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Abstract—A new continuous dynamic sliding-mode control
(CDSMC) method is proposed for high-order mismatched distur-
bance attenuation in motion control systems using a high-order
sliding-mode differentiator. Firstly, a new dynamic sliding surface
is developed by incorporating the information of the estimates
of disturbances and their high-order derivatives. A CDSMC law
is then designed for a general motion control system with both
high-order matched and mismatched disturbances, which can
attenuate the effects of disturbances from the system output.
The proposed control method is finally applied for the airgap
control of a MAGnetic LEViation (MAGLEV) suspension vehicle.
Simulation results show that the proposed method exhibits
promising control performance in the presence of high-order
matched and mismatched disturbances.

Index Terms—Motion control systems, high-order mismatched
disturbances, dynamic sliding-mode control, MAGLEV Suspen-
sion vehicle.

I. INTRODUCTION

IN ALMOST all modern motion control systems, various

uncertainties including parameter perturbations, unmodeled

dynamics and external disturbances, always bring undesirable

influence on the performance specification [1]. For example,

see robot manipulator [2], [3], magnetic balance beam [4],

MAGnetic LEViation (MAGLEV) suspension vehicle [5], [6],

permanent magnet synchronous motor (PMSM) [7], [8], hard-

disk drive [9]. Due to the growing interest in smart and

high-precision motion devices, the development of disturbance

rejection technique has received more and more attentions in

motion controller design. Many elegant control approaches,

such as H2/H∞ control [10], sliding model control [11], [12],

adaptive control [13], robust control [14], [15] and backstep-

ping control [16], [17], have been widely investigated in the

literature for motion control systems. Although these methods

have gained extensive applications and been proved to be
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efficient, they mainly focus on the stability (or robust stability)

of uncertain systems [18], and in general, the robustness is

achieved at a price of sacrificing the nominal performance

[18], [19], [20]. In addition, most of those advanced feedback

control approaches are designed without active feedforward

disturbance compensation, and they can only attenuate the

nonvanishing disturbances to a prescribed level rather than

completely remove them from system [20], [21].

As a practical alternative approach, disturbance observer

based control (DOBC) has been proved to be effective in

compensating the effects of unknown external disturbances

and model uncertainties in motion control systems [2], [7],

[9], [23]. The major merit of the DOBC is that the robustness

of the closed-loop system is obtained without sacrificing its

nominal control performance [19], [20]. Another remarkable

feature of DOBC lies in that it could completely remove

the nonvanishing disturbances from system as long as they

can be accurately estimated [22]. Despite the above excellent

features, most of the existing DOBCs are only insensitive

to matched disturbances but sensitive to mismatched ones.

However, in many practical systems, the uncertainties would

not rigorously satisfy the matching condition, for instance, see

the MAGLEV suspension vehicle [23], the PMSM system [7],

[14] and magnetically suspended balance beam system [4].

Due to the importance of compensating mismatched distur-

bances in both theory and engineering applications, several

researchers have engaged in solving such a problem via

DOBC, for example see [20]-[27]. In [24], the offset caused

by mismatched disturbance is removed in the context of model

predictive control by correcting the prediction error via a

disturbance observer. An equivalent-input-disturbance based

control framework is proposed for mismatched disturbance

attenuation in [25]. By designing a specific disturbance com-

pensation gain, a new DOBC framework was proposed to

compensate mismatched disturbances for linear systems in

[23] and also nonlinear systems in [20]. In [26] and [27],

a new DOBC method was proposed to counteract the mis-

matched uncertainties in the system via designing a dynamic

sliding surface incorporating the information of mismatched

disturbances. When the sliding motion is realized, the pre-

scribed specification including robust stability and disturbance

attenuation can be achieved. However, it is noticed that, the

mismatched disturbances in [20]-[27] are required to be a

constant, which is not reasonably satisfied for many practical

engineering issues [5], [28]. Taking the MAGLEV suspension

vehicle as an example, the track input disturbance would not be
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a constant but fluctuates continuously with a high-order time-

varying feature [5]. The presence of high-order mismatched

disturbances will result in undesirable static and dynamic

performance for methods in [20]-[27], which may constrain

their applications in practical systems.

It is also noticed that in sliding mode control societies,

much effort has been taken to the sliding surface design

of systems under mismatched uncertainties (see e.g. Refs.

[29]-[33] and references therein). However, the mismatched

uncertainties therein considered should satisfy the condition of

being H2 norm-bounded, that is, the mismatched uncertainties

are vanishing ones [26]. In addition, those methods suppress

the mismatched uncertainties and disturbances in a robust way,

that is, the ability against uncertainties is obtained at a price

of sacrificing the nominal performance of control systems.

In this paper, a new continuous dynamic sliding-mode

control (CDSMC) method is proposed to completely counter-

act the effects of both high-order matched and mismatched

disturbances on the output of motion control systems. By

fully taking into account the information of estimates of

disturbances and their high-order derivatives, a new dynamic

sliding surface is firstly designed which is insensitive to not

only matched disturbances but also mismatched ones. As a

result, the system output can be driven to the desired setpoint

asymptotically by sliding motion along the new dynamic

sliding surface even under both matched and mismatched

disturbances. A continuous control law without any chattering

is designed to drive the states to the designed dynamic sliding

surface in finite time.

The proposed method exhibits the following attractive fea-

tures. Firstly, the effects of both matched and mismatched

disturbances are completely removed from the system output,

where the disturbances are not constrained to be constant

ones but could be high-order time-varying ones. Secondly, the

nominal performance is retained with the proposed method,

which means the proposed method acts the same as the

baseline SMC in the absence of disturbances. Thirdly, the

proposed control law is continuous without any chattering

since the disturbances have been attenuated in finite time

due to the finite-time convergence of the high-order sliding-

mode differentiator and thus no switching control is required

for disturbance rejection. The stability of the closed-loop

system under the proposed method is addressed by means of

Lyapunov stability method.

As a typical motion control system, recently, MAGLEV

suspension vehicle has been attracting ever-increasing atten-

tion as a means of achieving noncontact transportation [34],

[35] due to various advantages in practice including no direct

environmental pollution and high safety and reliability [23].

As compared with the conventional wheel-on-rail ones, it

does not have any mechanical contact with tracks, therefore,

the friction, vibration, mechanical losses and acoustic noise

are significantly reduced [5]. However, essentially, MAGLEV

suspension vehicle is a nonlinear system subject to both

external disturbances and parameter variations [23], which

poses challenges to control designers. To this end, a great deal

of elegant control methods for MAGLEV vehicles have been

proposed in the past few decades including PI control [5],

adaptive control [13], H-infinity control [10], sliding mode

control [26], and so on. Simulation results of the MAGLEV

suspension vehicle show that the proposed approach enables

faster and higher-precision tracking performance as compared

with other traditional control methods in the presence of high-

order mismatched disturbances.

II. MOTIVATIONS

Without loss of generality, the following second-order mo-

tion system subject to mismatched high-order disturbance is

taken as an example to show the motivations of this paper

η̇1 = η2 + d(t),
η̇2 = a(η) + b(η)u,
y = η1,

(1)

where η1 and η2 are states, u is the control input, d(t) is the

mismatched high-order disturbance, and y is the output. a(η)
and b(η) �= 0 are smooth nonlinear functions in terms of η.

The sliding-mode control (SMC) and integral SMC (I-SMC)

methods are taken as representatives to show how high-order

mismatched disturbances affects the control performance of

the closed-loop systems. The sliding surface as well as control

law of baseline SMC are generally designed as [36]

σ = η2 + cη1, u = −b−1(η)[a(η) + cη2 + ksign(σ)]. (2)

Combining (1) with (2) gives

σ̇ = −ksign(σ) + cd(t). (3)

As shown in Eq. (3), the states in system (1) which are initially

outside sliding surface σ = 0 will reach it in finite time if the

switching gain in (2) is selected such that k > max{|cd(t)|}.

Considering the condition σ = 0 in (2), the sliding motion

dynamics is governed by

η̇1 = −cη1 + d(t). (4)

It is noticed from Eq. (4) that, if the disturbance d(t) is non-

zero, then the output η1 can not be driven to the desired

equilibrium point.

An effective method to suppress the mismatched uncer-

tainties would be I-SMC [36], which generally employs the

following sliding surface

σ = η2 + c1η1 + c2

∫
η1. (5)

The control law of I-SMC is then designed as

u = −b−1(η)[a(η) + c1η2 + c2η1 + ksign(σ)]. (6)

Combining (1) with (5) and (6) yields

σ̇ = −ksign(σ) + c1d(t). (7)

The states of system (1) will arrive the sliding surface σ = 0
in (5) in finite time if the switching gain in (6) is selected such

that k > max{|c1d(t)|}. Taking the condition σ = 0, we have

η̈1 + c1η̇1 + c2η1 = ḋ(t), (8)

It can be derived from (8) that, the I-SMC method is efficient

to eliminate the offset caused by mismatched disturbance with
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a constant steady-state value. However, in the presence of

high-order disturbance ( lim
t→∞ ḋ(t) �= 0), the I-SMC method

is unavailable for offset removal, i.e., the output η1 can not

be driven to the desired equilibrium point asymptotically.

In addition, it is well known that the integral action of I-

SMC method may bring some undesirable impacts to system

performance, e.g., destroying its nominal control performance

and introducing overshoot.

Another alternative approach to attenuate mismatched un-

certainties is proposed in [26], [27], which is called enhanced

SMC (ESMC) via a disturbance observer. The sliding surface

in [26], [27] for system (1) is defined as

σ = η2 + c1η1 + d̂, (9)

where d̂ denotes the estimate of the disturbance d by a

disturbance observer. The ESMC law could attenuate the

mismatched disturbances without sacrificing its nominal per-

formance, and the chattering problem can be relieved to some

extent. However, the control law of ESMC is still discontinu-

ous indicating that the chattering problem is unavailable.

In order to attenuate the effect of mismatched disturbance

on the system output, the aforementioned control methods

make some conservative assumptions on the mismatched dis-

turbance. That is, the disturbance is required to be a vanishing

one for traditional SMC method, and with a constant steady-

state value for I-SMC and ESMC methods. However, the

disturbance in practical applications may not satisfy those

assumptions, which has been showed by MAGLEV suspension

vehicle [26] and PMSM system [7], [14], etc. In those cases,

the offset caused by high-order mismatched disturbance can

not be eliminated effectively by the traditional SMC methods.

In addition, when those methods are extended to control

higher-dimension system, the high-order derivatives of the

mismatched disturbances would have an adverse impact on

both the dynamic and static performances. This motivates

the research topic of this paper, that is, designing a new

control law for nonlinear system with both high-order matched

and mismatched disturbances such that the offset caused by

disturbances is completely removed from the system output.

III. NEW DYNAMIC SLIDING-MODE CONTROL DESIGN

Consider a single-input single-output motion control system

with input relative degree (IRD) of ρ which is subject to high-

order mismatched disturbances [37]:

η̇i = ηi+1 + di, 1 ≤ i ≤ ρ − 1,
η̇ρ = a(η) + b(η)u + dρ,
y = η1,

(10)

where η = [η1, · · · , ηρ]T are the state vectors, u is the control

input, y is the controlled output, di is the disturbance with at

least (ρ − i)th order bounded derivatives. a(η) and b(η) �= 0
are smooth functions in terms of η.

The objective is to design a feedback controller for system

(10), which could drive the control output y to the desired

setpoint asymptotically in spite of the presence of both high-

order matched and mismatched disturbances.

A. Controller Design

A new dynamic sliding surface for system (10) is designed

as

σ = c1η1 +
ρ∑

i=2

ci(ηi +
i−1∑
j=1

zj
i−j) (11)

where ci > 0, (i = 1, · · · , ρ) are parameters to be designed,

and zj
i−j is the state of the following high-order sliding-mode

differentiator

żi
0 = vi

0 + ηi+1, żi
1 = vi

1, · · · , żi
ri−1 = vi

ri−1, żi
ri

= vi
ri

,

vi
0 = −λi

0L
1

ri+1

i |zi
0 − ηi|

ri
ri+1 sign(zi

0 − ηi) + zi
1,

vi
1 = −λi

1L
1
ri
i |zi

1 − vi
0|

ri−1
ri sign(zi

1 − vi
0) + zi

2,
...

vi
ri−1 = −λi

ri−1L
1
2
i |zi

ri−1 − vi
ri−2|

1
2 sign(zi

ri−1 − vi
ri−2) + zi

ri
,

vi
ri

= −λi
ri

Lisign(zi
ri
− vi

ri−1),
(12)

where ηρ+1 denotes a(η) + b(η)u for the simplicity of ex-

pression, ri is the order of differentiator, λi
j > 0 (j =

0, 1, . . . , ri; i = 1, 2, · · · , ρ − 1) are the coefficients of the

differentiator to be designed. Suppose that dri
i has a Lipshitz

constant Li.

Remark 1: The high-order sliding-mode differentiator (12)

is referred to [38], where the only slight difference is design

of the first equation żi
0. However, it will be shown next that

the differentiator error system derived by (12) is the same as

that in [38]. The order of ith differentiator is determined by

ri = ρ − i + 1, since only di, ḋi, · · · , dρ−i
i have an impact

on the system output. In order to completely compensate the

effects of disturbances from the output dynamics, we make an

assumption that the disturbance di has (ρ−i)th order bounded

derivatives. �
A continuous dynamic siding-mode control (CDSMC) law

based on the dynamic sliding surface (11) for system (10) is

designed as

u = − 1
cρb(η){c1(η2 + z1

1) +
ρ−1∑
i=2

ci(ηi+1 + zi
1 +

i−1∑
j=1

vj
i−j)

+cρ[a(η) + zρ
1 +

ρ−1∑
j=1

vj
ρ−j ] + ksign(σ)|σ|α},

(13)

where 0 < α < 1 is a design parameter, zi
1, vi−j

i have been

given in (12), k > 0 is a controller gain, and ci are the

parameters to be designed such that the polynomial

po(s) = cρs
ρ−1 + · · · + c2s + c1 = 0, (14)

is Hurwitz. The block diagram of CDSMC is described by

Fig. 1.

B. Stability Analysis

The stability of the closed-loop system is analyzed in this

part based on the Lyapunov stability method. The following

Lemma is firstly presented as an essential preliminary.
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Fig. 1. Block diagram of CDSMC method.

Lemma 1: The differentiator error system governed by

ėi
0 = −λi

0L
1

ri+1

i |ei
0|

ri
ri+1 sign(ei

0) + ei
1,

ėi
1 = −λi

1L
1
ri
i |ei

1 − ėi
0|

ri−1
ri sign(ei

1 − ėi
0) + ei

2,
...

ėi
ri−1 = −λi

ri−1L
1
2
i |ei

ri−1 − ėi
ri−2|

1
2 sign(ei

ri−1 − ėi
ri−2) + ei

ri
,

ėi
ri

∈ −λi
ri

Lisign(ei
ri
− ėi

ri−1) + [−Li, Li],
(15)

where the errors are defined as ei
0 = zi

0 − ηi, ei
1 = zi

1 −
di, · · · , ei

ri−1 = zi
ri−1 − d

[ri−2]
i , ei

r = zi
ri

− d
[ri−1]
i , is

finite-time stable [38], [39], that is, there exists a time constant

tif > t0 such that ei
j(t) = 0 (j = 0, 1, . . . , ri) for t ≥ tif .

The proof of this lemma can be followed from [38], which is

omitted here for space. �
The main results of the paper are presented by the following

theorem.

Theorem 1: For system (10) with the proposed dynamic

sliding surface (11) under control law (13), the system output

y will converge to the desired setpoint asymptotically and the

states remain bounded.

Proof : For the proposed dynamic sliding surface (11), its

derivative along the system dynamics (10) is

σ̇ = c1(η2 + d1) +
ρ∑

i=2

ci(ηi+1 + di +
i−1∑
j=1

vi−j
j ). (16)

Combining (10), (13) and (16) gives

σ̇ =
ρ∑

i=1

ci(di − zi
1) − ksign(σ)|σ|α

= −ksign(σ)|σ|α − el.
(17)

where el =
ρ∑

i=1

cie
1
i is bounded due to the finite-time conver-

gence of error system (15).

It will be shown that a bounded estimation error el will not

drive the sliding variable to infinity in a finite time. To this end,

define a finite-time bounded (FTB) function [40] V (σ) = 1
2σ2

for the sliding mode dynamics (17). Taking derivative of V (σ)
along (17) yields

V̇1(σ) = σσ̇ = −k|σ|α+1 − elσ ≤ −elσ
≤ 1

2σ2 + 1
2e2

l ≤ Kv1V1(σ) + Lv1

(18)

where Kv1 = 1 Lv1 = 1
2max{e2

l }. Then, it can be obtained

from (18) that V (σ) and so σ are bounded in any finite time.

Note that error system (15) is finite-time stable, which

implies that el will converge to zero in a finite time te. In

addition, it has been shown by (18) that the sliding variable

σ will not be driven to infinity in the finite-time convergent

process of differentiator. So after the finite-time stability of

error system (15) is achieved, the sliding mode dynamics (17)

will reduce to σ̇ = −ksign(σ)|σ|α, which means the sliding

variable σ will converge to zero in a finite time tσ .

Defining η̃1 = η1, η̃i = ηi +
i−1∑
j=1

zj
i−j , i = 2, . . . , ρ, the

dynamics of states η̃i are obtained from (11), governed by

˙̃ηi = η̃i+1 + ẽi, i = 1, . . . , ρ − 1,
˙̃ηρ = −∑ρ

i=1 kiη̃i + σ̇,
(19)

where ẽ1 = −e1
1, ẽi =

∑i−1
j=1

(
ėj
i−j − ej

i−j+1

)
− ei

1 for i =
2, . . . , ρ− 1. The dynamics of states (19) can be expressed in

the following compact form

˙̃η = Aη̃ + ũ (20)

where η̃ = [η̃1, · · · , η̃ρ]T , A is the companion matrix of the

Hurwitz polynomial po(s) = cρs
ρ−1 + · · · + c2s + c1, ũ =

[ẽ1, · · · , ẽρ−1, σ̇] is the input vector with a bounded norm since

both σ and ei
j are bounded.

Next we will show the sliding surface dynamics (17) and

the observer error dynamics (15) will not drive the state

dynamics (19) to infinity in finite time. Define a FTB function

V2(η̃) = 1
2 η̃T η̃ for system (20). Taking derivative of V (η̃)

along dynamics (20), one obtains

V̇2(η̃) = ˙̃ηT η̃ = η̃T Aη̃ + η̃T ũ
≤ η̃T Aη̃ + 1

2 (η̃T η̃ + ũT ũ)
≤ (λmax + 1

2 )η̃T η̃ + 1
2 ũT ũ

= Kv2V2(η̃) + Lv2 ,

(21)

where Kv2 = 2λmax + 1, Lv2 = 1
2 max{||ũ||2}, λmax is the

largest eigenvalue of matrix A.

It can be concluded from (21) that V (η̃) and so the state η̃i

will not escape to infinity in finite time. This implies that the

system dynamics (19) will reduce to the following system

˙̃ηi = η̃i+1, ˙̃ηρ = −
ρ∑

i=1

kiη̃i (22)

for i = 1, . . . , ρ − 1 with a finite time after the stabilities

of sliding surface dynamics (17) and observer error dynamics

(15) are achieved in finite time. Since A is a Hurwitz matrix,

system (22) is asymptotically stable, which implies that y(t) =
η1(t) will converge to the desired setpoint asymptotically. �

Remark 2: In the absence of disturbances and uncertainties

(that is, d1
i (t) = d2

i (t) = · · · = d
[ri]
i (t) = 0), if the initial

states of the differentiator are selected as zi
0(t0) = ηi(t0) and

zi
1(t0) = zi

2(t0) = · · · = zi
ri

(t0) = 0, then it is obtained from

the definition of ei
j that ei

0(t0) = ei
1(t0) = · · · = ei

ri
(t0) = 0.

Note that the error system (15) is finite-time stable and the

initial states are zeros, which implies that ei
0(t) = ei

1(t) =
· · · = ei

ri
(t) = 0 holds for t > t0. It is then obtained from the

definition of errors ei
j that zi

j(t) = 0, j = 1, · · · , ri for t > t0,

which implies that the proposed dynamic sliding surface (11)
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will reduce to the traditional sliding surface σ =
ρ∑

i=1

ci(ηi).

In addition, zi
j(t) = 0, j = 1, · · · , ri for t > t0 implies that

vj
i−j = 0 holds for t > t0, which indicates that the CDSMC

law (13) reduces to the traditional SMC law

u = −[cρb(η)]−1{
ρ−1∑
i=1

ciηi+1 + cρa(η) + ksign(σ)|σ|α}
(23)

This implies that the proposed CDSMC acts the same as the

baseline SMC in the absence of uncertainties, that is, the

nominal control performance of the proposed control method

is retained. �
Remark 3: The CDSMC proposed in this paper can be seen

as a nontrivial extension of the existing ESMC method in [26].

Actually, the CDSMC method reduces to ESMC in [26] under

the assumption that the mismatched disturbance satisfies ḋi =
0(i = 1, · · · , ρ). Since under the assumption that ḋi = 0, only

the estimate of di is required to be included in the dynamic

sliding surface (11), which means that the dynamic sliding

surface (11) reduces to the sliding surface in ESMC

σ = c1η1 +
ρ∑

i=2

ci(ηi + zi−1
1 ) (24)

where zi−1
1 = d̂i−1 is the estimation of di−1. However, if the

assumption on mismatched disturbances ḋi = 0 does not hold,

the system dynamics is then governed by

ρ∑
i=1

ciη
[i]
i =

ρ∑
i=2

ci[(di−1 − d̂i−1) +
i−2∑
j=1

d
[i−1−j]
j ], (25)

for ESMC, which means the derivatives and high-order deriva-

tives of disturbances still have an undesirable effect on the

system states even the sliding mode σ = 0 in (24) is

realized. To eliminate the offset caused by the high-order

derivatives of disturbances, not only the estimations of dis-

turbances zi
1 but also the estimations of high-order derivatives

of the disturbances zj
i are incorporated in the dynamic sliding

surface (11). As a result, when the dynamic sliding surface

(11) is reached together with the convergence of the high-

order sliding mode differentiator, the system dynamics will

be governed by
ρ∑

i=1

ciη
[i]
i = 0, which means that the offset

caused by high-order derivatives of disturbances is completely

removed from system output. �

IV. A MAGLEV SUSPENSION VEHICLE DESIGN

EXAMPLE

A. Dynamic Model of MAGLEV Suspension Vehicle

1) Nonlinear Dynamic Model: The complete nonlinear

model dynamics for a MAGLEV suspension vehicle are given

by [5], [23],

B = Kb
I

G
, (26)

F = KfB2, (27)

dI

dt
=

Vc − IRc + NcApKb

G2 (dzt

dt − dZ
dt )

NcApKb

G + Lc

, (28)

Ms
d2Z

d2t
= Msg − F + dload, (29)

dG

dt
=

dzt

dt
− dZ

dt
, (30)

where variables I , Z, zt,
dZ
dt , dzt

dt , G, F , B and Vc denote

the current, the electromagnet position, the rail position, the

electromagnet vertical velocity, the rail vertical velocity, the

air gap, the force, the flux density and the coil voltage,

respectively. A little difference from the model in [23] is that

the load variation dload = msg caused by weight of passengers

is explicitly included in the model. The rest symbols in Eqs.

(26)-(30) represent system parameters as shown in Table I.

TABLE I
PARAMETERS OF MAGLEV SUSPENSION VEHICLE

Parameters Meaning Value
Ms Vehicle mass 1000kg
Kb Flux coefficient 0.0015T·m/A
Kf Force coefficient 9810N/T2

Rc Coil’s resistance 10Ω
g Gravity constant 9.81m/s2

Lc Coil’s inductance 0.1H
Nc Number of turns 2000
Ap Pole face area 0.01m2

2) Model Linearization: In order to utilize the proposed

control method, model linearization is required to transform

the model of MAGLEV suspension system to meet the design

formation as described in (10). The model here is linearized

based on small perturbations around its operating point [5].

The following definitions are used, where the lower case letters

denote a small variation around operating point while the

subscript ‘o’ represents the operating condition

B = Bo + b, F = Fo + f, I = Io + i,

G = Go + (zt − z), Vc = Vo + uc.

The nominal values of MAGLEV vehicle in operating point

are provided in Table II [5].

TABLE II
NOMINAL VALUES OF MAGLEV SUSPENSION VEHICLE

Parameters Meaning Value
Bo Nominal flux density 1.0T
Fo Nominal force 9810 N
Io Nominal current 10A
Go Nominal air gap 0.015m
Vo Nominal voltage 100V

Then the linearilized dynamic model of MAGLEV suspen-

sion vehicle is obtained, which is depicted by

ẋ = Ax + Buu + Bdd(t) + �Ax + O(x, u, d),
y = Cx,

(31)

where the states x = [i, ż, (zt − z)]T represent variations

of current, vertical velocity of electromagnet and air gap;

the input u = uc denotes the voltage; the disturbances

d(t) = [żt,
msg
Ms

]T are the vertical velocity of rail and the load

variation; the controlled variable is air gap variation y = zt−z;

�A is the perturbation matrix; nonlinear function O(x, u, d)
represents the high order nonlinearities in terms of x, u and
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d due to linearization. Suppose that the external disturbances

d(t) have at least twice order bounded derivatives. Here the

system matrices in (31) are directly given as follows:

A =

⎡
⎢⎢⎣

−Rc

Lc+KbNc
Ap
Go

−KbNcApIo

G2
o(Lc+KbNc

Ap
Go

)
0

−2Kf
Io

MsG2
o

0 2Kf
I2

o

MsG3
o

0 −1 0

⎤
⎥⎥⎦ ,

(32)

Bu =

⎡
⎢⎢⎣

1

Lc + KbNc
Ap

Go

0
0

⎤
⎥⎥⎦ , (33)

Bd =

⎡
⎢⎢⎣

KbNcApIo

G2
o(Lc + KbNc

Ap

Go
)

0

0 1
1 0

⎤
⎥⎥⎦ , (34)

C =
[

0 0 1
]
. (35)

The diagram of a MAGLEV vehicle is shown by Fig. 2.

Fig. 2. Diagram of a MAGLEV vehicle.

The intended variations in the position of the track have to

be followed by the MAGLEV suspension while the uninten-

tional irregularities in the track position have to be rejected.

There are generally two major disturbances including external

disturbances and load variations. The first disturbances denote

the track input to the suspension from vertical direction. The

load variations can be considered as the second disturbance

and modeled as a force in the vertical direction.
The control specifications for the MAGLEV system in the

presence of the track input and load variation are provided in

Table III [5].

TABLE III
CONTROL SPECIFICATIONS FOR MAGLEV VEHICLE

Constraints Value
Maximum air gap deviation, ((zt − z)p) ≤0.0075m
Maximum input coil voltage, ((ucoil)p) ≤300V(3IoRc)
Settling time, (ts) ≤3s
Air gap steady state error, ((zt − z)ess ) =0

B. Controller Design

The high-order nonlinear term O(x, u, d) in Eq. (31) is

usually neglected in controller design due to its smaller

magnitude as compared with the dominated linear dynamics.

In this paper, however, such a nonlinear term is not neglected

any more but handled as a part of lumped disturbances. As a

result, the lumped disturbances include external disturbances,

parameter variation and high-order nonlinearities, described as

dl = Bdd + ΔAx + O(x, u, d). (36)

Remark 4: The lumped disturbances (36) in the MAGLEV

system contain some state and input variables. It is well known

that for disturbance estimator based control including extended

state observer (ESO) based control [7], DOBC [2], [6], [22],

[26], and equivalent input disturbance (EID) based control

[25], it is not easy to verify the boundedness assumptions

of the uncertainties du = f(x, u, d) = ΔAx + O(x, u, d) in

lumped disturbances. In many practical engineering systems,

however, the dominated dynamics have been stabilized by

feedback control, while the uncertainties du in the lumped

disturbance are usually very weak as compared with the dom-

inated dynamics, which in general will not affect the stability

of the closed-loop system. In this case, such uncertainties are

generally reasonably regarded as a part of lumped disturbance

and then handled by the proposed method. �
Substituting (36) into (31), the full dynamic model of the

nonlinear MAGLEV suspension vehicle is described as

ẋ = Ax + Buu + Bldl,
y = Cx,

(37)

where Bl = I is a 3 × 3 identity matrix.

To simplify the control design, the following transformation

is employed [26], which can transform the original system into

a system in Byrnes-Isidori normal form but subject to both

matched and mismatched disturbances

η = Tx, (38)

where

T =

⎡
⎣ C

CA
CA2

⎤
⎦ .

The MAGLEV system under such a coordinate transforma-

tion is then represented as

η̇ = Āη + B̄uu + B̄ldl, (39)

where Ā = TAT−1, B̄u = TBu, and B̄l = TBl.

Substituting (32)-(35) into (39) gives

η̇1 = η2 + dl3,
η̇2 = η3 − dl2,
η̇3 = CA3T−1η + CA2Buu + CA2Bldl.

(40)

where dl = [dl1, dl2, dl3]T in (40) is a vector with the

dimension three, and dli(i = 1, 2, 3) denotes the lumped

disturbances entering the ith channel.

Remark 5: It can be observed from (40) that the MAGLEV

suspension vehicle is subject to both matched disturbance

CA2Bldl and mismatched ones dl3 and dl2. The matched
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disturbance CA2Bldl can be attenuated in conventional SMC

by high-frequency switching control force, however, the mis-

matched disturbances dl3 and dl2 can not be attenuated by

traditional SMC which have an adverse effect on the system

output. �
Based on the above analysis, the CDSMC law (13) proposed

in Section III can be directly applied to the control design of

such a MAGLEV suspension vehicle in this section.

V. SIMULATION RESULTS AND ANALYSIS

Simulation results are provided to validate the performance

of the proposed method. To evaluate the efficiency of the

proposed control method, the traditional SMC, the I-SMC and

ESMC [26] methods are also employed in the simulations for

the purpose of comparisons. The simulations are implemented

for the full nonlinear dynamics of the MAGLEV system in a

measurement noise environment for practicality. The control

parameters of all the four control methods are listed in Table

IV.

TABLE IV
CONTROL PARAMETERS OF THE MAGLEV SUSPENSION VEHICLE

Controllers Parameters
SMC c1 = 100, c2 = 20, c3 = 1, k = 80
I-SMC c0 = 200, c1 = 100, c2 = 20, c3 = 1, k = 80
ESMC c1 = 100, c2 = 20, c3 = 1, k = 30, λ(η) = 100η1

c1 = 100, c2 = 20, c3 = 1, k = 30, L1 = L2 = 20
CDSMC λ1

0 = 3, λ1
1 = λ2

0 = 2, λ1
2 = λ2

1 = 1.5λ1
3 = λ2

2 = 2.5
α = 0.8

A. External Disturbances Rejection

The track input components considered in this part are

referred to [5] and shown in Fig. 3. They represent a gradient

of 5% at a vehicle speed of 15 m/s, a vertical acceleration of

0.5 m/s2 and a jerk level of 1 m/s3. In practical applications,

the track input disturbance would vary continuously due to the

ups and downs of the rail. To this end, an additional time-

varying track input disturbance żt = 0.1 sin(πt) m/s is taken

and imposed on the vehicle at t = 4 second to imitate the real

engineering.
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Fig. 3. Track input profile with a gradient of 5% at a vehicle speed of 15
m/s.

The initial states of MAGLEV suspension vehicle (31) are

taken as [i(0), ż(0), zt(0)−z(0)]T = [0, 0, 0.003]T . Simulation

results are shown in Figs. 4-6.
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Fig. 4. Response curves of output zt −z of MAGLEV vehicle with external
disturbances under four controllers: CDSMC (blue line), ESMC (red line),
I-SMC (black line), SMC (green line).
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Fig. 5. Response curves of control input ucoil of MAGLEV vehicle with
external disturbances under four controllers: (a) CDSMC; (b) ESMC; (c) I-
SMC; (d) SMC.

As shown by Figs. 4 and 6, the proposed method has

obtained the same response curves as those of the SMC

method during the first sec when there is no disturbance in

such a interval, which demonstrates the nominal performance

recovery property of the proposed methods. In addition, Figs.

4 and 6 show that the conventional SMC severely suffers from
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Fig. 6. Response curves of the states of MAGLEV vehicle with external
disturbances under four controllers: CDSMC (blue line), ESMC (red line),
I-SMC (black line), SMC (green line): (a) the current, i, (b) the vertical
electromagnet velocity, ż.

the mismatched non-vanishing disturbances. The I-SMC and

ESMC methods can remove the offset caused by track input

disturbances represented in Fig. 3. However, the proposed

CDSMC in this paper obtains better transient performance for

disturbance rejection as compared with the I-SMC and ESMC.

Also note that, in the presence of high-order time varying

disturbances (for t > 4 second), both I-SMC and ESMC

can not reject or compensate these disturbances effectively,

while the proposed CDSMC achieves prominent disturbance

compensation performance. Fig. 5 shows that the CDSMC

does not lead to any chattering phenomenon due to the contin-

uous control action, while traditional SMC, I-SMC and ESMC

result in the chattering phenomenon due to the discontinuous

sign function.

B. Robustness Against Load Variation

Simulation studies are performed to verify the robustness

of the CDSMC against load variation in this part. The load

variation under consideration is 40% of the total vehicle mass

in 10 seconds, i.e., the disturbance load will vary from 0

kg (fully unladen vehicle) to 400 kg (fully laden vehicle).

The load variation profile is shown in Fig. 7. The external

disturbance in Fig. 3 is also considered and added on system at

t = 15 sec. The initial states for MAGLEV suspension vehicle

(31) are taken as [i(0), ż(0), zt(0) − z(0)]T = [0, 0, 0]T . The

control parameters for all the four control methods are the

same as the ones in the case of external disturbance rejection.
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Fig. 7. Profile of the load variation.

The output and input response curves of the MAGLEV

vehicle with load variation and external disturbance input

under the four control methods are described by Figs. 8 and

9, respectively. The corresponding states response curves are

shown in Fig. 10.
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Fig. 8. Response curves of output zt − z of MAGLEV vehicle with load
variation under four controllers: CDSMC (blue line), ESMC (red line), I-SMC
(black line), SMC (green line).

As shown by Fig. 8, the proposed CDSMC obtains sat-

isfying dynamic and static performance in the presence of

both load variation and track input disturbances. The I-SMC

and ESMC can obtain a satisfying static performance but

quite poorer dynamic performance. In addition, it can be

observed from Figs. 9 and 10 that the proposed CDSMC has

a relatively lower control energy as compared with the rest

control methods. In addition, the controller of the proposed

CDSMC is continuous and no chattering phenomenon appears.

VI. CONCLUSIONS

The high-order mismatched disturbance compensation prob-

lem for motion control systems has been investigated in this

paper. A new CDSMC approach based on a high-order sliding-

mode differentiator has been proposed to attenuate the effects

caused by high-order mismatched disturbances on the output
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Fig. 9. Response curves of control input ucoil of MAGLEV vehicle with
load variation under four controllers: (a) CDSMC; (b) ESMC; (c) I-SMC; (d)
SMC.

in finite time. The main contribution here is to design a new

dynamic sliding surface which incorporates the information of

the estimations of disturbances and their high-order derivatives

such that the sliding motion along the sliding surface can

drive the system output to the desired equilibrium even in the

presence of high-order mismatched disturbances. Simulation

results of a MAGLEV suspension vehicle have demonstrated

that the proposed method exhibits much better dynamic and

static performances in the presence of high-order mismatched

disturbances as compared with the traditional SMC, I-SMC

and ESMC methods.
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