Gröbner bases and products of coefficient rings

2006-08-21T15:43:48Z (GMT) by G.H. Norton Ana Salagean
Suppose that A is a finite direct product of commutative rings. We show from first principles that a Gröbner basis for an ideal of A[x1,..., xn] can be easily obtained by ’joining’ Gröbner bases of the projected ideals with coefficients in the factors of A (which can themselves be obtained in parallel). Similarly for strong Gröbner bases. This gives an elementary method of constructing a (strong) Gröbner basis when the Chinese Remainder Theorem applies to the coefficient ring and we know how to compute (strong) Gröbner bases in each factor.