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Abstract

The motion of a quantum particle in a periodic potential can generate rich dynam-
ics in the presence of a driving field. Such systems include, but are not limited to,
semiconductor superlattices which exhibit a very anisotropic band structure that
results into pronounced nonlinearities and high carrier mobility. In this thesis, we
investigate the semiclassical dynamics and electron transport in a spatially periodic
potential driven by a propagating wave.

Firstly, we examine the transport features of an electron in a single miniband
superlattice driven by a high-frequency acoustic plane wave. In this system, the
nonlinear electron dynamics crucially depends on the amplitude of the acoustic
wave. The transport characteristics are studied by means of a non-linearised
kinetic model. In particular, to provide a realistic description of the directed
transport, we employ the exact path-integral solutions of the Boltzmann transport
equation. The calculated electron drift velocity and the time-averaged velocity
show a nonmonotonic dependence upon the amplitude of the acoustic wave with
multiple pronounced extrema. We found out that the changes in the velocity-
amplitude characteristics are directly associated with a series of global bifurca-
tions due to topological rearrangements of the phase space of the system. These
dramatic transformations are connected with superlattice intraminiband transi-
tions, and accompanied by inelastic emission (absorption) of the quantum particle.
The bifurcations also signify the transitions between different dynamical regimes,
involving unconfined electron motion, wave-dragging and phonon-assisted Bloch
oscillations. Each regime has a characteristic spectral fingerprint, which manifests
itself in appearance of specific high-frequency components in the spectra of the
corresponding averaging trajectory.

Secondly, we consider to use the acoustically pumped superlattices for an am-
plification of THz electromagnetic waves, involving the mechanisms similar to the
Bloch gain in electrically biased superlattices. In particular, we predict the tun-
able THz gain due to nonlinear oscillations which are associated with the localised
motion of electrons confined by a propagating potential wave. Traditionally, one
of the key issues which emerges from considering different schemes for achieving
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small signal gain in superlattices, is the control of electric stability. Here, it is
shown that for our case of the fast miniband electrons driven by an acoustic wave,
terahertz gain can occur without the electric instability. Additionally, we find that
the characteristic changes in the averaged velocities are connected to the shape of
gain profiles. Consequently, the analytic findings, which determine the transitions
between different dynamical regimes at the bifurcations, hold up for the behaviour
of amplification of high-frequency electromagnetic waves. The increase of the mini-
band width, results in an enhancement of the effect of phase space restructuring
on the drift velocity and high-frequency gain.

Finally, we analyse the case for a superlattice device utilising acoustic waves
with a very slow propagation speed. Benefiting from a simple solution of the Boltz-
mann equation, here we clarify the role of spatial nonlinearity both in miniband
electron dynamics and in amplification of an electromagnetic wave. We show that
nonlinear Bloch oscillations occur at a single critical value of the wave amplitude,
inducing high negative differential drift velocity. Within this model, we also ex-
plain how the amplification of a high-frequency signal can arise below the threshold
for an excitation of Bloch oscillations.
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Chapter 1

Introduction

The fabrication of the devices which can be utilised in high-performance electronic
applications, constantly regenerates the intense research interest. A number of
efficient devices have been already synthesized by tuning the electronic properties
related to the nature of materials and device engineering. In particular, it is useful
to list the type of materials engaged in the so-called modern day electronic revolu-
tion [1, 2]: semiconductors for active components of a device, metals for contacts
and high band-gap materials for insulation. Therefore elemental semiconductors,
such as silicon (Si) or germanium (Ge) located in column IV of the periodic table
of chemical elements, provide a class of materials functional for transistors. Com-
pound semiconductors including GaAs (group III-V) for example, have attractive
properties such as high speed, and thus they play a valuable role in microwave
detectors [3] or photonic devices [4]. Beyond III-V compounds suitable in injec-
tion layers and light emitting diodes (LED). Although, the semiconductor systems
exhibit brilliant efficiency, especially in integrated circuits, it should be readily
appreciated that their scaling limits are associated with power and thermal chal-
lenges [5, 6]. That is why even today, many high-power devices are based not on
semiconductors but on vacuum technology. Examples include magnetrons as mi-
crowave generators [7], and traveling-wave tubes [8] which are used into electronics
to amplify signals in the microwave range. These devices though are dictated by
technical constraints related to system design or performance. For example, the
size of a magnetron is determined by the operating frequency. This delimits the
surface area available for heat dissipation and the maximal operating power. Given
this emphasis, every material presents inherited limitations and can offer pragmatic
solutions only to a specific set of problems. A common approach to circumvent the
difficulties associated with physical restraints of natural materials, it is the inves-
tigation of new technical schemes or designing novel artificial materials. Beyond
this technological-driven perspective, new materials pose scientific challenges and



Chapter 1. Introduction

the chance to deal with new complicated properties.
In this thesis, we theoretically study the electron transport in semiconductor

superlattices (SLs) which spans a wide range of quantum mechanical and kinetic
phenomena [9–12]. These phenomena are associated with high-frequency electro-
dynamical properties, affecting the carrier dynamics in such a way, which leads to
emission of terahertz (THz) radiation. Therefore, SLs become one of the prime
choices for the development of THz devices involved in generating, amplifying,
mixing and detecting high-frequency electromagnetic radiation [13–17]. L. Esaki
and R. Tsu more than 40 years ago, introduced the man-made superlattice1 em-
ploying periodic heterostructures to mimic solids [9, 10]. To create this type of
artificial structure, two different semiconductor materials of almost equal lattice
constant, but with different energy bands, are periodically layered, resulting in
the modulation of potential energy only in one direction, the one perpendicular to
the planar layers. It was recognised that negative differential conductance (NDC)
under the condition of the realisation of Bloch oscillations should appear in the
current-voltage characteristic of a superlattice structure. It was also pointed out
that the emergence of NDC up to frequencies on the order of the Bloch oscilla-
tion frequency, makes the SL a potential candidate to provide an active medium
in a amplifier or a oscillator operating in the THz regime [9]. However, NDC ef-
fects emerge also in devices such as Gunn oscillators [20–22] practically induced
due to the formation of charge domains triggered by uneven electric field distribu-
tion along the device. In this case, the origin of negative differential conductivity
can be understood as a change in the state of the system, attempting to find a
minimum total energy for the system and thus resulting to the electric instability
[23]. This argument led, Esaki and Tsu to study experimentally a single SL unit
cell2 (a quantum well between barriers), to avoid any domain formation [24]. The
double-barrier single well structure was a remarkable achievement, demonstrat-
ing resonant tunneling accompanied again by negative differential conductance.
The experimental realisation of RTD [24, 25] stimulated the direction of research
towards semiconductor quantum heterostructures, thereby helping to achieve ter-
ahertz RDTs [26, 27], and quantum cascade lasers (QCLs) [28, 29]. It is worth
noting that adjusting the specific sequence of quantum wells and barriers of the
semiconductor heterostructure allows both the electronic and optical properties to
be tailored at will. Interestingly, the structure of QCLs enables them to operate
and emit in the mid-to far-infra-red bands of electromagnetic spectrum. In princi-

1At almost the same time Yu. A. Romanov et al. proposed a model of semiconductor super-
lattice on the basis of a semiconductor crystal with periodically varying chemical composition
[18, 19].

2resonant tunneling via man-made double barrier heterostructures goes under the name of the
resonant tunneling diode (RTD).
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Chapter 1. Introduction

ple, electrons in quantum cascade lasers propagate through a potential staircase of
multiple coupled quantum wells, making feasible the population inversion between
energy sub-bands (quantised levels). The development of the QCL stemmed from
the initial idea of R. F. Kazarinov and R. A. Suris in 1971 [30] proposing to use
the intersubband transitions in a biased superlattice for light amplification, and
it was experimentally realised by J. Faist et al. almost thirty years later [28]. At
present, the design flexibility has expanded the achievable wavelength of QCLs to
3.7-5 µm and the terahertz regime, and enhanced the overall performance in terms
of output power and efficiency [31, 32]. However, despite the continuous efforts to
advance towards high-temperature operation of these devices, the quantum cas-
cade lasers are still limited in cryogenic operation. The increased sensitivity of QC
Laser performance to temperature is associated with thermionic emission out of
the quantum structure into the continuum states and the thermal backfilling of the
lower laser level [31–33].
In a superlattice, the barrier thickness can be so small that carriers can tunnel in
neighbouring wells. As a result, instead of the quantized energy levels, relatively
narrow energy minibands are formed that correspond to extended states which are
called Bloch states [10, 34]. Excluding the possibility of electron to move between
energy bands [35], and assuming that it can travel between scattering events a
distance in k–space larger than the dimensions of the zone, it would be possible for
a dc electric field Edc to induce a motion, where the electron returns periodically to
its initial state. The frequency, ωB = eEdcd/~ (where e < 0 is the electron charge),
of these oscillations which are referred as Bloch oscillations, is proportional to the
applied electric field Edc and lattice period d. Scattering rate, however, for conven-
tional materials is significant larger than ωB and therefore excludes the possibility
of Bloch oscillations. In that case, the picture of electron transport can be described
by Drude model [36]. On the other hand, the restriction to observing Bloch os-
cillations in natural crystals may be undone in SLs, where the large effective SL
period substantially increases the frequency of the Bloch oscillations allowing the
particle to Bloch oscillate before scattering. The experimental observation of Bloch
oscillations has been possible in different occasions by implementing several opti-
cal methods [37]. These optical techniques initially included degenerate four-wave
mixing experiments [38] and later on time-domain terahertz spectroscopy was used
to detect electromagnetic ”Bloch” radiation [13]. One of the important features of
the realisation of Bloch oscillations in SL is that they survive at room temperature
[39]. Hence, the structure of superlattices makes them the ideal solid in which to
explore the use of Bloch oscillations.

An alternative approach to achieve gain in SLs is to use the mechanism which is
related to the so-called Bloch gain. In this case, as was initially pointed out by Kti-
torov et al. in 1972, the electrons oscillating at Bloch frequency ωB in the presence

3
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of dissipation, should provide gain for frequencies ω < ωB [40]. This prediction
was based on semiclassical arguments, raising the possibility of inversionless lasing
in dc biased SL. Subsequently, the discussion over Bloch gain triggered the interest
for designing a device where a superlattice under constant electric bias is connected
to a resonator whose mode frequency is tunable to the desirable frequency range.
The device was named Bloch oscillator and it continues through to the present day
to be considered as the holy grail of the semiconductor community. Although, con-
siderable efforts have been devoted to develop a continuous wave Bloch oscillator
[9], only transient THz emission from Bloch oscillations was obtained so far. The
difficulties of realising the Bloch oscillator have been associated to the formation
of destructive electric domains in the region of negative differential conductivity
[41, 42]. Previously, different theoretical schemes have been proposed to overcome
the electric instability in conditions of NDC [11, 43, 44]. The proposed models
included the demonstration of stable THz gain in superlattices using modulated
bias [15] and also with a tilted magnetic field applied [45]. The use of phononic
waves though, opens new opportunities to enhance the perfomance of superlattice
oscillators [46]. This argument is based on the recent finding that acoustic waves in
SLs can induce THz electron dynamics even when no bias voltage is applied [47, 48].

In general, the interaction between electrons and acoustic phonons plays a sig-
nificant role in the transient transport, optical and kinetic properties in crystals
[49]. The concept of ”phonon” has arisen as a way for interpreting the vibrations
in a crystal lattice [50]. Specifically, defined as a quantum of the lattice vibra-
tional field, by analogy with the photons of the electromagnetic waves, it can be
assigned as the quasi-particle of the wave travelling through the lattice which, if
longitudinally polarised is referred to as acoustic (sound) wave. In the past few
decades, there has been an intensive research activity towards the the develop-
ment of connection between phonon physics and dynamics of periodic materials
and structures. This class of systems, which is often referred to as phononic ma-
terials [51], includes devices such as phononic crystals [52], acoustic diodes [53]
controlling the sound transmission and current developments of acoustic cloaking
[54] employing metamaterials.
One of the interesting aspects of phonon properties, it is that they can be used for
manipulation and control of electrons in nanostructures. On this basis, considering
high-frequency (GHz and THz) phonons, allows extended schemes to electronics.
Therefore, the semiconductor superlattice structure is not only prescribed with dis-
tinct electronic and photonic properties but also the interaction of phonons with
electrons which is associated with a number of interesting and important transport
phenomena in SLs [55–58]. Actually, even at some fundamental level the superlat-
tice displays well-defined phonon properties [1, 59]. The reciprocal space is folded
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1.1. THz radiation and applications

for electrons due to structure of SL and results into a set of novel features (forma-
tion of minibands, localisation, large gaps between minibands). In the same way
some of these characteristics have implications in phonon spectra. Acoustic waves
of low frequency unlike optical phonons, propagate almost unhindered similar to
crystal quartz which exhibits a high quality factor [60]. Consequently, acoustic
phonons should demonstrate pronounced SL effects. Recently, it was discovered
that superlattices enable the processes of amplification and control of coherent
hypersound oscillations [56–58]. In addition, it was shown that the acoustical
excitation of semiconductor heterostructures can lead to high-frequency carrier
transport and thus resulting in emission of electromagnetic waves [48, 61, 62]. The
existing of theoretical basis provides a fertile background for the understanding of
the related high-frequency acoustoelectronic phenomena [47, 63–65]. Nevertheless,
no substantial results have been produced to unveil the underlying mechanisms of
acoustoelectric transport, considering a nonlinear dynamical framework. In this
work, we theoretically investigate semiclassical dynamics of particles in a spatially
periodic potential generated by a propagating plane wave. Therefore, our interest
has focused primarily on the highlighted example of single miniband SL driven by
an acoustic wave in the sub-THz frequency region [58]. To describe the interaction
between electrons and acoustic wave in the strongly coupled superlattice, we em-
ploy the exact path integral solutions of the Boltzmann transport equation [66, 67].
In this case, further analysis of the Hamiltonian dynamics is addressed to afford
a better overall picture of the single electron behaviour. Our study examines as
well different possibilities to tackle the general matter of Bloch gain profile. Thus,
we propose an approach for the generation and amplification of THz radiation in
acoustically driven superlattice similar to the Bloch gain in electrically biased SLs
[40, 68].

THz radiation and applications

The possibility of a semiconductor laser in THz region together with the intriguing
optoelectronic properties of semiconductor superlattices (SSLs), have triggered the
interest for fundamental development and study of semiconductor heterostructure
elements. As was already mentioned, the related gain mechanisms in SL rely ei-
ther on intersubband transitions of semiconductor structure or the second order
processes attributed to inversionless lasing in dc biased SL. The realisation of these
different approaches aiming to fill the so-called ”THz gap” [69, 70] lying roughly
between 300 GHz (0.3 THz) and 30 THz spectral range of electromagnetic radiation
(see figure 1.1). Historically, the term ”THz gap” was coined to refer to terahertz
band, due to severe shortage of devices generating and detecting coherently the
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1.1. THz radiation and applications

Radiowaves Microwaves THz
waves

Infrared Ultraviolet X-Rays Gamma
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Figure 1.1: Spectrum of electromagnetic radiation, highlighting the terahertz spec-
tral range.

radiation at these frequencies. In this section we review shortly the near-term
practical applications of terahertz radiation, enabled by devices bridging the THz
gap. The identified physical mechanisms of interactions between THz waves and
matter then can be extensive involving molecular rotations, lattice vibrations, spin
waves and internal excitations of bound electron-hole pairs [71–75]. It may, there-
fore, come as no surprise that the technology that can detect amplitude and phase
of coherently generated electromagnetic radiation in the THz range is a precious
spectroscopic tool, allowing investigations with very high spatial resolution [69, 74].
A rich variety of non-conducting materials can be penetrated by terahertz waves,
including plastic, ceramics, wood, papers and clothing. However, penetration is
limited in high-water contents or metal objects. These properties lend themselves
to imaging systems alternative to mainstream solid-state analytical tools such as X-
ray diffractions or thermal analysis. THZ waves have a great potential for security
applications [76] and quality control [77] since THz spectroscopy can contribute to
online measurement, remote sampling and three-dimensional imaging [78–80].

Terahertz radiation may be involved in biomedical imaging, offering a non-
ionising alternative to X-rays [81]. Interestingly, the non-thermal effect of THz
radiation on gene expression is negligible [82]. The terahertz technology has also
attracted the interest of radio-astronomers because spectroscopy at THz frequency
holds the key to our ability to remote sense emissions from molecular clouds in
space, planet atmospheres and primaeval galaxies [70, 83].

An in-depth analysis of all the possible applications related to the control of
THz pulses is beyond the scope of this work. Nevertheless, it is clear from our
previous discussion, the importance of fine-tuning the electro-optical properties of
semiconductor superlattices to obtain THz technology. In particular, this research
investigates how SLs driven by acoustic wave can be used for the tunable generation
of high-frequency (sub-terahertz and terahertz) electromagnetic waves.
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1.2. Structure of this work

Structure of this work

The present thesis has the following structure. Chapter 2 revisits the fundamental
properties of semiconductor superlattices and discusses the mathematical formal-
ism which is mainly involved in describing the miniband transport. Therefore,
summarising the electron transport phenomena (i.e. Bloch oscillations, localisa-
tion, cyclotron oscillations) taking place in SL offers an physical insight into inter-
action of THz fields with transport through superlattices and miniband structure.
Furthermore, the establishment of semiclassical Boltzmann approach that relies
on the large band width, provides a powerful mathematical technique which is
employed to study problems related to electron dynamics.

Chapter 3 is devoted to study the semiclassical dynamics of an electron, which
tunnels through spatio-temporal potential of strongly-coupled superlattice driven
by a plane acoustic wave. In particular, by extending the semiclassical formulation
which was developed in the previous chapter, we characterise the charge transport
in SL in the presence of scattering and identify the related dynamical regimes. To
complete the picture in regard to charge oscillations induced by the acoustic wave,
we examine the frequency characteristics of the ballistic electron transport. Chap-
ter 4 following previously discussed concepts of the Bloch gain in dc-ac driven SLs
or ac-driven SLs, develops an approach to study the possibility of amplification of
THz signals for the acoustically pumped SL. Hence, in different limits we analyse
the influence of the acoustoelectric field in Bloch gain. Chapter 5 considers the
electron dynamics in SLs in the presence of a stationary potential wave and the im-
plications on high-frequency gain. Eventually, the conclusions and the suggestions
for future research are enclosed in the final chapter.
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Chapter 2

Fundamental of superlattices:
materials and physics properties

Superlattice structure

Let us take a closer look at superlattice structure. A typical semiconductor super-
lattice is schematically represented in figure 2.1. Following the original idea [10],
this material grown by molecular epitaxy [84], consists of alternating layers of two
semiconductor materials [1, 85]. Alternatively, this modulation can be achieved
by related epitaxial growth techniques [86]. Conventionally, the growth direction
of the SL layers is defined as x–axis whereas y– and z– directions are parallel to
the plane of the layers. This semiconductor device encloses a superlattice region
formed on a base layer that typically compromises a heavily doped GaAs sub-
strate. On the outer surface of the substrate an additional highly doped GaAs
layer is applied to attain the purpose of ohmic emitter contact (labelled in Fig.
2.1). This way, the metallised ohmic contact, would demonstrate the desirable low
conducting resistance. The superlattice region, as was expected, consists of succes-
sive layers with moderate doping level of different type of semiconductor materials.
The structure is sandwiched then between a highly doped emitter and collector re-
gion (labelled in Fig. 2.1). The topology of the device secures that electrons can
be transferred from the contacts region to the lightly doped region of SL to evade
electromigration failures [87]. This possibly can be achieved as well by increasing
the carrier density within the superlattice but the practical implications would
account for the suppression of electron mobility due to ionised dopants. In this
work, we consider a superlattice of infinite length. Therefore, better consistency is
achieved between the theoretical calculations and experimental characterizations
if the device consists of at least ∼ 10 layers [34, 46].

8



2.1. Superlattice structure

y

z

x

F

d

Collector

SL Region

Emitter SL Unit Cell

Figure 2.1: Schematic figure of a typical semiconductor superlattice. Emitter and
Collector regions are shown by green regions. The superlattice unit cell is composed
by a quantum well (red) embedded in barriers (blue). The device is biased by an
electric field, F = (−Edc, 0, 0), perpendicular to the layers of SL.

In the SL system, the layered arrangement of crystals induces discontinuities
in the conduction and valence band, since each semiconductor material in the SL
structure has its own band structure, which leads to spatial variations in the band
structure perpendicular to heterolayer interface. More importantly, due to the
conduction band discontinuity (see Fig. 2.2), the smaller energy gap layers behave
as potential wells between larger energy gap layers. Therefore, the conduction
band edge of an infinitely long ideal SL is modulated in such a way that in the
vertical direction looks like one-dimensional crystal, which is shaped by alternating
variation of a quantum well (A material) and a potential barrier (B material). In
particular, this type of configuration is observable in the so-called type I SLs [see
Fig. 2.2(a)], where the energy band gaps of the host materials are aligned but
at the same time the size of the band gaps is different [88]. Furthermore, the
modulation in the conduction-band remains indifferent to the modulation in the
valence band. On the other hand, in the so-called Type-II SL the modulation of
the valence band affects strongly the modulation of the conduction band [9]. In
this case, the smaller-gap material might lie above that of the larger-gap material
[see Fig. 2.2(b)]. In this thesis, we restrict our interest mainly to the type-I
superlattices, where the lattice constants of the host materials demonstrate a very
close match. As a result, the period d of the artificial superlattice structure is now
significantly larger than a common semiconductor crystal.

9



2.1. Superlattice structure
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Figure 2.2: Sketches for (a) band alignment of type-I superlattice and (b) band
alignment of type-II superlattice. EgA and EgB correspond to the energy gaps of
material A and B respectively.

The enhancement of the lattice period has implications for the newly formed
bands known as minibands which demonstrate a reduced magnitude in compari-
son with the conventional conduction bands. In a similar manner, the developed
structure of Brillouin zone over 2π/d becomes much smaller and therefore the term
minizone is introduced to describe the reciprocal lattice vectors.

The special design of a semiconductor superlattice affects the transport of the
electron. This means that different approaches are applicable with the variation
of the band structure. An important classification then emerges depending on the
width of the barriers separating the quantum wells [34, 89]. If the SL structure
consists of wells separated by relatively thick barriers (narrow minibands) then
the electronic properties should be entailed on the subband structure which cor-
responds to the case of the so-called weakly coupled superlattices. In that case
electron transport is feasible as a consequence of sequential tunnelling from well to
well. In the opposite limit of the strongly coupled SL, the superlattice structure
is formed by many identical quantum wells and thin barriers. Thus, the adjacent
wells couple resulting to the transformation of resonant subbands into minibands
with width ∆. Importantly, in this work we focus on carrier transport that involves
the electronic properties efficiently described by systems of strongly coupled SL. In
these terms, within the miniband transport scheme which is reviewed thoroughly
in the following sections, the electron behaviour is pictured using an extended basis
like the Bloch states.

10



2.2. The concept of energy band

The concept of energy band

The one-dimensional ”mesoscopic” periodicity of crystal lattices is a recognised
feature of superlattice structures, existing in both natural and artificial ones [90].
The mesoscopic scale of an artificial SL structure indicates that the newly formed
lattice constant is larger than the period of constituent materials but smaller than
mean free path of electrons [1]. In order to understand the properties of electron
dynamics in crystalline solids with periodically varying potentials, the Kronig-
Penney model [91] has been addressed which can additionally explain the origin of
energy band structures. Nevertheless, different approaches have been developed to
examine explicitly the characteristics of energy subbands of a SL [88].

In this section, initially, we construct the solution of one-dimensional Schrödinger
equation in a generic periodic potential by employing the Floquet-Bloch treatment
[92, 93]. This analysis would allow us to realise that the formation of energy spec-
trum in a periodic potential does not necessarily depend on the method of linear
combination of atomic orbitals (LCAO1) but it is a mathematical consistency of
Schrödinger equation. Subsequently, we will restrict our attention to the qualita-
tive but more accurate description of the electronic band structures in SLs. For
this aim, a formalism of Kronig-Penney model can be implemented, which explains
the behaviour of electron in these periodic crystalline structures.

The behaviour of a single electron in a crystalline solid that demonstrates a pe-
riodic potential, can be given by the solutions of one-dimensional time-independent
Schrödinger equation

− ~2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) (2.1)

where ~ = 6.626× 10−34 J s denotes the reduced Planck’s constant, m is the mass
of the quantum particle and V (x) = V (x + d) is the periodic potential with d
designating the lattice period. In this system, we have made a crude assumption
that the effective mass is a constant as in SL structures, where the modifications
in the conduction band edge position induce the periodic potential. For the fur-
ther analytical studies of equation (2.1), it is more convenient to rewrite it in the
dimensionless form

d2

dx2
ψ(x) + (ε− U(x))ψ(x) = 0 (2.2)

Here ε = (2m/~2)E and U = (2m/~2)V . The necessity of employing the Bloch
theory [93] emerges since we conceptualise the effect of a periodic potential on

1The periodic potential in a SL does not correspond to a real atomic potential, but a alter-
nating repetition of different energy gap layers, the thickness of which is significantly larger than
the period of the atomic potential [94].
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the motion of electron. Remarkably, the Bloch electrons obey the single electron
Schrödinger equation with a periodic potential, resulting to the so-called Bloch
states that coincide with the eigenfunctions of the operator

L = −d2/dx2 + U(x) (2.3)

Then according to Bloch’s theorem, a complete set of solutions can be obtained in
the form

ψnkx(x) = eikxxunkx(x), (2.4)

where kx denotes the wavenumber of the particle and n a quantum number that
corresponds to an individual band. The basic property of these eigenfunctions is
that they change by a constant phase factor for a transverse displacement equal to
an integer multiple of the lattice period

ψnkx(x+Nd) = eikxNdunkx(x) (2.5)

It is important to note that the function unkx(x) also retains the periodicity of the
potential and the eigenvalues εn designate the energies in different bands.

Analysis of energy band structure

By using the notation, f(x) = ε− U(x), equation (2.2) can be reformulated as

d2ψ(x)

dx2
+ f(x)ψ(x) = 0; f(x+ d) = f(x), (2.6)

which is known as the Hill equation [95]. Let us choose a basis ψ1(x), ψ2(x) of the
solution space of the above Hill-equation, which are uniquely determined by initial
conditions ψ1(0) ψ′1(0)

ψ2(0) ψ′2(0)

 =

1 0

0 1

 . (2.7)

Equation (2.6) has stable solutions (corresponding to the energy bands) if Hill’s
discriminant 2

Λ(ε) = ψ1(d, ε) + ψ′2(d, ε) (2.8)

is lying within the range |Λ| ≤ 2, whereas the band gaps (unstable solutions)
happen when |Λ| > 2. For completeness, it is possible to represent the general
solution of (2.6), according to the Floquet-Bloch theorem, as a superposition of
two Bloch waves

ψ(x) = c1ψ1(x) + c2ψ2(x), (2.9)

2In literature it is also referred as Liapunov function [96].
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where the Bloch waves satisfy the conditions

ψ1(x+ d) = ρψ1(x), ψ2(x+ d) = ρ−1ψ2(x) (2.10)

with ρ being either a pure phase factor, i.e. ρ = eikxd or a random complex
number. There is a direct physical implication of the numerical form, which ρ takes,
satisfying automatically the characteristic equation3 associated with equation (2.6)

ρ2 − Λ(ε)ρ+ 1 = 0. (2.11)

By a simple investigation of trinomial (2.11), we can observe that if Λ2(ε) ≤4 then
its roots ρ1, ρ2, known as Floquet multipliers, will also be complex conjugate with
ρ1 · ρ2 = 1. In that case, |ρ1|, |ρ2|=1 and therefore the solutions of (2.6) become
bounded. On the other hand, if Λ2(ε) >4, at least one of the numbers |ρ1| or
|ρ2| exceeds unity because ρ1 · ρ2 = 1. Thus, the solutions of the Hill equation
demonstrate an instability. Further investigation of the function Λ(ε) is feasible
for |ε| >> 0. For example, considering an ε = −γ2 for reasonably large real values
of γ, equation (2.6) can be reduced to

ψ′′(x)− γ2ψ(x) = 0 (2.12)

We see that this second order differential equation has a solution

ψ(x) = c1ψ1cosh(γx) +
c2

γ
ψ2sinh(γx) (2.13)

Hereafter, the Hill’s discriminant Λ(ε) = ψ1(d) + ψ′2(d) takes the form

Λ = 2cosh(γd), (2.14)

for which, of course, Λ > 2, implying that these type of segments ε ∈ < would
correspond to a forbidden band, or an energy gap. On the contrary, for ε >> 0
(ε = k2

x), the Schrödinger equation in this region will be described by

ψ′′(x) + k2
xψ(x) = 0, (2.15)

which has a solution

ψ(x) = c1ψ1cos(kxx) +
c2

kx
ψ2sin(kxx), (2.16)

and therefore,
Λ(ε) = 2cos(kxd). (2.17)

3for complete derivation of the characteristic equation see appendix A.
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U(x)

x

Figure 2.3: Schematic representation of the SL potential U(x) and the conduction
band with minibands n = 1, 2. The shaded regions indicate the first miniband
(blue region) of width ∆ and the second miniband (green region) of width ∆′.

The quantity Λ(ε) in this case will be certainly |Λ(ε)| ≤ 2, generating physical
acceptable solutions that coincide with energy bands [98, 99]. The previously
described theoretical framework has been used to determine the potential profiles
that optimise the one-dimension energy bands such as in SL systems [99]. This
method involves the minimising of effective mass at the bottom of the band and
at the same time maintaining a gap between the first and second minibands that
can suppress Zener interminiband tunnelling.

Miniband structure in a superlattice

Now let us consider specifically a periodic structure that can be described as a
superlattice consisted by alternating layers of two materials with similar lattice
constants resulting in the band-edge lineup for type-I superlattice [see Fig. 2.2(b)].
For example, such features may be present in a GaAs/AlGaAs structure making
possible a formalism that employs the Kronig-Penney model and involves the ef-
fective mass jumps to determine the electronic band structures [85, 94, 100]. The
material is assumed to represent a translation invariance in y and z directions,
which are perpendicular to the growth direction, x, of the SL. The conduction
band edge that includes the lowest point of the conduction band for each host
material is delineated by

Ec(x) =

{
Ecw if x corresponds to a quantum well,
Ecb if x corresponds to a barrier

(2.18)

We have already discussed in Section 2.1, that depending on their relative bandgaps,
the semiconductor materials form either a quantum well (e.g. GaAs) or a barrier
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region (e.g. AlGaAs). The corresponding effective mass of the electrons is space-
dependent, and therefore is different in the well and barrier layers of SL structure

mc(x) =

{
mcw if x corresponds to a quantum well,
mcb if x corresponds to a barrier

(2.19)

Thus, the envelope function of the superlattice potential, ψ(r), satisfies the
equation [

Ec(x)− Ecw −
~2

2mc(x)
∇2 +

~2k2
⊥

2mc(x)

]
ψ(r) = E(k)ψ(r), (2.20)

where k⊥ = (ky, kz). The electron experiences an effective periodic potential asso-
ciated with the periodic repetition of different gap layers. Therefore, we can define
the effective potential of SL as U(x) = Ec(x)−Ecw which exhibits no dependence
on the directions perpendicular to x–axis. Figure 2.3 demonstrates this periodic
square potential of a superlattice with well thickness a and barrier thickness b
forming a lattice period d = a + b and a potential barrier height U0 = Ecb − Ecw.
We can look for eigenfunctions which are separable in x,y and z directions since
Hamiltonian is the sum of x,y and z contributions. In addition, the electron motion
is free along y and z directions. Hence, the envelope function can be written as

ψ(r) =
1√
S
ei(kyy+kzz)ψkx(x), (2.21)

where S is the sample area. From the solution of Schrödinger equation, taking
into account the Bloch theorem (2.5), the x–dependent envelope function, ψkx(x),
within a single period may be represented as [85, 101]

ψkx(x) = Aeikwx +Be−ikwx, 0 ≤ x ≤ a (2.22)

ψkx(x) = Aekbx +Be−kbx, −b ≤ x ≤ 0 (2.23)

where A,B,C,D are constants, k2
w = 2mcwEx/~2 and k2

b = 2mcb(U0−Ex)/~2 with
Ex the given energy to the particle such that 0 < Ex < V . If we employ the
Bastard conditions [94] denoting the connection rules of the well-barrier interfaces

ψkx(x)|x→0− = ψkx(x)|x→0+

ψkx(x)|x→a− = eikxdψkx(x)|x→−b+
1

mcb

ψ′kx(x)|x→0− =
1

mcw

ψ′kx(x)|x→0+

1

mcb

ψ′kx(x)|x→a− =
eikxd

mcw

ψ′kx(x)|x→b+
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then we end up with a system of linear equations which has a non-trivial solution
of the form

cos(kxd) = cosh(kbb)cos(kwa) +
1

2
(ξ − 1

ξ
)sinh(kbb)sin(kwa), (2.24)

where

ξ =
kbmcw

kwmcb

=

√
(U0 − Ex)mcw

Exmcb

(2.25)

Provided that the barriers between the quantum wells in superlattice become suf-
ficiently thin, the electronic states in the wells are coupled to form minibands.
Therefore, the tuning of the band structure it is possible directly by the optimal
choice of parameters a, b that determine the thickness of the alternating layers of
SL. The allowed energy minibands and the related energy quasi-momentum dis-
persion relations can be obtained numerically by using equation (2.24). It is clear
that if the absolute value of the right-hand side of the same equation is larger than
one, the corresponding electron energy is prohibited. In this case, the energy values
designate the unoccupied regions between the energy minibands known as energy
gaps. From the previous analysis arises the importance of the parameters mw, mb,
for the energy band structure of the SL, which characterise effective mass at wells
and barriers respectively. Moreover, it is straightforward to observe that parameter
ξ is reduced to the form of unscaled Kronig-Penney [91] model for mw = mb.

The energy bands En(px) in general can be expanded in Fourier series as

En(px) = En
0 +

∞∑
l=1

2T nl cos

(
lpxd

~

)
. (2.26)

Here the constant En
0 and the coefficients T nl represent the center of miniband

and overlapping of the wavefunction respectively, at a given n–th band. A more
transparent physical interpretation of coefficients T nl would suggest that they model
the way that tunnelling couples the quantum mechanical states into Bloch waves
[34]. Therefore, the summation over different l–lattice sites, indicates how electron
travels through the effective periodic potential of the superlattice. By employing
the energy levels of quantum wells, which are effectively isolated, we can identify
the locations of energy bands En

0 . In fact, bearing in mind that the energy bands
arise due to coupling of the quantum mechanical states localised in the quantum
wells, the energy spectrum of a particle in a single quantum well appears to be the
limiting case of En

0

En
0 =

n2p2~2

2mwa2
. (2.27)
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2.3. Electron tranpsort in superlattices

Henceforth, increasing the width of the quantum well a would reduce the energy
gap between the first and second energy minibands.

The energy dispersion relation of the first miniband, considering its center as
the zero energy, it is outlined by

E(px) =
∞∑
l=1

2T 1
l cos

(
lpxd

~

)
. (2.28)

Depending on the parameters of superlattice, the short range interaction prevails
and then only the nearest-neighbour terms need to be retained in equation (2.26),
giving rise to the simplest case of tight-binding approach

E(px) =
∆

2

(
1− cos

(
pxd

~

))
. (2.29)

Equation (2.29) has been formulated by assuming that the width of the first mini-
band is ∆ = 4T 1

1 and the location of the energy band En
0 at ∆/2. The energy

dispersion relationship can be redefined considering additionally the kinetic energy
of the electron associated with the free particle motion with mass m∗ in the y, z
directions

E(p) =
∆

2

(
1− cos

(
pxd

~

))
+

p2
y

2m∗
+

p2
z

2m∗
, (2.30)

where p(px, py, pz) is the generalised momentum.
In concluding this section, we should take note that recognising the implications

of the dispersive character of energy minibands, can provide the basis for further
understanding of the literature and subsequent calculations of transport properties
in SL.

Electron tranpsort in superlattices

The physical interpretation of the behaviour of electrons in crystalline potentials
is evoked by recognising the dynamic significance of the translation symmetry of
a periodic potential. By employing the semiclassical model, Bloch showed that a
wave packet consisted of states from a single energy band, peaked around some
crystal momentum, ~k, propagates with group velocity determined by the gradient
of energy dispersion with respect to k [93]. The force excreted on the electron due
to an external field F is equal to the rate of change of quasimomentum ~k. The
Bloch states, which are eigenstates of the field-free Hamiltonian, allow to repre-
sent electrons occupying the lower part of energy band, and thus propagate freely
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2.3. Electron tranpsort in superlattices

in metals through the potential field induced by the ion cores. In fact, these lo-
calised wave packets arise as a consequence of the invariance properties of lattice
periodicity. In addition, the dynamics of an electron in a natural solid are in-
fluenced by impurity scattering introducing strong decoherence of time-periodic
oscillations. These semiclassical arguments comprise the standard approach to de-
scribe transport in solid-electron systems [102]. Remarkably, the same formulation
is applicable on man-made superlattice structures with negligible interminiband
tunnelling processes for which a electron localisation occurs in the higher range of
static electric field amplitudes, being accompanied by Bloch oscillations. In gen-
eral, when fields of finite magnitude are applied to SL is meaningless to employ
a basis consisting of Bloch states, but it is preferable, as we will see later in this
chapter, to consider the semiclassical distribution function f(r,p) instead, to de-
scribe the occupation of Bloch states in different time points. The latter dynamics
description is desirable in the ”real” case, when the oscillations of Bloch state are
damped due to scattering processes. In the absence of scattering, the electron dy-
namics in the miniband of SL follow the the k-space form of Newton’s law for Bloch
waves [34, 103, 104], whereas the particle velocity is equal to the group velocity of
its corresponding wave packet

~
dk

dt
= F (2.31)

v(k) =
1

~
∇kE(k) (2.32)

Here F represents a constant force caused by some arbitrary energy potential.
Given the tight-binding approach and by using the complete energy dispersion
relationship (2.30), we obtain the miniband velocity for different directions

vx(kx) =
∆d

2~
sin(kxd), (2.33)

vy(ky) =
~ky
m∗

, (2.34)

vy(kz) =
~kz
m∗

, (2.35)

where m∗ represents the effective mass of an electron in direction parallel to SL
layers. Differentiating equation (2.32) with respect to t, we can obtain

dv(k)

dt
= ~−1dk

dt

d2E(k)

dk2
. (2.36)

Therefore, if we consider a external force Fi applied along one of the directions of

18



2.3. Electron tranpsort in superlattices

-10

-5

 0

 5

 10

m
* x
 /

m
0

(a)

-1

 0

 1

-1 0 1

v
x
 /

v
0

k
x
 (π/d)

(b)

Figure 2.4: (a) Miniband velocity as a function of wave vector kx. (b) Effective
mass restricted to the first minizone of SL.

SL i = x, y, z, the effective mass taking into account an isotropic energy surface is
defined as

1

m∗i
=

1

~2

d2E(ki)

dk2
i

. (2.37)

Here, essentially we introduced the components of the diagonal effective mass ten-
sor. According to equation (2.37) the reciprocal mass 1/m∗ determines directly
the curvature of E versus k in y, z directions, implying that the carrier is accel-
erated relative to the lattice in a applied magnetic or electric field but with a
constant mass. For GaAs, as an example, the conduction band effective mass be-
comes simply a scalar for parabolic approximation with magnitude 0.067me. This
parameter is important because in this thesis one of the SL structures that we
study is GaAs/AlAs, demonstrating effective masses for the chosen compounds
mw = 0.067me and mb = 0.11me respectively. Considering actually that the un-
perturbed Bloch states have larger possibility to be occupied within the wells, we
can assume the approximation m∗ = mw [34, 105].

On the other hand, the effective mass in the growth direction is given by

1

m∗x
=

1

m0

cos(kxd), (2.38)
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where m0 = 2~2/∆d2 is the effective mass at the bottom of the miniband. As
it can be seen in figure 2.4(a), for a wide range of kx the electron behaves as it
carries mass in the centre of Brillouin zone. More importantly, the effective mass
becomes negative at the upper part of the miniband, causing the suppresion of
particle velocity [see Fig. 2.4(b)].

In this section, we will present the effect of different configurations of exter-
nal fields on electron dynamics, gaining some physical insight in phenomena such
as Bloch oscillations, Landau level spacings related to cyclotron frequencies and
dynamic localisation.

Bloch oscillations

Now let us consider the influence of a static electric field applied along the SL
direction. In this case the Hamiltonian for the electron in the first miniband reads

H = E(px)− eEdcx. (2.39)

In the single-particle picture, the semiclassical equations of motion for velocity vx
and crystal momentum of a wave packet px = ~kx in the electric field, then result
in following set of equations

pxd

~
= ωBt+

p0
xd

~
, (2.40)

vx(t) =
∞∑
l=1

vl sin

(
lpxd

~
+ lωBt

)
. (2.41)

The equation (2.40) states clearly that the crystal momentum varies linearly with
time. In turn, assuming that the particle is initially found at kx = 0, the ap-
plication of a constant electric bias will induce a positive change in kx, and the
Bloch electron, within the reduced-zone approximation discussed in the previous
section, approaches the edge of the Brillouin zone kx = π/d. It would be expected
that an electron traverses the SL minizone to obtain the maximum miniband ve-
locity [vertical line in Fig. 2.4(a) corresponding to kx = π/2d] half way along the
first Brillouin zone. In that case the dEx/dkx becomes maximal, whereas at the
Brillouin zone boundary dEx/dkx = 0, implying that the velocity of the electron
is zero. Here again we underline the physical significance of the fact that Bloch
vectors are equivalent, if they differ by a reciprocal lattice vector. The idea of this
approach is that the particle at kx = π/d undergoes the so-called Bragg reflection
process that results in the reappearance of electron at the opposite edge of mini-
zone kx = −π/d, and hereafter the crystal momentum continues to increase. As a
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result, the electron trajectory in real space exhibits a negative drift with maximum
negative velocity, when the norm of dEx/dk is maximal. From this point onwards,
the electron starts to deaccelarate until its return to initial position kx = 0 in
quasimomentum space, where motion is temporarily suspended. This single Bloch
period TB, which was described above, constitutes a full cycle of motion in real
space known as as Bloch oscillation with frequency

ωB =
eEdcd

~
. (2.42)

In real space these periodic oscillations can be simply obtained by integrating
equation (2.41)

x(t)− x(0) =
∞∑
l=1

xl

[
cos

(
lpxd

~
+ lωBt

)
− cos

(
lp0
xd

~

)]
. (2.43)

Here x(0) is the initial position and xl = 2Tl/eEdc determines the span of os-
cillations in real space. The spatial extension of oscillations can be understood
alternatively as the summation of the contributions of oscillations taking place in
adjacent wells. This physical picture is consistent with the position of wave packet
predicted analytically by solving Schrödinger equation [106] and more recently the
spatially displacement of Bloch-oscillating electrons has been determined directly
in experiments [107, 108] measuring a dipole field caused by the optical excitation
of the wave packet. The dynamical description of Bloch oscillations implies that
they could be observed in natural crystals. Actually, this was the initial predic-
tion of Zener [35] following the work of Bloch [93], suggesting that electron wave
packets do not delocalise but undergo high frequency oscillations. Nevertheless, in
standard crystals the period of these oscillations is much greater than typical relax-
ation time causing the delocalisation of electron trajectories. The countereffect of
SL structure that allows the realisation of Bloch oscillations is the enhanced length
of its lattice period d. In particular, experimental confirmation of Bloch oscilla-
tions was provided by using a transient four-wave mixing signal that demonstrated
a few Bloch cycles before the oscillations were restrained due to scattering events
[12]. Alternatively, it was reported that coherent electromagnetic radiation can
be directly associated with the manifestation of charge carriers performing Bloch
oscillations [13]. SL structure, however, is not the only system that may provide
conditions for coherent oscillations of the Bloch state. For example, an atom in a
optical lattice in the absence of scattering events, can be also effectively tuned to
exhibit multiple cycles of Bloch oscillations [109, 110].
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Stark-cyclotron resonances

In order to investigate the dynamics of single-electron in the lowest miniband under
the action of a static electric field, Edc, perpendicular to the layers of SL and a
constant arbitrary magnetic field B = (Bx, 0, Bz) that lies in x, z plane, where
Bz = Bsinθ and Bx = Bcosθ, it is feasible to tailor the Hamiltonian as follows

H = E(px) +
(p′y)

2

2m∗
+

p2
z

2m∗
− eEdcx. (2.44)

Here the dispersion relationship E(px) for the electron is described by equation
(2.28) and p(px, py, pz) is the generalised momentum. To determine the equations
of motion, H must be expressed solely in terms of coordinates and canonical mo-
menta. Therefore, the canonical momentum is no longer simply given by a linear
momentum (m∗v) but there is additional term associated with vector potential
[111]

p′y = py + eA. (2.45)

Since kinetic energy in the y–direction corresponds to free particle motion, it is
convenient to adopt the Landau gauge A = (0, xBz − zBx, 0) [112, 113]. In this
case the related canonical momentum can be written as

p′y = py + eB(x− z). (2.46)

Now the motion of the single electron can be fairly described by employing equa-
tions of motion that arise from Hamiltonian. In general, the Hamilton’s equations
designating the equations of motion for a particle with generalised coordinates
r(x, y, z) and momenta p(px, py, pz) are given by
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

(
ẋ

ṗx

)
=


∂H

∂px

−∂H
∂x

 ,

(
ẏ

ṗy

)
=


∂H

∂py

−∂H
∂y

 ,

(
ż

ṗz

)
=


∂H

∂pz

−∂H
∂z

 .

(2.47)

We can rewrite the system (2.47) in the more compact form

[
ṙi
ṗi

]
=


∂H(t,p, r)

∂pi

−∂H(t,p, r)

∂pi

 (2.48)

where the index i = x, y, z signifies the degrees of freedom. In particular by
using the Hamiltonian (2.44) and the Hamiltonian equations (2.47), we obtain the
velocity elements in different directions

vx = ẋ
vy = ẏ
vz = ż

 =


∑∞

l=1 vl sin

(
lpxd

~

)
qy
m∗
pz
m∗

 (2.49)

Here vl = −2lTld/~ (l = 2, 3, 4) constitutes the involvement of the remaining cou-
pling between wells in electron transport by tunnelling processes through barriers
of superlattice. In other words, the summation over different Fourier coefficients
determines the velocity vx in the direction of SL, which within the tight-binding
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approximation can be represented as

vx = v0sin
pxd

~
, (2.50)

where v0 = ∆d/2~ is the maximum miniband velocity, which is identical with
n = 1 in equation (2.49). The canonical momenta can be found again by using the
Hamilton equations

ṗx

ṗy
ṗz

 =


eEdc − ωcp′y

eBz

∑∞
l=1 vl sin

(
lpxd

~

)
− ωc⊥pz

ωc⊥ p
′
y

 (2.51)

where ωc = eBz/m and ωc⊥ = eBx/m are the frequencies of cyclotron oscillations in
the corresponding directions. The latter frequency is associated with oscillations in
the plane perpendicular to the SL axis, which are nonlinearly coupled with Bloch
oscillations by the component of magnetic field along the z–axis. It has been
shown that the semiclassical dynamics of miniband electron in a titled magnetic
field corresponds to a harmonic oscillator with natural frequency ωc⊥ driven by
a monochromatic plane wave, resulting in a resonantly enhanced self-induced dc
current [113]. Exhibiting chaotic dynamics is an inherit property of this type of
harmonic oscillator, which is driven by a single frequency plane wave. However,
this behaviour is untypical for the dynamical systems that obey the KAM theorem,
which implies the gradual disappearance of quasiperiodic orbits with increasing the
amplitude of perturbation, and thus giving rise to chaotic motion [112, 114–116].
On the contrary, the ”non-KAM” chaos [112, 113] in the tilted fields configuration
is activated, when the Bloch frequency is commensurate with cyclotron frequency
ωB = nωc⊥, effect known as Stark-cyclotron resonances.
There is currently experimental evidence on how the Bloch oscillations and the
in-plane cyclotron oscillations perform resonant mixing that results in a transient
undirectional current [117]. In a different experimental scheme, it was shown that
the specially extended character of the electronic states plays the same role in
quantum mechanical picture as the delocalised semiclassical electron trajectories
in tilted magnetic field [118]. In that case the coupling between Bloch and cyclotron
oscillations generated a magnetic-field-induced miniband structure.

Dynamic localisation under the influence of multifrequency
fields

We turn now to a short discussion of the noted features [119–123] of delocalisation
of electrons in SL, applying solely an arbitrary alternating electric field in the
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2.3. Electron tranpsort in superlattices

direction of SL

E(t) = Edc +
N∑
ν=1

Eωνcos(ωνt+ φν), (2.52)

where Eων and ων constitute the amplitudes and frequencies respectively of N
harmonics, and φν the initial phases. This electric field can be induced by an
electromagnetic wave propagating through the SL, if the wavelength of the wave
is larger than the length of the superlattice. The equation of motion (2.31) can be
simply integrated to yield the time dependence of crystal momentum

px(t)d

~
= θ + ωBt+

N∑
ν=1

βνsin(ωνt+ φν). (2.53)

Here θ = p̃0 −
∑N

ν=1 βνcos(φν) with p̃0 = p0
xd/~ designating the initial position

of electron within the Brillouin zone and βn = eEωνd/(~ων). Therefore, for the
tight-binding miniband, the time-dependent velocity is described by the following
equation

vx(t) = v0sin

(
px(t)d

~

)
= v0Im

{
ei(θ+ωBt)

N∏
ν=1

eiβνsin(ωνt+φν)

}

= v0Im

{
ei(θ+ωBt)

∑
n1,...,nN

N∏
ν=1

Jnν (βν)e
inν(ωνt+φν)

}

= v0

∑
n1,...,nN

[
N∏
ν=1

Jnν (βν)

]
sin

[
θ + ωBt+

N∑
ν=1

nν(ωνt+ φν)

]
(2.54)

Here summation limits for (n1, ...nN) are ±∞, Jn(β) are the Bessel functions of
the first kind, and we have employed the Jacobi-Anger identity [124]

eiβsinx =
∞∑

n=−∞

Jn(β)einx.

Considering now that the electric field contains only static bias and additionally
biharmonic components N = 2, by using equation (2.54) we obtain

vx(t) = v0

∞∑
n1,n2=−∞

Jn1(β1)Jn2(β2)sin [θ + ωβt+ n1(ω1t+ φ1) + n2(ω2t+ φ2)] .

(2.55)
Given a non-periodic biharmonic field (n1ω1 6= n2ω2) without applying Edc, the
electrons can be localised after infinitely long period of time in SL miniband for the
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2.4. Boltzmann transport equation and its solutions

amplitudes of the harmonic fields satisfying the condition J0(β1)J0(β2) = 0 [120].
If the static field is involved with ωB = n1ω1 +n2ω2, the localisation emerges when
Jn1(β1)Jn2(β2) = 0, becoming pronounced after the averaging over a long-time
period. However, if the linear combination of the biharmonic frequencies do not
match the Bloch frequency, then the localisation happens for arbitrary strengths
of field components.

The localisation of electrons in a single miniband can be also realized with the
assistance of a purely harmonic field E(t) = Eω1cos(ω1t). Therefore it can be easily
derived from equations (2.53), (2.54) that

px(t)d

~
= p̃0 + β1sin(ω1t) (2.56)

vx(t) = v0

∞∑
n1=−∞

Jn1(β1)sin(p̃0 + n1ω1t). (2.57)

Hence, it is apparent that the particle returns periodically to its original state at
the harmonic amplitude obeying the condition J0(β1) = 0 [122]. On the other
hand, a theoretical analysis in the context of quasi-energy eigenstates instead of
considering the time-dependent character of Bloch waves, it can identify the dy-
namic localisation as a result of miniband collapse [125].

Boltzmann transport equation and its solutions

The semiclassical approach considers that the Bloch wave vector becomes time-
dependent under the influence of external fields and, therefore, the quasi-momentum
follows the Newton law for Bloch waves. In the previous sections, we additionally
introduced the dispersion relationship E(p) to describe the dynamics of electron
in SL. To complete the picture of miniband transport and essentially to include
standard concepts arising from bulk transport such us scattering processes or ther-
mal fluctuations, we introduce the semiclassical distribution function f(r,p, t) that
discloses the probability that a state (r,p) is occupied. In particular, f(r,p, t),
also known as phase space occupation number, quantifies the density of particles
within the incremental volume drdp

dN =
2

(2π~)3
f(r,p, t)drdp (2.58)

In the latter expression there is extra factor of two to account the spin degeneracy,
stemming from Pauli principle.
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2.4. Boltzmann transport equation and its solutions

Hence, the dynamical evolution of distribution function, which can be analysed
by adopting the semiclassical theoretical framework, is governed by Boltzmann
transport equation (BTE) [34, 126]

∂f(r,p, t)

∂t
+ v(p)

∂f(r,p, t)

∂r
+ F(r, t)

∂f(r,p, t)

∂p
=

(
∂f(r,p, t)

∂t

)
scatt

, (2.59)

where the right-hand side of the equation includes the collision integral. Once the
Boltzmann equation (2.59) is solved, the density of electrons Ne(r, t), the average
electron velocity v(r, t) and the average miniband energy W (r, t) can be calcu-
lated as the zeroth, the first and the second momenta of the distribution function
respectively

Ne(r, t) =
2

(2π~)3

∫ ∞
−∞

∫ ∞
−∞

dpzdpy

∫ π~/d

−π~/d
dpxf(r,p, t), (2.60)

v(r, t) =
2

(2π~)3Ne

∫ ∞
−∞

∫ ∞
−∞

dpzdpy

∫ π~/d

−π~/d
dpx v(p)f(r,p, t), (2.61)

W (r, t) =
2

(2π~)3Ne

∫ ∞
−∞

∫ ∞
−∞

dpzdpy

∫ π~/d

−π~/d
dpx Ex(p)f(r,p, t). (2.62)

The total current density given the expression of average velocity (2.61) is deter-
mined again by the distribution function

J(r, t) =
2e

(2π~)3

∫ ∞
−∞

∫ ∞
−∞

dpzdpy

∫ π~/d

−π~/d
dpx v(p)f(r,p, t). (2.63)

The distribution function in thermal equilibrium but at the absence of the external
applied fields is described by Fermi-Dirac distribution

f0(p) =
1

e[E(p)−µ]/kBTe + 1
. (2.64)

Here Te is the temperature and µ is the chemical potential. For the case of elec-
tronic transport in single miniband of nondegenerate SL, the Fermi-Dirac energy
distribution becomes the Maxwell-Boltzmann distribution f0(p) = e−[E(p)−µ]/kBTe .
By applying the relation

eycosx = I0(y) + 2
∞∑
n=1

In(y)cosnx (2.65)
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2.4. Boltzmann transport equation and its solutions

we obtain the constant density of the electrons assuming the tight-binding disper-
sion relation (2.30)

Ne =
m∗kBTee

µ/kBTeI0(∆/2kBTe)

dπ~2
, (2.66)

where In(y) is the modified Bessel function of the fist kind. Hereinafter, the distri-
bution function in the nondegenerate limit is described by the following expression
if we substitute equation (2.66) into Maxwell-Boltzmann distribution

f0(p) =
Nedπ~2

m∗kBTeeµ/kBTeI0(∆/2kBTe)
e

∆
2kBTe

(1−cos(pxd/~))
e
−

(p2y+p2z)

2m∗kBTe . (2.67)

Mechanisms of electron scattering

The semiconductor crystal defects and the presence of impurities cause the dis-
ruption of periodicity of lattice, giving rise to localised scattering centres. Similar
effects are exhibited by SLs with moderate doping, where the impurity scattering
affects significantly the scattering processes [127]. Furthermore, the fabrication
techniques for heterostructures are sufficiently mature to reduce the formation of
imperfections or foreign atoms by employing modulation doping, a widespread
technique for high mobility [128]. However, the interface roughness induced by
misfit dislocations of neighbouring semiconductor materials, can evoke scattering
events [1, 129].

It has already been shortly noted that when the electron collisions are highly
important, an additional term is involved in the Boltzmann equation that can be
treated by implementing the simplification of the relaxation-time approximation
that transforms the BTE to linear partial differential equation. Thus, for a single
constant scattering time τ this scattering term is described by(

∂f(p, t)

∂t

)
scatt

=
f0(p, t)− f((p, t)

τ
. (2.68)

The latter equation implies that the distribution function without the presence of
external fields would exponentially converge to the equilibrium distribution func-
tion. On the other hand, the impurity scattering that is associated with the oc-
currence of elastic scattering events does not change the energy of the particle,
and therefore the thermal equilibrium is not restored. Here the inelastic scat-
tering plays a significant role, since in that case both energy and momentum of
electron are allowed to change, by transferring the energy to phonon systems as a
consequence of electron-phonon scattering events. These events are triggered by
thermal vibrations of the lattice causing deviations from the periodicity of the crys-
tal structure. Following the above discussion, the scattering term that describes
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2.4. Boltzmann transport equation and its solutions

the relaxation-time approximation can be redefined as(
∂f(p, t)

∂t

)
scatt

=
f0(p, t)− f((p, t)

τin
+
f(−px, py, pz, t)− f(px, py, pz, t)

2τel
, (2.69)

where τin and τel denote the inelastic and elastic relaxation time respectively. In
this thesis though we will simply adopt a single relaxation time approximation [10]
that it could be treated as a single effective scattering time involving the scattering
events reflecting the collision mechanisms due to impurities and electron-phonon
interactions. In that case the effective scattering time is defined as

τeff =
√
τeτm (2.70)

Here τm is the relaxation time of average velocity that follows the Matthiessen’s
rule

1

τm
=

1

τin
+

1

τel
(2.71)

A more generic treatment for scattering can be considered by describing the total
rate, at which the distribution function is changing due to scattering processes
including impurity centres or phonon scattering that preserve charge continuity(
∂f(p, t)

∂t

)
scatt

=

∫ π~/d

−π~/d
dp′x

∫ ∞
−∞

∫ ∞
−∞

dp′zdp
′
y{Wp,p′ [1− (f(p′x, p

′
z, p
′
z)]f(px, pz, pz)

−Wp′,pf(p′x, p
′
z, p
′
z)[1− (f(px, pz, pz)]},

where Wp,p′ designates the probability of scattering from Bloch state to another
one. It is possible then following this description to address the scattering processes
using Fermi’s golden rule of evaluating the scattering rates [130, 131].

Chamber’s path integral for a general excitation

If we adopt the single relaxation time approximation and a force field F(r, t) derived
from a potential energy function U(r, t), we can assign the distribution function
to a particular energy band to find an explicit solution for Boltzmann equation of
motion

∂f(r,p, t)

∂t
+ v(p)

∂f(r,p, t)

∂r
+ F(r, t)

∂f(r,p, t)

∂p
=
f0(r,p, t)− f((r,p, t)

τ
(2.72)

with initial condition f(r,p, t0) = f0(r,p), assuming that no external forces are
applied for t < t0. The solution of the BTE may be represented by employing the
solutions r∗(t), p∗(t) of semiclassical equations [67]

dr∗(t)

dt
= v(p) (2.73)
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2.4. Boltzmann transport equation and its solutions

dp∗(t)

dt
= F (2.74)

Here the conjugate coordinates r, p have been subjected to the following trans-
formation r → r∗(t) and p → p∗(t). Considering the function y(t) = f(r∗(t),p, t)
and its derivative with respect to time, we get

dy

dt
=
∂f

∂t
+
∂f

∂r

dr∗(t)

dt
+
∂f

∂p

dp∗(t)

dt
. (2.75)

Therefore, the left-hand side of equation (2.75) is equal to the scattering term,
giving rise to an ordinary differential equation

dy(t)

dt
+
y(t)

τ
=
f0(r∗(t),p∗(t))

τ
(2.76)

with initial condition y(t0) = f0(r∗(t0),p∗(t0)). The solution of this equation in
the limit t0 → −∞ , is given by the following expression

y(t) =

∫ t

−∞
e−

t−s
τ f0(r∗(s),p∗(s))

ds

τ
. (2.77)

Now this solution can be implemented to find the stationary time-dependent value
of some physical quantity A = A(r∗(t),p∗(t), t)

A(t) =

∫ ∫
d3rd3p A(r,p, t)

1

τ

∫ t

−∞
ds e−

t−s
τ f0(r∗(s),p∗(s)). (2.78)

Here the solutions of the system r∗(t), p∗(t) along the characteristics in phase space
terminate at t with final conditions r∗(t) = r, p∗(t) = p for the given r and p. On
the other hand, each pair of coordinates (r,p) corresponds to unique initial condi-
tions (r0,p0). Liouville’s theorem though allows to replace the integration variables
and thus integrate on ”initial” coordinates instead of integrating on ”final” coor-
dinates [97]. In addition, if we assume that the ”starting” coordinates are namely
rs = r∗(s) and ps = p∗(s)4 then the physical quantity A and equilibrium distri-
bution function f0 that are involved in integration, transform into Ã(rts,p

t
s) and

f̃0(rs,ps). Importantly the phase volume element according to Liouville’s theorem

d3rd3p = d3rsd
3ps (2.79)

4the involvement of ”starting” coordinates presupposes an intermediate transformation

(r,p)
(r0,p0)−−−−−→ (rs,ps) that has been omitted in this derivation since we do not consider the

transient dynamics t0 = −∞.
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2.4. Boltzmann transport equation and its solutions

Therefore using equation (2.78), we obtain

A(t) =

∫ ∫
d3rd3p f̃0(rs,ps)

1

τ

∫ t

−∞
ds e−

t−s
τ Ã(rts,p

t
s). (2.80)

In this thesis, it should be emphasized that we have assumed the initial state to
be homogeneous, so that the charge density of electrons is constant across the
device with Ne(r, t) = N0. In this instance, equations (2.61), (2.62), that repre-
sent the average electron velocity and average miniband energy, respectively, can
be reformulated to describe their steady-state time-dependent value according to
(2.80)

v(t) =
2

(2π~)3N0τ

∫
d3p f0(ps)

∫ t

−∞
ds e−

t−s
τ v(pts) (2.81)

W (t) =
2

(2π~)3N0τ

∫
d3p f0(ps)

∫ t

−∞
ds e−

t−s
τ E(pts), (2.82)

where the integration limits in both later equations for pz and py are ±∞ whereas
px is integrated over the Brillouin zone. In this subsection we have revisited the
derivation of exact solution of the Boltzmann equation [97] employing the method
of characteristics which has been previously used to obtain the same results [66,
67, 132]. A different approach that has been used to acquire the solution, is a
generalised technique relied on the time-evolution operator [133, 134].

Solving the stationary Boltzmann equation for the energy dispersion relation-
ship (2.29), it can provide the maximum miniband velocity v0 or the maximum
average miniband energy W0 that the electron can obtain

v0 =
2

(2π~)3N0

∆d

2~

∫
d3p f0(p) cos(pxd/~) (2.83)

W0 =
2

(2π~)3N0

∆

2

∫
d3p f0(p) cos(pxd/~) (2.84)

By assuming the limit of the non-degenerate case (2.67), the former equations can
reveal the temperature dependency of kinetic transport

v0 =
∆d

2~
I1(∆/2kBTe)

I0(∆/2kBTe)
(2.85)

W0 =
∆

2

I1(∆/2kBTe)

I0(∆/2kBTe)
, (2.86)
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where I0, I1 are the modified Bessel functions of zeroth and first order respectively,
Te the lattice temperature and kB the Boltzmann constant. The peak current
density then can be simply determined by

jp = N0ev0 (2.87)

This type of temperature dependence of current density has been verified experi-
mentally in superlattices with narrow band widths [135–137]. These measurements
also confirmed that electron dynamics is governed by miniband transport even at
higher temperatures.

Simplified path-integral formulation

It is worth noting that in the case of a static electric or magnetic fields, the sta-
tionary drift velocity can be written in a simplified form introduced by Pippard
[138]

vd =

∫ ∞
0

vx(t)e
− t
τ
dt

τ
. (2.88)

This approach was used by Esaki and Tsu to calculate the drift velocity, taking
into account the scattering time τ that affects the kinetic behaviour of the single
electron in the miniband of SL. The relaxation time approximation [10] relies on the
assumption that after scattering event the divergence from the unperturbed value
of distribution function f0 is δf = 0 due to the perturbation induced by the applied
fields. This essentially means that the electron forgets the semiclassical path that it
followed prior to collision event. The equation can be post-hoc justified as follows.
The probability of a scattering event taking place in time dt is assumed to be dt/τ
where τ is significantly larger than dt. The latter statement can be redefined by
describing the dt as a time interval smaller than the duration of scattering-free
motion. If the number of electrons that remain unscattered at time t is n(t), then
following the previous arguments, the number of electrons scattered in time dt is
described by

dt

τ
n(t) (2.89)

Hereafter, the number of electrons that remain unscattered by the time t + dt
is

n(t+ ∆t) = n(t)

(
1− ∆t

τ

)
(2.90)

The rate of the unscattered electrons can determined then by

dn

dt
= lim

∆t→0

n(t+ ∆t)− n(t)

∆t
= −n(t)

τ
. (2.91)
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Integrating equation (2.91) yields the the number of unscattered electrons at time
t

n(t) = n0e
− t
τ , (2.92)

where n0 = n(t = 0) is the number of unscattered electrons at t=0. Thus, the
probability of an electron to be scattered in time dt is:

p(t)dt =
n(t)

n(0)

dt

τ
(2.93)

Substituting the number of unscattered electrons at time t into equation (2.93) we
acquire

p(t)dt =
1

τ
e−

t
τ dt (2.94)

Here p(t) is actually a probability distribution that can reveal mean relaxation
time ∫ ∞

0

t

τ
e−

t
τ dt = τ. (2.95)

The last relationship indicates that scattering time τ is equivalent to the average
relaxation time < τ >= τ . This outcome is anticipated since according to our
assumption every electron experiences the same scattering time. As we noted
above, the electrons cannot recall their kinetic behaviour before the scattering
events, and thus the velocity of electron is averaged over theoretically infinite time
taking into account the probability of scattering addressed by equation (2.94).
Within this theoretical context, the drift velocity can be defined as

vd =

∫ ∞
0

vx(t)p(t)dt =

∫ ∞
0

vx(t)e
− t
τ
dt

τ
, (2.96)

which is identical with the relationship (2.88) describing the stationary averaged
velocity. Considering that electron propagates in the x–direction of the superlattice
under the influence of a static electric field E = (−Edc, 0, 0), and using equation
(2.88), we obtain the following expression for drift velocity

vd =

∫ ∞
0

∆d

2~
sin

(
eEdcd

~
t

)
e−

t
τ
dt

τ
. (2.97)

The later equation indicates that for the particular case under study, the effect of
the dc electric field on miniband transport is discussed for electrons starting at the
bottom of the miniband kx(0) = 0. An analytical expression of vd can be obtained
if we use the Laplace transform∫ ∞

0

sin(at)e−stdt =
a

s2 + a2
.
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Figure 2.5: (a) Esaki-Tsu curve estimated using equation (2.98). (b) The average
miniband energy dependence Wdc on Bloch frequency ωB.

Then equation (2.97) becomes

vd = v0
ωBτ

1 + ω2
Bτ

2
, (2.98)

where ωB = eEdcd/~ is the frequency of Bloch oscillations and v0 = ∆d/2~ desig-
nates the maximal change of electron velocity within the miniband. In a similar
manner the average miniband energy can be obtained considering the Esaki-Tsu
treatment

W =

∫ ∞
0

E(px(t))e
− t
τ
dt

τ
, (2.99)

and thus,

Wdc = −W0
1

1 + ω2
Bτ

2
, (2.100)

where W0 = ∆/2. The Esaki-Tsu curve corresponding to the analytical formula
of drift velocity (2.98) is depicted in figure 2.5(a). The maximum drift velocity is
obtained when ωB = 1/τ , can be calculated by a simple differentiation of Esaki-Tsu
relation. Thus, v0 corresponds to the critical electric field

Edc = Ecr ≡
~
edτ

. (2.101)

If ωBτ << 1, the drift velocity gets linearized vd ≈ ∆d2/(2~2)eFτ as seen in figure
2.5(a) where the curve exhibits almost linear behaviour for small Bloch frequen-
cies. According to the Drude model [36], that describes the electron transport in
isotropic crystalline solids in the presence of electric field, the averaged velocity
is < vx >= eFτ/m. Both models converge to the same result for weak dc bias,
the region, where the superlattice behaves as an ordinary conductor. Therefore,
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if in the Drude relationship we replace the mass of electron with the value of the
effective mass at the bottom of the band where m0 = 2~2/(∆d2) then the averaged
velocity becomes < vx >= ∆d2/(2~2)eFτ . The electrons in this regime are scat-
tered way before they have the chance to reach the boundary of the Brillouin zone.
On the other hand, increasing the electric field beyond the point where the drift
velocity obtains its maximum value, the electrons are allowed to progress far along
the dispersion curve before they get scattered, and eventually to approach the edge
of Brillouin zone. This results in the suppression of electron transport, which is
reflected in the reduction of drift velocity with the increase of Edc [see Fig. 2.5(a)].
On the contrary, average miniband energy [see Fig. 2.5(b)] continues to increase for
large enough electric field Edc > Ecr (ωBτ > 1). In the region of negative differen-
tial velocity ∂vd/∂Edc <0, many electrons can perform effectively Bloch oscillations
after being Bragg reflected. In the limit of a strong electric field ωBτ >> 1 both vd
and Wdc disappear asymptotically implying that the electrons are homogeneously
distributed within the Brillouin zone. Especially at high enough temperatures,
the electrons obtain additional energy, since the non-degenerate electron gas is
heated. Once the electrons get into the negative differential conductivity region,
the energy attributed to thermal excitation is consumed by the formation of prop-
agating high-field domains [36], making the transition to the population inversion
Wdc > 0 inaccessible. The emergence of NDC triggers the formation of charge and
field domains [41, 139] due to growth of space charge fluctuations that prevent the
unswerving observation of Esaki-Tsu curve. However, seed of negative differential
conductance was observed quite early after Esaki and Tsu predicted that its source
is exactly what leads to Bloch oscillations [140]. In this work Esaki and Chang
considering a weakly coupled SL with extremely narrow potential barriers, they
reported domain formation induced by the appearance of NDC at an electric field
beyond the critical point. The onset of space-charge fluctuations coincide with the
threshold of localisation revealing multiple kinks in the conductance as the domains
are fully developed. This system though behaved as multiple quantum well for a
strong electric field associating the NDC effects with hopping conduction. Subse-
quently, a direct confirmation of negative differential conductance was observed by
Beltram et al. in 1990 [141]. This experiment was an important confirmation of
Stark quantization, indicating that the localisation of wavefunction is concurrent
with the condition for NDC ωBτ > 1. At the same time in France, Sibille et al.
[142] using purely electrical techniques, were able to show that perpendicular NDC
is feasible and an actual demonstration of the localisation of SL electronic states
by Bragg reflection in the presence of electric bias. In the second experimental
verification, transport processes through thin barriers were addressed making the
semiclassical transport model adequately descriptive for miniband conduction. In
recent years [137, 143–145], a series of experiments validated the picture of Esaki-
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Tsu characteristic for the electric field-drift velocity dependence.

The different approaches to description of super-

lattice transport

In general, it is possible to distinguish the description of transport in SLs, in three
complementary approaches, namely: miniband conduction, Wannier-Stark hopping
(WSH), and sequential tunnelling [34, 89]. The ranges of validity of these different
approaches have been addressed qualitatively [146, 147]. Moreover, specific calcu-
lations have been presented [148] to specify the borderlines between regimes of the
different transport approaches by assembling a parameter space defined by energy
scales Γ = ~/τ , eEdcd and ∆. The semiclassical miniband transport model, which
holds the main theoretical framework in this thesis becomes applicable when the
energy miniband width is considerably larger than the rest of energy scales with
∆ >> eEdcd and ∆ >> Γ.

The transport model for Wannier-Stark hopping [149] can be applied to describe
the transitions between the eigenstates of the Hamiltonian of a Bloch particle in
the presence of an additional external field. These so-called Wannier-Stark states
are metastable states with lifetime ascribed by scattering τ = ~/Γ. Therefore, the
scattering processes induce transitions between these states, accompanied by net
current in the direction of the applied electric field. More importantly, the Wannier-
Stark hopping approach is used to contribute supplementary to the interpretation
of NDC region of drift velocity characteristic when spacing eEdcd is significantly
larger than the energy scale Γ (eEdcd >> Γ). However, Wannier-Stark hopping
fails to describe the linear dependence of drift velocity on electric field as Edc → 0.
To overcome this divergence, it was shown that WS hopping can be extended to
lower field values for strongly coupled SLs by assuming that scattering times are
much larger than tunneling times [150, 151].

The sequential tunnelling processes are feasible, when the barrier width of the
superlattice is large enough to transform the structure into a series of decoupled
quantum wells. In that case, a sequential resonant tunnelling of electrons between
neighbouring wells of SL is possible if the relative height of the energy levels on
each well is varied by a static electric field applied in the direction of growth of
the SL. Thus, the transport process takes place from the first subband across the
barrier into the second subband in the neighbouring well and subsequently rapid
scattering of the electrons out the second subband into the first subband in the
same well. These resonances cause strong nonlinearities in the local current-field
relation. To calculate the drift velocity in this scheme, it is crucial to model ac-
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2.6. Fundamentals of charge domain formation in superlattices

curately the scattering processes of the electrons within the wells, involving the
scattering induced broadening of the states. The criteria for the validity of se-
quential tunnelling regime are reversed in comparison with semiclassical miniband
scheme (∆ << eEdcd and ∆ << Γ), implying the residual coupling between the
wells. Interestingly though, both miniband transport and sequential tunneling
model exhibit a drift velocity electric field dependence that fits the behaviour of
Esaki-Tsu curve.

It was shown that the previously discussed approaches can be reproduced in
the suitable limits from a quantum transport model by employing nonequilibrium
Green functions [34, 148].

Fundamentals of charge domain formation in su-

perlattices

In this section, we refer to the instability of the homogeneous electric field and how
it affects the formation of charge domains in an infinite superlattice structure. This
electric instability, which is manifested at NDC state, shares a lot of similarities
with the regions of charge accumulations observed in the Gunn-effect despite the
very different physical processes underlying the NDC itself. The case of instability
development due to oscillatory character of charge transport in the SL narrow
miniband was theoretically realised in [41] and then experimentally confirmed [152,
153].

To develop some understanding of the semiclassical miniband dynamics when
the electron distribution is not spatially homogeneous, we will examine how do-
mains grow and propagate in the SL under external applied voltage V, along the
x-axis defined as being in the growth direction of the SL layers. In particular, con-
sidering that the drift velocity-field relation demonstrates a N-type shape induced
by resonant tunneling at low fields, the electron dynamics can be described by the
Boltzmann transport equation and Gauss’ law, relating the distribution of electric
charge Ne(x) to the resulting electric field at position x, F(x)

∇ · F(x) =
−e
ε0εr

Ne(x), (2.102)

where ε0 = 8.8541× 10−12 F m−1 is the vacuum permittivity and εr is the relative
permittivity of the material of the device. We suppose that the density of electrons
is initially equal to the doping density N0, implying that the equilibrium distribu-
tion function does not depend on the position. Therefore, the initial state of the
system corresponds to a homogeneous field across the SL, whose value depends on
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Figure 2.6: Schematic representation of domain formation in superlattice. Each
column contains three different panels corresponding to vd(F ), Ne(x) and F (x).
Left-hand, centre and right hand columns, represent, respectively, the system in
equilibrium, the behaviour of the system in response to a perturbation of local
equilibrium caused by a small charge accumulation and the following evolution
of that charge accumulation. Yellow dots and lines demonstrate the system in
equilibrium. Green dots and lines show the high field regions. Red dots and line
show the low field regions. I. The voltage applied to the superlattice is sufficient
to access a region of PDV. II. The voltage is selected such that electric field lies
initially in the negative differential region.
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2.6. Fundamentals of charge domain formation in superlattices

the electric potential according to

F(x) = −∇φ(x). (2.103)

The latter equation indicates that for a potential that increases linearly through
the device, the electric field remains constant along the x–direction [see Fig. 2.6
I(g)]. Controlling the voltage applied, V, which coincides with the total change of
potential, we can optimally choose the field to stand at the PDV part of the drift
velocity characteristic. It worth noting now the effect of a small perturbation of
the charge density distribution induced by current injection into the device from
the emitter. In that case, a small charge accumulation is formed [see Fig. 2.6 I(e)]
with its initial location being assumed for simplicity, half way through the SL’s
extension. It is clear from equation (2.102) that the electron accumulation should
introduce a jump in the electric field so that the right side of the device has higher
field in comparison with left side. The value of drift velocity for the low field region
is lower than the one for the high field region [see Fig.2.6 I(b)]. This allows the
electrons to move away from the charge accumulation area faster than they enter
in through the red region. Henceforth, the charge accumulation is shrinking [see
Fig. 2.6 I(f)] as it moves along the SL, since the electrons that form the charge
accumulation retain their mobility with the drift velocity determined by the value
of local field. Let us consider now the effect of the same local perturbation in the
net charge when the voltage applied to the superlattice is high enough to access the
negative differential velocity region of drift velocity curve, as shown in figure 2.6
II(a). In the last-mentioned situation, the small charge accumulation continues to
grow because the electrons approach the zone of charge accumulation faster than
they leave. This picture is justified by the fact that low drift velocity vd exhibits a
higher value in the low field region and a lower vd in the high field region [see Fig.
2.6 II(b)]. Here again, the charge accumulation can become effectively a charge
domain and travel through the SL with its velocity depending on the local field
value. If the difference in velocities of electrons passing into charge domain and
moving out of the accumulation saturates, then the charge accumulation ceases to
increase [see Fig. 2.6 II(c),(f)]. Charge domain exhibits then stability in the sense
that electrons within the accumulation move approximately with the same speed
along the axis of SL.

The simplified description above constitutes a crude explanation of the forma-
tion and the propagation of the electric domains within a dc biased SL. There has
been though, consideration of electric stability in the presence of time-dependent
electric field [34, 154, 155]. In addition, serious research efforts have been taken
to study how a magnetic field can influence the dynamics of the charge domains
in superlattices [113, 156, 157]. Lastly, the case of collective dynamics of elec-
trons moving through periodic potential have been examined [47]. This theoretical
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2.6. Fundamentals of charge domain formation in superlattices

research revealed that an acoustic wave causes the formation of nonlinear charge
domains which relate to the onset of Bloch-type oscillations. Associating the spatio-
temporal profile of charge domains with signatures of single-electron behaviour, as
was reported in acoustically excited SL, it becomes of paramount importance for
this thesis. The reason lies in the fact that we proceed by searching for regimes in
the following chapters, where domains do not form under the influence of acousto-
electric pump field.
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Chapter 3

Band transport in a superlattice
driven by a sound wave

Acoustoelectric effects in crystals

The interaction of high-frequency acoustic waves with electrons is strongly related
with the kinetic effects and optoelectronic properties in crystals. Many techniques
for the generation of coherent phonons in low-dimension semiconductor devices
have relied on the development femtosecond pulsed lasers [158–160]. The standard
method involves the pump pulse directly focused on a thin metallic film while a
time-delayed probe monitors the changes in optical transmission. Then, a phononic
wave induced by pump pulse generates a periodic change in the optical properties
of the sample. Generation of incoherent phonons had been formerly achieved in
the mid-1960s [161] by introducing heat pulses in dielectric materials. This was the
milestone for a series of devices based on broadband phonons in lower frequencies
[162–164]. The potential benefit of sources that operate in monochromatic-mode
is that they would be allowed to reach the sub-THz range, making feasible the
sound-microscopy of higher resolution [165]. Along with the research on opto-
acoustic transduction, investigations have been made for surface acoustic waves
(SAW) [166], and bulk acoustic waves (BAW) [167] in piezoelectric structures [166–
169]. In this case the SAW which can be electrically excited, endorses an electric
field that interacts with drifting carriers in the neighboring semiconductor. On
the other hand, BAW are induced by means of thin-film transducers covering the
excited part of a piezoelectric material. Although the acoustoelectric devices that
engulf SAW and BAW are out of the scope of

41



3.1. Acoustoelectric effects in crystals
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Figure 3.1: Figure adopted from citation [56], showing phonon-assisted hopping of
electron between adjacent wells. The sinusoidal arrows illustrate the emitted or
absorbed longitudinal acoustic (LA) phonons.

this work, their theoretical background is fundamentally connected with phenom-
ena of electronic absorption and amplification of sound in semiconductor structures
[170–173]. It was recently shown that acoustic excitation of a semiconductor het-
erostructure can induce measurable current pulses [61]. In particular, the optically
generated thermoelastic deformation of an Al film which is deposited on bulk GaAs,
creates a longitudinal strain pulse that propagates through the sample. The latter
pulse is associated with a coherent acoustic wavepacket that interacts consistently
with electrons by the deformation potential mechanism. In short, this concept
reflects how the lattice vibration causes strain which induces a band edge shift.
The phonon-generated strain is thus a wave that corresponds to the rate of change
of a crystal’s energy bands. Furthermore, the dynamic response of deformation
potential couples different electronic states by a propagating periodic potential
[49, 174, 175]. Therefore, electrons can be effectively trapped and dragged by the
formulated traveling potential well. More importantly, it was demonstrated that
this phonon drag of electron excited a current pulse in the absence of an electric
field. Similar results were obtained using a semiconductor superlattice instead of
GaAs epilayer sample between the contact layers in the experimental arrangement
[61].

One of the most exciting developments in regard to high-efficiency materials
harnessing acoustic waves is SASER (sound amplification by stimulated emission
of acoustic radiation) device [56, 176]. It is considered to be the acoustic analogue
to LASER. A weakly coupled SL, embedded in an acoustic cavity in the presence
of electric field F , can function to provide coherent amplification of phonons (see
Fig. 3.1). In the reference [56], it was reported the realisation of a such device
based on a biased GaAs/AlAs SL with a period d that operates at sub-THz region
(440 GHz).
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3.1. Acoustoelectric effects in crystals

Figure 3.2: Figure modified from [58], demonstrating the schematic representation
of SL structure in the presence of bias. The straight arrows indicate the pump-
probe reflection geometry. The wavy arrows signify the generated LA phonons in
SL.

The physical mechanism that describes the phonon amplification is based on the
transition to a Wannier-Stark regime, where external field destroys the transla-
tional symmetry of the field-free Hamiltonian and results in the formation of a
periodic sequence of energy levels (green horizontal lines in Fig. 3.1) separated
by D = eFd known as Wannier − Stark ladder [149, 177]. The model of mini-
band electron transport is no longer applicable to Wannier-Stark regime. Hence,
transport occurs by tunnelling between localised states in neighbouring quantum
wells. Specifically, the electron perpendicular transport can be realised by inelas-
tic phonon-assisted tunnelling or alternatively by an elastic process in-cooperating
defect scattering with subsequent phonon or multiple phonons emission [178]. In
the former case, the phonon-induced electron transition from a higher population
to a lower population is indirect in momentum space due to low value of speed of
sound. Thus, a phonon with energy ~ωf < D can be emitted following the require-
ments for energy and momentum conservation. Subsequently, the phonon that
was generated can be involved in other interwell transitions. Fine tuning of the
phonons propagation at a relative angle to the normal of SL, would lead to coherent
sound amplification of THz sound [56]. On the other hand, it was demonstrated
experimentally that sound generation can occur due to intraminiband transport by
involving the radiation of the so-called Cherenkov emission [58]. In this scheme,
a GaAs/AlGaAs SL (see Fig. 3.2) excited by a picosecond optical pump in the
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3.1. Acoustoelectric effects in crystals

presence of electric bias, generates coherent SL phonons at sub-THz frequencies.
This mechanism involves a phonon wave propagating along with electric current,
which can exchange energy through deformation potential. The piezoelectric cou-
pling was weak in the experimental configuration due to lattice symmetry. The
Cherenkov generation requires a component vx of electron velocity to be greater
that velocity of sound vs, if the direction of sound is taken to be x-axis [172].
The population inversion of acoustic phonons is induced then because of electric
momentum displacement. On the contrary, if the kinetic energy of the electrons
is equal or less than the acoustic one, the net amplification of acoustic wave is
attenuated.

It has been shown theoretically in relation to the above, how GHz acoustic
waves can have a direct effect on electron transport in SL [47, 179]. In particular,
it was demonstrated that the single electron dynamics are strongly depended on
the sound wave amplitude. In addition, it was found that there exist different
type of electron oscillations linked with distinct dynamical regimes, exhibiting THz
frequencies far above the GHz frequency of the sound wave.

The results discussed above highlight the importance of phenomena associated
with interaction of carriers with high-frequency phonons. Those effects unfold
new possibilities especially for scrutinising electron dynamics in SL. Although a
certain progress has been achieved in unscrambling the acoustoelectric transport,
the underlying nonlinear dynamics can be still subjected to a thorough search.
In this chapter, we will show how the kinetic behaviour is profoundly connected
with real dynamic instabilities emerging with the modulation of acoustic wave
properties.

Acoustic phonons in semiconductor superlattices

In the present work, we assume that the semiclassical particle transport is induced
in a spatio-temporal potential of strongly coupled SL by a strain pulse similar to the
one generated in the model considering intraminiband population inversion1. Here
again, the acoustoelectric interaction is treated within the deformation potential
framework. The acoustic wave can be represented as the atomic displacement
within a unit cell

u(r, t) =
u0

2
êr[e

i(k r−ωst) − e−i(k r−ωst)]

= u0 êr cos(kr− ωst),
(3.1)

1The existing model is applicable even for the sound generated by a saser device or using an
ultrafast optical excitation of a metal film as it delivered in reference [61].
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3.1. Acoustoelectric effects in crystals

where u0 is the maximum displacement and êr is the unit vector along the prin-
cipal growth axis [1 0 0]. The general form of the strain tensor as differential
displacement of the atom site is described by

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.2)

Here xj(xi) constitute the components of vector r determining where a lattice point
is located. The subscript i has value 1, 2 or 3, and for example xj represents the
Cartesian components of the vector r. The change of the total energy of electron,
induced due to elastic strain is given by [174]

∆E =
∑
ij

ΞijSij, (3.3)

where Ξ is the deformation potential tensor. The summation can be reduced to
a singular component ∆E = Ξd Tr(S), where Ξd is the hydrostatic deformation
potential denoting the pure dilation2 that unit cell undergoes. One of the under-
lining issues is the possible charge polarisation due to stress related effects. The
piezoelectric coupling is outlined by a linear relationship between a second order
tensor and a polarisation vector [180]

δPi =
∑
j

eijεj. (3.4)

Here eij determines the elements of piezoelectric tensor according to Voigt no-
tation. If no shear strain is applied to a GaAs crystal, then there is only one
non-vanishing element e14 which does not contribute to piezoelectricity [181, 182].
Therefore, considering a biaxial strain wave, the principal process of the effective
electron-phonon interaction is the deformation potential without interference of
piezo-electric effects [178, 183]. The potential energy due to the strain can be
linked directly to the differential displacement

V (r, t) = Ξd · ∇u = −u0Ξdêrk sin(kr− ωst). (3.5)

Bearing in mind the one-dimensional character of miniband transport in superlat-
tice and the longitudinal mode of phonon êrk = ks ,we can acquire from equation
(3.5)

V (x, t) = −u0Ξdkssin(ksx− ωst) = −Usin(ksx− ωst), (3.6)

2the crystal dilation takes places in such a way that the internal reference points move uni-
formly without modifying the overall shape of the crystal.
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3.2. Effects of sound on miniband transport

where U = ksu0 Ξd is the wave amplitude and S0 = ksu0 the maximum strain
induced by the lattice vibration. The other two traverse modes are orthogonal to
the wave vector. The latter equations indicate the dependence of S0 on phononic
frequency ωs = vs ks, where vs = 5 × 103 m/s is the sound velocity in the medium.
The linear frequency dispersion reflects a small–k group velocity which is considered
for LA phonons that propagate in x-direction similar to zincblende structures [58,
59, 184].

With reference to S0 which has been measured to be ∼ 10−4 − 10−2 and Ξd ≈
10 eV [61, 174, 185, 186] designating the electron-phonon coupling constant, the
maximum wave amplitude in this work is 50 meV. Nevertheless, it would be within
reason if an enhanced high-field strain was assumed. This approach in order to
be feasible presupposes an ultrafast laser excitation of a different thin metal film
deposited on the substrate side [187, 188].

Effects of sound on miniband transport

To explain the effect of a plane wave that propagates along the SL’s axis in x-
direction in the previous section, we adopted the deformation potential mechanism.
Therefore, the moving potential can be represented as

V (x, t) = −U sin[(ks(x+ x0) + ωst)], (3.7)

where displacement x0 defines the initial phase of the driving wave. The electron
transport is assumed only within the lowest miniband, and interminiband tun-
nelling is neglected. The same approach was also used in the Section 2.3. Then,
within the tight-binding approximation, the kinetic energy of electron is defined as

E(px) = ∆/2 [1− cos(pxd/~)] , (3.8)

where px is the electron quasi-momentum, ∆ is the miniband width, and d is the
period of SL. The semiclassical Hamiltonian H(x, px) = E(px) + V (x, t) yields the
following equations of motion:

vx =
dx

dt
=

∂H

∂px
=

∆d

2~
sin

pxd

~
, (3.9)

dpx
dt

= −∂H
∂x

= ksU cos[(ks(x+ x0)− ωst)]. (3.10)

These equations were integrated numerically using a 4th order Runge-Kutta method
[189] to find the electron trajectories.
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Drift and mean velocity characteristics

In order to describe the dissipative electron dynamics in the presence of a spatial
periodic potential, we use the well-established miniband transport model based
on Boltzmann transport equation [102, 126], which was earlier outlined in Sec-
tion 2.3. A different approach [47] was previously implemented to calculate drift
velocity of electron vd, based on Esaki-Tsu formalism [10]. The latter approach
treats the electric field distribution along the SL being almost uniform, constant
in time. It is worth noting that this formulation generates a drift velocity wave
amplitude dependence that exhibits different behaviour for different initial condi-
tions. Furthermore, this finding reveals additionally a connection between ballistic
transport and conditions for the strong suppression of vd. In order to improve
the previous analysis and to take into account different initial conditions, we use
the time-dependent path integral [133, 138, 190, 191] as a steady solution of the
time-dependent Boltzmann transport equation. Therefore, for a constant relax-
ation time τ and a more general excitation, such as the one described by the model
(3.9), (3.10), the drift velocity is determined by

vd =

∫ T

0

dt

T

∫ t

−∞
e
−(t−t0)

τ vx(t, t0)
dt0
τ
, (3.11)

where t0 is the moment of time, when the electron can be found at position x0;
and T = 2π/ωs is the period of the acoustic plane wave. Equation (3.11) suggests
that drift velocity can be calculated without further resorting to Boltzmann equa-
tion, but at the same time its formal solution requires the explicit description of
nonlinear electron transport ruled by equations (3.9) and (3.10). The steady-state
time-dependent drift velocity then can be fairly presented as the velocity of a single
electron averaged over all initial moments t0 after taking into account a probabil-
ity of electron scattering within the time interval between t − t0 and t − t0 + dt.
To evaluate the average drift velocity, it has to be averaged additionally over a
time period commensurate with the period of sound wave. The problem of drift
velocity calculation can be revisited by proposing a different approach that intro-
duces averaging of electron velocities not over initial time t0, but across the initial
positions x0 or, equivalently, across the initial phases of the acoustic wave. In this
perspective, bearing in mind that Hamiltonian H is periodic in time, the velocity
of electrons in the presence of scattering events v(x, t) can be expanded in Fourier
series [133] as

v(x, t) =
∑
n

vne
inks(x−vst)
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Figure 3.3: Solid curve: Drift velocity versus U calculated using the path-integral
solution (3.11) of the Boltzmann equation. The red dots show the calculation of
the vd obtained with equation (3.12).

with

vn =
1

λ

∫ λ

0

dx0

∫ ∞
0

e
−t′
τ vx(x0, t

′)

×e−inks(x0+vst′)
dt
′

τ
, (3.12)

where λ = 2π/ks represents the wavelength of the propagating wave. By applying
Jacobian J = ∂(tvs, t − t0)/∂(t, t0), the set of variables (x0, t

′) can be substituted
by (t0, t), for which equation (3.12) takes the form

vn =
1

T

∫ T

0

dt

∫ t

−∞
e
−(t−t0)

τ vx(t, t0)e−inωst
dt0
τ
. (3.13)

The zeroth Fourier component (for n = 0) of the velocity in (3.13) is of particular
importance, so that v0 is identical to the drift velocity vd calculated with the time
dependent path integral (3.11). The connection of these calculations suggests that
integration over all initial starting times t0 in (3.11) is equivalent to integration
over all electron initial positions x0 realized in (3.12). In this particular problem,
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Figure 3.4: (a) The drift velocity vd as a function of the acoustic wave amplitude
U ; (b) the dependence of the time–averaged electron velocity vm upon U . The
vertical lines correspond to the critical values of U .

with sound propagating through superlattice, it is possible to involve this equiv-
alence to interpret the effect of electron trajectories with different dynamic prop-
erties on kinetic transport. Furthermore, the latter approach is implemented for
efficient optimization of vd calculation, since the direct averaging over the initial
positions is a easier numerical task. This method can be considered as an effective
alternative for the path-integral solution of Boltzmann equation used for arbitrary
time-dependent electric and static magnetic field applied in SLs [192–194]. In the
simulations of the present chapter produced for v0 > vs, we consider a strongly cou-
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pled SL outlined in 2.1, with a set of realistic parameters: ∆ = 7 meV, d = 12.5
nm, ωs = 4 × 1011 rad/s, vs = 5000 m/s and τ = 250 fs. Assuming that v0 is
determined by (2.85), we get using the latter SL parameters v0 ≈ 6.65 × 104 m/s
(v0 ≈ 13.3 vs). Larger maximum miniband velocities can be obtained by using
SL structures with wider minibands or superlattice periods. The variation of drift
velocity vd with the increase of the acoustic wave amplitude U is demonstrated
in figures 3.3 and 3.4(a). In particular, figure 3.3 shows an excellent agreement
between the path-integral approach based on equation (3.11) and the drift ve-
locity calculated [see Eq. (3.12)] by averaging the electron velocities across the
different initial phases x0 of the driving wave. Although the conduction electron
temperature may affect the electron transport [195], for simplicity we consider
that electrons initial momentum is p0=0 that corresponds to Te → 0. One can
see that vd(U) characteristic demonstrates a strongly non-monotonic dependence
which manifested itself with a dramatic suppression of drift velocity that it would
appear at a characteristic value Ucr1 [see Fig. 3.4(a)]. Subsequently, the curve
exhibits an observable change in slope at Ucr2. The appearance of a prominent
peak for the former value of wave amplitude resembles Esaki-Tsu vd(Edc) curve
[10]. In that case, if the electric field is large enough (Edc > Ecr) electrons can
reach the edge of Brillouin zone before scattering, and the drift velocity decreases
with the increase of electric field. However, it has been found that driving elec-
trons with sub-THz waves can induce a sudden onset of Bloch-type oscillations
when U exceeds a critical threshold, thereby causing negative differential velocity
[47, 196]. The non-monotonic dependence illustrated in figure 3.4(a) as follows can
be associated either with changes in dynamics or scattering events. To find which
mechanism prevails we calculate the mean velocity of electrons vm averaged over
the time:

vm =
1

λ

∫ λ

0

dx0

∫ ∆t

0

vx(t+ t0, t0)
dt

∆t
. (3.14)

Actually, mean velocity can be thought as finite time version of the equation
(3.12) where the effect of scattering is negligible (τ → ∞). In these calculations,
vm was averaged over a period ∆t=2 ns equivalent with a large number of periods
of acoustic wave oscillations. Determining the averaged velocity is considered to
be a significant process to reflect the measured transport characteristics of cold
atoms in optical lattices. Given the dispersive energy-quasimomentum relation
of the optical lattice, we expect that ultracold atoms exhibit similar dynamics to
acoustically driven electrons in superlattice, using a sound wave in high-frequency
ωsτ > 1 for the acoustic excitations.

Figure 3.4(b) illustrates the dependence of vm(U). Here, the curve again demon-
strates a non-monotonic character. Remarkably, it presents its pronounced features
at almost the same values [Ucr1,Ucr2-dashed lines in Fig. 3.4(b)] as the drift velocity-
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wave amplitude characteristic [see Fig. 3.4(a)]. In contrast to the latter, the graph
shown in figure 3.4(b) reveals the emergence of multiple maxima and that the elec-
tron can access a region of negative velocity. On the other hand, if we would had
only a dc electric field applied, the Bloch oscillations would lead to the localisation
of electrons in the absence of scattering and thus to the suppression of mean veloc-
ity [197]. The dynamic localisation occurs since the electron periodically returns
to its initial state after a single Bloch period.

Dynamical regimes and their phase portraits

The description of electron motion within a co-moving frame can follow a trans-
formation from the inertial frame at rest (lab frame) with coordinates (x, t) to
the propagating frame of acoustic wave determined by the coordinates (x′, t). In
order to understand how dynamics of electrons affects vm and vd,we can analyse
the equations of motion (3.9) and (3.10) in the moving reference frame

x′(t) = x(t) + x0 − vst (3.15)

Using this canonical substitution, it is easy to prove that the system is com-
pletely integrable. This could give rise to a new Hamiltonian that appears to be
time-invariant. To deliver this canonical transformation3 we introduce the La-
grangian function L(x, ẋ, t) of the system concerned, with x and ẋ being the gen-
eralised coordinate and generalised velocity respectively. If those two kinematic
parameters are concurrently determined then the transport state of the particle
can be estimated for any given instant. The Lagrangian L under Legendre’s trans-
formation can be expressed

L(x, ẋ, t) = pxẋ−H(x, px, t), (3.16)

whereas the canonically transformed Lagrangian L′ is

L(x′(t), ẋ′) = p′xẋ
′ −H ′(x′, p′x, t). (3.17)

Here H ′ is the Hamiltonian and p′x the generalised momentum, both in the moving
frame. If we engage a generating function approach, the action integral over the
latter Lagrangians can provide the following canonical transformation

dΦ = pxdx+ x′p′x + (H ′ −H)dt (3.18)

3For further guidance consult L.D. Landau and E.M. Lifishitz [198], they provide a good
introduction in canonical transformations.
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Therefore we can obtain

px =
∂Φ

∂x
; x′ =

∂Φ

∂p′x
; H ′ = H +

∂Φ

∂t
(3.19)

From here one can deduce that the generating function is a given function of
type two that depends only on the old coordinate and the new momentum

Φ(x, p′x, t) = p′x(x− vst) (3.20)

Given that Φ is represented by equation (3.20), the relation between the generalised
momentum in the moving frame and px follows from the formula (3.19)

px =
∂Φ

∂x
= p′x (3.21)

obtaining that the canonical momentum is a translational invariant. The electron
in the moving frame is subjected to a time-independent potential, and therefore
the potential energy in equation (3.7) turns into

V (x′) = −Usin(ksx
′) (3.22)

Now the semiclassical Hamiltonian in the moving frame can be generated again by
implementing equation (3.19), noting that the generalised momentum is the same
in both frames

H ′(x′, px) = H(x, px) +
∂Φ(x, px, t)

∂t
= E(px)− vspx + Vs(x

′). (3.23)

Thus, the new Hamiltonian has a constant of motion, since there is no explicit
time dependence. The kinetic energy versus crystal momentum dispersion relation
in the moving reference frame can be described by a modified dispersion curve

E ′(px) = E(px)− vspx (3.24)

New equations of motion should correspond to the Hamiltonian H ′ = E ′(px) +
V (x′). In that case the model has the form

ẋ′ = v0 sin
pxd

~
− vs, (3.25)

ṗx = ksU cos(ksx
′), (3.26)

which, in contrast to equations (3.9) and (3.10), does not explicitly depend on the
time, and thus simplify analysis. Here, v0 = ∆d/(2~) characterises the maximal
possible change of electron velocity within the miniband. For both numerical and
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analytical studies it is more convenient to rewrite equations (3.25) and (3.26) in a
dimensionless form

dx̃

dt̃
=

v0

vs
sin p̃− 1, (3.27)

dp̃

dt̃
=

Ud

~vs
cos x̃, (3.28)

where, x̃ = ksx
′, p̃ = pxd/~, and t̃ = ωst. These normalized quantities have clear

physical interpretations. Namely, p̃ corresponds to the phase of the de Broglie wave
characterising a position of the electron within the first Brillouin zone, whereas x̃
and t̃ are associated with the phase and time component of the total phase of the
acoustic wave, respectively.

Linear stability analysis of the dynamical system

For any conservative system, the determination of the equilibrium points plays
a significant role for the construction of the global phase portrait4. Therefore,
identifying the local behaviour around the equilibria, which comprise stable and
unstable fixed points, can provide a tool to shed light on the phase-space dynamics.
Here, we can extract the nature of phase trajectories near the fixed points in a
model that describes a typical SL driven by an acoustic wave. Let us consider a
simple stability analysis, which involves a 2D dynamical system in the form

˙̃x = f1(x̃, p̃), (3.29)
˙̃p = f2(x̃, p̃). (3.30)

The fixed points (x̃c, p̃c) are held responsible for stationarising phase flow since
f1(x̃c, p̃c) = 0 and f2(x̃c, p̃c) = 0. Let us represent a small perturbation from the
fixed point as {

εx̃ = x̃− x̃c
εp̃ = p̃− p̃c

Expanding f1, f2 around the points x̃c, p̃c, we can obtain the evolution of distur-
bance according to

d

dt

(
εx̃
εp̃

)
= Ĉ

(
εx̃
εp̃

)
+ Õ(ε2x̃, ε

2
p̃, εx̃εp̃) (3.31)

4For more details in phase plane analysis see the well-written textbook of J.M.T. Thompson
and H.B. Stewart [199].
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where Õ(.) denotes the quadratic terms in εx̃ and εp̃ which are negligible since the

terms εx̃,εp̃ are already small. Here Ĉ represents the Jacobian matrix at the fixed
point (x̃c, p̃c)

Ĉ =


∂f1

∂x̃

∂f1

∂p̃

∂f2

∂x̃

∂f2

∂p̃


(x̃c,p̃c)

(3.32)

Henceforth, the dynamical system under discussion demonstrates a countable
set of equilibrium points, which satisfy the following conditions

v0 sin p̃ = vs, (3.33)

cos x̃ = 0. (3.34)

Equations (3.33) and (3.34) evidence that a steady state corresponds to the situa-
tion, when an electron moves with the velocity of the acoustic wave vs being at the
position coinciding with one of extrema of the potential wave V (x, t). This yields
the following coordinates of the fixed points on the phase plane (x̃, p̃):

x̃c =
π

2
+mπ, (3.35)

p̃c = (−1)n sin−1(
vs
v0

) + nπ, (3.36)

where n and m are arbitrary integer numbers. To classify them, we have to calcu-
late the characteristic equation

det[Ĉ − λI] = 0 (3.37)

where Ĉ is the Jacobian matrix and I is the identity matrix of identical dimension.
Using (3.37) we can find the eigenvalues from the characteristic polynomial

λ2 = ±µ (3.38)

where µ = Ud
~vs

√(
v0

vs

)2

− 1. In the present work we mostly focus on the realistic

case v0 > vs, which conforms to the sole existence of saddle or centre points in
accordance with equation (3.38). Thus, the general solutions to (3.31) are the
following linear combinations{

~ε1 = ~c1e
√
µt + ~c2e

−√µt

~ε2 = ~c3e
√
iµt + ~c4e

−i√µt (3.39)
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Denoting ~ci (i = 1..4) as the eigenvectors associated with the eigenvalues. For the
first part of equation (3.39) the flow is locally pure rotation around the fixed point
whereas the second generates incoming and outgoing manifolds connected with the
hyperbolic (saddle) point. The very existence of the fixed points can be interpreted
as effective reduction of sound absorption and eventually transition to a transport
regime where miniband velocity overreaches sound velocity. Other treatments of
sound-electron interaction in crystals that consider the linearised Boltzmann trans-
port equation, present the electron drift excess over vs as a condition for sound
amplification [171, 200].

For the sake of completeness, it is critical to consider as well the implication
of maximum miniband velocity being less than vs and the limiting case where
the sound velocity coincides with v0. If v0/vs=1 or equivalently when the critical
equilibrium has eigenvalue µ = 0, then the equilibria generated by the autonomous
ODEs (3.29), (3.30) collide and form saddle-neutral stable node equilibriums

x̃c =
π

2
+mπ, (3.40)

p̃c = (−1)n
π

2
+ nπ, (3.41)

where n and m are integer numbers. This phenomenon can be associated with the
so-called saddle-neutral stable node bifurcation or also known as fold bifurcation
[201, 202]. Kinetics in this case have been studied for different dynamics scenarios
in SL [203, 204]. In our system it reflects the minimum attenuation of sound or the
efficient trapping of electrons in the moving potential of the sound wave. On the
contrary, v0 < vs causes the enhancement of wave attenuation, where the electron
cannot find itself travelling with the trailing slope. In either of the two latter
cases, the transport mechanism can be directly linked with the acousto-electric
phenomena, where the effective electric field Es = ksU/e, induced by the
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Figure 3.5: Mean velocity vm versus U characteristics. Black curve shows mean
velocity calculated using v0/vs = 1 whereas red curve for v0/vs = 0.5. Black
and red vertical dashed lines show the onset of Bloch oscillations for v0 = vs and
vs = 2v0 respectively. The vertical green lines correspond to the critical values U .
For advice, the horizontal dashed line indicates vm = 0.

sound wave, can assemble electrons in bunches that interact with the propagating
potential [170, 205]. This phenomenological approach is valid only for ksl � 1
where ks is the wave number of the sound and l is electron mean free path. On the
other hand, in the short-wavelength limit, when the particle moves in the direction
of the wave propagation with a velocity less than the wave’s phase velocity, the
wave will give up energy to the particle. In this picture, if the sound wave vector
has the same direction as the velocity of electron and v0 > vs, then there is a net
gain of energy from carriers to sound wave. This description encloses the possibil-
ity of phonon quantum emission following the Cherenkov-like radiation [171, 172].
Therefore, the energy that is absorbed by electrons can be modified under mo-
mentum displacement induced by electron-sound interaction. In order to realise
how the electron transport is influenced by reducing the the maximal miniband
velocity v0, we calculate numerically the averaged velocity vm as a function of U
using equation (3.14). The same approach is used in regard to initial conditions of
electron, considering px(t0) = 0. In our calculation, we considered two values, the
resonant case v0 = vs and vs having twice the magnitude of v0. This subsonic mo-
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tion is apparently slower than speed of sound for the particular substance. Figure
3.5 reveals how vm varies as the amplitude of acoustic wave U increases. It can be
observed that vm(U) for both values of v0 preserve the non-monotonic character
of transport, typical for an electron driven by a static electric field of magnitude
ksU/e [10]. However, in comparison with the maximum value of vm(U) that is
attained for U = Ucr1 in figure 3.4(b), the overall electron transport is significantly
suppressed. Both velocity profiles exhibit multiple peaks and they can obtain neg-
ative values. In figure 3.5 vm(U) for v0 = vs shows a pronounced peak at U = UBO
which is connected with the onset of Bloch oscillations as will be explained in de-
tail in Section 3.3.6. On the other hand, when vs = 2v0 the characteristic of mean
velocity attains a minima at U = UBO, which is again associated with the initiation
of the Bloch oscillations. When actually U = Ucri, it is possible to comprehend the
transition from positive to negative velocity within the framework of analysing the
phase space dynamics and their effects on kinetic properties of electron. Similar
crossover occurs for the non-trivial parameters v0 = 2vs. Note that after this point,
the mean velocity quickly vanishes.
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Ballistic transport in phase space

We now restrict ourselves to the second-order autonomous system (3.27), (3.28)
and represent the possible motions of electron transport by a diagram on the phase
plane known as a phase portrait. As we discussed in the previous section, the fixed
points can be classified according to their stability properties. The points, which
are determined by equations (3.35), (3.36), are periodically spread in the phase
space as illustrated in figure 3.6, where the black circles denote the centres, and
the red crosses indicate positions of the hyperbolic fixed points (saddles).

Now dividing equation (3.28) by equation (3.27) we obtain the equation

dp̃

dx̃
=
Ud

~vs
cos x̃

v0

vs
sin p̃− 1

, (3.42)

which still describes the phase trajectories. This can be integrated to return the
general solution that represents a phase trajectory, starting from the initial condi-
tion (x̃0,p̃0), as a function x̃(p̃)

x̃ = (−1)n sin−1

{
sin x̃0 −

~vs
Ud

[
v0

vs
(cos p̃

−cos p̃0) + p̃− p̃0

]}
+ nπ, (3.43)

where n is an integer number. The characteristic phase portraits of the dynamical
system (3.27), (3.28) are shown in figure 3.6. In fact, they are produced using equa-
tions (3.35), (3.36) and (3.43) for different values of the acoustic wave amplitude:
(a) U < Ucr1, (b) Ucr1 < U < Ucr2, (c) Ucr2 < U < Ucr3. The dynamical system
under study can be equally analysed either on the plane (−∞ < x̃, p̃ <∞), or on
the cylinder (−∞ < x̃ < ∞,−π ≤ p̃ < π) or on the torus (−π ≤ x̃, p̃ < π). The
phase space of the system, for small U < Ucr1 ≈ 3.1 meV [Fig. 3.6(a)], contains
periodic ”islands” of localized trajectories (blue and yellow closed orbits), which
surround the corresponding centres. The fixed centres, as discussed previously,
coincide with the lowest possible energy of periodic potential. Now, there is a
distinction between localised trajectories which rotate clockwise (blue orbits) and
those that rotate anticlockwise (yellow orbits), contingent on the position in the
phase space. To fill the picture, regions of unbounded trajectories, which propagate
either to positive or negative direction along the x̃–axis, interrupt the islands of
the bounded trajectories. The positive or negative drift of these trajectories again
depends on the initial value p̃0. To be more specific, for the unbounded trajectories
involved in figure 3.6(a), the ones (green lines) below the islands of the clockwise
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Figure 3.6: Phase portraits of the dynamical system (3.27), (3.28) for (a) U = 1.5
meV; (b) U = 3.45 meV and (c) U = 4.25 meV. The positions of equilibrium points
are indicated by black solid circles (centres) and red crosses (saddles). The localized
orbits are represented by blue and yellow dots. Smooth solid curves correspond to
the unbounded trajectories, dashed curves mark the meandering trajectories, and
red curves denote the separatrices.

59



3.3. Dynamical regimes and their phase portraits

orbits move in the negative direction of x̃, whereas the trajectories (black lines)
above these islands propagate in the positive direction of x̃. The saddle points (red
crosses) represent the electron at rest on the top of the potential well; hence the
heteroclinic trajectories (red curves) segregate the areas of different trajectories.
This heteroclinic structure comprise the separatrix, formed by manifolds of the
saddle points with the same coordinate p̃. In a following section, we will show that
for p̃ << 1 such dynamics can be undestood in terms of the librations and rotations
of a nonlinear pendulum. The regions of the localised trajectories grow with the
increase of U . On the other hand, the areas of unbounded trajectories diminish
and after the critical value Ucr1, the ones that propagate in positive direction
they disappear completely, making evident a drastic change in the topology of
phase portrait. This dynamic scenario engenders a new type of phase trajectories,
which manifest a meandering behaviour [black dashed curves in Fig. 3.6(b)] that
is delivered by the trajectories propagating around the islands of localised orbits.
Note that these meandering trajectories drift always to the negative direction of x̃
regardless the initial conditions. Increasing U beyond Ucr2 ≈ 3.92 meV eliminates
utterly the unbounded trajectories (the remaining ones which were moving in the
negative direction), but at the same time new meandering trajectories emerge that
exhibit enhanced complexity [black dashed curves in Fig. 3.6(c)]. This new type
of meandering trajectories encompass more islands of localised orbits and they
are extended in p̃-direction. The trajectories [green dashed curves in Fig. 3.6(c)]
which were born when U overreached Ucr1 survive, but they are less elongated in
comparison with the previous ones. It is worth noting that similar appearance of
new meandering trajectories takes place for other critical values of U (Ucr3 ≈ 4.75
meV and Ucr4 ≈ 5.58 meV) as shown in figure 3.4(b). Therefore, these trajectories
envelope a larger number of islands of the localised orbits along p̃ – direction.

Similar meandering trajectories have been also observed in other Hamiltonian
systems where the larger canonical momentum does not necessarily imply larger
velocity, known as the violation of twist condition. In this case, the hyperbolic
points can be joined in different ways either with heteroclinic or homoclinic con-
nections [206]. These type of Hamiltonians have been studied with respect to dif-
ferent applications in plasma physics, fluid dynamics and condensed matter physics
[206–208].
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Figure 3.7: Separatrix structure for (a) U = 2.5 meV; (b) U = 3 meV; (c) U = 3.15
meV. The positions of the centres are indicated by black solid circles and the saddles
– by red crosses.

The restructuring of the phase portraits in general displays structural instabilities
of the system that can induce global bifurcations [209]. A detailed investigation of
the global bifurcations that are involved in our problem can reveal the particular
mechanisms underlying the dynamic instabilities and the related sound-induced
kinetic properties. Hence, we scrutinise the development of separatrices in the
vicinity of critical values U . The separatrix structures which are displayed in figure
3.7 consisted of manifolds of the hyperbolic points with the same coordinate p̃1 =
− sin−1(vs/v0) + π for three values representing the bifurcation transition nearby
Ucr1. Figure 3.6(a) illustrates a separatrix structure composed by heteroclinic
orbits when U < Ucr1, that separates the areas of localised trajectories. The
manifolds of the saddles with coordinate p̃1 approach the saddles with coordinate
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Figure 3.8: Separatrix structure for (a) U = 3.7 meV; (b) U = 3.9 meV; (c)
U = 4 meV. The positions of the centres are indicated by black solid circles and
the saddles – by red crosses.

p̃2 = sin−1(vs/v0) [see Fig. 3.7(b)] as U grows, and at exactly Ucr1 meet them,
therefore inducing a global bifurcation. With a further increase of U the manifolds
undergo a separatrix reconnection, that leaves each heteroclinic orbit with a homo-
clinic and a heteroclinic manifold [see Fig. 3.7(c)]. This separatrix structure joins
the adjoint saddle points having the same coordinate p̃1. Moreover, the island of
localised trajectories rotating clockwise around the centers with the coordinate p̃2,
it is delimited by a homoclinic loop that is formed by the manifolds of each saddle
with the coordinate p̃1. The latter separatrix structure is sufficient condition for
the existence of the meandering trajectories illustrated in figure 3.6(b) by dashed
curves.

We can extend the previous analysis of the restructuring of the phase space
occurring close to other critical values of U . Hence, the topological rearrangement
nearby Ucr2 with the change of U is presented in figure 3.8. When U < Ucr2,
before the global bifurcation per se, the separatrix in figure 3.8(a) is composed
of homoclinic and heteroclinic structures such as the ones illustrated in figure 3.7
(c). For this particular evolution of separatrix though, we will consider the saddles
with coordinate p̃2. Therefore, increase of U towards Ucr2 will force the hetero-
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clinic connections of the separatrix to approach nearer to the saddle points with
p̃3 = − sin−1(vs/v0) − π [see Fig. 3.8(b)]. These points will be incorporated into
heteroclinic parts at Ucr2 which is the value that signifies the second bifurcation.
However, this structure is not robust and with further increase of U, is disengaged
to form a supplementary lap around the island of localised orbits that rotate around
the centres with coordinate p̃4 = sin−1(vs/v0) − 2π [see Fig. 3.8(c)]. In this way
the meandering trajectories that emerge after each bifurcation and demonstrate
complex behaviour can envelope additional regions of localised trajectories in a
similar manner to that shown in figure 3.6 (c) by dashed curves. The structure of
the separatrix is the one that enforces these complex trajectories to follow a specific
path when drifting to the negative x̃-direction. Note that after the second global
bifurcation (U > Ucr2) there are always two types of the meandering trajectories
that encompass areas of the localised orbits. Their difference lies in whether they
round even or odd number of islands of localised trajectories. For example, black
and green dashed curves in figure 3.6(c) have a complex shape encompassing two
and three islands of stability, respectively. Then the additional bifurcations are
triggered when extra saddle points are involved in the heteroclinic parts. In con-
nection with the calculation of vm(U) characteristic [see Fig. 3.4(b)], the critical
values of U related to other local extrema in the curve concur with the new global
bifurcations.

Since the global bifurcations are attributed to the situations, when a manifold
of one saddle touches another saddle, equation (3.43) can be used for finding the
critical values of U analytically. For this aim, we substitute the coordinates of the
saddles involved into (3.43) and get

Ucr =
~vs
d

v0

vs
[cos p̃s1 − cos p̃s2] + p̃s1 − p̃s2

sin x̃s2 − sin x̃s1
,

where (x̃s1, p̃s1) and (x̃s2, p̃s2) are the coordinates of two saddles involved in the
bifurcation. Next, using these coordinates from equations (3.35) and (3.36) we
obtain the following explicit expression5 for all critical Ucrn :

Ucrn =
~vs
d

[√(
v0

vs

)2

− 1

+ sin−1

(
vs
v0

)
+

(
n− 3

2

)
π

]
. (3.44)

According to (3.44) the four first critical values of U are Ucr1=3.1 meV, Ucr2 =
3.92 meV, Ucr3 = 4.75 meV, and Ucr4=5.58 meV. These values are in an excellent

5A more complete formulation of Ucr is included in Appendix B.

63



3.3. Dynamical regimes and their phase portraits

V (x)

E

−h̄ωq
+h̄ωq

U

−U

h̄ωq

∆

0

p=
πh̄

d

p=0

(a)

ve

veV (x) E

−h̄ωq
+h̄ωq

U

−U

h̄ωq
∆

0

p=−πh̄
d

p=0

(b)

Figure 3.9: Diagrams of electron trasitions within the potential of acoustic wave
V (x) (left panel) and within the energy miniband (right panel) in conditions of the
first (a) and second (b) bifurcations.

agreement with critical values found in numerical simulations and shown in figure
3.4(b).

Bifurcations in terms of waves and quanta

The aim of this subsection is to reveal physical meaning of the analytical criterion
(3.44) and gain deeper insight into the physical processes behind the bifurcations
in terms of waves and quanta.

Consider the limit v0/vs � 1 which is well satisfied for typical semiconductor
SLs. Physically, it guarantees that the miniband electron speed v = v0| sin p̃|
exceeds the speed of sound vs almost for all momenta. In this limit the hyperbolic
points (3.36), involved in the derivation of (3.44), are located at ps ≈ 0 and very
close to the boundaries of the first and successive Brillouin zones. In terms of
electron de Broglie wavelength λdB = h/p it corresponds to the Bragg resonances
lλdB = 2d, l being an integer. The criterion of bifurcations (3.44) itself is simplified
to the form

Ucrn =
∆

2
+ ~ωq

(
n− 3

2

)
, (3.45)

where ~ωq might be considered as the energy of an acoustic phonon with the
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wavelength equals twice the period of the superlattice λq = 2d. In what follows,
we will mainly focus on the first two major bifurcations, for which

Ucr1,2 =
∆

2
∓ ~ωq

2
. (3.46)

It is easy to see that the relative contribution of the terms ∆/2 and ~ωq/2 to the
value Ucr in equation (3.46) is controlled by the ratio |ve|/vs, where ve = 2v0/π is
the effective electron speed. Therefore, in the physically interesting limit ve/vs � 1
the critical wave amplitude Ucr asymptotically approaches the half of the miniband
width ∆/2. The limit ve/vs → ∞ itself can be reached either by increasing ∆,
or by slowing down the speed of sound vs → 0. The latter demonstrates that the
appearance of the quantum in criterion (3.46) is directly related to the propagation
effects.

Now we turn to the discussion of the origin of the first and second terms in
equation (3.46). Consider an electron that absorbs or emits a phonon with the
quasi-momentum ~q = ~2π/λq = h/2d. As a result of the radiation act, the
electron momentum becomes pf = pi±~q, where pf (pi) stands for the final (initial)
momentum and upper (lower) sign refers to the process of the phonon absorption
(emission). Next, a variation of the electron kinetic energy in the moving reference
frame is δE ′ = δE − vsδp, where δE = E(pf )−E(pi) and δp = pf − pi. Assuming
the electron is initially at the center of Brillouin zone pi = p0 = 0, it is easy to find
both the variation of the electron kinetic energy δE = ∆ and the variation of its
momentum δp = ∓~ωq/vs. Finally, equating δE ′ to the corresponding variation
of the electron potential energy δV = Vf − Vi, we get the condition of energy
conservation in the moving frame as

δV = −∆± ~ωq. (3.47)

Now consider an electron transition from the top (x̃s = −π/2) of the potential
V (x̃) to its bottom (x̃s = π/2) for which δV = −U − (+U) = −2U . Substituting
this δV in (3.47) we immediately get equation (3.46). Therefore, the values of
the critical amplitudes Ucr1,2 follow from a delicate energy balance in distribution
of the acoustic wave energy (2U) between an excitation of the electron within
the miniband (Ei = 0 → Ef = ∆) and absorption (first bifurcation) or emission
(second bifurcation) of the quantum ~ωq. While the energy of the quantum is
relatively small ~ωq/∆ � 1, it brings a large momentum linked to the inverse
superlattice constant. Thereby this inelastic scattering event is able to kick the
electron from the bottom of the miniband directly to its upper edge, giving rise to
the electron Bragg reflections. The condition of energy conservation in the moving
frame can be rewritten in the alternative form

δV = ~ωq
(
−ve
vs
± 1

)
, (3.48)
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where ve is the effective electron speed. Let us assume that the shifted frequency
of the corresponding quantum transition is close to one harmonic, for example

− ~ω1 = ~(−qve ± ωq). (3.49)

Equation (3.49) has then a profound similarity with the general expression for the
dispersion relation of the Doppler effect

n~ω1 = ~(ω − ku). (3.50)

where n = 0,±1,±2, .., ~k is the momentum related to quantum and u the velocity
of the particle. The latter description is applicable for a charged particle behaving
as oscillator possessing kinetic energy and internal potential energy [210–212]. In
particular, the case n > 0 corresponds to the normal Doppler effect, where the
radiation frequency ω − ku in the oscillator’s reference frame is equivalent with
the frequency of the corresponding quantum transition. If n < 0, we obtain the
anomalous Doppler effect, ~ku = ~ω+~|n|ω1. Finally, the case n = 0 is associated
to the Vavilov-Cerenkov effect [212]. This type of behaviour has been observed in an
oscillator moving in a magnetoactive plasma with superluminal velocity [213, 214].
The same concept is involved to describe negative energy waves in fluid [215] and
plasma media [211]. In our system the first bifurcation is associated with the
case of the anomalous Doppler effect. Therefore, the condition −ω1 = ωq − qve is
analogous to the dispersion relation (3.50) for n < 0. The anomalous character
of the process lies in that electron absorbs (emits) the phonon ~ωq and makes a
transition from the bottom (top) of the potential to its top (bottom) [see figure
3.9 (a)]. Thus, the absorption (emission) of a quantum happens at the expense
of potential energy (kinetic energy). In the second bifurcation which corresponds
to normal Doppler effect, the realisation of electronic transition from the bottom
to the top of the potential [green arrow, left panel Fig. 3.9(b)] is assisted by an
absorption of a phonon. That, however, makes the electron to jump down [green
arrow, right panel Fig. 3.9(b)] within the miniband.

Electron motion in real space and related transport in phase
space

The previous discussion with regard to phase space dynamics and the related topo-
logical rearrangements induced with the variation of U, enable us to identify three
different type of phase orbits that are associated with the properties of kinetic
transport in real space. Figure 3.10 demonstrates representative electron trajecto-
ries in real space and the corresponding trajectories in phase space. The localised
trajectories which can rotate either clockwise (trajectory 1 in the left panel) or
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counterclockwise (trajectory 2 in the left panel) around the centres are depicted
in figure 3.10(a) correspondingly to different initial conditions. It might seem that
the direction of rotation has an effect on the way that electron propagates in real
space, but both of the trajectories exhibit a positive drift with speed vs. The elec-
tron apart from the drift, experiences periodic oscillations for the motion to and
fro across the potential as shown in the right panel of figure 3.10(a). The latter de-
scription corresponds to propagation of the periodic potential dragging the electron
with vs velocity through the superlattice [47, 196]. Since the electron is localised
in x–space, we can consider a single well moving in the lattice. The unbounded
trajectories, which are portrayed in the left panel of figure 3.10(b), can coexist with
localised phase orbits for a relatively small U (U < Ucr2). Here again the direction
of the unbounded trajectories along x̃-axis depends on the initial conditions. To
highlight this symmetry, in the left panel of figure 3.10(b) are demonstrated the
blue trajectories (curves 1) that move towards the positive direction of x̃ whereas
the yellow trajectories (curves 2) designate the motion in the negative direction
along x̃. As one can notice, p̃ in this dynamical regime barely oscillates around a
definite mean value. In this case following from equation (3.9), the time-averaged
velocity of the electron can be determined by the product αv0, where α is a con-
stant representing the averaged value of sin p̃, being either positive or negative.
The right panel of figure 3.10(b) displays the corresponding electron trajectories to
phase space dynamics which are not trapped by acoustic wave, and can travel in
positive or negative directions in real space, depending on the initial value of p̃. On
the other hand, the Bloch-like (frequency-modulated) oscillations emerge with the
increase of the wave amplitude. This mean that with variation of U , the amplitude
of p̃ - oscillations becomes larger and eventually cannot be restricted in the first
Brillouin zone. The aforesaid oscillations are resonantly interacting with phonons
having the wave-length twice as much as the superlattice period. This Bragg res-
onance coincides with the global bifurcation that is associated with the rise of
meandering trajectories which are depicted in the left panel of figure 3.10(c) for
comparison. We have already mentioned in the previous section that a meandering
trajectory dependent on the initial state p̃0 which round along p̃–direction either
odd (yellow curve 2) or even (blue curve 1) number of islands of the localised orbits.
Despite having different amplitude of p̃ - oscillations, the meandering trajectories
propagate en route to the negative direction of x̃. The related electron trajecto-
ries shown in the right panel of figure 3.10(c), exhibit high-frequency fluctuations
(Bloch-like oscillations) driven in the negative

67
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Figure 3.10: Three distinct types of the phase trajectories (left panels) and the
corresponding electron trajectories in the real space (right panels) for (a) U = 1.5
meV; (b) U = 2.5 meV; (c) U = 4.2 meV.
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direction. This negative drift reflects effect of the resonant scattering of electrons
on phonons, which is translated into the changes of the momentum of electrons
and their direction of motion on the opposite one. The profile of vm(U) and vd(U)
characteristics in figure 3.4 can interpreted on the basis of different phase trajec-
tories and how they determine the behaviour of ballistic transport. We have seen
in Section 3.2.1 that vm can be explained as the time-averaged electron velocity
additionally averaged over initial positions x0. This approach is efficient at any
temperature, but for simplicity we assume Te → 0, which is reflected in zero initial
momentum p̃0 for every trajectory under consideration. To see the implications
of the considering temperature close to zero, one should exclude from the calcu-
lation of vm the contribution of counterclockwise trajectories (yellow curve 2) and
unbounded trajectories (blue curve 1) in figures 3.10(a) and 3.10(c) respectively.
For small U < Ucr1 then only localised trajectories [curve 1 Fig. 3.10(b)] and un-
bounded trajectories [curve 2 Fig. 3.10(b)] contribute to the estimation of value
vm. Therefore, the unbounded trajectories exhibiting negative drift compete with
the localised trajectories, for which the electrons are trapped by the acoustic wave
and driven towards to the positive direction of x. Since for the system under study
v0 � vs, the positions of saddles, according to (3.36), are very close to p̃ = 0. With
this, the area of the unbounded trajectories with zero momenta is significant less
than the one of the bounded trajectories that rotate clockwise around centres. This
leads to a positive value of vm. As U grows though, the regions of the islands of
the localised trajectories increases, whereas the area of the unbounded trajectories
shrinks. In other words the increase of U causes the enhancement of effective local-
isation of electron within the potential well that initially results in the rapid growth
of vm and subsequently to its saturation for a range of the U up to Ucr1. Increasing
U beyond the first global bifurcation gives birth to the meandering trajectories
[black dashed curves in Fig. 3.6(b)] that move apace in the negative direction of x̃,
assisting the backward motion of electrons. Hence, the increase of U starts to affect
vm and further growth would result in rapid suppression of mean velocity as shown
in figure 3.4(b). The homoclinic loop [see Fig. 3.7(c)] that bounds the localised
trajectories can be expanded after the second bifurcation with the increase of U ,
delimiting the region for propagation of meandering trajectories. These topological
rearrangement instantly increases the vm. The additional minima and maxima in
figure 3.4(b) are produced with further global bifurcations that they replicate the
previously described dynamic scenario. Similarly, the dependence of vd(U) can be
associated with the development of the global bifurcations and the corresponding
contribution of phase trajectories to electron transport. On the other hand, as
equations (3.11) and (3.12) suggest the scattering events weaken the influence of
trajectories that contribute to the drift velocity and hence suppress the miniband
velocity. This is observed in figure 3.4(a) where only two kinks survive that corre-
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spond to global bifurcations. The co-existence of these effects are possible due to
the austere condition of supersonic motion of the system (ve > vs). In the opposite
case of the subsonic motion (ve < vs), only the normal Doppler effect is possible.
As we have seen, the initial conditions have an effect on constant α and thus exert
influence on mean velocity. Figure 3.10(b) compares different ways that initial
conditions may affect the real trajectories.

Interpretation of electron trajectories using kinetic and po-
tential profiles

There are evidently two distinct issues raised in Sections 3.3.2 and 3.3.4 in relation
to the behaviour of the meandering trajectories. First, these complex trajectories
always drift in the negative direction of x̃. Second, two different types of the phase
trajectories coexist for U > Ucr2, which demonstrate meandering behaviour across
the phase plane. Their difference lies in the number (odd or even) of the islands
of the localised orbits, around which they propagate in p̃–direction. In order to
understand better these issues, let us now consider two meandering trajectories,
which are triggered at (x̃1, p̃1) = (π/2,−π) [green dashed curve in Fig. 3.11(a)] and
(x̃2, p̃2) = (π/2,−π/1.3) [black dashed curve in Fig. 3.11(a)], when U = 4.25 meV.
The latter trajectory can encompass three islands of the localised trajectories be-
fore its orbit is reversed along p̃–direction. On the other hand, the former complex
trajectory meanders just along two. The intersections of the vertical dash-dotted
line with the phase trajectories indicate the initial positions in figure 3.11(a). To
explain the characteristics of the meandering trajectories, we can employ a de-
scription in terms of energy balance, between potential energy and kinetic energy
in the moving frame. The variation of the electron kinetic energy in the moving
frame is δE ′ = δE − vs~δp̃/d, where δE = E(p̃f ) − E(p̃i), and δp̃ = p̃f − p̃i.
In general, the δE ′ corresponds to the variation of the electron potential energy
δV = V (x̃f )− V (x̃i). This satisfies the condition of energy conservation

δV = −δE ′. (3.51)

Note that pi (pf ) stands for the initial (final) momentum whereas xf (xi) repre-
sents the initial (final) position of the electron. Here, we modify the dispersion
relationship E ′(p̃) [see Eq.(3.24)] to include a change in the initial conditions of
the electron so that

Ẽ(p̃, p̃i, x̃i) = δE ′ − V (x̃i) = −V (x̃), (3.52)

where Ẽ can only take values between ±U , controlled by the variation of V (x̃).
Thus, we examine the variation of Ẽ(p̃) and V (x̃), illustrated respectively in figures
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Figure 3.11: (a) Green dashed curve: Meandering trajectory calculated for
(x̃1, p̃1) = (π/2,−π), Black dashed curve: Meandering trajectory calculated for
(x̃2, p̃2) = (π/2,−π/1.3). Vertical dashed line is discussed in the text. (b) Acous-
tic wave potential V (x̃) with black [black curve] and green [green curve] numbers
labelling the sequence of electron position within the SL according to orbits in
panel (a). Arrow is discussed in the text. (c) Effective kinetic energy Ẽ(p̃, p̃i, x̃i)
[Eq. (3.52)], where horizontal blue lines denote ±U . The green (black) dispersion
curve corresponds to the phase trajectory of the same colour in (a) panel. The left
and right open green (black) circles mark where Ẽ(p̃) = U and −U respectively.
The wave amplitude is considered to be U=4.25 meV.

3.11(b) and 3.11(c), corresponding to the trajectories in figure 3.11(a). The num-
bers in figure 3.11 designate a sequence of inflection points on the meandering
trajectories, which occur to be at close proximity to the saddle points. In addition,
they represent the turning points in x̃–direction as the electron Bloch-oscillates
within Well I and II [see Fig. 3.11(b)]. The initial acoustic force ksUcosx̃i, for
both sets of the initial conditions, is negligible because the electron is found at the
bottom of the Well I [arrow in Fig. 3.11(b)]. It is important to understand that
in this case the electron will not be just dragged by the acoustic wave. Instead,
it is momentarily forced in the negative direction in x̃–space since according to
(3.52) Ẽ(p̃i) > 0. As the electron moves up the left-hand side of Well I, it expe-
riences a positive force where the gradient of V (x̃) > 0, thus reversing vx. This
implies that the electron is forced in the positive direction in momentum space,
which results in a reduction of the velocity ṽ = dE ′(p̃)/dp̃ = vx − vs. The particle
has zero velocity (ṽ = 0, labelled 1 in figure 3.11 (b)), within the potential, if its
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momentum attains a value of p̃ = p̃s1 which is the p̃–coordinate of the hyperbolic
point (x̃s1, p̃s1) = (−π/2, sin−1(vs/v0)). In this case, the electron is de-accelerated
up to the centre of the Brillouin zone where the gradient of the Ẽ(p̃) becomes zero.
Now, the electron experiences a downward displacement at the left-hand side of
Well I due to the positive force, and thus the value of Ẽ(p̃) decreases. Here the
particle is accelerated in momentum space (ṽ > 0) until p̃ = π/2 (ṽ = ṽmax). At
this point, the high gradient of V (x̃) causes p̃ to quickly increase almost up to the
edge of the first Brillouin zone. In this case, the corresponding position within the
potential V (x̃) is labelled 2 in figure 3.11(b). Moreover, the momentum coordinate
of this inflection point in phase space coincides with the coordinate of the saddle
point (x̃s2, p̃s2) = (π/2, π − sin−1(vs/v0)). Then, the electron velocity vx is again
reversed with ṽ = 0. According to equation (3.51), the variation of the electron
potential energy, δV1, between the inflection points (labelled 1, 2 in Fig. 3.11(b))
should be equated to the variation of the electron kinetic energy in the moving
frame δE ′1 = E ′(p̃s2) − E ′(p̃s1). Therefore, the condition of energy conservation
takes the form

δV1 = −~vs
d

[√(
v0

vs

)2

− 1 + sin−1

(
vs
v0

)
− π

2

]
. (3.53)

Considering the limit v0 >> vs and provided that the Bragg resonance λdB = 2d,
where λdB = h/p, the condition (3.53) can be further simplified to the form

δV1 = −∆ + ~ωq. (3.54)

This description suggests that the reversing of ṽ is associated with the jump of
electrons within the miniband. Thereby this electronic transition is assisted by the
absorption of the quantum ~ωq. As a result of the radiation act, the electron is
prevented to move up the right hand side of the Well I. Instead, after crossing
the boundary of the first Brillouin zone, the electron moves up again the left-
hand side Well I in figure (3.11)(b). We see in figures (3.11)(b) and (c) that as p̃
increases due to a large positive force, the value of E ′(p̃) decreases and therefore
V (x̃) increases. Note, however, that a profound difference emerges between the
meandering trajectories depicted in figure 3.11(a), after they reach the border of
the first Brillouin zone [labelled 2 in Fig. 3.11(b)]. On the one hand, the electron
reaches the top of the Well I if it follows the trajectory encompassing just one
island of stability. In this case, V (x̃) = −U and Ẽ(p̃) obtains its lowest possible
value of −U [lower horizontal line in Fig. 3.11(c)] and therefore p̃ ceases to increase.
On the other hand, considering the meandering trajectory which is more elongated
in p̃–direction, the electron continues to experience a large positive force, which
increases p̃ throughout the second Brillouin zone. In addition, close to the boundary
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of the second Brillouin zone exists an inflection point, which is characterised by the
coordinate p̃s3 = 2π + sin−1(vs/v0) so that induces the reverse of ṽ. Hereafter, the
electron remains confined within the potential and moves down again the left-hand
side of Well I. It is easy to see that the variation of the electron potential energy
between inflection points [(labelled 2, 3 black colour in Fig 3.11(b)] is described by
equation

δV2 =
~vs
d

[√(
v0

vs

)2

− 1 + sin−1

(
vs
v0

)
+
π

2

]
. (3.55)

In the physical limit v0 >> vs and if λdB = 2d, the expression (3.55) is reduced to

δV2 = ∆ + ~ωq. (3.56)

Here the transition between the inflection points, within the potential, is assisted by
the emission of ~ωq, which makes the electron to jump down within the miniband.
The emission of this quantum brings a large momentum, so that the electron
remains confined within the potential and moves down the left-hand side of Well I.
Thereafter, the velocity in moving frame will be again reversed at a new inflection
point due to absorption of an acoustic phonon. The variation of the potential
energy between points 3, 4 is δV = δV1 where δV = E ′(p̃s4) − E ′(ps3) and p̃s4 =
3π − sin−1(vs/v0). This excitation of the electron within the miniband is the
final act before it can reach the crest of the potential. On the top of the well, the
electron is shoved to make a jump to the left due to the high negative velocity. The
magnitude of the velocity ṽ at the crest of the potential wave depends on the initial
conditions (x̃i,p̃i). Thus, when (x̃i,p̃i)=(x̃1,p̃1) we find that the electron obtains
velocity ṽ1 ≈ −4.73×104 m s−1 whereas when (x̃i,p̃i)=(x̃2,p̃2) then ṽ2 ≈ −5.71×104

m s−1. The jump from the top of the potential transfers the electron to different
positions marked by numbers 3 (green colour, ṽ = v1) and 5 (black colour, ṽ = v2)
in potential well II [Fig. 3.11(b)]. At these positions, the acoustic force which is
negative now, will generate a rapid decrease of p̃ inducing a new cycle of Bloch-
type oscillation. This cycle involves the successive transitions between the inflection
points [3 → 4 (−δV1)] and [5 → 6 (−δV1), 6 → 7(−δV2), 7 → 8 (−δV1)] which are
related to the meandering trajectories [green dashed curve in Fig. 3.11(a)] and
(x̃2, p̃2) = (π/2,−π/1.3) [black dashed curve in Fig. 3.11(a)] respectively. After
these transitions, the force exerted on the electron continues to be negative due
to the negative gradient of V (x̃) [right-hand side of Well II in Fig. 3.11(b))].
Thus, p̃ rapidly decreases, until E ′(p̃) reaches its maximum value [upper horizontal
line in Fig. 3.11(c)] and V (x̃) obtains its minimum value of −U . This allows the
electron to perform a transition from the right- to the left-hand side of the Well
II. Here, a positive force causes p̃ to increase, and thus an excitation of Bloch
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oscillation. Next, the electron is allowed to jump again backwards to a adjacent
well by repeating the mechanism described above.

This analysis implies that both effects (normal Doppler and anomalous Doppler)
analysed in Section 3.3.3 are possible for the meandering trajectory that encom-
passes two islands of the localised orbits [black orbit, Fig. 3.11(a)] . On the other
hand, only the anomalous Doppler effect is feasible for the meandering trajectory
(green orbit) depicted in figure 3.11(a). In either case, by pumping energy to the
system (i.e. increasing the amplitude U of the acoustic wave), the electron in the
moving frame is transformed by the anomalous Doppler effect to a higher excita-
tion state, having higher kinetic energy. The enhanced kinetic energy allows the
particle to counter-propagate with respect to the predominant direction of sound
propagation. Therefore, for considerably large values of the wave amplitude U , the
mean velocity [see Fig. 3.4(b)] is reversed due to area widening of the meandering
trajectories on the phase plane. This effect can be explained as counter-dragging
that results from acoustic phonon emission. Further increase of U above Ucr2
is accompanied by a development of the system instabilities, giving rise to more
complex trajectories. As a result, the area of the meandering trajectories which
can encompass odd number of localised trajectories narrows. This explains the
reduction of the absolute value of the mean velocity.
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Electron trajectories in the subsonic limit

Figure 3.12: Phase trajectories of the dynamical system (3.27), (3.28) for v0 = vs
and different values of wave amplitude U=: 0.8 ∆ (a) and 2 ∆ (b). The positions
of equilibrium points are indicated by blue empty circles. Smooth solid curves
correspond to the unbounded trajectories, dashed curves mark the meandering
trajectories, and red curves denote the separatrices.

As mentioned in Section 3.3.1, for the case v0 ≤ vs the dependence vm(U) (Fig.
3.5) demonstrates prominent features in a similar manner as figure 3.4 (b). The
reduction of maximum miniband velocity to the limit of vs
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Figure 3.13: Separatrix structure for v0 = vs and different values of acoustic wave
amplitude U=: 1.4 ∆ < Ucr1 (a), ∆π/2 = Ucr1 (b) and 1.7 ∆ > Ucr1 (c). The
positions of equilibrium points are depicted by blue empty circles.

induces the collision of fixed points and the formation of new equilibrium points
(saddle-nodes represented by the empty circles) that are spread in figure 3.12.
These topological changes in the phase portrait can be associated with characteris-
tic alterations in the miniband transport. Figure 3.12 exhibits the phase portraits
of the model generated by equations (3.40), ( 3.41) and (3.43) for two different
values of the sound wave amplitude. Considering U being less than Ucr1 [see Fig.
3.12(a)], the phase space trajectories can be divided into areas of unbounded trajec-
tories (black solid curves) and meandering trajectories (dashed curves). Common
attribute of these trajectories is that they move towards to the negative direction
of x̃-axis. The different regions of motion then are segregated by separatrix (red
curves) consisted of unstable manifolds connecting the equilibrium points (blue
open circles). This separatrix is structurally unstable because a really small re-
duction of v0 could cause the annihilation of fixed points and therefore resulting in
collapse of manifolds. Increasing the wave amplitude U has an immediate impact
on the regions of unbounded trajectories by diminishing them. This has a direct
effect on vm by causing a rapid increase of averaged velocity to its maximum value
(black curve Fig. 3.5). As U overreaches the critical value Ucr1 the unbounded
trajectories are eliminated and they give their place to meandering trajectories.
The newly born meandering trajectories follow the new shape of the separatrix
and therefore become more stretched in p̃–direction.
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Figure 3.14: ((α) Phase trajectories and (β) the corresponding electron trajectories
in the real space for U = Ucr1 and v0 = vs.

The rise of the new meandering trajectories and the enhancement of the old ones
lies in the separatrix reconnection that starts to take place at U = Ucr1. The
topological structure of the phase portrait is sensitive to the variation of U . Then,
the phase space can be drastically restructured when global bifurcations occur near
other values of Ucri (i = 2, 3, ..). To explain the mechanism of these bifurcations, we
employ a similar approach as one we used in Section 3.3.2. Figure 3.13 shows the
separatrices consisted by manifolds of equilibrium points with coordinates p̃1 = π/2
and p̃2 = −3π/2. These unstable structures for U < Ucr1 [see Fig. 3.13(a)]
initially allow the existence of the unbounded trajectories. However, increasing
U makes the manifolds to incline toward each other and at the limit U = Ucr1
simultaneously touch the same saddle-node points [see Fig. 3.13(b)]. Just above
Ucr1 [see Fig. 3.13(c)] the manifolds are being reconnected, thus evincing the
realisation of the global bifurcation. In this case, the manifold of the equilibrium
point with coordinate p̃1 = π/2 can twist around the fixed point at p̃2 = −3π/2.
After the critical values of U can be found analytically considering that the global
bifurcations are caused when a manifold of one saddle-neutral stable node touches
another one. Therefore, after substituting into equation (3.43) the coordinates of
the equilibrium points that take part in the bifurcation, we obtain the formula

Ucrn =
∆

2
nπ (3.57)
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There is a fundamental difference between the meandering trajectories in the cur-
rent case and the one realised for v0 > vs, and illustrated in figure 3.6. In the latter
case for a fixed value of U , the phase trajectories can move around islands, that en-
close localised trajectories corresponding to the dragging regime. However, it turns
out that in the former case no dragging exists and at each new bifurcation only one
type trajectory is generated. The occurrence of the first bifurcation, coincides with
meandering trajectories, which can exceed the first Brillouin zone [curves 1, 2 of
Fig. 3.14(a)] or reach the edge of the second one [curve 3 left panel of Fig. 3.14(a)].
All these meandering phase trajectories move towards the negative direction of x̃
[see Fig. 3.14(a)]. However, despite of the same x̃–direction for all phase trajecto-
ries, the related electron trajectories in the real space can travel in any direction
from the following [see Fig. 3.14(b)] : negative (blue curve 1), performing small
oscillations around x = 0 (yellow curve 2) and demonstrating positive drift (black
curve 3). One can notice that a real trajectory become less harmonic as the corre-
sponding meandering trajectory approach the fixed point (black trajectories 3 in
Fig. 3.14). The degeneracy of meandering trajectory with respect to existence of
different electron orbits in real space affects directly the product αv0 where a, as it
was mentioned in the previous section, determines the mean velocity. Here, α ≈ 0
which is reflected on the characteristic of the mean velocity at the crossover points
(green vertical lines Fig. 3.5). This behaviour suggests that bifurcations in the
current system (v0 = vs) lead to zero kinetic gain for the particle. Referring back
to the discussion over the bifurcations in terms of waves and quanta, the equation
(3.47), which describes the condition of energy conservation in the moving frame,
holds in the form δV = −δE±~ωq. This condition is still valid in the limit v0 → vs.
As result, in this case both the energy of the quantum ~ωq and the variation δE of
the kinetic energy approach zero, and thus δV = 0. The latter case suggests that
the variation of the potential energy of the system stays practically unaffected by
the emission of a quantum. Consequently, the Vavilov-Cerenkov radiation can be
emitted similar to a free charged particle having no internal degrees of freedom
[210].

The system triggers an acoustic charge transport for vo < vs, where the fixed
points collide and disappear. This comes in contrast to the degenerate case v0 = vs
or the effective localisation of electron within the periodic potential that happens
for v0 > vs. Figure 3.15 demonstrates that the only type of trajectories that
can be observed are the ones associated with unbounded electron transport. For
small U the unbounded trajectories, which are depicted in figure 3.15(a), appear
to have almost harmonic behaviour. In this instance, if the initial momenta is
p̃0 = 0, the p̃-oscillations never exceed the boundary of first Brillouin zone, see
figure (3.5). However, one can see that with a further increase of U , the oscillations
are enhanced, inducing Bloch-like oscillations.
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Figure 3.15: Phase trajectories of the dynamical system (3.27), (3.28) for v0 = vs/2
and different values of acoustic wave amplitude U : 0.04 (a) and 0.15 (b). Smooth
solid curves represent the unbounded trajectories.

The condition that describes the sufficient amplitude of acoustic wave U for
which the electron performs Bloch oscillations in momentum space can be de-
rived from equation (3.43). Actually, substituting the coordinates of the point6

6This point represents one of the potential crests. The particle is no more effectively trapped
and it can propagate across the potential. From the energy preservation the minimum kinetic
energy E′

min = ∆− vsπ determined by p̃ = π corresponds to a maximum potential energy U for
x̃0 = π/2.
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(x̃, p̃)=(−π/2, π) into (3.43), we acquire

UBO =
∆

2v0

πvs − 2v0

sinx0 + 1
, (3.58)

where x0 is the position of electron whilst it is found at the bottom of the miniband
at the initial moment. The last equation is generic and applicable for v0 ≤ vs. If
we consider only one cell of periodic phase space (−π, π], the least sufficient wave
amplitude for p̃-oscillations to touch the first Brillouin zone |p̃| = π is acquired
for x̃0 = nπ, where n = 0, 1, which triggers the Bragg reflections of electron.
Noticeably, this value produces the maximum value in figure 3.5 for the resonant
case v0 = vs. From then onwards, the increase of U enhances the area including
meandering trajectories that can manifest Bloch-like oscillations. The emergence
of these quasi-periodic orbits (curve 1 in right panel of Fig. 3.14) can explain the
rapid decrease of mean velocity. On the contrary, the onset of Bloch oscillations
for v0 = vs/2 coincides with the minimum value of vm.

Note here that the coherent interaction of an electron with the acoustic wave
cannot be established due to the absence of phonon drag that can contribute to
the drift of the electrons towards the positive direction of x. On the contrary, v0 is
quite small and the electron can be thought practically immobilised at the bottom
of the miniband. For vs >> v0 the equations of motion (3.25), (3.26) become
analytically solvable as

x′ = −vst+ x0 (3.59)

kxd =
ωmaxB

ωs
cos(ωst+ x0) (3.60)

Here ωmaxB =ksUd/~ corresponds to the maximal frequency of frequency-modulated
Bloch oscillations discussed in references [47, 179] and the following Section 3.5.
One can see that according to equation (3.60) the phase space trajectories becomes
completely periodic with frequency of motion the ωs. In the limit ωfm → ωs,
kxd → 1, which means that the Bragg reflections of the electron become feasible.
We have to underline here though that for most electrons their component of
velocity is much smaller than the speed of sound wave. Therefore, the time average
over their trajectories is zero, and these electrons are essentially unaffected by the
presence of the acoustic wave.
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Non-linear pendulum approximation of ballistic

electron dynamics

The semiclassical equations of motion in the moving frame (3.27), (3.28), describing
phase trajectories for the limiting case p̃ � 1, can be transformed under the
translation T̂ x̃ = x̃+ π/2 into

dx̃

dt̃
=

v0

vs
p̃− 1, (3.61)

dp̃

dt̃
= −Ud

~vs
sin x̃. (3.62)

The ballistic transport regime of electrons before the first bifurcation, as we dis-
cussed in Section 3.3.2, can be decomposed into the localised and unbounded mo-
tion. The trajectories that constitute this motion and assume a small variation of
p̃, satisfy the pendulum equation

d2x̃

dt̃2
+ Ω2

x̃ sin x̃ = 0 (3.63)

Here Ωx̃ = (U∆/2)1/2(d/~vs). The total energy of the pendulum manifests its
conservation in the form of an integral of motion

H =
1

2
˙̃x2
0 − Ω2

x̃ cos x̃0, (3.64)

where x̃0, and ˙̃x0, the initial values of x̃ and dx̃/dt̃, respectively. If a constant
m2 = 1/2 + H/(2Ω2

x̃) is involved then the integral of motion can be alternatively
expressed as

1

2
˙̃x2 − Ω2

x̃cosx̃ = 2m2Ω2
x̃ − Ω2

x̃ (3.65)

Designating ω† = 2mΩx̃ and using equation (3.61), the last equation can be modi-
fied to determine the semiclassical phase-space dynamics(

v0

vS

1

Ωx̃

p̃− 1

Ωx̃

)2

+ 4 sin2x

2
=

(
ω†
Ωx̃

)2

(3.66)

where ω† depends on the initial conditions and intensity of the acoustic wave.
The pendulum can swing over only if its initial energy is greater than maximum
potential energy, being obtained when the mass reaches the unstable fixed point.
Indisputably, if the kinetic energy is not sufficient enough, the pendulum will per-
form oscillations around the stable equilibrium point. On the other hand, if the
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Figure 3.16: Characteristic types of ballistic electrons’ trajectories in (x̃, p̃) plane.
The localised trajectory represented by blue curve corresponding to ω†/Ωx̃ < 2.
Unconfined electron motion for ω†/Ωx̃ > 2 displayed by black rotational orbits of
the pendulum. The two transport regimes are set apart by separatrix (red curve)
at ω†/Ωx̃ = 2.

pendulum has just right kinetic energy to reach the unstable equilibrium, it will
approach it asymptotically and all oscillations are suppressed. Similarly, dealing
with the pendulum formulation for an acoustically excited SL, one can find that
for ω† < 2Ωx̃ the electrons perform bounded oscillations within potential wells,
whereas for ω† > 2Ωx̃ they demonstrate delocalised motion. The latter types of
motion, which can be seen in figure (3.16) are set aside by a seperatrix for ω† = 2Ωx̃.
The ballistic trajectories under this classification can be described analytically in-
volving the Jacobi elliptic functions and hyperbolic functions

I. ω† < 2Ωx̃

 x
px d/~
vx

 =


1/ks

{
2 arcsin

[
ω†

2Ωx̃
sn
(

Ωx̃ω1t+ θ,
ω†

2Ωx̃

)]
+ π/2

}
+ vst

vs/vo
[
1 + ω† cn

(
Ωx̃ω1t+ θ,

ω†
2Ωx̃

)]
vs
[
1 + ω† cn

(
Ωx̃ω1t+ θ,

ω†
2Ωx̃

)]
 (3.67a)
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II. ω† = 2Ωx̃

 x

px d/~
vx

 =

 2 arcsin [tanh (Ωx̃ω1t+ θ)]

vs/v0 [1 + 2/Ωx̃ sech (Ωx̃ω1t+ θ)]

vs [1 + 2/Ωx̃ sech (Ωx̃ω1t+ θ)]

 , p0d/~ > vs/v0

 x

px d/~
vx

 =

 2 arcsin [tanh (−Ωx̃ω1t+ θ)]

vs/v0 [1− 2/Ωx̃ sech (−Ωx̃ω1t+ θ)]

vs [1− 2/Ωx̃ sech (−Ωx̃ω1t+ θ)]

 , p0d/~ < vs/v0

(3.67b)

III. ω† > 2Ωx̃

 x

px d/~
vx

 =


2 am

(
ω†ω1t+ θ, 2Ωx̃

ω†

)
vs/v0

[
1 + ω† dn

(
Ωx̃ω1t+ θ, 2Ωx̃

ω†

)]
vs

[
1 + ω† dn

(
Ωx̃ω1t+ θ, 2Ωx̃

ω†

)]
 , p0d/~ > vs/v0

 x

px d/~
vx

 =


2 am

(
−ω†ω1t+ θ, 2Ωx̃

ω†

)
vs/v0

[
1− ω† dn

(
−Ωx̃ω1t+ θ, 2Ωx̃

ω†

)]
vs

[
1− ω† dn

(
−Ωx̃ω1t+ θ, 2Ωx̃

ω†

)]
 , p0d/~ < vs/v0

(3.67c)

The different initial conditions x(0) = x0 and px(0) = p0 are included in the
equations in the form of a phase

θ =



F
(

atan2
[

2Ωx̃
ω†

sin
(
x̃0

2

)
, 1
ω†

(
v0

vs
p̃0 − 1

)]
,
ω†

2Ωx̃

)
, ω† < 2Ωx̃

arctanh
[
sin
(
x̃0

2

)]
, ω† = 2Ωx̃

F
(
x̃0

2
, 2Ωx̃
ω†

)
, ω† > 2Ωx̃

(3.68)

In this inscription F (.) constitutes the non-complete elliptic integral of the first
kind

F (z, k) =

∫ z

0

dt√
1− k2 sin2(t)

(3.69)

and atan2[.] is the four-quadrant inverse tangent indicating the polar angle from
the ellipse center. Note, we prefer to express the solutions of (3.61), (3.62) in the
real space notation that provides the ground for comparison with the numerically
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Figure 3.17: (a) Electron trajectories in real space for U=1.5 meV, x0 = 0
and initial momentum p = 0. (b) Backward motion generated for U=1.5 meV,
x0 = −19.635 nm and p = 0. The dashed blue curves are electron trajectories
described by Eqs. (3.9), (3.10) and the yellow solid curves are within pendulum
approximation (3.63).

produced results by the holistic treatment of the problem. The semiclassical tra-
jectories (dashed blue curves, Fig. 3.17) generated by equations (3.67a), (3.67c), in
retrospect, exhibit considerably good agreement for U=1.5 meV with the numeri-
cal solution of equations (3.9), (3.10) (yellow curves, Fig. 3.17). The frequency of
the first harmonic describing the nonlinear oscillations can be calculated as

ω1 =


πΩx̃ωs

2K (ω†/2Ωx̃)
, ω† < 2Ωx̃

πω†ωs
2K (2Ωx̃/ω†)

, ω† > 2Ωx̃

(3.70)

Here K(.) is the complete elliptic integral of the first kind defined as F (π/2, k)
[124] from equation (3.69). In the limit ω† << 2Ωx̃ the electron trajectories would
be described by the characteristic frequency ω1 = Ωx̃ ωs of a harmonic oscillator.
In that instance, the electron will be confined close to the bottom of the potential
well, performing a quasi-harmonic motion. Henceforth, the frequency of motion to
and fro across the well becomes tunable accordingly to the parameters of superlat-
tice, bearing in mind Ωx̃ analytical form. Now if ω† >> 2Ωx̃, we obtain ω1 = ω† ωs
corresponding to the unbounded motion, which can be considered to be uniform
and self-sustained as long as miniband velocity is large enough to neglect the po-
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tential energy.

Spectral analysis of semi-classical trajectories

Fourier analysis over the time-dependent x0-averaged velocity of electrons va(t) =
〈ẋ〉x0 for different values of U can help to determine the frequency characteristics of
non-dissipative electron dynamics. In this way, we may reveal connection between
the drift and frequency properties of each transport regime realised in the system.
For this aim we utilise the Fast Fourier Transform technique [216]. Subjecting
the time-dependent 〈x〉x0 to signal analysis could provide information for the same
non-zero Fourier components since 〈x〉x0 ↔ V (ωv)/jωv where V (ωv) is the Fourier
transform pair of averaged velocity. We prefer performing Fourier transform of
va(t) since no drift components are involved in the realisation of this signal.

The left panels of figures 3.18 and 3.19 illustrate the temporal evolution va(t)
considering a typical response time and different values of the wave amplitude U .
The 〈ẋ〉x0 represents an ensemble average over different x0 that covers all the values
for a range [−λ/2, λ/2) but with the same initial momentum p0 = 0. The effects of
acoustic wave on the typical time realisation of va(t) and the corresponding spec-
tra are demonstrated in figure 3.18, near the point of the first bifurcation. The
left panel of figure 3.18(a) exhibits a realisation of va(t) calculated for U = 1.5
meV < Ucr1. One can see that the oscillations amplitude vary in an irregular,
seemingly chaotic way. The middle panel of figure 3.18(a) reveals that these os-
cillations are associated with a broadband spectrum, which is centred around fre-
quency ωv = 2.5 × 1012 rad/s−1. The broadband character of this spectrum can
be explained by the fact that for the given value of U , the main contribution to
transport is provided by localised and unbounded trajectories in figure 3.6(a). A
description within a pendulum approximation is applicable for these trajectories
as we showed in Section 3.4. Equations (3.27) and (3.28) can be simplified to the
undamped pendulum differential equation (3.63) under the assumption that the
ballistic electron dynamics is characterised by a narrow range of modulation for p̃.
The integral of motion (3.64) is noted that determines the spectrum of oscillations
of the model (3.63) [217].

In the right panel of figure 3.18(a), we see how the spectrum S(ωv) of oscillations
ẋ(t) varies with the change of initial condition x̃0. The dot-dashed lines display
the frequency ω1 estimated analytically using equation (3.70), whereas the color
map designates the different values of S(ωv) calculated numerically using equations
(3.9) and (3.10). It can be observed that the most pronounced spectral peak and
the related frequency strongly depends on the initial position x0. Furthermore, the
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Figure 3.18: A typical time-realization of va(t) (left panel), its Fourier spectrum
Sa(ω) (middle panel) and the dependence of the spectrum S(ω) on the initial
position of the particle x0 (right panel) calculated for (a) U = 1.5 meV and (b) U =
3.45 meV. Dot-dashed lines mark the dependence ω1(x0) calculated analytically
(see the text for details). Hereafter p0 = 0.

average value of these spectral peaks seems to have high degree of proximity to the
centre of the spectral band of Sa [cf. middle panel of Fig. 3.18 (a)]. This can be
verified directly by the dependence ω1(x0) [Eq. 3.70] which is shown in the right
panel of figure 3.18(a) by dot-dashed line.

The emergence of a prominent peak in Sa(ωv) [middle panel of Fig. 3.18(b)]
when U slightly overreaches Ucr1 is reflected in the regularisation of oscillations
va(t) in the left panel of figure 3.18(b). This spectrum modification can be at-
tributed to the appearance of meandering trajectories [see Fig. 3.6(b)], which
can be understood as frequency-modulated (FM) Bloch oscillations with the max-
imal frequency ωmaxB = ksUd/~ [47]. The frequency of the dominant peak of
the frequency-modulated oscillations is weakly depended on the initial conditions
which is accompanied by regularization of average velocity oscillations va(t). The
dependence of the spectrum S(ωv) of ẋ(t) on the initial position x0 is shown in the
right panel of figure 3.18(b). The right panel of figure 3.18 (b) displays how the
spectrum S(ωv) of ẋ(t) varies with the change of initial position x0. In particular,
it is shown that for meandering trajectories initiated nearby x̃0 = −π/2 [see Fig.
3.6(b)], the location of the dominant peak in S(ωv) changes weakly. Furthermore,
the position of this dominant peak in Sa(ωv) (middle panel) is in agreement with
the locations of the most prominent peaks in spectra S(ωv) (right panel) linked to
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Figure 3.19: A typical time-realization of va(t) (left panel), its Fourier spectrum
Sa(ωv) (middle panel) and the dependence of the spectrum S(ωv) on the initial
position of the particle x0 (right panel) calculated for (a) U = 4.85 meV, (b)
U = 4.932 meV, and (c) U = 5.2 meV. The vertical dashed line in the middle
panel corresponds to maximal FM Bloch oscillations.

different meandering trajectories. On the other hand, the broadness of the spec-
trum Sa(ωv) featured in the middle panel of figure 3.18(b) can be associated with
the frequency characteristics of localised trajectories.

The averaged velocity va(t) and corresponding spectra dependence on the value
of U among two subsequent global bifurcations is demonstrated in figure 3.19.
Therefore, we consider three values U from the range between third and fourth
bifurcation, more precisely, U = 4.85 meV (a), U = 4.932 meV (b) and U = 5.2
meV (c). In this case the characteristics of electron transport is determined by the
contribution of meandering and localised trajectories. It is important to note that
the range of initial x0 that trigger meandering trajectories becomes comparable
with interval of initial conditions that generate localized trajectories. However,
the former follow a more complex pattern enveloping three or four islands of sta-
bility. The enhancement of meandering trajectories involvement in electron motion
is present in the time realisations of va(t) (left panels), which demonstrate a far
more complicated response under the action of sound wave. Henceforth, the re-
lated spectrum of va oscillations is enhanced and spread over a wider bandwidth
since new different spectral components may appear, comparing second panels of
figures 3.18 and 3.19. In addition, for these three values of the wave amplitude
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Figure 3.20: vm versus U calculated for an electron driven by an acoustic wave.
The labels (a)-(c) show the values on drift velocity characteristic used to produce
the spectra Sa(ωv) and S(ωv) in Fig. 3.19

[ see figure 3.18(b)], a dominant peak always emerges in the Fourier spectrum,
which is apparently located at a higher frequency comparing with the one in figure
3.18(b) which represents the spectrum for value of U between Ucr1 and Ucr2. A
closer look at the dependency of velocity spectrum S(ωv) on the initial position
x̃0 displayed in the right panel of figure 3.19 reveals more information about spec-
tral content of Sa(ωv). In particular, as we discussed above a greater interval of
initial conditions are associated with meandering trajectories which, due to their
frequency modulated characteristics, assist in the formation of multiple peaks in
Sa(ωv) which is known as a direct consequence of FM signals. The vertical dashed
lines in the middle panel of figure 3.19 demonstrate the peak frequency deviation
according to value ωmaxB which also reveal an remarkable agreement with numerical
calculations. This estimation arises from Carson′s rule [218] that is often used to
determine the frequency modulated signal bandwidth

∆ωv = 2(ωmaxB + ωs) (3.71)

where ωs in this case is the maximum baseband message frequency component.
In this context, the right panel of figure 3.19 suggests that frequency components
are weakly dependent on initial conditions. At the same time, the contribution of
localised trajectories yields a broad band background positioned in the frequency
range 3×1012 – 6×1012 rad/s. With increasing U from Ucr1 to Ucr2, we find that
the dominant peak in Sa(ωv) shifts moderately to higher frequencies. Nevertheless,
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the power at these frequencies behaves non-monotonically obtaining the maximum
at the value of U ≈ 4.93 meV corresponding to the local maximum of vm in figure
3.20.

We conclude that the phonon propagation after the first bifurcation Ucr1 gen-
erates high-frequency oscillations of ballistic electron orbits. In this regime, the
rise of meandering trajectories, which can be understood as frequency-modulated
Bloch oscillations, leads to the formation of a pronounced spectral peak. There-
fore, the frequency of this peak is roughly one order of magnitude higher than the
frequency of the sound wave. Moreover, by changing U , one can tune the frequency
of the dominant peak as well as control its height.

Summary

In summary, we investigate how the bifurcation mechanisms affect the miniband
electron transport in a superlattice driven by a plane wave. The analysis of the
related phase portraits in the moving reference frame reveals the specific bifurca-
tions, which are triggered with the variation of the acoustic wave amplitude. In
addition, we calculated the electron drift velocity vd and the time averaged velocity
vm in order to characterise the transport of electrons in the SL. The drastic changes
in both vd(U) and vm(U) characteristics are directly associated with the restruc-
turing of phase space caused by the global bifurcations. The critical values of wave
amplitude U , which correspond to these bifurcations, were determined analytically
by the conditions for separatrix reconnection. We found out that averaged veloc-
ities exhibit pronounced maxima, followed by a dramatic drop. Interestingly, the
critical values of U estimated analytically coincide with the values of U for which
vd(U) and vm(U) dependencies present the latter prominent features.

The study of ballistic transport allowed to reveal three characteristic types of
electron trajectories produced by the propagating acoustic wave. They can be
directly associated with typical acousto-electric effects which involve (i) carriers
that are effectively trapped and move within the moving potential wave (localised
trajectories in the moving reference frame) and (ii) ineffective interaction of car-
riers with potential wave (unbounded trajectories in the moving reference frame).
On the other hand, frequency-modulated Bloch oscillations might emerge as U in-
creases and is reflected by the existence of meandering trajectories in the moving
reference frame. We additionally considered the limiting case v0 ≤ vs which reveals
similar kinetic effects on the electron transport due to topological rearrangements
of the phase space.

The wave amplitude influences the partial contribution of each type of trajec-
tories to electron transport. Therefore, for each transport regime, the directed
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transport is associated with particular drift and spectral characteristics. This de-
scription is verified by the ultrasonic oscillations of the averaged electron velocity,
which are induced by selecting a suitable value of U . These oscillations demonstrate
either a broadband spectrum or a spectrum with a prominent peak. Furthermore,
the velocity spectrum is consistently centred around a frequency which surpasses
the frequency of the acoustic wave ωs and can be tuned by its magnitude.

The previously discussed results indicate strongly that acoustically excited
semiconductor superlattices may be used for the tunable generation of electro-
magnetic waves. In particular, the frequency properties of the averaged velocity
reveal a possibility for using a SL driven by an acoustic wave for amplification of
THz signals. Thus, in the following chapters our theoretical study is focused on
the ways which can mimic mechanisms similar to the Bloch gain observed in an
electrically pumped SL [40, 219, 220].
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Chapter 4

Amplification of EM signals in a
superlattice driven by an acoustic
pump

Broadband Bloch gain and its modifications

In standard crystals the strong impurity scattering in the lattice, prevents the elec-
tron to complete even one full cycle of the Bloch oscillation, and thus the electron
motion exhibits Drude-like conductivity. This restriction in superlattices is waived,
since the lattice constant of the man-made SL can be fabricated to maintain the
coherence of electron oscillations in the presence of scattering events [1]. In this
instance, the drift velocity versus an applied dc bias Edc, reaches a maximum value
and beyond this point the slope is negative (see Section 2.3 for further discussion).
Consequently, we expect the driven electrons, as they approach the Brillouin zone
edge, to turn around because of Bragg reflection. Without scattering, the local-
isation of the electron trajectories, due to Bloch oscillations, results in zero drift
velocity. On the other hand, a constant drift velocity appears in the presence of
scattering but decreases with increase of Edc, beyond a certain critical value Ecr.
Such nonlinear transport property was first considered by Esaki and Tsu in their
pioneering paper which addressed the feasibility of self-sustained oscillations and
hence the generation of electromagnetic radiation in SL [9, 10]. Subsequently, the
problem of how the Bloch oscillations would provide amplification of an electro-
magnetic wave was treated theoretically by Ktitorov et al [40], who calculated
high-frequency conductivity of SL from the Boltzmann equation. In particular,
it was shown that the real part of the dynamical conductivity Re[σ(ω)] of Bloch
oscillating electrons which becomes dispersive [Fig. 4.1, line (iv)]. On the other
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hand, the imaginary part of the dynamical conductivity Im[σ(ω)] demonstrates a
Lorentzian shape. In the former case, Re[σ(ω)] exhibits negative values below the
frequency ωB of the Bloch oscillating electrons, and thus the SL oscillators can
demonstrate the so-called THz Bloch gain. In the latter case, the peak in the
imaginary part appears at ω = ωB, emphasising that the system is oscillating at
the Bloch frequency. Further theoretical studies on the realisation of Esaki-Tsu
superlattice oscillator have been carried out to investigate the particular disper-
sive gain property [30, 219–224]. These efforts are ultimately aiming to design
a frequency-tunable source of electromagnetic radiation which is able to work in
the range of a few hundred GHz to several THz at room temperature. However,
the existence of static NDC induces space-charge instabilities and the formation of
electric domains. The existence of these electric domains acts destructively upon
the Bloch gain [43]. Therefore, it is important to find alternative ways of suppress-
ing the electric domains, while preserving the high-frequency gain in SLs. The
main idea in the different schemes for achieving the so-called stable gain is that
the electric instability can be avoided if the SL system demonstrates positive dy-
namical conductivity at low frequencies, whereas the high-frequency conductivity
is still negative corresponding to the amplification of electromagnetic field. In prin-
ciple, to analyse whether energy is transferred or absorbed from an alternating field
(probe field) Epr(t) = Eωcos(ωt) in the presence of an electric pump field EP (t)
[e.g. Edc+EΩcos(Ωt)], the time-dependent drift velocity v(t) has to be determined
under the action of the electric field

E(t) = EP (t) + Epr(t). (4.1)

The frequency ω of the probe field can be favourably tuned by an external reso-
nant cavity [44, 225]. If the time-dependent pump field is not uniform, but varies
spatially as well, the path-integral solution of Boltzmann transport equation can
again be addressed to calculate the time-dependent current. Within the semiclas-
sical approach, the absorption of the probe ac field Eω cos(ωt) in SL miniband is
defined as

A(ω) = 〈v(t)cos(ωt)〉t , (4.2)

where v(t) [see Eq. 2.81] is the stationary time-dependent velocity of the electron
accelerated by simultaneous action of pump and probe fields [220, 222, 226]. The
brackets 〈...〉 designate the time-average that is performed in general over infinite
time. The absorption can equivalently be represented using the current density
j(t) induced in the SL by the total field (4.1)

Re[σ(ω)] =
2 〈j(t)cos(ωt)〉t

Eω
. (4.3)
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Here absorption (Re[σ(ω)] > 0) and gain (Re[σ(ω)] < 0), are determined by the
real part of the dynamical conductivity, see appendix C. For the calculations in
this work, we consider a period of time that is determined by the common period
of both fields T = 2πn/ω = 2πm/Ω, where n,m are integers. Therefore, the
frequencies are commensurate ω = nΩ/m with n,m being relative primes [227].
However, we should emphasise here that coherent effects may emerge from the
commensurability of the frequencies, if m and n are small integers. These effects
are related to coherent interaction of alternating fields, which are realised under
the conditions of parametric resonance [44, 228]. The physical interpretation of
parametric resonances then relates to the instant values of electron effective mass
that varies periodically with the frequency of energy oscillations in the presence
of a strong ac field. The dynamical conductivity is always scaled with the Drude
conductivity σ0 = eN0v0/Ecr = jp/Ecr which is demonstrated in figures of this
dissertation. The magnitude of absorption in real units cm−1 has the following
relationship1 with the scaled dynamical conductivity [229, 230]

α(ω) =
√

2εr
ω

c

(1 +
(Re[σ(ω)])2

ω2ε20ε
2
r

)1/2

− 1

1/2

sgn (Re[σ(ω)]) . (4.4)

Here εr is the relative permittivity of SL material, c is the speed of light in the
vacuum and ε0 is the permittivity in the vacuum. Importantly, the skin depth
which is the distance that takes to reduce the amplitude of probe field by a factor
1/e is determined by

δ(ω) =
2

α(ω)
. (4.5)

In the limit Re[σ(ω)] << ωε0εr and probe field with frequency ωτ > 0.01 the
magnitude of absorption (gain) is reduced to

α(ω) = α0
Re[σ(ω)]

σ0

, (4.6)

where

α0 =
2

ε0
√
εrc

jp
Ecr

. (4.7)

This limit has important implications for the study of the behaviour of dynamical
conductivity in the presence of high-frequency electric field. Since we consider the
nondegenerate equilibrium distribution the peak current jp is given by equations

1For a more general discussion on plane monochromatic waves in conducting media and the
derivation of equations (4.2), (4.3) see appendix C.

93



4.1. Broadband Bloch gain and its modifications

(2.85), (2.87). As a result the parameters of SL determine jp, and therefore a0 which
is the coefficient that relates scaled dynamical conductivity with the magnitude of
absorption.

The behaviour of Bloch gain [220] for a SL under the sole action of a monochro-
matic field E(t) = Edc + Eω cosωt can be determined analytically [134, 220, 231]

Re[σ(ω)] =
1

Eω

∞∑
n=−∞

Jn(β) [Jn+1(β) + Jn−1(β)] jdc(eEdcd+ n~ω). (4.8)

Here β = eEωd/~ω and jdc is the dc current density given by

jωdc =
∞∑

n1=−∞

J2
n(β)jdc(eEdcd+ n~Ω), (4.9)

where Jn(β) are the Bessel functions of the first kind. It can be seen from the latter
equation that the VI characteristic in the presence of ac field is given by a sum
of shifted Esaki-Tsu characteristics. In the limit of weak probe field β << 1, the
Tucker difference formula can evaluate the dynamic conductivity without further
recourse to equation (4.8) as [220, 232, 233]

Re[σ(ω)] =
jdc(eEdcd+ ~ω)− jdc(eEdcd− ~ω)

2~ω
ed (4.10)

Now note that if we consider the limit of low frequency ωτ << 1, the dynam-
ical conductivity reduces to dc differential conductivity σdc = eN0∂vdc/∂Edc at
the given operational point Edc, which behaves as the free-electron absorption for
extremely weak dc bias

Re[σ(ω)]

σ0

=
1

1 + ω2τ 2
(4.11)

As follows from equation (4.11), the free-electron absorption [Fig. 4.1, line (i)] is
always positive with a maximum value Re[σ(ω)]/σ0 = 1 while it exhibits a power-
like decay (∼ 1/ω2τ 2) in the high frequency limit ωτ >> 1. As dc bias increases the
absorption profile is modified and at low-frequencies the absorption is suppressed
to become Re[σ(ω)] = 0 for ωBτ = 1 [Fig. 4.1, line (ii)]. When ωB exceeds slightly
1/τ , Bloch gain emerges, and thus Esaki-Tsu characteristic demonstrates NDC,
since ∂vdc/∂Edc < 0. The derivative of dc differential conductivity ∂σdc/∂ωBτ ,
when equates to zero, can determine the point where the Esaki-Tsu characteristic
demonstrates the most negative slope (green inclined segment in the inset of Fig.
4.1 ). By using the geometric interpretation of the Tucker formula the maximum
gain [Fig. 4.1, line (iii)] in the limit of low frequency

ωBτ =
√

3 ; min{Re[σ(ω)]} = −0.125
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Figure 4.1: Absorption and gain profiles obtained using the Tucker relation (4.10)
at the operation points marked in the Esaki-Tsu curve (i) ωBτ = 0, (ii) ωBτ =
1, (iii) ωBτ =

√
3 and (iv) ωBτ = 5. Inset: The Esaki-Tsu characteristic and

illustration of the geometrical meaning of the Tucker formula. Figure adapted
from [134, 220].

The familiar Bloch gain profile [Fig. 4.1, line (iv)] is obtained with increasing
dc bias above ωBτ =

√
3, when the electron is able to oscillate before scattering.

This gain profile as it is described by equation (4.10) demonstrates a crossover
from gain to loss at the resonance ω = ωB. The shaping of dispersive Bloch gain
profile in the proximity of frequency ω=ωB has been associated with the forma-
tion of momentum bunching of electron distribution for a SL in the presence of a
static and THz electric field [68]. The time-dependent drift velocity can be then
synchronous with the terahertz field due to periodic motion of electron bunch in
k–space with period T = 2π/ωB. The physical interpretation k–space bunching
allows the consideration of large-signal differential conductivity, since for the large
signals the bunch becomes more pronounced and therefore the understanding of
arising domain instabilities [219]. The concept of Bloch gain has additionally ex-
plained on the basis of quantum effects introduced by scattering processes that
cause transitions between Wannier-Stark states [34, 224, 229].

The principal objective to obtain conditions for stable THz gain becomes stre-
neous for NDC state which induces space-charge instabilities resulting in reduction
of gain. The development of space-charge instabilities generates spatial domains
of different electric fields that violate the assumption of homogeneous electric field
used to uphold the negative dynamical conductivity of the device. One of the basic
approaches to suppress the formation of charge domains is to apply suitable elec-
tric fields under which the dc drift velocity would perform a steep positive slope
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[43]. This can be achieved by increasing the amplitude of ac drive that stimulates
a time-dependent drift velocity, which has notably quasi-periodic behaviour and
involves an enhanced dc component. Thus, the travelling-wave package becomes
weaker as it reflected in momentum space electron bunching [68].

If the SL length is adequately short, this prevents the formation electric domains
because the space-charge fluctuations are not sufficient enough to give rise to an
electrically unstable state [235]. In particular, the diminishing of static or dynamic
electric field domains was achieved by engineering a ”super-superlattice” composed
by short sections of superlattice, which are seperated by heavily doped III − V
compounds [42]. Nonetheless, this type of electrically biased superlattice cannot
guarantee a net Bloch gain, since the THz transmission has a sharp change at the
Bloch frequency.

The modulation of spectral shape of the dynamical conductivities concerning
electrons experiencing Bloch oscillations, was considered as evidence of dispersive
Bloch gain in SLs [236]. In experiments with undoped SLs, it was demonstrated
that the information about the dependence of Re[σ(ω)] can be obtained with the
help of time domain spectroscopy [236, 237]. This information can be used to
suppress high-field domains. On the other hand, semiclassical and quantum calcu-
lations showed that the terahertz-field transient cannot clearly indicate existence of
the gain, whereas for long-duration pulses it was ruled out that the former exper-
imental evidence is consistent with steady-state Bloch gain [238, 239]. To achieve
tunable terahertz gain, the carrier dynamics of an optically excited SL in the pres-
ence of THz pulse should demonstrate an excitonic absorption asymmetry of the
Wannier-Stark transitions as has been discussed in the references [240, 241].

More recently, using a quantum transport formulation relied on nonequilib-
rium Green functions it has also been shown, that the gain profile emerges for an
operation point within the positive differential conductivity (PDC) region [245].
The gain in this case is affected by scattering parameters and the doping of a SL
structure [246] should be designed in such a way to allow stimulate emission at
transition between Wannier-Stark ladders.

The theoretical treatment of electron dynamics in the presence of an external
magnetic field predicted notable modification of the gain profiles which leads to a
dramatic increase of the magnitude of THz gain in SLs [45]. In this work investi-
gations were performed to explain the behaviour of dissipative electron dynamics
in the presence of crossed electric and magnetic fields. More importantly, an ap-
propriate choice of the operation point at PDC part of VI characteristic eliminates
electric instabilities, and also a tunable gain is found which is attributed to nonlin-
ear cyclotron oscillations. On the other hand, the Bloch-like regime emerges with
further increase of Edc. This takes place when an operating point corresponds to
the NDC part of VI curve. Interestingly, there is a direct connection of ballistic
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dynamics, which are equivalent to nonlinear pendulum, to the different type of gain
profiles. In this case, the amplification is revealed by the sign of effective mass that
becomes negative as a result of strongly nonlinear oscillations [247].

The feasibility of amplification and generation of high-frequency radiation in
dc-ac-driven SSLs in the absence of electric domains was discussed in references
[134, 220]. In these works amplifications was studied by analysing the Bloch gain in
the presence of high-frequency pump field Ep(t) = Edc+EΩcos(Ωt), when the pump
and the probe frequencies, Ω and ω, are incommensurate. In this case, the use of
the exact solution of the Boltzmann equation and an extended formalism [134, 231]
for the stationary time-dependent current leads to the following expression

Re[σ(ω)] =
1

Eω

∞∑
n=−∞

Jn(β) [Jn+1(β) + Jn−1(β)] jΩ
dc(eEdcd+ n~ω). (4.12)

Here where Jn(β) are the Bessel functions of the first kind, β = eEωd/~ω and jΩ
dc is

the dc current density modified solely by the pump field, which can be calculated
as

jΩ
dc =

∞∑
n1=−∞

J2
n1

(β1)jΩ
dc(eEdcd+ n1~Ω), (4.13)

with β1 = eEΩd/~Ω. Then again, the dc current modified by simultaneous action
of the pump and probe field, is obtained by the following expression

jΩ,ω
dc =

∞∑
n=−∞

J2
n(β)jΩ

dc(eEdcd+ n~ω). (4.14)

The modification of voltage-current characteristic by pump field conceivably de-
scribes the changes in absorption as noted above and can be attributed to the
physical meaning of Tucker relation [234]. The modified drift-velocity-field curve
then exhibits photon-assisted peaks at dc bias values eEdcd = n~Ω + Γ, where
Γ = ~/τ and n corresponds to number of photons that electrons absorb to expe-
rience a potential difference eEdcd + n~Ω across the potential barrier. The real-
isation of these new transport channels is associated with the coefficients Jn(β)
that represent the probability amplitude of a transition with n-photon emission
or absorption within the framework of the semiclassical approach. Interestingly,
a high-frequency gain is achievable at regions of VI characteristics with positive
slope, which is modified because of the action of an auxiliary ac pump [220]. Also,
it has been observed that dc bias is not strictly connected with a stable Bloch
gain [134]. Thus, from the analysis of the Bloch gain only in the presence of a
high-frequency pump field, a small-signal dispersive gain profile (e.g. green curve
Fig. 4.10) can also be obtained.
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A different approach was developed to suppress the instability of a homogeneous
electric field in negative differential conductivity conditions by implementing low-
frequency modulation of the dc bias applied to a long SL [15]. This approach
involved two different parts in the waveform of the modulation, namely: a short
time-interval when the bias is switched off, during which the free-carrier absorption
prevails inducing suppression of space-charge instabilities, and a longer fraction of
each period of modulation that allows the excitation of Bloch oscillations. This
modulation in the applied bias makes possible the shaping of a desirable gain
profile. Alternatively, this process of fast switching bias can be replicated by poly-
chromatic modulation which suppresses instabilities and demonstrates a distinct
gain profile [15, 248]. This gain profile can be controlled by variation of the dif-
ferent amplitudes of polychromatic drive components and due to the mixing of
harmonics with the frequencies Ω, nΩ.

This latter work focused especially on the use of a bichromatic microwave field
for achieving the stable Bloch gain. However, the expense has to be paid in this
approach is the use of a low-frequency auxiliary pump field. Therefore, in this work
we suggest a scheme that relies solely on acoustically pumped SLs for an ampli-
fication of electromagnetic signals. In addition, our approach for achieving stable
high-frequency gain, can be distinguished from those employing ac pump field or
the polychromatic scheme, since we consider a pump which varies spatially as well
as temporally. To understand the implications of our main idea, let us consider
the influence of a strong phononic pump Es(x, t) = ksU/e cos(ksx − Ωst) on elec-
tron dynamics. This pump is induced by an acoustic wave with frequency Ωs that
propagates along SL’s axis in x–direction. In such system the nonlinear particle
dynamics sensitively depends on the amplitude of the propagating wave. As it is
already hinted in the previous chapter, the SLs driven by acoustic wave provide the
media for the generation of high-frequency electromagnetic waves. Consequently,
we assume the additional action of a weak ac field Epr(t) = Eω cosωt on SL (see
Fig.4.2). To find the absorption or the gain of this probe field Epr(t), we have to
compute the time-dependent drift velocity in a manner similar to those used in the
ac-driven SL, but now the total effective electric field in the form

E(x, t) = EΩs cos(ksx− Ωst) + Eω cosωt. (4.15)

Here EΩs = ksU/e is the amplitude of an effective acoustoelectric field. The latter
term is introduced to allow the comparison with the previous obtained results
on electron accelerated by a static electric field or in the presence of a strong
high-frequency ac field. By considering a total field (4.15), the ballistic electron
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dynamics in tight-binding SLs is determined by equations

vx = v0 sin
pxd

~
, (4.16)

dpx
dt

= eEΩs cos(ksx− Ωst) + eEω cosωt. (4.17)

In this work, we assume that the frequencies Ωs and ω are incommensurate. To gain
a more general overview of how the parameters which determine v0 can influence
the electron dynamics and the attenuation of the electromagnetic waves, we will
consider more than one superlattice structures. The different sets of parameters,
which are experimentally obtained and verified in references [45, 179, 249, 250]
and the corresponding a0 are summarised in the table 4.1 both for almost zero
temperature, and room temperature.

SL structure
Parameter

∆ (meV) d (nm) τ (fs) N0 (cm−3) εr a0 (cm−1)
Te=0,300 K

I. [179] 7 12.5 250 1016 12.5 536.76, 272.6
II. [45] 60 6 200 1016 13 831.54, 422.3
III. [249] 120 4.6 150 8× 1016 13.5 5756, 2923
IV. [250] 146 5.3 100 1017 13.88 7747, 3934

Table 4.1: Parameters of different SL structures determining a0.

The main question that now arises here is how a phononic wave will alter the
shapes of the gain profiles and the magnitude of THz gain in SLs. In addition,
we are interested to find whether it can provide the conditions for suppression
of electric instability. Hence, in order to determine whether the probe field (red-
Fig.4.2) is attenuated or amplified (green-Fig.4.2) in the presence of a pump field
(blue-Fig.4.2) , we employ an exact solution of the Boltzmann equation [Eq. (3.13)].

Weak-signal gain in the quasistatic limit

The influence of a pure ac pump field on the absorption of weak probe field in
the quasistatic limit ωτ < 0.1 has been analysed in detail [44, 251, 252]. It was
shown that in this scheme the dominant physical processes, associated with the net
gain in SL, are the effect of spontaneous frequency multiplication and parametric
amplification of the probe field due to coherent interaction of the pump and probe
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4.2. Weak-signal gain in the quasistatic limit

Figure 4.2: Schematic structure of an acoustically pumped semiconductor SL with
frequency Ωs. Gain occurs in the case of weak ω probe field is incommensurate
with pump frequency.

fields together and non parametric-absorption. Therefore, in the case ω = nΩ the
weak signal absorption can be represented as a sum of three terms

Aω = Aharmω + Acohω + Aincohω , (4.18)

where
Aharmω = 〈v(EΩ(t))cosωt〉 , (4.19)

Acohω = 〈v′(EΩ(t))cos2ωt〉 En
2
, (4.20)

Aincohω = 〈v′(EΩ(t))〉 En
2

=
Ẽω

(1 + Ẽ2
Ω)3/2

. (4.21)

Here prime denotes the derivation with respect to E, Ẽω = Eω/Ecr and ẼΩ =
EΩ/Ecr. In general, incoherent absorption Aincohω describes the free carrier absorp-
tion modified by the pump field. Hence, if the SL is additionally biased (Edc 6= 0),
the incoherent absorption can become negative related to the slope in the depen-
dence of vdc on dc bias at a specific working point Edc. Now, by choosing the
working point at the PDC one can prevent the space-charge instability arising in
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Figure 4.3: (a) Acoustoelectric-drift velocity characteristics for Ωsτ = 0.1 and
v0 ≈(6.64, 27.3, 41.9, 58.7)104 m/s. (b) Absorption dependencies on EΩs/Ecr for
v0 ≈(6.64, 27.3, 41.9, 58.7)104 m/s. The vertical lines identically correspond to the
reversal of drift velocity and the maximum values of gain. The horizontal dashed
line in the right panel signifies the zero absorption.

the SL. On the other hand, the incoherent component [Eq. (4.21)] of total ab-
sorption [Eq. (4.18)] shows that it is independent from n and always positive. An
alternative approach to an ac pump might be undertaken if we consider a sound
wave in the quasistatic limit. Therefore, in the presence of an arbitrary phonon
pump EΩs(x, t), we need again to calculate the time-dependent drift velocity under
the effective electric field E(x, t). It is worth mentioning that in order to obtain the
incoherent absorption in the latter scheme, for reasons related to the optimisation
of numerical solving, we considered commensurate frequencies 2 ω = nΩs/m with
m ≥ 7. In this limit, the parametric effects become negligible, and gain can only
take place due to the incoherent component of the small-signal absorption. Figure
4.3 demonstrates how the drift velocity vd and the related absorption change with
the variation of the amplitude of the pump field EΩs , for the different parameters
which can be found in table 4.1. We can see that the red curve in figure 4.3(a)
corresponds to the typical profile of vd(U) dependence, which was discussed in
Section 3.2.1. On the other hand, the other drift velocity characteristics in figure
4.3(a) have multiple maxima and they can attain negative values. This behaviour is
caused by the increase of maximum miniband velocity v0 that enhances the length
of the trajectories contributing to the drift velocity. Essentially, the growth of v0

results in trajectories that fluctuate faster, allowing the electron to perform several
cycles of localised oscillations between the scattering events. Thus, the change

2The specific ratio assumed for m, n in all calculations was the fifth convergent of the golden
ratio reciprocal, namely: n/m = 5/8.

101



4.3. Stable gain in the presence of sub-THz acoustic pump wave

of v0 can strengthen the effects of phase portraits restructuring, making visible a
series of successive global bifurcations (Ucrn , n > 2) discussed in Section 3.3.2 and
reflected in the profile of vd(EΩs/Ecr) [see Fig. 4.3 (a)]. This type of behaviour
of drift velocity bears close resemblance with averaged velocity shown in figure
3.4(b). Figure 4.3 (b) reveals that incoherent absorption remains always positive
for v0 ≈ 6.64 × 104 m/s (red curve) with the increase of EΩs . Nevertheless, as v0

grows, the profiles of absorption (green, blue and magenta curves) demonstrate cor-
relation with vd(EΩs) dependences. This becomes apparent by comparing figures
4.3(a) and (b) that Re[σ(ω)] starts to exhibit negative values with the appear-
ance of negative drift velocity. The latter implies a sensitive dependence of gain
on the sign of drift velocity. Moreover, after the first bifurcation with increase of
the pump field, the emergence of Bloch-type oscillations [meandering trajectories,
Fig. 3.6(b)] coincides with the sharp drop of the absorption and the dynamical
conductivity practically exhibits negative values when vd < 0. We underline here
that the maximal value of the gain occurs right at the onset of the second bifurca-
tion, as illustrated in figure 4.3 (b) (vertical lines). This observation is in excellent
agreement with the following equation

e[EΩs ]2d = ~ωs
[√(

v0

vs

)2

− 1 + sin−1

(
vs
v0

)
+
π

2

]
. (4.22)

This potential drop corresponds to the condition for the second global bifurcation
determined by the explicit expression (3.44) for the given value Ucr2. In the previous
analysis of phase space dynamics for v0 >> vs, it was pointed out that the Bragg
reflections of the electron from the edges of the Brillouin zone result in nonlinear
phonon-assisted Bloch oscillations. Hence, in this case the excitation of electron
within the miniband (∆/2) is accompanied by the emission of the quantum ~ωq
for Ucr2, giving rise to an amplification. Thereafter, the homoclinic loop that
bounds the localised trajectories [see Fig. 3.6(c)] is expanded with the increase of
U , while the region of meandering trajectories is reduced, thus inducing increase
of drift velocity and positive crossover for dynamical conductivity. Further global
bifurcations will enforce the reappearance of amplification and for the limiting case
EΩs >> Ecr the complete attenuation of the probe field.

Stable gain in the presence of sub-THz acoustic

pump wave

In this section, we describe the influence of sub-THz acoustic wave (Ωsτ = 0.1) on
the profile of absorption, and under which conditions it is possible that the high-
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Figure 4.4: Absorption profiles for Ωsτ=0.1 and estimated for EΩs/Ecr=: 0.5,
1.2, 2, 3. σ(ω) is scaled by the σ0 = 5.0409 (Ω cm)−1 for the parameters of the
SL structure (I, table 4.1). The dashed-curve signifies the free-carrier absorption
whereas the horizontal dashed line marks the zero absorption.

frequency response of electrons in the single miniband can prevent the formation
of space-charge instability. The study of the Bloch gain profile under the action
of high-frequency electric pump field suggests that the small-signal dispersive gain
profile is realisable even without application of dc bias. In particular, there has
been some work on the demonstration of a stable THz gain in superlattice using
a strong ac pump field in the absence of dc bias [134]. On the contrary, at low
frequencies ωτ << 1 the small-signal dispersive gain profile does not exist anymore
[251]. The latter can be well (4.10). In fact, if the quasistatic approximation is not
applicable then the absorption profile follows the free-carrier absorption exhibiting
the power-like decay as probe frequency ω increases.
Figure 4.4 illustrates how the absorption profiles are affected by the variation of
pump field EΩs with individual values ranging from substantially smaller to consid-
erably larger than the critical field Ecr. The absorption profile behaves similarly to
free-carrier absorption for EΩs << Ecr, being consistent with power-like decay for
frequencies ωτ >> 1. As EΩs grows, the area of unbounded trajectories [smooth
solid curves in Fig. 3.6(a), (b)] shrinks as we saw previously in the discussion on
phase space dynamics. When EΩs exceeds 1.2Ecr (∼ Ucr1), the absorption profile
changes sharply its slope in the vicinity of ω = ksUcr1d/~ (magenta curve, Fig.
4.4). This frequency corresponds to the maximal frequency, ωmaxB , of frequency
modulated Bloch oscillations. Therefore, the modification of absorption profile
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Figure 4.5: (a) Absorption profiles calculated for Ωsτ = 0.1 and different values
of pump amplitude EΩs/Ecr=: 1.5, 2, 3. (b) Gain and absorption profiles in
the presence of pump field with magnitude EΩs/Ecr=: 4, 5, 5.5, 6 and frequency
Ωsτ = 0.1. Inset: Small-signal absorption as a function ω for pure ac pump
EΩ = 4Ecr. σ(ω) is scaled by the σ0 = 7.964 (Ω cm)−1 for the parameters of the
SL structure (II, table 4.1).

relates to the rise of meandering trajectories manifesting the excitation of electron
within the miniband and the simultaneous absorption of phonon. With further
increase of the pump field, Re[σ(ω)] demonstrates resonant features (green and
red curve in figure 4.4) again nearby ω = ωmaxB . Specifically, the pump ampli-
tude several times the critical field, EΩs ≈ 3Ecr, causes reduction in absorption
for ωτ → 0. This value of the pump field corresponds with a value of U well
beyond the sixth global bifurcation, and, according to our numerical calculations,
the crossover from loss to gain in the limit of low probe frequency is approached
asymptotically with the increase of EΩs [see Fig. 4.3(b)]. In addition, for such a
strong acoustic pump, the interval of the initial conditions x̃0 for meandering tra-
jectories becomes comparable with the range of initial conditions for the localised
trajectories [see discussion in Section 3.5]. Therefore, the robustness of electrical
stability [Re[σ(ω)] > 0, ωτ → 0], in this case, can be associated with the contribu-
tion of the localised trajectories. On the contrary, the emergence of more complex
meandering trajectories, and thus of oscillations with higher frequency components
cannot assist in the avoidance of destructive electric domains. In a similar way,
the electric instability exists in SLs due the synchronized Bloch oscillations in the
presence of dc bias [68]. We now turn to the consideration of electron dynamics
within the same theoretical framework, but for a different SL structure [II, table
4.1]. For this choice of SL parameters v0 ≈ 27.3× 104 m/s and the
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Figure 4.6: (a) Gain profiles calculated for Ωsτ = 0.1 and pump strength
EΩs/Ecr=4. (b) Fourier spectrum Sa(ωv) for a typical time-realisation of va(t)
corresponding to ballistic motion, calculated using the same EΩs as (a). The ver-
tical lines correspond to the harmonics of nonlinear oscillations, where ωb1, ωu1 are
the frequencies associated with localised and unbounded motion respectively. σ(ω)
is scaled by the σ0 = 7.964 (Ω cm)−1 for the parameters of the SL structure (II,
table 4.1).

key ratio v0/vs ≈ 54.65. Figure 4.5 (a) demonstrates the absorption profile with
moderate field strengths EΩs far away from the first bifurcation that takes place
at EΩs ≈ 5.31Ecr. Nevertheless, additional structures arise, dispersive sub-profiles,
which are centred at a frequency in the vicinity of ω = Ω̃ = (2U/∆)1/2v0/vsΩs.
This frequency Ω̃ = Ωx̃Ωs corresponds to the motion of electron, when almost pe-
riodic oscillations appear about the bottom of a single potential well. Note that
the absorption is always positive and the minimum detectable absorption of the
probe field can be also observed at the frequency, ωu1 , of an unbounded trajec-
tory for initial condition x̃0=-π/2. To determine ωu1 = ω1[x̃0 = −π/2] we use the
analytical expression (3.70) derived to estimate the frequency components of the
electron trajectories within a pendulum approximation in the previous chapter.
Increasing EΩs above 3Ecr, can generate dispersive gain profiles [red and green
curves in Fig. 4.5(b)] that correspond to the saturation of drift velocity vd which
follows its rapid growth [green curve Fig. 4.3(a)]. It is important to note that in
this case, the emergence of high-frequency gain can be associated with the non-
linear oscillations in the proximity of separatrix. In contrast, the inset of figure
4.5(b) shows that the dynamical conductivity remains positive under the action
of a moderate ac pump EΩ = 4Ecr and the dispersive profile of absorption arises
near a frequency determined by the amplitude of pump field ω = eEΩd/~. This
picture reminds us of the one that we obtained for phononic pump, but in the
case of smaller v0. This suggests that absorption profile would converge asymp-
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totically to the one for ac-driven SL for pump frequencies Ωsτ << 0.1. Given
that gain appears for pump field values essentially smaller than Ucr1, we further
assume the validity of pendulum approximation (see Section 3.4). Remarkably,
the frequency, ωb1 = ω1[x̃0 → −π/2], of the nonlinear oscillations which correspond
to localised trajectories, signifies the position of a resonant crossover from loss to
gain. In particular, the appearance of dispersive gain profile at odd harmonics
of ωb1 is related to the anharmonicity of the ballistic oscillations. However, the
signatures of ballistic motion in the response of miniband electrons to a weak ac
field cannot be limited to confined electron motion [localised trajectories in Fig.
3.6(a)]. Moreover, we consider an ensemble of electron trajectories with different
x̃0, and thus the frequency of the nonlinear unbounded oscillations determine the
position of a resonant crossover from loss to gain. These crossover conditions,
ω = 3ωb1 (loss→gain) and ω = 2ωu1 (gain→loss), manifest the importance of higher
harmonics nearby the separatrix [253]. In addition, the scattering events weaken
the effects of phase space dynamics on dynamical conductivity, and therefore the
amplitudes of pump field are optimally chosen to allow several cycles of oscilla-
tions ωvτ > 1. Figure 4.6(b) illustrates the spectrum of x̃0–averaged velocity of
electrons, reflecting the frequency characteristics of the ballistic electron transport
for EΩs/Ecr=4. The broadband character of this spectrum is consistent with the
picture which was obtained in Section 3.5 and it was associated with localised and
unbounded trajectories contributing to carrier transport.

For EΩs > 5.31Ecr (∼ Ucr2) and between the first two global bifurcations,
the dynamical conductivity is always positive [magenta curve, Fig. 4.5(b)] and
an amplification of probe field is not feasible. Here the emergence of meander-
ing trajectories cause the dramatic reduction of absorption for lower frequencies.
In this absorption profile, the frequency of Bloch-like oscillations corresponds to
phonon-mediated Bloch oscillations. This high-frequency response of SL to super-
sonic excitation is associated with an electron absorbing an phonon that results
in p̃–oscillations exceeding the size of the first Brillouin zone. The abrupt tran-
sition from the gain to loss coincides with the regularisation of time-dependent
x0–averaged velocity of electrons as noted in the previous chapter. Interestingly,
an additional bifurcation will implicate negative dynamical conductivity extended
at low frequencies presented in figure 4.5(b) for EΩs = 6Ecr. In addition, the co-
existence of two type of meandering trajectories introduce multiple peaks even for
the low frequency components revealing strong anharmonicity.

Having performed the previous calculations, let us be even more realistic by
considering the targeted frequency of the probe field that allows the suppression of
the skin effect in a SL. The dynamical conductivity at low frequencies ωτ << 1 and
for small values of pump field is dominated by free carrier absorption R[σfree(ω)].

106



4.3. Stable gain in the presence of sub-THz acoustic pump wave

 5.2

 5.8

 6.4

 0  0.1  0.2  0.3  0.4  0.5

δ
 (

µ
 m

 )

ω τ 

Figure 4.7: Penetration depth of the incident probe field related to its frequency
ω for acoustic pump frequency Ωsτ = 0.1 and pump amplitude EΩs/Ecr = 5. The
superlattice parameters used correspond with the SL structure (II, table 4.1).

In this limit the dispersion relationship that describes the skin depth becomes

δ =

√
2

µ0σ0ω
. (4.23)

Here µ0 is the permeability of free space. The value of skin depth can be used
to estimate the cut-off frequency for a superlattice device with superlattice mesa
structure of diameter DSL. Making the substitution δ = DSL in equation (4.23)
and rearranging we find that

ωco =
2

µ0σ0D2
SL

. (4.24)

In the case of a superlattice mesa of circular shape, having a diameter DSL = 4 µm,
and in order to avoid the skin effect, the frequency of the probe field should be
ωτ < ωcoτ ≈ 0.32 which is not within the frequency range that we have assumed
for the expression (4.23) to be valid. Since there is not a limit in the frequency
ω to be considered, the penetration depth, showing how deep the electric probe
field can penetrate the material, is estimated by equation (4.5). Figure 4.7 demon-
strates how penetration depth varies with increasing ω. This dependence was
calculated using equations (4.4), (4.5), for an acoustic pump field of the ampli-
tude EΩs/Ecr =5, the same pump frequency ΩSτ = 0.1 and the parameters used
to produce the absorption profiles in figure 4.5. It turns out that corresponding
to low frequencies (ωτ << 0.1) the penetration depth displays a rapid decrease,
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Figure 4.8: (a) Gain profiles in the presence of pump field with magnitude
EΩs/Ecr=: 3, 5, 7 and frequency Ωsτ = 0.1. (b) Gain profiles in the presence
of pump field with magnitude EΩs/Ecr=: 4, 5 and frequency Ωsτ = 0.05. σ(ω) is
scaled by the σ0 = 7.5607 (Ω cm)−1 for the parameters of the SL structure (IV ,
table 4.1).

while it remains approximately constant until frequency exceeds Ωs. Note that, the
penetration depth at any frequency range, is always larger than DSL for the given
SL structure, implying that the specific parameters are suitable for the efficient
detection of weak sub-THz signals. Our results distinctly indicate the influence
of maximal miniband velocity on gain profiles corresponding to high-frequency re-
sponse of SLs to supersonic excitations (v0 >> vs). Further increase of v0 results in
more effective trapping of electrons by the propagating potential and an enhanced
frequency response. This can be described using the parameters of SL structure
IV (see table 4.1). Figure 4.8(a) demonstrates the gain profiles for different field
strengths having the desirable shape Re[σ(ω)] >0. In contrast to the results dis-
played in figure 4.5, small signal gain is even obtained when EΩs < 3Ecr. By
numerically solving the dissipative dynamics using equations (4.16) and (4.17), the
maximum gain observed is increased by almost three times while a strong enough
pump field can provide the conditions for a stable gain profile [blue curve, Fig.
4.8(a)]. This can be seen as an inherent characteristic due to the strong confine-
ment of electrons within the potential, inducing localisation in momentum space.
The realisation of Bloch-like oscillations and the suppression of absorption at very
low frequencies can be determined again by the behaviour of vd characteristic [Fig.
4.3(a)]. Increasing the pump strength above the critical value 11.6 Ecr (∼ Ucr1),
leads to a rapid drop of drift velocity [magenta curve, Fig. 4.3(a)] and a drastic
change in the phase space dynamics. However, the corresponding value of the wave
amplitude that evokes the birth of the meandering trajectories is Ucr1 ≈72.03 meV,
which is far beyond the realistic limit determined by the maximum strain(see Section

108



4.3. Stable gain in the presence of sub-THz acoustic pump wave

-0.3

 0

 0.3

 0.6

 0  2  4  6  8

R
e
[σ

 (
ω

)]
/σ

0

ω τ 

ω
b

1
ω
u

1

(a)

 0

 1

 2

 3

 4

 0  2  4  6  8  10

S
a
 (

ω
v
) 

(a
rb

. 
u
n
it

s)

ω 
v
τ 

ω
b

1

ω
u

1

(b)

Figure 4.9: (a) Gain profiles calculated for Ωsτ = 0.1 and pump strength
EΩs/Ecr=5. (b) Fourier spectrum Sa(ωv) for a typical time-realisation of va(t)
corresponding to ballistic motion, calculated using the same EΩs as (a). The ver-
tical lines correspond to the harmonics of nonlinear oscillations, where ωb1, ωu1 are
the frequencies associated with localised and unbounded motion respectively. σ(ω)
is scaled by the σ0 = 7.5607 (Ω cm)−1 for the parameters of the SL structure (IV ,
table 4.1).

3.1.1). Despite the increase of v0/vs, our results confirm the picture that THz gain
profile appears due to nonlinear localised oscillations induced by the acoustic wave.
This characteristic shape of gain profile has also been depicted in figure 4.9. Here
the frequency of the nonlinear localised oscillations ωb1, determines the resonant
frequency of the crossover from absorption to gain, whereas the complementary
unbounded oscillations with frequency ωu1 can reveal when the real part of dynam-
ical conductivity becomes again non-negative with the increase of ω. We see that a
large THz gain can be obtained at frequencies ωτ > 2, if the frequency of nonlinear
oscillations is to a moderate extent larger than the scattering rate ωb1τ > 1. The
Fourier spectrum Sα(ω) [see Fig. 4.9(b)] that examines the frequency character-
istics of the ballistic electron transport, retains the spectral broadness associated
with the localised trajectories for these parameters and strength of pump field
EΩs = 5Ecr. Nevertheless, the beginning of the spectral continuum almost co-
incides with the first harmonic of nonlinear localised oscillations, while Sα(ωv) is
centred in the vicinity of the first harmonic of unbounded oscillations. The latter
suggests that the additional harmonics of nonlinear oscillations play significant role
in dissipative dynamics and, therefore, in shaping of gain profiles only if ωb1τ < 1.

Figure 4.8(b) demonstrates the gain profiles for the same key ratio v0/vs but
for acoustic wave frequency Ωsτ=0.05. Comparing these profiles with the ones
previously obtained for higher pump frequency [see Fig. 4.5(a) and Fig. 4.8(a)],
it is possible to observe similar behaviour in dynamical conductivity. Re[σ(ω)] is
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Figure 4.10: Absorption and gain profiles for ac pump frequency Ωτ = 2 and
different pump amplitudes EΩs/Ecr =: 3, 4, 5. σ(ω) is scaled by the σ0 = 7.964 (Ω
cm)−1 for the parameters of the SL structure (II, table 4.1).

positive at low frequencies whereas close to the frequency of nonlinear unbounded
oscillations ω = ωu1 ; it has the usual shape of the dispersive Bloch gain. In addition,
the acoustically driven SL provides a reduced magnitude of small-signal gain for
the same values of the pump field used to produce the profiles in figure 4.8(a).
On the other hand, since the frequencies of nonlinear localised oscillations close
to the separatrix ωb1τ &1, the resonant crossover from loss to gain occurs at lower
frequencies. More significantly, the acoustic pump itself can be quasistatic Ωsτ <
0.1. Since the scattering rate in this SL structure has been considered τ ≈100 fs,
the Ωsτ=0.05 corresponds to the frequency Ωs/2π ≈0.8 THz.

Bloch gain in superlattice driven by THz acoustic

wave

As already mentioned in the previous sections, the small-signal dispersive gain
profile is obtainable for ac-driven SL in the absence of dc bias. The feasibility
of such a Bloch gain that is acquired in PDC state, is strongly depended on the
frequency of the ac pump field. Therefore, at sub-terahertz frequencies, the Bloch
gain may arise, but the main problem here is the destructive low frequency elec-
tric instability. Figure 4.10 demonstrates how the absorption profiles change with
the variation of the ac pump field amplitude, EΩ, assuming that the frequency Ω
belongs to the terahertz frequency domain (Ωτ = 2). The dynamical conductiv-
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Figure 4.11: (a) Gain as a function of the probe frequency ω under the influence
of high-frequency pump field Ωsτ = 2 for fixed EΩs/Ecr=0.5,0.8. (b) Gain depen-
dence on small-signal probe frequency ω in the presence of pump field for fixed
EΩs/Ecr=3, 6 and Ωsτ = 2. σ(ω) is scaled by the σ0 = 7.964 (Ω cm)−1 for the
parameters of the SL structure (II, table 4.1).

ity as a function of frequency ω in this case has been calculated using equation
(4.10). Given moderate pump amplitude EΩ = 3Ecr the absorption profile does
not resemble the typical free-carrier absorption, but rather looks like a modified
dispersion profile with a additional structure in the proximity of the pump field fre-
quency ω = Ω. Stable high-frequency gain can be obtained with increase of pump
strength EΩ = 4Ecr for frequencies lower than the pump frequency. In particular,
the gain resonance is associated with the behaviour of high-frequency dynamical
conductivity at ωτ = Ω − 1 (Fig. 4.10, green curve). On the other hand, the
low frequency dynamical conductivity becomes negative with further increase of
the pump field strength EΩ = 5Ecr giving rise to electric instability. One of the
interesting features of the ac-driven superlattice is the tunability of small-signal
gain profile by using different frequencies Ω of pump field, which contradicts to
the usual way of obtaining the Bloch gain in a superlattice excited by dc bias.
The electric stability might be actually enhanced for larger ac pump frequencies
and at the same time a notable THz gain can be obtained. The explanation of
the formation of dispersive gain profile arises from the geometric interpretation
VI characteristic for an operation point at PDC region incorporating the Tucker
formulas.

Let us now reconsider an acoustic phononic pump and how it affects the shapes
of the gain profiles and the magnitude of THz gain in SLs. Here, though, the fre-
quencies Ωs and ω are incommensurate, but both belong to the terahertz frequency
domain. Figures 4.11(a), (b) show the the gain profiles, calculated using equations
(4.2), (4.3) for different values of EΩs and frequency Ωsτ = 2 for an acoustically

111
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pumped SL. Furthermore, we have a dispersive gain profiles demonstrating the
desirable characteristics of the dynamical conductivity being positive at ωτ << 1
and R[σ(ω)] < 0 for higher frequencies. The peculiarity of using a THz acousto-
electric field as pump is that even a relatively weak pump strength EΩs/Ecr=0.5
can provide small-signal gain [see Fig. 4.11(a)]. With further increase of pump
field, the gain profiles become more pronounced [see Fig. 4.11(b)] and achieves
significant values R[σ(ω)]/σ0 ≈ −0.25.

Our results show that we obtain a different situation in regard to appearance of
gain profile at frequencies, which are not related directly to the nonlinear localised
oscillations, as it is seen for a sub-THz pump field. In fact the linear response
corresponding to frequency Ω̃ = Ωx̃Ωs can be used to estimate the position of a
resonant crossover from loss to gain. In this case, the scattering events do not
significantly limit the length of the different trajectories contributing to the drift
velocity. Therefore, even the oscillations with frequencies that belong to the far-
end of the broadband spectrum play a significant role in the formation of the gain
profile. Note, however, the wider frequency range that gain is demonstrated with
the growth of pump strength [Figs. 4.11(a) and (b)]. The latter effect is associated
with the enhanced role of nonlinear electron oscillations since with increase of the
pump strength the islands of the localised trajectories increase as well [see figures
3.6(a), (b)]. Moreover, as EΩs grows, the separatrix approaches the saddle point
that is found at the end of Brillouin zone [see figures 3.7(a), (b)], thus allowing
the electrons to visit the upper part of miniband, where their effective masses are
negative. In spite of the fact that the response of SL to the ac probe fields relates to
far more complicated nonlinear electron dynamics, the phase space dynamics is be-
coming of increased importance in the origin of the notable THz gain. The impact
of the related electron trajectories on electron transport is enhanced, especially, if
we consider the substantial weakening of scattering influence at higher frequencies
of acoustic pump field. Importantly, additional harmonics that come to into play,
producing parametric effects reflecting possibly the coherent amplification of half-
harmonics [228, 254]. This is highlighted by the points that describe the dynamical
conductivity in figure 4.11 in comparison with smooth curves demonstrating the
absorption as a function of probe frequency (see Fig. 4.4).

Conclusively, the gain dispersive profiles for an acoustically pumped SL are
tunable by changing the pump field strength which prompts a dependence similar to
the mechanism of Bloch gain in dc biased SL. The latter scheme though enfolds the
destructive electric instabilities for low frequencies of the probe field. In addition,
it easy to notice that the maximum values of gain are considerably larger than the
ones achieved for ac pump field (see Fig. 4.10) at the same pump frequency.
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Summary

In conclusion, we have theoretically shown that THz gain is feasible for acousti-
cally pumped SL. In the quasistatic picture, the gain appears with the change of
the direction of the electron motion whereas in the vicinity of gain extrema, events
of spontaneous phonon emissions take place. The dependence of the gain on the
miniband electron-transport characteristics was shown by comparing dependences
vd(Es/Ecr) and R[σ(ω)]. Depending on the particular value of v0, the structural
rebuilding of the phase space induces different changes in the drift velocity charac-
teristics. For higher values of maximal miniband velocity, the behaviour of vd(Es)
converges to the one of averaged velocity vm(Es). We also described how the bal-
listic dynamics directly affect the shapes of the gain profiles, with a crossover from
loss to THz gain at the frequencies of nonlinear localised oscillations. The latter
indicates the importance of the motion near the separatrix similar to cyclotron gain
[45, 247]. The transition from supersonic to hypersonic electron velocities can ad-
ditionally modify the dispersive profiles and tune the magnitude of THz gain. The
broadness of spectrum that characterise the oscillations of the averaged electron
velocity, can be tuned by the features of the SL structure. For the realistic param-
eters of the SL structure IV [table 4.1] and using the value α0 at low temperature,
the magnitudes of gain reaching values above α = 2324 cm−1 [see Fig. 4.8(a)].
The smooth temperature dependence results in significant gain, α = 1180 cm−1

at room temperature. For a high-frequency (THz) acoustic wave, the undesirable
low-frequency instabilities can again be suppressed for nominal values of pump
field strength, while an enhanced broadband terahertz gain persists at frequencies
incommensurate with the pump frequency. The transition from loss to gain in the
last case, however, does not depend on the initial position, x0, of electron but is
associated with the frequency Ω̃. This frequency can be directly controlled by the
variation of U . Finally, we have identified, the important role of the frequency
of acoustic wave in the realisation of the acoustically driven Bloch gain. In the
following chapter we consider the effects of a stationary plane wave on miniband
electron transport, and the tunability of the gain of electric probe field.
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Chapter 5

Influence of a slow acoustic wave

For a slow potential wave, when v0 >> vs, the Hamiltonian (3.23) describing the
nonlinear dynamics in the moving frame of the wave, can be rewritten in the form

H = −αcosp̃− βsinx̃. (5.1)

Here β = α 2U/∆ and α = v0/vs, where the maximum miniband velocity is scaled
with vs to provide a unitless constant complied with the previous model. The
equation (5.1) naturally appear in many problems as a simplified two-wave Hamil-
tonian [256–258]. In particular, the related dynamics is investigated in the con-
text of a tight-binding electron in the Hall configuration known as the classical
Harper model [259], and for representing non-interacting cold atoms in the driven
one-dimensional optical lattice [260]. Furthermore, experimental realisation of the
Harper model has occurred for a metal-insulator transition at the critical value
α = β [261].

In this chapter we consider the electron dynamics in SL in the presence a
potential wave that is uniform in time, and thus can be defined by the following
equation

Vz = −βsinx̃ (5.2)

We are especially interested in charge transport and how the related dynamical
regimes affect absorption and gain as a response to a weak ac field. From the view
point of the critical limit α = β, we contemplate separately the implications emerg-
ing for semiclassical motion. The parameters (see II, table 4.1 in Chapter 4) in
this model correspond with the physical structure of superlattice in reference [220].
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Generalisation of Zaslavsky Hamiltonian

The critical value α = β corresponds to the situation, where the maximal value
of kinetic energy K = −αcosp̃ is equal to the potential barrier Vz = −βsinx̃.
The spatial structures arising from this symmetrical potential have been exten-
sively discussed by GM Zaslavksky to describe Hamiltonian dynamics of a particle
moving in a periodic two-dimensional potential [115, 256, 262]. In this case, the
symmetrical (egg-crate) structure [see figure 5.1(b)] makes the dynamics of the
particle nonlinear. Intuitively, one might assume that motion in a analytic two-
dimensional periodic potential should be simple. However, even in the integrable
case of (5.1) for α = β, a potential perturbation can induce chaotic dynamics and
potentially delocalised particle motion [263, 264]. In Chapter 3, we identified that
the variation of wave amplitude U results in different types of trajectories. There-
fore, it seems natural to consider the variation of parameters α, β directly in the
Hamiltonian (5.1). This could possibly affect the way that electron ballistically
propagates along x̃–direction or the conditions for excitation of the Bloch oscilla-
tions in momentum space. Let us consider again a set of variables ỹ = x̃− π/2, p̃
similar with the one introduced in the case of pendulum approximation (see section
3.4) and retrieve the corresponding equations of motion:

dỹ

dt̃
= αsinp̃, (5.3)

dp̃

dt̃
= −β sin ỹ. (5.4)

It follows that the above system of equations can be expressed in a form of a second
order differential equation

¨̃y + β2

(
H̃sinỹ − 1

2
sin2ỹ

)
= 0, (5.5)

where H̃ = −H/β is a dimensionless constant of motion. Thus, the electron
trajectories for β << 1 can be described by ¨̃y + βHsinỹ = 0. The latter equation
corresponds to the pendulum approximation and is a reduced form of equation
(5.5). For β ≤ α which designates that the maximum value of kinetic part is
smaller or equal than potential barrier, a simple stability analysis yields a countable
set of the equilibrium points. This set contains the elliptic fixed (centres) points
described by

| H̃ |= α

β
+ 1; p̃ = nπ; ỹ = mπ; m+ n = 2k; k = 0,±1,±2.. (5.6)
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Figure 5.1: Phase trajectories of the dynamical system (5.3), (5.4) at (a) U < ∆/2
(β < α), (b) U = ∆/2 (β = α) and (c) U > ∆/2 (β > α). The localised orbits
correspond to blue dots. Red curves demonstrate the separatrices and green curves
denote the rotational trajectories.

and hyperbolic fixed points (saddles) that characterise the unstable equilibria

| H̃ |= α

β
− 1; p̃ = nπ; ỹ = mπ; m+ n = 2k + 1; k = 0,±1,±2.., (5.7)

where n and m are arbitrary integer numbers. The electron motion described by
the dynamical system (5.3), (5.4) can be represented as a set of distinct regimes.
These dynamical regimes depend on whether amplitude of the potential U is greater
than, less than, or equal to the half of miniband width ∆/2. To describe the
electron trajectories that correspond to these different cases, we produced the phase
portraits demonstrated in figure 5.1. The phase trajectories were calculated using
equations (5.3), (5.4). For U < ∆/2 (β < α) [see Fig. 5.1(a)], the phase portrait
of the system is represented by periodic ”islands” of localised trajectories (blue
orbits). These localised trajectories are associated with the motion of electrons
confined within the potential wells. In the same dynamical regime, unbounded
trajectories [green trajectories Fig. 5.1(a)] do exist which describe the ballistic
propagation of electron across x–space. Thus, the ”islands” of localised trajectories
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Figure 5.2: Frequency of the nonlinear oscillations as a function of initial position of
the particle. The black curve shows the frequency Ωz versus initial position x̃0 [Eq.
(5.10)]. The red line exposes the latter dependence, ω1(x̃0), within the pendulum
approximation [Eq. (3.70)] calculated for α = β. The dashed line reveals the point
that corresponds to oscillations in the vicinity of unstable equilibrium.

are intermitted by areas of unbounded trajectories. The heteroclinic structure
(red curves) segregates those two different regions of motion. The topology of the
phase space in figure 5.1(b) suggests that the unbounded trajectories for U = ∆/2
(α = β) are eliminated completely. Such restructuring of phase space indicates
that the electron cannot propagate across multiple potential wells. The localised
trajectories [blue curves Fig. 5.1(b)] can be found for the limited case U = ∆/2
(α = β) by integrating equation (5.5). Thus, for | H̃ |≤ 2 we can acquire

cosp̃ =
1

2
H̃ +

(
1− 1

2
H̃

)
cd

[(
1 +

1

2
H̃

)
βt, κ

]
(5.8)

cosỹ =
1

2
H̃ −

(
1− 1

2
H̃

)
cd

[(
1 +

1

2
H̃

)
βt, κ

]
(5.9)

Here κ = (2−H̃)/(2+H̃) and cd(.) is the elliptic Jacobian function [124, 265]. The
frequency of nonlinear oscillations in the latter case can be represented as [115]

Ωz =

πβ

(
1 +

H̃

2

)
4K(κ)

, (5.10)

where K(.) is the complete elliptic integral of the first kind as a function of elliptic
modulus κ (see Section 3.4). Figure 5.2 demonstrates the effect of initial position
on the frequency of the localised oscillations. Now it follows from equation (5.10),
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that in the limit H̃ → 2 the electron trajectories are eventually confined to a
small region near the bottom of potential well, experiencing small oscillations of
frequency Ωz = β. By adding the solutions (5.8), (5.9) and then integrating,
one can find a phase trajectory, starting from the initial conditions (ỹ0, p̃0), as a
function p̃(ỹ). Thus, the separatrix [red curves, Fig. 5.1(b)] meeting the hyperbolic
fixed points along the phase portrait can be described by the following equation

p̃ = ±(ỹ + π) + 2πk (k = 0,±1,±2). (5.11)

The existence of this infinite web [red curves, Fig. 5.1(b)] has some implications for
the electron transport. In particular, considering the effect of a perturbation on the
whole pattern of the phase space, would result in the formation of a stochastic web.
Hence, if the initial position, x̃0, of the particle corresponds to the used web, the
related phase trajectories will undertake a random walk along the web’s network
[115]. Our model allows to implement the perturbation via weak probe field, which
agitates the phase dynamics and could result in the formation of a stochastic web as
result of the destruction of separatrix. The generation of a stochastic web permits
the electron to undergo rapid diffusion similarly as in the periodic potential of
superlattice with an applied DC-voltage and tilted magnetic field [113]. This type
of global diffusion can be produced also by a linear oscillator perturbed by periodic
δ–function which represents the gyration of a charged particle in a magnetic field
crossed with a plane wave [115, 266].

The study of electron transport reveals that the localised trajectories [blue
curves in Fig. 5.1(c)] survive even if U exceeds the critical value (β = α) which
corresponds to the generation of periodic web across the phase space [see Fig.
5.1(b)]. The robustness of localised dynamics is a result of separatrix reconnection
that leads to the formation of heteroclinic cycles [red curves in Fig. 5.1(b)] joining
equilibrium points that can only be found at the same p̃-coordinate. In addition,
this simple analysis of the separatrix structure with respect to the Brillouin zone
boundaries provides a single critical value Ucr = ∆/2 for triggering nonlinear Bloch
oscillations. Hence, the behaviour of the system exposes a transition from localised
phase trajectories in momentum space to confined motion in coordinate space since
the particle cannot escape from the potential well. A closer look at the amplitude
of p̃-oscillations [green curves in Fig. 5.1(c)], when U exceeds Ucr shows that the
particles can reach the border of the Brillouin zone, and they can be effectively
Bragg reflected. Remarkably, instead of different type of meandering trajectories
[cf. Fig. 3.10(c)] as seen for the system (3.27), (3.28) here we got only one type of
electron orbits extended in the p̃–direction.
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Dissipative electron dynamics and gain in slow
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Figure 5.3: vd dependence on Es for miniband electrons driven by an acoustic wave
in the limit v0 � vs. The labels (a)-(d) signify the positions on the characteristic
of Ez values used to calculate the phase trajectories and absorption in Fig. 5.4 and
Fig. 5.5 respectively. The acoustoelectric-drift velocity vd is scaled by the maxi-
mum miniband velocity v0 ≈27.3×104 m/s for the parameters of the SL structure
(II, table 4.1) .

The system under study should satisfy a Hamiltonian which varies slowly not with
the time, but with the coordinate. For this problem, we, for example, may consider
a mechanism similar to one used for the deceleration of light pulses in optical
dense crystals [267] or the periodically loaded waveguides, enabling the slow-wave
propagation of microwave field [268]. However, fabrication of the superlattice with
a higher miniband velocity, appears to be a more realistic solution, for producing
a plane wave which demonstrates just x–dependence. Clearly, it would allow to
neglect the term, -vsp, that emerges in Hamiltonian (3.23) in the moving frame
after the canonical transformation. Alternatively, a standing phonon wave can be
created due coherent superposition of anti-propagating waves [58]. We now turn
our attention to a superlattice under the action of a moving potential given in
equation (5.2) and a time-dependent electric field Epr(t). The probe field Epr =
Eωcosωt is involved to examine the influence of the potential
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5.2. Dissipative electron dynamics and gain in slow wave potential

Figure 5.4: Different types of phase trajectories. Localised orbits for different val-
ues of pump amplitude Ez/Ecr =:2 (a), 5 (b) and 10.7 (c). Trajectory extended in
p̃–space that corresponds to the non-linear Bloch oscillations for pump amplitude.
Ez/Ecr =11.2 (d)

wave on the small signal absorption. This approach is essentially different than
the one studied in the previous Chapter 3. The difference lies in the fact, that we
consider a pump field of the form Ezcos(x̃), for the present calculations. In this
section, we simulate the electron trajectories starting at the centre of one from
subsequent potential wells which corresponds to the condition x̃(t0) = x̃0 = 0.
Changing the x̃0 (see the following section) will have an effect not only on the
ballistic dynamics but on the formation of different type of gain profiles as well. In
addition, the drift velocity and the gain profiles were calculated again for electrons
starting at the t0 with p̃0 = 0, which corresponds to the experimental conditions of
the non-degenerate electron gas close to zero temperature Te → 0. The approach
which is based on path-integral solution of the Boltzmann equation (see Eq. 2.59),
is most efficient at low temperatures, because otherwise, we should additionally
take into accound a thermal distribution of the electrons. Thus, the steady-state
drift velocity (see Eq. 2.81) is determined by the ballistic trajectories starting at
p̃0 = 0. The velocity of electrons at the presence of scattering can be estimated
by the simplified Chamber’s path integration method (see Eq. 2.88). The latter
approach is feasible, because in our approximation the effective electric field Ez(x)
that has emerged for vs → 0 is free from explicit time dependence. The curve
in figure 5.3 shows the variation of drift velocity as an function of the amplitude
of the pump field Ez. Comparing the vd(Ez) curve with the results discussed in
section 3.2.1, we note that drift velocity still has a pronounced negative differential
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Figure 5.5: Absorption and gain profiles for (x̃0, p̃0) = (0, 0) and values of
Ez/Ecr =:2 (a), 5 (b), 10.7 (c) and 11.2 (d). σ(ω) is scaled by the σ0 = 7.964
(Ω cm)−1 for the parameters of the SL structure (II, table 4.1).

velocity region. However, previously the abrupt suppression of electron transport
in vd(U) (see Fig. 3.4) is associated with a global bifurcation. In the present model
we consider a single ballistic trajectory starting from the same initial position x0.
Therefore, the influence of Ez on vd should not attributed directly to the restruc-
turing of phase space, but to the type of trajectories in the different dynamical
regimes. In particular, the localised orbits [blue curves in figures 5.4(a)-(c)], for
the same initial conditions, stretch in the momentum space as U increases. Figure
5.4(c) demonstrates a trajectory that approaches, but it does not reach the edge of
the first Brillouin zone. This explains a rapid growth of vd (see Fig. 5.3) followed
by its saturation within the range of these values. With Ez increasing further, the
electron trajectory [green curve in Fig. 5.4(d)] can be elongated in p–direction and
thus to Bloch-oscillate. The different behaviour of electron transport in momentum
space coincides with an abrupt drop of vd(Ez) dependence. Our results suggest then
that the critical behaviour of drift velocity is related to the manifestation of Bloch
oscillations. In a similar manner, the miniband transport under the influence of a
weak probe field implies the drastic effect of transition between different types of
ballistic motion. Specifically, distinct profiles of absorption and gain are produced
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5.2. Dissipative electron dynamics and gain in slow wave potential

for a set of values of Ez [see Fig. 5.5(a-d)]. These profiles were obtained by using
equation (4.3). For a relatively weak pump field, the dissipationless dynamics can
be represented by a pendulum driven by AC bias

d2x̃

dt2
− Ω2

x̃cosx̃ = −γω2sinωt, (5.12)

where Ωx̃ =
v0

vs

√
2U

∆
, and γ =

eEωd

~ω
. Equation (5.12) is a valid approximation

that follows from equation (5.5) for β << 1 and the substitution x̃ = ỹ+π/2. Here-
after, using equation (4.3), we acquire the distinguishing Lorentzian-like absorption
profile [see Fig. 5.5(a)] which is centred at Ωx̃/2 < ω < Ωx̃. The sub-harmonic
resonance of the absorption is invoked since the system is driven strongly enough
to induce the non-linear effects in pendulum oscillations [269]. The amplification
of the probe field for this case is not feasible, which is highlighted by Re[σ(ω)] [see
Fig. 5.5(a)] that remains positive with the increase of probe frequency ω. It is
noticeable that the increase of Ez affects electron transport in a way, which leads
to gain in high-frequency range [see Fig. 5.5(b)]. The emergence of gain can be
attributed to nonlinear oscillations [see Fig. 5.5(b)] that represent the localised
motion of electron. Here, large enough of Ez results in a growth of the maximal
crystal momentum towards the brillouin zone boundary. The Brillouin zone bound-
ary at p̃ = π coincides with the saddle points described by equation (5.7). The
non-linearities become more dominant when the system trajectory draws closer to
the saddle points separatrix. As mentioned in the previous chapter, the separatrix
plays a significant role in the realisation of the gain, as one can deduce from anal-
ysis of figure 5.4(b). Given that the pendulum approximation is still reliable, the
frequency of these localised oscillations, ω1 (see Eq. 3.70), can point the transi-
tion between loss and gain for a small-signal. This particular gain profile [see Fig.
5.5(b)] is an inverse of the usual dispersive Bloch gain profile [see Fig. 4.1 (iii)-(iv),
resonant frequency ωB], in the sense that the maximum values of the absorption
occur at frequencies smaller than the resonant frequency ω1. In addition, the gain
in Fig. 5.5(b) takes place at frequencies somewhat above the resonant frequency.
On the other hand, approaching the critical value of Ez which determines the max-
imal value of vd would have a direct effect on the gain [see Fig. 5.5(c)] by inverting
the dispersion profile shown in figure 5.5(b). Since the necessity of the condition
β << 1 for the pendulum approximation is obvious, now the electron dynamics are
governed instead by equations (5.8), (5.9). Thus, the crossover frequency Ωz in this
case is appointed by equation (5.10). It can be observed that gain in this case is
magnified and the reason of that lies in the highly nonlinear oscillations that closely
approach the seperatrix. With Ez/Ecr > 2α, electrons experience Bragg reflections
[green curves in figures 5.1(c) and 5.6(d)] which contribute to low-frequency insta-
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5.3. Effect of initial phase on small signal-gain

bility of gain [see Fig. 5.5(d)]. The vertical dashed line in Figure 5.6 (d) indicates
the natural frequency, ω = Ωp̃, of a harmonic oscillator in p̃-space, where, in the
vicinity of which the maximum absorption is realised. In the Bloch-like regime,
the electrons are prevented from unbounded motion, which makes the dynamical
behaviour of the system concede to a pendulum approximation for Ez/Ecr >> 2α
but in momentum space

d2p̃

dt2
+ Ω2

p̃sinp̃ = −γω2sinωt. (5.13)

Here Ωp̃ =
v0

vs

√
2U

∆
. The previous analysis reveals that existence of two limits

for the single particle dynamics described by the system (5.3), (5.3), namely one
reduced to x̃–pendulum and one described by p̃–pendulum with α� β and β � α
respectively. Inherently, the gain profile changes as we sweep from a extreme
localisation within the first Brillouin zone to a strongly bounded state of single-
electron in the potential wells.

Effect of initial phase on small signal-gain

The restructuring of the phase space can have multiple implications on the kinetic
properties, and particularly on the THz dynamics of electrons. In the view that
ballistic trajectories are strongly depended on the initial conditions, it is important
to take into account the effect of initial phase of electron x̃0 on the gain of terahertz
radiation in SLs. Therefore, the consideration of the change of the initial position
x̃0, modifies accordingly the constant of the motion of the H̃, and is given by

α

β
(1− cosp̃) + sinx̃ = sinx̃0 (5.14)

In the previous section, we illustrated that the drift velocity becomes dramatically
suppressed at a value close to Ez/Ecr = 10.9 (U = ∆) for x̃0=0. Of course, this
behaviour is vigorously linked to the condition for a trajectory to exhibit Bloch
oscillations. The question that follows is whether it can be generalised for a phase
shift in the range −π < x̃0 < π. To deliver this objective, one has to substitute into
equation (5.14) the coordinates of any saddle point and the corresponding initial
phase. Indeed, the Bloch oscillations occur at the critical value of the acoustic
wave amplitude UBO, satisfying the following equation.

UBO =
∆

1− 2sinx̃0

(5.15)
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Figure 5.6: (a) Drift velocity versus effective field Ez characteristics.(b)-(d) Gain
profiles for different values of initial positions x̃0 =:0 (i),−π/3 (ii),−π/2 (iii). σ(ω)
is scaled by the σ0 = 7.964 (Ω cm)−1 for the parameters of the SL structure (II,
table 4.1).

The critical difference between this formula and the one that describes the impli-
cations on miniband transport for a moving potential wave [see Eq.3.7], is that the
latter is connected with specific instabilities responsible for the dramatical change
in the topology of the phase space. Here we acknowledge that for U = ∆/2 + ε
(where ε �) the islands of localised orbits, which are periodically spread around
corresponding centres become larger with growth of U , allowing the p̃-oscillations
eventually to reach the border of the first Brillouin zone.

Figure 5.6(a) illustrates how the dependence v(Ez) changes with the variation
of initial position x̃0. In particular, we consider three values of x̃0, scilicet, (i)
x̃0=0, (ii) x̃0=−π/3 and (iii) x̃0=−π/2. We are able to recognise that the common
pattern of drift velocity characteristics is that they demonstrate non-monotonic
behaviour. As it was expected, the locations of the prominent extrema coincide
with U = UBO. Now, the sudden change of the drift velocity can be generally
connected with the existence of Bragg reflections. Noticeably, for x̃0 = −π/2, vd
(blue curve) becomes increasingly negative as Ez/Ecr grows from 0 to 5. Entering
the Bloch-like regime has an interesting consequence for the particle motion, since
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5.4. Summary

the drift velocity can perform a relative increase in comparison with the vd minima.
The high-frequency gain response to the ac field appears to be linked to the same

complicated nonlinear dynamics, with many respects predefined by the motion near
the separatrix. To examine explicitly the involvement of phase in shaping the gain
profiles, we hand-pick the special case of Ez= 2Uv0/(∆vs), where U = ∆/2, which
is interesting from viewpoint of electron dynamics, since the Re[σ(ω)] dependence
indicates significant amplification of a range of x̃0 as shown in figure 5.6[(b)-(d)].
It is evident that there is a variation of dispersive gain profile with simulating
ballistic trajectories at different initial positions. In particular, the characteristic
shape of gain profile for x̃0 = 0 [see Fig. 5.6(b)] and x̃0 = −π/3 [see Fig. 5.6(c)]
appears to be an inverse of the usual dispersive Bloch gain profile [e.g. Fig. 4.1
(iii)-(iv)]. On the other hand, figure 5.6(d) demonstrates a Bloch-like gain profile.
This difference arises because of the anharmonicity of ballistic oscillations when we
are approaching the separatrix x̃0 = −π/2. In addition, the electron oscillations
near the separatrix cause a significant enhancement of the magnitude of the gain.
For example, the maximal observed gain in figure 5.6(d) is boosted by more than a
order of magnitude, in comparison with the one in figure 5.6(d). Similarly with the
previous section, we can determine the crossover frequency Ωz [see Fig. 5.6(b)-(c)]
using equation (5.10). The predictions for zero absorption can be slightly detuned
from the actual value due to dissipation effects. Hence, we choose optimally the
size of effective electric field that it will enable electrons to perform several cycles
of oscillations Ωzτ >1 before scattering occurs.

Summary

By exploring the response of dynamical model to a weak probe field Epr(t) in
the presence of scattering, we realised that triggering different dynamical regimes
significantly affect the conversion of energy electrons to high-frequency radiation.
Our results show that localised oscillations are associated with a dynamical regime,
where SL operates in conditions of PDC. It is known that PDC should be consid-
ered as one of the conditions for electric stability of the superlattice system [43].
Therefore, the stable gain profiles, which correspond to the localised trajectories in
phase space, demonstrate desirable tunability of the magnitude of the gain. This
can be achieved either by changing the initial position of the electron or the mag-
nitude of the pump field. In contrast, as electrons perform Bloch-like oscillations,
the problem of electric instability persists, in the same way as in the case of the
usual Bloch gain in SLs. The preceding discussion raises the question, whether a
static plane wave influences the small-signal absorption and gain in a similar fash-
ion as in a SL under the action of an electric field and a tilted static magnetic field
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5.4. Summary

(for further discussion over this arrangement see Section 2.3.2). In the latter case,
the mechanisms of the gain can be attributed to two different dynamical regimes
[45, 247]. On the one hand, cyclotron gain which is associated with nonlinear cy-
clotron oscillations. On the other hand, a Bloch-like regime, where the Bloch-like
oscillations provide THz gain. For a realistic SL parameters ∆ = 60 meV, d = 6 nm
and τ = 200 fs, we obtain the value of critical electric field Ecr ≈ 5.5 kV/cm. Con-
sidering moderate doping N = 1016 cm−3 and relative permittivity ε = 13 (GaAs)
at really low temperature, the gain α is divided [see Eq. 4.6] by the constant
a0 = 831.5 cm−1 to determine the scaled dynamical conductivity Re[σ(ω)]/σ0. We
found that when such SL pumped by a slow wave is tuned into regime when elec-
tron oscillates in the vicinity of the separatrix, α attains the colossal value of ≈
8315 cm−1 [see Fig. 5.6(d)].

Conclusively, the Bloch-line oscillations produce dynamical conductivity ex-
hibiting negative sign at low frequencies, whereas, the localised trajectories secure
the problems arising from space-charge fluctuations. Thus, in case of a propagating
potential wave of the form given in equation (3.7), the stability of the THz gain
will be determined by a particular collective contribution of topologically different
electron trajectories starting from a range of the initial conditions.
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Chapter 6

Conclusions

This study was dedicated to the semiclassical dynamics of particles in periodic
potentials induced by a propagating plane wave. In particular, we focused on the
interaction between a coherent acoustic wave and miniband electrons in a semi-
conductor superlattice. We began with the investigation of Hamiltonian dynamics
of electrons, which in our case of the propagating wave is strongly nonlinear. We
calculated the acoustically induced electron current, which is connected with elec-
tron transitions between specific states within the energy miniband. Subsequently,
we investigated the possibility to reach inversionless Bloch gain in an acoustically
driven superlattice. By extending this approach, we also examined the influence
of a slow acoustic wave on small-signal absorption and gain in the superlattice in
the presence of scattering.

The first part of results (Chapter 3) highlights the effects of the acoustic wave
on the nonlinear electron dynamics. Here the wave amplitude plays a role of control
parameter determining abrupt transitions between different dynamical regimes. To
understand fully the mechanisms which govern the miniband electron transport,
we analysed the related phase portraits in the moving reference frame. We discov-
ered that global bifurcations, triggering dramatic transformations of the system
phase space, affect significantly the electron transport process. The drift velocity
vd and the averaged velocity vm of the charge carriers were calculated by apply-
ing approaches based on the exact path-integral solutions of Boltzmann transport
equation. Importantly, both velocity characteristics exhibit non-monotonic depen-
dence with prominent maxima, followed by a sudden drop. We derived analytical
conditions for the development of the dynamic instabilities and showed how these
relate to the characteristic features of miniband electron transport. In particu-
lar, heteroclinic-homoclinic seperatrix topologies are observed for specific values
of the wave amplitude U . By using nonlinear dynamics techniques we described
and classified three distinct types of ballistic electron trajectories, generated by the
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propagating wave. These trajectories are associated with three different types of
motion, namely: (i) motion of electrons confined by a moving potential (localised
trajectories in the moving reference frame), (ii) unconfined electron motion (un-
bounded trajectories in the moving reference frame) and (iii) Bloch-like electron
oscillations (meandering trajectories in the moving reference frame). Each type of
the trajectory contributes differently to the electron transport which can change
significantly with the variation of U . Thus, the enhancement or the suppression
of different types of motion predetermine the electron drift and spectral properties
of the transport regime realised in the system. Changes in the amplitude of the
acoustic wave can generate oscillations of the averaged electron velocity, the spec-
trum of which exhibits broadband features or a well-pronounced peak. Herewith,
the central frequency of the velocity spectrum was found to notably surpass the
frequency of the sound wave ωs and can be tuned favourably by the amplitude U .

In Chapter 4, we demonstrated the feasibility of a stable THz gain in a acousti-
cally pumped SL. We examined the conditions, under which the energy of moving
electrons is converted to a high-frequency radiation. Our analysis has shown that
this acousto-electrical conversion is possible in the regime when the SL is stable
against the formation of high field domains. In the case of a quasistatic acoustic
pump, it was shown that the incoherent absorption is negative as long as the elec-
trons attain a negative drift velocity. This finding strongly implies the underlying
connection between nonlinear dynamics and the appearance of the high-frequency
gain. Consequently, the crossover from the gain to loss approximately coincides
with the emergence of meandering trajectories, in the same way as the sharp transi-
tions between different dynamical regimes cause sudden change in averaged velocity
of the carriers. For the same type of sub-THz acoustic pump wave, we also showed
how an appropriate tuning of the wave parameters can lead to a particular profile of
the dynamical conductivity: the low-frequency dynamical conductivity is positive,
whereas the high-frequency dynamical conductivity is negative, providing a stable
THz gain. The high-frequency gain is attributed to non-linear oscillations, which
correspond to the localised trajectories in the moving reference frame. These elec-
tron trajectories in the vicinity of the separatrix were found to enhance the response
of the miniband electrons to a weak ac field. On the other hand, after the first
global bifurcation, a sufficient part of the electrons perform frequency-modulated
Bloch oscillations. We found that the excitation of these strongly nonlinear oscil-
lations result in the extension of the gain profile to the lower frequencies. Here the
electric instability can appear in the long sample similar to the case of Bloch gain
in dc biased SL. By using a high-frequency acoustic pump, we showed that the
small-signal dispersive gain profile still exists. One of the interesting consequences
of this scheme is that the gain-bandwidth demonstrates significant broadening.

In Chapter 5, it was shown that the nonlinear character of the dynamics of
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the miniband electrons in the presence of a slow acoustic wave, can provide the
conditions for strong THz gain. We showed that the topological rearrangement
of the phase space, which takes place for a single critical value U , allows the
transition from the localised oscillations to the Bloch-like oscillations. In this
respect, the problem of electric instability in the Bloch-like regime exists similarly
as in the case of the usual Bloch gain in superlattices. In contrast, before the
global bifurcation the superlattice is in a electrically stable state due to the sole
contribution of nonlinear localised trajectories.

Outlook

Our study of nonlinear electron dynamics in a miniband SL driven by a plane
wave not only provides new perspectives to obtain an in-depth understanding of
acoustoelectronic phenomena in SL, but also raises many intriguing possibilities
for further research. It was shown that the increase of the electron and lattice
temperatures, has strong influence on charge transport in the superlattice [195,
270]. This effectively alters the shape of current-voltage characteristics and the
collective behaviour of electrons in SL [195]. Therefore, by taking into account a
thermal distribution of the electrons, it would be interesting to study the way that
temperature affects the measured kinetic properties of the acoustically induced
electron transport. In this case, it would be critical to get a deeper insight into
the influence of temperature on the specific bifurcations which are developed with
the variation of the wave amplitude. In addition, from the perspective of possible
applications, it would be intriguing to investigate the temperature dependence of
the gain profile, when electron heating effects become important.

The non-linear dynamics in a miniband SL driven by a plane wave in the pres-
ence of a constant electric field have been studied in [271]. That work, however,
focused primarily on the case of a very high-frequency wave. Thus, it would be
interesting to consider the propagation of a low-frequency acoustic pulse through a
superlattice within the negative differential conductivity regime. Possible modifica-
tions of the voltage-current characteristic could be explained with further recourse
in the phase space dynamics.

There has been some work focused on how the acoustic wave can affect the
collective behaviour of electrons, inducing self-sustained current oscillations in SSLs
[47]. Here, we could utilise the exact path integral solutions of the transport
equations to determine the global current density and extend the previous studies
which were developed, based on a quasi-static approximation.

The Hamiltonian in our model bears strong resemblance to the one that entails
the cold atoms dynamics in the optical lattices [272, 273]. On this basis, the dis-
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cussed results in this thesis have a potential in applications involving cold atom
manipulations within the emerging field of atomtronics [274, 275]. In particular,
it is possible to consider the approach taken in Section 3.3.6, assuming that the
maximal velocity of the cold atom is comparable or smaller than the velocity of
the moving optical lattice. Therefore, the analysis undertaken to explain the bal-
listic dynamics of electrons can be used to determine the conditions for effective
trapping of cold atoms by the moving optical lattice. On the other hand, it was
shown that a directed current of ultracold fermionic atoms under static forcing can
be generated by collisional interaction with bosons [276, 277]. In this case, the ul-
tracold fermions in one-dimensional optical lattice demonstrate similar dissipative
dynamics as the electrons in SLs. Given an fermionic transport model described by
semi-classical Boltzmann approach [278], there is a possibility to calculate induced
gain phenomena [279, 280] similar to the theoretical scheme studied in Chapter 4.
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Appendix A

Floquet theorem and its
characteristic equation

Considering a basis of space solution which satisfy the conditions (2.7), the general
solution of equation (2.2) is described by

ψ(x) = c1ψ1(x) + c2ψ2(x) (A.1)

In addition, we assume now that the general solution satisfies the condition (2.10)

c1ψ1(x+ d) + c2ψ2(x+ d) = ρ(c1ψ1(x) + c2ψ2(x)). (A.2)

Since ψ1(x + d) and ψ2(x + d) are also solutions of (2.2) due to the symmetric
displacement d, they can be written as linear combination of ψ1(x), ψ2(x), and
hence

ψ1(x+ d) = c11ψ1(x) + c12ψ2(x) (A.3)

ψ2(x+ d) = c21ψ1(x) + c22ψ2(x). (A.4)

It follows that for x = 0 and substituting the initial conditions (2.7) into equations
(A.3), (A.4) and their derivatives, we obtainc11 c12

c21 c22

 =

ψ1(d) ψ′1(d)

ψ2(d) ψ′2(d)

 (A.5)

Therefore, we find easily that the equations (A.3), (A.4) may be rewritten as

ψ1(x+ d) = ψ1(d)ψ1(x) + ψ′1(d)ψ2(x) (A.6)

ψ2(x+ d) = ψ2(d)ψ2(x) + ψ′2(d)ψ2(x) (A.7)
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Then, after inserting the expressions (A.6), (A.7) for ψ1(x + d), ψ2(x + d) into
equation (A.2), we obtain

c1(ψ1(d)ψ1(x) + ψ′1(d)ψ2(x)) + c2(ψ2(d)ψ1(x) + ψ′2(d)ψ2(x))

= ρ(c1ψ1(x) + c2ψ2(x)) (A.8)

Thus, by equating the coefficients of ψ1(x) and ψ2(x) in the latter equation, a
linear homogeneous system is producedψ1(d)− ρ ψ2(d)

ψ′1(d) ψ′2(d)− ρ

(c1

c2

)
= 0 (A.9)

To obtain the non-trivial solution of the system (A.9), we employ the necessary
and sufficient condition

det

ψ1(d)− ρ ψ2(d)

ψ′1(d) ψ′2(d)− ρ

 = 0, (A.10)

resulting in the equation

ρ2 − (ψ1(d) + ψ′2(d))ρ+W (d) = 0. (A.11)

where W (d) = ψ1(d)ψ′2(d) − ψ2(d)ψ′1(d) is the Wronskian of the two independent
solutions ψ1(x) and ψ2(x), calculated at x = d. However, the Wronskian of an
equation of the form (2.2) is always constant, and thus according to initial condi-
tions (2.7), W (d) = 1.

By setting Λ = ψ1(d) + ψ′2(d), we can now determine the final expression of
Hill’s discriminant

ρ2 − Λρ+ 1 = 0. (A.12)
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Appendix B

Generic expression for critical
wave amplitude

The development of the instability and the realisation of the first bifurcation at Ucr1
generates two different transport channels. What channel will be active depends
on the initial conditions. Let denote E and O sequential even and odd numbers
respectively. Therefore, considering the electron found at position x̃0 with p̃0 = 0,
we get the following representation for critical U

Ucrn = − ~
dsinx̃s

[
v0

vs
cosp̃s + p̃s − (E − n+ 3/2)π

]
. (B.1)

Here (x̃s, p̃s) is any saddle point found at x̃s = −π/2 + 2πη {η ∈ Z} and

p̃s = (−1)E sin−1
(
vs
v0

)
+ Eπ. If electrons are out of the thermal equilibrium at the

initial time t0 then the critical wave amplitude takes the form

Ucrn = − ~
dsinx̃s

[
vo
vs

cosp̃s + p̃s − (O + n− 3/2)π

]
, (B.2)

where (x̃s, p̃s) is any saddle point located at x̃s = π/2 + 2πη {η ∈ Z} and

p̃s = (−1)O sin−1
(
vs
v0

)
+ Oπ. Note, that the separatrix reconnection at U = Ucr1

involves saddle points which differ by |∆p̃| = sin−1
(
vs
v0

)
+π. This way, the electron

moves all along the distance between two adjacent wave crests. In the limit v0 >>
vs, the electron under the action of sound wave for U = Ucr1 can reach the boundary
of first Brillouin zone |∆p̃| → π. Figure B.1 describes the possible transitions
to the subsequent Brillouin edges corresponding to the realisation of bifurcations
determined by equations (B.1), (B.2) for different Ucr. It is worth to note that
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we may treat though the particle motion over the ”elementary cell” −π ≤ p̃ < π.
Suppose the node ”0” lies at the center of Brillouin zone then subtracting the
integral multiple of 2π from the group of nodes with values {2π, 4pi, .., Eπ} gives
again the same point inside the first zone. On the other hand, ”π” standing on
the location in momentum space for which the Bragg condition is satisfied, it is
physically identical with the values {−Oπ, ...,−3π,−π}. Therefore, for the latter
case every Ucr will coincide with excitation of the electron at the upper half of the
miniband whereas for the former, with suppression to its bottom.
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Figure B.1: Graphical representation of the two possible electron’s transport paths
in momentum space, when the system undergoes a sequence of global bifurcations.
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Appendix C

Propagation of an
Electromagnetic Wave in
Conductor

We consider the propagation of an EM wave through a linear conducting medium,
neglecting the transient effects related to the migration of free charge to the surface
of the conductor. With this, we assume the free charge density to be zero ρf = 0.
Maxwell’s equations describing such a conductor are represented by

∇ · E = 0, (C.1)

∇ ·B = 0, (C.2)

∇× E = −∂B

∂t
, (C.3)

∇×B = µ0J + ε0µ0εr
∂E

∂t
. (C.4)

Within the conductor with conductivity σ, the Ohm’s law can be written as

J = σE. (C.5)

Applying the curl to equation (C.3) and by using equations (C.5), (C.1) we obtain
the wave equation for E

∇2E− µ0σ
∂E

∂t
− ε0µ0εr

∂2E

∂t2
= 0, (C.6)

The latter equation has a solution similar to the one of an ordinary wave equation

Ẽ(r, t) = Ẽ0e
i(kr−ωt) ν̂, (C.7)
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where ν̂ is the polarization vector, k̂ is the propagation vector, Ẽ0 is the complex
amplitude and the real part of Ẽ satisfies equation (C.6). Assuming now a plane
wave, which is polarised in x̂ direction and that travels along z-axis, from the
equation (C.6) we obtain

d2Ẽ

dz2
+
n2ω2

c2
Ẽ = 0, (C.8)

where ñ = n0

(
1 + i σ

ωε0εr

) 1
2

is the complex refractive index with n0 =
√
εr for a

weakly magnetic substance (µr ≈ 1) and c is the speed of light in the vacuum. The
existence of a complex factor in the refractive index will implicate the involvement
of a complex wave number K̂ in the space-dependent part of the plane wave. Hence,
substituting Ẽ(z) = Ẽ0e

iK̂z in equation (C.8) produces

K̂ = n0
ω

c

(
1 +

σ2

ω2ε20ε
2
r

)1/4

ei
θ
2 (C.9)

θ = tan−1

(
σ

ωε0εr

)
+ nπ, n ∈ Z (C.10)

Given the Euler formula ei
θ
2 = cos θ

2
+isin θ

2
, the cosine function in terms of tangent

1√
1+tan2 θ

and the trigonometric half angle formulas cos θ
2

=
√

(1 + cosθ)/2,

sin θ
2

=
√

(1− cosθ)/2 we obtain

cos
θ

2
=

1√
2

[
1 +

(
1 +

σ2

ω2ε20ε
2
r

)−1/2
]1/2

sin
θ

2
=

1√
2

[
1−

(
1 +

σ2

ω2ε20ε
2
r

)−1/2
]1/2

(C.11)

Now, if we substitute these analytical forms of cos θ
2

and sin θ
2

into equation (C.9)
we find

K̂ = kr + iki (C.12)

with (
kr
ki

)
= n0

ω√
2c

[(
1 +

σ2

ω2ε20ε
2
r

)1/2

± 1

]1/2

(C.13)

The existence of the imaginary part in K̂ causes the attenuation of the wave
with the increase of z:

Ẽ(z, t) = Ẽ0e
−kizei(krz−ωt). (C.14)
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The distance it takes to reduce the amplitude of the wave by a factor 1/e is called
skin depth

δ(ω) = 1/ki(ω). (C.15)

For σ << ωε0εr, known as the case of the bad conductor, the imaginary part of
complex wave number becomes frequency independent and therefore δ describes
the penetration length. Using (C.13) in this limit, δ can be written as

δ =
2ε0εrc

σn0

. (C.16)

It becomes clear that for high-frequency fields the dielectric properties of the con-
ductor determine the attenuation of the wave. In general, the average power per
unit area transported by an electromagnetic wave is called intensity

I =
1

2
cε0Ẽ

2
0 . (C.17)

Because the intensity is proportional to the square of the amplitude of wave [see
Eqs. (C.17),(C.14) ] and therefore to e−2kiz, the absorption coefficient of the EM
wave is defined as

α = 2ki. (C.18)

It is easy to see from equation (C.13), (C.18) that if we know the value of the
real part of the dynamical conductivity σ(ω), we can determine the coefficient of
absorption. To calculate the absorption of an electric field in a conductor (see also
in Chapter 4), we use equation

Re[σ(ω)] =
2 〈j(t)cos(ωt)〉t

Eω
. (C.19)

At this point, it is useful to revisit the Drude model of high-frequency conduction.
In the Drude theory, the response of the carriers, having charge e and mass m, to
a spatially uniform electric field, is described by the equation of motion

mv̇(t) = −m
τ

v(t) + eE(t), (C.20)

where v is the velocity of the particle and τ is a phenomenological relaxation time.
The general solution to equation (C.20) can be found by first rewriting it as

d

dt

[
e
t
τ v(t)

]
=

e

m
e
t
τ E(t) (C.21)
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and then by integrating from t′ = −∞ (denoting a time before any field has been
applied) to t (the time we make the measurement of drift velocity), we obtain

v(t) =
e

m

∫ t

−∞
dt′e

−(t−t′)
τ E(t′). (C.22)

Equation (C.22) indicates that electron velocity at any given time t, depends on the
response of the system to the external electric field at a prior time. Given that the
density of conduction electrons, n, is constant and the electric field demonstrates
harmonic variation, the current density is represented by

J(t) = Re

[
ne2τ

m
E(ω)

∫ t

−∞
dt′e

−(t−t′)
τ e−iωt

′
]

= Re

[
σ0

1− iωτE(ω)e−iωt
]
, (C.23)

where σ0 = ne2τ/m. The time dependent current density has a complex amplitude
defined by the following dispersion relationship

J(ω) = σ(ω)E(ω). (C.24)

Using equations (C.24) and (C.23), the Drude frequency-dependent complex con-
ductivity can be obtained as

σ(ω) = Re[σ(ω)] + i Im[σ(ω)] =
σ0

1 + ω2τ 2
+ iωτ

σ0

1 + ω2τ 2
. (C.25)

The in-phase component [this can be obtained by multiplying J(t) with cos(ωt)]
to the frequency, ω, of the dynamic electric field is

J(t)cos(ωt) = Re

[
σ0

1− iωτ Eωe
−iωt
]

cos(ωt). (C.26)

By integrating equation (C.26) over a period T = 2π/ω, it is easy to see that

〈j(t)cos(ωt)〉t =
Re[σ(ω)]Eω

2
, (C.27)

which is equivalent with equation (C.19).
A more direct way, to observe that the gain or the absorption of an alternating

field in a conductor is consistent with equation (C.27), it is to calculate the output
power per electron. This can be simply done by determining the energy that the
wave gives to the particle or the energy that the particle loses to damping and

139



radiation. Only the electric field does work on the electron. And since the electric
force is eEωcosωt, the amount of work done on the particle in time dt is

dW = FEωdx = eEω cosωt vdt (C.28)

The instantaneous power and the averaging power over a complete cycle are given
by

P (t) =
dW

dt
(C.29)

and

Pavg =
1

T

∫ T

0

P (t)dt. (C.30)

respectively. Therefore, combining equations (C.28), (C.29), (C.30) and if the
space charge effects are neglected, the dissipated power turns out to be

Pavg =
1

T

∫ T

0

eEpr(t)v(t)dt =
eEω
T

∫ T

0

v(t)cosωt dt. (C.31)

Considering a semiconductor superlattice oscillator, the way that energy is trans-
ferred between the electron and the electric field E(t) is hidden in the sign of the
power Pavg. Hence, if Pavg > 0 energy of the alternating field is absorbed by the
superlattice. On the other hand, if Pavg < 0 energy is transferred to the alternating
field and thus E(t) is amplified, making possible the oscillation of the system.

140



References

[1] Raphael Tsu. Superlattice to nanoelectronics. Elsevier, 2005.

[2] Ernest Braun and Stuart MacDonald. Revolution in miniature: The history
and impact of semiconductor electronics. Cambridge University Press, 1982.

[3] Lawrence E Larson, RH Hackett, and RF Lohr. Microactuators for GaAs-
based microwave integrated circuits. In Solid-State Sensors and Actuators,
1991. Digest of Technical Papers, TRANSDUCERS’91., 1991 International
Conference on, pages 743–746. IEEE, 1991.

[4] Susumu Noda, Katsuhiro Tomoda, Noritsugu Yamamoto, and Alongkarn
Chutinan. Full three-dimensional photonic bandgap crystals at near-infrared
wavelengths. Science, 289(5479):604–606, 2000.

[5] James Meindl. Special issue on limits of semiconductor technology. Proceed-
ings of the IEEE, 89(3):223–226, 2001.

[6] Mark Lundstrom. Moore’s law forever? Science, 299(5604):210–211, 2003.

[7] Steven H Gold and Gregory S Nusinovich. Review of high-power microwave
source research. Review of Scientific instruments, 68(11):3945–3974, 1997.

[8] JR Pierce and Lester M Field. Traveling-wave tubes. Proceedings of the IRE,
35(2):108–111, 1947.

[9] Raphael Tsu. Applying the insight into superlattices and quantum wells for
nanostructures: Low-dimensional structures and devices. Microelectronics
Journal, 38(10):959–1012, 2007.

[10] Leo Esaki and Ray Tsu. Superlattice and negative differential conductivity
in semiconductors. IBM Journal of Research and Development, 14(1):61–65,
1970.

141



References

[11] Anatoly A Ignatov, EP Dodin, and VI Shashkin. Transient response theory
of semiconductor superlattices: connection with Bloch oscillations. Modern
Physics Letters B, 5(16):1087–1094, 1991.

[12] Karl Leo, Peter Haring Bolivar, Frank Brüggemann, Ralf Schwedler, and
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A tool for terahertz acoustics. Ultrasonics, 56:66–79, 2015.

[184] AJ Kent, RN Kini, NM Stanton, M Henini, BA Glavin, VA Kochelap, and
TL Linnik. Acoustic phonon emission from a weakly coupled superlattice
under vertical electron transport: observation of phonon resonance. Physical
Review Letters, 96(21):215504, 2006.

[185] KJ Ahn, F Milde, and A Knorr. Phonon-wave-induced resonance fluores-
cence in semiconductor nanostructures: Acoustoluminescence in the tera-
hertz range. Physical review letters, 98(2):027401, 2007.

156



References
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