e RLI decoding register: Buffers the output of the main decoder before it enters the RLI
decoding control unit. This buffering effect is needed to allow the timing of the signal
set length to zero to be correct. Set length to zero signals that an RLI event is active
and the bit unpacker must maintain its current state as many times as indicated by the

length of the run.

® RLI decoding control unit: The RLI decoding control unit monitors the existence of
the binary code corresponding to the last position in the dictionary. This code is
reserved for RLI events. If this code is detected the run length value is loaded in the
RLI counter and the RLI control logic outputs full match at position 0 until the run is

exhausted.

An 8 bit counter is shared by the coding and decoding RLI logic. In compression mode this
counter does not use any specific technique to detect an overflow condition if a pattern
repeats more than 255 times. The count simply loops back to zero. This condition is detected
by the RLI control logic as an end of run and a RLI code is output. The next code after a RLI
code is always a normal code even if the pattern continues repeating. If this is the case the 8-
bit counter exceeds the count of 1 again and the run length detection signal is reactivated.
This simple mode of operation simplifies the RLI control logic. Figure 6.8 illustrates how the
RLI logic is neatly integrated with the rest of the coder/decoder logic.

In compression mode the output of R1C is used to code the match location using a 4 bit
(2*=16) binary code and the match type using a static Huffman code. Any needed literal

characters are added and the result accesses the RLI coding logic. If the following tuple 7+/ to
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access the match decision logic keeps the RLI counter enable an RLI event is detected as
valid because at least 2 tuples have generated consecutive full matches at location zero. This
means that the compressed code corresponding to tuple ¢ is eliminated from the pipeline and

replaced by an RLI code where tuples ¢, t+1, ..., t+RLI length will be efficiently coded.

The RLI event remains active for as long as the full match at zero signal is set or for a
maximum of 255 repetitions. Then, the RLI code is output always followed by the normal
code of the tuple that terminated the run length. The result accesses the bit packing logic.In
decompression mode the compressed data enters the main decoder to produce a match
location and a match type and any possible RLI events are promptly detected. A RLI
condition 1s signal to the RLI decoding control unit which changes its mode of operation. The
output of the RLI decoding logic is pipelined in register R2D after decoding the match
location in the 4-to-16 decoder.

Figure 6.9 shows an example of the RLI process.
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An RLI coding event is active in steps 5,6 and 7. The RLI output is generated at step 8 when

the run stops with a length of 3. Figure 6.9 shows that the counter only increments when the

search data is present at position 0. The code generated at step 5 is deleted from the pipeline

when the RLI count exceeds 1 because it will be coded as part of the run-length. Table 6.2

explains the RLI process.

Step number

Action

1

e Full match found at position 1.
e Normal output.

e RLI counter=0.

2 e Miss detected.
e Normal output.
3 e Partial match detected at position 2.
e  Normal output.
4 e Full match detected at position 2.
e  Normal output.
5 e Full match detected at position 0.
e Normal output but possible start of internal run length.
e RLICounter =1
6 e Full match detected at position 0.
e Valid run length detected.
e Empty pipeline from the previous code. No output.
e RLI Counter = 2.
7 e Full match detected at position 0.
e Valid run length continue. No output.
e RLICounter = 3.
8 e Partial match detected at position 0.

e Run length finishes.
¢  Flush run length code.
e RLICounter =0.

e Normal output of data terminating the run length.

Table 6.2. RLI description.
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6.5 Packer/Unpacker architecture

Figure 6.10 shows the packer architecture with the following components:

e Code concatenator: Logic that concatenates the current buffer codewords with a new
codeword produce by the coder. The coder produces a new variable-length codeword
each cycle. This logic assembles this variable-length codewords in 64-bit fixed-length
codes than are then output to the compressed bus. The logic requires a 64-bit output
bus because the maximum codeword length is 33-bit when a miss is detected and a

32-bit output bus could create a bottleneck.

* Register: Logic that buffers a maximum of 96 bits of code plus the number of valid
bits in this code. A 96-bit register is necessary because in the worst case there could
be 63 bits in the buffer waiting to be output and a 33 bits codeword could be

generated (63433 = 96). The active code length is stored in 7 extra flip-flops.
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Figure 6.10. Packer/unpacker X-Match architecture

Figure 6.10 shows the unpacker architecture with the following components:
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o Code concatenate and shift: This logic unpacks 64 bits of compressed data into
variable-length codewords. To be able to shift out old data and concatenate new data
the codeword length must be supplied by the decoder logic using the signal match

width. This forms a critical feedback loop difficult to improve.

» Register: Register that buffers the current code before accessing the decoding logic.
At least 33 bits of data must be valid in each cycle to prevent the decoder from
failing. A register of 96 bits is needed because a new 64-bit compressed code must be
added to the internal code when 32 or fewer bits are valid (32+64 = 96). The

unpacker uses 7 extra flip-flops to store the active code length like the packer.

The architecture has been redesigned to reduce the logic present in the critical path and,
hence, to improve its timing characteristics. Figure 6.11 shows a block diagram of the logic
involved in the critical path and how the calculation of the match length must precede the
concatenation of new data to the data not used in the previous uncompressing cycle. The

critical path is depicted as dotted line.
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The red box defines logic present in the decoder and illustrates how the feedback loop extends
from the unpacker, to the decoder and then back to the unpacker to supply the march length
signal. The match length is then subtracted from the old length to obtain the valid data length
and this information is used to shift old data and to concatenate new data. This last step is
very complex because it involves multiple multiplexing logic. If valid data length is bigger
than 32 the input is shifted to eliminate data already used in the uncompressed cycle but new
data is not added. If data valid length ranges from 0 to 32 new compressed data is
concatenated to the right position of old data and a shifting operation takes place to eliminate

data already used.

The redesigned architecture is based on concatenating new data in the assemble new data
logic in parallel and independently to the process of calculating the decoded length in the

decoder. Figure 6.12 illustrates the new architecture.
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Figure 6.12. Decoder/unpacker modified feedback loop.

The new design uses old length to add new data when the number of valid bits is less than 66.
This means that if there is at least 66 valid bits no concatenation of new data takes places for
the next decoding cycle. The current decoding cycle can consume a maximum value of 33

bits so at least 33 bits (66-33) are left as valid in the register and the next decoding operation
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can take place independently of how many bits are decoded in the current cycle. Since 64 bits
are added to old data when the number of valid bits is less than 66 the decoding register is
extended from 96 bits to 129 bits (65+64 = 129 bits). The complexity of the logic in the
critical path is now simplified because the new shift out old data logic does not perform a
concatenation operation which is parallel to the decoding process. The logic is simpler
because it needs to perform only a shifting function, therefore, the resulting circuit is smaller
and can run faster. The match length signal supplied by the decoder controls how the shifting
is done.

This redesign speeds up the unpacking process with an estimated critical path 40% faster in
Figure 6.12 compared with Figure 6.11. It remains, however, a critical component for
performance since the feedback loop from the decoder is still present. Figure 6.12 shows with
a dotted line the new critical path that does not include the subtracting operation or the decode
logic. Figure 6.13 shows the new architecture of the unpacker. The same components are
present but with different data widths. The inclusion of the RLI logic adds an extra control
signal to the unpacker the set length to zero signal. This signal is active when an RLI event is
active and indicates to the bit unpacker that it must copy the contents of its registers directly
without shifting data until the RLI event finishes.
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6.6 Compression/decompression core throughput evaluation

The 3 components described in the previous chapter formed the core or engine of the lossless
data compressor. This new algorithm and architecture have been renamed X-MatchPRO as
the next generation of the X-Match family of high speed lossless data compressors. To
validate our architectural solutions in silicon we have synthesised and placed&routed the
architecture into an AS00K 130 FPGA. The test of the FPGA is split into 2 different phases
after post-layout back-annotated simulation is completed successfully. The first phase aims to
verify that the functionality of the device is correct. The second one aims to verify that the
timing characteristics reported after performing timing analysis in the placed&routed netlist

are met in real operating conditions.
6.6.1 Serial test methodology

The functional test of the device uses a low cost PC-based test methodology and the JTAG
port available in the FPGA. A text file is written automatically by a PERL script translating
the original test vectors to the standard JAM [Altera98] programming and test language. JAM
is a vendor-and-platform-independent interpreted language for programming and testing
devices via the IEEE standard 1149.1 TAP controller, commonly known as JTAG. This file
contains the test vectors and JAM instructions ready to be executed by the Gatefield ProASIC
JAM player [Gatefield99] that controls the JTAG port shifting in the input test vectors
clocking the device and shifting out the output test vectors. These vectors are compared with
the expected output and fail or pass is reported. The same test vectors used during the
simulation phased are now used in this verification phase to maintain consistency during the
whole testing process. Figure 6.14 shows how the JAM player applies the test vectors to the
JTAG port and reads back the clocked results.

Vector 1 contalns the expected output from applying vector 0

Vector 0 Vector 1
= -
Scan 0 scan | Scan 0 Sean 1
— — r
|
Data Valld
e
A A A A
Strobe Output Strobe O
Data in g?nwm’" Data g‘f’n‘"cm

Figure 6.14. Serial test methodology
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Each original test vector is decomposed into 2 vectors one corresponds to clock cycle low and
the other to clock cycle high. After some propagation time showed as a shaded area in yellow
and red the output of the circuit is ready to be strobed and scan out.

Figure 6.15.a shows the setup of main components present in the serial test hardware. The

following components are present:

A relay board used to switch voltages depending if the system is being used for

programming or testing.

e A Hewlett/Packer E3611A DC power supply which is used to power the relay board at 8
volts.

e A Hewlett/Packer programmable E3631A DC power supply that provides the right
voltages to the device.

e A National Instruments IEEE-488 GPIB controller board that connects the programmable
power supply to the PC.

e A Corelis Corporation JTAG controller board that it is used to control the JTAG port of

the FPGA.

e A PC where the JAM player an rest of the software are executed.

Figure 6.15.b shows a close-up on the AS00K130 ProASIC FPGA and the ISP (In System
Programming) module that holds the device during testing and programming cycles. This test

allows us to verify the correct functionality of the device but since it is done serially at low

speed it does not provide any information on the timing characteristics of the implementation.

Figure 6.15.a. Serial test hardware Figure 6.15.b. Close-up on
programming/test module and AS500K130

device.
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6.6.2 Parallel test methodology

To evaluate the performance of the FPGA we make use of the Credence VistaLOGIC LT1101 parallel

tester shown in Figure 6.16.

Figure 6.16. View of the VistaLogic LT1101 parallel test system.

This test system enables the identification of the maximum operating frequency changing
variables such as strobe time, cycle time and operating conditions (supply voltage and room

temperature).

Figure 6.17 corresponds to the SHMOO plots obtained in the tester with typical operating
conditions of room temperature of 25 °C and supply voltage 3.3 volts. The X axis is the clock
rising time (CRT) (The device is triggered with the positive edge of the clock) and the Y axis
is the strobe time (when we read the output). All time figures are measured from the negative

edge of the clock as illustrated in Figure 6.18.

The cycle time (CT) in figure 6.17.a is fixed at 27 ns but the duty cycle varies with the clock
rising time. The area in green color corresponds to the valid working area. The ‘star’ zone
situated on top of the green area corresponds to an strobe time higher than clock rising time

and it is indicated in yellow in Figure 6.18. The output of the device is still being compared
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correctly with the expected output because none of the output buffers have started changing

its value but a new cycle has already started so it can not be considered a valid working area.
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Figure 6.17a. SHMOO with 27 ns fixed cycle time. Figure 6.17.b. SHMOO with 100 ns fixed cycle time

Figure 6.18 illustrates operational point A in figure 6.17.a. Point A defines the minimum
clock rising time and the minimum strobe time needed for the circuit to work. The circuit
stops working in points located left of point A because the setup time available for the input
vector to access the input buffers and reach the internal flip-flops before the circuit is clocked
is not enough. The circuit stops working in points located south of point A because the strobe
time that defines when the output is read is not enough for the output buffers to change and
get stable. Point A is indicated in figure 6.18 in the transition from the red area to the green
area and defines the minimum strobe time (mst). The area in green and yellow corresponds to
moving north from point A in figure 6.17.a. The maximum strobe time (MST) maintaining
constant the clock rising time at 17 ns is 25 ns. This point is not a valid working point because
it corresponds to a new cycle. Figure 6.18 shows this point as a transition from yellow to red
areas. The red area in Figure 6.18 corresponds to any other point in Figure 6.17 outside the

‘star’ area.

Point B in Figure 6.17.a corresponds to the maximum clock rising time. The device stops
working in points located right of point B because the hold time available from the rising
edge of the clock to the time a new vector is set in the input buffers is not enough. Vectors are

always set with the falling edge of the clock as illustrated in Figure 6.18. The vector must be

121



Chapter 6 Focus on compression throughput

stable in the input buffers for some time after the rising edge of the clock before it can be

replaced by a new vector.

The strobe time increases when moving from point A to point B because of the increase in the
clock rising time. The cycle, that extends from one positive edge to the next, starts later and

therefore the output has to be strobe later as well for the circuit to operate.

Figure 6.17.b relaxes the clock cycle from 27 ns to 100 ns and as expected increases the valid
working area shown in green. The minimum strobe time remains constant at 10 ns because of
the time required to reset the circuit during the first cycle before the output is stable at 0 and it
can be compared correctly with the expected output. Otherwise the strobe time should be 0 ns
because the time elapsed from the positive edge of the clock to the negative edge of the clock
(between 100 ns to 50 ns in Figure 6.17.b ) is more than enough to account for the propagate
time of the output buffers.

Vector 1 contalns the expected output iom applying vector 0

Veclor 0 Vector |
- - -
Set Vector 0 Dotaln o ivectorl Dataln
v v i ¥
Point A
) : I ' i Al
\ i N~ ‘
U : > \wl d |
- -
mst 16 ns
- -
CRT17ns
> -
MST 25 ns
> -
Cl27ns

Figure 6.18. Timing relations at working point A.

Figure 6.19 corresponds to the SHMOO plots obtained in the tester with typical and worst
operating conditions. The typical operating conditions correspond as in figure 6.17 to room
temperature of 25 °C and supply voltage 3.3 volts. The worst operating conditions correspond
to a room temperature of 70 °C and supply voltage 2.5 volts. The X axis is the strobe time
(when we read the output) and the Y axis is the cycle time (clock period). The low time of

clock is fixed at 20 ns while the cycle time varies from 20 ns to 50 ns.
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The ‘star’ area in Figure 6.19 corresponds to the zone where the behavior of the device is as
expected. The chosen operating point is marked with an ‘X’ in figure 6.19.a. Figure 619.b
shows that under worst conditions our operating point gets closer to the non-functionality area
but it is still within a safe margin. This operating point corresponds to the transition between

green and yellow areas in Figure 6.20.

Vector 1 contains the expected output from applying vector 0
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Figure 6.20. Parallel test methodology
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The figure also shows that whilst the clock cycle could be reduce down to 25 ns and the
operating point will still be inside the ‘star’ area the strobe time does not allow us to do that.
The following relation must hold strobe time <= 20 ns otherwise data is read in the yellow
area after the clock has gone high and the current cycle has completed. Although figure 6.19.b
shows a ‘star’ area extending from 20 ns to 27 ns strobe time this zone corresponds already to
a new cycle and it should not be used. This area is shown in yellow in Figure 6.20. The area
shown in red in Figure 6.20 corresponds to any other point outside the ‘star’ area of Figure
6.19.

6.7 Conclusions

This chapter has focused on analysing the throughput performance of the 3 main components
of the architecture: Model, Coder/Decoder, Packer/Unpacker decomposing them into their
simple components. A performance bottleneck has been identified in the model due to the
existence of a feedback loop in the search and adaptation process. A novel solution based on
adapting the dictionary using out of date information without losing dictionary efficiency has
been shown to effectively remove the feedback loop. Another critical feedback loop has been
identified between the decoder and the unpacker because the last one needs to know from the
first one how many bits form the variable length codeword before old data can be shift out
and new data added. The architecture of the unpacker has been redesigned to increase its level
of parallelism and speed up the circuitry. The inclusion of the RLI functionality depicted in
chapter 5 in the coder/decoder has been carefully executed to obtain the required behaviour
avoiding generating throughput bottlenecks in this circuitry.

Finally, we have proven the correct functionality and good timing characteristics of the design
using a AS500K130 FPGA as our silicon testbench. A conservative operating point under
worst-case operation conditions with a cycle time of 30 ns enables a 33 MHz clock cycle
producing a data independent throughput of 1 Gbit/s (132 Mbytes/s). These tests validate the

compression/decompression core design as meeting the requirements of section 3.1.
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Chapter 7

X-MatchPRO

lossless data compression technology

7.1 Objectives of Chapter

Chapter 6 described in detail the architecture and performance of the new X-MatchPRO
compression/decompression core and targeted an AS00K130 ProASIC FPGA for its
implementation. This was particularly useful to validate the correct functionality and benefits
of the design. This chapter investigates the extension of the half-duplex to a full-duplex
architecture minimising the impact on complexity. It also aims to expand the engine to a
coprocessor-style architecture by adding a suitable system interface. Finally, it introduces the
other 2 FPGA technologies of chapter 5 (Xilinx Virtex and Altera Apex) and validates
X-MatchPRO as a high-performance portable design.

7.2 Full-duplex processing

Full-duplex processing is a valuable extension to the X-MatchPRO architecture to enable
handling of both a compression and a decompression data streams simultaneously. In
principle full-duplex functionality can be readily achieved by duplicating the dictionary so 2
independent dictionaries are used by compression and decompression. The decompression
dictionary does not need to be a CAM because no parallel searching is needed to read the
dictionary location pointed to by the match location component of the codeword. The
decompression dictionary needs, however, to be able to shift the data to model the move-to-

front (MTF) replacement policy used in the CAM. This feature prevents a straightforward
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RAM-based implementation of the decompression dictionary. A shift-enable decompression
dictionary based on flip-flops needs a total of dictionary length x 32 storage elements and it
almost doubles the device complexity. The challenge is then to realise a shift-enable
dictionary based on RAM. Embedded RAM is plentiful and ready to use in modern FPGA’s
such as the A500K, Apex or Virtex families so its usage does not have a direct impact on
complexity. The design uses a pointer array logic to model the move-to-front replacement
strategy used by the compression CAM shifting addresses to the dictionary data instead of the
dictionary data itself. The width of the pointer word (4 bits in a 16-word dictionary, 6 bits in a
64-word dictionary) is a fraction of the width of the data word (32 bits) so the savings in logic

are significant.

2 4

" yRAMDala ‘\, Control
* 16 Y
Wirite Move
Address 0 j1f, o Generation Dng:
RAM 4 & |, | | PONTER Logic
DICTIONARY |/ &i | O || AR | SelWrite '
(16 x 4 bytes) 23| % . 16
g Sel Read
I < /
<« < [
4 16
Read ,
Read Address Match Location | |
1 Address
Y | i Tye 4
w
TEMP REG | r |« Match Type .
v Selected | ‘ _I® Literal Data 32
uple ol % ‘ 7
g ‘
< — ]
TUPLE
ASSEMBLER | € ”
/32
REgllgrER
U_dataout
2
P Da—

Figure 7.1. RAM-based decompression model.

Figure 7.1 shows a diagram of the RAM-based decompression model that comprises the

following components:

Ram dictionary: Fully synchronous RAM-based dictionary that stores the history data during
a decompression operation. The contents of the RAM dictionary during decompression must
be same as the contents of the CAM dictionary during compression in each cycle. Adaptation

must take place in exactly the same way to enable correct decompression of the compressed

126



Chapter 7 X-MatchPRO lossless data compression technology

block. The initialisation of the compression CAM sets all words to 0. This means that a
possible input word formed by 0’s will generate multiple full matches in different locations.
The algorithm simply selects the full match closer to the top. This operational mode initialises
the dictionary to a state where all the words with location address bigger than 0 are declared
invalid without the need for extra logic. The reason is that location x can never generate a
match until the data contents of location x-/ are different from 0 because locations closer to
the top have higher priority generating matches. The MTF adaptation mechanism shifts down
the dictionary when full matches are not detected and, therefore, ensures that the last word
from this initial state to be deleted from the dictionary is always the word located at location 0
at time 0. This operational mode in compression enables the decompression RAM dictionary
to have only location 0 loaded with value 0 during the initialisation phase because references
to a RAM location y higher than 0 are not possible before the contents of the previous
locations y-/, y-2, ..., 0 are updated. This technique avoids having a long overhead equal to
dictionary_size cycles to initialise each position in the RAM to a predefined value before each

decompression operation.

Pointer array: The pointer array logic performs an indirection function over the read and
write addresses that access the RAM dictionary. It models the MTF maintenance policy of the
CAM dictionary moving pointers instead of data. The pointer array enables mapping the
CAM dictionary to RAM for decompression. Since the pointer array is much smaller than the
CAM dictionary the savings in complexity allow having the full-duplex architecture in a
single device. Each position in the pointer array is reset in a single cycle to a value the same

as its physical location in the array before each decompression operation.

Sync reg: The sync registers form part of a pipeline level partially embedded in the RAM
dictionary. From Figure 7.1 the read address does not have a sync register. The sync register
corresponding to the read address has been embedded in the RAM to obtain fully synchronous
RAM operation in the read and write ports. The algorithm maps naturally to a RAM read in
asynchronous mode and written in synchronous mode because this is the mode the CAM is
read and written in compression. This asynchronous mode of operation, although possible,
results in a less portable and less robust design. A fully synchronous design can target

different FPGA and ASIC technologies with a higher degree of confidence.

Address equal: This logic monitors the read and write addresses. If both addresses are the
same the algorithm needs to read the data that is going to be written in that common address.
This data is not present in the memory yet but it is present in the RAM data in bus. The RAM

data in bus is written in the memory normally but it is also latched temporarily in the remp
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register. The multiplexor associated to the address equal logic selects the input coming from
the temp register instead of the input coming from the memory when the same address is
being read and written. The address equal logic also modifies the read address to make it

different from the write address and avoid corrupting the RAM contents.

Move generation: This logic generates the move vector depending on the match type and
match location. The move vector adapts the CAM dictionary in compression and the pointer

array in decompression.

DODA (Decompression Out of Date Adaptation) logic: This component forces the dictionary
to adapt with previous match information and breaks the compression critical path improving
speed. The ODA logic in decompression is used to replicate the adaptation process in the
compression dictionary. They have exactly the same functionality although its usage to

improve the timing characteristics of the design is restricted to the compression channel.

Temp reg: This register 1s used to hold a copy of the last data tuple written in the

synchronous memory.

Qutput tuple assembler: Module that assembles a decompressed tuple using dictionary

information and any literal characters present in the code.

Out register: Register that outputs the uncompressed data to the system.

Figure 7.2 shows how the indirection function works on the RAM dictionary and how the data
contents of the decompression RAM are the same as the data contents of the compression
CAM of Figure 6.5 in each cycle. In Figure 7.2 the yellow areas relate to read operations in
the RAM dictionary. Blue areas relate to write operations in the RAM dictionary.

The presence of current and next adaptation vectors is due to the ODA policy described in
section 6.3.1. It is possible to verify that decompression is taken place correctly because the
output uncompressed data is the same as the input compressed data of Figure 6.5. The only
exceptions are steps 6 and 8 that required extra data not present in the dictionary that must be
obtained from the codeword literals. These 2 steps correspond to a miss and a partial match

event respectively.
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Figure 7.2. RAM-based decompression model mechanism.

Step number Action

e Compressed code indicates full match at location 1.

e The next adaptation vector is generated as defined by location 1.

e The pointer array contains address 1 at location 1 for reading. The uncompressed code
‘at_I’ is read from the memory.

e The current adaptation vector points at location 0 in the pointer array. The pointer array
contains address 0 at location 0 for writing. *at_i’ is written at RAM position 0.

*  The current adaptation vector shifts the pointer array and the next adaptation vector.

Table 7.1.a. RAM-based decompression description (Continued next page)
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Step number

Action

Compressed code indicates full match at location 0.

The next adaptation vector is generated as defined by location 0.

The pointer array contain address 0 at location 0 for reading. The uncompressed code
‘at_I” is read from the memory.

The current adaptation vector points at location 1 in the pointer array. The pointer array
contains address 1 at location 1 for writing. ‘at i’ is written at RAM position 1.

The current adaptation vector shifts the pointer array and the next adaptation vector.

Compressed code indicates full match at location 3.

The next adaptation vector is generated as defined by location 3.

The pointer array contains address 3 at location 3 for reading. The uncompressed code
‘ry_ ’isread from the memory.

The current adaptation vector points at location 1 in the pointer array. The pointer array
contains address 0 at location | for writing. ‘ry__’ is written at RAM position 0.

The current adaptation vector shifts the pointer array and the next adaptation vector.

Compressed code indicates full match at location 2.

The next adaptation vector is generated as defined by location 2.

The pointer array contains address 2 at location 2 for reading. The uncompressed code
‘hung’ is read from the memory.

The current adaptation vector points at location 3 in the pointer array. The pointer array
contains address 3 at location 3 for writing. ‘hung’ is written at RAM position 3.

The current adaptation vector shifts the pointer array and the next adaptation vector.

Compressed code indicates full match at location 0.

The next adaptation vector is generated is defined by location 0.

The pointer array contains address 3 as location 0 for reading. The uncompressed code
‘hung’ is read from the memory.

The current adaptation vector points at location 3 in the pointer array. The pointer array
contains address 2 at location 3 for writing. ‘hung’ is written at RAM position 2.

The current adaptation vector shifts the pointer array and the next adaptation vector.

Table 7.1.b. RAM-based decompression description (Continued next page)
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Step number

Action

Compressed code indicates miss.

A miss sets to 1 all bits in the next adaptation vector.

No reading

The current adaptation vector points at location 1 in the pointer array. The pointer array
contains address 3 at location 1 for writing. ‘over’ obtained from a literal codeword is
written at RAM position 3.

The current adaptation vector shifts the pointer array and the next adaptation vector.

Compressed code indicates full match at location 0.

The next adaptation vector is generated as defined by location 0.

The pointer array contains address 3 at location 0 for reading. The uncompressed code
‘over’ is read from the memory.

The current adaptation vector points at location 3 in the pointer array. The pointer array
contains address | at location 3 for writing. ‘over’ is written at RAM position 1.

The current adaptation vector shifts the pointer array and the next adaptation vector.

Compressed code indicates partial match at location 2.

A partial match sets to | all the bits in the next adaptation vector.

The pointer array contains address 2 at location 2 for reading. The uncompressed code
‘hung’ is read from the memory. ‘hung’ will be used to partially reconstruct the
compressed code as indicated by the match type to obtained * ung’.

The current adaptation vector points at location | in the pointer array. The pointer array
contains address 3 at location 1 for writing. ©_ung’ is written at RAM position 3.

The current adaptation vector shifts the pointer array and the next adaptation vector.

Table 7.1.c. RAM-based decompression description (End)

7.3 Width Adaptation Logic

The use of a different bus width for the uncompressed data port (32 bits) and compressed data

port (64 bits) complicates system integration. A single data bus width will enable the device

to form part of a data path with minimum disruption to the original system. The variable

nature of the data flow in the compressed port needs also to be addressed. Compressed data is

requested or produced at discrete instants. A buffering function in the compressed port will

smooth the data flow in an out of the device efficiently using the external system bus. The

uncompressed port does not have a variable data rate but a constant and independent rate of

131




Chapter 7 X-MatchPRQO lossless data compression technology

32 bits per cycle. This means that the device will consume 32 bits of uncompressed data every
clock cycle during compression and it will produce 32 bits of uncompressed data every clock
cycle during decompression. A buffering function is not needed in the uncompressed data port
because of its synchronous nature. Figure 7.3 shows the architecture of the width adaptation
logic in the compressed port. This logic serves a dual purpose. It transforms the 64-bit data
bus from the compression engine or to the decompression engine into a more manageable 32-
bit data bus. It also buffers the data smoothing the compressed data flow. A total of 4 Kbytes
of RAM are present in this logic. The compression section uses 2 Kbytes and the
decompression section uses the other 2 Kbytes. Both sections are completely independent to
allow simultaneous operation in full-duplex mode. The compression buffer is organized in 2
blocks of 256 locations and 32 bits per location. The compression engine writes 64 bits of
data in parallel to the 2 blocks. 32 bits of data are read from memory each cycle alternating
read operations on each block. A threshold value determines how many 64-bit compressed
words must be available in the buffer before compressed data is output to the 32-bit
compressed bus. The decompression buffer has an equivalent organization but this time 32
bits of data are written each cycle to each block alternatively. Data is read from the buffer to
the decompression engine 64-bit at a time. A threshold value controls how many 64-bit words
of compressed data must be available in the decompression buffer before the decompression
engine is activated. The threshold value offers a compromise between a smooth data flow
using a high threshold setting or a small latency using a low threshold setting. The with

adaptation logic comprises the following components:

e Address read, Address write: Counters that generate the read and write addresses for the
coding. The write address must always precede the read address otherwise invalid data is

output from the buffers.

® RAM 256x32: The buffers are organized in 4 blocks to enable a direct interface of the
coding buffer with the compression engine. The RAM is fully-synchronous dual-port

RAM so reading and writing operations can be done simultaneously.
e Coding buffer control unit, Decoding buffer control unit: These control units are used to

enable the reading and writing of the memories when required and they also detect

possible overflow and underflow conditions in the buffers.
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Figure 7.3.Width adaptation logic.

7.4 Full-duplex X-MatchPRO architecture

Figure 7.4.a depicts the global X-MatchPRO full-duplex compression architecture that
comprises 3 major components: Compression Model, Coder, and Packer. Figure 7.4.b depicts
the global X-MatchPRO full-duplex decompression architecture that also comprises 3 major
components: The Decompression Model, Decoder and Unpacker. The model of section 6.3
has been split into 2 independent entities to accommodate the full-duplex processing: The
CAM-based compression model that uses the compression elements of the section 6.3 model
and the RAM-based decompression model of section 7.2. The Coder and Decoder architecture
remains unchanged from section 6.4 but the RLI counter that was initially shared by both
components has been duplicated to enable simultaneous operation of the compression and
decompression channels. The Packer and Unpacker components of section 6.5 have been

extended to include the width adaptation logic of section 7.3.
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7.5 X-MatchPRO operation

The architecture of chapter 6 lacks an appropriate coprocessor-style system interface where a
main CPU can issue compression and decompression commands to the compressor, monitor
the compression/decompression operation, and communicate with the device using a single

control bus.

7.5.1 X-MatchPRO interface

Figure 7.5 illustrates the new X-MatchPRO interface.

X-MatchPRO vd Interface

cs CLEAR
» -«
W et
FINISHED D BUS REQUEST C
@ CPUPORT -
FINISHED_C BUS ACKNOWLEDGE C
-
ONTROL
"C > BUS_REQUEST D
16 >
DRESS
AD s BUS ACKNOWLEDGE D
<
C_DATAOUT
—
U_DATAIN COMPRESSING
/> i
32 COMPRESSION CHANNEL FLUSHING 5
CODING_OVERFLOW
< C_DATA_VALID
>
U_DATAOUT DECODING OVERFLOW
« é »>
DECC;MPRESSING DECOMPRESSION CHANNEL
C_DATAIN
U DATA VAUD A
- 32

Figure 7.5. X-MatchPRO interface.

X-MatchPRO uses a simple coprocessor style interface to communicate with the rest of the
system. Compression and decompression commands are issued through a common 16-bit
control bus. A 3-bit address is used to access the internal registers that store the commands
plus information related to compressed and uncompressed block sizes. A total of 6 registers
form the register bank. 3 registers are used to control the compression channel and the other 3
for the decompression channel. The first bit in the address line indicates if the read/write

operation accesses compression or decompression registers. The chip is designed to compress
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any block size ranging from 8 bytes to 32 Kbytes. A decompression operation can be

requested in the middle of a compression operation and vice versa. Table 7.2 describes the

functionality of these signals. There are a total of 162 pins in the device. All the signals are

active low and fully synchronous.

Signal name Direction Width | Function

CS IN 1 Enable access to the internal registers.

RW IN 1 Enable reading or writing the internal registers.

ADDRESS IN 3 Internal register address.

CLK IN 1 System clock. Positive edge active.

CLEAR IN 1 Asynchronous clear of all the storage elements.

BUS ACKNOWLEDGE C | IN 1 The system grants the compressed data out bus.

BUS_ACKNOWLEDGE D |IN 1 The system grants the compressed data in bus.

BUS REQUEST _C ouT 1 The chip requests the compressed data out bus.
Compressed data ready to be output.

BUS_REQUEST_D ouT 1 The chip requests the compressed data in bus. The
chip request compressed data to be decompressed.

FINISH_C ouT 1 The chip signals end of a compression operation.

FINISH D ouT 1 The chip signals end of a decompression operation.

CONTROL INOUT 16 Common control bus to issue compression and
decompression commands to the chip. The control bus
is also used to write or read the compressed and
uncompressed block size registers if required.

U DATA_IN IN 32 Uncompressed data input during compression.

C DATA _OUT ouT 32 Compressed data output during compression.

CODING_OVERFLOW ouT 1 Data overflow in the coding buffers. Error condition

C_DATA_VALID ouT 1 Valid compressed data present in the compressed data
out bus.

COMPRESSING ouT 1 Compression engine active.

C_DATA_IN IN 32 Compressed data input during decompression.

U _DATA_OUT ouT 32 Uncompressed data output during decompression.

FLUSHING ouT 1 Compression engine inactive emptying the coding

buffers.

Table 7.2.a. Chip pin-out.(Continued next page)
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Signal name Direction | Width | Function

DECODING_OVERFLOW ouT 1 Overflow in the decoding buffers. Stop inputting
uncompressed data until the bus is requested again.
Engine continues decompressing data. No error
condition.

U DATA VALID ouT 1 Uncompressed data valid in the uncompressed data
out bus.

DECOMPRESSING OouT 1 Decompression engine active.

7.5.2 Register bank description

Table 7.2.b. Chip pin-out. (End)

A total of 6 registers form the register bank that controls the compression/decompression

engines and coding/decoding buffers. These registers are accessed using the address bus and

the control bus and can be read or written. Table 7.3 and Figure 7.6 show the format of these

registers.
Address Channel Register Function

000 Decompression | CRD Command Register Activates or stops the decompression
Decompression channel

001 Decompression | UBSRD Uncompressed Sets the number of bytes of the
Block Size Register uncompressed block after decompression
Decompression

010 Decompression | CBSRD Compressed Block | Sets the number of bytes of the compressed
Size Register block before decompression
Decompression

100 Compression | CRC Command Register Activates or stops the compression channel
Compression

101 Compression | UBSRC Uncompressed Sets the number of bytes of the
Block Size Register uncompressed block before compression
Compression

110 Compression | CBSRC Compressed Block | Sets the number of bytes of the compressed
Size Register Compression | block after compression

Table 7.3. Register access description.
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Compression Command Register Format
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Figure 7.6. Register format.

7.6 X-MatchPRO threshold value

The threshold value is input with the command and written in the command register. It
defines a programmable latency. A small value means a low latency but it is more probable
that coding and decoding underflows will take place. A larger value introduces more latency
but these conditions are not so frequent. The reason for coding underflows with small
threshold values is that during compression the coding buffer is emptied very rapidly if little
data is present when the read operation starts. In decompression the underflow can take place
if the buffer is emptied because the data expanded instead of compressed during the

compression operation. This means that the decompression engine consumes more data that
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can be written in the buffer and eventually the buffer becomes emptied. After an underflow in
the coding or decoding buffer the threshold value also defines the distance between write and
read addresses before more compressed data is output or requested respectively. Underflow
conditions are not error conditions but they will generate bubbles where valid data is not
present in the compressed or uncompressed data out streams during compression or

decompression respectively.

The threshold can have any value between 1 and 128. A threshold of 1 implies minimum
latency => 1x64 bits of data are written in the buffer before the bus is requested during
compression to output compressed data or before the decompression engine is started to
produce uncompressed data during compression. A threshold of 128 implies maximum
latency or blocked operational mode => 128x64 bits of data are written in the buffer before
the bus is requested during compression to output compressed data or before the

decompression engine is started to produce uncompressed data during decompression.

7.7 X-MatchPRO latency

In compression latency is defined as the number of cycles found between the moment the
compression engine stops inputting data and the coding buffers finish emptying the buffers
(=> chip ready to start a new operation). The compression latency has 2 components one fixed
and one variable. The fixed component of 4 cycles is defined by the levels of registers located
between the input search register and the coding buffers (5 levels) and the variable component
is defined by how much data is present in the internal buffers when the compression engine
finishes its operation (flushing operation). The probability of having a long flushing operation
is small when the threshold value setting is small. This variable component depends, however,
in the input data. If the data expands the latency will grow because more data will be left in

the buffers to be output during the flushing operation.

In decompression latency is more predictable. Latency can be defined as the number of cycles
that elapse between the first tuple of compressed data enters the chip and the first tuple of
uncompressed data leaves the chip. There are again 2 components but both are fixed. The
levels of registers (5 levels) between the decoding buffers and the output register in the device
introduced a fixed component of 4 cycles. The decoding buffer introduces the other
component and it depends on the threshold value. A threshold value of 8 introduces a latency
of 16 because 16 32-bit tuples must be written in the buffer before the number of 64-bit words

exceeds the threshold value and the decompression engine is activated.
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7.8 X-MatchPRO operational modes

The following figures show the device running in half-duplex mode. The letter C should be
added to the control signals: bus request, bus acknowledge and finished and registers CR,
UBSR and CBSR for the compression channel and D for the decompression channel to obtain

the full-duplex equivalents.

7.8.1 Compression mode

Figure 7.7 corresponds to a typical compression operation. To start a compression operation
the CPU must write 2 registers: The uncompressed block size register (UBSR) must be written
first and the command register (CR) must be written second. The UBSR tells the compression
engine when it must stop after processing all the bytes of data present in the block. The UBSR
specifies the number of bytes present in the block and can be any value between 8 and 32768.
The CR puts the device in compression mode and it also contains the threshold value to
control the coding buffer. The chip requests the compressed bus when the number of 64-bit

words available in the coding buffer is larger than the threshold value.
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Figure 7.7. Compression operation
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The system is responsible to set a new 32-bit of uncompressed data in the uncompressed bus
in the immediate cycle after the CR is written and in every cycle thereafter. When the device
produces compressed data in the compressed bus it asserts the compressed data valid signal
active. The engine is known to be active because the compressing signal is active. The chip
stops processing data when the value stored in UBSR is reached. Then a flushing signal is
activated to indicate that any remaining compressed data in the coding buffers is being
flushed out. When the buffers are emptied of their contents the device asserts the signal
finished active for one cycle. The system can read the compressed block size register (CBSR)
at the end of a compression operation to obtain the resulting compressed block size in bytes.
This value could be compared with the original uncompressed block size to evaluate the
compression efficiency. After this cycle the device is ready to start a new compression

operation.

7.8.2 Decompression mode

Figure 7.8 shows a typical decompression cycle. To start a decompression operation the
system must write 3 registers. The UBSR and the CR have the same function as in
compression. The CBSR must be written with the value of the compressed block size that the
decompressor is going to process. This must be done to avoid the decoding buffer requesting
more data when the decompression engine is still running but all the data has already been
written in the decoding buffers. Alternatively the register could be set to FFFF. This means
that when the system denies the bus the device will assume that all the compressed data is

present in its internal buffers.

The device requests the bus with the bus request signal and the bus is granted with the bus
acknowledge signal. The decompression engine is activated when the number of 64 bit words
of compressed data in the decoding buffer is larger than the threshold value. The bus request
during decompression is equivalent to a compressed data request. Once the bus is granted the
system is responsible to make available 32 bits of compressed data per cycle as long as the
bus request signal is maintained active. The bus acknowledge signal cannot go inactive until
all the compressed data has been loaded in the chip. The device uses the event of the bus
acknowledge signal going inactive to know when all the compressed data is present in its

internal buffers.

142



Chapter 7 X-MatchPRO lossless data compression technology

CPU wittes control registers 5 ! f : :
aix _\.\S_I_ i B s W S e [ O S o 1 O Sy
s T N | |
ADDRESS(1:0) ) S G N i ; | i R R
covmotse) )y A _ S N A R S
commsrg TP .o, ) co, o, Koo i 1 T
uoamoumsto) /74. W, X { DLy Dow;y’fulfw- o, | X
upmwap | (Urcomomsed = | |  Fiish durent operation
SR i idoowokble ;| 200 ———— S =
FINISHED Decompression engne active : D?oorrprewfonenglne_ finishes ]:“ —!—
D | g | : i \.ji S
DECOMPRESSNG | 5 L i P i — i
.  Compressed bus request S T (N ¢
BUS_REQUEST 3 N S S - — J
& 1 Compfessed bus acknowledge ! S b _#l
e : b
1S ACKNOWLEDGE [ &4 _ jb\

Figure 7.8. Decompression operation

7.8.3 X-MatchPRO special conditions

7.8.3.1 Buffer Coding Overflow

A coding overflow condition should never be encountered under normal operating conditions.
It can never happen if these 2 conditions are met: the uncompressed block size is less than 32
Kbytes and once the compressed bus is requested during compression it is granted in less than

256 — theshold_value cycles. This value is obtained after solving the following 2 equations:

33xTe+1xTh <= 256x64 <= 16384 bits [7.1]
32x(Te + Th) <= block size <= 32768x8<= 262144 bits [7.2]

These 2 equations can be simplified to:

33xTe + Th <= 16384 bits [7.3]
Te + Th <= 8192 bits [7.4]

Where Te is the number of cycles the engine is compressing data but the buffer is not

outputting data whilst 75 is the number of cycles the engine is compressing data and the
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buffer is also outputting data. The block size is set to a maximum 32768x8 bits. The value of
Te 1s 256 after solving the equations.

If this condition is not met an overflow could take place in the coding buffer. This is an error
condition detected by the coding overflow signal going active. This means that there is no
room in the buffers to write new compressed data being produced by the compression engine
and the operation fails. This situation could arise if the engine is continuously expanding the
data instead of compressing the data because in that situation the engine produces 33 bits of

data per cycle but only 32 bits of data can be read from the buffer per cycle.

7.8.3.2 Buffer Coding underflow

Coding underflow cannot be considered a special case because it is the normal consequence
of compression. If compression is taking place the coding buffer outputs data faster than it
receives data from the compression engine. With a typical compression ratio of 0.5 the engine
writes on average 16 bits of data to the coding buffer per cycle and 32 bits of data are read
from the buffer per cycle. This underflow condition is signal with the bus request signal going
inactive and the compressed data valid signal going inactive. The bus will not be requested
again until the number of valid 64-bit compressed words in the coding buffer is bigger than

the threshold value,

7.8.3.3 Decoding Buffer Overflow

Buffer decoding overflow is an occasional condition that can take place when compression is
very good. In this case the decompression engine consumes little data but the decoding buffer
gets 32 bits of compressed data each cycle from the compressed bus. If a decoding overflow
takes place the decompression engine keeps working at full speed unaware of the overflow
condition in the buffer. The device stops requesting the bus (stops requesting data) and this is
indicated by bus request signal going inactive. The buffer will request more compressed data
once the gap between the write address and the read address is bigger than the threshold
value. The system must stop putting compressed data in the compressed bus since this data

will not be written to a buffer under an overflow condition.

7.8.3.4 Decoding Buffer Underflow

A decoding buffer underflow is an infrequent condition that could take place when the

decompression engine requests compressed data to the decoding buffer but no data is
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available in the buffer to satisfy this request. This condition can happen with data expansion.
In this case the decompression engine consumes 33 bits of data per cycle but the buffer can
only get 32 bits per cycle. After some cycles the decompression engine request data to the
buffer but the buffer is empty. Under these circumstances the decompression engine empties
its pipeline and maintains its current state and data request until compressed data is available
from the buffer. The engine stops uncompressing data until more data is available. The
uncompressed port will see a few cycles where no uncompressed data is available. The
uncompressed data valid signal will go inactive to indicate this condition.

It is important to notice that a decompression engine underflow is a different condition from a
decoding buffer underflow. A decompression engine underflow is a normal internal condition
that could generate a decoding buffer underflow if the buffer is empty. A decompression
engine underflow happens when fewer than 66 bits are valid in the 129 bit (65+64 = 129)
decompression register. An special case is when the decompression engine underflow can not
be satisfied from the buffer because all the compressed data in the block has been written in
the buffer but it is now exhausted. This is a normal termination of the decompression
operation and it does not generate a decoding buffer underflow. The decompression engine
must continue to decode the last few bits of compressed data (<66 bits) remaining in the
decompression register until 0 bits are valid. This termination condition is controlled by the
bus acknowledge signal going inactive or by an internal counter reaching the value stored in
the compressed block size register. Buffer decoding underflow generation is disabled when

the device reaches this termination condition.

7.9 FPGA-based X-MatchPRO: complexity and performance

Table 7.4 shows a summary of the FPGA-Based X-MatchPRO family targeting Actel, Altera
and Xilinx FPGA’s. These data was obtained after mapping the design to each technology
using a synthesis engine and then performing placing and routing using vendor-specific tools.
The figures shown in Table 7.4 were extracted from the post-layout reports provided by the

place&route tools.

The validity of these timing reports was verified using backannotated simulation and a full
test vector data set formed by around 100k vectors. These vectors were obtained from a cycle
accurate C++ model of X-MatchPRO and were specifically designed to test all the operating

modes and special conditions of the device.
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Table 7.4. X-MatchPRO technology.

Logic unit in column 4 is the basic logic unit in the architecture of the selected technology.
The complexity of this logic unit varies among the different technologies. Actel ProASIC
devices [Actel00] use a logic unit call Tile, Altera call these units logic elements (LE’s)
[Altera01] and Xilinx call them logic cells (LC’s) [Xilinx01]. Actel ProASIC tiles are simple
blocks that can implement a logic function with 3 inputs and 1 output such as an AND gate or
a flip-flop. Actel ProASIC architecture is very flat and tiles are repeated across the device
forming a matrix of identical logic elements. Dedicated memory blocks are grouped in one
the sides of the device. Each memory block can implement 2304 bits of fully-synchronous
dual port RAM. Xilinx Virtex architecture uses a more complex LC that includes a 4 input
Look-Up Table (LUT), a carry function and a storage element. A Configurable Logic Block
(CLB) is formed by 4 of these LC’s plus some extra logic (1 CLB is equivalent to 4.5 LC’s).

The CLB’s are repeated across the device forming a matrix of logic. Additionally dedicated
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memory blocks are inserted at different positions in the CLB matrix. Each Virtex memory
block can implement 4096 bits of fully-synchronous dual port RAM. Altera Apex LE’s are
quite similar to Xilinx LC’s. Each Apex LE has a 4 input LUT, a storage element, carry chain
logic and some extra functions. A group of 10 LE’s forms a Logic Array Block (LAB) that
also includes an Embedded System Block (ESB). Each ESB can be used to construct a variety
of memory functions and includes up to 2048 memory bits. A group of 16 LAB’s forms a
Megal L AB that are repeated across the device.

FPGA vendors use different measurements to translate their technology components into gate
equivalents and, in general, it is more accurate to give complexity in terms of FPGA elements
and usage percentage. When available the gate count equivalent obtained from the
place&route tool is given for reference in column 8. The total gate count includes memory
and logic but only around 14% of the gates (30 K) correspond to logic whilst the rest 86%
(180 K) correspond to the gate count equivalent of the 40 Kbits of memory. The percentage of
column 5 measures how much of the logic available in the selected FPGA part given in
column 9 is used by the design. This measurement only refers to utilization of logic elements
and not embedded RAM. The amount of embedded RAM used by the designs measure in bits
is given in column 6 whilst the percentage of memory utilization is available in column 7. The
throughput of column 12 measures the raw uncompressed data throughput of the device.
These are the number of bits of raw uncompressed data that will be consumed by the device
during compression or produced during decompression. These figure is obtained multiplying
the clock frequency of column 13 times the number of bits processed by cycle (32). The
throughput performance of the Altera and Xilinx devices is comparable because they are
similar SRAM-based technologies using the same feature size. The number of logic elements
used in both technologies is very similar. This means that LC’s and LE’s perform very similar
functions. Table 7.4 shows that the complexity of the Xilinx Virtex device and Altera Apex
devices are comparable. More logic elements are needed in the Actel ProASIC devices
because their Tiles are smaller than LC’s or LE’s and they can implement only a simple logic
function each of them. The most efficient implementation in terms of area is achieved in the
Actel device since this device is roughly half the size of the other 2 FPGA’s in terms of
maximum system gates and it would not be possible to fit the design in the Altera or Xilinx
chips if only half of the current resources were available. The performance of the Actel
implementation is lower than the other 2 devices due to 2 main reasons: Firstly the feature
size is bigger which degrades performance, secondly the routing complexity increases in these
fine granularity devices because they lack the architectural hierarchy of the other 2 FPGA’s

[Betz98]. ProASIC architecture is flat so the routing scheme is more complex.
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Table 7.5 presents a summary of the X-MatchPRO features compared against the ASIC
compressors selected in section 4.3. The table compares different ASIC technologies but
these correspond to the fastest silicon currently available from the respective manufactures.
The ASIC figures have been obtained from the data sheets provided by the manufactures
while our own figures are based on post-layout reports. The Hi/fn 9600 device is implemented
in the most advance technology in the list and offers the highest throughput among the ASIC
devices. This architecture is able to process one byte per clock cycle and its throughput in bits
per second can be readily obtained multiplying the clock frequency times 8. This is also true
in the IBM device but in the case of the AHA devices the previous value has to be divided by
two because their less efficient internal architecture needs two clock cycles to process each

byte.

It is possible to perform a direct comparison of the Hi/fn 9600 that is based on a 0.35 um
ASIC technology an clocks at 80 MHz with the Hi/fn 9610 (see table 2.2). The Hi/fn 9600
implements the same LZS algorithm but it is based on an older 0.5 um technology and clocks
at 50 MHz. Therefore, an increase in throughput of 60% is achieved migrating from 0.5 um
to a 0.35 um feature size. Further reductions in feature size should increase the clocking
frequency of the device but it is also important to take into account that interconnect
overheads and deep sub-micron effects mean that the speed-up factor is not linear. The IBM
device can achieve a similar clocking frequency of 100 MHz if mapped to a comparable 0.35
um technology as reported in IBM literature [Craft98]. In general, these two LZ1 derivatives
achieve a similar throughput because they are based on the same LZ1 algorithm and they are
limited by the fact the only 1 byte is processed per cycle. The main advantage of X-
MatchPRO is that 4 bytes and not 1 byte are processed in each clock cycle.

The table shows that X-MatchPRO exceeds by a factor of 2 the throughput of the other ASIC
compressors. It is expected that X-MatchPRO throughput will improve by a factor of 2-3
[Betz98] if replacing the FPGA technology for an ASIC technology with a similar feature
size. This means that X-MatchPRO based on an ASIC should be able to match the clock
frequency of any of the other previous ASIC’s if implemented in the same technology. A
throughput gain of a factor of 4 will be obtained by X-MatchPRO under these circumstances
thanks to its ability to process 4 symbols per clock cycle.

It is also interesting to compare the X-MatchPRO design with the previous X-Match design in
terms of throughput. The original X-Match design has a critical path in the search and
adaptation process that limits its performance to 6 MHz (192 Mbits/s throughput) in a 0.6 um
ProASIC FPGA technology as seen in our paper [Nunez99]. This is a direct implementation
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of X-Match in an FPGA with little architectural enhancements. Our research reveals that this

performance improves to 14 MHz (448 Mbits/s throughput) when targeting the X-Match
design to the more up-to-date 0.25 um ProASIC FPGA used by X-MatchPRO in table 7.4.

X-MatchPRO does not contain a critical path in the search and adaptation process thanks to

ODA as seen in section 6.3 but it is limited by the unpacker/decoder feedback loop as seen in

section 6.5. The new critical path limits the performance of X-MatchPRO in a ProASIC

technology to 25 MHz (800 Mbits/s). This is approximately twice the throughput of the
original X-Match architecture (448 Mbits/s = 800 Mbits/s) .

DEVELOPERS IBM Advance Hi/fn System Design
Hardware Group
Architectures Loughborough
(AHA) University
CHIP ALDCI1- AHA AHA Hi/fn X-MatchPRO
408 3521 3231 9600
IBM 0.18 micron | 0.18 micron | 0.25 micron
CMOS 0.5 0.5 0.35 SRAM- SRAM- FLASH-
2 0.8 micron | micron | micron CMOS CMOS CMOS
® micron | CMOS | CMOS | gate FPGA FPGA FPGA
o triple- array/st Xilinx Altera Actel
E level gate dcell | VIRTEX-E | APEX20KE AS00K
o~ array/ ProASIC
8 ) std cell
==
% § E - 70 N/A N/A 100 5367 LUT’s | 5040 LC’s | 9039 TILE’s
S = | ®E E‘ Kgates Kgates | 55%ofa | 60%ofa 70% of a
= 8- XCV400EB | EP20K200 | AS00K130-
a CRCk: G432-8 | EFC484-1 | BG456
223
)
CLOCK
(MHz) 40 40 40 80 50 50 25
THROUGHPUT 320 160 160 640 1600 1600 800
(Mbits/s)
FULL-DUPLEX
PERFORMANCE N/A N/A | N/A 1280 3200 3200 1600
(Mbits/s)
X- X- X-
ALGORITHM ALDC | ALDC | DCZL LZS MatchPRO | MatchPRO | MatchPRO

Table 7.5. X-MatchPRO comparison.
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7.10 Conclusions

This chapter has extended the compression/decompression engine of chapter 6 by adding a
suitable system interface and a buffering function. Moreover, a highly compact full-duplex
implementation has been obtained by mapping the decoding dictionary to embedded RAM
instead of distributed flip-flops so the complexity of the half-duplex and full-duplex devices is
comparable in terms of logic gates. The resulting design has been implemented and its
functionality proved to be correct using timing simulation in 3 different FPGA technologies.
The multiple technology implementation qualifies the design as portable. The performance
figures of the FPGA-based X-MatchPRO exceed those of other ASIC compressors and match

the requirements of chapter 3.1.
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Chapter 8

Conclusions

8.1 Objectives of chapter

This chapter concludes this thesis with a summary of the research objectives, an evaluation on
how well we achieve those objectives, the limitations of the current work and finally a

proposed path for future research.
8.2 Summary of the objectives and the research flow

As stated in chapter 1 this thesis aimed to advance the field of lossless hardware data
compression by providing higher throughputs and better compression ratios. The motivation
for this research was found in that current solutions do not provide the levels of performance
required in high-speed communication and storage applications. Lossless data compression is
currently a tool commonly used to double the bandwidth and storage capacity of systems
running in the order of Mbits/s such as wide area networks in communication applications
and tape drives in storage applications. Its usage in systems that involve higher transfer rates
is not as popular because of the performance impact that the compression process introduces.
The same benefits should be expected if properly deployed in applications where data

movement is measured in Gbit/s such as RAID drives and local area networks.

After establishing the usefulness of Gbit/s lossless data compression hardware in chapter 1 the
research continued with an analysis of the current state of lossless data compression in
chapter 2. Chapter 2 reviewed recent advances in software and hardware compression

analysing the benefits and limitations of each method. Chapter 3 continued with the selection
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of the X-Match hardware-friendly algorithm because it exhibited high-performance features
including parallelism, single cycle execution and low latency. Chapter 3 was used as a pivotal
point that clearly specified the starting point of our investigations. Chapter 4 described the
experimental framework as a set of tools to be used to carry out the investigations. This set of
tools included the data sets to be used in the compression efficiency measurements and a
selection of lossless data compression methods representative of high performance software
and hardware-based compression. Chapter 5 focused on compression efficiency analysis and
optimisation using the data sets and methods of Chapter 4. It studied ways of increasing
model and coder efficiency without affecting throughput. A dictionary-based approach was
used because of its inherent simplicity and hardware amenability. Chapter 6 focused on
increasing the performance throughput of the hardware architecture without affecting the
compression ratio. Chapter 6 produced a new core architecture for the compression and
decompression engines. The architecture was mapped and verified in ProASIC FPGA
technology, selected as a silicon test-bench, to prove the high performance characteristics of
the design. Chapter 7 extended the core developed in chapter 6 to a  full-duplex self-
contained coprocessor architecture named X-MatchPRO. X-MatchPRO was efficiently
mapped to 3 FPGA devices from 3 different manufactures. Post-layout backannotation was

used to obtain exact data on performance and complexity.

8.3 Summary of the X-Match compression method

The X-Match design of chapter 3 describes the basic architecture of a high-performance
lossless data compressor based on storing data commonly seen in a dictionary and matching
incoming data with data present in the dictionary. A move-to-front adaptation policy is used
to maintain dictionary efficiency avoiding storing duplicated data words. The dictionary is
based on a CAM circuit that allows single cycle search and adaptation. The CAM feature that
enables configuring its columns as selectively shiftable registers implements the move-to-
front technique. The data words called tuples are fixed in width with 4 bytes per data word.
The width of 4 bytes is found to be optimal generating more compression than other
alternatives whilst it naturally maps to a parallel high-throughput architecture. The dictionary
length grows from an initial value of 0 to a maximum value of 128 each time a tuple is not
fully matched in the CAM. A partial matching (X-matching) strategy is used to improve
compression so only 2 bytes out of maximum of 4 are required to match for the dictionary hit
to be considered valid. A match is coded as a single bit set to 0 followed by a PBC (Phased
Binary Code) indicating the match location followed by a Huffman code indicating a match

type and any non-matching characters in literal form. A miss is coded as a single bit followed
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by the 4 non-matching characters in literal form. Combinatorial searching strategies (where
the byte at location # in the search tuple is allowed to match a dictionary byte located at a
position different to » in the CAM) do not improve compression but affect complexity and
throughput. The CAM circuit supports compression and decompression but not
simultaneously. Pre-layout results after mapping the design in a 0.6 um gate array technology
shows a data independent throughput of 100 Mbytes/s clocking at 25 MHz with complexity
around 100 Kgates.

8.4 Main contributions achieved in this research:
The X-MatchPRO hardware

The X-MatchPRO chip developed in chapters 5, 6 and 7 describes a dual-channel full-duplex
high-performance lossless data compressor coprocessor with enhanced compression and
throughput features.

X-MatchPRO enhances compression ratio by adding an internal run length coding technique
named RLL In its original configuration described in Chapter 5 RLI combines with Phased
Binary Coding (PBC) to obtain a compression improvement between 3-10 % depending on
data sets. Chapter 5 addresses the best location for a run-length coder in X-Match with 2
options being investigated internal and front. Although the compression performance of both
solutions is very similar RLI adds a very neat solution from a hardware point of view because
it integrates in the architecture and shares the dictionary logic keeping complexity to a
minimum. RLI is particular effective in a hardware implementation because it is not target to
code repetitions of a particular data pattern but repetitions of matches in data location 0, RLI
can effectively code any repeating 32-bit pattern without any data identification information
because the move-to-front adaptation policy places repeating data in location 0. The last
dictionary codeword is reserved to indicate RLI events which can code up to 255 4-byte
repetitions in a single code. The last dictionary codeword varies in a PBC-based coder
because dictionary length is variable but it is fixed in a UBC-based coder because all the
dictionary locations are active after the first cycle. The maximum compression ratio enable by
the combination of PBC and RLI is 10/(255*4*8) = 0.00122 when 1020 repetitions of the

same byte are found after a dictionary reset.
The move-to-front technique used in model adaptation generates a non-uniform distribution

of matches that a more complex technique than uniform binary coding can used to increase

compression. PBC offers slightly better performance than Huffman coding derivatives. PBC
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is useful when compressing small data packets using dictionaries larger than 64 locations
otherwise with dictionary sizes of 16, 32 and 64 locations simpler UBC suffices. This is
because small dictionaries fill up with data quickly and PBC losses its advantage once the

dictionary becomes full.

X-MatchPRO can adapt its complexity requirements to the available hardware resources
trading dictionary length for compression efficiency. X-MatchPRO does not require a large
dictionary because it maintains a highly efficient history state by quickly eliminating any data
duplication in a single cycle. It obtains compression with dictionaries as small as 16 locations
whilst a 256 locations dictionary offers the best trade-off between complexity and

performance.

X-MatchPRO compression improves gradually increasing block size from 256 bytes to 4
Kbytes but remains largely invariant with further increases in block size due to dictionary
saturation. Small block sizes increase the effect of locality of reference and periodically
activated a technique like PBC so they suit well X-MatchPRO,

X-MatchPRO enhances throughput with a new redesigned architecture that includes an Out of
Date Adaptation (ODA) policy. A critical feedback loop is identified in the search and
adaptation circuitry because after a search operation, the best match must be solved and an
adaptation vector generated in time ¢ before the dictionary is ready to start a new cycle in time
t+1. ODA breaks the critical feedback loop in the search and adaptation circuitry so the
dictionary adapts at time ¢/+7 with match information generated at time ¢-7. ODA does not
affect compression negatively because dictionary elements are unique at all times except the
dictionary element at the top of the dictionary that can be duplicated. Dictionary data
duplication is restricted to location 0 and duplicated data is eliminated in a single cycle
maintaining dictionary efficiency. The complexity impact of ODA is very small, requiring

only a few hundred gates.

A second feedback loop is identified in the bit disassembly logic because a variable-length
codeword must be decoded before new data can be added and old data eliminated from the
active part of the buffer, This is characteristic of data compression methods based on mapping
a fixed length symbol to a variable length codeword. Packing and unpacking is trivial when
the codewords have the same length and their position in the compressed stream can be easily
identified. This loop is optimised increasing the level of parallelism during the concatenation

of new data and the shifting out of old data as described in chapter 6.
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X-MatchPRO is a dual-channel full-duplex coprocessor architecture that includes simple
interfacing, buffering functions and 2 independent compression and decompression channels
that can operate simultaneously. Full-duplex functionality adds an useful feature to the design
because it is becoming a characteristic of high performance networks to carry information in
both directions simultaneously. The challenge is to design 2 independent channels keeping
complexity to a minimum. The RAM-based decompression model achieves this by
eliminating the need for an expensive shift register file to store the data. The higher priority
given to matches closer to the top of the dictionary is a key technique in the full duplex
architecture. It enables the RAM-based decompression dictionary to have only location 0
initialised in the first cycle as long as the same value is used to initialise in a single cycle all
the locations of the CAM-based compression dictionary. A pointer array stores addresses to
the dictionary locations following the same move to front strategy used by the data in the
CAM-based compression model. The pointer array is a fraction of the size of the dictionary
because the basic pointer word width varies from 4 to 8 bits depending on dictionary length
whilst the dictionary word width is 32 bits. The elimination of the multiplexors associated to
the CAM for decompression in the half-duplex implementation provides enough resources to
implement the pointer array and maintains logic complexity almost constant. The
decompression circuitry avoids interference between ODA and the pointer array to enable

both compression and decompression dictionaries to be in synchrony at all times,

A buffering function is introduced in the packing and unpacking logic to fulfil a dual purpose.
It smoothes the data flow out and in the chip in the compressed port and it allows a width
adaptation from the 64 bits used out and in the compression and decompression engines

respectively to a more manageable 32 bits out and in the chip.

X-MatchPRO FPGA-based hardware proves the high-performance features of the design in
silicon. The FPGA-based hardware is based on a 16-location dictionary using UBC coding
for the match locations to reduce the resource requirements on the FPGA prototype. A
detailed post-layout verification of the compressor/decompressor core is done in chapter 6
using a Actel ProASIC FPGA as the silicon test-bench. The core is extended to a full-duplex
coprocessor architecture and mapped to FPGA devices from Actel, Xilinx and Altera
corporations. These multiple technologies validate the portability of the design and make use
of alternative FPGA architectures with different strong and weak points. Actel ProASIC
devices provide an excellent prototyping platform because they are reprogrammable and non-
volatile and their high granularity technology offers a smooth migration path to ASIC

technology with predictable results. Xilinx Virtex and Altera Apex devices offer an advance
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process, very high densities and a sophisticated tool set to obtain very high performance. Both

Altera and Xilinx implementations are very similar in logic cell count and performance.

8.5 Other contributions achieved in this research

A systematic analysis and classification of the lossless compression methods is done in
Chapter 2 with special emphasis in hardware. The classification is based on dividing lossless
data compression in 3 independent stages, namely: modelling, coding and packing and using
the first 2 stages to structure the review. Modelling and coding separation is usually reserved
to statistical methods but it can be applied successfully to dictionary-based methods as well.

The following conclusions can be drawn from the first part of this research:
Compression improves by:

1. The use of high-order statistical modelling. The optimal maximum order increases with
increases in symbol granularity: 1* order for word alphabets, 4™ order for byte alphabets
and 10" order or higher for binary alphabets.

2. The use of arithmetic coding as an optimal method to extract the redundancy identified by
the model. Arithmetic coding is optimal for a given model because no other coding
method can improve on it. On the other hand if the model feeding the coder is inaccurate
the global performance will be poor. Arithmetic coding needs accurate modelling. If this

is not the case simpler and therefore faster coding could be a better altemative.

3. PPM is one of the best compression methods currently available and it combines points 1
and 2 in an complex algorithm made possible in the last couple of decades with the arrival
of powerful general-purpose processors and plentiful memory resources.

4. The use of an algorithm granularity compatible with data granularity. For example text is
clearly byte oriented or word oriented and compresses better with algorithms where the
basic input is 8 bits or with methods that parse the input data stream into natural words.

Throughput improves by:

1. The use of hardware amenable algorithms that do not required too many memory or logic

resources to run. Application specific hardware chips based their power in single cycle
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execution and high clock ratios obtained from efficiently mapping an algorithm to silicon.

LZ derivatives are dominant in the field of hardware compression.

2. The use of algorithms that can offer a constant data independent throughput in the
uncompress port. Throughput in the compressed port depends on the instantaneous
compression ratio but the uncompressed port should be able to consume or produce the
same number of uncompressed bits per cycle. Otherwise a worst case throughput

measurement should be used when throughput depends on data type.

3. The use of wider symbols like bytes or words instead of bits. The definition of word can
change from natural words to 4-byte words like in X-Match. Increasing the level of
parallelism by widening the basic input symbol improves throughput but finding the

redundancy becomes a more difficult task.

4. The use of CAM-based circuit to store the history data so fast single cycle searching can
be done during compression. Systolic architectures based on pipelined CAM’s where the
input symbol is compared with a different position of the dictionary in each cycle can
obtain higher throughputs and they have excellent scalability properties. On the other
hand they suffer from high latency and this makes them unattractive in many real-time

application environments.

5. The elimination of dependencies between the modelling, coding and packing processes so
deep pipeline architectures can be implemented. Algorithms that map fixed length
symbols to variable length codewords such as X-Match suffer from a dependency
between the decoding and the unpacking process difficult to improve. LZ algorithms map

variable length symbol sequences to fixed length codewords and avoid this problem.

6. Model adaptation tends to be a typical performance bottleneck in many compression
algorithms because in statistical methods a set of cumulative frequencies must be
incremented or a tree must be reconstructed and in dictionary methods the dictionary

must be rearrange introducing new symbols and deleting old symbols.

Another contribution is the development of a compression performance database using
software and hardware algorithms that correspond to state-of-the-art technology. A total of 3
different data sets are used to represent data commonly found in computer systems: the
memory data set, the disc data set and the Canterbury data set. It is common in this type of

research to do comparisons using obscure or out-of-grade algorithms and data sets with the
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negative effect that further analysis becomes very difficult. We decided to choose state-of-
the-art lossless data compression algorithms implemented in both hardware and software. The
LZS, ALDC and DCLZ hardware-based zlgorithms are commercially successful chips used in
many networking and storage applications. The PkZIP software-based algorithm is known by
anybody who has downloaded a file compressed in ZIP format from the Internet and routinely
used for archiving and distribution of data. HA and PPMZ software-based algorithms define
the current limits of lossless data compression and illustrate how the diminishing returns rule

makes any significant compression improvements in the future a big challenge.

8.6 Measurement of success

The first objective was an identification of the factors that limit or improve the performance
of lossless data compression methods. The concepts of compression speed and compression
ratio were used to define the performance of a method. An analysis of current compression
solutions was done in Chapter 2 where it was identified that the highest throughput combined
with lower latency was achieved in hardware using CAM circuits and single cycle operation.
The higher compression was found in software in methods based on variable-order statistical
modelling, Limitations in speed were mainly due to small symbol width like in systems based
on binary alphabets. Limitations on compression were due to poor modelling or coding, It
was also clear that compression and speed were highly dependent on each other with better

compression done by the slowest algorithms and vice-versa.

The second and third objectives were to find sclutions to these limitations and to prove them
in real silicon to advance the field of lossless data compression. Our work was based on
hardware and it naturally stressed the point of speed over compression. The developed X-
MatchPRO lossless data compression chip offers Gbit/s full-duplex data compression
performance and improved compression using the X-Match method. It can handle the data
streams found in Gbit/s applications where no other solution is currently available. It achieves
its objectives using low-cost FPGA technology while a custom solution is expected to obtain
a typical increase in throughput of a factor of 3. It, therefore, advances the field of lossless

data compression hardware and achieves the main objective of this work.

8.7 Limitations of research

Our initial research revealed that statistical modelling based on variable-order models and

arithmetic coders is a compression methodology able to achieve a performance close to the
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entropy limit, It seems reasonable to investigate how some of these statistical concepts can be
introduced in X-Match. This path of research involves the development of parallel arithmetic
coders. Parallel arithmetic coding offering incremental transmission does not have a current
satisfactory solution because of the data dependencies that exist between 2 consecutive
symbols. This is particularly true when analysing the decompression stage of the algorithm.
Limitations in time prevented a thorough investigation of parallel arithmetic coding since it

constitutes a PhD on its own.

Compression performance of the X-MatchPRO method is somehow limited mainly when
targeting data textual in nature, The reason is that this data exhibits single-byte granularity
and it maps badly to the 32-bit granularity of X-MatchPRO. Redundancy in this type of data
is easily picked by a byte-based LZ derivative but it fails to be found by X-MatchPRO
because bytes are not aligned in groups of 4. The alternative of increasing compression
performance in X-MatchPRO by coding the literal characters part of partial-match codewords
or misses was found to be unfeasible because of its direct impact on complexity and more
important throughput.

8.8 Future work

The fabrication of a custom ASIC solution will have a positive impact on speed typically
improving throughput by a factor of 3 if compared with a similar feature size FPGA. A much
more compact device is possible because FPGA gates scale down considerable when

translated into ASIC gates.

The integration of the FPGA-based X-MatchPRO in a real application such as Gbit Ethernet

will prove an invaluable fool to verify the benefits of high-speed lossless data compression.

The development of a form of parallel arithmetic coding will open the way to a variable-order
X-Match model that could achieve the best of both worlds: high speed and excellent

compression.

It is also interesting the idea of a variable-width X-MatchPRO dictionary extending the
concept of variable-length. This means that the algorithm would be able to adapt its internal
granularity to the data granularity. For example, text compression will improve significantly
if the data word width could be adjusted to the natural word width.
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Further increases in throughput are possible if several X-MatchPRO are combined into a
single chip. The challenge is to design a multiple compressor chip that uses the same interface

as a single compressor chip so the application only sees a significant increase in performance.
8.9 Summary

This thesis has addressed the problem of high-speed lossless data compression in hardware. It
has produced the X-MachPRO chip that with a combined compression and decompression

performance of 3.2 Gbit/s in a Xilinx or Altera FPGA’s can outperform any other ASIC chips

currently available.
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