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ABSTRACT 

This project is basically an investigation of graphene and carbon nanotube (CNT) based 

material’s electrical properties. In its first part, graphene (G) and graphene oxide 

(GO)/carbon nanotubes (CNTs) hybrid films were successfully fabricated as high-

performance electrode materials for an energy storage application using a simple water 

solution casting method and with an assistance of strong ultra-sonication. This was done 

with different contents of G, GO, single-wall CNT (SWCNT), multi-wall CNT 

(MWCNT) and multi-wall CNT with a hydroxyl group (MWCNT-OH). The films with 

MWCNTs showed well interconnected layered structures at the nanoscale range where 

GO worked as support insulated plates for the CNTs.  

The electrical properties were investigated in an alternating circuit (AC) which revealed 

a linear relationship between the dielectric constant and the weight percent of the CNTs. 

By increasing the CNT contents, the dielectric constant of the G/MWCNT and 

GO/MWCNT films raised almost linearly and their resistivity reduced. On the other 

hand, the dielectric constant was found to be decreased as the frequency went up. The 

maximum special capacitance reached 142 F/g in G (40wt %) /MWCNTs (60wt %) in 

which the dielectric constant reached 9.98 x107/g in the same film. 

In comparison, GO/SWCNT and G/SWCNT were found to be not applicable to be used 

as a capacitor system using the water solution casting method which resulted in a bad 

dispersion. G/SWCNT and GO/SWCNT films did not form layered structures leading to 

a very low dielectric constant. On the other hand, the dimension and the thickness of the 

film influence the capacitor performance and the conductivity. Shorter and thicker film 

can make a huge difference. 

Nonlinear behaviour of the dielectric constant with voltage was observed in both of 

G/CNT or GO/CNT hybrid films. At some voltages, the dielectric constant reached to 

peak or valley. Obviously, it is quite dependent on the voltage loaded.  

In the second part, a well-dispersed MWCNT/HDPE nanocomposite powder was 

successfully prepared by coating the MWCNTs on the surface of the matrix particles 

(HDPE). The volume resistivity of the nanocomposites was investigated relating to the 
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temperature and stress influences. Besides, the reproducibility of the nanocomposites 

was studied in this project and several conclusions could be drawn: 

Firstly, the average electrical resistivity for the MWCNT/HDPE nanocomposite sheets 

with the MWCNT contents of 0.1 wt%, 0.5 wt%, and 1.0 wt% were 792.64 kΩ.mm, 

111.67 kΩ.mm, and 9.953 kΩ.mm respectively, which indicated that the 1.0 wt% 

MWCNT/HDPE nanocomposite showed the best electrical conductivity.  

Furthermore, the results of the temperature electrical conductivity measurements 

revealed that with rising of temperature, the electrical resistivity for the MWCNT/HDPE 

nanocomposites increases due to the widening of the distances between the conductive 

nanofillers. In addition, the heat treatment could effectively improve the reproducibility 

of the MWCNT/HDPE nanocomposites, especially the nanocomposite with the 

MWCNT content of 1.0 wt%, as it has been found that the voids in the nanocomposite 

sheets were excluded during the heat treatment. 

Finally, the results of the tensional electrical resistivity measurements showed that the 

initial electrical resistivity for the MWCNT/HDPE nanocomposites increased with the 

increase of the applied tensional stress which caused the widening of the distances 

between the conductive nanofillers and some conductive networks to be damaged. 

Additionally, the reproducibility of the 1.0 wt% MWCNT/HDPE nanocomposites was 

better than that of the 0.5 wt% MWCNT/HDPE nanocomposite. It was found that the 

MWCNT/HDPE nanocomposite sheets exhibited “viscoelastic” behaviour of the 

electrical recovery in which the electrical resistivity could not totally recover after 

relaxation.  
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Introduction and Aim of the Project 
 

1. Introduction  

Currently, energy storage applications are considered to be a fundamental demand in life. 

Researchers are still looking for environmentally friendly, cheap and highly efficient 

storage resources as much as possible.   

Decades ago, carbon nanotubes (CNTs) with their wonderful properties such as ultra-

high surface area, high conductivity, excellent temperature stability, good corrosion 

resistance and percolated pore structure have been regarded as the next-generation 

electrode materials for energy devices [1]-[3]. Huge considerable efforts have been 

concluded by using CNTs in various electrochemical energy storage applications. This 

included Li-ion secondary batteries [4], [5], hydrogen fuel cells [6] and super-capacitor 

(ultra-capacitors)[1], [2] which has the ability to store and release a huge amount of 

charges in a short period of time within its cycles compared with the conventional 

capacitors. Therefore, they can be identified as the most remarkable power density at this 

time. The incorporation of the pore structures with the CNTs increases the energy 

density (capacitance) of a capacitor compared to the standard ones [7].  

Accordingly, preparation of reliable CNTs films (high surface area, high conductivity 

and good electrolyte accessibility of the nano-porous structures) is a critical first step to 

elevating the excellent performance of the CNTs based capacitor. Quite a few different 

methods have been published for fabrication of the CNT films as electrodes since their 

discovery [2],[8],[9].Some of these techniques are the electrophoretic deposition (EPD) 

and the chemical vapour deposition (CVD) techniques which have mostly been applied 

to nano- thin films fabrication[9],[10]. 

Besides the carbon nanotubes (CNTs), graphene demonstrates an important part of the 

nanomaterial’s world in various energy and power applications due to their excellent 

thermal, optical, mechanical, and electrical properties [11]-[15]. This make them suitable 

for wide applications that started from field-effect transistor [16], batteries [17], solar 

cells [18], fuel cells[19] and actuators [20], [21] to  supercapacitors[22]-,[25]. Graphene-
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based materials have been considered as the era subject in most of the current research 

since graphene discovery in 2004 [26]-[31]. 

Recently, hybrid nanostructures materials that focused on graphene (G) and carbon 

nanotubes (CNT) based material hybrid films have received a great deal of attention in 

different studies. The functionalized hybrid material can complement the deficiencies of 

graphene pure film [32]-[34]. Accordingly, graphene and CNTs hybrid films have been 

developed with excellent electronic properties to work in their various potential 

applications, for instance, photoelectric films [35], electromagnetic interference 

shielding [36], electrodes [7] and micro-heaters [37]. 

Up to date, indium tin oxide (ITO) has usually been used as a transparent electrode (TE) 

in solar cells, organic light emitting diode panels and touch panels because of its high 

optical transparency and low sheet resistance. However, sustainability and price 

concerns give the need to be replaced by new transparent conductive materials with a 

high mechanical flexible material but low-cost one [38]. Thus, there are daily efforts to 

fabricate transparent, conductive and flexible graphene-based material electrodes (TEs) 

and field effect transistors electrodes (FETs) [22], [25], [39]-[53]. For example, 

graphene and silver or copper nanowire hybrid films [54]-[58] attracted enormous 

interest to be investigated as possible replacements in particular transparent and flexible 

electrodes [38], [53]. Xu reported the use of graphene /silver nanowire hybrid films as 

an electrode for transparent and flexible acoustic devices [59]. In which the AgNWs 

linked the grain boundaries in graphene and the empty spaces in AgNWs network are 

filled by graphene. It presented some properties which are better than ITO with a sheet 

resistances as low as 16 Ω/m and a high optical transparency of 91.1% at 550 nm. It also 

showed excellent mechanical flexibility and superb stability against thermal oxidation. 

Iskandar, on the other hand, claimed in how reduced graphene oxide /Copper nanowire 

hybrid films can be used as transparent electrodes in Prussian blue based electrochromic 

apparatus [53]. Their performances came with improved adhesion, electrical 

conductivity, oxidation resistance and stability in harsh environments which makes them 

better than the pure metal nanowires.  

Alternatively, graphene and CNTs hybrid films have been developed with enhanced 

electronic properties to work as electrodes. Sung Ho Kim reported the high-performance 

FETs and TEs by using the single wall carbon nanotube SWCNTs / graphene films [38]. 
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He approved some improvements in the sheet resistance performance, which reached 

300Ω/m with 96.4% transparency.  

Very recently, a simple and practical solution-casting method has been used to prepare 

the graphene-based electrodes (G/CNTs hybrid thin films) [60]. It is a mixing of 

graphene-based powders with CNT powder in water or in an organic solution such as 

polytetrafluoroethylene [45]-[47]. This can solve some other technique’s drawbacks such 

as EPD and CVD [8], [61]. 

To date, the main focused issues in all studies and papers of G/CNTs hybrid films were 

in the wonderful electronic properties that make outstanding willing materials which are 

used in different electrical devices and applications. Nevertheless, the impact of the 

hybrid film own nanostructure has never been considered. In this project, the electronic 

properties of the electrode such as conductivity and specific capacitance were measured 

and investigated with altered film’s contents and dimensions. This study exposed some 

important contribution of the electrode structure and how much impacts can it has on the 

hybrid film final electrical properties. This may result in causing some damages to 

devices if they are ignored or underestimated.  

Conversely, electrical conductive polymer nanocomposites become as a life requirement 

in many sensing materials areas such as nano-electric devices [62], electromagnetic 

interference (EMI) shielding [63], temperature sensors [64] and deformation sensors [65]. 

In fact, materials development in science and technology is influenced by the dimension 

of the component system as much as by the chemical bonding and composition.  As 

some unique physical and chemical characteristics arise only when the size moves to 

nano–scale, novel properties appear from nanomaterials which have attracted scientists 

and engineers [66]. One interesting example of these nano-materials in the polymer 

nanocomposites field is the carbon nanotubes (CNTs). 

CNTs have been considered as a superb candidate for conductive nanofillers in the 

development of conductive polymer nanocomposites since its discovery in 1991[67]. It 

is used to improve the electrical properties of polymers [68] due to its physical properties 

such as electronic structure [68]-[70], mechanical properties [71]-[73], electrical and 

thermal transport properties [74]-[76]. CNTs possess a one-dimensional electrical band 

structure, which gives these amazing electrical and thermal properties. Moreover, the 



Introduction and Aim of the Project 

4 
 

electrical conductivity of MWCNT has been reported to be in the range of 1000 to 

200,000 S/cm [77]. In addition, the percolation threshold of the CNTs based 

nanocomposites can be achieved at very low filler contents because of its high aspect 

ratio and surface areas [78]. Hence, the sensitive electronic structure gives CNTs a great 

potential to develop new strain and temperature sensing material [74]. 

How to obtain electrically conductive CNTs based nanocomposites without losing the 

amazing electrical property of the CNT is an important question at this stage. The CNTs 

needs to be dispersed into polymer matrices to form conductive networks of CNTs all 

through the whole nanocomposites. The surface areas and the high aspect ratio of the 

CNTs are resulting in some difficulties of having a uniform dispersion of the CNTs in 

the polymer. This may interrupt with the total conductivity of the conductive polymer 

nanocomposites [79]. Hence, the preparation of well-dispersed CNTs/polymer 

nanocomposites is critical. Different methods have been reported to combine CNTs with 

the polymer matrices, including solution mixing, in-situ polymerization, melt 

compounding and latex technology [80]. In previous research works, a well-dispersed 

CNTs/nylon 12 nanocomposite powders have successfully been prepared using a patent 

method, where the CNT was coated on the nylon 12 particles surfaces [81], [82]. 

Beside the dispersion state of the CNTs, some factors such as external force; pressure, 

and temperature still have strong influences on the electrical conductivity of the 

conductive polymer nanocomposites. Jie et al. reported that the electrical conductivity is 

mainly determined by the distance between neighbouring nanofillers [83]. She 

concluded that the electrical conductivity decreases with the increasing of this distance. 

Consequently, when the conductive nanofillers are in quite large apart from each other, 

electrical conductivity of the conductive polymer nanocomposites could be hardly 

detected [83]. In addition, this electrical conductivity can also be affected by the changes 

of conductive networks or the conductive pathways in the nanocomposite. The 

relationship between the temperature or external force and the electrical conductivity of 

the conductive polymer nanocomposites has been carried out by several researchers 

[84]-[87]. These investigations lead to the hypothesis of which the temperature can 

induce thermal expansion, leading to the decrease of the electrical conductivity.  

Although many efforts have contributed to study the effects of the temperature or 

external force on the electrical conductivity, the knowledge of the reproducibility of the 
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conductive polymer nanocomposites is still limited. Thus, the investigation of the 

conductive polymer nanocomposites reproducibility will be one of this study aims.  

2. Aim of the Project  

This project intends to prepare and studies some graphene/carbon nanotube based 

conductive materials. The main aims are as follows: 

Part One: Conductive behaviour of graphene/carbon nanotube and graphene oxide/ 

carbon nanotube hybrid materials. 

1. Preparation and characterization of graphene/carbon nanotube and graphene 

oxide /carbon nanotube hybrid films. 

2. Study the conductive behaviour of graphene/carbon nanotube and graphene 

oxide /carbon nanotube hybrid materials. 

Part Two: Carbon nanotube/polyethylene nanocomposites as strain and temperature 

sensing materials. 

1. Preparation and characterization of carbon nanotube/ polyethylene composites. 

2. Study of the temperature-conductivity behaviour in carbon 

nanotube/polyethylene composites. 

3. Study of the strain-conductivity behaviour in carbon nanotube/polyethylene 

composites. 
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Part One: Conductive Behaviour of Graphene/Carbon Nanotube and 

Graphene Oxide/ Carbon Nanotube Hybrid Materials. 

ChapterI-1: Literature Review  

1.1 Introduction  

Many scientific efforts have been involved in developing alternative materials to replace 

the demand of the graphene material’s larger scale with fully perfect structure and 

properties. Thus, researchers have begun to incorporate graphene or graphene derivatives 

with other carbon-based materials to get graphene-based hybrid films that may replace 

the pure graphene in future applications such as the energy storage one. The motivation 

after the previous year’s works is to develop a new approach whereby to combine the 

two different carbon allotropic (G and CNT) and to report on the electrical properties 

and conductive behaviour of graphene/CNT and graphene oxide (GO) / CNT hybrid 

materials.  

This chapter introduces the background of the nanoscale materials which includes the 

graphene (G), carbon nanotubes (CNTs) with their properties and applications. Section 

1.2 reviewed a brief induction of the graphene history. In section 1.3 the structure, 

physical properties and fabrication methods of graphene were summarized. 

Characterization of graphene was covered in section 1.4. The graphene oxide production 

was summarized in 1.5. Then, section 1.6 briefly goes through the different storage 

energy application. To sum up, section 1.7 provided a summary of this chapter. 

1.2 History of Graphene 

Years ago, only two carbon forms are well known; diamond which is the hardest natural 

carbon substance that has a tetrahedral structure with each atom connects to other four 

carbon neighbours in a pyramid shaped lattice [1], the graphite which has hexagonal 

sheets and each carbon atom connects to other three atoms in a hexagonal lattice [2] as in 

figure 1-1. Different forms lead to different properties, while the diamond is electrically 

insulating and hard, graphite is an electrical soft conductor [3]. 
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Figure  1-1: Diamond and graphite structure [2]. 

Later on, other different carbon allotropes, different forms of the same elements in new 

binding arrangements between atoms resulting in structures that have another altered 

chemical and physical properties, have been discovered as illustrated in figure  1-2. In 

another word, the way that atoms are connected in solid material has a huge impact on 

the overall properties.  Carbons with less than 20 atoms can form a stable chain with an 

alternative triple and single carbon bonds. That was discovered in 1970, however, the 

discovery of 1-dimensional (1D) carbon nanotubes was in 1991. It is a tube of hexagonal 

carbons structure with double and single bonds. After that, in 1995, zero-dimensional 

(0D) fullerene C60 has shown up with cages that are formed with more than 20 carbon 

atoms. The Noble Prize has been given to this discovery in 1996. For a very large 

numbers of atoms, stable graphite sheets or diamond can be formed.  Amorphous of 

carbon, which is a combined of graphite and carbon cages, is another carbons forms that 

are available by nature[4]. 
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Figure  1-2: Different carbon forms (allotropes) [5] 

 

1.3 Graphene Structure, Physical Properties, and Fabrication Methods 

1.3.1 Graphene Structure 

In 2004, two scientists prepared the graphene from a single planar layer of graphite, 

which has double carbon atom’s bonds. Each carbon atom joins other three atoms by 

strong σ covalent bonds, the strong carbon-carbon bonding granted graphene as a rigid 

structure. Carbon has four electrons in the valence band; π bonds are formed above the 

plane of the carbon sheet by the contribution of each atom with one unbounded electron. 

Graphene layers arrange as hexagons and every hexagon is completely surrounded by 

other hexagons that are packed in a honeycomb crystal lattice as shown in figure  1-3. 

Their thickness is about one atom thick [6] and their bond-length in the range of 

0.142nm [7],[8]. Thus, in 1 mm thick graphite, there are about three millions of graphene 

sheets[9]. The 2010 Nobel Prize in physics has been awarded to Andre Geim and 

Konstantin Novoselov from University of Manchester (UK) for their discovery of 

graphene. 
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Figure  1-3: Graphene honeycomb crystal lattice [10] 

The graphene sheet is the most interesting form of carbon allotropes which promises to 

be a super-material due to its fabulous properties. Graphene is the mother of other 

carbon allotropes as shown in figure  1-4 [11]. The sheets of graphene in graphite are 

held together via Van der Waals electrostatic force [12]. Also, the surface area of the 

graphene single sheet was found to be 2630 m2/g [13] 

.  

Figure  1-4: Carbon allotropes Graphene is a 2D building material for carbon materials of all the other 

dimensionalities. It can be wrapped up into 0D Buckyballs, rolled into 1D nanotube or stacked into 3D 

graphite [14]. 

http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=jeG0prp8nvUczM&tbnid=w_GErtnega8eLM:&ved=0CAgQjRwwAA&url=http://www.quirkyscience.com/graphene-isolation-characterization-application-and-production/&ei=uOkoUZ30GOfI0AXIpoGYAQ&psig=AFQjCNGbVlPPKGvq06IzgwHWeG5aau-8tA&ust=1361722168467439


Chapter I-1: literature Review 
 
 

20 
 

1.3.2 Physical Properties of Graphene 

 Electrical Properties 1.3.2.1

While graphene is usually defined as being a monolayer of carbon atoms, the term few-

layer graphene also exists [15]. Mono and few-layer graphene possess many fascinating 

properties. Although graphene is two-dimensional material, it has the full fixed three-

dimensional properties of this material. In the electronic part view, graphene has super 

electrical properties [16]. Basically, Graphene can be considered as a semiconductor but 

with a zero band gap as shown in figure  1-5. Therefore, due to its perfectly crystallized 

atoms that are packed together in a regular array, the best electrical conductivity ever 

known in the world has been verified. 

 

Figure  1-5: The graphene zero band gap [17]. 

Thus, charges flow through graphene sheet much faster than any other substance. 

Furthermore, graphene is considered to be the lowest resistivity material known at room 

temperature which attracts physicists, chemists, and engineers. The graphene’s electron 

mobility is extremely high which can reach 150,000 cm2V−1s−1 at room temperature [14]. 

Moreover, phenomena like quantum Hall effect [18] and ambipolar electric properties 

[19] have been verified in graphene. Graphene resistivity is 10-6 Ω.cm which is less than 

silver [20]. However, as the graphene is too thin and needs a substrate like silicon, this 

can trap electrical charges and reduce the electron mobility in graphene to 40,000 

cm2V−1s−1 [21]. Basically, the currently used graphene sample has a mobility of about 
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10,000 cm2V−1s−1 [22]. Some material’s electrical conductivities are presented in 

table  1-1: 

Table  1-1: Different materials with their electrical conductivities[23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Thermal Properties 1.3.2.2

Graphene can allow heat dissipation rapidly because of its good thermal conductivity. Its 

ballistic thermal conductivity is in all directions i.e. (isotropic) [24]. It has a thermal 

conductivity up to 5000 Wm-1 K-1[25], which is about 5 times higher than graphite (1000 

Wm-1K-1). That is because of the presence of elastic waves (phonons) in the graphene 

lattice. Table  1-2 shows this value excess of those of diamond as well as carbon 

Material Electrical Conductivity (S·m-1) 

Graphene ~ 10
8
 

Silver 63.0 × 10
6
 

Copper 59.6 × 10
6
 

Annealed Copper 58.0 × 10
6
 

Gold 45.2 × 10
6
 

Aluminium 37.8 × 10
6
 

Sea water 4.8 

Drinking water 5x10-4- 5x10-2 

Deionized water 5.5 × 10
-6

 

Jet A-1 Kerosene 50 -450 × 10
-12

 

n-hexane 100 × 10
-12

 

Air 0.3 - 0.8 × 10
-14
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nanotubes [24], [25]. The room temperature thermal conductivity of graphene can be as 

high as 5.30×103 Wm-1K-1, which is even superior to MWCNT [25]. 

Table  1-2: Materials thermal conductivity values [26]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material 
Thermal conductivity 

 Wm-1K-1 

Silica Aerogel 0.004 - 0.04 

Air 0.025 

Wood 0.04 - 0.4 

Water (liquid) 0.6 

Thermal grease 0.7 - 3 

Thermal epoxy 1 - 7 

Glass 1.1 

Soil 1.5 

Concrete, stone 1.7 

Ice 2 

Aluminium 
237 (pure) 

120—180 (alloys) 

Gold 318 

Copper 401 

Silver 429 

Diamond 900 - 2320 

MWCNT 3000 

Graphene (4840±440) - (5300±480) 
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 Mechanical Properties 1.3.2.3

Although graphene is the thinnest and lightest known material, one atom thick, it is one 

hundred times stronger than steel and harder than diamond. It is the strongest material 

ever known [27], [11]. Graphene is similar to single-wall carbon nanotubes (SWNTs) in 

some electronic properties such as Young’s modulus of 1 TPa and intrinsic strength of 

130 GPa [27]-[29]. Measurements from Lee et al. showed that the intrinsic breaking 

stress for a single defect-free graphene sheet is about 42 Nm-2 while Young’s modulus is 

1.0 TPa, which makes graphene the strongest measured material [28].  

 Optical Properties: 1.3.2.4

The research by Nair et al. showed that graphene sheet (monolayer) has the ability to 

absorb a percentage of πα ≈ 2.3% from the white light, where α is the fine-structure 

constant. That makes 97.7% of white light transmittances through the graphene. [15].   

 

 

 

 

 

 

 

 

 

Figure 1-6:  Transparency of the graphene [15]. 
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 Chemical Properties:  1.3.2.5

Graphene surface acts in a similar manner to the surface of graphite which can adsorb 

and desorb various atoms or molecules. Also, graphene can be functionalized by several 

chemical groups. (-OH) is one example that can react with the G and form the graphene 

oxide. In addition, the different types of defects within the graphene sheet lead to 

increase the chemical reactivity [30]. It has been proved that a single layer of graphite 

(graphene) is much more reactive than two or more [31]. Furthermore, it has been 

revealed that the edge of graphene has higher reactive agents than those on the surface. 

Compared to another similar material such as carbon nanotubes, it has the highest ratio 

of edgy carbons.  However, in harsh reaction conditions, it works as an inert material and 

does not react [32], [33].  

1.3.3 Graphene Applications 

New horizons have been exposed to physical, optical, electronic and high-energy 

research for future application technology. For starters, the graphene special electronic 

spectrum makes a new ‘relativistic’ model of physics condensed-matter. Normally, the 

physics that describes solids is quantum physics like tunnelling particle that are tunnelled 

through other particles because the electrons travel very fast through this material. 

Graphene can help to mimic the quantum phenomena and test them in laboratory 

experiments [18], [19]. Another important application is the graphene-based electronic 

devices and integrated circuits. Very small devices can be made from graphene-based 

materials which allow electrical signals to pass and cross them quickly. As a result, 

super-fast computers and transistors can be manufactured from them [34]. Although 

graphene may be only one layer thick, it is impermeable to common gasses such as 

helium; this can be useful in the making atomic-scale membrane-based devices [35]. An 

alternative application is the slandered size batteries that hold a longer charged which 

can be manufactured and the electric car batteries that can be enhanced. Additionally, 

graphene can be utilized in nanoelectromechanical system’s (NEM) applications like 

pressure sensors, resonators, and single molecule gas detection, which could be useful 

for detecting microbes [36]. Graphene can conduct heat better than diamond and conduct 

electricity better than silver and as it is two-dimensional material, it can be used to detect 

single molecules of a gas. When a gas molecule sticks to a sheet of graphene, a local 

change in the electrical resistivity can be found [36]. Kim et al. demonstrated the 
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possibility of producing both stretchable and transparent graphene electrodes as shown 

in figure  1-7 [37]. It is applicable for bendable electronic devices fabrication. On the 

other hand, besides graphene sheets are almost transparent and they can be bending 

easily, they have a very good permeability control in which they allow nothings to pass 

them except water. Thus, another application is to be used as the greatest filter for the 

clean drinking water, in which salt is easily separated from seawater [38]. Bolotin et al. 

achieved an extremely high electron mobility of over 200,000 cm2 V−1 s−1 with 

monolayer graphene suspended above Si/SiO2 gate electrode [39]. This makes graphene 

attractive for the production of electronic devices. Combined with the transparency, 

graphene could prove to be a good replacement for indium tin oxide (ITO) materials in 

the production of organic photovoltaic cells [40]. 

Similarly, properties like thin and flexible may be integrated for using graphene in bionic 

planted devices which implanted into living tissues. Bionic devices which are made up 

of graphene were found to hold for a longer time than others. That is because of the 

graphene higher resistance in a salt-ionic solution of living tissue. Thus, graphene can 

conduct electrical signals and connected to the neuron to carry the electrical signals from 

one cell to another inside the body [41]. Besides, graphene can be utilized in electronics 

as in communications and imaging technologies which require ultrafast transistors [34]. 

Therefore, if a line transistor made of graphene along a damage spinner core, this 

graphene could transfer and deliver nerve pulses from an undamaged section of the 

spinner core and pass the damaged part and the muscles easily and fast [34]. Moreover, 

touch screens in cell phones work by carrying the electrical charges. As the screen being 

touched, some of those charges transfer to the human body and so decrease on the screen. 

Each corner of the screen has a sensor to measure this decrease. Then information 

transmits to the processor which determines the action needs to take. If the touch screen 

can be prepared from graphene as its conductive element, then the cell phone may be 

printed out on a thin plastic instead of glass [42].  
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1.3.4 Preparation of Graphene 

 Mechanical Cleavage  1.3.4.1

It is the method introduced by Geim and Novoselov 2004 to produce graphene in its first 

time as shown in figure  1-8. This method involves using an adhesive tape to repeatedly 

peel off highly oriented pyrolytic graphite (HOPG), which in turn resulted in films of 

few-layered graphene with a maximum size of 10μm. However, creating larger but 

thicker films is also possible with a thickness of over 3nm and size around 100μm [19]. 

Therefore, the resulting graphene varies in thickness. While the quality of the graphene 

sheets was high, the long processing time and the relatively small size of sheets 

produced limited the use of this method in the large-scale production of graphene [44]. 

 

 

 

 

 

Figure 1-7:  Transparency and flexibility of graphene [43]. 
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Figure  1-8: Mechanical cleavage method of preparing graphene from HOPG [45]. 

 

 Electrochemical Exfoliation 1.3.4.2

The basis of current electrochemical exfoliation approaches as demonstrated in 

figure  1-9 is to use the graphite as an electrode and expand the layers of graphite in-situ; 

after expanding, the electrode is exfoliated by the means of sonication to form 

monolayer graphene [44]. Wang et al. used lithium ions (Li+) to form graphite 

intercalation compounds, which can be inserted between the graphite layers and cause 

expansion of the layers due to their large dimensions [46]. In this approach, the high 

electrical potential is applied to the lithium-propylene carbonate solution in order to 

activate the intercalation. Under a high current density, the Li+/PC complexes showed 

exceptionally high potential in expanding the graphite electrode. The final exfoliation 

procedure is done with high-intensity ultrasound in N, N-dimethylformamide solution. 

The Li+/PC remainder is washed away with water and acid. It was also found by Wang et 

al. that while exfoliation of graphite is possible in the absence of Li ions, the percentage 

of exfoliation and quality of the product is inferior. This approach is able to produce a 

few layers graphene up to 70% with a considerable quality. Huang et al., on the other 

side, proposed an altered approach where they used lithium ions from a molten Li-OH to 

form intercalation compounds with 80% yield [47]. 
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Figure  1-9: Preparation of graphene by the means of electrochemical exfoliation [46]. 

 

 Arc Discharge 1.3.4.3

Arc discharge as shown in figure  1-10 is the method of using graphite as electrodes 

inside a hydrogen atmosphere where a direct current (DC) is applied to evaporate 

different gasses from graphite, which then deposit on the cathode [48]. The cathode 

deposition contains both multi-wall carbon nanotubes and graphene that are difficult to 

be separated. However, as it has been found out by Subrahmanyam et al., the deposition 

on the inner wall of the reaction chamber contains only graphene flakes of 2-4 layers 

[49]. A steel reaction chamber can be filled with hydrogen and helium and used to 

produce graphene. While the helium is to provide the inert gas environment, the 

hydrogen is used in the termination of dangling carbon bonds during the arc discharge. 

This is believed to be important in avoidance the rolling up of graphene sheets [50]. Two 

high purity graphite rods are used as the anode and the cathode with a discharge current 

of (100 - 150) A and a maximum voltage of 60V. It was found that high current, voltage, 

and hydrogen percentage are desired for high yield of graphene. This approach yields up 

to 20% of the anode weight, with relatively to simple procedures that are suitable for 

large-scale production [50].  
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Figure  1-10: Schematic of the apparatus designed for the preparation of graphene by the means of arc 

discharge [50]. 

 Unzipping Carbon Nanotubes 1.3.4.4

Since the carbon nanotubes is a “rolled up” graphene sheet, then 2D graphene sheet can 

be obtained from nanotubes by cutting the nanotube along its length as shown in 

figure  1-11. The approach of unzipping CNT can be applied to single or multi-walled 

(MWCNT) to produce graphene. Jiao et al. [51] unzipped MWCNTs by the mean of 

plasma etching. MWCNTs are first deposited on a silicon substrate. Then, a thin film of 

poly (methyl methacrylate) (PMMA) is coated on top of them. After heating, the 

MWCNTs are partially embedded in the PMMA layers. When the PMMA layer is 

peeled off, the MWCNTs stay embedded in that PMMA layer. The embedded MWCNTs 

are then subjected to Ar plasma in which the top parts are etched away much faster than 

the embedded lower part during the exposure. By controlling the time of MWCNTs 

etching, the numbers of graphene layers that left in the PMMA layer can be altered. The 

PMMA layers along with the embedded graphene are transferred to the substrate and the 

PMMA layer is removed, leaving the graphene on the substrate. On the other hand, 

Kosynkin et al. [52] also suggested a different approach that employs KMnO4 to cut the 

MWNT and obtain oxidized graphene. The difficulties with this approach are the 

graphene morphology which cannot be well controlled and they are considerably 

complicated.   
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Figure  1-11: Principle of graphene preparation by the means of unzipping nanotubes [52]. 

 Reduction of Graphitic Oxide  1.3.4.5

This method requires the production of graphene oxide (GO) from graphite as a first 

stage (figure  1-12) [53]. Tung et al. projected a graphene monolayer production method, 

where GO is first dispersed in pure hydrazine [54]. The reducing effect of hydrazine 

removed the oxygen of GO. The monolayer morphology of graphene is also achieved 

using this process. The result, as suggested, is a suspension of negatively charged 

monolayer graphene with surrounding N2H4
+ counter ions. The static repulsion of 

counter ion pairs causes the suspension to remain stable for months with limited 

agglomeration. Moreover, the morphology of the graphene sheets can be controlled by 

varying the composition and concentration of the suspension. Graphene sheets that 

prepared by this approach can reach 20×40μm2 in size. The problem with this reduced 

GO is that the oxidation may cause changes in the chemical and physical properties of 

graphene, which subsequently causes a drop in the final performance. However, this 

approach is appropriate for industrial production due to its fast and simple nature.   
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Figure  1-12: Structure of GO proposed by Szabo et al. [55]. 

 Exfoliation of Graphene 1.3.4.6

During the preparation of GO, graphite cannot be fully oxidized and thus defects may 

exist in the GO sheets. After reduction, the electrical conductivity is found to be lower 

than pristine graphene. To control this problem, Li et al. proposed an exfoliation-

reintercalation-expansion approach in preparing graphene sheets [56] as shown in 

figure  1-13. Graphite is first exfoliated by a brief heating and then grounded. Then, the 

ground graphite is re-intercalated by oleum treating for a day. After the graphite is fully 

intercalated, an N, N-dimethylformamide solution of tetrabutylammonium hydroxide 

(TBA) is added, and the suspension goes under a brief sonication. Then, it has been left 

to stand for three days to allow the TBA to be fully inserted into the graphite layers. The 

final procedure is to acquire a stable suspension of monolayer graphene sheets by 

sonication in 2-Distearoyl-sn-Glycero-3-Phosphoethanolamine (DSPE) conjugated 

Polyethylene Glycol. The graphene sheet that is prepared by this method exhibits a 

higher electrical conductance than the GO reduction methods. 
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Figure  1-13: The prepared graphene suspension and its route of preparation by the means of exfoliation-

reintercalation-expansion [56]. 

 Epitaxial Growth 1.3.4.7

Epitaxial growth allows the graphene (G) sheets to be formed on the surface of a carbon-

containing substrate under definite conditions. Pan et al. used thermal annealing to grow 

the graphene layers on a Ruthenium Ru (0001) surface successfully as illustrated in 

figure  1-14 [57]. In this process, a chemically cleaned Ru crystal surface with a 

roughness of less than 0.03μm is required. The Ru sample containing carbon is subjected 

to Argon-ion sputtering under high vacuum conditions and around 1000K which then 

cooled to room temperature slowly. During the treatment, highly ordered graphene 

crystal would gradually form on the surface of the Ru crystal. This results in graphene 

sheets with continuous excellent long range order to a few millimeters. However, the 

thickness of graphene sheets that are produced by this method is inconsistent; the 

adhesion between the graphene sheets and the Ru crystal will also affect the product.   

Epitaxial growth of graphene on silicon carbide is an alternative approach. Srivastava, 

Feenstra, and Fisher used SiC (0001) surface as a substrate for the G formation [58]. The 

basis of this approach is that at high temperatures the silicon would sublimate 

preferentially, leaving the carbon to form graphene sheets on the surface. Prior to the 

treatment, the (0001) surface of the SiC wafers requires mechanical polishing and 
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chemical cleaning. Further etching of hydrogen is also required to form a step-terrace 

structure on the surface which is preferred for graphene growth. Different to epitaxial 

growth on Ru crystals, annealing in an atmosphere of 1 atm of argon is applied. The 

sublimation rate of silicon in an argon atmosphere is reduced. This allows higher 

temperatures to be used for graphene production in superior quality. The problem with 

this approach is that the continuity and the consistency of the film are limited, which 

reduces the large scale quality of the product [59]. 

 

Figure  1-14: A single-crystalline graphene monolayer is grown on a Ru (0001) surface by thermal 

annealing of a ruthenium single crystal containing carbon [57]. 

 Chemical Vapour Deposition  1.3.4.8

Chemical vapour deposition (CVD) is another method to prepare graphene films. It is the 

process of depositing graphene films on metal substrates [44]. While the CVD technique 

has long been known as a possible approach to the production of thin graphene layers on 

Ni substrate, the Ni substrate tends to absorb more carbon than the amount required to 

form thin graphene layers, which results in thick graphene crystals [60]. In response to 

this problem, Kim et al. [37] refined the process by using thin layers of nickel and rapid 

cooling process as shown in figure  1-15. In their approach, a Ni layer of less than 300 

nm thick is first deposited on SiO2/Si substrates by the means of electron-beam 

evaporation. The sample is then placed in a quartz tube and heated to 1000°C in the 

argon atmosphere. A mixture of gasses (CH4: H2: Ar-20: 65: 200) is pumped through the 
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tube and the sample is rapidly cooled down to room temperature by argon flows. The 

graphene films that formed on the substrate were separated by etching away the Ni layer 

underneath. Kim found out that the key to suppressing the increase in thickness of the 

graphene films is the rapid cooling by argon flows. The graphene films that are 

manufactured by this technique have not exposed to a mechanical or chemical treatment; 

therefore, the crystal stability comes relatively high. It was also found that by altering the 

growth time and the thickness of the Ni substrate, the average number of graphene sheets 

that are produced by this approach can be controlled to meet the different application 

requirements. 

Wei et al. correspondingly succeeded in the preparation of few layers graphene with 

controlled morphologies by applying ZnS ribbons as templates [61]. The problem with 

CVD approaches on metal substrates is the procedures have some requiring conditions 

such as high temperature and ultra-high vacuum [44]. Improving these conditions may 

prove vital in the industrialization of CVD approaches. 

 

Figure  1-15: Preparation of patterned graphene sheets by the means of CVD [37]. 

 



Chapter I-1: literature Review 
 
 

35 
 

 Ball-Milling 1.3.4.9

This technique takes an advantage of the strong shear force that is created during the 

milling operations to exfoliate graphite platelets. Zhao et al. [62] used graphite 

nanosheets (GN) as a starting material and dimethylformamide (DMF) as a liquid 

medium. Multi-layered GN was dispensed into DMF and underwent a wet ball-milling. 

The resulting material was a mixture of graphene and partially exfoliated GN. This 

mixture was then centrifuged to separate the graphene products. They reported acquiring 

irregular single and few layers of graphene that less than 2nm thick. Another similar 

approach was suggested by Leon et al. [63] which was without any liquid medium 

during the ball-milling. Instead, melamine was mixed with graphite and underwent dry 

ball-milling in air or nitrogen atmosphere. The ball-milled mixture was dispersed into 

DMF to produce a suspension of graphene as shown in figure  1-16.  

 

Figure  1-16: Schematic illustration for the exfoliation of graphite by the means of ball-milling [63]. 

 

1.4 Characterization of Graphene 

Various methods of characterization have been used to analyse the properties of mono 

and few layers of graphene such as Optical Imaging, Scanning Electron Microscopy 

(SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray 

Spectroscopy (EDS), Raman Spectroscopy and X-ray Diffraction (XRD). 
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1.4.1 Optical Imaging 

Optical imaging (shown in figure  1-17) is the most commonly used one due to the fast 

and inexpensive nature of its process. It is also non-destructive, which further decreases 

the cost and simplifies the procedures. The difficulty with optical imaging is that the thin 

nature of graphene layers requires a SiO2 substrate to act as a background for better 

contrast. Overcoming this problem is the key to improving the optical imaging of 

graphene layers [45]. 

 

Figure  1-17: Optical images of graphene layers deposited on SiO2 substrates [64]. 

 

1.4.2 Atomic Force Microscopy (AFM) 

AFM is a straightforward technique to determine the structure of the graphene layers on 

a nano-meter scale. Atomic force microscopy generates 3D images of the specimen 

surface by using an extremely fine tip to probe the surface (shown in figure  1-18). The 

position of the tip is recorded by both piezo-electric crystals and laser beam paired with 

a photodetector [65]. However, it is still considered as a time-consuming for a large area 

image of graphene sheets. Moreover, the graphene sheets can’t be distinguishable from 

the graphene oxide one [66]. 
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Figure  1-18:  Detailed tapping mode AFM height image for chemically reduced graphene oxide 

nanosheets [66]. 

1.4.3 Transmission Electron Microscopy (TEM) 

On the other hand, TEM is another common tool for the atomic level characterization of 

materials. It forms an image due to the interaction of the electrons that transmitted 

through the samples which are usually (ultra-thin sample). An image is formed from this 

interaction, which is magnified and focused onto an imaging device such as a fluorescent 

screen. The traditional TEM is unsuitable for the characterization of monolayer graphene 

as the resolution at a low operating voltage is incompatible while high voltage causes 

damage to the monolayer. Meyer et al. have successfully resolved every carbon atom in 

the field of view, where the 1Å resolution was achieved at an acceleration voltage of 

only 80 kV (figure  1-19). That was by combining the aberration correction with a 

monochromator in their experiment [67].  
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Figure  1-19: TEM image of single-layer graphene membrane, the scale bar is 2Å [67]. 

 

1.4.4 Raman Spectroscopy 

It is commonly used in chemistry to identify molecules. It operates by collecting the 

light from a specimen that has been illuminated by a laser. Then, by analyzing the 

scattering light and the molecular vibrations, the substance can be determined. The G 

band at 1582cm-1, the 2D band at 2685cm-1 and the D band at 1350cm-1 (figure  1-20) are 

the three promising bands exist in the graphene Raman spectrum. The G band can be 

used to distinguish between graphite and graphene due to the shifts to lower energy 

when the layer thickness increases. The 2D band, on contrary, can also be used to 

determine layer thickness as it is always present in graphene but not in graphite [68]. 



Chapter I-1: literature Review 
 
 

39 
 

 

 

 

 

 

 

 

 

 

 

 

Figure  1-20: Raman spectra for graphene flakes. 2D bands change in position and shape according to the 

number of layers [68]. 

1.4.5 X-ray Photoelectron Spectroscopy 

XPS is X-ray electron spectroscopy that is used to measure the element composition; 

empirical formulas, chemical state and electronic state of different elements exist within 

a material. The principle of XPS is to excite the sample by a beam of X-ray, which 

causes the electrons to escape from the inner layer atoms. The energy spectrum of the 

electrons is recorded, which reflect the electronic state of the material. The chemical 

content of graphene can be determined by wide scan XPS to show the purity of the 

sample. Also, the state of carbon atoms can be determined to assess the quality of the 

graphene sheets, especially in the reduction GO, where the amount of sp3 hybridised 

carbon with C-O bonding should be kept to a minimum [69]. An example of C1s XPS 

spectra for expandable graphite oxide is shown in figure  1-21. 
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Figure  1-21: C 1s XPS spectra for expandable graphite oxide [70]. 

1.4.6 Scanning Electron Microscopy (SEM) 

It is used for inspecting the topography and morphology, chemistry, crystallography and 

the grains orientation of specimens at very high magnifications. Thus, cracks and 

fractured surfaces, bond failures, and physical defects on the die or the package surface 

can be analysed. Magnifications in SEM can go to more than 300,000 X, but most 

semiconductor manufacturing applications require magnifications of only less than 

3,000X.   

SEM images can be obtained by scanning the sample with a high-energy beam of 

electrons. The electrons interact with the atoms and the reflecting electrons (secondary 

electrons) which are translated into signals after attracted and collected by a detector. 

They contain information about the sample's composition, surface topography, and other 

properties such as electrical conductivity. To produce the SEM image, the electron beam 

is swept across the area being inspected, producing many such signals. These signals are 

then amplified, analysed, and translated into images of the topography being inspected. 

Figure  1-22 shows SEM images of graphene on copper grown by CVD. 
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Figure  1-22: SEM images of graphene on copper grew by CV [71]. 

1.5 Graphene Derivatives 

1.5.1 Graphene Functionalization  

Essentially, it has been found that some new graphene features or properties can be 

enhanced and developed by several methodologies. This is called functionalization 

which includes both hydrogenation and fluorination.  Thus, various graphene derivatives 

with unusual properties, structure, and composition can be created using small organic 

molecules and polymer [72]-[75]. Recently, graphene derivatives are considered to be 

the critical route towards practical applications in a number of different fields, especially 

in biomedical performance [76]. Graphene oxide will be highlighted in here. 

1.5.2 Graphene Oxide (GO)  

Graphene oxide consists of different hydrophilic oxidized groups on its plane and edges. 

It is electrically an insulator which is known to contain the epoxide functional group =O 

along the basal plane and the hydroxyl -OH and carboxyl -OOH functional groups along 

the edges [77] GO is the probable common route for graphene as shown in figure  1-23. 

Graphene oxide is a sheet of the graphite oxide, which can be fabricated from graphite 
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oxide without any assistance of chemical treatment [70]. However, the difficulty comes 

in forming the graphite oxide itself. That is because of the strong bonds between 

graphene sheets in the graphite which make sheets difficult to be stripped out. Though 

by introducing of hydroxyl or carboxyl into graphite (functionalized groups), the binding 

energy between sheets will be reduced and oxidation can take place. 

Expandable flake graphite (EG) is a form of intercalated graphite in which the natural 

flake graphite has been treated chemically [70]. Intercalation is a process of inserting an 

intercalant material such as sulfuric acid between the layers of graphite crystal which 

resulting in different cryptographic structure, density and electronic properties [70]. It 

has been reported that expandable graphite d-spacing can be increased because after 

intercalation and so, expandable graphene be able to expand in volume up to 100 times 

more than the natural one at high temperature [78]. Also, the new physical and chemical 

properties like the expand of the surface area and edge’s size will allow much more 

functional groups to be introduced between the graphite layers and make the oxidization 

happens easier with a higher reactivity and at a faster rate[78].  

 

Figure  1-23:  Synthesis of graphite oxide and graphene oxide (GO) from natural graphite [79]. 
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 Graphene Oxide Preparation  1.5.2.1

The oxidation chemistry can be done using different methods such as Hummer method 

which is a faster and efficient process for oxidization using a mixture of sulfuric acid 

H2SO4, potassium permanganate KMnO4 and sodium nitrate NaNO3[53],[80]. Another 

technique is Staudenmeier method which uses potassium chlorate as an oxidizer [81, 82]. 

In addition, Wei et al. [83] reported another successful way to produce GO by using Au 

molecular templates (AUP) to assemble graphite oxide sheets. On the other hand, Dikin 

et al. [77] prepared GO via anodising the filter membrane. Then, graphite oxide can be 

exfoliated to graphene oxide in water due to the strong hydrophilicity of graphite oxide 

[84] which happens easily with the assistance of ultra-sonication. Basically, organic 

solvents such as DMF can be also used as well as water for exfoliation [70].  

1.6 Carbon Nanotubes (CNTs)  

CNT literature review has been covered in part II-1 

1.7 Energy Storage Applications  

Energy production and storage are both critical research domains where the demand for 

improved energy device’s performance is high.  

1.7.1 Capacitors  

The capacitor is a well-known energy storage component that is used in timer electronic 

circuits to store electrical charges or in a relay to smooth a current [85]. It is also widely 

used in electronic circuits for blocking the direct current and allowing alternating current 

to pass [85,86] based on the nature of the capacitor. Basically, the capacitor is composed 

of a pair of conductors that are separated by an insulator which is called (dielectric). 

When a power is supplied across the conductors of a capacitor, the capacitor charges up 

and an electric field exists in the insulator. This leads to the accumulation of opposite 

electric charges on each conductor and so, energy being stored. Then, the capacitor 

discharges its electrical charges slowly when the power is turned off [85]-[87]. The 

intrinsic constant of a capacitor is called capacitance.(C) which is defined as the ratio of 

charges ±Q on each conductor to the voltage V between them as in equation 1-1: 
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C = Q
V
                                                                                                                            (1-1) 

The capacitance is directly proportional to the area of the conductor and inversely 

proportional to the separated distance [88] as presented in equation 1-2 and illustrated in 

figure  1-24. 

 

Figure  1-24: Capacitor dimensions [86]. 

The dielectric is placed between two conducting plates, each of area A and with a 

separation of distance d as in equation 1-2: 

C = Aε
d

                                                                                                                            (1-2)                                                                                                                                                                                   

Where, 

ε = εr x ɛo and ɛr is the relative dielectric constant, ɛo is the vacuum permittivity 

Essentially, the dielectric in the capacitor leaks a small amount of current and has an 

electric field strength limit. This is called the breakdown voltage which breaks down the 

capacitor system [89].  
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 Types of Capacitors 1.7.1.1

Capacitors can be sorted by different categories such as the type of dielectric, 

capacitance and properties. 

1.7.1.1.1 Types of Insulators (dielectric) 

Among these several categories, distinguish between capacitors kinds by its insulator 

type is the most common one. mica, ceramic, cellulose, porcelain, mylar, teflon and even 

air are some of the non-conductive substance used. In theory, the insulator can be any 

non-conductive material, nevertheless, specific materials are used which suit the 

capacitor's function for particular application needs. Examples of dielectric constants for 

various materials are presented in table  1-3. Some capacitors are suitable for high-

frequency applications, whereas others are good for high voltage usages. This depends 

on the insulator size and type [88]-[90]. 

Table  1-3:  Dielectric Constants for Various Materials[93]. 

 

 

http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=-CySAbhlYmWxLM&tbnid=nCDlPTRexkqKCM:&ved=0CAUQjRw&url=http://helios.augustana.edu/%7Edr/102/activities.html&ei=w3yAUpmaLYOt0QXkroDADw&psig=AFQjCNFCLfLKNG_dG7Wsk8obOVVG27QxUQ&ust=1384238607344274
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1.7.1.1.2 Type of Capacitance 

Capacitors also can be sorted as fixed capacitance and variable capacitance in their 

application manner. Variable capacitance can be used in radio tuning circuits where the 

dielectric for it is the air. Its capacitance is changed by turning the shaft at one end to 

vary the area of the movable and fixed plates [90]. 

1.7.1.1.3 Types based on Properties 

From another point of view, properties can be used to divide the capacitors into 

conventional capacitor and ultra-capacitor (supercapacitor) which is also called 

(electrochemical capacitor). It provides a huge amount of energy in a short period rather 

than the conventional one. In a normal capacitor, most of the surface area is full with 

microspores which fail in supporting the electrical double layer which results in weak 

frequency responses [94]. Figure  1-25 shows the schematic of the conventional and 

electrochemical capacitor. 

 

Figure  1-25: Schematic representation of an electrochemical capacitor [95]. 

 Capacitor Applications 1.7.1.2

As mention in a previous section, capacitors are generally used in a number of different 

ways such as blocking DC voltage while allowing alternating current to pass in 

electronic circuits. In analogy filter networks, they smooth the output of power supplies. 

Moreover, capacitors are used to store charges for high-speed use. It has been also used 
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in resonant circuits to tune radios in particular frequencies. Moreover, they are used in 

electric power transmission systems as a stabilizer for voltage and power flow [96].  

1.7.2 Ultra-capacitors  

As it is stated previously, a supercapacitor or ultracapacitor can be defined as an energy 

storage device that stores unusually high energy density comparing to the normal 

capacitors [97]. It is also called an electrochemical capacitor because most of them 

currently are based on electrochemical double layer capacitance (EDLC). Figure  1-26 

illustrates the principle of the electrochemical double layer capacitance. In other words, 

it is a double-layer technology with electrodes such as activated carbon (carbon cloth, 

carbon black, aerogel carbon, particulate from SiC, particulate from TiC) and an 

electrolyte such as KOH, organic solutions or sulfuric acid. 

 

 

 

 

 

 

 

 

Figure  1-26: Schematic representation of an electrochemical capacitor [95]. 

Electrochemical capacitor is an electrical energy storage device, but different from 

batteries. There is no chemical reaction taken place when the energy is being stored or 

released. Charging and discharging energy occur in nanoscale by the separation of 

charges at the electrochemical interface between an electrolyte and an electrode [98]. 

The key principle is that as the area is increased, the distance is decreased [99] as shown 

in figure  1-27. Thus, ultra-capacitors can undergo through hundreds of charging cycles 

without a noticeable degradation. The mechanism of EDLCs is non-Faradic and the 

electrodes are usually the porous carbon [100]. On the other hand, pseudo-capacitor is 
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another class of ultra-capacitor which involves a faradic mechanism and redox reaction. 

The electrode is often a metal oxide or any electrically conducting polymer. This type 

has a higher energy density, but lower power density and shorter lifetime than EDLCs 

[101].  

 

 

 

 

 

 

(A) 

 

 

 

 

 

 

(B) 

Figure 1-27: A. In a typical capacitor, electrons are removed from one plate and deposited on the other. B. An 

ultra-capacitor can store more charge than a capacitor can, because the activated carbon has a pocked interior, 

much like a sponge. This means that ions in the electrolyte can cling to more surface area. However, with finer 

dimensions and more uniform distribution, carbon nanotubes enable greater energy storage in ultra-capacitors 

than activated carbon does[97]. 
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1.8 Graphene-Based Hybrid Nanostructures 

Although Carbon nanotubes and graphene have been used in quite a few applications as 

revealed formerly, many of them, such as supercapacitors, field-emission devices, sensor 

devices and others relay in thin film technology in such applications  [102]-[105].  

Therefore, several approaches have been developed for thin film fabrication from G or 

CNT suspensions this including dip coating, electrophoretic deposition [106], filtration 

[107], [108] and others. Kim, K. S. et al. [109] reported that although the large-scale and 

low-cost manufacturing using such techniques, graphene films were still produced with 

lower electrical conductivities than its theoretical value. This serious drawback 

apparently can be due to the high interlayer junction resistance.  

A suggested solution to this problem is the hybrid nanostructure films which have 

received a great deal of attention in different studies. Recently, many of them focused on 

graphene-based material hybrid films especially, the graphene/CNT hybrids. The CNTs 

can connect the graphene flakes by forming conductive paths between them [110], [111] 

leading to a higher electrical conductivities than the pure graphene films [107], [112]-

[115]. This hybrid film enhances the properties of both graphene and CNT films. 

Additionally, it was found that the graphene/CNT hybrids also have higher electrical 

conductivities than pure CNT films [113]-[115]. King et al. suggested that the space 

between the CNTs layers are filled by the graphene particles filling which causing the 

conductivity to increase thereby providing a lower junction resistance between the 

graphene and the CNTs. Moreover, the graphene films coated with CNTs were found to 

have much lower electrical conductivities than graphene/ CNT films with graphene and 

CNTs mixed and dispersed in the same layer [113]. 

1.9 Conclusion  

In this chapter, the fundamental of the graphene (G), GO and MWCNTs with their 

physical properties, fabrication methods and applications were reviewed. Different 

methods for graphene characterization were summarized. A brief introduction to storage 

energy application and how graphene-based hybrid film materials can make a difference 

was discussed. 
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Part One: Conductive Behaviour of Graphene/Carbon Nanotube and Graphene 

Oxide/ Carbon Nanotube Hybrid Materials  

 Experimental  Chapter I-2

2.1 Introduction 

Although CNTs and graphene-based electrodes have been developed with outstanding 

properties, drawbacks are still noticeable using some methods. EPD method, for example, 

commonly produces unsatisfied CNTs film strength. CVD technique, on the other hand, 

is costly. Moreover, graphene-based electrodes need lots of labour work which is costly 

and time-consuming. Hence, there are still some restrictions in controlling CNT and 

graphene film to get the large scale quality and the massive quantity [1], [2]. Very 

recently, a simple and practical solution-casting method has been used to prepare the 

graphene-based electrodes [3]-[8]. 

The motivation after the previous researcher works is to develop a new approach 

whereby to combine the two different carbon allotropic (G and CNT) and to report on 

the electrical properties and conductive behaviour of graphene/CNT and graphene oxide 

(GO) / CNT hybrid materials. So, a water solution casting method was used to fabricate 

graphene-based hybrid materials films with various CNT contents. The understanding of 

the hybrid thin film structure was carried out through some advanced material 

characterization instruments which involve the Scanning Electron Microscopy (SEM), 

Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy 

(XPS).  

This chapter is structured as follows: Section 2.2 presents the materials used in the 

experiments. Section 2.3 gives the preparation of GO, G, G/CNT and GO /CNT hybrid 

film samples. Section 2.4 and 2.5 provides the characterization and the measurements of 

the hybrid film samples. A summary of this chapter is provided in Sections 2.6. 
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2.2 Materials 

The materials used in this experiment were: expandable graphite (EG), which is the 

natural flake graphite that has been treated chemically with sulphuric acid, was 

purchased from China Qing Dao Graphite Company. Single-walled carbon nanotubes 

(SWCNTs), multi-walled CNTs (MWCNTs), and MWCNTs-OH (with hydroxyl groups 

3-5 wt%) were purchased from Chengdu Institute of Organic Chemistry, Chinese 

Academy of Sciences. Concentrated sulphuric acid (H2SO4, 98%) and other materials 

like Potassium permanganate (KMnO4), hydrochloric acid (HCl, 36-38%) and barium 

chloride (BaCl2) that were used for oxidation of graphite were obtained from Fisher Ltd 

(UK). 

2.3 Sample Preparation  

2.3.1 Preparation of Graphene Oxide (GO) 

Expandable flake graphite (EG) is a form of intercalated graphite in which the natural 

flake graphite has been treated chemically [9]. Inserted an intercalant material such as 

(sulfuric acid) between the layers of graphite crystals is called intercalation, which 

resulting in different cryptographic structure, electronic properties and density [9]. It has 

been reported that expandable graphite d-spacing can be increased by intercalation 

process and the expandable graphene can be able to expand in volume up to 100 times 

than the natural one at high temperature [10], [11]. Also, the new physical and chemical 

properties like increasing the surface area and edges size will allow much more 

functional groups to be introduced between the graphite layers which make the 

oxidization happens easier and at a faster rate and higher reactivity [11]. Thus, to prepare 

a powder of the GO from graphite, Hummer method was used [12]. 57.5 ml of 

concentrated H2SO4 was mixed with 2.5g of expandable graphite flake in an ice bath for 

30 minutes. Then, a 7.5 g of KMnO4 was added slowly to the mixture for keeping the 

temperature of the mixture below 20oC. Then, using a water bath, the mixture was 

heated to (35 ± 3) oC with continuous stirring for about 30 minutes (before heating, the 

water bath was changed to oil one and the magnetic stirring to a mechanical one). 115 ml 

of distilled and dropwise water was added into the mixture which increased the 

temperature until 98 oC. Then the mixture was kept for 15 minutes at this temperature 

(the temperature can be adjusted by heating). To terminate the oxidation reaction, 25 ml 
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of 30% hydrogen peroxide solution (H2O2) in 350 ml of distilled water was added. 

Lastly, graphite oxide was collected by filtering and was successively washed with 5% 

HCl aqueous solution. HCl washing was repeated until there was no sulphate detected by 

the BaCl2 solution. After that, GO was collected and dried for one week at 50oC and 

under a vacuum. GO sheet was prepared by carrying out ultra-sonication of a 

concentrated dispersion of GO in water or acetone. Ultrasonic machine (Fisher scientific 

Sonic Dismembrator Model 500, 300 W) with a power of 300 W for 1h at room 

temperature was used to get a good dispersion mixture. Figure  2-1 shows digital pictures 

of expandable graphite /acetone and expandable graphite oxide /acetone dispersions.  

 

(a) (b) 

Figure 2-1:  (a) Digital pictures of expandable graphite /acetone (b) and expandable graphite oxide 

/acetone dispersions. 

 

2.3.2 Preparation of Graphene  

The used graphene was produced by mechanochemical method [13] from the expandable 

graphite in the lab. The preparation of graphene procedure is as follows:  The 

expandable graphite was mixed with powder melamine in volume ratios of 1:1 and 1:3 to 

produce some different combinations as shown in table  2-1. The mixtures were 
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dispensed into the de-ionised water to make suspensions with a concentration of 

1g/100ml. Then, these suspensions were then heated up and kept at 80°C for 1 hour with 

constant stirring. This is to allow the melamine to fully penetrate and expand the 

graphite spaces. Later, the suspensions were filtrated and dried for five hours at 80°C. 

The dried mixtures then underwent ball-milling to exfoliate the graphite layers and then 

distributed in de-ionised water. Then, they underwent further exfoliation with sonication 

handling for 1 hour using the ultrasonic machine (Fisher scientific Sonic Dismembrator 

Model 500, 300 W).  Finally, to remove the melamine, hot water was used repeatedly to 

wash the mixtures. The prepared graphene is presented in figure  2-2.  

 

Figure  2-2: Digital picture of final graphene sample (Left) and dispersion of graphene with water (Right). 

As shown in table  2-1, six specimens were made with different specifications of 

preparation. 
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Table  2-1: Preparation specifications for graphene specimens 

Specimens 
Graphite to Melamine 

Volume Ratio 

Ball-milling 

Revolutions 

Exfoliation 

Method 

Exfoliation Time 

(hours) 

A 1:1 1000 Ultrasonic 1 

B 1:1 1000 Mechanical 4 

C 1:3 1000 Mechanical 4 

D 1:3 1000 Ultrasonic 1 

E 1:3 1000 Mechanical 1 

F 1:3 1500 Mechanical 4 

 

2.3.3 Preparation SWCNT and MWCNT Suspensions 

For starters, 100 mg of MWCNT was dissolved and dispersed in 20 ml of distilled 

water using first: the magnetic stirring for around five minutes, then the assistance of 

the strong ultrasonic of 300 W for 1 hour using the ultrasonic machine (Fisher scientific 

Sonic Dismembrator Model 500, 300 W). Also, the same steps have been followed to 

prepare the SWCNT and MWCNT-OH suspensions with 5 mg/ml concentration.  

2.3.4 Preparation of Graphene Oxide /Carbon Nanotube (GO/MWCNT) 

(GO/SWCNT) and (GO/MWCNT-OH) Hybrid Thin Films. 

Preparation of (GO)/CNT) hybrid thin films: GO/distilled water dispersion was obtained 

via ultrasonic treatment for 30 min at room temperature. Each of SWCNTs, MWCNTs, 

and MWCNTs-OH was dissolved also in distilled water. The ultrasonic machine (Fisher 

scientific Sonic Dismembrator Model 500, 300 W) was used to conserve a good 

distribution of CNT in the solution. Then, the dispersion solution of the G/distilled water 

and SWCNTs, or MWCNTs, or MWCNTs-OH/distilled water were mixed. Different 

concentration can be reached by controlling the volume of the GO and CNT.  All the 

mixtures were then treated by ultrasound separately for another 30 mins. After this, each 

mixture was dropped on a coverslip placed in a glass container as in figure  2-3. The 
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hybrid thin films were coated on the coverslips. The thickness of the films was 

controlled by the volume of the mixture dropped on the cover slip. The coated hybrid 

films were obtained after drying for one day at 40 °C and then in a vacuum oven at 

60 °C for 3 days as shown in figure  2-4. 

 

 

 

 

 

 

Figure 2-3: Digital picture of the samples of GO/MWCNT after casting. 

 

Figure 2-4: Digital picture of the sample of GO/MWCNT at final stage after drying and before 

measurements. 

2.3.5 Preparation of Graphene /Carbon Nanotube (G/MWCNT) (G/SWCNT) and 

MWCNTs-OH Hybrid Thin Films. 

Preparation of G /CNT hybrid thin films: Similar to GO/MWCNT preparation, G 

/distilled water dispersion was obtained via ultrasonic treatment for 30 mins at room 
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temperature. SWCNTs, or MWCNTS, or MWCNTs-OH was also dissolved in distilled 

water. With the assistance of ultra-sonication using (Fisher scientific Sonic 

Dismembrator Model 500, 300 W), a high degree of dispersion and distribution of 

carbon nanotubes was achieved. Then, the dispersion suspensions of the G/distilled 

water and SWCNTs, or MWCNTs, or MWCNTs-OH/distilled water were mixed. 

Different suspensions concentrations were obtained by controlling the volume of G and 

CNT used.  All the mixtures were then treated with ultrasonic machine separately for 

another 30mins. After this, each mixture was dropped on a cover slip placed in a glass 

container as in figure  2-3. The hybrid thin films coated on the coverslips and the 

thickness of the films was controlled by the volume of the mixture dropped on the cover 

slip. The coated hybrid films were obtained after drying for one day at 40 °C and then in 

a vacuum oven at 60 °C for 3 days as shown in figure  2-5. 

 

 

 

 

 

 

Figure  2-5: Digital picture of the G/MWCNT Film. 

2.3.6 Preparation of G, SWCNT, and MWCNT, MWCNT-OH Suspensions  

Repeating the same procedure with graphene but this time with acetone, 100 mg of 

graphene was dissolved in 20ml of acetone to get 5mg/ml concentrated suspension. Then, 

using the ultrasonic machine (Fisher scientific Sonic Dismembrator Model 500, 300 W) 

for a strong sonication of 300 W for one hour at room temperature, a stable dispersion of 

G in acetone was obtained. The next step was the dissolving of 100mg MWCNT in 20 

ml of acetone. The MWCNT was dispersed using the magnetic stirring for around five 

minutes and then the ultrasonic machine of 300 W for 1 hour. The same procedures have 
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been followed to prepare the SWCNT and MWCNT-OH suspensions with 5 mg/ml 

concentration.  

2.3.7 Preparation of Graphene /Carbon Nanotube (G/MWCNT) (G/SWCNT) and 

MWCNTs-OH Hybrid Thin Films. 

The following step is the mixing of the dispersion G and CNT suspensions. This has 

been done with different percentage of CNT: G(40wt%)/SWCNT(60wt%), G(20wt%)/ 

MWCNTs-OH(80wt%), G(40wt%)/MWCNTs-OH(60wt%) , G(60wt%)/MWCNTs-

OH(40wt%) and G (20wt%)/MWCNTs(80wt%), G(60wt%)/MWCNTs(40wt%), 

GO(80wt%)/MWCNTs(20wt%). As previously, the thickness of the hybrid film was 

adjusted by controlling the solution volume that is used during casting. After that, each 

mixture was treated by ultrasonic for 30mins. The casting has been done by pouring the 

solution on a glass coverslip inside with size of 18x18 mm and 22x22 mm, and 5 µm and 

15 µm thicknesses. The coated hybrid films were obtained after drying for one day at 

40 °C and then in a vacuum oven at 60 °C for 3 days. 

2.4 Microstructure   

2.4.1 Fourier Transforms Infrared Spectroscopy (FTIR) 

FTIR spectroscopy is commonly used to investigate the material’s chemical structure by 

measuring the frequencies of the molecules in that material [14]. As infrared radiations 

hit a material surface, some of the IR radiations are absorbed by the material and the 

other are transmitted through the material. This is due to the specific frequencies of 

molecules that rotate or vibrate corresponding to discrete energy levels (vibrational 

mode). These frequencies are unique for different molecules and can help to identify the 

complex functional groups in the substance.  

FTIR spectra were recorded on Mattson 3000 FTIR spectrometer using transmission 

mode with a 4cm-l resolution over 120 scans. Thin films of the samples were prepared on 

the KBr pellets. G, GO powders are grounded with KBr powders and pressed into thin 

films. FTIR spectra were recorded on a SHIMADZU FTIR-S400s spectrophotometer 

using ATR mode with a 4cm-l resolution over 120 scans. 
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2.4.2 Raman Spectroscopy 

Raman spectroscopy is the technique usually used in chemistry to identify molecules. It 

investigates the vibrational frequencies of molecules and provides spectroscopic 

fingerprints for each a material [15]. The principle of Raman spectroscopy is based on 

inelastic scattering of laser light. When it is interacting with the material, photons of the 

laser light are absorbed by the material and then emitted later on. Unlike the FTIR, the 

vibrational frequencies of molecules can be determined by the change in the frequency 

of the emitted photons in comparison with original monochromatic frequency. In FTIR, 

the vibrational frequencies of molecules are determined by the frequencies of infrared 

photons that are absorbed by a vibrating molecule.  

In chapter I-3, Raman spectra of G and GO were recorded by scanning the 20-3000 cm-l 

region with a total acquisition time of 3 mins on a Jobin Yvon Horiba high-resolution 

LabRam. Raman microscope system equipped with an optical microscope adapted to a 

double grating spectrograph and a CCD array detector. The laser excitation was provided 

by a Spectra-Physics model 127 helium-neon laser operating at 35 mW of 633 nm output. 

The laser power at the sample was nearly 8 mW and was focused to nearly 10µm. 

Calibration was carried out using the 520.5 cm-l line of a silicon wafer. A spectrum of 

resolution of ~1 cm-l was used. The sample can be scanned at glass substrate directly 

without any specific requirements for the sample preparation. Like graphite, three 

promising bands exist in the graphene Raman spectrum, the G band at 1582cm-1, the 2D 

band at 2685cm-1 and the D band at 1350cm-1. The G band shifts to lower energy when 

the layer thickness increases and can be used to distinguish between graphite and 

graphene. The layer thickness can be also determined by the 2D band. However, it 

presents in graphene but not in graphite [16].   

2.4.3 Scanning Electron Microscopy (SEM) 

As a type of electron microscopes, SEM is used for inspecting the topography of the 

specimens at a very high magnification for investigation of the topography and 

morphology, chemistry, crystallography and the orientation of the sample grains. Thus, 

cracks and fractured surfaces, bond failures, and physical defects on the die or package 

surface can be analysed by SEM. It works by scanning the sample with a high-energy 

electron beam emitted from an electron gun fitted with a filament cathode. The 
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interaction between the electron beam and the atoms of the sample generates a variety of 

signals that containing information. Secondary electrons and back-scattered electrons are 

two of them. 

As secondary electrons mode is the most common imaging process, it is normally used 

to show morphology and topography of the specimen. Back -scattered electrons are 

elastically scattered from the specimen after electron beams interact with specimen 

atoms. It is well-known that stronger backscattering of electrons by heavy elements 

(high atomic number) than light elements (low atomic number). This results in a contrast 

between the areas with different chemical compositions in multiphase materials [17]. To 

produce the SEM image, the electron beam is swept across the area being inspected, 

producing many such signals. These signals of the topography being inspected are then 

amplified, analysed, and translated into digital images.  

In this project, SEM images were taken by field emission gun scanning electron 

microscopy (FEGSEM) (LEO 1530VP instrument).  The samples were fractured after 

gold coating. Then, they were placed on the specimen holder. 

2.4.4 Transmission Electron Microscopy (TEM) 

TEM is another common tool for the atomic level of material characterization. In 

principle, TEM detects the electron beam that passes through an ultra-thin sample to 

image the structure of the material. This electron has a significantly higher resolution 

than a normal light microscopy due to the small de Broglie wavelength of electrons. 

Basically, TEM image contrast is generated from the absorption of electrons in materials 

with the difference in the thickness and composition [18]. The traditional TEM is 

unsuitable for the characterization of monolayer graphene as the resolution at a low 

operating voltage is improper, while high voltage causes damage to the monolayer. 

Meyer et al. successfully resolved every carbon atom in the field of view by using 

aberration correction in combination with a monochromator, where 1Å resolution is 

achieved at an acceleration voltage of only 80 kV [19]. 

In this project, TEM analysis was conducted using a JEOL 2100 FX instrument. The GO 

and G dispersions were dropped on the copper grid for TEM imaging directly.  
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2.4.5 X-Ray Photoelectron Spectroscopy (XPS) 

XPS is a spectroscopic technique that can quantitatively measure and characterise the 

chemical contents, the empirical formula of a pure material, and the chemical and 

electronic state of the element in the surface. The principle of XPS is to irradiate the 

sample with a beam of X-ray, which is in turn, causes the electrons to escape from the 

inner layer atoms. The energy spectrum of these electrons is recorded which reflects the 

electronic state of the material. To identify the electron, the binding energy of the 

electron (Ea) is specifically used which is in relation to its parent element and atomic 

energy level. The EB of the emitted electrons can be determined by equation (2-1) as 

follows [20]:  

 EB =  Epho - EK - W                                                                                                    (2-1)  

Where Epho is the photon energy,  

W is the spectrometer work function.  

In chapter I-3, XPS analysis of G and GO powders was performed on a VG ESCALAB 

5 (VG Scientific Ltd., England) under 10-7 Torr vacuum with an AIKa X-Ray source 

using the power of 200 W. 

2.4.6 Wide Angle X-ray Diffraction (WXRD) 

X-rays are electromagnetic radiation with a short wavelength between 10-6and 10-10 cm. 

As X-ray photons interact with electrons in atoms, some photons from the radiation will 

be deflected away from their original pathway. The process is called elastic scattering if 

there is no energy loss by x-ray photons. However, some energy of X-ray photons may 

transfer into the electrons, these scattered x-ray photons will have a different wavelength 

from original photons. Thus, interference can take place among deflected waves and 

result in the distribution of intensity. Diffraction happens when the electromagnetic 

radiation interacts with the atoms arranged in a periodic structure i.e. (crystals) that 

results in sharp interference peaks called diffraction patterns. The crystal structures of a 

material can be determined by measuring the diffraction patterns. According to Bragg 

equation, the distance between crystals planes relates to the angles of incoming X-ray 
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beams [21]. The diffraction can be observed at some specific angles in an XRD spectrum, 

which provides the information of the crystalline structure in the material. 

In chapter I-3, a Philip-X' Pert X-ray diffractometer (anode 40kV, the filament current 

35 mA) with Nickel-filtered CuKα (λ=0.1542 nm) radiation at a scan speed of 10/min for 

XRD analysis was performed. 

2.5 Electrical Property  

2.5.1 Measurement of the dielectric constant of GO/MWCNTs, GO/SWCNTs, and 

GO/MWCNT-OH Hybrid Films 

The self-capacitance of the GO/MWCNT, GO/SWCNT and GO/MWCNT-OH hybrid 

films was measured using the programmable automatic RCL meter (Fluke PM6306) 

with SMD tweezers (Fluke PM9540/TWE). This was by scanning the voltage in (50 mV 

and 2V) and the frequency from (50Hz to 100 kHz) which are limited to the measuring 

range of the apparatus under AC condition.  All the coverslips were painted with silver at 

two opposite edges in order to get steady readings. The tweezers were just touching the 

two painted edges during testing. The dielectric constant was calculated for each 

measurement.  

The dialectic constant (Ԑr) is  

ε
εε =r

                                                                                                                         (2-2)     

Where; ɛ is the material permittivity and ɛo is the vacuum permittivity. 

2.5.2  Measurement of the Resistivity of GO/MWCNTs, GO/SWCNTs, and 

GO/MWCNT-OH Hybrid Films 

Fluke PM6306 has four-terminal sensing points that are used to amount the square 

resistance of a semiconductor material. This can be done by separating the current and 

the voltage electrodes which help to eliminate the contribution of wiring impedance and 

contacting resistance. As a constant current is passing through the outer probes, the 

voltage can be measured through the inner probes. Therefore, the electrical impedance of 
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the substrate R and capacitance can be measured. Each sample was painted with silver at 

two opposite edges in order to get steady readings during the test. 

The resistivity in Ω.cm is reported using the equation: 

𝜌𝜌 =  𝜋𝜋
ln2

 𝑡𝑡 �𝑉𝑉
𝐼𝐼
� = 4.523𝑡𝑡 �𝑉𝑉

𝐼𝐼
�                                                                                     (2-3)                     

Where t is the substrate thickness in cm. The conductivity is the resistivity inverse. 

2.5.3 Measurement of dielectric constant of G/MWCNTs, G/SWCNTs, and 

GMWCNT-OH Hybrid Films 

Similarly, programmable automatic RCL meters (Fluke PM6306) with SMD tweezers 

(Fluke PM9540/TWE) were used to measure the resistance and self-capacitance of the 

G/MWCNTS, G/SWCNTS and GMWCNT-OH hybrid films. The scanning voltage was 

(50 mV and 2V) with a frequency range of (50Hz to 100 kHz). The dielectric constant 

was calculated for each measurement using equation (2-2). 

2.5.4 Measurement of Resistivity of G/MWCNTS, G/SWCNTS, and G/MWCNT-

OH hybrid films 

Fluke PM6306 has also been used to measure the resistance and to calculate the 

conductivity using equation (2-3). 

2.6 Summary  

High-performance electrodes were fabricated using (G)/MWCNT and (GO)/MWCNT 

with different contents of (MWCNT) and (MWCNT-OH) using a simple water solution 

casting method. Water casting solution technique was found to be not time or money 

consuming like any other techniques like CVD or EPD. The films were characterised 

using SEM, TEM, XPS, WXPD, and FTIR. 
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Part One: Conductive Behaviour of Graphene/Carbon Nanotube and Graphene 

Oxide/ Carbon Nanotube Hybrid Materials  

Chapter I-3 Characterization of Graphene, Graphene Oxide, Graphene/Carbon 

Nanotube and Graphene Oxide /Carbon Nanotube Hybrid Films  

3.1 Introduction  

Graphene (G) and carbon nanotubes (CNTs) hybrid films have been already fabricated to 

be used as electrodes. The high-performance TEs and FETs have been reported by Kim 

et al. [1] using single wall (SWCNT)/ (G) hybrid films. The sheet resistance of the thin 

hybrid film has reached 300Ω/m with 96.4% transparency. Simple and practical 

solution-casting method has been reported recently to be used in preparing the graphene-

based material electrodes [2]-[4].  

In this chapter, the characterization results of the fabricated GO, G, G/CNT and 

GO/CNT films using the water casting method will be discussed. Then, the quality of 

these thin films will be investigated.  

3.2 Results and Discussion  

3.2.1 Characterization Graphene Oxide (GO) 

The synthesis of a functionalized graphene (graphene oxide) by Hummer’s method is 

always considered as an oxidation reaction in which the graphite is oxidized by the 

potassium permanganate. The characterization results of the prepared GO are as follows: 

3.2.1.1 FTIR of GO 

 FTIR spectrum of GO is shown in figure  3-1. 
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Figure  3-1: FTIR of GO. 

This FTIR was applied to give some analysis about the chemical components of the 

sample. This spectrum has shifted in parallel for clarification. A very intensive peak has 

been detected in the GO spectrum between 2400 cm-1 which could be from the presence 

of CO2 in the surrounding testing environment. The characteristic bands were detected at 

3420cm1, 1745 cm-1, 1250 cm-1 in (-OH),(C=O) and (C-O-C) respectively which showed 

that hydroxyl, epoxide and carboxyl (-COOH) groups are the main functionalized groups 

of the 2D graphene sheets.  

 

 

Figure  3-2: Chemical structure of graphene oxide [5]. 
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Also, from the chemical structure of the GO in figure  3-2, additional functional groups 

presented as listed in table  3-1 which exposing the vibration of the aromatic ring in 

graphene. 

Table  3-1: FTIR spectrum analysis of GO. 

Peak position of =C-H/ cm-1 1400 

Peak position of C=C/ cm-1 1613 

Content ratio of (=C-H)/(C=C) 0.23 

3.2.1.2  XPS of GO and Graphite  

The XPS of graphite and GO are illustrated in figure  3-3 and their elements content are 

listed in table  3-2. It shows the massive increase of the Oxygen from (4.3 to 26.3) %, 

while the carbon content declines from (95.7 to 71.2) % and this accordingly matches the 

oxidation reaction effects which confirms that oxidation of EG was successfully 

conducted by the Hummers method. Some elements such as nitrogen, silicon and sulphur 

were found as a contamination from different sources in the GO sample. 
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Figure  3-3: XPS plots of the contents of graphite and GO flakes synthesized by the Hummers method. 
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Table  3-2: Graphite and GO spectrum elements. 

 

3.2.1.3 C1s XPS of Graphite and GO 

The C1s XPS spectra of graphite and GO are demonstrated in figure  3-4 (A) and (B) 

respectively. Alternatively, this can similarly confirm the degree of oxidation which 

clearly can be seen from figure  3-4 (A). The C1s XPS spectrum of graphite splits into two 

peaks locating at 284.6 eV and 287 eV, respectively. These are the representative peaks 

that are attributed to carbon atoms with different functional groups such as non-

oxygenated C, in the sample, with 284.6 eV and the carbon atoms in its C-O bond state. 

Similarly, the C 1s XPS spectrum of GO is divided into three peaks (284.6eV, 287eV, and 

288eV). Those peaks are attributed to carbon in the non-oxygenated ring C, the C in C-O 

bond and carbonyl C in C=O bond correspondingly. Moreover, the weight percent of non-

oxygenated C in GO was calculated to be (58%) while it is (90.1%) in graphite, which is 

also an oxidation indication.  
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Figure  3-4: C 1s XPS spectra of Graphite (A) and GO (B). 

3.2.1.4 Transmission Electron Microscopy (TEM)  

TEM was employed to observe the existence of the GO in water. Since the presence of 

the functionalized groups can increase the sample hydrophilicity that makes the energy 

between graphite sheets decreases, the exfoliated GO in water can be occurred with the 

assistance of ultrasonic treatment, as shown in figure  3-5 and figure  3-6. 
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Figure 3-5: TEM images of exfoliated GO flakes in distilled water with (a) low magnification and (b) higher 
magnification 
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Figure 3-6:  TEM images of GO. 

It can be seen that the graphite oxide is fully exfoliated into the GO by ultrasonic 

treatment. In the TEM images, the thickness of the GO cannot be exactly measured but 

from the folded edge of the GO in the high magnification TEM images, the thickness of 

the GO can be estimated to be several nanometers. Interestingly, the structure of 

exfoliated GO is observed as well in TEM images. Since the edge of the GO layers is 

observed to be folded, the toughness of the GO is confirmed to be extremely high. 

Conversely, the wrinkled surface structure in the GO sheets can be clearly observed. 

This may affect the resulted film mechanical properties. 
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3.2.1.5 High-Resolution Transmission Electron Microscopy (HRTEM)   

HRTEM technique was used to study the graphene-layered structure. Based on different 

GO edges observation, there were between 2 to 5 layers in each sample while the 

thickness was around 1 nm.  Figure  3-7 illustrates the layer structure of the used GO. 

 

Figure  3-7: HRTEM image of a GO sheet edge. 

 

Figure 3-8 shows the X-ray diffraction pattern of expanded graphite (EG) and the 

prepared graphene oxide specimens. It is clear that a distinctive peak presented the 

flake graphite at approximately at 2Ө = 26° which represents the crystallographic 

direction of graphite crystal (002) with a theoretical d spacing of 3.354 Å [6].  This 

peak is the strongest at the graphite standard XRD spectrum besides the other peak at 

about 2Ө=10.9° corresponding to the (001) plane reflection of graphite oxide. The 

graphene oxide sample still retains the multi-layered structure of graphite, however, 

the GO peaks were found to be with lesser intensity compared to that of graphite oxide 

one which indicates that exfoliation disrupted the layered structures. Thus, effectively, 

with the lesser intensity of the (002) peak, the lesser layered structure is reserved and 
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better exfoliation is achieved. Although the assumption that graphene is present 

instead of graphite can be made, the average number of graphene layers cannot be 

precisely defined by XRD. 
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Figure  3-8: X-ray diffraction patterns of graphite powders, graphite oxide powders, and GO dispersion. 

 

3.2.2 Characterization of Graphene  

3.2.2.1 X-ray Diffraction  

Exfoliation procedures effectiveness of graphite flake was determined by X-ray 

diffraction scans (XRD) on the D2 phaser (Brunker Corporation) from 1° to 30° (2Ө) 

with a step size of 0.02°.  The spectra are illustrated in figure  3-9 and the peaks 

specifically in figure  3-10. The peak intensity in figure  3-9 (for samples A and D) shows 

them the weakest among others. This indicates that A and D have the lower numbers of 

layers that come from the higher level of exfoliation.  since A and D samples are the 

only samples went through sonication exfoliation, thus, sonication could be much more 



Chapter I-3: Characterisation of Graphene, GO, Graphene/CNT and GO /CNT Hybrid Films 

86 
 

effective than the mechanical method in terms of exfoliating expanded graphite layers. 

Moreover, despite the different volume ratio of the graphite-melamine for the two 

mixtures (1:1 and 1:3 for sample A and D respectively), the peak intensity for both of 

them has a similar magnitude. 

 

 

Figure  3-10:  XRD spectra for the specimens and pristine graphite, from 2Ө= (23° to 30°). 

Figure 3-9: XRD spectra for the specimens and pristine graphite 
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As a result, the rise of melamine ratio does not contribute to the exfoliation of graphene 

layers in sonication method. Thus, using a higher percentage of melamine could increase 

the difficulty in the removal of the small molecules before the final stage of preparation 

which may reduce graphene purity and performance.  

On the other hand, while the more milling revolutions and extended stirring had been 

considered as beneficial for exfoliation, the highest XRD peak intensity of sample C was 

indicated for ineffective exfoliation. Comparing it with sample E, it can be seen that 

underwent 4 hours of mechanical stirring for sample C instead of 1 hour as in sample E 

will not result in a well-exfoliated sample. Not even with extra 500 revolutions of ball-

milling as comparing with sample F.  

Apart from experimental errors that may occur during mixing graphene with melamine, 

there is also the possibility that mechanical stirring has no effect at exfoliating graphite. 

From the XRD peaks of specimens B and E, it can be seen that specimen B with 

extended stirring was, unexpectedly, less exfoliated. Therefore, it is possible that 

mechanical stirring does not largely affect the exfoliation of graphite for 1 hour. 

Nevertheless, independent of such speculations, the conclusion is that the mechanical 

stirring was much less effective compared to the sonication method. 

3.2.2.2 Morphology by TEM 

The graphene flakes morphologies were observed and characterized under the JEM-

2000FX transmission electron microscope (TEM) (JEOL Limited. Figure  3-11 to 

figure  3-15 are the TEM images of selected graphene specimens. The low-magnification 

images of specimen A and F are shown in figure  3-11 and figure  3-12 respectively, are 

displaying a distribution of graphene flakes all over the image.  
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Figure  3-11: TEM image for specimen A. 

 

Figure  3-12:  TEM image of graphene sample F. 
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Those flakes have variable thicknesses that were ranging approximately from 5 to 10 

layers. They have different morphologies and their size varies from few microns to over 

10 μm. Although the TEM image cannot provide a collective overview of the thickness 

and size distribution of the whole specimens, it can provide a general idea on the status 

of the prepared specimens. 

It should be noted that while isolated graphene flakes were present, the number of flakes 

are overlapped or stacked together. Those are possibly resulting from incomplete 

exfoliation. This corresponds with the X-ray diffraction results, which shows that the 

current method of exfoliation may not be sufficient in producing dispersions with 

uniformly distributed flakes of fully exfoliated graphene. Therefore, extended sonication 

and mechanical exfoliation may be required, and possibly with higher intensity. On the 

other hand, excessive sonication may lead to the breaking down of graphene flakes [7]. 

Figure  3-13 shows the existence of small particles besides the graphene flakes. These 

could be the remains of graphene sheets that were broken down during the sonication 

process or mechanical stirring. This reduction in size can cause some changes in the 

specimen physical properties which may affect related applications. For example, as the 

length of graphene nano-ribbons reduced, thermo-conductivity decreased as well [8]. 

 

 

 

 

 

 

 

 

 

 

Figure  3-13: TEM image for specimen E. The impurities are indicated by the arrows. 
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Apart from incomplete exfoliation, the nature of graphene itself might cause this 

phenomenon. As the structure of single-layer graphene is a sheet with microns size or 

larger and thickness of a single atom, the specific surface area of graphene is 

considerable. This has combined with the strong van de Waals interactions between 

layers that cause the graphene flakes to possess the tendency to form aggregates [9]. The 

aggregation or restocking usually occurs in the graphene dry state and it is irreversible. It 

is effectively the reverse of the exfoliation process. Thus, the specific area of the 

graphene is reduced, causing losses in some application performance such as capacitance 

[10]. Since the graphene needs to be in a reasonable quality for electrical components 

usages such as electrodes, the aggregation, and the restocking effect should be prevented.  

Regarding the chemical-mechanical approach, several methods have been suggested. Si 

and Samulski proposed an approach of graphene separation by applying platinum 

particles [11]. They deposited platinum nanoparticles on graphene flakes with reduction 

of chloric platinic acid. The metallic nanoparticles will prevent the layers from 

aggregating; while at the mean time they do not cause a reduction in electric properties. 

This method does not involve any special tool and only require reactions within water 

solution of graphene. Therefore, it is fully compatible with chemical-mechanical method. 

However, the cost will involve some extra metal nanoparticles price which may be 

unacceptable for commercial production.  

Carbon nanotubes have been proposed as well to separate graphene layers. Cheng et al. 

used sonication in ethanol and vacuum filtration to produce graphene/carbon nanotube 

film [12]. The carbon nanotubes are positioned between the graphene layers in a 

direction parallel to the layers. As carbon nanotubes and graphene are of similar carbon 

nature, the nanotubes can provide enough conductivity while preventing the layers from 

restacking. While the interactions between the layers may affect the quality of the 

graphene prepared, it is also can be beneficial. As it can be seen from figure  3-14 and 

figure  3-15, the edges of the graphene flakes were folded and remained with this folded 

position because of the Van der Waals forces. These forces help to stabilize the layers 

against the elastic energies introduced by folding [13]. Zhang et al. have confirmed that 

high power sonication can produce graphene flakes with approximately ten layers, most 

of them with folded edges [14]. The presence of folded double or single layered 

graphene flakes has also been confirmed by TEM images that correlated with their 
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findings. Thus, while sonication may be detrimental in terms of morphology control, the 

folded graphene edges produced may become useful in certain applications. 

 

Figure  3-14: TEM image for specimen A. The folded edges are indicated by the arrow. 

 

Figure  3-15: TEM image for specimen A. The folded edges are indicated by the arrow. 
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Figure  3-16, on the other hand, shows a set of parallel patterns that existed on some of 

the graphene flakes. This was suspected to be the crumpling of the flakes in the direction 

perpendicular to the surface of the flake. Such wrinkles of graphene have been reported 

before, however, the physics behind such phenomena is not yet completely known. 

These are thought to be related to the natural instability of graphene, where thermal 

fluctuations caused 2D crystalline structures to crumple in 3D space [15]. This effect is 

commonly seen in graphene prepared by methods such as CVD where transferring of 

graphene to another substrate is needed. The thermal stress involved with the thermos-

expansion coefficient difference between graphene and metal substrates is believed to be 

the cause for the wrinkles [16]. Conversely, despite the absence of substrates, the flakes 

prepared by sonication or mechanical stirring still possess wrinkles. Suspended graphene 

flakes prepared by the micromechanical cleavage method are known to be not entirely 

flat [17]. In this case, the assumption is taken to make the exfoliation methods of higher 

intensity, such as ball-milling with subsequent sonication or mechanical stirring would 

surely create wrinkles on the product.  

The presence of wrinkles, on the other side, may alter some of the graphene flakes 

properties, such as decreasing the carrier mobility [18] which might reduce the graphene 

effectiveness in electrical application. To control the formation of wrinkles, Wang et al. 

suggested that reducing the temperature can reduce wrinkling by stabilising the graphene 

flakes [19]. Increasing the layer number is another option to restrain individual graphene 

layers, hindering the formation of wrinkles. However, this will affect the final graphene 

properties. Thus, decreasing the temperature during the preparation of graphene is a 

realistic approach. Usually, the chemical-mechanical approach involves heat which 

coming from drying, ball-milling, and sonication.  During the ball-milling stage, heat is 

generated by the kinetic energies related; this can be reduced by adding DMF during 

ball-milling. The common solvent can absorb the heat generated by vaporising, thus 

reduce the temperature within the mill. On the other hand, when ultrasound propagates 

through the liquid, a considerable amount of heat is generated. A simple water bath was 

used to compensate the heating. This can be improved by using ice bath which is 

exchanged regularly between sonication intervals or applying a circulating cooling 

system to the water bath. Also, the drying stage can be altered so that a lower 

temperature but longer dry time is applied. 
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Figure  3-16: TEM image for specimen E. The wrinkles are indicated by the arrows. 

Those unidentified particles that were shown previously in figure  3-13 and existed along 

with the graphene flakes are most likely to be the melamine added during the first stage 

of exfoliation. Although the hot water was used to wash the graphene flakes after 

sonication or mechanical stirring, complete removal cannot be expected. The purity of 

the specimens was further investigated by FTIR and wide-scan XPS in the next section. 

3.2.2.3 Wide-Scan X-ray Photoelectron Spectroscopy XPS 

Figure  3-17 illustrates the wide-scan XPS spectra of the specimen. There is a present of 

some elements beside the carbon that come from the graphene flakes as shown table  3-3. 

Those elements may come from different sources such as the substances that were added 

during the preparation of graphene. Moreover, the existing of impurities is predictable 

and some unwanted chemical contents may come from some experimental errors.  
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Figure  3-17: Wide-scan XPS spectra for specimen A. 

Metallic contents such as calcium and magnesium were found within some of the 

specimens. This is likely to be in the form of salts. As the chlorine is found in every 

specimen, calcium chloride and magnesium chloride are commonly found in water, 

which may come from the various containers and equipment. The contamination of 

sodium is likely to be from sodium chloride. Another possible source of metallic 

particles is the surface of metal tools used during the production. 

The silicone was found in every specimen but with various amounts. It might be related 

to the ball-milling process. Silicone is containing ceramic components that are 

commonly used within the ball-mill due to their hardness and abrasion resistance. Thus, 

contamination may occur to the specimens.   

Nitrogen, on the other hand, was also found in all samples which varied from 2.59% to 

8.97%. The absorption of nitrogen into the graphitic lattice is a well-known phenomenon; 

however, even with using nitrogen as a performance altering dopant, the solubility of 

nitrogen in graphene is believed to be as low as 2% [20]. In this case, as nitrogen 

impurities within the specimens were above this amount, extensive doping might be 

introduced.    
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Table  3-3: XPS determined atomic ratio of contained elements for each specimen 

Element 

 

Atomic ratio (%) for each specimen 

A B C D E F 

C 84.33 77.32 81.34 73.55 80.08 83.14 

O 8.77 12.11 9.55 12.21 9.62 10.72 

N 4.5 6.95 5.93 8.97 6.39 2.59 

Si 1.77 2.65 1.3 1.59 1.44 1.4 

Na 0.28 0.46 0.18 0.3 0.23 - 

Cl 0.35 0.51 0.37 0.5 0.52 0.73 

Ca - - 0.53 1.15 0.76 0.65 

Mg - - 0.55 1.34 0.96 0.54 

S - - - 0.38 - - 

P - - 0.24 - - - 

Zn - - - - - 0.24 

 

The Fourier transform infrared (FTIR) spectra were done by the FTIR-8400S Fourier 

Transform Infrared Spectrophotometer (Shimadzu Corporation) with 4 cm-1 resolution 

over 64 scans to further investigation. There was a considerable oxygen amount within 

each specimen which is considered as a common impurity which could be from multi 

sources. One likely source for oxygen is the vapour absorbed by the specimen. There is 

also the possibility of getting oxygen containing ceramic particles or salts from 

equipment. Beside this contamination, attention must be paid to the oxidation of the 

graphene sheets. While the Hummers method makes extensive use of oxidizing agents to 

oxidize graphite, oxidation can occur to graphene without the presence of such agents. It 

has been established that after 200°C, graphene specimens with less than 3 layers would 

oxidize heavily, causing strong hole doping in the graphene sheets [21]. Thus, the 

temperatures that involved with the chemical-mechanical method were lower than 100°C. 
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Although the oxidation theoretically should not reach a considerable level, the possibility 

of oxidation does exist.  

3.2.2.4 Infra-Red Spectroscopy 

To analyze the structure of these compounds, infra-red spectroscopy was used. Infrared 

radiation (IR) is a form of electromagnetic radiation of slightly lower energy than visible 

light. When such radiation interacts with a covalent bond (has an electrical dipole), the 

energy is absorbed and the bond will start to oscillate. In fact, any vibration that causes a 

change in the dipole of the molecule should absorb IR radiation. IR spectroscopy 

measures this vibration of the atoms and based on this, the functional groups can be 

determined [22]. Therefore, IR spectrum of a chemical substance is the fingerprint for 

molecule identification. Summarized positions of these bands are shown in table  3-4. 

The infra-red transmission spectra of the graphene A and B specimens are shown as 

examples in figure  3-18 and figure 3-19. The other specimens C to F spectra are with 

similar spectrum. It is clear from these figures that the peaks positions of each sample 

are similar to others but with variation in intensities. This might be due to the fact that 

graphene, in its powder state, is not the ideal material for IR examination. Potassium 

bromide is transparent from the range near to the ultraviolet to the long wavelength 

infrared without any significant optical absorption in this region. As the sample was 

simply grinding with powder KBr and placed inside a disk, the dark powder has a 

relatively low transmittance for visible light and IR, which increases the difficulty in the 

preparations of the KBr sample disc. In order to produce a KBr disc that is transparent, 

the amount of graphene powder was kept at a minimum, thus it was difficult to create 

complete homogeneous mixtures. Moreover, the nature of graphene also made it difficult 

to be fully ground, causing further inhomogeneity. Some wavy features can be seen in 

figure  3-18 and figure  3-19, especially after 3400cm-1, this is due to the inhomogeneous 

nature of the prepared discs which had caused interference of the infra-red waves.  

Comparing table  3-4 to figure  3-18 and figure  3-19, a broad peak at around 3421 cm-1 

was present; this identifies the characteristic peak of –OH stretching, which confirms the 

presence of water within the discs. The peaks at around 1020cm-1 and 1060cm-1 were in 

the fingerprint region which might relate to C-O vibrations, indicating a possible 

oxidation. 
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Table  3-4:  Functional groups absorbed at different and specific frequencies of IR radiation [23]. 

Bond type Frequency (cm-1) 

C-H alkane 2950 – 2850 

C-H alkene 3080 – 3020 

C-H aldehyde ~2900 

C-H alkyne ~3300 

alkyne triple bond 2250 – 2100 (s) 

alkene double bond 1680 - 1620 (s) 

carbonyl, ketone 1725 – 1700 (s) 

carbonyl, aldehyde 1740 – 1720 (s) 

carbonyl, ester 1750 – 1730 (s) 

carbonyl, acid 1725 – 1700 (s) 

carbonyl, amide 1690 – 1650 (s) 

O-H, alcohol 3600 – 3200 (s, broad) 

O-H, acid 3000 – 2500 (s, broad) 

C-O, alcohol, ester, ether 1300 - 1000 

 

The twin peaks that were found at around 2852cm-1 and 2924cm-1 are the stretching of -

CH. The peaks at around 2314cm-1 and 2374cm-1 were assigned to the CO2 fluctuations 

in the air. The C-C skeleton vibrations of the graphene carbon rings were found at 

around 669cm-1 and 777 cm-1. The points 1385 cm-1, 1580cm-1 and 1641cm-1, where the 

later was hard to identify in figure  3-19 due to the neighbouring peak, were caused by 

the presence of melamine C3H6N6. 
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Figure  3-18: Infra-red transmission spectra for specimen A. 

 

Figure  3-19: Infra-red transmission spectra for specimen B. 

Despite the washing operations after sonication and stirring, the presence of melamine 

peaks confirms the results of wide-scan XPS that melamine was not completely removed 

from the graphene specimens. It is most likely to remain between the graphene galleries. 

This impurity may cause the deterioration of sample electrical performance.   
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The -CH peaks, on the other hand, were rather uncommon since the chemical content of 

graphene is predominately sp2 hybridized carbon. Considering the structure of graphene, 

the zigzag and the armchair are two types of edge configuration with different magnetic 

and electronic properties as shown in figure  3-20 [35]. For both configurations, the 

carbon atoms at the edge of the layer possess only two C-C bonds, which would leave 

two free electrons. One of the free electrons forms π bond with free electrons from other 

carbon atoms. The other electron which is left forms C-H bond.  

 

Zigzag                                                  Armchair 

Figure  3-20: The zigzag and armchair configurations of graphene edges. [24]. 

3.2.2.5 C1s X-ray Photoelectron Spectroscopy (XPS) 

The C1s XPS spectra of graphene specimens A and B are illustrated in figure  3-21 and 

figure  3-22. It is clear that only a single peak at 284.68eV is visible for spectrum B while 

the spectrum of specimen A is splitting into four peaks which have located at 284eV, 

285eV, 287eV, and 291eV. Despite the above, both A and B spectra are of a very similar 

shape, which shows that the specimens were identical in terms of the electronic state. 

Moreover, apart from the peak at 284eV, all three peaks found in figure  3-21 are in a 

very low intensity which leads to a limited contribution to the fitting peak. Vadahanmbi 

et al. revealed that the main peak at 284.6eV was attributed to the carbon atoms in non-

oxygenated rings, which is the backbone of graphene [36]. Additionally, at 285eV, a 

weak peak for C-N bonds was spotted, which corresponded with the FTIR results, 

confirming the presence of residue melamine. The peak at 287eV represented the C-O 
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bonds which are an indication for oxidation. The peak at around 291eV is designated to 

the π - π* configuration of sp2 hybridized carbons. 

 

Figure  3-21: C 1s XPS spectra for graphene specimen A. 

 

Figure  3-22: C 1s XPS spectra for graphene specimen B. 
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Thus, despite the existence of a minor level of oxidation in the specimen (A), graphene 

samples are generally not changed chemically. The oxidation process may change the 

carbon atoms in the graphene flake from sp2 hybridized to sp3 hybridized. In theory, 

these sp3 hybridized carbons can cause a disturbance in carrier transport, forcing the 

carriers to hop over the sp3 sites instead of near ballistic transport [37]. Hence, the 

conductance will be reduced. Since, there is no oxidizing agent deliberately added during 

the preparation, the only possible source of oxidation will be the heat involved during 

the drying process. The temperature used during drying was 80oC, which is not 

exceptionally high for normal drying processes. Therefore, to reduce the chances of 

oxidation, lower temperature with extended drying time is suggested, which also can 

reduce the chance of wrinkling within the graphene layers.    

3.2.3 Characterization of GO/MWCNT and GO/SWCNT and GO/MWCNT-OH 

Films  

3.2.3.1 The Morphology of GO/GNT Hybrid Materials Using SEM 

Figure  3-23 shows the cross-section SEM images for GO/MWCNTs and GO/MWCNT-

OH hybrid films. These SEM images reveal the appearance of tilting layered structure in 

the thin films. This layered structure is well-arranged in where each the conductive CNT 

sandwich between two insulating layers of graphene oxide. This structure exhibits the 

information of the support of 2D graphene oxide for MWCNTs horizontally. GO layers 

act as strong holders to maintain the organization of the MWCNTs. Therefore; the film 

structure is conserved in a large area. This large contact area between CNTs and GO is 

able to store quite a lot of charges in the conductor’s layers. As for energy storage, this 

layer structure exactly matches the nature of a capacitor. The GO sheets are just stacked 

as layers of insulators, while massive MWCNTs filaments are acting as conductors. 
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Figure 3-23: Cross section SEM images of the GO/CNT hybrid films. (a)GO(20wt%)/ MWCNTs 

(80wt%); (b) GO(40wt%) /MWCNTs (60wt%)); (c) GO(60wt%)/MWCNTs (40wt%); (d)GO(80wt%)/ 

MWCNTs (20wt%); (e) GO (50wt%)/MWCNT-OH (50wt%);( f) GO (50wt%)/MWCNT (50wt%). 

 

a b 

d 

e 

c 

f 



Chapter I-3: Characterisation of Graphene, GO, Graphene/CNT and GO /CNT Hybrid Films 

103 
 

The cross-sectional SEM images show that the morphology can be influenced by the 

quantity of each element in the film structure. As it is clear in figure  3-23, the images of 

GO (80 wt %) /MWCNTs (20wt %) has the smaller component of the MWCNTs in the 

film which is filled in between the GO layers. This forms a kind of straight layers that 

hold a smaller amount of charges than the one with GO (20 wt %) /MWCNTs (80wt %). 

The later has a fuzzy film structure that increases its capacitance to be capable of storing 

a high amount of charges.  

On the other hand, It can be found that the layers of GO (50wt %) /MWCNTs-OH 

(50wt %) film stack more compactly and tightly with clear layer structures than GO 

(50wt %) /MWCNTs (50wt %). This probably results from the existence of the hydroxyl 

groups in MWCNTs-OH. The (–OH) is a very hydrophilic chemical group that could 

help MWCNTs to be well dispersed in distilled water. Also, in the GO/MWCNT-OH 

mixture, strong intermolecular forces such as hydrogen bonds might be formed between 

–OH of MWCNTs-OH and the functionalized groups on GO surface such as –COOH 

and -OH. These forces, thus, can further hold the GO and MWCNTs-OH together and 

condense the layer structures.  

Figure  3-24 shows the SEM images of the surface of the GO/MWCNT hybrid films. The 

SEM images for different compositions of multiple walls of CNT (20 %, 40%, 60 % and 

80 %) and GO hybrid thin films can provide a deep understand of the thin film surface 

structure and morphology. Obviously, as the weight percentage of MWCNT increases in 

the hybrid thin film from 20 % to 80%, the number of MWCNTs covering the surface is 

increased and a kind of percolated network are formed. This may reduce the film 

resistance and so the electrical conductivity increased. This incorporation of MWCNT 

may result in rising of the storing capacity of charges. These influences on the film 

electrical properties will be discussed in chapter I-4. The transparent sheets covered a 

larger area in these films with increasing GO content which leads to a percolated 

network. Unlike MWCNTs, figure  3-24 (f) shows that the networks are not noticeable 

even with 60 wt% of SWCNT, which shows poor percolated networks due to the poor 

dispersion of SWCNT in water. 
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Figure  3-24: SEM images of the surface of the hybrid films. (a) GO(20wt%)/MWCNTs (80wt%); (b) 

GO(40wt%)/MWCNTs (60wt%); (c) GO(60wt%)/ MWCNTs (40wt%); (d) GO(80wt%)/MWCNTs(20wt%); (e) 

Surface SEM image of GO(wt%)/MWCNT-OH (50wt%); (f) GO(40wt%)/ SWCNTs (60wt%). 
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3.2.4 Characterization of G/MWCNT, G/SWCNT and G/MWCNT-OH Hybrid 

Films  

3.2.4.1 The Morphology G/GNT Hybrid Materials Using SEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-25: SEM images of the surface of the hybrid films. (a) cross sectional  area of G 

(40wt%)/MWCNTs (60wt%) hybrid film; (b) surface of  G(20wt%)/MWCNTs (80wt%); (c) surface of 

G(60wt%)/MWCNTs (40wt%); (d) surface of G(80wt%)/MWCNTs (40wt%); and (e) surface of 
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3.3 Summary  

In this research, graphene (G) and graphene oxide (GO)/carbon nanotubes (CNTs) hybrid 

film materials were fabricated as high-performance electrodes with different contents of 

SWCNT, MWCNT and MWCNT-OH using a simple water solution casting method.  

Different from other fabricated techniques such as CVD or EPD, water casting solution 

method is not time or money consuming. The films with MWCNTs showed a consistent 

and well-entangled layered structure at nanometer scale. This layered structure of the thin 

film is obvious, especially in the film with 80% GO. This formed layered structure can 

procedure a self-capacitor for energy storage, which is well-arranged as insulating layers 

of graphene oxide are sandwiched between conductive CNT. The support of the 2D 

graphene oxide for the MWCNT horizontally can be conserved in a large area. This large 

contact area between the MWCNTs and GO as well as the small thickness of the GO (the 

insulators) can store quite a lot of charges in conductors layers results in a high capacitance.  

The SEM pictures for different compositions of multiple walls from MWCNT (20 %, 40%, 

60 % and 80 %) and GO hybrid thin films can provide a deep understanding of the thin 

film surface structure and morphology. Obviously, as the weight percentage of MWCNT 

increase in the hybrid thin film from 20 % to 80%, the number of MWCNTs covering the 

surface is increased and a kind of percolated network are formed. This reduces the film 

resistance and thus, the electrical conductivity increased. Therefore, the incorporation of 

MWCNT may result in rising of storing capacity of charges.  
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Part One: Conductive Behaviour of Graphene/Carbon Nanotube and Graphene 

Oxide/ Carbon Nanotube Hybrid Materials  

Chapter I-4  Electrical and Magnetic Properties of Graphene/Carbon Nanotube 

and Graphene Oxide /Carbon Nanotube Hybrid Materials  

4.1 Introduction 

Recently, hybrid nanostructures have received a great deal of attention in different 

studies which focused on the graphene-based material. The functionalized hybrid 

materials can complement the deficiencies of pure graphene films [1]-[3]. Up to now, 

indium tin oxide (ITO) has usually been used as a transparent electrode (TE) in solar 

cells, organic light emitting diode panels and touch panels because of its high optical 

transparency and low sheet resistance. However, sustainability and price concerns give 

the need to be replaced for new transparent conductive materials with a high mechanical 

flexible material but low-cost one [4]. Thus, there are daily efforts to fabricate 

transparent, conductive and flexible graphene-based material electrodes (TEs) and field 

effect transistor electrodes (FETs) [5]-[8]. For example, graphene and silver or copper 

nanowire hybrid films attracted enormous interest to be investigated as a possible 

replacement, in particular, transparent and flexible electrodes [4], [5], [9]. Xu et al. 

reported the use of graphene/silver nanowire hybrid films as electrodes for transparent 

and flexible acoustic device, in which the grain boundaries in graphene are bridged by 

AgNWs and the empty spaces in AgNWs network are filled with graphene [10].  

On the other hand, graphene and CNTs hybrid films have been developed with excellent 

electronic properties to work as electrodes. All studies have focused on the development 

of graphene/CNT hybrid films to make excellent willing materials which are utilized in 

different electrical devices. However, the influence of microstructure of the hybrid film 

on its electrical properties such as conductivity, capacitance and the change of the values 

with frequency and voltage has never been reported. For the applications of graphene-

based hybrid materials as electrodes or electrical devices, the influences are important 

and must be addressed clearly. 
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In this chapter, the electrical properties of the graphene/ CNT hybrid films such as 

conductivity and specific capacitance were discussed. It provides some useful 

information about the electrical performance of graphene-based hybrid films as 

electrodes. 

4.2 Electrical Properties of Graphene-Based Hybrid Films 

Resistance and specific capacitance were measured under scanning voltage and 

frequency to analyse the electrical properties of the hybrid films. Then, the dielectric 

constant and resistivity were calculated. 

4.2.1 Conductivity for Samples of Size (18mmx18mmx5μm) 

The conductivities of all samples were calculated from the measured resistance values 

using equation (2-2) in chapter I-2. Figure  4-1 shows the electrical conductivity of 

MWCNTs wt % for G/MWCNT and GO/MWCNT hybrid films. There is a linear 

relationship of electrical conductivity with CNT content in both GO/MWCNT and 

GO/MWCNT-OH systems.  As seen from figure  4-1 part (a) the conductivity increases 

as the MWCNT fraction in the film rises. However although the linearity is clear in both 

systems, the slope with the GO/MWCNT is larger than the one using the GO/MWCNT-

OH which resulting in a sharper growth of the conductivity in the GO/MWCNT film. On 

the other hand, in the G/MWCNT and G/MWCNT-OH systems, a nonlinear relationship 

of electrical conductivity with CNT content was found. Figure  4-1 part (b) shows clearly 

in the G/MWCNT film that the conductivity is raised up with increasing the content of 

the CNT until reaching to a specific value where it started to have an inverse relationship 

with the content of CNT. This may result from the connection of two nanostructured 

conductive materials. On the other hand, unlike the G/MWCNT trend, the conductivity 

of the G/MWCNT-OH film shows a linear relationship with the content of the MWCNT-

OH.  

Although both G-based MWCNTs and MWCNT-OH hybrid films exhibit similar trends, 

MWCNTs hybrid thin films show a higher conductivity than the MWCNTs-OH. This 

can be explained by changing the electrical property of CNT as a result of –OH group 

presence. This group works as cavities or holes that prevent charges accumulation by 

reducing the area and dropping the final specific capacity. The –OH groups affect the 
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material’s resistance as well as the percolated network which tends to decrease the 

overall material conductivity by twisting the CNTs and shorten the conjugated length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1: Electrical conductivity versus wt% CNTs for (a) GO/MWCNT systems and  

(b) G/MWCNT systems. 
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Figure  4-2 illustrates XPS results for MWCNTs and MWCNT-OH which shows the 

effect of –OH functional group in the MWCNT structure. A noticeable increase of 

Oxygen content is obviously seen in MWCNT-OH spectrum. The –OH functional group 

can change the chemical structure of the whole MWCNT as shown in figure  4-3. This 

influence should be taken into account for a better-percolated network formation.  

 

Figure  4-2: XPS results for MWCNTs and MWCNT-OH. 

 

 

 

 

 

 

 

Figure 4-3:  MWCNT-OH chemical structure. 
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On the other side, the G/MWCNT hybrid films have a much higher conductivity 

comparing with the GO/MWCNT due to both G and CNT are conductive materials. 

However, the conductivity of the hybrid films with SWCNT in contrast to MWCNT 

systems is much lower due to the poor dispersion of SWCNT and non-layered structure. 

The corresponding conductivity of ( 40wt% G/ 60 wt% SWCNT) and (40wt% GO/ 60 

wt% SWCNT) were found to be  15.5 S.cm−1and 7.2 S.cm−1 respectively, whereas they 

are  68.0 S.cm−1and 34.3 S.cm−1 for the same fraction but ( 40wt% G/ 60 wt% MWCNT) 

and (40wt% GO/ 60 wt% MWCNT). As well known, generally, SWCNTs are bundled 

together and very difficult to form a single SWCNT dispersion in solution or in a matrix. 

Based on these results, it is believed that G/SWCNT or GO/SWCNT systems are not 

suitable for the development of high-quality electrodes using the simple water casting 

method. 

4.2.2 Capacitance 

In this part, the capacitance with frequency from (50 – 10000) Hz for G and GO-based 

hybrid films were assessed at 2V. As it is known, the specific capacitance highly 

depends on the frequency loaded, and always decreases as the value of frequency goes 

up [11]. Refer to the experimental results, generally, these trends can be observed in 

each film, in which the capacitance was found to decrease down to zero at high 

frequencies. The highest value of the capacitance was recorded at 50 Hz and rapidly 

down to zero at about 2000 Hz. But, for several films, capacitance showed a little rise at 

the beginning of the measurement. It’s probably due to the delay of charging at the 

starting of the process which reduces the capacitance slightly at 50Hz. This rapid falling 

of capacitance could be because the lower the frequency of the applied voltage, the more 

time the capacitor needs to be a fully charged. Then, it passes with a zero current state 

before the voltage reverses its polarity and the capacitor start to discharge. When a 

higher frequency is applied, the capacitor changes from charging to discharging quicker 

in its charge curve and it remains further from its fully charged state. The dielectric 

constant can be calculated from capacitance values of GO and G systems to be plotted 

against frequency at 2V and presented in figure  4-4 and figure  4-5. 
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Figure  4-4: a: Plot of dielectric constant versus frequency at 2V of a (GO 40wt %/MWCNT 60 wt %). b: 

(GO 40wt %/MWCNT-OH60 wt %). C (GO 40wt %/SWCNT 60 wt %). 
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Figure  4-5: a: Plot of dielectric constant versus frequency at 2V of a (G40wt %/MWCNT 60 wt %). b: (G 

40wt %/MWCNT-OH 60 wt %). C (G 40wt %/SWCNT 60 wt %) 

The dielectric constant of different hybrid films against wt% CNTs at 50Hz with 2V is 

shown in figure  4-6. Obviously, the trend of dielectric constant versus the content of 

CNT graph is similar to the conductivity and wt% MCNT trend.  Clearly, in part (a) 

there is an almost linear relationship can be found in each type of GO/MWCNTs film. 

The dielectric constant is directly proportional to the MWCNTs percentage in the films. 

Nevertheless, in the G/MWCNT system, the dielectric constant value increased with 

increasing the CNT content until reaches to the highest at 40wt% MWCNTs for 

(G/MWCNT) and at 60wt% MWCNT in the G/MWCNT-OH. After this value, the 

dielectric constant started to be nearly constant. This could be regarded to the influence 

of the nanostructure in the G/MWCNT systems. 
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It can be also found that the G/MWCNTs systems act superior to G/MWCNTs-OH 

systems, exhibiting a higher dielectric constant and lower resistivity. Like the 

conductivity, the difference in the dielectric constant of the two film types also is 

resulted from the presence of –OH groups. In G/MWCNTs-OH systems, -OH groups act 

as ‘voids’ being incapable of accumulating charge, thus reduced the entire capacitance 

and so the dielectric constant. Above all, the trend of dielectric constant in figure  4-6 is 

not only affected by the percolated network, but also the side groups on the carbon 

nanotubes.  

 

 

 

 

 

 

 

Figure 4-6: Dielectric constant at 50Hz against wt% MWCNTs. (a) GO/MWCNT hybrid films and 

(b) G/MWCNT hybrid films. 
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Table  4-1: dielectric constant and resistivity (at 50Hz) for each hybrid film with SWCNT. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7: Plots of dielectric constant versus scanning voltage at 50Hz. (a) GO (40wt %) /MWCNT 

(60wt %); (b) GO (40wt %) /MWCNT-OH (60wt %); (c) GO (40wt %) /SWCNT (60wt %); and (d) GO 

film. 

Type of hybrid thin film 
G (40wt %) / 

SWCNT (60wt %) 

GO (40wt %) / 

SWCNT (60wt %) 

Dimension 18mmx18mmx5μm 

Maximal specific capacitance F/g 26.7 3.8 

εr /g 1.5 E+07 1.2 E+07 

Resistivity(kΩ.mm) 0.01425 0.0305 
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Figure  4-7 illustrates a non-linear behaviour of the dielectric constant during a voltage 

range from (0-2) V in all hybrid films. Comparing four films with different functional 

groups but with the same fraction of MWCNT, results came out with the nearly similar 

finding. Among some voltages, the dielectric constant reaches to maximal values (peak) 

and at some voltages gets to minimum values (valley). In part (a) of figure  4-7, the 

dielectric constant value fluctuates between minimum and maximum unexpectedly 

during (0-2V) scanning voltage for GO (40wt %) /MWCNT (60wt %) hybrid film. The 

maximal dielectric constant reaches 5.32x107/g and the minimal for around 6.36x106/g. 

There are some peaks in specific points among this voltage range. Part (b) with GO 

(40wt %) /MWCNT-OH (60wt %) film has the same trend but with a lower dielectric 

constant value. The maximal dielectric constant is 2.05x107/g. The peaks are also found 

in specific voltage which are almost similar to those in part (a). Although, the film of the 

GO/SWCNT in part (c) has a maximal dielectric constant smaller than previous films, 

the graph trends still the same with some peaks and valleys in specific voltages. The pure 

GO film has been also investigated as in part (d) in figure  4-7 to make sure that this 

influence is not an intrinsic property of the film. As it clear the nonlinearity is missing in 

this graph and the dielectric constant is nearly constant to 0 /g. This leads to expect that 

this nonlinear behaviour comes from the junction in the hybrid film. Peaks of voltages in 

these three hybrid films are summarised in table  4-2:  

As it clear from this table, voltage peaks are almost the same or a very close to each 

other in a specific order. 
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Table  4-2: Voltage peaks values of (GO (40wt %) /MWCNT (60wt %), GO (40wt %) /MWCNT-OH 

(60wt %) and GO (40wt %) /SWCNT (60wt %) hybrid films. 

n 
Peak voltage in 

GO/MWCNT 

Peak voltage in 

GO/MWCNT-OH 

Peak voltage in 

GO/SWCNT 

1 0.26 0.25 0.24 

2 0.43 0.38 0.34 

3 0.5 0.5 0.56 

4 0.6 0.61 0.61 

5 0.68 0.69 0.69 

6 - 0.74 0.73 

7 0.79 0.78 - 

8 0.89 0.83 0.83 

9 0.92 0.91 0.93 

10 0.95 0.96 0.99 

11 1.01 1.01 1.04 

12 1.15 1.17 1.17 

13 1.21 1.24 1.24 

14 1.38 1.32 1.32 

15 1.65 1.62 1.59 

16 1.69 1.73 1.74 

17 1.83 1.84 1.87 
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Table  4-3: Voltage peaks values of (G (40wt %) /MWCNT (60wt %), G (40wt %) /MWCNT-OH 

(60wt %) and G (40wt %) /SWCNT (60wt %) hybrid films 

n 
Peak voltage in 

G/MWCNT 

Peak voltage in 

G/MWCNT-OH 

Peak voltage in 

G/SWCNT 

1 0.28 0.28 0.28 

2 0.33 0.33 0.32 

3 0.38 - - 

4 0.46 0.46 - 

5 0.52 0.52 0.63 

6 0.75 0.78 0.77 

7 0.89 0.85 0.89 

8 0.92 - 0.93 

9 0.99 0.99 1.02 

10 1.05 1.04 1.05 

11 1.15 1.12 - 

12 1.25 1.23 1.22 

13 1.31 1.3 1.3 

14 1.35 1.35 1.35 

15 1.44 1.44 1.44 

16 1.55 1.55 1.54 

17 1.71 1.7 1.71 

18 1.91 1.89 1.88 
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Figure 4-8: Plots of dielectric constant versus scanning voltage at 50Hz. (a) G (40wt %) / MWCNT 

(60wt %); (b) G (40wt %) /MWCNT-OH (60wt %); (c) G (40wt %) /SWCNT   (60wt %); (d) MWCNT 

film; and (e) graphene film 

Figure  4-8, on the other hand, shows the plots of dielectric constant versus scanning 

voltage from (0-2) V at 50Hz for G/CNT systems which have a trend similar to the 

GO/CNT one. However, the peaks values are higher than the GO/CNTs system which 
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reaches 9.21x107/g for GO (40wt %) /MWCNT (60wt %). The peaks of voltages are also 

in the same position or nearly close to each other as they are summarised in table  4-3.  

Pure graphene and pure MWCNT films have been investigated as well to check if any of 

their intrinsic properties influences this nonlinearity. As it is shown in figure  4-8 (d &e), 

such behaviour, originally, is found in each pure film but it is very small and rarely 

noticeable. However, these characteristics are adding up in the hybrid film.  

Obviously, the hybrid films GO/CNTs and G/CNTs dielectric constant are voltage 

loaded dependent. It is possible that nano-junctions formed between G or GO and CNTs 

when the content of carbon nanotubes is high. The peak values of the dielectric constant 

appear where the junctions are fully exerted at the relevant voltages. The dielectric 

constant has been found to be higher in G/CNT than in GO/CNT which is not as 

expected. GO is an insular which can form a capacitor system with the conductive CNT 

layers. Conversely, G is a conductive with another CNT conductive material could give 

a very weak capacitor system. The unexpected results seem that the nanostructure could 

have significant influences on its performance as electrodes. Generally, the change of the 

dielectric constant with voltage indicates that the stability of the G/CNT and GO/CNT 

hybrid films as electrodes is questionable.  

The maximal dielectric constant has been found to be 9.91x107/g with the hybrid film 

(60 wt% G / 40 wt% MWCNT). Principally, this is a promising value referring to the 

literature value and it would be higher at frequencies that lower than 50Hz.  

4.2.3 Nonlinear Behaviour in Graphene-Based Hybrid Film as a Quantum Effect  

It’s well-known that quantum effect always presents and influences properties of a 

material when its component is in nano- meter scale. For the CNT-based hybrid films in 

this project, their capacitance and so the dielectric constant is quite dependent on the 

voltage loaded. It is delighted to find that both (graphene and graphene oxide)-based 

hybrid film systems have their peaks in exact position or nearly very close to as it is 

shown in table  4-2 and table  4-3. When the MWCNT is pure and with a high fraction in 

the film, the dielectric constant the peak numbers increase and the peak itself become 

sharper. However, when the CNT is single, functionalised or with a low content, these 

peak numbers decline and getting smaller.  On the other side, it can be seen from these 
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tables that some of the peaks are missing in some films and some others are sharper in 

other films. The maximal dielectric constant peaks also are in different voltage position 

in each graph. This may relate to the nanostructured formed during the preparation stage.  

Based on the observed values of voltages developing high dielectric constant in all 

measured hybrid films with different CNT percentage and functionalized group, the top 

values of dielectric constant might appear at one of these values: (1.97, 1.71, 1.57, 1.15, 

1.02, 0.93, 0.88, 0.74, 0.6, 0.54, 0.46, 0.34 and 0.26) V. These values are of great value 

that can be referred and chosen to be the rated voltage of the hybrid thin films as 

capacitors.  

4.2.4 Effect of Length and Thickness of the Hybrid Film on Electrical Conductivity 

and the Maximal Dielectric Constant 

 

 

 

 

 

 

 

 

 

 

Figure 4-9:  Effect of length and thickness of the hybrid film on electrical conductivity and the maximal 

dielectric constant measured at 50Hz and 0.3V. (a) and (c) G (60wt %) /MWCNT (40wt %); (b) and (d) 

GO (60wt %)/ MWCNT (40%). 
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Figure  4-9 presents the relation between the electrical conductivity and the maximal 

dielectric constant with the length and the thickness of the hybrid films that have 

measured at 50Hz and 0.3V.  The results indicate that the length and thickness of the 

hybrid film have significant influences on the dielectric constant value. It can be clearly 

found that as the length of film increases, the maximal dielectric constant and the 

conductivity of the film decreases rapidly while the resistivity goes up. Trends are shown 

in figure  4-9 (a and b). Moreover, the dielectric constant and the conductivity in part (c 

and d) have a directly proportional relation with the thickness of the film. Obviously, 

they increase with increasing the thickness of the film and decreases with increasing the 

length.  

The effect of length and thickness can be understood by considering layer structures 

formed as illustrated as an equivalent capacitor circuit for the hybrid film. The stacked 

layers of the film can be considered as the arrangement of massive series circuits. Each 

layer consists of sub capacitors that form a parallel circuit as illustrated in figure  4-10. 

 

Figure 4-10: Illustration of the equivalent capacitor circuit of the GO/CNTs and G/CNTs hybrid thin films 

as a capacitor. 
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The total capacitance will be calculated by summation of all these series sub capacitors 

in the film first and then the parallel capacitor all over the length. This can be expressed 

by the following equation. 

Ct = ∑ ( 1
∑ 1

Cij�i
1

)j
1                                                                                                            (4-1)                                                                

Ct is the total capacitance and Cij is the ijth sub-capacitance. Assuming that no essential 

differences exist between the sub capacitors, each sub capacitor can be regarded as an 

equal part to the others. Then the total dielectric constant can be calculated from the total 

capacitance value. The experimental results are in a good agreement with the equation.  

The high value of a total dielectric constant is always observed in a thicker and shorter 

film when the length is fixed. 

4.3 Magnetic Properties of Graphene-Based Hybrid Films 

In this part, a general background about magnetism in materials is first introduced. Then 

the result of the magnetism experiment finding will be discussed. 

4.3.1 Introduction  

Magnetic properties of materials depend on the electrons surrounding the atoms. In an 

atom, both nucleus and electrons motion can produce a magnetic moment. Though, the 

nucleus magnetic moment has insignificant influence comparing to the electronic 

contribution. Basically, the spin and the orbital moment are two different types of 

magnetic moments that are performed as electrons rotate around the nucleus. Thus, the 

magnetic moment can be calculated as the product of the area described by the current 

loop of electrons and the current itself [12]. 

µorbit =  πr2 (ev/2πrc)  

         = evr/2c                                                                                                               (4-2) 

µorbit  is the magnetic moment, r is the Bohr atomic radius and v is the electron velocity. 
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4.3.2 Materials Behaviour in a Magnetic Field 

Materials with unpaired electron are called magnetic materials. Conversely, they are 

termed a non-magnetic or diamagnetic if all electrons are paired. There are two fields to 

be considered: The magnetic field H which is generated by currents according to 

Ampère’s law (magnetic induction) and the magnetic flux density B. This can be 

clarified from equations 4-3 and  4-4: 

B = μH                                                                                                                          (4-3) 

B = μ0H + μ0M                                                                                                              (4-4) 

 Where μ:  the permittivity  

            B: magnetic flux density 

            H: magnetic field 

           M: Magnetization  

In free space, B = μ0H                                                                                                    

However in a material 

B = μ0 (H +M)                                                                                                               (4-5) 

As it is presented in figure  4-11, different material orientation spin can result in different 

magnetic material structure. The main four types are: (a) Paramagnetic, (b) 

Ferromagnetic(c) Antiferromagnetic, and (d) Ferrimagnetic materials. Their magnetic 

behaviours depend on the values of susceptibility (χ), permittivity (μ) and if they are 

temperature or field dependence or not [13][14]. 
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Figure  4-11: Different material spin orientation can lead to different magnetic material structure [14]. 

4.3.3 Magnetic Properties of Graphene 

J. Hong reported that ‘‘Demonstrating the presence of long-range magnetic order in 

functionalized graphene nanostructures paves the way to realizing the dream of 

spintronic’’ [15]. When few of the carbon atoms are removed or added, the magnetic 

properties of graphene appear [16]. Despite the variety of theoretical works in the area, a 

limited amount of experimental evidences are available. The main focused studies in 

most of these experiments were in ferromagnetism of graphite, fullerenes and other 

carbon-based-systems [17], [18]. From an experimental point of view, these studies 

regarding the presence of ferromagnetism at room temperature in carbon materials [17]-

[20] have started to attract the attention of researchers in the past few years. However, 

these findings have been enclosed with some doubts about the validity of results which 

attributable to a lack of reproducibility in the experiments and to the underestimated 

amount of contaminations in the investigated samples. 

4.3.4 Challenging of Existence of any Magnetic Order in Graphene  

The difficulties of finding a magnetic order in graphene result from different reasons. 

The first one is the absence of electrons in d and f shells which are responsible for the 

magnetic coupling in conventional ferromagnets. Although both theory and experiment 

suggest that a magnetic order can exist in these carbon structures, it still under specific 

circumstances and conditions. Density Functional Theory (DFT) is the first theoretical 
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approach that is usually implemented in such a field. Localized electronic states are spin-

polarized and occur at the level of Fermi energy can be a source of magnetism. In 

graphene nanostructures “zig-zag” configuration, the edges of the honeycomb lattice 

introduce magnetic moments. In contrast, armchair edges result in zero magnetic 

moments [21]. Figure 3-20 in chapter I-3 shows the armchair and zigzag confirmation of 

graphene. Secondly, localised states in the presence of point defects such as carbon atom 

vacancies or additional adding atom in the graphene lattice can originate magnetic 

moments[22], [23]. Thus, the introduction of defects in graphene can be used as a tool to 

investigate any existence of such magnetic phenomena. 

4.3.5 Graphene-Based Hybrid Film Magnetism 

4.3.5.1  Raman Spectra for Different Content of G/ CNT Hybrid Films 

Three hybrid films with different functionalized groups (80 wt% GO /20wt % MWCNT), 

(64 wt%GO/ 33wt%MWCNT) and (20wt% G/80wt%MWCNT-OH) have been 

investigated first by Raman spectroscopy. As expected, Raman data shows that there are 

crystal differences between them as shown in figure  4-12 

 

Figure  4-12: Raman spectra for different G/CNT and GO/CNT hybrid film. 
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As it can be seen in Raman spectra, the film structure is different in each sample. The 

peaks of G-band of 1580 cm-1 and 2D band of 2680 cm-1 are clearly identified in the two 

different spectrums which clarify the spectra of sp2-hybridized carbon multi-layered 

system. The D mode at 1350 cm-1 raises from the resonance Raman spectra coming from 

the disordered structure of the graphene. The (D+G) bands appear at 2947 cm-1 and the 

(2D`) band at 3300 cm-1 in the (80 wt% GO /20wt % MWCNT) and (64 wt%GO/ 

33wt%MWCNT) spectra which are smaller than the 2D. However, they are at a higher 

intensity in (20wt% G/80wt%MWCNT-OH) spectrum. 

4.3.5.2 Magneto Resistance of Graphene Hybrid Film  

A small magnetoresistance has been measured in these samples at the room temperature. 

However, applying a magnetic field to low-temperature measurements to these samples 

leads to another conclusion. A magnetic field (B) with a direction perpendicular to the 

surface plane of the sample has been applied to (20 wt% G/80wt% MWCNT-OH) 

sample. Cooling and warming process have been done from 0K to 300K. The resistivity 

values have been measured during this period with a magnetic field of B=0T in the first 

time and then with B=0.65T.  

As shown from figure  4-13 to figure  4-14, there is no dependence on the magnetic field 

found. 
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Figure  4-13: Resistivity v.s. Temperature for 80wt%GO/ 20 wt. % MWCNT. 

 

 

Figure  4-14: Resistivity vs.log temperature for 20wt%G/ 80 wt. % MWCNT-OH. 
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4.4 Summary  

Graphene (G) and graphene oxide (GO)/carbon nanotubes (CNTs) hybrid films were 

investigated. The finding was as follows: 

• With increasing CNT contents, the dielectric constant of the G/MWCNT and 

GO/MWCNT films have raised almost linearly with wt% MWCNT and their 

resistivity has reduced.  

• G/SWCNT and GO/SWCNT films did not form layered structures leading to a 

very low dielectric constant.  

• Nonlinear behaviour of the dielectric constant with voltage has been observed in 

the G/MWCNT and GO/MWCNT hybrid films. These results indicate that the 

length and thickness of the hybrid film have significant influences on the 

dielectric constant and conductivity of the film.  

• The dielectric constant and conductivity rise with increasing film’s thickness and 

decreasing film’s length. For the application of graphene/CNT hybrid films as 

electrodes, this character should be taken into account.  

• Moreover, these kinds of hybrid films are found to be independent of any 

magnetic field.  
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Part One: Conductive Behaviour of Graphene/Carbon Nanotube and Graphene 

Oxide/ Carbon Nanotube Hybrid Materials  

Chapter I-5 Conclusion and Future Work  

As graphene plays an essential role in energy storage applications, this part of the project 

mainly concerns the development of a graphene-based hybrid material as high-

performance electrode material using a simple water solution casting method. The 

investigation of these hybrid film’s electrical properties has been proceeded and 

discussed. In this chapter, a conclusion of the first part of the thesis is given in section 

5.1 and future work recommendations follow in section 5.2. 

5.1 Conclusion 

Considering the fabrication of the graphene-based material hybrid films for an energy 

storage application propose, the graphene (G) and the graphene oxide (GO) /the carbon 

nanotubes (CNTs) hybrid films were successfully fabricated as high-performance 

electrode materials. This has been achieved using a simple water solution casting method, 

and with the support of a strong ultrasonication process. Different percentages of G, GO, 

single-wall CNT (SWCNT), multi wall CNT (MWCNT) and MWCNT with a hydroxyl 

group (MWCNT-OH) were used. To sum up, the finding of the first part are: 

1. The hybrid films with MWCNTs have shown well interconnected layered 

structures at the nanometer scale, where G and GO work as support insulated plates 

for the MWCNT. G/MWCNTs and GO/MWCNTs film's performance are 

promising for a capacitor system that would be formed. Numerous of charges are 

stored in each layer of the conductors which increase the capacitance value and so 

the dielectric constant.  

2. The electrical properties have been studied in an alternating circuit (AC) to find out 

a linear relationship between the dielectric constant and the CNT weight percent in 

the film. No matter SWCNT, MWCNTs or MWCNTs-OH incorporated in the film, 

the energy stored is, in general, directly proportional to the CNT content. Hence, 

CNTs certainly acted as the conductor assembling charge. Thus, with increasing 

CNT percentages, the capacitance and so the dielectric constant of the G/MWCNT 
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and GO/MWCNT films raised up almost linearly and their resistivity reduced. 

Alternatively, the dielectric constant has found to decline when the frequency went 

up.  

3. Although G/CNT-based hybrid films exhibit a higher dielectric constant and 

conductivity than GO/CNT-based hybrid thin films, the G/MWCNTs hybrid film is 

still with a higher dielectric constant and conductivity than G/MWCNT-OH. The (–

OH) group in MWCNT-OH with graphene or graphene oxide tends to lower the 

conductivity and the dielectric constant of the thin film. This can be explained 

regarding the surface structure of a pure graphene material and materials with 

functional groups such as –OH group or graphene oxide.  The –OH groups 

influence the material’s resistivity as well as the percolated network and decrease 

the overall material conductivity by twisting the chains of CNTs and shorted the 

conjugated length. Thus, the resistivity increases until the point of collapsed of the 

G/MWCNT capacitor around 80% wt CNT. The maximum dielectric constant 

reached 9.5 x107/g in G (40wt %) / MWCNTs (60wt %). 

4. The dispersion of CNTs in the GO or G mixture strongly affects the final quality of 

the hybrid film that is acting as a capacitor.  In compression, GO/SWCNT and 

G/SWCNT cannot be used in a capacitor system because of their bad dispersion 

using the water solution casting method. G/SWCNT and GO/SWCNT films have 

not formed layered structures which lead to having a very low dielectric constant.  

5. Thickness and dimension of the film can enhance the capacitor performance and so, 

the film conductivity will be improved. The dielectric constant and conductivity 

rise with increasing the thickness of the film and drop with increasing the film 

length. This character should be taken into account when considering 

graphene/MWCNT hybrid films for manufacturing electrodes.  

6. Some non-linear behaviours of the dielectric constant with a voltage that have been 

observed in all G/CNT and GO/CNT hybrid films. At some voltages, the dielectric 

constant reaches the peak or valley. Obviously, the film capacitance is quite 

dependent on the voltage loaded. Thus, it is possible that nano-junctions have 

formed between G or GO and CNTs when the content of carbon nanotubes was 

high. The peak values of the dielectric constant appeared where the junctions are 
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fully exerted at the relevant voltages.  

5.2 Recommends for Future Research 

The outcomes of this project part improve the knowledge of the electrical properties of G 

/ CNT-based materials and enhance the fabrication design of G/MWCNT hybrid films. 

The research on the fabrication and investigation of the electronic and magnetic 

properties of the G/MWCNT or GOMWCNT hybrid films are still in its early stage. This 

exciting finding of dielectric constant nonlinear behaviour at this stage leads to digging 

out for more outcomes. Some of the recommendations for further investigation are as 

follows. 

1. Fabrication and characterisation of real ultracapacitor and battery using 

GO/MWCNT and G/MWCNT hybrid thin films as electrodes. 

2. Analysing and understanding the quantum-like effects of this nonlinear behaviour in 

different hybrid thin films.  

3. Study the dimension effects of the hybrid film in its physical and chemical 

properties. 
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Part Two: Carbon Nanotube/Polyethylene Nanocomposites as Strain and 

Temperature Sensing Materials 

Chapter II-1 Literature Review  

1.1 Introduction  

CNTs have received a lot of attention from scientists during the past two decades, due to 

their amazing physical properties. Significant efforts in understanding the CNTs physical 

properties have been made [1], [2]. The one-dimensional (1D) electrical band structure, 

which gives rise to the unique electrical transport and thermal properties, makes CNTs 

special candidate for unlimited applications in several fields[1],[2]. Thus, CNT is 

commonly employed as composite filler -due to the high electrical conductivity- to 

advance the electrical properties of polymers [3]. This sensitive electronic structure gives 

CNTs a great potential to develop new strain sensors [4]. This chapter introduces the 

background of the conductive nanocomposite sensing material. Then, the past progress 

and on-going efforts on the electronic properties of CNTs and their composites is 

presented. Section 1.2 gave a general review of nanocomposites. In section 1.3, an 

overview of conductive polymer nanocomposites, which included a briefly reviewed on 

the geometric structure of CNTs and the electrical and electronic properties of CNTs, is 

provided. Sections 1.4 to 1.9 discuss some applications of conductive polymer 

nanocomposites and the important continuous efforts for developing CNT-based strain 

and temperature sensors. Lastly, section 1.10 provides some current challenges and 

difficulties in conductive polymer nanocomposites fabrication. 

1.2 General Review of Polymer Nanocomposites 

A Composite material is literally two or more chemically distinct materials that differ in 

shape and chemical composition. They are combined to improve the overall properties of 

the individual once. It can be a natural composite such as the wood which can be 

distinguished from a synthesized one like rubber mixed with carbon black. The 

combination of the composite materials is called (matrix and fiber (filler)). The matrix is 

usually ductile with low-density material which could be either thermoplastic or 

thermoset and used to hold the fiber in the desired orientation. The filler, on the other 

hand, is a substance which is strong but with a low density, such as glass, carbon or 

particles [5]. 
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Composite material’s history was back to early 20th century as the fiberglass was first 

used to reinforce epoxy in 1940 [6]. Its importance comes from the fact that composites 

can be a very strong but light material. Also, toughness and fatigue properties are 

generally greater than common engineering metals. Like steel, corrosion can be also 

avoided using composites. Moreover, it is possible to achieve combinations of properties 

which are difficult to find with metals, ceramics or polymers alone [6]. Their 

implementations are in several industrial branches from aerospace, automotive to 

sporting goods [7]. However, some drawbacks such as they have anisotropic properties, 

their properties differ depending on the direction of measurements which may be a 

disadvantage sometimes as it limits the manufacturing methods. Shaping and 

manufacturing methods for composite materials are often slow and costly. What is more, 

many of the polymer-based composites are subject to be attacked by chemicals or 

solvents which lead to some modification in the composite matrixes [7]. 

1.3 Conductive Polymer Nanocomposites 

Polymers are used in a wide variety of industrial tenders due to their properties like 

corrosion-resistant and lightweight materials. Although polymers are not good 

conductors of electricity, electrical conductivity is desired in various polymer 

applications. Accordingly, production of conductive polymer nanocomposites is 

essential. 

1.3.1 Conductive Nanofillers 

Conductive nanofillers are important to make electrical conductive nanocomposites 

when dispersed into insulating matrices. Conductive powders such as micro-sized metal 

filings or carbon black can be used as conductive fillers. However, this requires a high 

loading to mix them well with the matrix. Another way is using the carbon nanofibers 

which is highly conductive, but a non-uniform dispersion. The nature of conductive 

nanofillers results in the challenge of a uniform dispersion. In addition, the presence of 

agglomerates, which is caused by Van der Waals force, in the conductive polymer 

nanocomposites may compromise the final electrical property. Recent research has 

suggested that the maximum electrical conductivity of conductive nanocomposites is 

lower than that of nanofillers by 2 to 4 orders of magnitude because of the tunnelling 
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resistance [8].  Among all kinds of conductive nanofillers, carbon nanotubes, graphene, 

and black carbon may draw more attention in recent years.  

1.3.1.1  Carbon Nanotube (CNT) 

Carbon nanotubes (CNTs) with their outstanding electrical properties became one of the 

most potential materials that were used as conductive filler in polymer composites since 

they were reported by Iijima in 1991[9],[10]. They are classified as members of the 

fullerene structural family, which are allotropes of carbon. The name (carbon nanotubes) 

has been derived from their size and shape, as their diameter is on the order of a few 

nanometres, which may reach to several millimeters in length [9]. 

1.3.1.1.1 Structure and Synthesis of Carbon Nanotubes (CNT)  

Carbon nanotubes include two main types: the first one is the single-walled 

nanotube (SWNT) which is one cylinder (rolled layer) with a diameter between (0.3 and 

5.0) nm and length up to (50 to 100) μm [11], [12]. The second one is the multi-walled 

nanotubes (MWNTs) which consist of multiple rolled layers as presented in figure  1-1. 

Their production depends on the synthesis process [13]. According to the various 

arrangements of carbon atoms in their lattice, the geometries of carbon nanotubes can be 

found as armchair, zigzag or chiral arrangement as shown in figure  1-2.  In addition, 

carbon nanotubes have a high aspect ratio, which can reach to 1000 [14].  

 

Figure  1-1:  Structures of SWNTs and  MWNTs[15]. 
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Figure  1-2: The geometries of carbon nanotubes are armchair, zigzag or chiral [16]. 

 

1.3.1.1.2 Properties of CNT 

1.3.1.1.2.1 Thermal Property  

The thermal conductivity of carbon nanotubes is an essential concern, which depends on 

the temperature and the large phonon mean free paths [17]. At room temperature, 

measurements show that thermal conductivity of individual MWCNT can reach 

3000Wm-1K-1. SWNT, as well as MWCNT, has a room-temperature thermal 

conductivity of about 3500 W·m−1·K−1 [18].  Comparing CNTs thermal conductivity to a 

metal like copper, which is well-known for its good thermal conductivity, 385 

W·m−1·K−1, CNT is definitely higher [18]. 

1.3.1.1.2.2 Mechanical property 

Apart from the high thermal conductivity, carbon nanotubes have excellent mechanical 

properties such as high stiffness, modulus and tensile strength due to the stronger sp2 

carbon bonding structure [20]. For example, Young’s modulus and tensile strength of 

MWNTs are respectively in the range of (1.7- 2.4) TPa and (11-63) GPa [21]. Some of 

CNT’s mechanical properties are presented in table  1-1. 
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Table  1-1: Comparison of CNT mechanical properties [19] 

 

1.3.1.1.2.3 Electrical Property 

The high thermal conductivity value, the CNT structure, and its greater mechanical 

properties are the main contributed factors to give the final carbon nanotube electrical 

properties. CNTs show high electrical conductivity, (1000- 200,000) Scm-1 [22], which 

is influenced by their geometry. Generally, the chirality of the carbon nanotubes, the 

degree of a twist as well as their diameter have significant influences on the CNT’s 

electrical conductivity which confirm whether the carbon nanotubes are metallic or 

semiconductor [23]. Hence, SWCNT can be considered as semiconductors, metals or 

small band-gap semiconductors depending on CNT chirality and tube diameter. Narrow 

diameter of SWNT can be a strong influence on its electronic excitations [24]. The 

resistivity of SWCNT is also a temperature dependent, which decreases with temperature 

in the range of 80K to 350K. Experimentally, at about 200K SWCNT can transfer from 

non-metallic to weakly metallic material [25]. SWNT’s superconductivity has been also 

observed at low temperature. The transition temperature was found to be 5K for 0.5nm 

diameter tubes and only 0.55K for 1.4nm diameter [26]. Although the maximum current 

densities of normal metals are 105 Acm-2, the SWCNT, for example, can carry up to 

109Acm-2[27]. Therefore, CNTs is called metallic. 

Material 
Young's Modulus 

(TPa) 

Tensile Strength 

(GPa) 

Elongation 

at Break (%) 

SWNT ~1 (from 1 to 5) 13–53 16 

Armchair SWNT 0.94 126.2 23.1 

Zigzag SWNT 0.94 94.5 15.6-17.5 

Chiral SWNT 0.92 
  

MWNT 0.27-0.8--0.95 11-63-150 
 

Stainless steel 0.186-0.214 0.38-1.55 15-50 
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1.3.1.1.3 CNT Fabrication 

Carbon nanotubes are synthesized by Chemical Vapour Deposition (CVD) which can be 

plasma CVD, thermal CVD or vapour phase growth [28], [29], direct-current arc 

discharge [30] or laser ablation [31]. Image of CNT Synthesis is shown in Figure  1-3. 

 

Figure  1-3: Synthesis of carbon nanotubes[32]. 

 

A summary of the three types and their advantages and disadvantages are presented in 

table  1-2. 

Table  1-2: Compression of Plasma torch, CVD or Arc discharge method[33][34] 

 Plasma Torch Arc Discharge Method Chemical Vapour Deposition 

Advantages 

Can produce SWNT and 

MWNTs with few 

structural defects 

Easiest to scale to 

industrial production; 

long length 

Primarily SWNT with a large 

diameter range that can be 

controlled by varying the 

reaction temperature 

Disadvantages 

Tubes tend to be short 

with random sizes and 

directions 

usually MWNTs and 

often riddled with 

defects 

High cost 

 

http://the-science-llama.tumblr.com/post/38237617452/growing-carbon-nano-tubes-and-the-space-elevator
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1.3.1.1.4 CNT Application  

Based on its excellent mechanical, electronic and thermal properties such as high 

conductivity, ultra-high surface area, good corrosion resistance, high-temperature 

stability and percolation pore-structure [16-26], great efforts have been made around the 

world to use CNT in various application systems.  It has been utilized in electrochemical 

energy storage such as capacitors, transistors and hydrogen storage in fuel cells [[35]-

[37]. Combined with the particular shape of the electronic band structure of graphene, 

carbon nanotubes are ideal for quantum wires and biomedical applications as shown in 

figure  1-4. Moreover, CNT is very useful as probe tips for very high-resolution scanning 

probe. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4: Using of carbon nanotubes as drug delivery tools {cancer treatment }[95]. 
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1.3.1.2 Graphene 

Graphene literature review has been covered in chapter I-1. 

1.3.1.3 Carbon Black 

Conductive carbon black is another carbon allotropic that used as filler in polymer 

nanocomposites.  It has a very high void volume which allowing the holding of a carbon 

network at low filler content [38]. Economic importance and abundant resource make it 

a good candidate as polymer conductive filler [39]. However, the carbon black surface 

area is higher than 1000 m2/g and usually, exists as aggregates of coalesced elemental 

carbon in the form of colloidal particles rather than individually [40]. The degree of 

agglomeration affects the final properties of the filled polymer. Carbon black fillers with 

low surface area and shape factor show a low tendency to agglomerate than carbon black 

filler with high surface area and shape factor [41]. 

Generally, carbon black is produced by the incomplete combustion or thermal 

decomposition of hydrocarbons [41], [42]. Comparing with graphene, the density of the 

carbon black is much lower. Nevertheless, carbon black shows much higher percolation 

threshold than carbon nanotube, so the electrical conductivity of the carbon black is 

lower than the carbon nanotube, especially with lower filler content [43].  

1.4 CNTs/ Polymer Nanocomposites 

Carbon nanotubes are used to reinforce polymeric matrices such as epoxy, polystyrene, 

polyurethane, polycarbonate and ultra-high molecular weight polyethylene [44], [45]. 

This has improved the electrical conductivity of nanocomposites as well as strength, 

stiffness, thermal conductivity and stability [45]. Enhancement of oxidation stability is 

another benefit of having CNTs in polymer composite [44], [45]. The very high aspect 

ratio of some carbon nanotubes may also enable them to be aligned with one axis of the 

composite which make the fabrication of conducting polymers easier [44].  

Deagglomeration and dispersion are two problems which may occur during mixing 

CNTs with polymers. Therefore, uniform dispersion of nano- sized CNT filler particles 

can produce an ultra-large interfacial area per volume between the nanoelement and 

polymer matrices [44]. 



 Chapter II-1:  Literature review                                           

147 
 

The matrices can be thermoplastics or thermosetting resin. Nonetheless, the difference in 

percolation thresholds exists between thermoplastic nanocomposites and thermosetting 

nanocomposites. Generally, the electrical conductivity of CNTs based thermoplastic 

nanocomposites is reported to be in the range from 0.2 to 15 wt%, while that of 

thermosetting nanocomposites lies between 0.1 and 1 wt% [46]. Normally, the electrical 

conductivity of CNTs reinforced nanocomposites is higher than the based polymer by 8-

13 orders of magnitude [46]. The electrical conductivity of common CNTs reinforced 

polymer nanocomposites is summarized in table  1-3. 

Table  1-3: Electrical property of CNTs based polymer nanocomposites[47] 

 

The percolation threshold in table  1-3 is generally in the range from 0.0025 wt% to 

10wt%. In addition, Koratkar and co-workers had found that the electrical conductivity 

of carbon nanotubes reinforced PS nanocomposites is higher than that of graphene/ PS 

nanocomposites [48].  

1.4.1 Fabrication of CNTS/ Polymer Nanocomposites 

The first CNTs reinforced nanocomposite was stated by Ajayan and co-workers in 1994 

[49]. This result suggested that MWNTs have excellent mechanical properties and their 

anisotropy can be induced by a flow of such a material. Four years later, in 1998, there 

were other works published on CNT/polymer composites. Schadler et al. (1998) [50] 

reported the dispersion of 5 wt% MWNTs in an epoxy resin by an ultrasonic treatment. 

Although the MWNTs were well separated, they remain poorly distributed. 

Recently, polymer /CNT nanocomposite has been prepared by taking epoxy as the 

polymer matrix and by adding about (1-2) wt% of CNTs to it using the ultra-sonication 
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route for better dispersion. It has been found that the mechanical strength of a polymer 

becomes a hundred times better even by the addition of 1% of CNTs [50]. 

1.5 Graphene/ Polymer Nanocomposites 

Graphene-polymer nanocomposites show the outstanding electrical property as well as 

the good mechanical properties, thermal property and optical property that have been 

used in a wide range of demanding applications. To date, epoxy, polyurethane, 

polystyrene, polycarbonate, polyimides, polyethylene terephthalate and poly (methyl 

methacrylate) have been used as polymeric matrices in graphene reinforced 

nanocomposites. Generally, the electrical conductivity of graphene /PS nanocomposites 

is reported to be in the range from 1 Sm-1 to 24 Sm-1 [51]. The electrical conductivity of 

common graphene reinforced polymer nanocomposites is summarized in table  1-4. The 

differences in processing technology, types of polymer matrices and nanofillers may 

result in different electrical conductivity. 

The percolation threshold of the epoxy/graphene nanocomposites, prepared by solution 

mixing, is only 0.52 wt% which is caused by the high aspect ratio and homogenous 

dispersion of graphene [52]. PET/graphene nanocomposites, prepared using melt 

compounding, show high electrical conductivity because the overlaps and the folds in 

graphene structures result in a high current density [52]. PS/graphene nanocomposites 

are prepared using either in situ polymerization or solution mixing. The incorporation of 

graphene in the PS matrix effectively increases the electrical conductivity of pure PS 

from about 10-14 Sm-1 to 5.77 Sm-1 at 0.38 wt% [52]. The percolation threshold of 

graphene-based nanocomposites is normally higher than that of carbon nanotubes 

reinforced polymer nanocomposites, which is about 0.0025 wt% [53]. 
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 Table  1-4: Electrical property graphene based polymer nanocomposites[52] 

 

1.6 Carbon Black/ Polymer Nanocomposites 

Carbon black is often used as filler in elastomers or plastics to modify the properties of 

the materials [42]. The fundamental property of the filler used in a filled elastomer is the 

particle size. This affects the reinforcement of elastomer most strongly. The particle size 

of carbon black particles varies from (10 to 500) nm. Table  1-5 shows the relation 

between the particle size and the strength of reinforcement. Normally, carbon black is 

preferred to be combined with carbon nanotube when used as filler, as the high 

percolation threshold of the carbon black lowers the mechanical properties of the 

nanocomposites [41]. 
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Table  1-5: Effect of particle size on reinforcement [41] 

 

 

 

 

 

1.7 Applications of Conductive Polymer Nanocomposites (CPNC) 

CPNC have been applied in a vast range of industries applications such as automobiles, 

aerospace [53], constructions, sensors [54],  electromagnetic interference materials 

shielding [55], nano-electric devices [56] and biomedical applications[57],[58].  For 

instance, polyphenylene oxide (PPO)/ polyamide (PA) blend with CNTs can be used in 

automotive mirror housings which have been reported to substitute conventional micro-

size conductive fillers [59]. Alternatively, Graphene-based nanocomposites have been 

effectively used for supercapacitors, as complementary devices with batteries [60]. It 

also utilized with low loadings of graphene as pressure sensors in aerospace and 

automotive applications [53]. On the other hand, Carbon black based nanocomposites 

have been involved in gas sensor and the automotive industry. Recently, great interest to 

develop strain sensors in aerospace using carbon nanotubes reinforced nanocomposites 

[61]. For this kind of sensors, the direct current (DC) properties of nanocomposites are 

needed [9]. Compared with conventional sensors, these sensors show the higher 

sensitivity of electrical conductivity to applied strain, which is related to CNTs addition 

[62], [63]. Besides, conductive nanocomposites based chemical and biological sensors 

are widely applied in clinical diagnosis, environmental and food safety monitoring [12]. 

Nevertheless, the limitation in multidirectional sensibility still exists in the most kinds of 

sensors [64], [65]. 

Size /mm Strength 

1000-5000 Small reinforcement 

<1000 Medium  reinforcement 

<100 Strong reinforcement 
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1.8 Polymer Nanotechnology 

1.8.1 Preparation, Processing, and Manufacturing of Conductive Polymer 

Nanocomposites 

In order to achieve a good and well dispersion of nanofillers in a polymer matrix, the 

proper mixing methods are carefully chosen. In-situ polymerization, melt compounding 

and solution mixing are the conventional methods to synthesize conductive polymer 

nanocomposites. However, latex technology could be a preferable choice to manufacture 

the conductive nanocomposites with a uniform dispersion of nanofillers.  

1.8.1.1 Conventional Technologies 

1.8.1.1.1 In Situ Polymerization 

In this method, nanofillers are polymerized from monomers to form nanocomposites. A 

study of CNTs/ Polyaniline (PANI) nanocomposites that were prepared by using in situ 

polymerization has been reported [66]. This method offers stronger interactions between 

the nanofillers and the matrix, which is contributing to better mechanical and electrical 

properties of final nanocomposites in comparison with other two conventional methods 

[67]. However, the scale of production is limited by the rise of the electrical energy 

needed to have a good dispersion of the nanofillers in the matrix [67]. It has been 

reported that this technique was used to reinforced polyurethane, polyethylene, 

polystyrene and nylon with MWCNTs [57].  

1.8.1.1.2 Solution Mixing Technique 

It is a simple and common process in which the nanocomposites are formed in the 

presence of solvents. The obvious advantage of this method is to prepare the 

nanocomposites with a good dispersion of nanofillers which resulting in having 

conductive nanocomposites with low percolation threshold [67]. Using this method, 

conductive polymer nanocomposites including CNT/PVC (poly (vinyl chloride)), 

graphene/PVA and CNT/PS (Polystyrene) [57], [68], [69] have been studied. However, 

solvent removal is still a serious problem which makes the solution-based method is not 

a common way in industrial manufacturing.  
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1.8.1.1.3 The Melt Compounding Manner 

In this method, nanofillers are mixed with the polymer matrix in the molten state without 

solvents [52]. This method is quite suitable to prepare thermoplastic nanocomposites. 

Compared with solution mixing, this method is hard to achieve the uniform dispersion of 

the nanofillers due to the high viscosity of the thermoplastics [57].  

 

1.8.1.2 Latex Technology 

The latest study on conductive polymer nanocomposites has focused on finding better 

methods to prepare the nanocomposites with uniformly dispersed nanofillers. A new 

technology, named latex technology, has attracted more interests. A variety of 

conductive polymer nanocomposites such as CNTs reinforced Isotactic Polypropylene 

(iPP) and PS have been reported in using latex technology [70], [71]. This technique is 

mainly to disperse the nanofillers in a surfactant solution first, and then to be mixed with 

polymer latex [72]. The procedure of using latex technology for the preparation of 

conductive polymer nanocomposites is described in figure  1-5. 

 
Figure 1-5: Process for the preparation of conductive polymer nanocomposites using latex technology [71] 

This method can achieve a homogenous dispersion of nanofillers in the polymeric latex 

matrix [70]. Also, the final nanocomposites show a very low percolation threshold with 

the low nanofillers addition [73]. In a recent study, a low percolation threshold of 0.3wt% 

SWNTs in the PS matrix using latex technology was stated by Grossiord N. [74]. The 

percolation threshold of 1.5 wt% MWNTs, in PS latex matrix, was reported by Junrong 
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Yu [71]. Compared with the conventional technologies, the remarkable advantage of 

latex technology is that it is versatile and most of the polymers that are prepared by 

emulsion polymerization can be used as matrix [75]. 

1.9 Characterisation of Conductive Nanocomposite Materials 

To study morphology and the properties of conductive polymer nanocomposites, 

characterisation tools are so important.  Different methods and apparatus can be used to 

study and examine them such as Scanning Electron Microscopy (SEM), Transmission 

Electron Microscopy (TEM) and X-ray Diffraction (XDR), which are covered in 

chapterI-1. In addition, SEM, TEM and XRD (both wide-angle X-ray scattering and 

small-angle X-ray scattering) can be used in studying the nanocomposites morphology. 

However, a limitation exists in the assessment of the dispersion due to the magnification 

of the optical microscope. As shown in figure  1-6 (a), no obvious CNT aggregates are 

found under the optical 1000X, suggesting a good dispersion, while at 30000X in (b); the 

presence of aggregates found suggests that the dispersion of CNT is not uniform.  

 

Figure  1-6: (a) TEM image of CNT dispersion at 1000X (b) TEM image of CNT dispersion at 30000X 

[76]. 

1.10 Mechanisms and Effects on Electrical Conductivity 

1.10.1 Mechanisms of Electrical Conductivity 

The main mechanisms of electrical conductivity include quantum tunnelling or electrons 

hopping and percolation in a conducting network [77]. Recent research pays more 
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attention to the percolation mechanism, which is defined as the formation of a 

conductive three-dimensional network of conductive nanofillers in the polymer matrix 

[78]. The percolation mechanism can be described as follows: 

𝜎𝜎 ∝ (𝑝𝑝 − 𝑝𝑝𝑐𝑐)𝛼𝛼                                                                                                             (1-1) 

Where σ is the conductivity, p is the filler content, α is the critical exponent, and pc is the 

percolation threshold characterized by a sharp jump in the electrical conductivity [79]. 

The effect of conductive nanofillers is to provide percolate pathways for electron 

transport that makes conductive polymer nanocomposites show electrical conductivity 

[72]. 

1.10.2 Effects on Electrical Conductivity  

The electrical conductivity of conductive polymer nanocomposite is determined by the 

number of junction points and the distance between neighbouring nanofillers [80]. 

Figure 1-7 illustrates the effect of the distance between adjacent nanofillers on their 

electrical conductivity.  

 

 

 

 

 

 

 

 

 

Figure 1-7: Conductance of composites as the function of distance (G is the conductance of the composite, 

G0 is the conductance of the filler) [8]. 
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From figure  1-7, there is little change in conductance when the inter-particle distance is 

less than 5nm, and if the distance is close to 1nm, the conducting pathway is formed. 

Thus, the inter-particle distance in the range from (1– 5) nm is preferable for the research 

about the effects on electrical conductivity [8].  

Since the formation of conductive three-dimensional networks contributes to the 

electrical conductivity, the main factors that may interrupt the conductive networks and 

thus influence the electrical conductivity of nanocomposites to involve the external force 

or pressure, temperature, the degree of dispersion, alignment and filler content [8].  

1.10.2.1 Temperature Influences  

The increase of temperature results in the differences of thermal expansion between the 

conductive nanofillers and the polymer matrix [81]. Normally, the more rapid and larger 

expansion of the polymer matrix increases the inter-particle gap width which leads to 

eliminating some conductive pathways [82]. In addition, the expansion of the nanofillers 

increases the distance between them, leading to a higher resistivity [81]. The temperature 

dependence of the electrical resistivity is shown in figure  1-8. 

 

Figure  1-8: Electrical resistivity versus temperature [81] 
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Figure  1-8 illustrates that as temperature goes up, the electrical resistivity increases and 

the electrical conductivity correspondingly decreases. 

1.10.2.2 Dispersion of CNT 

The electrical conductivity of polymer nanocomposites strongly depends on the degree 

of dispersion. The uniform dispersion of nanofillers helps to form conductive networks. 

The CNT/PS nanocomposite with good dispersion of nanofillers, prepared using latex 

technology, has been reported to have a good electrical conductivity [73]. The SEM 

image of the fracture surface of CNT/PS nanocomposite is shown in figure  1-9. 

Nevertheless, conductive nanofillers cannot spontaneously disperse in matrix due to the 

effect of strong attractive forces [83]. The presence of agglomerates impacts the 

difficulty of the dispersion. Normally, high shear mixing force needs to break the 

agglomerates into very small pieces. The effect of dispersion on electrical conductivity is 

shown in figure  1-10. 

 

 

 

 

Figure  1-9: SEM image of the fracture surface of CNT/PS nanocomposite [73] 
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Figure  1-10:  The effect of dispersion on electrical conductivity [79] 

It is clear from figure  1-10 that the electrical conductivity of the nanocomposites with 

well-dispersed fillers is higher than with a poor dispersion of fillers. It is due to the high 

dispersion effectively that reduces the junction points of the nanofillers and so the 

conductive pathways are easier formed [79]. Nadia Grossiord reported three methods 

that can improve the dispersion of the nanofillers in the matrix, including direct mixing, 

modification of the filler and matrix, and the addition of the third component [84].  

1.10.2.3 Alignment of CNT 

The improvement in the alignment of conductive nanofillers leads to a lower percolation 

threshold and higher electrical conductivity [59]. Research shows that an increase of 35% 

in the electrical conductivity has been found for SWNTs/ epoxy nanocomposites with 

aligned SWNTs comparing to the unaligned one [85]. The reason is that with aligned 

SWNTs more interactions are created and this provides further percolation pathways 

[86]. Moreover, orientation and anisotropy also affect the electrical conductivity. Wang 

et al. found that at the same filler content, the electrical conductivity along the 

orientation was higher than that perpendicular to it by three orders of magnitude [87]. 

Electrical conductivity perpendicular to the orientation value is lower than that along the 

direction at the same level of concentration; consequently, the formation of the 

conductive networks of nanofillers along the orientation is easier than that perpendicular 

to it [87].  
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1.10.2.4 Filler Content 

The electrical conductivity strongly depends on the filler content [84]. At lower filler 

content, the electrical conductivity is also very low. When the percolation threshold is 

being reached, a little increase in the filler content leads to a dramatic increase in the 

electrical conductivity of the nanocomposites [84]. With the further incorporation of 

nanofillers, the rate of increase in the electrical conductivity decreases due to the more 

generated agglomeration of fillers [88]. According to percolation theory [46], the 

relationship between resistivity and nanofillers content can be expressed using the 

equation 1-2: 

𝜌𝜌 = 𝜌𝜌0(𝜐𝜐 − 𝜐𝜐𝑐𝑐)𝑡𝑡                                                                                                            (1-2) 

Where 𝜌𝜌 is the resistivity of nanocomposites, 𝜌𝜌0 is the resistivity of conductive filler, 𝜐𝜐 

is volume content, 𝜐𝜐𝑐𝑐 is percolation threshold and t is critical exponent [46]. 

Furthermore, the relationship between the electrical conductivity and nanofillers content 

is illustrated in figure  1-11.  

 

Figure  1-11: Electrical conductivity of MWNTs/PU nanocomposites versus MWNTs content [89]. 

It is clear that when the MWNTs content increases, the electrical conductivity rise as 

well. In addition, the electrical conductivity sharply increases in the range of 2-4 wt% of 

MWNTs, while no improvement on the electrical conductivity is shown when the 
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MWNTs content is less than 2 wt%. This result is also in a good agreement with Remeo 

observations of MWNTs/ PCL composites [89]. 

1.10.2.5 External force 

The electrical conductivity of conductive polymer nanocomposites is very sensitive to 

mechanical deformations [64]. When external force or pressure is applied on the 

conductive polymer nanocomposites, they tend to deform which makes contact 

resistance is also changed accordingly [64]. The increase of strain or deformation 

decreases the electrical conductivity because the deformation widens the distance 

between the neighbouring nanofillers and causes the disruption of the existing 

conductive three-dimensional network which reduces of conduction pathways [89]. At 

low strain, the disruption of the conductive networks occurs, and accordingly, the 

electrical conductivity decreases, shown in figure  1-12. 

 

Figure  1-12: The relationship between electrical conductivity and mechanical deformation, and the time-

dependent electrical behaviour[90]. 

It is clear from the same figure that the percolating network is partially recoverable, 

which means the change of the electrical conductivity is partially reversible [90]. The 
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mechanism of the electrical conductivity with the change of strain can be explained by 

figure  1-13.  

As shown in figure  1-13 (a), the distances between the particles become larger during the 

decompression process, resulting in the decline of the electrical conductivity. Part (b) in 

the same figure, clarify the effective conductive paths are broken during the 

decompression which leads to the fall of the electrical conductivity. The formation of the 

effective conductive paths contributes to the increase of the electrical conductivity of the 

nanocomposite in part (c). (d): Give the explanation of the recovery of the effective 

conductive paths contributes to the gradual increase of the electrical conductivity of the 

nanocomposite during the stress relaxation period.  

 

Figure  1-13: Sketch of the changes in the effective conductive paths during the period of decompression 

and relaxation. (a) Change of distance between particles during decompression (b) Effective conductive 

path destruction (c) Effective conductive path formation (d) Recovery of the effective conductive path [91]. 

1.10.2.6 Other Factors  

Apart from the previously mentioned factors, aspect ratio, filler or polymer types and 

processing methods can also affect the electrical conductivity of the nanocomposites. 

Generally, the higher the aspect ratio is, the lower the percolation thresholds are and the 

higher the electrical conductivity is [9]. Higher aspect ratio means lower excluded 
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volume; hence, the conducting pathways are formed at relatively low filler content, 

resulting in the high electrical conductivity [88].  

1.10.3 Current Challenges  

Although conductive polymer nanocomposites have been successfully applied in many 

industrial areas such as construction, automobile, and aerospace, they still face several 

challenges that may limit their potential applications. The first is the high cost of 

conductive nanofillers which restricts their scales of production [92].  

Secondly, as discussed earlier, the success in the processing of conductive polymer 

nanocomposites depends on the degree of the nanofillers dispersion. Generally, the 

conductive polymer nanocomposites with uniformly dispersed nanofillers would show 

optimum conductive performance. However, if the dispersion of nanofillers is not well 

uniform, aggregates may generate, which are detrimental to the performance of 

nanocomposites [93]. Current techniques are insufficient to make nano-size conductive 

polymer composites with a high degree of nanofillers dispersion [93]. 

Thirdly, adhesion between nanofillers and polymers is also considered as a challenge in 

polymer nanotechnology. Poor adhesion would compromise all nanocomposites 

properties. 

Finally, the reproducibility of conductive polymer nanocomposites is difficult to be 

obtained [94]. Since the electrical conductivity, as well as mechanical properties, is 

highly influenced by the degree of dispersion and processing conditions, such as 

temperature and external force,  the electrical behaviour is partial re-coverable.  

1.11 Conclusions 

In this chapter, the fundamentals of the conductive nanocomposite sensing material were 

reviewed. The past progress and on-going efforts on the electronic properties of CNTs 

and their composites were covered. Some applications of conductive polymer 

nanocomposites and the important continuous efforts for developing CNT-based strain 

and temperature sensors were discussed.   
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Part Two: Carbon Nanotube/Polyethylene Nanocomposites as Strain and 

Temperature Sensing Materials 

Chapter II-2 Experimental  

2.1 Introduction 

Electrically conductive polymer nanocomposites have been widely used in 

electromagnetic interference (EMI), shielding, nano-electric devices, strain sensors and 

temperature sensors. Conducting filler in the development of conductive polymer 

composites has received some intensive effort in the materials application in recent years. 

MWCNT is considering as conductive nanofillers due to the high electrical conductivity 

as well as good mechanical and thermal properties which are expected to improve the 

electrical conductivity of polymers. Thus, CNT/polymer composite is one of the 

promising fields of CNT future application. The important two concerns in the success 

of CNT/polymer nanocomposite fabricating with excellent properties are the good 

dispersion of CNTs in polymer and their strong interfacial adhesion with a polymer 

surface [1],[2]. Although numerous investigations have been made to the electrical 

properties of CNT/polymer composites, there are still some gaps that need to be filled. 

The intent of this chapter is to give the details of the preparation of materials that used to 

prepare CNT/polymer composites.  

This chapter is organized to be as following: section 2.2 gives some details about the 

materials that used in the experiments. Section 2.3 presents the sample preparation and 

fabrication of MWCNT and MWCNT/HDPE. Section 2.5 provides the characterization 

methods of the samples. The measurements are presented in section 2.6. Lastly, a brief 

summary was given in section 2.7. 
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2.2 Materials 

The main materials used in this study were multi-walled carbon nanotubes (MWCNTs) 

and high-density polyethylene (HDPE). MWCNTs with a purity rating of 95% were 

purchased from Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences. 

The length of the MWCNTs was 20-50μm; the average outer diameter was 10-20nm. 

HDPE matrix with (Density: 0.98gcm− 3, MFI: 4.0g/10min) powder with a particle size 

on average 850μm in length was supplied by Exxon Mobil Corporation, UK. All the 

materials were used as received.  

2.3 Sample Preparation 

2.3.1 Preparation of MWCNT Suspensions  

Starting with 100mg MWCNTs immersed into 20ml distilled water, which then was 

treated by ultrasound for 30 minutes. The sonic dismembrator (Fisher Scientific Model 

500, 300 W) was used to get better dispersion by this ultra-sonication.  

2.3.2 Preparation of MWCNT/HDPE Nanocomposites 

MWCNT/HDPE nanocomposites were prepared by dispersed the MWCNTs in the 

(HDPE) polymer matrix using patented method [3][4] which allowed CNT particles to 

be coated on the surface of the individual polymer powder particles without any change 

to the morphology of the particle. The MWCNT added to the HDPE particles with 

constantly and rapidly manual stirring after dilution. Then, the MWCNT/HDPE 

nanocomposites were dried at 80°C for 24 hours to remove residual water, which was 

the last step for the preparation of the MWCNT/HDPE composites as shown in 

figure  2-1. The MWCNT/HDPE nanocomposites with MWCNTs weight fractions of 

0.1wt%, 0.5wt%, and 1.0wt% were produced in this study.  
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Figure  2-1: The MWCNT/HDPE nanocomposites with MWCNTs weight fractions of 0.1wt%. 

 

2.4 2 Fabrication of MWCNT/HDPE 

The MWCNT/HDPE nanocomposite films were prepared using the melt mixing and hot 

pressing. For starters: MWCNT/HDPE nanocomposite powders were compressed into 

sheets with the diameter of 50mm and the thickness of 1mm at 135°C using hot 

compression moulding. These sheets are for investigation the relationship between the 

temperature and the electrical conductivity. In addition, to study the relationship between 

the strain and the electrical conductivity, the MWCNT/HDPE nanocomposite powders 

were compressed into 5 mm thick samples with the size of 100mm×15mm at 135°C. The 

pressure of compression moulding for the two different sizes of samples was set at 18 

tons. The whole procedure for preparing MWCNT/polymer nanocomposites is shown in 

figure  2-2.  
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Figure 2-2: Schematic procedure for preparation of MWCNT/polymer nanocomposites. 

 

2.5 Characterization  

2.5.1 Scanning Electron Microscopy (SEM)  

The morphology and the dispersion of MWCNT fillers for both nanocomposite powders 

and fracture surfaces were studied by using a field emission gun scanning electron 

microscopy (FEGSEM) LEO 1530VP instrument at a voltage of 5kV. The samples after 

compression moulding were fractured in liquid nitrogen. Both the nanocomposite 

powders and the fracture surfaces were coated with gold before SEM measurements.  

 

2.6 Measurements  

2.6.1 Modulated Differential Scanning Calorimetry (MDSC) Measurements 

The thermal behaviour of pure HDPE was investigated by using a TA Instruments 2920 

MDSC. The sample was weighted (about 10mg) and sealed in an aluminum pan and was 

heated from room temperature to 200°C at a heating rate of 10°C/min.  

2.6.2 Electrical Conductivity Measurements 

Polymer (HDPE) 
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2.6.2.1 Electrical Conductivity-Temperature  

The Fluke PM6306 Programmable Automatic RCL Meter was used to measure the 

electrical resistances of all samples. The samples with the diameter of 50mm and the 

thickness of 1mm were coated with the silver paint to ensure a good electrical contact 

and connect to the automatic RCL meter. Then, they were placed into an oven where the 

temperature could be adjusted and controlled. The electrical conductivity was recorded 

with a rise of 20°C from 20°C (room temperature) to 100°C and then recorded with the 

decrease of 20°C in the temperature from 100°C to 20°. The heating and cooling 

processes were repeated twice for each sample. After the two times of heating and 

cooling, half of the samples were left for three days and then were repeated the process 

of heating and cooling with the record of the electrical conductivity. Another half of the 

samples were then put in the oven, at a temperature of 80°C, for twelve hours. After that, 

the process of heating and cooling were repeated to samples with recorded conductivity.  

2.6.2.2 Electrical Conductivity-Stress  

In a strain with electrical conductivity measurements, the samples with the size of 

100mm×15mm×5mm were tested at room temperature using three points bending rigs 

and timers from W.E.S. Plastics Pty Ltd. The samples were placed on the three points 

bending machine and subjected to a constant load of approximate 39.2N. The electrical 

conductivity and strain were measured at various times up to 60 minutes and recorded. 

Another recording was done when the samples were unloaded. Each test was repeated 

twice. For all the electrical conductivity measurements, each reported conductivity data 

was the average value of three measurements, and all values of resistance were recorded 

as the values of direct current (DC) resistance. The stress and the resistivity are then 

calculated from the measured force and resistance values. 

2.7 Conclusions   

A melt processing method has been used to prepare MWCNT/HDPE nanocomposites 

with different filler loading between 0.1, 0.5 and 1.0 wt% of MWCNT. The MWCNTs 

were dispersed into the host HDPE matrix by manually stirring. The presence of 

MWCNT in polymer matrix HDPE is clearly observed even at low loadings of 

MWCNTs.  
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Part Two: Carbon Nanotube/Polyethylene Nanocomposites as Strain and 

Temperature Sensing Materials 

Chapter II-3 Characterization of Carbon Nanotube/ Polyethylene Composites  

3.1 Introduction 

Besides, CNT/polymer nanocomposite is one of the most promising fields for CNT 

applications, polyethylene (PE) also is one of the most commonly material used as a 

thermoplastic. High-density polyethylene (HDPE) is a frequently preferred among other 

PE types due to the high degree of crystalline structure with a higher tensile strength 

which can effectively resist corrosions of most of the chemical solvents at room 

temperature [1]-[3]. Moreover, HDPE resin is ideal for orthopedic implants and 

distribution pipes and other applications because of its low cost and minimum processing 

energy consumption [2] 

In this chapter, results of the characterization of MWCNT/ (HDPE) composite as powder 

and films are discussed. Then, the quality of these thin films and the dispersions of 

MWCNTs in the HDPE matrices are investigated. 

3.2 Results and Discussion 

3.2.1 HDPE and MWCNT Powder Morphology 

Figure  3-1 (a) and (b) shows the SEM images of HDPE and MWCNT respectively in the 

powder state. 
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Figure 3-1: SEM images of HDPE and MWCNT powders micrographs. 

 

(b) 
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As it can be seen from figure  3-1, the morphology of HDPE powder (shown in part (a)) 

shows an irregular microstructure which may weaken the reinforcement [4]. However, 

the bamboo-shaped MWNTs are clear in part (b). 

3.2.2 MWCNT/HDPE Nanocomposites (powder)  

Figure  3-2 illustrates the SEM images of the matrix of MWCNT/HDPE nanocomposite 

in powder state with MWCNTs weight of 0.1wt%, 0.5wt%, and 1.0wt% respectively. In 

these images, the MWCNTs can be easily observed as white strands which almost 

covered the whole surfaces of the HDPE powder particles with only 1.0wt% of MWCNT.  

In addition, nanofillers usually tend to accumulate very easily, which can affect and 

weaken the mechanical properties of the final nanocomposites part. However, the 

dispersions of the MWCNTs were uniform, although a few agglomerates could be 

detected.  
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Figure  3-2: SEM images of (a) 0.1 wt% MWCNT/HDPE nanocomposite powders (b) 0.5 wt% 

MWCNT/HDPE nanocomposite powders (c) 1.0 wt% MWCNT/HDPE nanocomposite powders. 
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It is clear that as the content of MWCNT increases the averaged area with MWCNT 

increased. And the agglomeration of the MWCNT becomes more noticeable. However, 

these agglomerates form conductive three-dimensional networks during the next stage of 

compression moulding. That is because of the hot pressing which may improve the 

connections between adjacent agglomerates [5]. As mentioned before, the successful 

preparation of polymer nanocomposites strongly depends on the uniform dispersion of 

nanofillers in the polymer matrix.  In this project, MWCNT/polymer nanocomposite 

powders were prepared by coating the MWCNTs on the surface of HDPE which results 

in this uniform dispersion of the CNT in a different part of HDPE surface. 

3.2.3 MWCNT/HDPE Nanocomposites sheets 

The prepared nanocomposite powders were compressed into sheets at 135°C. The 

chosen temperatures were around the melting points of the polymer, which is in the 

range of 130°C to 137°C for HDPE [6]. At these temperatures, the nanocomposite 

powders are not totally molten, which is good for forming conductive networks. The 

procedure of the fabrication of nanocomposite powders is shown in Figure  3-3.  

 

 

 

 

 

 

 

 

Figure 3-3:  Schematic procedure for preparation of MWCNT/polymer nanocomposite sheet 
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Figure  3-4 shows the SEM images of a surface fracture from MWCNT/ HDPE 

nanocomposite sheets with the MWCNTs weight fractions of 0.1 wt%, 0.5 wt%, and 1.0 

wt%.  It is clear that from (a) to (c) the content of the MWCNT increases which result in 

forming a network of this connected MWCNT. This network becomes denser with a 

higher fraction of MWCNT.  

 

 



Chapter II-3: Characterisation of carbon nanotube/polyethylene composites 

184 
 

 

Figure  3-4: SEM images of surfaces fracture of (a) 0.1 wt% MWCNT/HDPE nanocomposite sheet (b) 0.5 

wt% MWCNT/HDPE nanocomposite sheet (c) 1.0 wt% MWCNT/HDPE nanocomposite sheet. 

3.2.4 Conductivity of the MWCNT/HDPE Sheets  

To check the conductivity of these networks, the initial electrical resistivity of the 

MWCNT/HDPE nanocomposites with each concentration of MWCNTs were calculated 

and illustrated in table  3-1. 

Table  3-1: The initial electrical resistivity of MWCNT/HDPE nanocomposites 

 

 

 

 

 

Thus, table  3-1 and figure  3-4 (b) and (c) present the conductive networks with 0.5 wt% 

and 1.0 wt% MWCNT/HDPE nanocomposites throughout the whole sample. However, 

the resistivity of the composite has found to decreases until 9.95 kΩ.mm as MWCNT 

reaches 1.0wt%. Although the conductive networks in 0.1 wt% MWCNT/HDPE 

Weight fraction of MWCNTs Resistivity (kΩ.mm) Standard deviation (%) 

0.1 wt% 792.6375 ±5.77 

0.5 wt% 111.6675 ±0.96 

1.0 wt% 9.9525 ±0.06 
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nanocomposite are not observable in the SEM image (see figure  3-4 (a)), the electrical 

resistivity of about 792.6 kΩ.mm with 0.1 wt% MWCNT/HDPE nanocomposite is 

detected. The invisible and conductive networks in the SEM image of the 0.1 wt% 

MWCNT/HDPE nanocomposite are probably because most of the MWCNTs are 

enclosed into the HDPE matrix [7].  

 

Figure  3-5 shows the electrical resistivity of MWCNT/HDPE nanocomposites with 

different MWCNTs content. In this figure, the percolation threshold was difficult to be 

identified for only three different fractions of MWCNT. Though, it is clear from the 

slope that the decreasing rate in electrical resistivity is higher from 0.1 wt% to 0.5 wt% 

than from 0.5 wt % to 1.0 wt % in MWCNT/HDPE nanocomposite. The change in 

electrical resistivity becomes nearly remained stable from 0.9 wt% to 1.0 wt%. Thus, 

comparing the nanocomposites resistivity of 0.1 wt% and 0.5 wt% and 1.0 wt% 

MWCNTs, the nanocomposite with the 1.0 wt% MWCNTs was closer to the percolation 

threshold.  

 

Figure  3-5: Log resistivity of MWCNT/HDPE nanocomposites with different MWCNTs contents. 
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In addition, the standard deviation of resistivity is quite small for the nanocomposite 

with 1.0 wt% MWCNTs which differs from other fractions as present in table  3-1. This 

comes with a good agreement with the sensitivity of the electrical signal which altered 

for different nanotube contents and the greater electrical stability was shown in the 

nanocomposites with CNT contents around the percolation threshold [8].  

3.3 Conclusion  

The SEM was used to characterize the powder and sheets of MWCNT/HDPE 

nanocomposite. The powder of HDPE had an irregular morphology structures which are 

connected to a conductive network with the MWCNT. The 1.0 wt% MWCNT/HDPE 

nanocomposite sheet showed the best electrical conductivity and the lowest standard 

deviation which indicate the greatest electrical stability among other two fractions.  
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Part Two: Carbon Nanotube/Polyethylene Nanocomposites as Strain and 

Temperature Sensing Materials 

Chapter II-4 Temperature-Conductivity Behaviour in Carbon Nanotube/ 

Polyethylene Composites  

4.1 Introduction 

Carbon nanotubes (CNTs) play a diverse two roles in composites. First, the 

CNT/polymer structural composites; the amazing mechanical properties of the CNTs are 

used to obtain structural materials with high elastic modulus and tensile, stiffness, 

compressive strength and lightweight. Secondly, CNT/polymer functional composites, in 

which other interesting properties like the high electrical and thermal conductivity, are 

utilized to develop functional chemical sensing materials, electrical and thermal 

conducting materials and energy storage performances [1]. There are a number of reports 

on the nanocomposite’s thermal and electrical conductivity using different fillers and 

polymer matrices with changes in filler loadings [2]. The most current issues that related 

to nanocomposite fabrication with CNT filler are the dispersion of CNT in the polymer 

host are the CNT-polymer interaction, the nature of this interface, and the alignment of 

CNT in a polymer matrix. All of these issues are believed to be directly related to the 

electrical, mechanical and thermal performance of nanocomposites [3]- [5].  

Among this chapter, the effects of the temperature on the electrical conductivity of the 

MWCNT/ high-density polyethylene nanocomposites will be investigated. Although 

many efforts have contributed to this field, the knowledge of the reproducibility of the 

conductive polymer nanocomposites is still limited. Therefore, the aim of this chapter is 

to study the reproducibility of the MWCNTs based nanocomposites prepared by a 

coating method.  

4.2 Temperature-Dependent Electrical Conductivity 

In the temperature-electrical conductivity measurements, the MWCNT/HDPE 

nanocomposite sheets with the size of 50mm×50mm×1mm were fabricated and tested. 

There are three to four samples for each CNT fraction of the MWCNT/HDPE 

nanocomposite sheets. One sheet from each fraction has been tested to check its 

reproducibility. Figure 4-1 illustrates the graphs of resistivity versus temperature for the 
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MWCNT/HDPE nanocomposites with three different percentages (1.0 wt%, 0.5 wt%, 

and 0.1 wt %) of MWCNT in three measurement steps. Graph (a, c and e) without any 

heat treatment but graph (b, d and f) has the last measurement steps after 12 hours of 

heat treatment at 80oC.  
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Figure  4-1: Plots of resistivity versus temperature for the MWCNT/HDPE nanocomposites with the 

MWCNT contents of (a) 0.1 wt% without heat treatment (b) 0.1 wt% after 12h of heat treatment (c) 0.5 wt% 

without heat treatment (d) 0.5 wt% after 12h of heat treatment (e). 
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From figure  4-1, there is a directly proportional relation between the resistivity and the 

temperature in each single sheet as expected [6]. The resistivity has a steady increase as 

the temperature rises from 20oC to 100oC and vice versa.  However, the initial electrical 

resistivity for each MWCNT/HDPE nanocomposite sheet with the same filler fraction 

was found to be different before and after the heat treatment, which can be summarized 

in table  4-1.  

Table  4-1: Initial electrical resistivity of the MWCNT/HDPE nanocomposites with different filler contents. 

As it is seen from the table above, the initial electrical resistivity values for each 

MWCNT/HDPE nanocomposites with the same filler contents is smaller after the heat 

treatment. This can be related to the heat influence on the nanocomposite structure which 

makes it much more homogenous and rebonded the conductive nanofillers paths which 

decrease the resistivity of the whole sheet. 

As shown in figure  4-1, when the temperature increases, the electrical resistivity of the 

MWCNT/HDPE nanocomposite with different filler contents is rising dramatically. This 

is because the increase in temperature causes the distance between the conductive 

nanofillers to be larger which leads to the increase of the electrical resistivity. Similarly, 

when the temperature decreases, the distance between the conductive nanofillers has 

accordingly reduced which is resulting in the reduction of the electrical resistivity. 

During these tests, each sample was experienced two processes of heating and cooling. 

From figure  4-1, it was interesting that the electrical resistivity of the MWCNT/HDPE 

nanocomposites during each process of cooling were smaller than that during the same 

process of heating. This indicates that the electrical conductivity during the process of 

cooling was better than the same process of heating. During the cooling process, the 

conductive nanofillers retain to its original structure very slowly. Thus, the bonds can be 

formed slowly and strongly. In another word, the distances between the conductive 

Heat treatment 
Nanocomposites initial electrical resistivity (kΩ.mm) 

with 0.1 wt% MWCNT with 0.5 wt% MWCNT with 1.0 wt% MWCNT 

Before 1056.9 345.6 14.6 

After 1037.6 148.9 13.3 



Chapter II-4: Temperature-conductivity behaviour in carbon nanotube/polyethylene 

 

193 
 

nanofillers are adjusted to be smaller, leading to better electrical conductivities during 

the process of cooling.  

Additionally, for all MWCNT/HDPE nanocomposites samples, the electrical resistivity 

for the second process of heating and cooling were smaller than that for the first process 

of heating and cooling. These results are most likely because of the heating induces 

some movement of polymer chains which result in a rearrangement of the conductive 

nanofillers in the first process which results in having a smaller resistivity in the next 

measurements. 

Furthermore, for the MWCNT/HDPE nanocomposites with the MWCNT contents of 0.1 

wt%, 0.5 wt% and 1.0 wt%, the fitting of the electrical resistivity graphs between the 

first process of heating and cooling was smaller than that between the second process of 

heating and cooling, which indicated that the reproducibility of the electrical 

conductivity of the second process of heating and cooling was better than that of the first 

process.  

For the MWCNT/HDPE nanocomposite sheets used in this project, which were made 

from nanocomposite powders, there are probably some cavities left inside the samples 

after the compression moulding. These voids lead to increase the distances between the 

conductive nanofillers, and further, make the electrical conductivity decreased. Thus, 

each process of heating can decrease these size and number of the voids. The effect of 

the voids on the electrical conductivity can be gradually excluded with each process of 

heating, which results in the improvement of the reproducibility. These are the reasons 

why the reproducibility of the electrical conductivity of the second process of heating 

and cooling was better than that for the first process. Based on the conductive tunnelling 

mechanics, as the temperature increases, the distances between the conductive 

nanofillers increases consequently, which lead to a drop of the electrical conductivity.  

Figure  4-2 shows the MDSC curve of pure HDPE which indicates that the melting point 

of pure HDPE can be identified as 133.57°C. Thus, the heat treatment temperature of 

80°C can be suggested as a “safe-side” chosen temperature, because, at 80°C, the 

nanocomposites cannot further fuse, so no new distribution of the MWCNTs can 

establish itself [7] 
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Figure  4-2: MDSC curve of pure HDPE 

As for the reproducibility of the MWCNT/HDPE nanocomposites, from figure  4-1 (e) 

and (f), the heat treatment did not have the obvious effect on the reproducibility for the 

MWCNT/HDPE nanocomposite with the MWCNT content of 0.1 wt%. This is probably 

due to the little conductive filler content in the MWCNT/HDPE nanocomposites. The 

two processes of heating before the heat treatment have made the voids in the 

nanocomposite sheets be excluded which leave the treatment heating without any further 

influence in the nanocomposite structure. Besides, the conductive nanofillers 

rearrangement is almost completed during the two processes of heating and cooling. 

Therefore, the heat treatment has only a little effect on the reproducibility. 

Apart from the 0.1 wt% MWCNT/HDPE nanocomposite, the heat treatment had 

apparent effects on the reproducibility for the rest of the tested fractions of the 

nanocomposites; especially for the 1.0 wt% MWCNT/HDPE nanocomposites (figure  4-1 

(a)-(d)). Without using the heat treatment, there was still a large gap in the electrical 

resistivity path between the process of heating and cooling after three days, shown in 

figure 4-1 (a). However, figure  4-1 (b) indicates that heat treatment results in significant 
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decreasing on this gap between the electrical resistivity of the heating and cooling 

process paths, and effectively improved the reproducibility. 

As shown in figure  4-3 and figure  4-4, another temperature-electrical conductivity 

measurement has been taken for (100mm x15mm x 5mm) samples in return path after 2 

weeks of heat treatment. Clearly, from these results, although the resistivity increases as 

the temperature rise up, it is noticeable that there is a different starting resistivity value 

with each sample even if they are with the same MWCNT fraction.  

The difference in the electrical resistivity of each MWCNT/HDPE nanocomposites sheet 

with the same filler fraction possibly lies in the inhomogeneous heating of the samples, 

which induces different melt viscosity throughout the whole samples. Thus, the 

dispersion of the conductive nanofillers in each nanocomposite sheet is different, 

resulting in the variation of the whole volume resistivity. 
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Figure  4-3: Plots of resistivity versus temperature from 20°C to 100ºC and vice versa for two samples of 
MWCNT/HDPE nanocomposites with the MWCNT contents of 1.0 wt%. 
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Figure  4-4: Plots of resistivity versus temperature for four samples of MWCNT/HDPE nanocomposites 

with the MWCNT contents of 0.5 wt%. 

4.3 Conclusion  

In this chapter, the effects of the temperature on the electrical conductivity of the 

MWCNTs based nanocomposites were considered.  Average electrical resistivity 

decreased as MWCNT wt% increased from 0.1 to 1% wt. This indicates to an increase in 

the electrical conductivity in samples. 1.0 wt% MWCNT/HDPE nanocomposite has 

shown the best reproducibility of the electrical conductivity to temperature. Moreover,  It 

was found that the reproducibility was improved by preheating treatment before each test. 

On the other hand, the difference in the initial electrical resistivity during the 

temperature-electrical conductivity measurements of the nanocomposites with the same 

filler contents inevitably affects the study of the heat treatment effects on the 

reproducibility. Thus, the fabrication of the nanocomposites with almost the same initial 

electrical resistivity with the same filler contents is crucial. 
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Part Two: Carbon Nanotube/Polyethylene Nanocomposites as Strain and 

Temperature Sensing Materials 

Chapter II-5 : Strain-Conductivity Behaviour in Carbon Nanotube/ High-Density 

Polyethylene Composites. 

5.1 Introduction 

The strain sensor is one of the important concerns in science fields. Although current 

strain sensors have excellent performances in terms of time and sensitivity, they still 

have to be related to signal acquisition equipment and power sources [1]. These 

limitations prevent the existing strain sensors from being embedded at material or atom 

levels to monitor the moving structures. Significant improvements and understanding 

have been made in this field, but many challenges still need to be overcome. Recently, a 

developing strain sensor from optical fiber was employed to be embedded into material 

level [2]. Nonetheless, the high cost of the required expensive equipment for acquiring 

strain information is still a limitation of the optical fiber based strain sensor [2]. 

Therefore, to overcome these difficulties, a new strain sensor is needed.  

Nanotechnology science has the potential to develop an innovative way for measuring 

the motion in the micro to nano-scale size [3]-[5]. Carbon nanotubes have received a 

great interest due to their unique electronic structure as viewed in chapter II-1. Thus, 

they offer an alternative new strain sensor by integrating CNTs into polymers which 

have currently attracted researcher interest [5],[6]. 

In this chapter, the study of the stress effects and mechanical deformation (strain) on the 

electrical conductivity of the MWCNT/ high-density polyethylene nanocomposites in 

room temperature will be discussed. The reproducibility and the strain sensing 

behaviours investigation of the MWCNTs based nanocomposites will be considered. 

 

 

 



Chapter II-5: Strain-Conductivity Behaviour in Carbon Nanotube/ high Density Polyethylene 

Composites. 

 

199 
 

5.2 Strain-Dependent Electrical Conductivity in MWCNT/HDPE Nanocomposite 

During the strain-electrical conductivity measurements, fabricated sheets of the 

MWCNT/HDPE nanocomposite with the size of (100mm×15mm×5mm) and (0.5 wt% 

and 1.0 wt %) percentage of MWCNTs were used. All the measurements were 

conducted at room temperature. The three points bending test was carried out in this part 

as it is a British slandered method for small deformation measurements BS 2782-10. 

Stress of 0.0065 N/mm2, 0.013 N/mm2, 0.019 N/mm2, and 0.026 N/mm2were applied on 

these samples respectively. The resulted strain had only a slight influence or even no 

change in electrical conductivities with the increase of the deformation happened. This 

outcome is probably because the samples with the thickness of 5mm are somehow thick 

and so, the electrical conductivity is not sensitive to that deformation shift. The 

relationships among the stress, the strain and the initial electrical conductivities for 0.5 

wt% MWCNT/HDPE nanocomposites are shown in table  5-1 and figure  5-1. 

Table  5-1:  Results of the stress, strain, resistance and resistivity for 0.5 wt% MWCNT/HDPE 

nanocomposite 

 

 

 

 

 

 

 

 

 

 

stress (N/mm2) Strain (mm) Resistance (kΩ) Resistivity (kΩ.mm) 

0 0 136.44 102.33 

0.0065 0.37 136.50 102.375 

0.013 0.82 136.56 102.42 

0.019 1.28 136.66 102.495 

0.026 1.81 136.93 102.6975 
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 Figure  5-1:   Plot of stress and resistivity versus strain for 0.5 wt% MWCNT/HDPE nanocomposite 

There is a linear relation between each of applied stress, resistivity, and the strain. When 

the applied stress increases, the strain rise up and the resistivity does so. What actually 

happened is that as the stress is applied on the samples, the strain becomes larger and 

thus the distances between the conductive nanofillers enlarge leading to a drop in 

electrical conductivity [7].  

The relationship between resistivity and strain for 0.5wt% MWCNT/HDPE 

nanocomposite is shown in figure  5-2.  
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Figure  5-2: Plot of resistivity versus strain for 0.5 wt% MWCNT/HDPE nanocomposite. 

From figure  5-2, when a 4kg loading was firstly applied on the sample gradually, the 

resistivity increased from 81.511 kΩ.mm to 81.910 kΩ.mm with the rising up of the 

strain. Then, the resistivity decreased down to 81.692 kΩ.mm during the process of 

unloading. The resistivity, as well as the strain, is not able to go back to the original state. 

Similarly, in the second time, once 4kg was loading, the resistivity also increased from 

81.585 kΩ.mm to 81.848 kΩ.mm with the increase of the strain and then they decreased 

during the unloading process. The resistivity reached to 81.705 kΩ.mm. Again, the 

resistivity and the strain, could not totally recover. It was interesting that from this figure 

that the initial resistivity for the second period of loading, which was 81.585 kΩ.mm, 

was larger than that for the first period of loading, which was 81.51 kΩ.mm. 

The relationship between resistivity and strain for 1.0wt% MWCNT/HDPE 

nanocomposite is shown in figure  5-3.  
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Figure  5-3: Plot of resistivity versus strain for 1.0 wt% MWCNT/HDPE nanocomposite 

Similar to the 0.5 wt% MWCNT/HDPE nanocomposite, when 4kg loading was firstly 

applied on the sample, the resistivity increased (from 5.569kΩ.mm to 5.584kΩ.mm) with 

the increase of the strain, and then went down during the process of unloading, as shown 

in figure 5-3. As 4kg loading was secondly applied to the sample, the resistivity also 

went up from (5.576kΩ.mm to 5.588 kΩ.mm) with the rise of the strain and decreased to 

only 5.583 kΩ.mm during the relaxation period. In both the first and the second period 

of loading/unloading, the resistivity besides the strain, could not reveal their original 

state. In addition, the initial resistivity for the first period of loading was smaller than 

that for the second period. This result was the same as the result of 0.5 wt% 

MWCNT/HDPE nanocomposite. 

During the loading and unloading processes, the MWCNT/HDPE nanocomposites 

experience elongation and relaxation periods which can move the polymer segments 

induces the change of the conductive networks, resulting in the change of the electrical 

resistivity. The mechanism of the loading and unloading process can be concluded in 

that: An applied force on an area (stress) can induce a deformation (strain) in the 
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nanocomposites which lead to destruction in the conductive networks.  The distances 

between the conductive nanofillers enlarged, and accordingly the electrical resistivity 

increased [8]. Consequently, in this project, the electrical resistivity of both 

MWCNT/HDPE nanocomposites with the MWCNT fillings of 0.5 wt% and 1.0 wt% 

increased during the process of loading and then decreased during the process of 

unloading.  

5.3 Electrical Recovery Behaviour in MWCNT/HDPE Nanocomposite 

The first process of loading and unloading that are shown in figure  5-2 and figure  5-3 

had finished in about 2 days for both nanocomposites. The resulted electrical resistivity 

values of both of them were larger than the initial electrical resistivity of the first loading 

period.  

These results are possible because of the electrical recovery that is concerned with the 

viscoelastic behaviour of the nanocomposite. The electrical resistivity cannot totally 

recover during the relaxation [9]. Voigt-Kelvin model has been used to describe the 

electrical recovery behaviour by a previous group researcher. The following formula was 

used to describe the relation of the original resistivity and the new electrical resistivity 

[9]: 

𝑅𝑅(𝑡𝑡) = 𝑅𝑅𝑚𝑚(𝜀𝜀) + 𝑅𝑅𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑡𝑡
𝜏𝜏
�                                                                                       (5-1) 

Where:𝑅𝑅𝑚𝑚(𝜀𝜀) is the un-recoverable resistivity,  

            𝑅𝑅𝑑𝑑 :  The original resistivity of the deformed sample, 

            𝜏𝜏 : a constant at the given strain 

As clearly seen in these tests, when the loading was removed and the nanocomposites 

with the thickness of 5mm have experienced the relaxation for two days. The electrical 

resistance and so the resistivity could not recover to a zero-deformation (strain) value 

that was found in the beginning of the first loading. This is due to the viscoelastic 

electrical response which based on the “viscoelastic” behaviour of the electrical recovery. 
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From equation (5-1), the electrical recovery can be expressed as a time-dependent 

behaviour. The initial electrical resistivity for the second process of loading was smaller 

than last resistivity point for the first process of unloading because the resistivity tended 

to recover within the two days. Therefore, it seems that, although the electrical resistivity 

cannot totally go back to the original state, it is possible that when nanocomposites 

experience quite a long period of relaxation. The electrical conductivity can be quite 

close to the initial conductivity of the first process of loading. This hypothesis needs to 

be proved by further works.  

5.4 Reproducibility of MWCNT/HDPE Nanocomposites with Stress 

In the 0.5 wt% MWCNT/HDPE nanocomposite, the zero-deformation value of 

resistivity for the first period of loading was 81.51 kΩ.mm but, the measured electrical 

resistivity after the two times of loading and unloading was 81.705kΩ.mm.  

Thus, the degree of the electrical recovery could be calculated as: 

  1 − 81.705−81.51
81.51

× 100% = 99.76% 

Similarly, for the 1.0 wt% MWCNT/HDPE nanocomposite, the zero-deformation value 

of resistivity for the first period of loading was 5.5696 kΩ,.mm and electrical resistivity 

measured after the two times of loading and unloading was 5.583 kΩ..mm. Therefore, 

the degree of the electrical recovery was calculated to be 99.76%, which was basically 

equivalent to the 0.5 wt% MWCNT/HDPE nanocomposites. 

Table  5-2 and table  5-3 demonstrate the degree of the electrical recovery at each 

deformation (strain) measured for the 0.5 wt% and the 1.0 wt% MWCNT/HDPE 

nanocomposites respectively. Both nanocomposites have the degrees of the electrical 

recovery at each deformation during the second process of relaxation higher than the 

first process of relaxation. This result was with a good agreement with the gaps in the 

electrical resistivity between the loadings and unloading process which were smaller for 

the second process than that for the first one (see table  5-2 and Table  5-3). Consequently, 

the reproducibility of the second process of loading and unloading was better than that of 

the first process.  
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Table  5-2:  Degree of the electrical recovery at each strain for the 0.5 wt% MWCNT/HDPE 

nanocomposite. 

First Relaxation Second Relaxation 

Strain (mm) 
Degree of electrical 

recovery (%) 
Strain (mm) 

Degree of electrical 

recovery (%) 

0.718 99.95 0.550 99.95 

0.913 99.94 0.720 99.95 

1.013 99.93 0.860 99.96 

1.111 99.92 0.890 99.95 

1.183 99.92 0.940 99.95 

1.233 99.93 0.960 99.96 

1.268 99.93 1.010 99.95 

1.308 99.94 1.040 99.95 

1.338 99.95 1.055 99.95 
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Table  5-3:  Degree of the electrical recovery at each strain for the 1.0 wt%MWCNT/HDPE 

nanocomposite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First Relaxation Second Relaxation 

Strain (mm) 
Degree of electrical 

recovery (%) 
Strain (mm) 

Degree of electrical 

recovery (%) 

0.540 99.97 0.490 99.97 

0.780 99.97 0.700 99.98 

0.870 99.96 0.770 99.98 

0.950 99.96 0.830 99.98 

1.000 99.96 0.860 99.98 

1.040 99.96 0.890 99.98 

1.070 99.96 0.910 99.98 

1.110 99.97 0.930 99.99 

1.130 99.97 0.940 99.99 

1.140 99.98 0.960 99.99 
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Moreover, the strain of the 1.0 wt% MWCNT/HDPE nanocomposites was smaller than 

that of the 0.5 wt% MWCNT/HDPE nanocomposite. In addition, as shown table  5-2 and 

table  5-3, the degree of the electrical recovery at each strain for the 1.0 wt% 

MWCNT/HDPE nanocomposite was higher than that for the 0.5 wt% MWCNT/HDPE 

nanocomposite. Although the ultimate degree of the electrical recovery, 99.76%, for the 

0.5 wt% MWCNT/HDPE nanocomposite approximately equalled to that for the 1.0 wt% 

MWCNT/HDPE nanocomposite, the reproducibility of the 1.0 wt% MWCNT/HDPE 

nanocomposite was better than that of the 0.5 wt% MWCNT/HDPE nanocomposite 

during each process of loading and unloading. Essentially, for the whole process of 

unloading, the resistance relaxation is due to the recovery of the effective conductive 

paths induced by the disorientation of the polymer chains [10].  

5.5 Conclusion  

The results of the strain-electrical conductivity measurements revealed that the initial 

electrical resistivity for the MWCNT/HDPE nanocomposites increased with the 

increasing of the applied stress because the distances between the conductive nanofillers 

increased and some conductive networks were destroyed. It was found that the 

MWCNT/HDPE nanocomposite sheets exhibited “viscoelastic” behaviour of the 

electrical recovery which causes the electrical resistivity could not totally recover during 

the relaxation. In addition, 1.0 wt% MWCNT/HDPE nanocomposite showed the best 

reproducibility of the electrical conductivity against stress. In conclusion, as increasing 

strain leads to damage the conductive networks and so decrease the electrical 

conductivity, these nanocomposites may consider as stress sensing materials for the 

development of strain sensors for engineering applications.  
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Part Two: Carbon Nanotube/Polyethylene Nanocomposites as Strain and 

Temperature Sensing Materials 

Chapter II-6 Conclusions and Future Work  

As it is clear, the properties of materials can be also determined by the dimension of the 

material not only by its chemical bonding and composition. As the dimension of any 

material system decreases to the nano-meter-scale, different and special chemical and 

physical characteristics arise. To improve polymer's conductivity, strength and other 

attributes, nanomaterials such as multi-walled carbon nanotubes (MWCNTs) are 

frequently used in polymer preparations  

Although extensive efforts have been made to develop a CNT-based temperature or 

strain sensors, reproducibility of the sensors, which can keep their electrical conductivity 

for long-term use, are still being challenged. Thus, in the aspect of the conductive 

CNT/polymer composites reproducibility, the results of this research part (strain and 

temperature sensing materials nanocomposites) revealed some points which will be 

summarized in this chapter. 

This chapter introduces a summary of the second part (Carbon nanotube/polyethylene 

nanocomposites as strain and temperature sensing materials) of the thesis, which is given 

in section 6.1 and a future work plan is followed in section 6.2. 

6.1 Conclusions 

To summarize: Well-dispersed MWCNT/HDPE nanocomposite powder was 

successfully prepared by coating the MWCNTs on the surface of the matrix particles 

(HDPE). The volume resistivity of the nanocomposites was investigated related to the 

temperature and stress influence. Besides, the reproducibility of the nanocomposites was 

studied in this project. Several conclusions could be drawn. 

Firstly, the prepared MWCNT/HDPE nanocomposite powders had an irregular 

morphology, which affects the final MWCNT/HDPE nanocomposite sheet properties. 

Secondly, the average electrical resistivity for the MWCNT/HDPE nanocomposite 

sheets with the MWCNT contents of 0.1 wt%, 0.5 wt%, and 1.0 wt% were 792.64 

kΩ.mm, 111.67 kΩ.mm, and 9.953 kΩ.mm respectively which indicate that the 1.0 wt% 
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MWCNT/HDPE nanocomposite sheet showed the best electrical conductivity. In 

addition, 0.1 wt% MWCNT/HDPE nanocomposite had the highest standard deviation of 

the electrical resistivity, while 1.0 wt% MWCNT/HDPE nanocomposite showed the 

lowest one. This indicates that the MWCNT/HDPE nanocomposite with the MWCNT 

content of 1.0 wt% had the greatest electrical stability in this project.  

Furthermore, the results of the temperature-electrical conductivity measurements 

revealed that the initial electrical resistivity for the MWCNT/HDPE nanocomposites 

with the same filler contents were different, because of the different dispersions of the 

MWCNTs in each nanocomposite sheet induced by the inhomogeneous heating of the 

samples. It was found that with the rise of the temperature, the electrical resistivity for 

the MWCNT/HDPE nanocomposites increased due to the increase of the distances 

between the conductive nanofillers. 

The electrical conductivities of the MWCNT/HDPE nanocomposites during each 

process of cooling were better than the same process of heating due to the rearrangement 

of the conductive CNT that was induced by heating. In addition, the heat treatment could 

effectively improve the reproducibility of the MWCNT/HDPE nanocomposites, 

especially the nanocomposite with the MWCNT content of 1.0 wt%, because the voids 

in the nanocomposite sheets were excluded during the heat treatment. 

Moreover, the results of the strain-electrical conductivity measurements reveal that the 

initial electrical resistivity for the MWCNT/HDPE nanocomposites increases with the 

increase of the applied stress because the distances between the conductive nanofillers 

increased and some conductive networks were damaged. In addition, the reproducibility 

of the 1.0 wt% MWCNT/HDPE nanocomposite was better than the 0.5 wt% 

MWCNT/HDPE nanocomposite. It was found that the MWCNT/HDPE nanocomposite 

sheets exhibited “viscoelastic” behaviour of the electrical recovery. The electrical 

resistivity cannot totally recover during the relaxation. This could be useful in designing 

CNT/ polymer composite strain sensors in the future. 

For all the MWCNT/HDPE nanocomposite sheets, the electrical recovery was larger 

than 99% during each process of elongation and reduction. 
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The increasing temperature from 20 to 100ºC and strain amount influence the composite 

structure leading the CNTs separation increases gradually. The gap between CNTs 

becomes larger which finally reaches to a value where the conductance vanishes. For a 

sensing material development, the conductivity sensitivity can make a significant 

challenge in controlling the sensors fabrication process. In another word, making a stress 

or temperature sensors from CNT/PE nanocomposites needs to have the length of the 

separation between CNTs in control. This research could provide practical assistance in 

the developed electrical conductive composites for desirable future sensing devices 

6.2 Future Research 

This project has improved the knowledge of the electrical conductivity of 

MWCNT/HDPE nanocomposites. Progress has been made in the study of the electrical 

reproducibility of conductive polymer nanocomposites, and heat treatment has been put 

forward to improve the electrical reproducibility in this project. However, current 

research on the electrical reproducibility is still in the early stage and some limitation 

still needed to be overcome: 

1. The results of the project reveal that the electrical reproducibility of the 

MWCNT/HDPE nanocomposites is not promising without heat treatment. In order to 

develop reliable carbon nanotubes based temperature sensors, further works could 

focus on the reproducibility of the CNT sensors only after the heat treatment stage.  

2. The strain-dependent electrical reproducibility of the MWCNT/HDPE 

nanocomposites indicates that the electrical conductivity is not very sensitive to the 

changes of stress, leading to the difficulty in the study of the electrical 

reproducibility. In order to overcome this difficulty, thinner nanocomposites sheets 

could be used in the future research.  

3. More conductive nanofillers and matrices are needed to be dug out for the 

development of electrical reproducible sensors.  
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