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ABSTRACT 

The non-invasive nature of volatile organic compound (VOC) sampling from skin makes 

this a priority in the development of new screening and diagnostic assays. Evaluation of 

recent literature highlights the tension between the analytical utility of ambient ionisation 

approaches for skin profiling and the practicality of undertaking larger campaigns (higher 

statistical power), or undertaking research in remote locations. This study describes how 

VOC may be sampled from skin and recovered from a polydimethylsilicone sampling 

coupon and analysed by thermal desorption (TD) interfaced to secondary electrospray 

ionisation (SESI) time-of-flight mass spectrometry (MS) for the high throughput screening 

of volatile fatty acids (VFAs) from human skin.  

Analysis times were reduced by 79% compared to gas chromatography-mass 

spectrometry methods (GC-MS) and limits of detection in the range 300 to  900 pg cm -2 

for VFA skin concentrations were obtained.  

Using body odour as a surrogate model for clinical testing 10 Filipino participants, 5 high 

and 5 low odour, were sampled in Manilla and the samples returned to the UK and 

screened by TD-SESI-MS  and TD-GC-MS  for malodour precursors with greater than 

>95% agreement between the two analytical techniques. Eight additional VFAs were also 

identified by both techniques with chains 4 to 15 carbons long being observed. TD-SESI-

MS appears to have significant potential for the high throughput targeted screening of 

volatile biomarkers in human skin.   
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INTRODUCTION 

Analysis of the volatile organic compound (VOC) profile of human skin is an alternative, 

non-invasive, approach to invasive blood-based methodologies for diagnosis and 

studying human function. VOCs observed on and in skin are derived from: glandular 

secretions; perfusion from underlying blood vessels; products of micro-biological 

metabolism; and exogenous components (Environmental contamination and personal 

care products for example) [1-2].  The highly individualised and dynamic nature of these 

profiles, and the utility of skin profiling have been reviewed [3]. 

Sampling techniques for skin VOC profiles include: whole sweat collection [4-5]; liquid 

extraction [6-7]; adsorbent materials placed in direct contact with the skin surface [2, 8,-

14] or headspace approaches [6, 9, 15-16].  Analysis of skin has identified many types of 

VOC, and the list includes: volatile fatty acids (VFAs), aldehydes, alcohols, aliphatic and 

aromatic hydrocarbons, amides, amines, esters, halides, ketones and volatile sulphur 

compounds (VSCs) [2-3]. Multi-variate analysis (MVA) indicates gender specific 

information within such profiles [13, 17]. Studies of skin VOC profiles have identified 

mosquito attractants [11-12] and monitored fragrance release [9-10]. Compounds 

associated with chronic wounds [18] as well as signatures differentiating between 

melanoma, naevi and healthy skin [19] have been reported. Skin profiling has also been 

applied to ammonia monitoring; non-invasive headspace capture of ammonia from skin 

enabled such an approach to be compared against blood gas levels. These measures 

were correlated (R=0.84, p<0.01) and the approach was extended to proof-of-concept 

screening for hepatic disease with  median levels of ammonia release from the skin of 

subjects with liver disease estimated to be ca. 3 ng cm-2 (N=24), compared to ca. 2 ng 

cm-2 (N=24) in healthy controls [20].  

The foundations for such skin profiling studies are to be found in research on body 

odour. Individual skin profiles have been developed as ‘barcodes’ of scent for forensic 

[21] and diagnostic application [22],  and gender and age specific signatures have been 

proposed as contributing factors to an individual’s profile [23-26]. Olfactory analysis, 

either in-vivo or by organoleptic analysis of chromatographic eluents [27], combined with 

analytical measurement have established levels of odour to correlate with VSCs and 

VFAs, with 3-methyl-2-hexenoic acid cited as a critical molecular factor [26-28].  Finally, 

the quantity of anecdotal evidence of canine olfaction of disease, increasingly supported 



by scientific studies [29-32], reinforces the proposition of non-invasive skin VOC profiling 

for diagnosis and condition monitoring. 

Direct contact and headspace skin sampling devices generally employ thermal 

desorption (TD) for the recovery of VOCs which is interfaced to gas chromatography (GC), 

mass spectrometry (MS) [3]. Such approaches generate extensive VOC profiles that are 

rich in information, and are potentially useful for global profiling and non-targeted 

biomarker discovery. However, such analytical workflows are time consuming, and an 

analysis time of more than an hour per sample mitigates against the large sample 

numbers needed to validate markers and is too long for high throughput analysis or 

clinical screening applications.  

“Ambient” mass spectrometry approaches, where samples are introduced directly to an 

external ionisation source, for skin analysis provide rapid and sensitive analysis. Mass 

spectral “fingerprints” obtained in-vivo from skin with desorption electrospray ionisation 

(DESI) [33], secondary electrospray ionisation (SESI) [34-35] and extractive electrospray 

ionisation (EESI) [36] are exciting and promising developments. Selected ion flow tube 

mass spectrometry (SIFT-MS) has provided real-time information for acetone emanating 

from skin [37] and proton transfer reaction mass spectrometry (PTR-MS) has been 

applied to monitoring of lipid peroxidation products and the fatty acid composition of skin 

[38]. All these methods enable fast, selective and sensitive analysis of the area of a 

participant’s skin presented to the instrument. These approaches, whilst offering a 

distinct time advantage, require the participant to present a part of their body to the 

instrument, which is not always practical. Further, consider for example, the practicalities 

of sampling and analysing a lot of participants’ skin over a short period. The difficulty 

increases if the study encompasses a large geographic region, or remote locations. 

Clinical safety considerations and risk assessments also require instruments and 

systems to be sterile before use with a patient; repeatedly dousing sensitive instruments 

for VOC analysis with disinfectant is a problematic protocol. 

Recently thermal desorption secondary electrospray ionisation-ion mobility-mass 

spectrometry (TD-SESI-IM-MS) was  proposed for rapid breath screening as an alternative 

to TD-GC-MS. The potential for rapidly generating high-fidelity mass spectra of exhaled 

breath VOC without a lengthy chromatography  step was  demonstrated [39], and the 

current work is informed by this approach, with the aim of  describing the targeted 

analysis of VFAs present in and on human skin.  



Sampling skin with polydimethylsiloxane (PDMS) coupons (0.5 cm2 0.5 mm thick) placed 

on the skin surface with analysis by thermal desorption gas chromatography mass 

spectrometry has been proposed for targeted and non-targetted analysis of VOC skin 

metabolites and catabolites. The relative standard deviation (RSD) of this approach 

varies with analyte volatility, with values between 7 and 19% observed during in-vitro 

tests. In-vivo, RSD values up to a maximum of 32% have been observed; for trace levels 

of a methylated hydrocarbon tentatively assigned to 3,7-dimethyloct-1-ene, and limits of 

detection were estimated to be of the order of 50pg  [1]. The sensitivity, reproducibility, 

comfort and ease-of-use of a PDMS skin-patch sampler makes for a practical and 

straightforward methodology for undertaking more extensive studies on human skin, 

either in clinic or in the field.  

The current research combined the sampling attributes of a ‘skin patch’ with thermal 

desorption secondary electrospray ionisation-mass spectrometry (TD-SESI-MS) [39]. TD-

SESI-MS was found to have limits of detection no higher than 1 ng per sample, with an 

in-vivo RSD of 13.5%. The most relevant analytical characteristic to this study was a 

mass accuracy of 1.4 ppm enabling metabolite identities to be assigned with a high level 

of confidence. The combination of skin patch samples with TD-SESI-MS provides a high-

throughput, clinically compatible and scalable methodology for targeted metabolite/VOC  

analysis  of human skin.   

The aim of this study was to evaluate the potential of skin patch sampling with TD-SESI-

MS analysis for phenotypic screening, potential diagnostic applications and 

characterisation of skin metabolism. To do this a panel of volunteer participants was 

recruited, with half of them having a genetic trait relating to “body odour”. The specific 

hypothesis was that a single nucleotide polymorphism (SNP), 538G→A, caused a G180R 

substitution in the ABCC11 gene that would result in reduced concentrations of apocrine 

derived axillary odour precursors, with special emphasis on 3-methyl-2-hexenoic acid [40-

41].  In other words half of our participants would have the genetic attribute of apocrine 

secretions that did not contain 3-methyl-2-hexenoic acid; they did not have a 

characteristic “sweaty smell”. Five other skin metabolite VFA’s were also included in the 

study (butanoic acid, 2 methylpropanoic acid, pentanoic acid, 3-methylbutanoic acid and 

hexanoic acid). These analytes were not expected to be affected as strongly by the SNP 

and their presence in the screen would indicate that the absence of 3-methyl-2-hexenoic 

acid was not attributable to a measurement artefact and a reduction in the efficiency of 



analyte recovery. The resultant data were to be compared to those derived from a 

thermal desorption gas chromatograph electron ionisation time-of-flight mass 

spectrometer (TD-GC-ToFMS) and an organoleptic assessment of malodour. 

EXPERIMENTAL 

Ethics and Participant Preparation 

This research was conducted in accordance with the ethical principles of Good Clinical 

Practice and the Declaration of Helsinki. The local ethics committee approved the study 

before commencement of the work, and all subjects gave written informed consent. 

Caucasians and Africans possess a strong axillary distinctive smell, whereas many Asians 

don’t. There is evidence that the gene ABCC11 is an important factor in the formation of 

axillary odour. Further recent studies have proposed that a single-nucleotide 

polymorphism (SNP) 538G → A, leads to individuals having no characteristic axillary 

odour. This SNP is prominent among Asian people, hence a consumer test centre in 

Manila was selected as the sampling point. [40, 41]. Healthy female subjects, aged 

between 20 and 55 years of age were recruited for this study, following a qualifying 

medical questionnaire. Participants on medication, suffering from any skin disorder or 

systemic disease or if with a history of being sensitive to underarm personal care 

products were excluded.  

Participants were requested not to use antiperspirant or deodorant products in the 

3 week pre-test period, and instructed to wash their underarm area with nothing but un-

fragranced liquid soap. All samples were taken at the Unilever Consumer Studies Centre 

(Manila, Philippines).   

Sampling 

The PDMS skin sampling patches (Goodfellow Cambridge Limited) were prepared for use  

by cleaning with ultrasonic washing in methanol at 30°C and then individually placed 

inside clean, empty thermal desorption tubes. These were then heated to 185°C under 

vacuum for 15 hours. Final conditioning of the patches involved purging with purified 

helium at 50 cm3 min-1 and 185 ºC for 20 minutes. Each prepared skin patch was 

analysed by (TD-GC-MS) to verify that it was free from contamination. The thermal 

desorption tube containing the skin sampling patch was then removed from the thermal 

desorber and immediately sealed with Swagelok caps and shipped from Loughborough 

University to Manila in the Philippines where the samples were taken.  



Prior to VOC sampling, the intensity of the participants’ axillary odour was evaluated 

organoleptically by six independent assessors against a set of standard solutions of the 

target VFAs and assigned a malodour score from 1 to 5; 1 being the weakest discernable 

odour and 5 the most intense. The mean of the four scores was taken as the mean 

malodour score (MMS) for the participant. In this pilot study 5 participants with high a 

organoleptic assessment of VFA odour (MMS 3 to 5) and 5 participants with low 

organoleptic assessments (MMS 1 – 2.5) were selected. 

A VFA skin sample was obtained from each participants’ axilla with a prepared skin patch 

that was removed from a sealed thermal desorption tube and immediately placed on the 

skin surface and covered with a cotton pad (conditioned previously under vacuum at 

70ºC for 15 hours and then stored in an air tight package until use). The skin sampling 

patch was left in place for 30 min before it was removed and immediately resealed 

inside the thermal desorption tube [1], which was then rapidly cooled to -80 ºC and 

returned to the laboratory for analysis.  

Instrumentation 

Thermal Desorption Secondary Electrospray Ionisation Time-of-Flight Mass Spectrometry 
(TD-SESI-MS ) 

The modification of an electrospray source to TD-SESI-MS has been described elsewhere 

[40]. Briefly, the outlet transfer line (0.25mm i.d deactivated fused silica) from a thermal 

desorption unit (Markes International UNITY 1) was interfaced to the electrospray source 

of an ion mobility-quadrupole time-of-flight mass spectrometer (Waters Synapt) operating 

with the ion mobility off.The front of the ionisation source was removed along with the 

lockspray baffle plate and the reference sprayer assembly to accommodate the heated 

shroud of the transfer line and allow accurate positioning of the end of the capillary. The 

capillary end was aligned 0.5 to 1 cm from the sample cone of the mass spectrometer 

and 5mm from the electrospray emitter. This ensured that the desolvation gas focused 

the gaseous sample stream from the capillary tip towards the sample cone.  

It is important to note that this procedure required electrical isolation switches within the 

ionisation assembly to be defeated. Physical barriers, warning signs and exclusion areas 

were used to reduce the risk from this electrical hazard. 

Analysis of the skin sampling patches entailed 10 min thermal desorption at 180°C with 

a Helium flow of 6 cm3 min-1. The desorbed products were concentrated in a cold trap 

held at  -10°C and packed with a dual sorbent bed of Tenax and Carbograph-1TD 



(Markes International, U-T2GPH), injection to the SESI source involved ballistic heating of 

the “cold-trap” at 32°C s-1 to 300 °C. The “cold-trap” was maintained at 300°C for 5 

min. The transfer line was maintained at 150°C.  An important aspect of the quality 

assurance of this process was the inclusion of blank runs before and after each sample 

to verify that the instrument was free of contamination and that no residual analyte 

remained in the sample coupon or within the analytical pathway. 

The mass spectrometer was operated in negative mode with: a capillary voltage of 3 kV, 

a cone voltage of 10 V, a source temperature of 120°C, and a desolvation temperature 

of 150°C. The desolvation gas was nitrogen supplied at a flow 5 dm3 min-1. No cone gas 

was supplied in this study. The electrospray solvent was unbuffered 50/50 (v/v) 

methanol/water infused into the source at 5 μl min-1.  

Thermal Desorption Gas Chromatography Time-of-Flight Mass Spectrometry (TD-GCToF-
MS) 

Sample recovery was by thermal desorption (Markes International, UNITY 2) of the skin 

sampling patches interfaced to a GC-ToF-MS (Waters GCT Premier gas chromatograph 

time-of-flight mass spectrometer). Skin patches were thermally desorbed at 180°C for 

10 min with a 50 cm3 min-1 helium flow to a cold trap held at -10°C. Injection from the 

cold trap was achieved by ballistic heating at 32°C s-1 to 300 °C. This temperature was 

maintained for 5 min with a 1/10 split, the transfer line temperature was 150 °C. The 

gas chromatograph was fitted with a 0.25mm i.d., 60m long capillary column with a 

stationary phase thickness of 2.5 µm. The stationary phase was a 5% phenyl, 95% 

methyl polysiloxane stationary phase (Cat no: 122-5562 Agilent DB-5MS), the 

temperature programme had an initial temperature of 40 °C, 0 min hold, that increased 

at 5°C min-1 to 310°C where it was held for 6 minutes. The GC was operated at constant 

head pressure of 172 kPa (25 psi). The electron impact source was operated in the 

positive mode at a temperature of 200°C, with an electron energy of 70eV. The mass 

spectrometer cycle time was 0.1 s (scan duration 0.09s, interscan delay 0.01 s) with a 

mass-range of 40 to 550. 

Preparation of standards 

Standard mixtures for evaluation of mean malodour score and instrument calibration of 

the target VFA metabolites were prepared. The stock solution contained butanoic acid ( 

4.8 μg cm-3), 2-methylpropanoic acid  acid (4.8 μg cm-3 ), pentanoic acid (17 μg cm-3 ),3-

methylbutanoic acid (17 μg cm-3 ), hexanoic acid (10 μg cm-3 ) and 3-methyl-2-hexenoic 



acid (100 μg cm-3) all dissolved in high purity methanol. This stock solution was 

designated to have an organoleptic mean malodour score (MMS) of 5; a strong sensation 

of malodour for most humans. Lesser strength solutions to mimic MMS 4 and below 

were then prepared by sequential 4-fold dilutions.  

5 μl aliquots, the approximate volume of a droplet of an apocrine secretion [1], of the 

MMS 3 mixture were directly deposited onto blank skin patches in thermal desorption 

tubes during the thermal desorption and electrospray optimisation studies. Each of these 

aliquots contained 1.5 ng of butanoic and 2-methylpropanoic acid, 5 ng of pentanoic and 

3-methylbutanoic acid, 3 ng of hexanoic acid and 30 ng 3-methyl-2-hexenoic acid.  

RESULTS AND DISCUSSION 

Approximately 600 mass spectrometric peaks were isolated from each sample in the 

negative mode over a 4 min profile, see the bottom trace in Figure 1 obtained from a 

participant without the (SNP) 538G→A who had a high organoleptic mean malodour 

score (MMS) of 4. Individual compounds were resolved on the basis of selected ion mass 

spectrometry. Butanoic and 2-methylpropanoic acid yield isobaric ions, as do pentanoic 

and 3-methylbutanoic acid and these pairs of isomers were combined. This gave four VFA 

targets that were designated as, C4 VFA (butanoic and 2-methylpropanoic), C5 VFA 

(pentanoic and 3-methylbutanoic), H (hexanoic) and 3M2H (3-methyl-2-hexenoic) acids. 

Some separation between the VFA targets was observed in the thermal desorption 

profiles with C4 VFA (boiling point (BP) 164°C/155°C) eluting earliest followed by C5 

VFA (BP 186°C/175°C), hexanoic acid (BP 203°C) and 3-methyl-2-hexenoic acid (BP 

225°C) eluting last, Figure 1. This partial separation introduced an element of selectivity 

into the sample introduction, and as such was thought to mitigate somewhat the effects 

of competitive ionisation from higher molecular weight skin matrix components.  

Note that including the ion mobility function of the mass spectrometer was not helpful in 

this study for the resultant reduction in mass accuracy outweighed any selectivity 

benefits derived from a low-resolution T-wave ion mobility separation. 

Limits of detection, determined from on-patch mass and signal-to-noise ratios were 

estimated to be no higher than: 500 pg for butanoic/2-methylpropanoic acid (C4 VFA); 

900 pg for pentanoic/3-methylbutanoic acid (C5 VFA); 300 pg hexanoic acid (H); and 

350 pg 3-methyl-2-hexenoic acid (3M2H). These levels were below the 1.9 ng odour 

threshold previously reported for 3-methyl-2-hexenoic acid [28].  



Skin Sample Analysis 

The thermal desorption tubes containing the skin sampling patches were removed from -

80°C storage and warmed for 5 min at room temperature before loading into the 

thermal desorber for analysis. Figure 1 shows desorption profiles obtained from a skin 

sample provided by participant with an MMS = 4, contrasted against a blank skin patch. 

The skin sample provided a complicated desorption profile with VOC components eluting 

for up to four minutes after the start of the ballistic heating of the cold trap. Figure 1 also 

shows the magnified (x 100) mass selected desorption profiles of the four target VFAs 

(C4 VFA, C5 VFA, H, and 3M2H). The partial separation, based on volatility, of the target 

VFAs is also evident. 

<< Figure 1 near here.>> 

Figure 2 contrasts the mass spectrum from the skin sample in Figure 1 against the mass 

spectrum of the blank skin patch and a number of background ions as well signals from 

the blank skin patch and the skin sample are evident. The most intense signal, m/z 

212.07, was present in all the samples and blanks and this was assigned to the 

plasticiser n-butyl benzensulfonamide, an ion that has been used previously as a lock-

mass in the negative ion mode [42] and was used in this study with the TD-SESI-MS data 

enabling the target VFAs Figure 2 to be identified with a mass accuracy of 3.5 ppm or 

less [43].  

The complexity of the VOC profile in, or on, skin was evident from the gas 

chromatography with many hundreds of resolved and unresolved components. The mass 

spectra from TD-SESI-MS also contain a significant degree of complexity, and it is helpful 

to note that competitive ionisation and matrix affects may result in the suppression of 

some signals. Nevertheless it was possible to corroborate the presence of the four VFA 

targets along with an extensive sequence of related VFA compounds with a total analysis 

times of 15 min compared to 70 minutes for TD-GC-MS. See Figure 3. 

<<Figure 2 & 3 near here>> 

Tables 1 and 2 compare the VFA targets isolated by the two methods alongside other 

non-targeted VFAs that were also identified.  The efficacy of TD-SESI-MS for biomarker 

screening is apparent. The body malodour marker 3-methyl-2-hexenoic acid (3M2H) was 

observed in 4/5 high odour individuals and not at all in low odour individuals in both 

analytical techniques. The discriminating power of the TD-SESI-MS approach compared 



to TD-GC-MS was examined by performing a principle component analysis (PCA) on the 

data in Tables 1 and 2. An unsupervised 2 component PCA model of the TD-SESI-MS 

data (Table 1), R2=0.993, Q2=0.868 shown in Figure 4a, reveals two clusters, one for 

high-odour and the other for low- odour individuals. The loading plot identified that the 

discrimination was based on the levels of 3-methyl-2–hexenoic (3M2H) and hexanoic (H) 

acids. Similarly, an unsupervised PCA model based on the TD-GC-MS data (Table 2), 

R2=0.969, Q2=0.737, see Figure 4 b, also shows separation between the classes with 

the same VFA targets indicated through the loading plot.  

<<Figure 4 near here>> 

PCA of the data from both techniques clustered Participant 4 with the low odour group, 

and this was not surprising for 3-methyl-2–hexenoic (3M2H) was not detected by either 

technique. The organoleptic assessment scores for this participant were ambivalent. One 

assessor assigned a malodour score of 5 whilst the rest of the panel gave malodour 

scores between 2 and 3, with an overall MMS of 3.33. Excluding the score of 5 places 

participant 4 in a low odour category with a MMS of 2.5. 

The data obtained from TD-SESI-MS and high fidelity TD-GC-MS was comparable and 

yielded equivalent phenotype classification based on the same molecular markers. 

Further examination of both data sets revealed higher molecular weight VFAs in, or on, 

skin. The high mass accuracy obtained by TD-SESI-MS enabled assignments to a series 

of VFA, Figure 2, and subsequent processing of the TD-GC-MS confirmed a series of VFAs 

from C8 to C15, Table 3 and Figure 3. These data are encouraging and indicate the 

potential utility of TD-SESI-MS for high-throughput targeted biomarker screening.  

Figure 5 shows an example cumulative distribution function of the mass spectral peak 

intensities across the m/z range 40 to 300 alongside the intensity distribution of the 

analytical features. A total of 598 mass spectral peaks were distributed across this range 

with 75% of the observed components present in the lowest 2.5% of the intensity range. 

The secondary electrospray mass spectra in the negative mode were information rich, 

and further metabolomic based investigations of such data in both positive and negative 

mode are a logical development of this work.  

<<Figure 5 near here>> 

 



Qualitatively the TD-SESI-MS approach performed well alongside TD-GC-MS. VFA profiling 

by TD-SESI-MS was 79% faster than TD-GC-MS and the potential for a high throughput 

targeted screening for biogenic VOCs appears promising. However, there are challenges 

to address to move this technique towards more quantitative protocols. The ubiquitous 

presence of siloxanes changes the ionisation chemistry and a build up of siloxanes within 

the analytical pathway was observed with increasing run numbers that disrupted the 

analysis if care was not taken to constantly monitor this phenomenon as part of the QA 

procedures. Development of this approach would usefully include further examination of 

the thermal desorption process and the transfer line as well as further study of the 

ionisation approach. The incorporation of ion mobility spectrometry with sufficient 

resolving power would enable isomer differentiation of the butanoic/2-methylpropanoic 

(C4 VFA) and pentanoic/3-methylbutanoic(C5 VFA) components and enable further study 

of structural isomers and enhance the spectral quality thorough the suppression of 

background interferences. 

CONCLUSIONS 

This research examined using skin patch sampling for high-throughput screening for 

phenotype markers. In this instance, four VFA targets associated with body malodour 

were sampled from the axilla of ten female participants, stored and transported from the 

Philippines to the UK, where they were analysed.   

The four VFA target analytes were identified by accurate mass from skin samples with 

TD-SESI-MS with a maximum analysis time of 15 min and limits of detection estimated to 

be in the 100s pg cm-2 region (A skin patch has a surface area of 0.5 cm2).  

This study demonstrates the feasibility of adapting and adopting electrospray mass 

spectrometry systems for high-throughput profiling for VOC bio-markers from human skin 

samples. In this instance the focus of the research was to phenotypically classify 

individuals with a specific ((SNP) 538G → A) in the human ABCC11 gene. As well as 

controlling body odour, ABCC11  is the subject of studies and much debate  into breast 

cancer and drug resistance in cancer cells [44]. The underlying motivation in this 

research is the development of a suite of non-invasive measurements for personalised 

medicine. The current technique may be set-up with automated and un-attended batch 

analysis to process large numbers of non-invasive skin VOC samples, to generate clinical 

screening data from larger cohorts distributed across the world. The sampling 

methodology meets the most stringent requirements for bio-security and if necessary 



may be used on delicate skin structures to provide additional and complementary non-

invasive metabolite and diagnostic data, perhaps on a par with breath profiling. 
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TABLES 

Table 1. Total mass spectral count responses for the target VFAs from 10 participants with 
varying mean malodour scores (MMS). 

  TD-ESI-MS Response (Counts) 
Participant ID MMS C4-VFA C5-VFA C6-VFA 3M2H 

1 4.75 234 483 636 413 
2 4.75 246 321 721 250 
3 4 216 354 824 264 
4 3.33 258 430 1247 0 
5 4 202 340 908 205 
6 1.25 93 129 339 0 
7 2.25 234 400 1223 0 
8 2.5 136 181 403 0 
9 1.33 97 207 242 0 

10 1.33 194 295 859 0 

Note.  2MP: 2-methylpropanoic acid; B: butanoic acid; 3MB: 3-methylbuanoic acid; P: 
pentanoic acid; H: hexanoic acid; and 3M2H: 3-methyl, 2-hexanoic acid.  

Table 2 TD-GC-MS chromatographic peak area responses for the target VFAs from the 10 
participants detailed in Table 1. 

 Chromatographic Peak Area (AU) 

Participant ID 2MP B 3MB P H 3M2H  
1 200 1287 878 863 364 688 
2 0 157 60 121 158 22 
3 52 1152 258 310 614 50 
4 17 68 50 26 470 0 
5 20 300 21 65 163 18 
6 0 106 27 109 545 0 
7 0 145 42 110 406 0 
8 30 88 59 92 332 0 
9 58 53 26 66 158 0 

10 0 41 27 59 213 0 

Note.  2MP: 2-methylpropanoic acid; B: butanoic acid; 3MB: 3-methylbuanoic acid; P: 
pentanoic acid; H: hexanoic acid; and 3M2H: 3-methyl, 2-hexanoic acid.  

  



Table 3 Additional VFAs from the skin of an MMS 4 individual identified by TD-ESI-MS and 
TD-GC-MS. Proposed identities are based on predicted elemental composition 
from accurate mass data (TD-ESI-MS), chromatographic retention time and NIST 
searching (TD-GC-MS). 

  TD-ESI-MS TD-GC-MS 

ID M [M-H] - ΔM 
(ppm) tr / min NIST 

match 
Base 
Peak 

ΔM 
(ppm) 

Octanoic  144.1150 143.1072 1.4 18.79 878 60.0211 6.7 
Nonanoic  158.1307 157.1229 6.4 21.59 807 60.0211 3.3 
Decanoic  172.1463 171.1385 7.0 24.62 901 60.0211 1.7 
Undecanoic  186.1620 185.1542 8.0 27.13 861 60.0211 8.3 
Dodecanoic  200.1776 199.1698 2.0 28.90 838 73.0290 2.7 
Tridecanoic  214.1933 213.1855 5.6 31.24 719 73.0290 8.2 
Tetradecanoic  228.2089 227.2011 1.8 33.94 849 73.0290 5.5 
Pentadecanoic  242.2246 241.2168 4.1 35.99 769 73.0290 4.1 

 

  



FIGURES 

 

Figure 1. Key: 2MP: 2-methylpropanoic acid; B: butanoic acid; 3MB: 3-methylbuanoic acid; 
P: pentanoic acid; H: hexanoic acid; and 3M2H: 3-methyl, 2-hexanoic acid. 

Bottom: An example of a total ion response profile obtained by TD-ESI-MS 
compared to the offset profiles obtained for C4 VFA, C5 VFA, H and 3M2H, at 100 
times magnification.  The dotted lines are the responses obtained from a blank 
skin patch. The sample was taken from an individual with a relatively high 
organoleptic score for VFA odour, MMS = 4, that is a participant without the (SNP) 
538G→A.  
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Figure 2.  The negative mode mass spectra of the example thermal desorption profile 
shown in Figure 1. The n-butyl benzensulfonamide ion (m/z  212.0745) was the 
most intense ion in the blank (bottom) and the sample (top.) As an internal lock-
mass this enabled identification of the VFA  targets. From left to right the m/z 
values used to assign these peaks were: 87.0449, butanoic/2-methylpropanoic 
(C4 VFA 3.4ppm); 101.0601, pentanoic/ 3-methylbutanoic (2.0ppm); 115.0756, 
hexanoic (2.6ppm); and 127.0761, 3-methyl-2-hexenoic acid (1.6ppm). Other 
signals attributable to higher molecular weight VFAs were also observed see Table 
3.  
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Figure 3. Bottom: The first 40 min TD-GC-MS TIC of a skin sample from the same individual 
presented in Figures 1 and 2. Top: an offset  composite selected ion 
chromatogram at X10 magnification where: 2MP, 2-methylpropanoic acid; B, 
butanoic acid; 3MB, 3-methylbutanoic acid; P, pentanoic acid; H, hexanoic acid; 
and 3M2H 3-methyl-2-hexenoic acid. Other peaks from tr = 18.79 to 35.99 min 
were attributed to higher molecular weight VFAs see Table 3. 
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Figure 4. Unsupervised principle component analysis (PCA) of the target compounds. Top 5 
high odour (circles) and 5 low odour (squares) observations analysed by thermal 
desorption-negative mode electrospray ionisation mass spectrometry and [B] the 
same set of targets and observations analysed by gas chromatography mass 
spectrometry. Both data sets show separation between the two classes with 
observation 4 being misclassified as low odour by both analytical techniques. 

 

  



 

 

Figure 5. Top. An example cumulative distribution function of negative mode TD-SESI-MS 
responses showing the distribution of chemical information across the range m/z 
40 to m/z 300. The An example of a normalised distribution of intensities for the 
598 features observed in the negative mode showing the abundance of low 
intensity features; comparable with exhaled breath VOC profiles.  
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