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Abstract   10 

Developing monitoring strategies for the detection and monitoring of possible CO2 leakage or 11 

migration from existing and anticipated storage media are important because they can provide 12 

an early warning of unplanned CO2 leakage from a storage site. While previous works have 13 

concentrated on silicate and carbonate porous media, this work explores geoelectrical techniques 14 

in basalt medium in a series of well-defined laboratory experiments. These were carried out to 15 

identify the key factors which affect geoelectrical monitoring technique of CO2 in porous media 16 

using low cost and efficient time domain reflectometry (TDR). The system has been set up for 17 

simultaneous measurement of the bulk electrical conductivity and bulk dielectric permittivity of 18 

CO2-water-porous media system in silica sand, basalt and limestone. Factors investigated 19 

include pH, pressure, temperature, salinity, salt type and the materials of the porous media. 20 

Results show that the bulk electrical conductivity and dielectric permittivity decrease as water 21 

saturation decreases. Noticeably, electrical conductivity and permittivity decrease due to the 22 

changes in water saturation and the relationship remains the highest in limestone except at the 23 
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start of the experiment. Also, an increase in temperature, pressure and salinity tend to increase 24 

the bulk electrical conductivity (σb) and permittivity (εb) of the CO2-water-porous media system 25 

during the drainage experiment. On the other hand, pH and concentrations of different types of 26 

salt do not seem to have significant effect on the geoelectrical characteristics of the system. It 27 

was evident that Archie’s equation fit the experimental results well and the parameters obtained 28 

were in good agreement with those in the literatures. The regression shows a good reliability in 29 

the prediction of electrical properties during the monitoring process of CO2 sequestration. 30 

Keywords: pH, electrical conductivity, dielectric permittivity, CO2 leakage, water saturation. 31 

 32 

1 Introduction 33 

Carbon dioxide is known to be a major contributor to the greenhouse effect. It causes excessive 34 

heating of the earth’s atmosphere and, thus, contributes to the global climate change (Abidoye et 35 

al. 2014; Aliakbar et al. 2016; Mariyamma et al. 2015; Terzi et al. 2014). CO2 emissions from 36 

various sources such as power generation plants and automobiles have increased by more than 37 

30 percent over the last decades (Bachu 2000; Metz et al. 2005; Shalek 2013; Socolow et al. 38 

2004). Therefore, the removal of the emitted CO2 is important to prevent the environmental disaster 39 

such as change in precipitation patterns, the rise in sea levels, polar caps disruption, and acidic 40 

oceans (Adefila and Yong 2013; Mariyamma et al. 2015). The approach of carbon capture and 41 

sequestration (CCS) has been suggested to be one of the most promising ways of reducing the 42 

present level of this emission into the atmosphere (Abidoye et al. 2014; Folger 2009; Kilgallon 43 

et al. 2014; Metz et al. 2005). Other methods include use of energy efficient system and 44 

renewable energy but these techniques have been suggested to be less-effective when compared 45 

to CCS (Abidoye and Das 2015a; Alvarez 2014).  46 

The CO2 storage using CCS can be grouped into three categories: (i) geological storage; (ii) 47 

mineralization; and (iii) ocean storage. The CO2 geological storage (CGS) is considered as a 48 



promising CO2 sequestration method in developed countries; the geological formation includes 49 

deep saline aquifer, unmineable coal deposits, depleted and mature oil and gas reservoirs while 50 

the mineralization process is the conversion of CO2 into solid inorganic carbonates during the 51 

reaction of CO2, brine and rock minerals. Mineralization method provides permanent storage of 52 

CO2; however, the conversion of CO2 into solid carbonate is very slow while the high cost of 53 

implementation  is a concern (Druckenmiller and Maroto-Valer  2005).  54 

The major problem of CO2 storage in geological aquifer is the possible risk of CO2 leakage from 55 

the storage reservoir to shallower potable-water aquifer, which consequently may become a 56 

threat to the living organisms (Abidoye and Das 2015b; Dafflon et al. 2013). The leakage may 57 

be as a result of detrimental permeability pathways around the well or faulty caprock (Abidoye 58 

and Das 2015b). But, if the reservoir is well characterised before CO2 is injected, the problem of 59 

leakages could be minimised. Khudaida and Das (2014) reported that injecting supercritical CO2 60 

into porous formations would minimise CO2 leakage during geological sequestration of CO2, 61 

because storing CO2 in supercritical phase will reduce the buoyancy, since the density of 62 

supercritical CO2 will be similar to that of  brine (Khudaida and Das 2014). Also, monitoring of 63 

CO2 storage site before, during and after injection is very important for any CCS project 64 

(Kilgallon et al. 2014) because this can provide an early warning of unplanned CO2 leakage 65 

from a storage site.  66 

In the context of monitoring CO2 sequestration, simultaneous measurement of electrical 67 

conductivity and dielectric permittivity can provide accurate early warnings for the presence of 68 

CO2 in the water bodies, because an increase in CO2 concentration signals a decrease in 69 

geoelectrical properties (i.e., dielectric permittivity and electrical conductivity) as compared to 70 

pure water (Abidoye and Das 2015a; Abidoye and Das 2015b). Previous works have been 71 

conducted on the geoelectrical characterizations of CO2-water/brine flow in porous media (see, 72 

e.g., Abidoye and Das 2015a; Abidoye and Das 2015b; Lamert et al. 2012; Dethlefsen et al. 73 



2013); however, these investigators did not exhaust the interplay of different factors that can 74 

affect the behaviour of bulk electrical conductivity (σb) and bulk dielectric permittivity (εb) of 75 

the fluid-fluid-solid system (i.e., CO2-water-porous media system) in porous media, especially 76 

in basalt medium. These factors include pressure and temperature of the system, in-situ fluid 77 

salinity, materials of the porous medium, chemical characteristics of the in-situ salt (brine) and 78 

soil pH. 79 

Majority of the previous work on geophysical monitoring techniques utilised seismic methods, 80 

electrical resistivity, borehole geophysics (see, e.g., Wagner 2016; Lamert et al. 2012; Schmidt-81 

Hattenberger et al. 2011; Bergmann et al. 2011; Borner et al. 2015). A limited number of 82 

laboratory studies have focused so far on studying the effects of important parameters such as 83 

temperature, salt composition, pH, fluid pressure and salinity on the monitoring techniques in 84 

basalt, using bulk electrical conductivity (σb), dielectric permittivity (εb) and their respective 85 

relationships with water saturation (Sw). While geo-electrical monitoring techniques can provide 86 

an efficient and effective monitoring method (Lamert et al. 2012; Abidoye and Das 2015a; 87 

Abidoye and Das 2015b), other geophysical monitoring techniques such as seismic are time 88 

consuming and expensive (Zhang 2013).  89 

Furthermore, the work of Wang and Tokunaga (2015) characterised CO2 distribution, trapping 90 

and leakage potential using capillary pressure - saturation relations.  But their investigation was 91 

conducted on limestone medium. Earlier, the works of Pentland et al. (2011) as well as Zuo and 92 

Benson (2014) investigated CO2 trapping in quartz-rich medium (sandstone). Similarly, the 93 

works of Abidoye and Das (2015a, b) were based on silicate and carbonate media. Thus, it can 94 

be inferred that most of the existing publications concentrate on silicate and carbonate porous 95 

media. Meanwhile, Wang and Tokunaga (2015) are of the opinion that mineral contents of the 96 

porous media determine the trapping capacity of the medium during geological carbon 97 

sequestration. Basalt primarily consists of magnesium and calcium silicate minerals which 98 



provide divalent metal cations necessary for the formation of solid carbonates (Matter and 99 

Kelemen 2009; Snæbjornsdottir and Gislason 2016). 100 

Therefore, question may be asked as to how basalt medium will affect CO2 distribution, trapping 101 

and leakage potential during geological carbon sequestration? This work explores this gap in 102 

knowledge by investigating geoelectrical characteristics of CO2-brine-porous medium system in 103 

basalt medium as well as silicate and carbonate porous media. 104 

 This work determines the effects of temperature, pressure, pH, salinity, salt types and porous 105 

material on geoelectrical characteristics of the CO2-water-porous media system at high pressure 106 

and temperature relevant to geological carbon sequestration. In addition to examining the 107 

influence of porous media on the characteristics of CO2–brine-porous media system, this work 108 

also aims to investigate how inexpensive and effective time domain reflectometry (TDR) could 109 

be used as tool for early detection of CO2 migration in an engineered CO2 storage reservoir.  110 

2 Methodology 111 

The laboratory experiment was designed to monitor the CO2 level in porous media such as silica 112 

sand, limestone and basalt. The characteristics of the samples used are described in Table 1. The 113 

relationship between geo-electrical properties, i.e., bulk electrical conductivity and bulk 114 

dielectric permittivity (σb and εb) and water saturation (Sw) makes it possible to monitor the 115 

amount of CO2 in the storage reservoir (Knight 1991, Abidoye and Das 2015a). Geological 116 

conditions of CO2 storage reservoirs, i.e., at high pressure and temperature relevant to geological 117 

conditions, are to be mimicked in the experiments. The effects of various parameters such as 118 

pressure, temperature, salt types, salt concentration, pH and porous material on the geo-119 

electrical monitoring performance were investigated.  120 

Geo-electrical measurement techniques made use of locally fabricated three-pin time domain 121 

reflectometry (TDR) probe and measured both dielectric permittivity and electrical conductivity, 122 



simultaneously. TDR can measure electrical parameters simultaneously and was employed to 123 

acquire in-situ laboratory experimental data on σb and εb¸ for CO2-brine-porous media system in 124 

analogy to geological CO2 sequestration in brine aquifer. In-situ experimental data acquired by 125 

the TDR were automatically transferred to the data acquisition system (CR10X datalogger, 126 

Campbell Scientific Ltd, Shepshed, UK). 127 

2.1 Materials and Methods 128 

This work investigated three unconsolidated sand samples: silica sand (Minerals Marketing 129 

Company, Cheshire, UK), basalt sand (Aqua Maniac, Delaware, USA) and carbonate sand 130 

(limestone) (Tarmac Buxton Lime and Cement, Buxton, UK). The physical properties such as 131 

porosity, density, permeability, and average particle size of each mentioned porous materials 132 

were determined experimentally and are listed in Table 1. SEM (Zeiss 1530VP) images were 133 

taken before the experiment to examine surface morphology and roughness of the porous 134 

materials used. As shown in Figure 1, basalt sand has hexagonal shape; limestone has round 135 

shape while silica sand is more angular. All the sand materials were washed with tap/deionised 136 

water to remove excessive clay content. 137 

Table 1 Characteristics of the porous media used in the experiments 138 

Parameters     Silica Sand     Carbonate sand        Basalt Sand 139 

Porosity (%)        39±0.25   40±0.30  42±0.30 140 

Intrinsic permeability (mD)     84±0.60   50±0.20  80±0.30 141 

Average particle size (µm)      968±253   1147±270  1016±296 142 

 143 



   144 

Fig. 1 Scanning electron microscope (SEM) images of: (a) Basalt; (b) Limestone; and (c) 145 
Silica sand particles  146 

 147 

 148 

2.2 Set-up of the Experimental Rig  149 

The time domain reflectometry (TDR) equipment consists of three-pin probes which are held 150 

together with high temperature polytetrafluoroethylene (PTFE) that can withstand high pressure 151 

and temperature experimental conditions. The TDR probes cable was connected to a multiplexer 152 

that was attached to TDR100 reflectometer (Campbell Scientific Ltd, Shepshed, UK) and 153 

connected to CR10X datalogger (Campbell Scientific Ltd, Shepshed, UK). The 12V and 50 Hz 154 

dual rail power supply (Rapid Electronics Ltd, Essex, UK) supplied power to the CR10X 155 

datalogger. The data-acquisition system was connected to the desktop computer into which data 156 

were stored automatically from the TDR probes that were inserted into the porous material 157 

during the experiment. Before the start of any experiment, the TDR device was calibrated using 158 

Campbell Scientific Instruction manual and the acquired readings from the calibration were used 159 

in developing the program. This program was used by the TDR 100 reflectometer to 160 

communicate with the datalogger. Figure 2 shows a schematic diagram of the experimental rig 161 

used in this work. The pressure transducers (PTs) and the time domain reflectometry (TDR) 162 

probe were attached to the centre of the stainless steel cell (porous medium holder). The PTs 163 

measured the in-situ system pressure while the TDR measured the geo-electrical properties of 164 

a b c 



the saturated sand. The stainless steel chamber holding the saturated porous material was 165 

positioned in the heating cabinet having PID temperature controller (West Control Solutions, 166 

Brighton, UK) to regulate the system temperature. The steel sample holder had dimensions of 4 167 

cm height and 10 cm diameter with top and bottom end-pieces that were made of stainless steel. 168 

The inner part of the top end piece was overlain with hydrophobic polytetrafluoroethylene, 169 

PTFE (0.1 µm) and the bottom end piece with hydrophilic nylon (1 µm). The membranes were 170 

obtained from Porvair Filtration Group Ltd (Hampshire, UK). It has been reported that a 171 

hydrophilic membrane minimizes scCO2 escape from the bottom of the sample holder, while 172 

hydrophobic membrane was used to reduce the inflow of water into the scCO2 pump (Abidoye 173 

and Das 2015a).  174 

 175 

Fig. 2 A schematic diagram of the experiment rig 176 

 177 

Moreover, a metering valve (Swagelok, Kings Langley, UK) was used for smooth flow control 178 

of water/brine from the experimental rig into the water collector situated on the measuring 179 

weigh balance. Back pressure regulator (BPR) (Equilibar, Fletcher, USA) was also connected to 180 



the system and this maintained the system by stabilizing the outflow of the water/brine at the set 181 

pressure. The back pressure regulator was loaded with nitrogen gas from a nitrogen cylinder 182 

(BOC gases, Leicester, UK). 183 

 184 

2.3 Experimental Methods 185 

All experiments were conducted in a fabricated stainless steel of 4 cm height and 10 cm 186 

diameter. The sample holder was placed on the bottom end piece with overlaying of the 187 

hydrophilic membrane and tightens the bolt firmly to avoid leakage. Brine water is prepared in 188 

the laboratory by mixing distilled water and sodium chloride salt obtained from Fisher Scientific 189 

(Loughborough, UK). For other salt, namely, magnesium chloride (Fisher Scientific, 190 

Loughborough, UK) used in this work, a similar procedure was observed. Equation (1) was used 191 

for preparing solutions of different brine concentrations. The salt concentrations used in this 192 

work were 0% w/w, 0.5 %w/w and 2 % w/w, respectively. 193 

%𝑤𝑤 𝑤𝑤⁄ = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑜𝑜𝑛𝑛

× 100         (1) 194 

Small quantity of brine water was poured into the domain and the measured sand was passed 195 

through a metal sieve of appropriate size. Same quantity of sand (500g) was used in all the 196 

experiments. Thereafter, more brine water was added to make the porous media saturated. It was 197 

ensured that the sand was well compacted and the cell was covered by the stainless steel top end 198 

piece overlain with the hydrophobic membrane. All the joint bolts were tightened very well to 199 

avoid any leakage during the experiment. Before starting each experiment, the pH of brine water 200 

collected from saturated porous media was measured with a pH meter (Jenway, Fisher 201 

Scientific, Loughborough). For example, the initial pH of saturated basalt sand is 6.5±0.2. For 202 

the experiments at different pH, i.e., pH 12, the pH of the saturated rock media was adjusted to 203 

pH 12.0±0.2 using 0.02 M NaOH. Carbon dioxide (99.9% purity) used in this work was 204 



purchased from BOC gases (Leicester, UK). The ScCO2 fluid pump (Teledyne Isco, Lincoln 205 

NE) was set to refill mode and filled with liquid CO2 from the CO2 cylinder by opening valve 1 206 

(V-1; Figure 1). Afterward, V-1 was closed and the ScCO2 fluid pump was set to the 207 

experimental pressure. The heater was switched on and also set at the experimental temperature. 208 

When temperature and pressure reached the predetermined values, i.e., when there was 209 

equilibrium in experimental condition (both temperature and pressure), V-3 and V-6 were 210 

opened (see Figure 1) and the displacement of brine began by CO2. The experiment was stopped 211 

when there was no more brine coming out of the porous media sample in the sample holder 212 

(steel cell). Then, the porous media sample was removed from the cell for subsequent 213 

experiment. The sand removed from the cell was recycled by washing it with large volume of 214 

tap or deionized water. Table 2 shows the experimental conditions that mimic the geological 215 

conditions in which CO2 is being stored. 216 

Table 2 Experimental conditions that were utilized in this work 217 

S/n   Pressure (bar)          Temperature (0C)        CO2 Phase 218 

1    65    23  Liquid CO2 219 

2    75    23  Liquid CO2 220 

3    75    35  ScCO2 221 

4    90    35  ScCO2 222 

 223 



3 Results and Discussion 224 

3.1 Electrical Conductivity and Dielectric Permittivity 225 

Electrical conductivity and dielectric permittivity have functional relationships with water 226 

saturation (Plug et al. 2007; Abidoye et al. 2014; Abidoye and Das 2015a) and these can be used 227 

in monitoring the quality of fluids in the reservoir. 228 

Our study focused on the effects of salt types, pH, porous material, salinity, pressure and 229 

temperature on the geoelectrical characteristics of CO2-brine-porous media system. The results 230 

of various factors investigated in connection with the σb-S and εb-S relationships for scCO2-231 

brine-porous media system are discussed below.  232 

Figures 3a and 3b show that the experiments are repeatable under different injection conditions 233 

corresponding to both liquid CO2 and supercritical CO2. The figures show results from two 234 

separate measurements for σb-S and εb-S relationships under similar conditions for both liquid 235 

CO2 and scCO2. The figures further show that the εb-S and σb-S relationships are functions of 236 

water saturation as indicated by the fact that they decrease as the water saturation reduces. For 237 

the σb-S relationship (Figure 3a), the decrease in σb-S relationship might be as a result of water 238 

being a better conductor of electricity than CO2. For the case of εb-S relationship (Figure 3b), 239 

the decrease in permittivity and water saturation trend should be connected with the high 240 

permittivity of water  compared to CO2 (Drnevich et al. 2001).  241 



 

(a) 

 

(b) 

Fig. 3 Repeatability plot for (a) σb–S and (b) εb–S relationships for liquid CO2 / ScCO2 – water - carbonate sand 242 
system 243 

 244 

3.2 Effect of pH on Geo-electrical Properties 245 
It has been reported that pH has effects on mineralisation (Druckenmiller and Maroto-Valer 246 

2005; Liu and Maroto-Valer 2011). High pH is considered to speed up the mineralisation and it 247 

can be expected that this will affect the geoelectrical properties of the system. However, our 248 

work shows that there is no significant effect of pH. This is probably owing to the short time of 249 

the experiment during which significant mineralisation might not have occurred. Presumably, if 250 

the experiment was left for longer period of time, there might be a significant effect of 251 

mineralization and change in pH on the measured geoelectrical characteristics of CO2-water-252 

porous media system. Figures 4a, b display the results of pH effects on the σb-S and εb-S 253 

relationships in basalt sand. At different pH values, e.g., 6.5 and 12, pH does not have any 254 

significant effect on the εb-S and σb-S relationships. Although, according to Abidoye and Das 255 

(2015b), pH has effect on conductivity under static conditions, when dissolution is higher, but 256 

the flow condition in this work does not reveal similar effect.  257 
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(a) 

  

(b) 

 
Fig. 4 Effect of pH on (a) σb–S and (b) εb–S relationships for CO2–water–basalt sand system 258 

 259 

3.3. Effect of Salt Concentration 260 

All saline aquifers contain brackish water and the amounts of salt concentration in them vary 261 

depending on their locations, i.e., concentrations between 0.5 and 153 g/L are found in most of 262 

the deep saline aquifers (Abidoye et al. 2014; Abidoye and Das 2015a; Buttinelli et al. 2011). 263 

The effects of salt concentration on geoelectrical properties and water saturation (σb-S and εb-S 264 

relationships) are examined in this study. The σb-S and εb-S relationships at different salt 265 

concentrations in silica sand are shown in Figures 5a, b. As expected, σb and εb increase with the 266 

increase in salt concentration. The increases in σb and εb values correspond to the increase in 267 

ions as salinity increases. This trend is more significant in the σb-S relationships (Figure 5a). 268 

However, for the εb-S curves (Figure 5b), there is only a slight change with different salt 269 

concentrations. The sensitivity of σb-S relationship to change in salt concentration can be 270 

attributed to the increase in ions in aqueous solution which raise the conductivity of the system. 271 

Furthermore, the figures reveal that the salt concentration is an important factor when compared 272 
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to distilled water having less aqueous ions. The σb-S relationship increases when the 273 

concentration of brine is raised to 0.5 %w/w (NaCl) and the trend further increases when the 274 

concentration of the brine increases to 2 %w/w (NaCl). The results are similar to the results 275 

from Abidoye and Das (2015a), but they limited their work to σb-S relationships only. The 276 

current work focuses on simultaneous measurement of σb-S and εb-S relationship in porous 277 

materials.  278 

 

(a) 

 

(b) 

Fig. 5 (a) σb–S and (b) εb–S relationships at different salt concentrations for liquid CO2 in silica sand 279 

 280 

3.4 Effect of Salt Types 281 
The effect of salt types on σb-S and εb-S relationships in silica sand was also studied. Figures 6a 282 

and 6b display the influences of salt types on geoelectrical properties (σb, εb) and water 283 

saturation (Sw). It can be deduced that salt types do not have any significant effects on 284 

geoelectrical properties (σb, εb) and water saturation relationships when similar concentrations of 285 

different salt types (NaCl and MgCl2) are used. This is clear from the figures; the only shifts in 286 

the curve occur when compared with distilled water. Thus, different salt types have similar 287 

effects on the σb-S and εb-S relationships. 288 
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(a) 

  

(b) 

Fig. 6 (a) σb–S and (b) εb–S relationships for different salt types for liquid CO2 in silica sand 289 
 290 

3.5 Effect of Temperature 291 

In the earth’s crust, pressure and temperature gradually increase with depth. The geothermal 292 

gradient and hydrostatic pressure vary depending on the locations. Generally, CO2 is stored at 293 

the depth of 800 to 1000 metres and at this depth the pressure is about 75 bar and the 294 

temperature is about 34oC (Abidoye et al., 2014). At these conditions, CO2 is in supercritical 295 

phase. In this work, the impact of temperature on the σb-S and εb-S relationship was investigated 296 

and the results are shown in Figures 7a and 7b, respectively. It is found that the σb and εb 297 

increase as the temperature increases in basalt sand system. Similar work on the effect of 298 

temperature on geoelectrical properties and water saturation relationship has been carried out on 299 

silica sand and limestone sand (Abedian and Baker 2008; Or and Wraith 1999; Abidoye and Das 300 

2015a) but the current work utilises basalt sand because it is assumed that mineralisation takes 301 

place in basalt sand more rapidly than silica and carbonate sand media (Petrik and Mabee 2011). 302 

This may be the reason that Snæbjörnsdóttir et al. (2014) explored the permanency and potential 303 

of storing significant amount of CO2 in basaltic rocks during carbon sequestration (Petrik and 304 
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Mabee 2011; Matter and Kelemen 2009; Snæbjörnsdóttir et al. 2014; Snæbjornsdottir and 305 

Gislason  2016).  306 

The result in Figure 7a shows that an increase in temperature tends to increase the electrical 307 

conductivity (σb). This is possibly due to increase in the mobility of ions or the dissolution of the 308 

medium at higher temperature. Also, increase in temperature results in increase in permittivity 309 

(εb) and this can be attributed to the release of bound water, as claimed by Or and Wraith (1999). 310 

The same trend for εb-S has been observed by Drnevich et al. (2001) for clay but they observed 311 

decrease in dielectric permittivity with increasing temperature in sandstone (Drnevich et al. 312 

2001; Or and Wraith, 1999).  313 

 

(a) 

 

(b) 

Fig. 7 Effects of temperature on (a) σb–S and (b) εb–S relationships for CO2–water–basalt sand system  314 

 315 

3.6 Effect of Pressure 316 

It is paramount to understand the effect of pressure on the geoelectrical characteristics of scCO2-317 

water-sand system, because geological carbon sequestration takes place at different depths. 318 

Different injection pressures that correspond to varying injection depths were used in the 319 
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laboratory to simulate these different injection conditions. Figures 8a and 8b show the 320 

relationships between geoelectrical properties (εb and σb) and water saturation. The results 321 

revealed that εb-S and σb-S relationships increase slightly with increasing pressure especially at 322 

higher water saturation (80% and above) for σb-S relationships; and 90% and above for εb-S 323 

relationships.  324 

 325 

 

(a) 

 

(b) 

Fig. 8 Effects of pressure on (a) σb –S and (b) εb–S relationships in ScCO2-water-silica sand system  326 

 327 
 328 

3.7 Effect of Rock Type 329 

Figures 9a and 9b show the effect of porous materials on εb-S and σb-S relationships. It can be 330 

deduced that the type of rock present in the porous rock body has a noticeable effect on both the 331 

σb-S and εb-S curves. Abidoye and Das (2015a) attribute the high conductivity in the (carbonate 332 

sand) limestone-water-CO2 system to the dissolution of carbonate sand in water with subsequent 333 

increase in concentration of dissolved ions (Plan 2005; Assayag et al. 2009). Figures 9a and 9b 334 
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show the σb-S and εb-S relationships for different rock types (i.e., basalt, carbonate and silica 335 

sand). In the σb-S relationship, the curve is highest than others for limestone, except at the start 336 

of the experiment. At the start of the experiment, basalt sand is shown to have higher σb-S curve 337 

(i.e., at saturation of 1) than carbonate and silica sand, respectively. The explanation for this is 338 

that at the start of the experiment (Sw=1), less limestone has dissolved, thus the limestone 339 

presence does not affect σb-S at this time. After some time, more dissolution has occurred. Since 340 

dissolution of carbonate is higher than others, electrical properties may be more affected in 341 

carbonate than others. This was also observed by Abidoye and Das (2015a) but their work was 342 

limited to only carbonate and silica sand. The current study utilises three porous materials, i.e., 343 

basalt, carbonate and silica sand. It is concluded that different porous materials behave 344 

differently on geoelectrical properties and water saturation relationships.  345 

 

(a) 

 

(b) 

Fig. 9 Effect of porous media samples on (a) σb–S and (b) εb–S relationships in scCO2– water silica/limestone/ 346 

basalt sand system 347 
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3.8 Regression of the Experimental Result 348 

This section discusses the results of the geoelectrical parameters (σb and εb) for scCO2-349 

water/brine system. An attempt was made to fit the experimental results to Archie’s law 350 

(Archie 1942), and thus, predict the bulk conductivity σb in the silica sand, basalt sand and 351 

limestone. Archie’s equation can be written in terms of conductivity as follows:  352 

𝜎𝜎𝑏𝑏 = 𝑆𝑆𝑛𝑛

∅−𝑚𝑚
𝜎𝜎𝑤𝑤           (2) 353 

where,  354 

S = water saturation, ∅ = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝜎𝜎𝑤𝑤 = brine conductivity,  𝜎𝜎𝑏𝑏 = bulk conductivity,  355 

m = cementation exponential, n = saturation exponential.    356 

The equation can be used to fully predict water saturation (S) from porosity  (∅) , brine 357 

conductivity (𝜎𝜎𝑤𝑤) and bulk conductivity (𝜎𝜎𝑏𝑏) measurements. Also, adjustable parameters m 358 

and n are the Archie’s empirical parameters, which depend on formation characteristics and are 359 

used for the optimization of the model (Kennedy and Herrick 2012). From the silica, basalt and 360 

carbonate sand used in this work, the exponents m and n were determined from the 361 

experiments. Equation (2) was linearized using logarithm rules to form Eqs. (3) and (4). XLfit 362 

was then used to solve for m and n exponents. 363 

𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎𝑏𝑏 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∅ = 𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎𝑤𝑤 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛               (3) 364 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚∅ = 𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎𝑏𝑏 − 𝑙𝑙𝑙𝑙𝑙𝑙𝜎𝜎𝑤𝑤             (4) 365 

Table 3 shows the values of m and n exponents using Microsoft XLfit. 366 

 367 

 368 

 369 



Table 3 Archie’s (1942) exponents and correlation coefficients (R2) for each of the porous material 370 
tested 371 

 372 

Porous media sample  n   m   R2 373 

Limestone    1.1   2.0   0.87 374 

Silica sand    0.8   1.7   0.75 375 

Basalt sand    0.9   1.8   0.70 376 

The exponent values in Table 3 are in good agreement with the reports from the literature. 377 

Values of 1.0 to 2.2 were reported for both m and n exponents in carbonates and sandstones 378 

(Scudiero et al. 2012; Wang et al. 2014). According to Abidoye and Das (2015a), the values of 379 

m for sandstone and carbonate are 1.2 and 1.4, respectively. Also, n has the value of 1.2 and 1.5 380 

for silica sand and carbonate sand, respectively (Abidoye and Das 2015a). On the other hand, 381 

Scudiero et al. (2012) give the range between 1.3 to 2.5 for the values of m, and n value to be 382 

2.0. In addition, Liu and Moysey (2012) give the range between 0.7 and 1.96 for n value. It can 383 

be concluded that the exponent values for m and n from the model generated from our 384 

experiment is similar to others.  385 

Additionally, the bulk dielectric permittivity (εb) is a function of various parameters, such as 386 

water saturation (S), pressure (P), temperature (T), and the initial value of εb (i). The initial value 387 

of εb is the value of dielectric permittivity of porous materials saturated with water before 388 

injection of CO2. This value of εb is very crucial, because it shows the original state of water 389 

saturated medium, which eventually determines the εb-S profile. Therefore,  𝜀𝜀𝑏𝑏 can be written 390 

as: 391 

𝜀𝜀𝑏𝑏 = 𝑓𝑓(𝑆𝑆,𝑃𝑃,𝑇𝑇, 𝑖𝑖)                (5) 392 

The Minitab statistical software (Microsoft 2016) was used to determine dielectric permittivity 393 

(εb). The nonlinear regression polynomial model is shown as Eq. (6): 394 



𝜀𝜀𝑏𝑏 = −47.11 − 7.69𝑆𝑆 − 0.0057𝑃𝑃 + 1.156𝑇𝑇 + 0.237𝑖𝑖 + 47.94𝑆𝑆2    (6) 395 

The results of the regression using Eq. (6) are shown in Figures 10a and 10b. The figures show 396 

that the model is in agreement with the observed values because they capture most of the data 397 

accurately. It can be hypothesised that the nonlinear regression presented in this work using fit 398 

regression model is very reliable in predicting εb-S relationship for two-phase flow in porous 399 

media. This model can be used to predict the monitoring process of CO2 sequestration. 400 

 401 

 

(a) 

 

(b) 

Fig. 10 Prediction of permittivity values in (a) CO2-water-basalt and (b) CO2-water-limestone systems at 75bar and 402 

350C using non-linear regression  403 

 404 

4. Conclusions 405 

Monitoring CO2 in geological storage reservoir is crucial in the context of carbon capture and 406 

sequestration. To this end, this work explored the effects of pressure, temperature, salt types, 407 
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salinity, pH and porous media on the geo-electrical characteristics of the CO2-water-porous 408 

media flow system, with a view to enhancing effective subsurface monitoring of the system. 409 

Time domain reflectometry (TDR) method was used for simultaneous analysis of the in-situ 410 

characteristics of the bulk dielectric permittivity and electrical conductivity for CO2-water-411 

porous media system, for liquid and supercritical CO2 in silica sand, basalt sand and carbonate 412 

sand. The bulk electrical conductivity and dielectric permittivity decrease as water saturation 413 

decreases in the porous media. Results show that an increase in temperature, pressure and 414 

salinity tend to increase the bulk electrical conductivity (σb) and permittivity (εb) relationships 415 

with in-situ water saturation. On the other hand, pH and salt types do not show any significant 416 

effect on the geoelectrical parameters (σb, εb). Effects of porous materials on both the bulk 417 

electrical conductivity and permittivity curves show that the profile values are highest in 418 

limestone medium, followed by basalt and then silica sand, under similar conditions. This effect 419 

can be attributed to the different chemical compositions contained in silica, carbonate and basalt 420 

sand media. Archie equation using XLfit (Microsoft 2016) was used to model the experimental 421 

results and the outputs were in good agreement with previous studies. In addition, a polynomial 422 

fit developed in this study took into consideration the other parameters such as pressure, 423 

temperature and initial bulk permittivity. The fit regression model shows a good reliability in the 424 

prediction of geoelectrical characteristics of the system during the monitoring process of the 425 

geological CO2 sequestration. 426 

 427 
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