Loughborough University
Browse
Paper 2 heat retention modelling _IJHMT_no colour.pdf (1.7 MB)

Heat retention analysis with thermal encapsulation of powertrain under natural soak environment

Download (1.7 MB)
journal contribution
posted on 2019-10-29, 09:45 authored by Ruoyang Yuan, N. Dutta, S. Sivasankaran, W. Jansen, Kambiz EbrahimiKambiz Ebrahimi
This paper investigates high fatality modelling of vehicle heat transfer process during natural soak environment and heat retention benefits with powertrain encapsulations. A coupled computer-aided-engineering (CAE) method utilising 3D computational-fluids-dynamics (CFD) and transient thermal modelling was applied to solve buoyancy-driven convection, thermal radiation and conduction heat transfer of vehicle structure and fluids within. Two vehicle models with different encapsulation layouts were studied. One has engine-mounted-encapsulation (EME) and the other has additional vehicle-mounted-encapsulation (VME). Coupled transient heat transfer simulations were carried out for the two vehicle models to simulate their cool-down behaviours of 9 h static soak. The key fluids temperatures’ cool-down trajectories were obtained and correlated well with vehicle test data. Increased end temperatures were seen for both coolant and oils of the VME model. This provides potential benefits towards CO2 emissions reduction and fuel savings. The air paths and thermal leakages with both encapsulations were visualised. Reduced leakage pathways were found in the VME design in comparison with the EME design. This demonstrated the capability of embedded CAE encapsulation heat retention modelling for evaluating encapsulation designs to reduce fuel consumption and emissions in a timely and robust manner, aiding the development of low-carbon transport technologies.

Funding

Innovate UK and the Advanced Propulsion Centre (APC)

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering
  • Mechanical, Electrical and Manufacturing Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

International Journal of Heat and Mass Transfer

Volume

147

Issue

February 2020

Publisher

Elsevier

Version

  • AM (Accepted Manuscript)

Rights holder

© Elsevier

Publisher statement

This paper was accepted for publication in the journal International Journal of Heat and Mass Transfer and the definitive published version is available at https://doi.org/10.1016/j.ijheatmasstransfer.2019.118940.

Acceptance date

2019-10-22

Publication date

2019-10-28

Copyright date

2019

ISSN

0017-9310

Language

  • en

Depositor

Ruoyang Yuan. Deposit date: 28 October 2019

Article number

118940

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC