Hardness of alumina/silicon carbide nanocomposites at various silicon carbide volume percentages

2014-05-01T10:48:33Z (GMT) by James Wade Houzheng Wu
Vickers indentation was employed to measure the microhardness of monolithic alumina and six alumina-based nanocomposites consisting of variable silicon carbide nanoparticle volume percentages of 0.3% to 20%. Indentation tests were performed over a broad range of loads from 0.5N to 40N. The resultant hardness-load curves exhibit cumulative increases in the apparent hardness based on the silicon carbide content and reveal each sample suffers from a prominent indentation size effect (ISE). Herein, we present a comprehensive analysis of this data using Meyer’s Law, the proportional specimen resistance model (PSR) and the modified proportional specimen resistance model (MPSR) and employ TEM imagery to detail potential mechanisms by which silicon carbide nano-reinforcements influence the “true hardness” and the ISE.