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Abstract. We use a novel transformation of the reduced Ostrovsky equation
to the integrable Tzitzéica equation and prove global existence of small-norm
solutions in Sobolev space H

3(R). This scenario is an alternative to finite-time

wave breaking of large-norm solutions of the reduced Ostrovsky equation. We
also discuss a sharp sufficient condition for the finite-time wave breaking.

1. Introduction. The reduced Ostrovsky equation

(ut + uux)x = u, (1)

is the zero high-frequency dispersion limit (β → 0) of the Ostrovsky equation

(ut + uux + βuxxx)x = u. (2)

The evolution equation (2) was originally derived by Ostrovsky [17] to model small-
amplitude long waves in a rotating fluid of finite depth. Local and global well-
posedness of the Ostrovsky equation (2) in energy space H1(R) was studied in
recent papers [10, 12, 21, 26].

Corresponding rigorous results for the reduced Ostrovsky equation (1) are more
complicated. Local solutions exist in Sobolev space Hs(R) for s > 3

2 [20]. But

for sufficiently steep initial data u0 ∈ C1(R), local solutions break in a finite time
[2, 8, 14] in the standard sense of finite-time wave breaking that occurs in the
inviscid Burgers equation ut + uux = 0.

However, a proof of global existence for sufficiently small initial data has remained
an open problem up to now. In a similar equation with a cubic nonlinear term (called
the short-pulse equation), the proof of global existence was recently developed with
the help of a bi-infinite sequence of conserved quantities [18]. These global solutions
for small initial data coexist with wave breaking solutions for large initial data [13].
Global existence and scattering of small-norm solutions to zero in the generalized
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short-pulse equation with quartic and higher-order nonlinear terms follow from the
results of [20].

Rather different sufficient conditions on the initial data for wave breaking were
obtained recently in [9] on the basis of asymptotic analysis and supporting numerical
simulations (similar numerical simulations can be found in [2]). It was conjectured
in [9] that initial data u0 ∈ C2(R) with 1 − 3u′′0(x) > 0 for all x ∈ R generate
global solutions of the reduced Ostrovsky equation (1), whereas a sign change of
this function on the real line inevitably leads to wave breaking in finite time.

This paper is devoted to the rigorous proof of the first part of this conjecture,
that is, global solutions exist for all initial data u0 ∈ H3(R) such that 1−3u′′0(x) > 0
for all x ∈ R. Note here that if u0 ∈ H3(R), then u0 ∈ C2(R), hence the function
1 − 3u′′0(x) is continuous for all x ∈ R and approaches 1 as x → ±∞. The second
part of the conjecture is also discussed and a weaker statement in line with this
conjecture is proven.

Integrability of the reduced Ostrovsky equation was discovered first by Vakhnenko
[23]. In a series of papers [16, 24, 25], Vakhnenko, Parkes and collaborators found
and explored a transformation of the reduced Ostrovsky equation to the integrable
Hirota–Satsuma equation with reversed roles of the variables x and t. As a partic-
ular application of the power series expansions [19], one can generate a hierarchy
of conserved quantities for the reduced Ostrovsky equation (1). This hierarchy
includes the first two conserved quantities

E0 =

∫

R

u2dx, E−1 =

∫

R

[

(∂−1
x u)2 +

1

3
u3
]

dx, (3)

where the anti-derivative operator is defined by the integration of u(x, t) in x subject
to the zero-mass constraint

∫

R
u(x, t)dx = 0.

Higher-order conserved quantities E−1, E−2, and so on involve higher-order anti-
derivatives, which are defined under additional constraints on the solution u. Hence,
these conserved quantities are not related to the Hs-norms for positive s and play
no role in the study of global well-posedness of the reduced Ostrovsky equation (1)
in Sobolev space Hs(R) for s > 3

2 . Note in passing that the global well-posedness

of the regular Hirota–Satsuma equation in the energy space H1(R) was considered
recently in [6].

However, a different transformation has recently been discovered for the reduced
Ostrovsky equation (1). This transformation is useful to generate a bi-infinite se-
quence of conserved quantities, which are more suitable for the proof of global
existence.

The alternative formulation of the integrability scheme for the reduced Ostrovsky
equation starts with the work of Hone and Wang [7], where the reduced Ostrovsky
equation (1) was obtained as a short-wave limit of the integrable Degasperis–Procesi
equation. As a result of the asymptotic reduction, these authors obtained the fol-
lowing Lax operator pair for the reduced Ostrovsky equation (1) in the original
space and time variables:

{

3λψxxx + (1− 3uxx)ψ = 0,
ψt + λψxx + uψx − uxψ = 0,

(4)

where λ is a spectral parameter. Note that the function 1 − 3uxx arises naturally
in the third-order eigenvalue problem (4) in the same way as the function m =
u − uxx arises in another integrable Camassa–Holm equation to determine if the
global solutions or wave breaking will occur in the Cauchy problem [4, 5].
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More recently, based on an earlier study of Manna & Neveu [15], Kraenkel et
al. [11] found a transformation between the reduced Ostrovsky equation (1) and
the integrable Bullough–Dodd equation, which is also widely known as the Tzitzéica
equation after its original derivation in 1910 [22]. In new characteristic variables Y
and T (see section 2), the Tzitzéica equation can be written in the form,

∂2V

∂T∂Y
= e−2V − eV . (5)

Note that the Tzitzéica equation is similar to the sine–Gordon equation in char-
acteristic coordinates, which arises in the integrability scheme of the short-pulse
equation [18]. Similarly to the sine–Gordon equation, the Tzitzéica equation has
a bi-infinite sequence of conserved quantities, which was discovered in two recent
and independent works [1, 3]. Among those, we only need the first two conserved
quantities

Q1 =

∫

R

(

2eV + e−2V − 3
)

dY, Q2 =

∫

R

(

∂V

∂Y

)2

dY, (6)

which were obtained from the power series expansions [1]. The conserved quantities
(6) are related to the conserved quantities of the reduced Ostrovsky equation (1) in
original physical variables

E1 =

∫

R

[

(1− 3uxx)
1/3 − 1

]

dx, E2 =

∫

R

(uxxx)
2

(1− 3uxx)7/3
dx. (7)

Note that the conserved quantities (7) also appeared in the balance equations de-
rived in [11].

In Section 2, we shall use the conserved quantities E0 in (3) and Q1, Q2 in (6), as
well as the reduction to the Tzitzéica equation (5), to prove our main result, which
is,

Theorem 1. Assume u0 ∈ H3(R) such that 1−3u′′0(x) > 0 for all x ∈ R. Then, the
reduced Ostrovsky equation (1) admits a unique global solution u ∈ C(R+, H

3(R)).

It is natural to expect that the finite-time wave breaking occurs for any u0 ∈
H3(R) such that 1 − 3u′′0(x) changes sign for some x ∈ R. As shown in [9] in a
periodic setting, this criterion of wave breaking is sharper than the previous criteria
of wave breaking in [8, 14]. Although we are not able to give a full proof of this
sharp criterion in the present work, we shall prove the following weaker statement
in Section 3:

Theorem 2. Assume that u0 ∈ H3(R) is given and there is a finite interval
[X−, X+] and a point X0 ∈ (X−, X+) such that

1− 3u′′0(x) < 0, x ∈ (X−, X+), (8)

and

u′0(x) < 0, x ∈ (X−, X0), u′0(x) > 0, x ∈ (X0, X+), (9)

whereas 1 − 3u′′0(x) ≥ 0 for all x ≤ X− and x ≥ X+. Then, a local solution
u ∈ C([0, t0), H

3(R)) of the reduced Ostrovsky equation (1) breaks in a finite time
t0 ∈ (0,∞) in the sense

lim sup
t↑t0

‖u(·, t)‖H3(R) = ∞

if ux(x−(t), t) < 0 and ux(x+(t), t) > 0 hold for all t ∈ [0, t0) along the character-
istics x = x±(t) originating from x±(0) = X±.
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Figure 1. An example of the initial condition u0(x) = xe−ax2

with a = 0.1, where positions of X−, X+, and X0 are shown.

A prototypical example of the initial data for the reduced Ostrovsky equation

on the infinite line is the first Hermite function u0(x) = xe−ax2

, where a > 0 is a
parameter. A straightforward computation of the maximum of u′′0(x) shows that
u′′0(x) <

1
3 for all x ∈ R if a ∈ (0, a0), where

a0 =
e3−

√
6

108(3−
√
6)

≈ 0.0292.

In this case, Theorem 1 implies global existence of solutions for such initial data.
When a > a0, condition (8) is satisfied. In addition, u0(x) has a global minimum
at x = − 1√

2a
so that condition (9) is satisfied for a > a∗ = e

72 ≈ 0.0378. (Note that

a∗ > a0.) Theorem 2 implies wave breaking in a finite time provided that additional
constraints are satisfied, that is, ux(x−(t), t) < 0 and ux(x+(t), t) > 0 hold for all
times before the wave breaking time along the characteristics x = x±(t) originating
from x±(0) = X±. Although we strongly believe that these additional constraints
as well as condition (9) are not needed for the statement of Theorem 2, we were not
able to lift out these technical restrictions.

The initial function u0(x) = xe−ax2

for a > a∗ is shown on Fig. 1, where the
points X−, X+, and X0 introduced in Theorem 2 are also shown.

2. Proof of Theorem 1. We introduce characteristic coordinates for the reduced
Ostrovsky equation (1) [9, 14, 23]:

x = X +

∫ T

0

U(X,T ′)dT ′, t = T, u(x, t) = U(X,T ). (10)

The coordinate tranformation is one-to-one and onto if the Jacobian

φ(X,T ) = 1 +

∫ T

0

UX(X,T ′)dT ′, (11)
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which is positive for T = 0 because φ(X, 0) = 1, remains positive for all (X,T ) ∈
R× [0, T0], where T0 > 0 is the local existence time.

We note that the original equation (1) yields the relation

u =
UXT

φ
=
φTT

φ
, (12)

whereas the transformation formulas (10) and (11) yield the relations

ux =
UX

φ
=
φT

φ
, (13)

and

uxx =
1

φ

(

UX

φ

)

X

=
φTXφ− φXφT

φ3
. (14)

Next, in accordance with [11], we introduce the variable

f = (1− 3uxx)
1/3 . (15)

If u satisfies the reduced Ostrovsky equation (1), then f satisfies the balance equa-
tion

ft + (uf)x =
[u− uxt − (uux)x]x

f2/3
= 0 . (16)

In characteristic coordinates (10), we set f(x, t) = F (X,T ), use equation (13), and
rewrite the balance equation (16) in the equivalent form

(Fφ)T = 0 ⇒ F (X,T )φ(X,T ) = F0(X), (17)

where F0(X) = F (X, 0). Using equations (14) and (15), we obtain the evolution
equation for F (X,T ):

∂2

∂T∂X
log(F ) = − ∂2

∂T∂X
log(φ) =

1

3
φ(F 3 − 1) =

1

3
F0(X)(F 2 − F−1). (18)

We shall now consider the Cauchy problem for the reduced Ostrovsky equa-
tion (1) with initial data u0 ∈ H3(R). By the local well-posedness result [20],
there exists a unique local solution of the reduced Ostrovsky equation in class
u ∈ C([0, t0], H

3(R)) for some t0 > 0. By Sobolev embedding of H3(R) into C2(R),
the function f0(x) := (1−3u′′0(x))

1/3 is continuous, bounded, and satisfies f0(x) → 1
as |x| → ∞.

To prove Theorem 1, we further require that f0(x) > 0 for all x ∈ R, which means
from the above properties that infx∈R f0(x) > 0. Because x = X for t = T = 0, we
have F0 ∈ C(R) such that infX∈R F0(X) > 0. In this case, the transformation from
X to Y defined by

Y := −1

3

∫ X

0

F0(X
′)dX ′ (19)

is one-to-one and onto for all X ∈ R, because the Jacobian of the transformation is
− 1

3F0(X) < 0 and F0(X) → 1 as |X| → ∞. The change of variable,

F (X,T ) = e−V (Y,T ), (20)

transforms the evolution equation (18) to the integrable Tzitzéica equation (5).
We can now transfer the well-posedness result for local solutions of the reduced

Ostrovsky equation (1) to local solutions of the Tzitzéica equation (5).
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Lemma 1. Assume u0 ∈ H3(R) such that 1− 3u′′0(x) > 0 for all x ∈ R. Let

V0(Y ) := −1

3
log(1− 3u′′0(x)), Y := −1

3

∫ x

0

(1− 3u′′0(x
′))1/3dx′.

There exists a unique local solution of the Tzitzéica equation (5) in class V ∈
C([0, T0], H

1(R)) for some T0 > 0 such that V (Y, 0) = V0(Y ).

Proof. We rewrite transformations (15) and (20) into the equivalent form,

uxx(x, t) =
1

3

(

1− f3(x, t)
)

=
1

3

(

1− e−3V (Y,T )
)

.

The inverse of this transformation is

V (Y, T ) = −1

3
log (1− 3uxx(x, t)) .

For local solutions of the reduced Ostrovsky equation (1) in class u ∈ C([0, t0],
H3(R)), we have uxx ∈ C([0, t0], H

1(R)) for some t0 > 0 and uxx → 0 as |x| → ∞.
We have further assumed that supx∈R

u′′0(x) <
1
3 , which implies that there is T0 ∈

(0, t0) such that supx∈R
uxx(x, t) <

1
3 for all t ∈ [0, T0]. Under the same condition,

the transformation from X to Y is one-to-one and onto for all X ∈ R. Therefore,
V is well-defined for all (Y, T ) ∈ R × [0, T0] and V (Y, T ) → 0 as |Y | → ∞. By
construction, V is a solution of the Tzitzéica equation (5) and V (Y, 0) = V0(Y ). It
remains to show that V is in class V ∈ C([0, T0], H

1(R)).
The variables V and uxx are related by V = uxxG(uxx), where

G(uxx) :=
log(1− 3uxx)

(−3uxx)
.

Both the function G and its first derivative G′ remain bounded in L∞ norm as long
as

sup
x∈R

uxx(x, t) <
1

3
,

which is satisfied for all t ∈ [0, T0]. Note that G(z) is analytic in z if |z| < 1
3 , but

we only need boundedness of G(z) and G′(z), which is achieved if z < 1
3 .

Next recall the transformations (10) and (19) for any functionW (Y, T ) = w(x, t),

‖W (·, T )‖2L2 =

∫

R

W 2(Y, T )dY =
1

3

∫

R

W 2(Y, T )F0(X)dX

=
1

3

∫

R

w2(x, t)F0(X)

φ(X,T )
dx =

1

3

∫

R

w2(x, t)f(x, t)dx.

Therefore,

‖V (·, T )‖L2 ≤ 1√
3
‖G(uxx(·, t))‖L∞‖f(·, t)‖L∞‖uxx(·, t)‖L2 ,

which remains bounded as long as ‖uxx(·, t)‖L∞ and ‖uxx(·, t)‖L2 remain bounded.
Similarly, we can prove that ‖VY (·, T )‖L2 remains bounded as long as ‖uxx(·, t)‖L∞

and ‖uxxx(·, t)‖L2 remain bounded. Thus, we have V ∈ C([0, T0], H
1(R)) for some

T0 > 0.

Remark 1. The Jacobian of the transformation from (X,T ) to (x, t) is given by
(11) and controlled by the relation (13). Since φ(X, 0) = 1 and

φ(X,T ) = exp

(

∫ T

0

ux(x(X,T ), T )dT

)

, (21)
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we can see that there is T0 > 0 such that φ(X,T ) > 0 for all (X,T ) ∈ R × [0, T0].
Because

φ(X,T ) =
F0(X)

F (X,T )
= F0(X)eV (Y,T ), (22)

the condition φ(X,T ) > 0 remains true as long as V (Y, T ) remains bounded in
L∞-norm.

Lemma 2. Let V ∈ C([0, T0], H
1(R)) for some T0 > 0 be a unique local solution

of the Tzitzéica equation (5). Then, in fact, V ∈ C(R+, H
1(R)).

Proof. We shall use Q1 and Q2 in (6). The quantities are well-defined for a local
solution in class V ∈ C([0, T0], H

1(R)) and conserved in time for the Tzitzéica
equation (5), according to the standard approximation arguments in Sobolev spaces.

To be able to use Q1 for the control of ‖V (·, T )‖L2 , we note that the function
H(V ) := 2eV + e−2V − 3 is convex with H(0) = H ′(0) = 0 and

H ′′(V ) = 2eV + 4e−2V ≥ 2, V ∈ R.

Therefore, H(V ) ≥ V 2 for all V ∈ R, so that

‖V ‖2H1 = ‖V ‖2L2 + ‖VY ‖2L2 ≤ Q1 +Q2.

By a standard continuation technique, a local solution in class V ∈ C([0, T0], H
1(R))

is uniquely continued into a global solution in class V ∈ C(R+, H
1(R)).

It remains to transfer results of Lemmas 1 and 2, as well as the L2 conservation
of E0 in (3) for the proof of Theorem 1.

Proof of Theorem 1. It follows from the proof in Lemma 1 that uxx = V g(V ), where

g(V ) :=
1− e−3V

3V
.

Both the function g and its first derivative g′ remain bounded as long as V remains
bounded.

By Lemma 2, V ∈ C(R+, H
1(R)) and hence F (X,T ) > 0 for all (X,T ) ∈ R×R+.

Therefore, φ(X,T ) > 0 for all (X,T ) ∈ R× R+, so that the transformation (10) is
one-to-one and onto for all (X,T ) ∈ R × R+. Using the bounded functions g and
g′, we hence have uxx ∈ C(R+, H

1(R)).
Finally, conservation of E0 in (3) and the elementary Cauchy–Schwarz inequality,

‖ux‖2L2 ≤ ‖u‖L2‖uxx‖L2 ,

implies that u ∈ C(R+, H
3(R)). The proof of Theorem 1 is complete. �

3. Proof of Theorem 2. We utilize the characteristic coordinates (10) and con-
sider the evolution of the Jacobian φ defined by (11). Recall that φ(X, 0) = 1
whereas F (X, 0) = F0(X) = (1 − 3u′′0(X))1/3. By conservation (17), assumption
(8), and local existence in class u ∈ C([0, t0], H

3(R)), we have F (X,T ) < 0 for all
X ∈ (X−, X+) at least for small T ≥ 0, whereas F (X,T ) ≥ 0 for X ≤ X− and
X ≥ X+.

Using conservation (17) and evolution (18) for F , we obtain the evolution equa-
tion for φ(X,T ):

∂2

∂T∂X
log(φ) =

1

3
φ

(

1− F 3
0 (X)

φ3

)

. (23)
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Integrating this equation in T with the initial condition φ(X, 0) = 1, we obtain

∂φ

∂X
=

1

3
φ(X,T )

∫ T

0

φ(X,T ′)

(

1− F 3
0 (X)

φ3(X,T ′)

)

dT ′. (24)

Because the right-hand side of (24) is positive for all X ∈ (X−, X+), the function
φ(X,T ) is monotonically increasing for all X ∈ (X−, X+) at least for small T ≥ 0.
Moreover, we obtain the following inequality.

Lemma 3. Let ψ(X,T ) :=
∫ T

0
φ(X,T ′)dT ′. Under assumption (8) of Theorem 2,

we have
∂ψ

∂X
≥ 1

6
ψ2(X,T ), X ∈ (X−, X+), (25)

as long as the solution remains in class u ∈ C([0, t0], H
3(R)).

Proof. Because F0(X) < 0 for all X ∈ (X−, X+), we have from (24):

∂φ

∂X
≥ 1

3
φ(X,T )

∫ T

0

φ(X,T ′)dT ′ =
1

6

∂

∂T

(

∫ T

0

φ(X,T ′)dT ′

)2

.

Integrating this inequality in T , we obtain the assertion of the lemma.

It follows from Lemma 3 that

∂

∂X

(

− 1

ψ

)

≥ 1

6
⇒ ψ(X,T ) ≥ 6ψ(ξ, T )

6− (X − ξ)ψ(ξ, T )
, X ∈ (ξ,X+), (26)

for any ξ ∈ (X−, X+), which may depend on T . Therefore, ψ(X,T ) becomes infinite
near X = X+ if there exists T > 0 such that (X+ − ξ)ψ(ξ, T ) > 6. To ensure that
this is inevitable under assumptions of Theorem 2, we prove the following result.

Lemma 4. Under assumptions (8) and (9) of Theorem 2, there exists a C1 func-
tion ξ(T ) and T -independent constants ξ± such that φ(ξ(T ), T ) = 1, ξ(0) = X0 ∈
(X−, X+), and ξ(T ) ∈ [ξ−, ξ+] ⊂ (X−, X+) for all T ≥ 0, as long as the solution
remains in class u ∈ C([0, t0], H

3(R)) with UX(X−, T ) < 0 and UX(X+, T ) > 0.

Proof. Under assumption (9), the function φT |T=0 = UX |T=0 = u′0(X) changes
sign at X = X0 from being negative for X ∈ (X−, X0) to being positive for
X ∈ (X0, X+). Therefore, we can define ξ(0) = X0 and consider the level curve
φ(ξ(T ), T ) = 1. It follows from the definition (11) that the function φ(X,T ) is
continuously differentiable in X and T as long as the solution remains in class
u ∈ C([0, t0], H

3(R)) with

dξ

dT
= − φT (ξ(T ), T )

φX(ξ(T ), T )
= −UX(ξ(T ), T )

φX(ξ(T ), T )
. (27)

Equation (24) implies that φX(ξ(T ), T ) > 0 as long as ξ(T ) remains in the interval
(X−, X+). The differential equation (27) hence implies that if UX(X−, T ) < 0 and
UX(X+, T ) > 0 for all T ≥ 0, for which the solution is defined, then there exists
T -independent constants ξ± such that ξ(T ) ∈ [ξ−, ξ+] ⊂ (X−, X+).

Remark 2. Since ξ(0) = X0 is the point of minimum of U(X, 0) = u0(X) and
φ(X, 0) = 1, it follows from equations (12) and (27) that

ξ′(0) = −UXT (X0, 0) + ξ′(0)UXX(X0, 0)

φXT (X0, 0)
= −u0(X0) + ξ′(0)u′′(X0)

u′′(X0)
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and, therefore,

ξ′(0) = − u0(X0)

2u′′0(X0)
.

This equation shows that ξ′(0) > 0 if u0(X0) < 0 and ξ′(0) < 0 if u0(X0) > 0.
Therefore, it is not apriori clear if ξ(T ) can reach X− or X+ in a finite time. The
restrictions uX(X−, T ) < 0 and uX(X+, T ) > 0 serve as a sufficient condition that
ξ(T ) does not reach X− and X+ in a finite time, for which the solution is defined.

With the help of Lemmas 3 and 4, we complete the proof of Theorem 2.

Proof of Theorem 2. We use estimate (26) with ξ(T ) defined by Lemma 4. Then,
we have

∫ T

0

φ(X,T ′)dT ′ ≥ 6T

6− (X − ξ(T ))T
, X ∈ (ξ(T ), X+). (28)

By Lemma 4, there are T -independent constants ξ± such that ξ(T ) ∈ [ξ−, ξ+] ⊂
(X−, X+) as long as UX(X−, T ) < 0 and UX(X+, T ) > 0. The lower bound in
(28) diverges at a point X ∈ (ξ+, X+) if T > 6

X+−ξ+
. However, divergence of

∫ T

0
φ(X,T ′)dT ′ implies divergence of φ(X,T ) for some X ∈ (ξ+, X+) also in a finite

time T0 ∈ (0,∞). Then, equation (21) shows that ux(x, t) cannot be bounded if
φ(X,T ) becomes infinite for some X ∈ (ξ+, X+) and some T = T0, hence the norm
‖u(·, T )‖H3(R) diverges as T ↑ T0. The proof of Theorem 2 is complete. �

Remark 3. Based on the asymptotic analysis and numerical simulations of [9], we
anticipate that divergence of φ(X,T ) near X = X+ is related to the vanishing of
φ(X,T ) near X = X−, such that equation (13) with UX(X−, T ) < 0 would imply
that ux diverges in a finite time near x = x−(t). However, the best that can be
obtained from equation (24) is

φ(X−, T ) ≤ φ(X,T )e−α(X)T , X ∈ [X−, X+], (29)

where

α(X) :=
1

22/3

∫ X

X−

|F0(X
′)|dX ′.

This upper bound is obtained from the minimization of the integrand in (24) as
follows:

φ+
|F0(X)|3

φ2
≥ 3

22/3
|F0(X)|.

If X = ξ(T ) ∈ (X−, X+) with φ(ξ(T ), T ) = 1, the bound (29) only gives an expo-
nential decay of φ(X−, T ) to zero as T → ∞. The same difficulty appears in our
attempts to use bound (29) in estimate (26).
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