

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Hybrid Approaches for Mobile

Robot Navigation-

by

Yang Wang

A Doctoral Thesis

Submitted in partial fulfilment of the requirements
for the award of

Doctor of Philosophy

of

Loughborough University

October 2007

0 by Yang Wang 2007

Abstract

ABSTRACT'

The work described in this thesis contributes to the efficient solution of mobile robot

navigation problems. A series of new evolutionary approaches is presented.

Two novel evolutionary planners have been developed that reduce the computational

overhead in generating plans of mobile robot movements. In comparison with the

best-performing evolutionary scheme reported in the literature, the first of the

planners significantly reduces the plan calculation time in static environments. The

second planner was able to generate avoidance strategies in response to unexpected

events arising from the presence of moving obstacles.

To overcome limitations in responsiveness and the unrealistic assumptions regarding

a priori knowledge that are inherent in planner-based navigation systems, subsequent

work concentrated on hybrid approaches. These included a reactive component to
identify rapidly and autonomously environmental features that were represented by a
small number of critical waypoints. Not only is memory usage dramatically reduced
by such a simplified representation, but also the calculation time to determine new
plans is significantly reduced. Further significant enhancements of this work were
firstly, dynamic avoidance to limit the likelihood of potential collisions with moving
obstacles and secondly, exploration to identify statistically the dynamic

characteristics of the environment. Finally, by retaining more extensive
environmental knowledge gained during previous navigation activities, the capability
of the hybrid navigation system was enhanced to allow planning to be performed for

any start point and goal point.

Acknowledgments

ACKNOWLEDGEMENTS

First and foremost, I am greatly indebted to Dr David Mulvaney, my research

supervisor, for his excellent supervision, invaluable advice, constructive suggestions

and helpful discussion throughout this research project.

Secondly, I owe a great deal of thanks to Dr Ian Sillitoe of the Scottish Association

for Marine Science, who acted as joint supervisor, for his expert advice and

motivation, an infinite supply of patience, support and immense help throughout this

research project.

Also, I would like to express my gratitude to my colleagues for their kind help in my

project and life. Furthermore, many thanks are due to the Department of Electronic

and Electrical Engineering at Loughborough University for constructing a friendly

research enviromnent.

Finally, special thanks to my wife and my family.

Publications

PUBLICATIONS

1. Y. Wang, D. J. Mulvaney, and I. P. W. Sillitoe, "Robot navigation by genetic

algorithms, " Electronics and Systems Division Conference, Department of

Electronic and Electrical Engineering, Loughborough University, UK, January

2005, pp. 9-10.

2. D. J. Mulvaney, 1. P. W. Sillitoe, E. Swere, Y. Wang, and Z. H. Zhu, "Real-time

machine learning in embedded software and hardware platforms, " Workshop on

Automatic Learning and Real-Tinie, Siegen, Germany, September 2005, pp. 65-

78.

3. D. J. Mulvaney, Y. Wang, and I. P. W. Sillitoe, "Waypoint-based mobile robot

navigation, " 6h IEEE World Congress on Intelligent Control and Automation,

Dalian, China, June 2006, pp. 9063-9067.

4. Y. Wang, D. J. Mulvaney, and 1. P. W. Sillitoe, "Genetic-based mobile robot path

planning using vertex heuristics, " 2006 IEEE Conf Cybernetics and Intelligent

Systems, Bangkok, Thailand, June 2006, pp. 463-468.

S. D. J. Mulvaney, I. P. W. Sillitoe, E. Swere, Y. Wang, and Z. H. Zhu, "Real-time

machine learning in embedded software and hardware platforms, " International

Journal of Intelligent Systems Technologies andApplications, vol. 2, no. 2/3, pp.
187-204,2007.

6. Y. Wang, I. P. W. Sillitoe, and D. J. Mulvaney, "Mobile robot path planning in

dynamic environments, " IEEE International Conference on Robotics and
Automation, Rome, Italy, April 2007, pp. 71-76.

Publications

7. Y. Wang, D. J. Mulvaney, 1. P. W. Sillitoe, and E. Swere, "Robot navigation by

waypoints, " submitted to Robotica.

8. Y. Wang, D. J. Mulvaney, and I. P. W. Sillitoe, "Genetic-based mobile robot

planning in dynamic environments, " in preparation for submission to the IEEE

Transactions on Evolutionary Computation.

9. Y. Wang, D. J. Mulvaney, and I. P. W. Sillitoe, "The use of waypoints for robot

navigation in dynamic environments, " in preparation for submission to the

Intemational Joumal of Robotics Research.

10. Y. Wang, D. J. Mulvaney, and I. P. W. Sillitoe, "A generalised waypoint

navigation system for mobile robots, " in preparation for submission to the IEEE

Transactions on Systems, Man and Cybernetics, part B: cybernetics.

Contents

CONTENTS

1. INTRODUCTION ... 1

1.1 Mobile robots 1

1.2 Robot navigation 3

1.2.1 Deliberative, reactive and hybrid systems 4

1.2.2 Topological and metric navigation 6

1.3 Genetic algorithms 8

1.3.1 A brief history and application examples 9

1.3.2 Features of genetic algorithms and variants of the c'anonical form
............. 10

1.4 Research aim and objectives ... 13

1.5 Contributions to knowledge
..

14

1.6 Structure of the thesis .. 15

2. GENETIC ALGORITHMS REVIEW ... 17

2.1 Steady-state genetic algorithms .. 18

2.2 Genetic representation ... 21

2.3 Selection schemes ... 23
2.4 Genetic operators .. 27

2.5 Premature convergence and diversity
... 30

2.6 Conclusions ... 34

3. NAVIGATION SYSTEMS REVIEW ... 36

3.1 Planner-based navigation system .. 36
3.1.1 Environment representations .. 37
3.1.2 Path planning approaches ... 39
3.1.3 Evolutionary Planner/Navigator

.. 44
3.1.4 Evolutionary navigator aEP/N .. 46

Contents

48 3.2 Reactive navigation systems
3.2.1 Brief survey of reactive approaches . ..

49

3.2.2 Decision-tree based reactive system ..
51

3.3 Hybrid navigation systems
53

3.4 Conclusions
55

4. VERTEX PLANNER ..
57

4.1 Related work in path planning in static environments
57

4.2 Vertex planning algorithm ..
62

4.2.1 Enlargement of the obstacles ...
63

4.2.2 Encoding and decoding ..
63

4.2.3 Genetic representation and initialisation ..
63

4.2.4 Evaluation functions ..
64

4.2.5 Operator selection ..
65

4.2.6 Amlication of the ot)erators ...
65

4.2.7 Evaluation ..
66

4.3 Expcrimcnts and Rcsults ...
67

4.4 Conclusion ..
75

5. VERTEX++ PLANNER ...
77

S. I Related work in path planning in dynamic environments 78

5.2 Planning algorithm ..
82

5.2.1 Operating environment and constraints ...
82

5.2.2 Pseudo-code of the vertex++ planning algorithm ..
84

5.2.3 Genetic representation and initialisation ...
85

5.2.4 Evaluation functions ..
86

5.2.5 Genetic operators and their selection
87

5.2.6 Evolutionary process ..
88

5.2.7 On-line planning ..
88

5.3 Experiments and results ..
89

5.3.1 Robot of constant speed ...
90

5.3.2 Robot of variable speed ..
93

5.3.3 On-line planning ..
95

Contents

5.3.4 Comparison .. 98
5.4 Discussion ... 108

5.5 Conclusions ..
I
... 109

6. WAYPOINT-BASED NAVIGATION IN STATIC ENVIRONMENTS 111

6.1 Related work in hybrid systems in static environments 113

6.2 Waypoint navigation system ... 118

6.2.1 Reactive unit .. 120

6.2.2 Waypoint knowledge base ... 121

6.2.3 Deliberative unit ... 125

6.3 Planning approach ... 128

6.3.1 Chromosome initialisation ... 129

6.3.2 Genetic operators ... 130

6.3.3 Selection scheme ..
131

6.3.4 Evaluation .. 131

6.3.5 Replacement strategy ...
132

6.4 Investigation of the waypoint method in escaping from 'U-shaped' traps 133

6.5 Experimental procedure ..
135

6.5.1 Toolbox features
..

135

6.5.2 Kinematic modelling ...
136

6.6 Results of the comparisons between the navigation methods 137

6.6.1 Generated path quality ... 139

6.6.2 Number of individuals needed to produce feasible paths 142

6.6.3 Path length
... 143

6.6.4 Time to obtain the first feasible path ... 146

6.7 Application of the waypoint navigator to complex environments 148

6.7.1 Effect of population size on real-time solution quality 150

6.7.2 Effect of deterministic crowding on the ability to find the optimal solution

... 152

6.8 Comparison wth other hybrid systems .. 154

6.9 Conclusions
.. 158

7. WAYPOINT-BASED NAVIGATION IN DYNAMIC ENVIRONMENTS.. 161

Contents

7.1 Related work in hybrid systems in dynamic environments 162

7.2 Waypoint navigation system for dynamic environments 168

7.3 Static behaviour module .. 170
7.4 Dynamic avoidance module .. 171
7.4.1 Constraints on moving obstacle dimensions and velocity to avoid collision

... 172
7.4.2 Mobile robot dynamic avoidance behaviour .. 181

7.5 Deliberative module .. 186

7.5.1 Statistical exploration ... 187

7.6 Experimental results .. 188

7.6.1 Dynamic avoidance .. 189

7.6.2 Statistical exploration ... 190

7.6.3 Comparison of dynamic avoidance behaviour ... 195

7.7 Comparion with other hybrid architectures .. 201

7.8 Discussion ... 202

7.9 Conclusion .. 204

8. GENERALISED WAYPOINT-BASED NAVIGATION SYSTEM 205

8.1 Related work to path approximation and graph search by genetic algorithms206
8.2 Generalised waypoint navigation system .. 209

8.3 Knowledge base 211

8.3.1 The two types of waypoint ... 212

8.3.2 Curve segment representation .. 213

8.4 The planning algorithm ... 217
8.4.1 Cost matrix ... 218
8.4.2 Initial population .. 221
8.4.3 Genetic operators ... 223
8.4.4 Evaluation ... 224 ...

8.5 Experiments and results .. 225
8.5.1 Path generated with little knowledge of the environment 226
8.5.2 Path generated with greater confidence of the working environment 229
8.5.3 The paths generated based on learning .. 231
8.5.4 The effect of weight values on path planning .. 231

Contents

8.5.5 Summary of results .. 234

8.5.6 Comparison of the planning algorithm with existing systems 235

8.6 Conclusions ... 237

9. CONCLUSIONS ... 239

9.1 Summary ... 239

9.2 Review of research objectives .. 241

9.3 Shortcomings of the planners and future work ... 242

9.3.1 Planner-based navigation systems ...
242

9.3.2 Waypoint-based navigation system ...
243

9.3.3 Experimental procedure ...
243

9.4 Conclusions ... 243

REFERENCES .. 244

List offigures

LIST OF FIGURES

Figure 1.1 The structure of canonical genetic algorithm ... II

Figure 2.1 Planning arrangement for a sensor-based system 21

Figure 3.1 Pseudocode for the EP/N algorithm ... 46

Figure 3.2 Pseudocode for the SEWN++ algorithm ... 47

Figure 3.3 An example of a frequency table used in the reactive navigation of a

mobile robot ... 52

Figure 4.1 The pseudo-code for the vertex planner ... 62

Figure 4.2 An example of the enlargement of the obstacles for the purposes of

planning .. 63

Figure 4.3 The structure of a chromosome .. 64

Figure 4.4 An illustration of the application of the repair operator that uses the

vertices of the enlarged obstacle (shown by a broken line) to detennine a
feasible path around an obstacle ... 66

Figure 4.5 The paths generated by the vertex planner for each of the simulated
environments 68

Figure 4.6 The infeasible path costs for the best individual from the first generation
to that when the first- feasible path is generated . .. 70

Figure 4.7 The feasible path lengths for the best individual during the second

evolutionary phase ... 72

Figure 4.8 Effect of altering the number of individuals in the population on the

calculation time for the vertex planner ... 74

List offigures

Figure 4.9 Effect of altering the number of individuals in the population on the path
length for the vertex planner .. 75

Figure 5.1 An example of the environment representation in vertex++ planner 83

Figure 5.2 Evaluation of the possibility of collision with a moving obstacle 84

Figure 5.3 The vertex++ algorithm .. 85

Figure 5.4 The structure of a chromosome .. 86

Figure 5.5 Comparison of the generated paths for the four environments both with no

moving obstacles (left column) and with moving obstacles (right column) 92

Figure 5.6 The paths generated for a mobile robot with speeds determined by the GA

.. 94

Figure 5.7 The paths as planned following the motion changes of the obstacles
(detected by the robot when positioned at the points marked 'C') that

occurred after 400,380,300, and 320 seconds for environments 1,2,3, and
4 respectively ... 97

Figure 5.9 The path cost for the best individual of each generation obtained for both

planning algorithms with the optimisation goal of minimising travel time for

the first evolutionary phase (containing all infeasible paths) during the on-
line process ... 100

Figure 5.10 The path cost of the best individual of each generation by both planning

algorithms with the optimisation goal of minimising travel time during the

second evolutionary phase (containing all feasible paths) during the on-line

process .. 102

Figure 5.11 The path cost of the best individual of each generation produced by both

planning algorithms with the optimisation goal of path length for the first

evolutionary phase (containing all feasible paths) during the on-line process

.. 105

Figure 5.12 The path cost of the best individual of each generation produced by both

planning algorithms with the optimisation goal of path length for the second

evolutionary phase (containing all feasible paths) during the on-line process

.. 107

List offigures

Figure 6.1 Block diagram of the waypoint navigation system 119

Figure 6.2 On sensing the presence of an obstacle, the robot has a choice of
following one of two paths ... 124

Figure 6.3 The structure of a waypoint .. 125

Figure 6.4 The pseudocode for the waypoint navigator algorithm 129

Figure 6.5 Illustration of the mobile robot escaping from a U-shaped obstacle 135

Figure 6.6 Locomotion mechanism for the simulated robot 136

Figure 6.7, The paths generated by the EP/N technique ... 139

Figure 6.8 The paths generated by the vertex planning technique 140

Figure 6.9 The paths generated by waypoint technique ... 141

Figure 6.10 The path length for the best individual for generations containing paths
that are all feasible .. 144

Figure6.11 The median values for the calculation times averaged over 30 runs 147

Figure 6.12 The paths generated by waypoint technique for the four complex

environments .. 149

Figure 6.13 The optimality achieved by the proposed planning algorithm for the

environments shown in Figure 14 with the population size being changing from

10 to 200 individuals in steps of 10 for the test environments 151

Figure 6.14 The mean values and standard deviations for the populations generated
by the waypoint navigator both without DC (left column) and with DC (right

column) .. 154

Figure 7.1 The architecture of the waypoint navigation system 169

Figure 7.2 Determination of the maximum width W of the moving obstacle 173

Figure 7.3 Example of the robot moving with a component of its velocity in the
direction opposite to the moving direction of the obstacle, when the

component of the velocity of the robot is projected along the longitudinal

dimension of the moving obstacle .. 175

Figure 7.4 The determination of D,. b when(a) L>W+d,, (b) d, :! ý L: 5 W+d, and

L<d .. 177

Figure 7.5 Algorithm for moving obstacle avoidance ... 181

List offigures

Figure 7.6 An example where the robot moves with a component of its velocity in

the same direction as the moving obstacle, when the component of the

velocity of the robot is projected along the longitudinal dimension of the

moving obstacle .. 185

Figure 7.7 Trajectories followed by the navigation system 190

Figure 7.8 The generated paths for the sea environment for a range of arrival rates of

moving obstacles .. 191

Figure 7.9 Robot movements in a road environment ... 193

Figure 7.10 The paths generated for three traffic conditions 194

Figure 7.11 The paths generated by ND (left column) and the DWA algorithm (right

column) for three cases ... 197

Figure 7.12 The paths generated by ND (left column) and DWA (right column) ... 200

Figure 8.1 An example of the two types of waypoint .. 213

Figure 8.2 The path segment represented by a straight line 215

Figure 8.3 An example of intersections between straight line paths (illustrated as grey
dash-dot lines) and spline curves (shown as black broken lines), generated
by using least squares approximation (between A and B) and interpolation

(between A and Q .. 216

Figure 8.4 An example of a cost matrix used for planning a path for the navigation
task shown in Figure 8.5 ... 220

Figure 8.5 Illustration of feasibility evaluation during the calculation of values in the

cost matrix .. 218

Figure 8.6 Intersection between the straight line AB and the spline CD at points N

and P2 . .. 219

Figure 8.7 An example of the random generation of an individual using the cost

matrix in Figure 8.4, corresponding to the environment illustrated in Figure

8.5 . .. 223

Figure 8.8 A path generated based on knowledge acquired during previous

navigations .. 226

Figure 8.9 The spline approximations to the actual path segments around the

obstacles ... 227

List offigures

Figure 8.10 The cost matrix constructed for path planning 228

Figure 8.11 The visibility graph corresponding to the cost matrix shown in Figure

8.10 I .. 228

Figure 8.12 The path generated based on the environmental knowledge gained from

four earlier navigation tasks ... 229

Figure 8.13 The spline curves representing the actual path segments 230

Figure 8.14 The visibility graph corresponding to the cost matrix generated 230

Figure 8.15 The path generated following a sequence of learning in the environment

..
231

Figure 8.16 The path generated using a weight value W2 = 1.85 233

Figure 8.17 The path generated using a weight value w2 =I.................................. 233

List of tables

LIST OF TABLES

Table 4.1 System parameters for EPN ...
69

Table 4.2 System parameters for the vertex planner .. 69

Table 4.3 Execution time and number of generations to determine the first feasible

path .. 71

Table 4.4 Execution time and number of generations to determine the final path 73

Table 5.1 The'numbers of obstacles in the four test environments 89

Table 5.2 System parameters for the vertex++ planner ... 90

Table 5.3 Examples of speeds (in ms"') for the moving obstacles in the experiments

conducted for the robot with constant speed ... 91

Table 5.4 Experimental results for the robot with constant speed in the four

environments .. 93

Table 5.5 Examples of speed parameters (in ms") randomly generated for each path

segment of the moving obstacles for the experiments conducted with the

robot operating at variable speed ... 93

Table 5.6 Results in the four environments for the robot with variable speed 95

Table 5.7 Example of modified speed parameters (in ms") generated for each
moving obstacle path segment ... 95

Table 5.8 Experimental results for the on-line planning .. 98

Table 5.9 System parameters for the aEP/N++ planner .. 99

Table 5.10 The execution time and the number of generations to obtain the first

feasible path when minimising travel time .. 101

Table 5.11 The execution time and the number of generations to determine the final

path when minimising travel time . .. 103

List of tables

Table 5.12 The execution time and the number of generations to obtain the first

feasible path when minimising path length ...
105

Table 5.13 The execution time and the number of generations to determine the final

path when minimising path length ..
107

Table 6.1 The control parameters for the three planning algorithms 138

Table 6.2 The minimum number of individuals in a population needed to obtain a

feasible path for each algoritlun ..
143

Table 6.3 The median calculation times (in seconds) to obtain the first feasible path

...
146

Table 6.4 The number of waypoints and path segments generated during the

exploration phase ..
150

Table 6.5 Percentage of runs that achieve optimality for the four sample

enviromnents ...
153

Table 7.1 Path costs for the best path in terms of mean travel time found from 10

traverses of each path segment ..
192

Table 7.2 Path costs for the best path in terms of travel time obtained over 10

experiments for each path segment ...
194

Table 7.3 Path length and execution time taken by ND and the DWA technique for

three cases ... 198

Table 7.3 Path lengths and execution times taken by ND and DWA for four

configurations shown in Figure 7.12 ...
201

Table 8.1 The system parameters for the planning algorithm 226

Table 8.2 The planning performances for the five experiments, showing the memory

needed to store the splines ..
235

Table 8.3 The system parameters for Alm's algorithm .. 236

Table 8.4 The system parameters for Ji's algorithm ..
236

Table 8.5 Comparison of the performances of the planning algorithms 237

Chapter 1: Introduction

Chapter 1

INTRODUCTION

This chapter provides the background and context of the research work reported in

this thesis. The chapter begins with a brief history of the mobile robots, followed by

an introduction to the problem under investigation, namely robot navigation and the

principal approach of genetic algorithms adopted in the research project. The

objectives
'
of the research project are presented, the contributions to knowledge are

summarised and the thesis structure is outlined.

1.1 Mobile robots

The popular conception of robots * is that of machines with a human appearance,
behaviours and emotions. This image has been fostered in the media from the first

performance of Karel Capek's play, R. U. R (Rossum's Universal Robots), to the

modem movie series Star Wars. The practical reality is more mundane. The ma ority

of robots are in use in the manufacturing industry, either repeatedly performing
definable tasks or working in environments that are dangerous, perhaps toxic or
intemperate. In contrast, relatively few specialist robots have been developed for

research purposes, such as for operation in deep seas or in outer space. Recent

developments include: micro-robots or nano-robots that can be injected into the

human body to assist diagnosis and return detailed pathological data (Guo, Sawamoto

and Pan 2005); domestic robots performing household chores such as cleaning or

I

Chapter 1: Introduction

weeding (Lee 1998) and robot pets (Fujita and Kitano 1998) and football-playing

robots (Asada et al. 1999) entertaining their human masters.

The definition of a robot can be very general, 'any device which replaces human

labour' (Soska 1985), or quite specific, 'a robot is a pre-programmable, multi-
functional, manipulator designed to move material, parts, tools, or specialised devices

through variable programmed motions for the performance of a variety of tasks'

(Jablonski and Posey 1985). Robots themselves have been classified in various ways;
for example, robots can be differentiated in terms of the type of control, compatibility

level, configuration or moving ability (Critchlow 1985). As this thesis focuses on the

ability of a robot to be mobile, the distinction between fixed and mobile robots is the

most relevant here. Most industrial robots have their base fixed in physical location

and consequently their workspace is constrained to be the maximum extension of

their linkages. To overcome this problem, two approaches have been taken, namely

flexible manufacturing cells and mobilising the robots. In the former approach, the

change to the effective workspace volume that results from modifications to the

robot's configuration is limited, at least in comparison with that achievable by mobile

robots. Various locomotion mechanisms have been designed to mobilise robots,

including wheels, tracks, legs and motor thrusters. These have enabled the

development of serpentine robots, climbing robots, underwater robots, free-flying

robots, and self-reconfigurable robots. A detailed explanation of locomotion

mechanisms is presented in (Bekey 2005; Siegwart and Nourbýkhsh 2004), along

with discussions of their biological counterparts. Although nature did not evolve any
living species with fully-rotating actively-powered joints, wheels are the most

common method for locomotion in human-designed systems. Much recent research

concerning robot mobility has focused on self-reconfiguring (morphing) robots that

can change their mode of locomotion according to either internal intention or the

external terrain. For example, such a robot could change from a rolling machine into

a legged robot when a well is detected.

2

Chapter 1: Introduction

1.2 Robot navigation

A mobile robot can be teleoperated, pre-programmed for repetitive tasks or navigate
autonomously. The work in this thesis considers only autonomous navigation. Task
descriptions for autonomous robots often need'to only specify what the operator
wants done rather than how it is to be done. Achieving autonomous navigation
requires the successful application of many artificial intelligence attributes, including

sensing, actuation, planning and- problem solving algorithms, as well as the

specification of a suitable embedded platform, including real-time software and
hardware architectures.

In any given environment, a mobile robot is expected to move between two or more

specified locations in order to accomplish an assigned task. The following four

questions reflect the functions that a navigation system must perform (Levitt and
Lawton 1990; Murphy 2000).

" "ere am I going? The robot should be clear about where it needs to go, and the
destin

'
ation is usually determined and assigned by a human operator or a

machine-based mission planner. Some tasks may require that a set of sub-goals is

followed along the route to the final destination. The answer to this question is

assumed to be known in most robot scenarios.

" What is the best way to get there? The robot needs a plan to reach the destination

efficiently and with consideration of optimisation criteria. Although nayigation is

more than just path planning, this vital area has received considerable research

attention.

" "ere have I been? Map building helps the robot identify where it has been,

allowing it to incrementally gain knowledge of previously unknown parts of its

environment. Even if the robot is operating in areas of its environment previously

visited, future performance may not only be improved by refining stored
information, but any changes since the last visit can be re-mapped. The

representation of environmental knowledge should be in a form which aids

retrieval and augmentation.

3

Chapter 1: Introduction

Where am P This is the localisation problem. The robot should have knowledge

of where it is now, so that its next step can be accurately determined. Although

global localisation provides a unique identification of position, localisation is

often relative to a local landmark, such as the comer of a street. If localisation is

inexact, the robot may fail to recognise when it has returned to a point already

mapped and consequently build an inaccurate map with duplicated entries.
Localisation errors are generally cumulative, in that the further the robot travels

the greater the error will be.

Leonard and Durrant-Whyte (1991) added the question "How should I get there? "

that emphasises there may be a number of alternative routes that need to be

considered. This is closely related to the path planning problem, an area that is given

a particular emphasis in this thesis.

1.2.1 Deliberative, reactive and hybrid systems
Traditionally, two types of control methods have been adopted for robot navigation,

namely deliberative planning and reactive behaviour (Arkin 1998; Kortenkamp,

Bonasso and Murphy 1998; Lyons 1992; Mali 2002; Mufloz-Salinas et al. 2005;

Murphy 2000; Oreback and Christensen 2003; Stoytchev and Arkin 2004; Urdiales et

al. 2003b). A solution that incorporates both deliberative and reactive components is

termed a hybrid navigation system (for example Aguirre and Gonzdlez 2003; Arkin

1998; Kortenkamp, Bonasso and Murphy 1998; Lyons 1992; Mali 2002; Mufloz-

Salinas et al. 2005; Murphy 2000; Oreback and Christensen 2003).

Deliberative systems rely on an accurate world model to generate a plan for a given

navigation task. The movement is directed by the decision, which is made in a
hierarchical architecture involving functional decomposition, world modelling, and

path planning (Arkin 1998; Murphy 2000). The use of perception in deliberative

systems has been restricted to finding a means to ensure the accuracy of the global

representation of the environment and no feedback to the planner exists from the

robot action that results from the implementation of the plan (Arkin 1998; Mali 2002).

The approaches in this category are also called model-based approaches, as the world

4

Chapter 1: Introduction

model is essential for deliberative reasoning. Deliberative navigation methods

generally assume that the environment in which the robot moves, as well as its start

and goal points, are known and the obstacles are either static or move in pre-defined

manners. With such knowledge, the navigation task is to, plan paths without collision
based on complete knowledge of the working environment (Nearchou 1998; Xiao et

al. 1997). Such global planning normally results in optimal or near-optimal

movements of the robot when moving between specified pairs of locations. In

dynamically changing environments, deliberative methods often need to re-plan

movements and, as these calculations can be very time consuming, deliberative

methods are often unsuitable for real-time navigation. Also, the assumption that the

environment is completely known is improbable in practical applications.

Consequently, deliberative approaches to planning a collision-free path are often

criticised for not being able to deal with uncertainties, in practical environments (Ryu

and Yang 1999).

In reactive approaches, the robot performs an action according to the pattern of

perceived sensor information and the direction of the goal. Consequently, the design

of this type of control generally forms a tight linkage between stimulus and response

to achieve real-time performance (Kortenkamp, Bonasso and Murphy 1998; Mali

2002; Urdiales et al. 2003b). The approaches of this type are also known as sensor-
based approaches. As reactive methods make few, if any, assumptions regarding the

arrangement of obstacles in its environment, they are often more robust in dealing

with dynamic environments and are more tolerant to uncertainties in sensor

measurements and the errors that accumulate during actuator movement sequences
(Muftoz-Salinas et al. 2005; Ryu and Yang 1999; Urdiales et al. 2003b). The reactive

approaches are often capable of autonomously exploring 'new regions in the

environment and, as there is no plan to modify or repair, they are generally able to

respond rapidly to any changes that may occur in the operating environment.
However, without a global view of the environment, movements under reactive

control are unlikely to be optimal and, as there is no memory of the locations at which

previous decisions have been taken, localisation is not normally feasible, nor is

escape possible from certain obstacle configurations.

5

Chapter 1: Introduction

Hybrid architectures make use of reactive motor bchaviours that arc activated

according to a higher deliberative cognitive process (Aguirre and Gonzdlcz 2003;

Mali 2002; Murphy 2000; Orcbdck and Christensen 2003). The sensory information

about the environment may be shared between the two layers: a suitable behaviour

can be generated based on this stimulus, while cognitive functions in the deliberative

layer integrate the observation into a world model. A plan may be subsequently made

with up-to-date knowledge of the environment to guide the robot in accomplishing
the navigation task. An important issue arises from the investigation of hybrid

systems, namcly, what is the appropriate way to interface the deliberative and

reactive systems in order to maximise navigation performance (Arkin 1998; Lyons

1992)? The hybrid systems presented in this thesis attempt to deliver a suitable

solution to this problem.

1.2.2 Topological and metric navigation
Two navigation techniques, namely topological navigation and metric navigation
(also sometimes known as qualitative navigation and quantitative navigation

respectively) have emerged as distinct and popular strategies for representing robot

environments (Murphy 2000; Ryu and Yang 1998; Thrun and Bucken 1996; Urdiales

et al. 2003a).

Topological navigation is often viewed as a human-like way of navigating. If a visitor

at a reception desk asks, 'Where is ScottT directives such as, 'Pass through the door,

go up the stairs, turn left at the second floor and enter the second room on the right at
the end' may be given to guide the visitor to Scott. Such an approach relies on the
human ability to identify and navigate based on landmarks or features, such as 'door',

4stairs', 'floor', 'room', and 'end'. Analogously, topological navigation uses
distinctive landmarks (which can be natural or artificial) and their interconnections, to
describe environments (topologically represented) and plan paths consisting of a
sequence of identifiable landmarks. However, there are significant drawbacks:

processing overheads are often substantial in realistic implementations, feature

6

Chapter 1: Introduction

extraction may require model-based vision processing and localisation can become

difficult or even impossible if landmarks cannot be identified.

Metric navigation requires the existence of a map of the environment in which the

robot's environment is defined by a single, global coordinate system. The paths

generated by metric techniques can usually be decomposed into a set of'path

segments consisting of sub-goals with fixed locations or global coordinates. A data

structure called configuration space (or c-space for short), is used in metric

approaches to specify the position and orientation of the robot and the obstacles (that

are represented in their own configuration space termed c-obstacle) (Choset et al.
2005; Latombe 1991; Lumelsky 2005). C-space reduces the robot's physical
dimensions to a single point, so that the path planning problem can be simplified to

moving a point through a scattered set of obstacles. The objects (except for the robot)
in c-space are normally approximated by polygons in order to reduce planning

complexity and memory usage.

The advantages and disadvantages of each type of navigation have been widely

recognised (Aguirre
'
and Gonzdlez 2003; Mufloz-Salinas et al. 2005; Murphy 2000;

Ryu and Yang 1998; Urdiales et al. 2003b). Due to the compact characteristic of the

topological representation, it scales better than metric maps for larger environments.
Also, topological maps are more tolerant to errors in metric information, but the

ability to distinguish landmarks has proved difficult to solve in many practical

situations, particularly when more than one landmark with the same or similar
features is present. Additionally, global optimal navigation can be generated based on

the metric representation, whereas it is unlikely to be able to generate an optimal

solution (in terms of metriý criteria) using the approaches relying on topological

representation alone. Many recent navigation schemes rely on a hybrid representation
(for example Aguirre and Gonzdlez 2003; Jia, Zhou and Chen 2004; Muftoz-Salinas

et al. 2005; Poncela et al. 2002; Ryu and Yang 1998; Urdiales et al. 2003a and 2003b)

that integrates the metric information with the topological representations to

overcome the disadvantages of the individual navigation techniques.

7

Chapter 1: Introduction

1.3 Genetic algorithms

Genetic algorithms (GAs) generally refer to a family of computational models
inspired from biological evolution, specifically those that follow the principle of
6survival of the fittest' firstly laid down by Charles Darwin (Goldberg 1989 and 2002;

Holland 1975; Mitchell 1996; Nolfi and Floreano 2000; Osyczka 2002; Wang, Tan

and Chew 2006; Watanabe and Hashem 2004). GAs are generally used as adaptive
heuristic search algorithms, mimicking the natural evolutionary process and

maintaining a population of candidate solutions or 'chromosomes' that are evolved

over a series of generations. Competitive selection favours fitter chromosomes, pairs

of which are chosen for mating to produce the next generation; the expectation being

that the resulting offspring will also be fitter individuals, biasing the search towards

regions in which fitter chromosomes have already been discovered. To avoid the loss

of population diversity, and so reduce the possibility of terminating the search at a
local optimum, mutation of the offspring often occurs with only a small probability.

Due to the implicit parallelism of GAs (Goldberg 1989 and 2002; Holland 1975;

Mitchell 1996), they search a larger space with a relative small number of

manipulations carried out on a set of artificial chromosomes. Results in the literature

demonstrate that not only do GAs provide an alternative approach to solving

problems, but outperform other methods for many real-world search-related problems
(De Jong 1992; Osyczka 2002; Watanabe and Hashern 2004). With the simple and

general form, GAs can operate on each kind of parameter space (such as, discrete,

continues, or combinatorial spaces) to fulfil single or multiple optimisation criteria

with no requirement of gradient information regarding the search space and any other
internal knowledge (Beasley, Bull and Martin 1993; Wang, Tan and Chew 2006). The

parallel implementation can be easily achieved with the concept of population,

resulting in faster execution compared to conventional approaches (Cantu-Paz 2000;

Watanabe and Hashern 2004). Previously intractable real-world problems can be

solved with little need to perform deep analysis of the application itself (Rothlauf

2002). GAs are well suited to problems in which noise exists (Sano and Kita 2002;

Watanabe, and Hashern 2004) and GAs are sufficiently flexible to allow users to

8

Chapter 1: Introduction

modify the genetic operators (Carrano et al. 2006; Passone, Chung and Nassehi 2006)

or even invent new operators (Vannoy and Xiao 2004) that effectively introduce

domain knowledge to improve the performance for specific problems. The merits of
GAs can be summarised as follows: large application domain, simple mechanisms,

applicable to many parameter spaces, no gradient information or internal knowledge

required, suitable for single and multiple objective optimisation, easy parallelisation,

suitable for difficult problems, robustness and flexibility. Such advantages are central

to the requirements of the work in this thesis, but GAs also have a number of
drawbacks, including computational complexity (Watanabe and Hashem 2004),

appropriate control parameters are difficult to choose (Goldberg 2002; Mitchell 1996),

and no guarantee that the global optimal will be found (Chen, Lee and Park 2005; De

Jong 1992; Rudolph 1994). Advances in computer hardware have to some extent

alleviated the computational disadvantage, for example, Minami, Gao and Mae (2007)

developed a GA for catching fish in real time. Moreover, calculation time can be

reduced by parallel implementations (Cantu-Paz 2000; Watanabe and Hashem 2004).

There remains no solid theoretical guidance for choosing appropriate GA parameters
for a specific application and their determination is largely based on trail and error. It

is difficult to predict or accurately govern the evolutionary progress to a sufficient

extent that it can be guaranteed that the desired solutions can be found within a

certain time limit. Other researchers have attempted to direct the search by

incorporating domain knowledge as heuristics (for example Elshamli, Abdullah and
Areibi 2004; Smierzchalski and Michalewicz 2000 and 2006; Zheng, Ding and Zhou

2003; Zheng et al. 2005). GAs cannot guarantee that, with a finite population, the

global optimal solution can be determined every time and sub-optimal solutions are

often accepted as a necessary consequence of the finite computational resources

available in practice (Chen, Lee and Park 2005; Rudolph 1994).

1.3.1 A brief history and application examples
In the 1950s and 1960s, evolutionary systems were studied with the aim of

establishing the mechanism as an optimisation tool for engineering problems. John

Holland (1975) proposed GAs as a method for designing robust adaptive systems. His

GA introduced most of the features of a modem GAs, such as a population and the

9

Chapter 1: Introduction

genetic operations of crossover, inversion, and mutation. The ongoing advances in

computational power have also helped to establish GAs in many new areas of

application.

GAs have been applied in a wide variety of fields. Examples in the field of

engineenng (Abraham, Jain and Goldberg 2005; Chambers 2000) include

optimisation tasks such as circuitry routing, job-shop scheduling and automatic

programming to generate complex programs from programming elements. The

applications of GAs in machine learning include evolving sensors for robots,
determining optimal weights for neural networks, and generating rules for classifiers

systems. There are also successful examples of the application of GAs to evolve

social behaviours, cooperation and communication in multi-agent systems.

1.3.2 Features of genetic algorithms and variants of the canonical form

There is no broadly accepted definition of a genetic algorithm that distinguishes it

from other evolutionary computation methods (Mitchell 1996; Osyczka 2002;

Watanabe and Hashem 2004). However, the salient features are those of a population

of chromosomes, selection based on fitness and the application of genetic operators,

and these are common across all variations of the canonical genetic algorithm, see
Figure 1.1. Chromosomes are generally formed of fixed-length from a binary

encoding of the problem being tackled (Abraham, Jain and Goldberg 2005; Goldberg

1989 and 2002; Holland 1975; Osyczka 2002; Rothlauf 2002; Wang, Tan and Chew

2006; Watanabe and Hashem 2004), although other encoding mechanisms, such as

real values (Herrera and Lozano 2000; Hrstka and Kucerova 2004; Montana and
Davis 1989; Suzuki, Sawai and Piaseczny 2006) and character sets (Kitano 1990;

Rothlauf 2002) have been successively applied in specific applications. In addition,

variable-length chromosomes (Goldberg, Korb and Deb 1989; Hutt and Warwick

2007; Kim and De Weck 2005), where the length of the chromosomes is adapted
during the evolutionary process, can be well suited to problems where the length of
the optimal search path can vary greatly from one application of the GA to the next.
A good example of adaptive encoding is found in the messy GA (Goldberg, Korb and
Deb 1989), a form that was specifically developed to improve the performance of

10

Chapter 1: Introduction

GAs by construct, ing longer fitter chromosomes from combinations of smaller elite

seeds. In GAs, the selection to bias individuals towards promising regions of the

search space is a sensitive parameter: too high a selection pressure results in rapid

convergence towards sub-optimal solutions, but if it is too low, the evolutionary

process is likely to be rather slow.

procedure canonical genetic algorithm
begin

generate initial population randomly
evaluate the fitness for each individual
while optimisation criteria not met

select parents
apply crossover, mutation operators to parents to produce offspring
evaluate the fitness for offspring
form a generation

end while
end

end procedure

Figure 1.1 The structure of canonical genetic algorithm.

GA selection schemes can be classified into two categories, namely proportionate and

ordinal-based selection (Ahn and Ramakrishna 2002; Goldberg 2002). Proportionate

selection chooses individuals according to their relative fitness, examples being the

roulette wheel (De Jong 1975), stochastic remainder (Booker 1982; Brindle 1981)

and stochastic universal selection (Baker 1987; Grefenstette and Baker 1989).

Ordinal-based selection ranks individuals in the population, examples are tournament

(Brindle 1981), truncation (MUhlenbein and Schlierkamp-Voosen 1993) and ranking

selection (Baker 1985).

The most commonly-used genetic operators are crossover and mutation, but a number

of other operators often feature, particularly inversion, delete and swap (Goldberg,

2002; Mitchell 1996). In applyi
'
ng GAs, a range of parameters need to be set, and

these include population size, the number of generations, and the application rates of

the applied operators. There are no general quantitative rules for choosing these

parameters, suitable values depend largely on the nature of the problem under
investigation and values are normally determined experimentally (De Jong 1975;

Mitchell 1996). Altering the parameter values will likely affect the performance of

the GA in tenns of the rate of convergence and the quality of the solution produced.

11

Chapter 1: Introduction

There is a number of different ways of replacing the population with generated

offspring. In generational GAs, the next generation is normally formed of individuals

resulting from genetic operations on the old population, which is entirely discarded

(Goldberg 1989 and 2002; Holland 1975). Elitist replacement strategies (Dumitrescu

et al. 2000; Reed, Minsker and Goldberg 2001; Rudolph 1994) clone a (typically

small) number of best fit solutions directly into the next generation without any

genetic alteration and the remainder of the new population is filled with offspring

modified by operators. In the tournament replacement scheme (Smith 2007), the

members to be inserted into the new population are determined by tournament

between the individuals in the current population and the offspring generated. The

crowding approach (De Jong 1975) and its variants (Affenzeller and Wagner 2004;

Mahfoud 1995a; Mengsheol and Goldberg 1999; Sareni and Krahenbuhl 1998) have

this replacement strategy. Another replacement approach, less common due to

ineffectiveness, is the random replacement scheme (Ballester and Carter 2003), in

which only those individuals randomly selected from the current population will be

replaced by offspring.

The following are ex=ples of variants on the canonical GA form.

Modifying one or more GA features, the genetic representation or the structure
Examples are messy GAs (Goldberg, Korb and Deb 1989), mentioned above,

that permit variable-length chromosomes and steady-state GA (Syswerda 1991;

Whitley 1989; Whitley and Kauth 1988) in which only a small frdction of

population is involved in the genetic reproduction for the next generation.

Adapting parameters during the evolutionary process An example is the work of
Jerald et al. (2005) who proposed a GA that adapts the probabilities of

application of its genetic operators.

Implementing GAs in parallel An additional operator, namely migration, is

commonly found in parallel GAs to define the degree of interaction between

separate sub-population streams (Conceicao Antonio 2006; Srinivasa, Venugopal

and Patnaik 2007).

12

Chapter 1: Introduction

Niched GAs Niching techniques attempt to maintain population diversity,

allowing separate promising regions to be investigated simultaneously and

reducing the risk of concentrating the search in areas that may lead to only a
locally optimal solution. Crowding (De Jong 1975) and sharing (Goldberg and
Rechardson 1987) techniques are common examples.

GAs have also been combined with other optimisation algorithms in order to improve

the overall search performance, such as in the simulated annealing genetic algorithm
(Wang, Z. G. et al. 2005; Yildirim, Erkan and Ozturk 2006). However, such hybrid

algorithms may behave very differently from GAs.

The basic idea about GAs was given in this section and the next chapter extends this

brief introduction by discussing a number of important aspects of GAs based on the

recent developments found in the literature.

1.4 Research aim and objectives

The aim of the research was to design an autonomous navigation system for a mobile

robot that has no a priori knowledge of the environment. Once the robot has had the

opportunity to move through the environment, either as a consequence of navigation

or exploration activities, it should be capable of obtaining and storing information

regarding the environment for future use of planning by genetic algorithms.

The aim was achieved in a sequence of logical stages that can be formulated as the
following objectives.

1. To reduce the time taken to generate plans for navigating through environments

that contain known static obstacles. It is likely that this will require the
development of a suitable and novel method for representing the obstacles.

2. To extend the planner for static environments in such a way that the navigation
technique can also deal with dynamic obstacles whose paths may not be known.
This is likely to require the incorporation of motion parameter into planning
process.

13

Chapter 1: Introduction

3. To develop a means of automatically gathering information of the environment

as the robot moves among the static obstacles. It is likely that a hybrid solution

will be required, in which a reactive navigator will guide the initial movements

and the information gained then communicated to a high-level planner. As more
is learned of the environment, so the planner will become better placed to plan
future movements.

4. To eýhance the operation of the reactive part of the hybrid navigation solution so

that it is able to avoid moving obstacles with minimal disruption to the overall

navigation plan.
5. To implement a generalised version of the hybrid navigation system that is able

to provide navigation from any start point to any goal point in the environment.
This will require that additional information is gathered from the obstacles and

modelled in a suitable form that is not overly extravagant in terms of memory

usage or planning time.

1.5 Contributions to knowledge

The contributions of the research project reported in this thesis are as follows.

1. A new genetic-based planner for stationary enviromnents was developed that

included the novel aspect of constraining the search space to only a set of

vertices. The planner was found to significantly reduce planning time compared

with earlier evolutionary planners, yet generated a similar quality of path.
2. In an extension to the vertex planner, the adaptive modification of the planned

route was permitted in order to allow it to be changed in response to observed

moving obstacles. The speed parameters of both the robot and the moving

obstacles were encoded as part of the genetic planning process, allowing the

selection of an appropriate robot speed for each path segment.

3. The novel waypoint-based hybrid navigation system further simplified the

representation of the environment, reduced the memory storage requirement for

the environmental knowledge and considerably shortened the time to deliver a
suitable path between the detected waypoints.

14

Chapter 1: Introduction

4. Two contributions can be drawn from the research work on the waypoint-based
hybrid navigation system for dynamic environments. Firstly, a set of algorithms

was developed to enable the robot to avoid potential collisions with the moving

obstacles sensed. Secondly, a new method of statistical exploration was devised

to identify the dynamic patterns that potentially characterise a dynamic

enviromnent.
5. The generalised version of the waypoint navigation system enabled the

formulation of planned paths between any pair of locations using waypoints
determined during the previous tasks. This approach required the development

of a novel method of describing the environmental knowledge elicited.

Although significantly more knowledge of the environment now needed to be

stored, its ifiernory requirement was kept to a minimum by a piece-wise

polynomial representation.

1.6 Structure of the thesis

The next chapter provides a deeper introduction to GAs based on a survey of recent

developments of GAs related to the algorithms proposed in the thesis. The three

principal mobile robot navigation approaches, namely planner-based, reactive and

hybrid systems are all relevant to the current research and a review of work found in

the literature in each of these areas is discussed in chapter 3. Two specific planning

systems described by other authors are discussed in detail as they are closely related

to the current work.

Chapters 4 to 8 all describe new work performed by the author. A new genetic-based

planner that uses the vertices of obstacles to create paths through static obstacles is

described in chapter 4. Chapter 5 extends the vertex planner of chapter 4, so that it is

able to perform navigation in environments that contain dynamic obstacles as well as

static obstacles. Chapter 6 describes a novel waypoint navigation system that is able

to gather information autonomously about the environment for use in the generation

of future plans. Chapter 7 presents a hybrid navigation system which augments the

navigation ability of the waypoint navigation system presented in chapter 6, so that it

15

Chapter 1: Introduction

can be applied to dynamic environments. A generalised waypoint navigation system
is described in chapter 8 and this navigation system enables path planning for future

navigation tasks that can start at any point and end at any point. The thesis is

concluded in chapter 9, in which the research reported in the thesis is summarised,

achievements are outlined, shortcomings are discussed, and future work is proposed.

16

Chapter 2: Genetic algorithms review

Chapter 2

GENETIC ALGORITHMS

REVIEW

The previous chapter presented an overview of the research project, introduced

mobile robots, described the general nature of navigation problems and gave a brief

introduction to genetic algorithms (GAs). This chapter reviews the recent

developments in GAs with particular emphasis on the aspects relevant to the

algorithms proposed in this thesis and justification of the choice of GA structure

adopted in this thesis. For the earlier work on GAs, good reviews can be found in

Back, Hammel and Schwefel (1997), Chaiyaratana and Zalzala (1997) and De Jong

and Spears (1993). A survey of the application of GAs in the robot navigation is

given in the next chapter.

The GA literature is extensive. All recent work cannot be covered in a thesis: many

publications of high quality have had to be omitte d, and emphasis is given to these

papers of upmost relevance to that investigated in this thesis. This chapter is arranged

as follows: steady-state GAs are firstly introduced, followed by genetic representation,

the selection schemes, genetic operators, and deterministic crowding is introduced in

the context of premature convergence and population diversity.

17

Chapter 2: Genetic algorithms review

2.1 Steady-state genetic algorithms

As the steady-state GA is the main structure of the GAs developed in this thesis, this
section compares its operation to the generational GA and explains the choice made.

An implementation termed Genitor (Whitley 1989; Whitley and Kauth 1988) was

probably the first realisation of the form of GA that later became known as 'steady-

state' (Syswerda 1991). The majority of GAs described in the literature are

generational, meaning that each new generation produces an offspring population that

entirely replaces the previous population. In contrast, a small number of individuals

(typically one or two) in the steady-state GA are involved in the genetic modification

at each iteration, with replacement strategy being such that only the worst individuals

in the population are replaced by offspring. In addition, ranking methods are often

used for selection in steady-state GAs to identify individuals for mating, rather than

using the fitness values themselves. A number of earlier works (De Jong and Sarma

1992; Goldberg and Deb 1991; Syswerda 1991; Vavak and Fogarty 1996; Whitley

1989) has investigated steady-state GAs in their comparison with generational

approaches. ' The effects on performance that arise due to the first two major
differences (that is the number of individuals involved in genetic operation and

replacement strategy) are discussed in this section and those that arise due to the
difference in selection strategy are considered (in conjunction of other common

selection schemes) in section 2.3.

As steady-state GAs modify only a small number of individuals at each iteration,

comparisons of the frequency of alteration of individuals is difficult to make with

generational GAs. The effect of 'birth and death rate' and 'life span' of the

individuals in two different models has recently been examined by Jones and Soule

(2006), in their application to a problem where the fitness landscape consists of a
broad, low peak, and a narrow, high peak. A variable representation strategy was

adopted for the generational and steady-state GAs, rather than using individuals of

equal length as in standard GAs. The experimental results showed that the steady-

state GA is able to smoothly converge to the higher peak once present in the

18

Chapter 2: Genetic algorithms review

population, but the shift from the lower, broader peak to the higher, narrower peak

occurs suddenly. This has been attributed by the authors to the different roles of

genetic robustness (defined as a measure of the average fitness change of a

chromosome following a genetic operation) in directing the evolutionary process. An

individual is more genetically robust if it is located in a flatter peak, but less robust

when on a narrow peak as it is more likely to be moved away. In steady-state GAs,

elite individuals evolved from the previous generation are naturally inherited into

successive generations and so fitness improvements are accumulated monotonically.
In contrast, such smooth convergence is -rarely observed in the generational models
due to the entire population being replaced by their offspring, resulting in sudden

shifts in locations. Bullinaria (2004) compared generational with steady-state GAs

that were used to optimise the aspects' of a neural network system, namely initial

weight distributions, gradient descent learning rates, and regularisation parameters, in

order to improve the performance of the neural network system. The simulation

results indicated the performance of evolutionary strategies (generational or steady-

state) is largely dependent on the specific problem being addressed and consequently

evolutionary strategy should be tailored to fit that problem in order to achieve the best

possible performance. Elitist selection (Dumitrescu et al. 2000; Reed, Minsker and
Goldberg 2001) GAs were compared with steady-state GA by Shi et al. (2004), who

concluded that the steady-state GA is simple and effective and performs well in low-

dimensional environments, and is especially adapt at on-line optimisation, whereas

the elitist selection GA was better in high-dimensional environments and in off-line

optimisation. The relatively good on-line performance achieved by the steady-state
GA was attributed to the replacement strategy used, and the better search capability

of the elitist selection GA to the relatively larger number of schemata processed.
Fewer schemata were explored by the steady-state GA, as only one new individual

was examined at each generation. An effect of the steady-state replacement scheme is

to make individuals more similar with each passing generation, resulting the loss of
diversity, however, even the worst member still has a chance, though small, to be

selected for genetic operation, alleviating the loss of allele. Rogers and PrOgel-

Bennett (1999b) performed a comparison of the dynamics of steady-state and

generational GAs using a statistical mechanics approach. As the ranking selection and

19

Chapter 2: Genetic algorithms review

least fit replacement makes it difficult to directly compare to the generational GA, the

comparison was made by isolating the genetic operation and adopting the Boltzmann

roulette wheel selection and random deletion for the two evolutionary models. The

analysis results indicate that loss of population variance of the steady-state GA was
twice as rapid as that of the generational GA. An additional experiment was

conducted on the steady-state GA to investigate the effect of rescaling of selection

pressure while considering mutation. It is found that, with weak selection, the steady-

state GA was able to regenerate the same dynamics as that of the generational GA

with only half computational effort in terms of function evaluations. The analysis of
the steady-state GA based on the experimental results, is complicated by the effect of

the application on performance. The theoretical approaches used to evaluate the pros

and cons of steady-state GAs as compared with generational GAs have adopted the
decomposition (divide and conquer) strategy, isolating each part or set of parts and

evaluating them alone. However, the interaction between the selection, genetic

modification and replacement makes the theoretical analysis complex and non-linear,

and no investigation has been carried out to date. Despite the theoretical

investigations, steady-state GAs has increasingly employed in many fields often with

some modifications of its original version, such as Li and Kou (2005), Miconi and
Channon (2006), Raghuwanshi and Kakde (2006), Sasaki et al. (2006) and Shi, Cui

and Zhang (2004).

As only a single reproduction was designed to be carried out at each replacement in

steady-state GAs used in this thesis, the evolutionary process can be interrupted at

any time in order to extract the current best solution. Figure 2.1 illustrates a possible

arrangement for a sensor-based planning system, where every generational operation
is arranged in the sampling interval, so that the planning continues while the robot

moves.

20

Chapter 2: Genelic algorithms review

sensor planning
reading

\/
actuation

1 21 tillic

Figure 2.1. Planning arrangement for a sensor-based system. Note that i is the sampling
interval.

2.2 Genetic representation

The genetic representation stores the genotypic information used to determine the

phenotypic attributes (such as eye colour, hair colour and shape). A chromosome

consists of a number of alleles whose value is one drawn from the set of possible

values. For example, the value can be 0 or I for a binary allele whose cardinality is 2

A specific phenotypic property is deten-nined by a gene containing one or more

alleles. The representation is important in constructing an efficient GA (Bdck, Fogel

and Michalewicz 1997; Rothlauf 2002). Binary representation is simple and

commonly used, but many other encoding methods (such as integer, floating point,

tree, and so on) have emerged in the literature. A number of publications (135ck,

Fogel and Michalewicz 1997; Larrahaga el al. 1999; Mitchell 1996) have suninlarised

the earlier representation schemes, but research in the effects of' choosing particular

genetic representations has not been as active as in other aspects of GAs (such as

genetic operators or selection strategies). This section presents the recent

developments on the most common representations.

Binary representations are the most widely used representations as they are simple to

formulate and can be manipulated directly by digital computers. A

splicing/decomposable binary representation was developed by Leung, Sun and Xu

(2002), Liang, Leung and Lee (2006), Liang. Leung and Xu (2007) and Xu ef al.

21

Chapter 2: Genetic algorithms review

(2003). A cell decomposition strategy was used to construct a binary string which

represents not only an individual but also a sub-region (sub-population) and a higher

resolution for the problem variables can be achieved by splicing one with another.
Fonseca and Correia (2005) expressed concerns about the use of redundant binary

representation. The non-redundant representation is the identity map between

genotypes and phenotypes, whereas, in a redundant representation, at least one

phenotypic trait must be determined by two or more genes, which is known as

polygene. Dengiz, Dozier and Smith (2004) proposed a non-deterministic decoding

technique for binary representation that maps an individual, not to the same point

every time as the conventional decoding approaches, but to a Gaussian

neighbourhood around it. Zhao and Long (2005) combined standard binary coding

with gray coding (Whitley, Rana and Heckendorn 1997) into a new binary

representation, as there is often lack of a- priori knowledge about which

representation is suitable for a given real-world problem. The gray coding was used

to eliminate Hamming cliffs (Rowe et al. 2004; Whitley, Rana and Heckendorn 1997)

corresponding to an adjacent locations in numeric space whose genetic representation

are bit complementary. For example, binary strings, 0 111 and 1000, represent 7 and 8

in its numeric space, but a significant change in the genotype is required for a minor

change to the decimal equivalent.

Floating point representations (Back, Fogel and Michalewicz 1997) operate directly

in continuous space rather than on the discrete set used by binary representations.
Gaing and Huang (2004) presented a mixed integer representation containing

continuous and discrete control variables for non-convex optimal power flow

problems. Examples adopting the floating point representation are Abbas and

Bayourni (2006), Elshamli, Abdullah and Areibi (2004), Zheng, Ding and Zhou (2003)

and Zheng et al. (2005). Recent literature contains few contributions that describe any

significant modification of the conventional floating point representations. Pereira et

al. (2002) presented a genetic vehicle representation consisting of several routes, each

of them composed by an order list represented by integer.

22

Chapter 2: Genetic algorithms review

Tree representations are commonly used where mapping between the phenotypes and

genotypes can be realised by a tree-like graph. Chang, Hou and Su (2006) developed

a binary tree structure to represent RLC (resistor, inductor and capacitor) circuits, in

which the labelled terminal nodes consists of the three types of electrical components

and the non-terminal nodes represent either series or parallel connections. Tree

structures have also been used to represent the language sentences (for example Lim

and Cho 2005).

Efforts have also been made to combine different representation schemes into hybrid

representations with the intention of gaining efficiency and flexibility. Schnier and
Yao (2000) described a hybrid strategy to create an initial population in which half of
the individuals used a Cartesian representation and half a pseudo-polar representation.
Aguilar-Ruiz, Giraldez and Riquelme (2007) proposed a method of hybrid coding for

decision rule learning problems, termed nature coding, that combined binary and
floating point representations to encode discrete and continuous attributes

respectively.

Although attempts have recently been made to improve the efficiency of genetic

representation, there is still an absence of solid guidance for choosing a suitable

representation for a specific class of problems.

2.3 Selection schemes

The role of selection is to favour the fitter individuals over the less fit ones and
determine which individuals should participate in mating. Consequently, it is critical
to choose an appropriate selection mechanism to achieve a fast convergence but with

a desired quality of solution. A number of earlier publications (Blickle and Thiele

1997; Goldberg and Deb 1991; Wiese and Goodwin 1998) provided comprehensive

analyses on selection algorithms. This section attempts to summanse recent

contributions available in the literature with regard to selection mechanisms, before a
brief introduction is given on common selection methods.

23

Chapter 2: Genetic algorithms review

As introduced in section 1.3.2, the most common selection schemes used in

proportionate selection are roulette wheel, stochastic remainder and stochastic

universal selection (Ahn and Ramakrishna 2002; Goldberg 2002; Mitchell 1996). The

roulette wheel method (De'Jong 1975) randomly selects the parents by spinning a

wheel whose slot size is tailored to be proportional to the fitness of individuals.

Stochastic remainder selection (Booker 1982; Brindle 1981) works as follows. The

expected number of offspring for each individual is found; its integer part is used to
determine the number of samples'for the individual and the fractional component is

used as the probability of whether this particular individual produces an additional

offspring. Instead of the single pointer used in the roulette wheel method, stochastic

universal selection (Baker 1987; Grefenstette and Baker 1989) employs N pointers

equally separated where positions are determined by a single number randomly

generated in the range [0,11N], generally resulting in a more diverse set of
individuals. Such proportionate-based selection tends to result in a rapid convergence
to promising subspaces during the initial stages of evolution, but the much lower

selective differential provides little incentive to prefer one individual over another in

the later stages of evolution (De Jong 1992). To preserve a constant selective pressure
doing evolution, a number of ordinal-based approaches, namely tournament (Brindle

1981), truncation (Mflhlenbein and Schlierkamp-Voosen 1993) and ranking selection
(Baker 1985), have emerged to give independence to the raw values of fitness of
individuals.

Ranking selection (Baker 1985) chooses individuals based on their rank allocated

after sorting according to fitness, so that the selective pressure is independent of the

fitness distribution of the population. In the tournament selection scheme (Brindle

1981), the winner is selected for reproduction from a number (specified by the

tournament size) of individuals randomly chosen. The tournament size is directly

related to the selective pressure, since the expected number of times the fittest
individuals would be selected is equal to the tournament size (Sokolov, Whitley and
da Motta Salles Barreto 2007). In truncation selection with a threshold (MUhlenbein

and Schlierkamp-Voosen 1993), a fraction of fittest individuals are selected with

24

Chapter 2: Genetic algorithms review

same probability for genetic reproduction. The specified threshold then controls the

selective pressure.

A number of recent publications have concentrated on the loss of diversity that results
from conventional selections approaches. Hutter (2002) introduced a new selection

algorithm, termed the fitness uniform selection scheme (FUSS). The majority of

popular selection schemes (proportionate, truncation, ranking, and tournament)

propagate the genetic material of fitter individuals and inhibit the spread of poor

quality genes in the population. However, Hutter (2002) argued that it is not

necessary for the entire population to converge to a small sub-region of the search

space, as, in most situations, a single individual of maximal fitness is sufficient, and
the population exhibits low diversity. FUSS was proposed to overcome these
drawbacks. In FUSS, a fitness value is randomly chosen uniformly from the interval

between the maximum and minimum fitness values, then, the selection algorithm

selects the individual with the shortest distance to the chosen fitness value. A copy of

the individual selected is inserted in the population after genetic modification,
increasing the space available for the increased size of population. There is no

convergence of the population, as the selection pressure is specific to a local fitness

level (although a new fitness level may yield). The probability that a specific
individual is chosen is proportional to the distance to the nearest fitness level, and, as
the selection is local, a slow evolutionary process may be expected. Furthermore, a

population with increasing size will not only require extra memory but will take more
time to process. Appropriate selective pressure is needed in order to meet the

requirements, with high selective pressure being desired if quick convergence is

required with a less accurate solution, but a fine quality solution being chosen if more
detailed exploration is needed. Consequently, suitable selection should balance

exploration (into new and undiscorved areas) and exploitation (in the immediate

regions around solutions so gained) according to the specific requirements of a given

problem.

A dynamic selection scheme was proposed by Agrawal et al. (2005) based on

proportionate selection, where the criteria for choosing parents varies during

25

Chapter 2: Genetic algorithms review

evolution and depends on the number of generations in a run and the diversity of the

current generation. Although an improvement in the population diversity was

obtained, slower convergence was also observed. Affenzeller and Wagner (2005)

proposed a mechanism termed offspring selection, so called as the selection is

performed after genetic reproduction. When the offspring are generated, they are

compared to their parents and are accepted as a member of next generation, if and

only if they are fitter than their parents. This selection approach is similar to 'pre-

selection' scheme of Cavicchio (1970), see section 2.5.

The standard tournament selection (also called random tournament selection as the
individuals in the tournament are chosen at random) is biased and can result in loss of
diversity in that it is likely that some individuals may not be sampled at all, yet others

may be sampled too frequently (Poli 2005). Further, the larger the tournament, the

more rapidly loss of population diversity occurs. To overcome this drawback, an

unbiased tournament selection strategy (Sokolov and Whitley 2005; Sokolov,

Whitley and da Motta Salles Barreto 2007) was proposed. In place of uniform

sampling, the unbiased tournament selection technique uses a set of permutations of

set size equal to the tournament size during tournament construction, thereby

guaranteeing that every member in the population is selected for a number of times

equal to the tournament size. One drawback recognised by the authors is that the

unbiased tournament selection reduces the degree of parallelism compared with

standard tournament selection. However, the experiments presented indicated better

results were obtained by the unbiased tournament selection than conventional
tournament selection when applied to generational GAs. Also, it appeared that the

tournaments of smaller size benefited more from unbiased selection technique. The

authors also remarked that this variant of tournament selection may not be suitable for

steady-state implementation as it performs recombination one-at-a-time. Although

tournament size needs to be determined before evolution commences (it being tightly

related to the desired selective pressure), it is difficult to gain a priori knowledge of
the appropriate selective pressure required by many real-world problems.

26

Chapter 2: Genetic algorithms review

The ranking selection used in the steady-state GA implementations ensures that a

constant selective differential is maintained between the best and worst individuals

during the evolution process (assuming the population-size is fixed). Scaling may be

applied to the ranks of the individuals before selection in order to produce appropriate

selection pressure: for example, the quadratic ranking technique (De Jong 1992;

Watanabe and Hashern 2004) scales the ranks of the individuals by 11, [T, where r is

an individual's rank, with the intention of increasing the probability of selecting fitter

individuals. The combination of rank scaling and roulette wheel selection (Goldberg

2002) can prevent the loss of diversity to some degree (Sokolov, Whitley and da

Motta Salles Barreto 2007).

2.4 Genetic operators

A wide range of different genetic operators have been applied across a range of

applications. This section does not attempt to cover all the existing operators, but

rather concentrates on those most relevant to the work presented in this thesis. In

canonical GAs, significant emphasis was given to the crossover operator as it

attempts to combine useful building blocks to generate better solutions. On the other

hand, the mutation operator applied with a small probability perturbs the genetic

structure to promote diversity. The inversion operator proposed by Holland (1975) is

used to reorder the positions of alleles in order to increase the probability of linkage

of fitter schemata and reduce the disruptive effect due to the one-point crossover

operator (Goldberg 1989 and 2002; Mitchell 1996). A good review of the crossover

and mutation operators developed in earlier works was provided in (Larraflaga et al.
1999) for travelling salesman problems. Spears (1997) reviewed the earlier
development of recombination (crossover) operators. Since the development of

Holland's schema theory (Holland 1975), there has been considerable discussion

regarding crossover and mutation operators, mainly from the two aspects, namely
'disruption' (Goldberg 1989 and 2002; Holland 1975) and 'construction' (Spears

1992; Spears and De Jong 1998). This discussion continues with the establishment of
"no free luncW' theorem (Ho and Pepyne 2002; Koehler 2007; Koppen 2004;

Schumacher, Vose and Whitley 2001; Wolpert and Macready 1997).

27

Chapter 2: Genetic algorithms review

Genetic operators can be broadly classified into sexual (where genetic material from

two individuals are combined), or asexual (where only the genetic material of one
individual is operated upon). Recent research implies a trend that genetic operators
employed in many GAs are created or modified from their prototypes by
incorporating domain knowledge to enhance effectiveness and efficiency.

The simplest sexual operator, one-point crossover operator (Goldberg 1989 and 2002;

Holland 1975; Mitchell 1996), operates on a pair of equal-length chromosomes

chosen by the selection schemes described in the previous section, and offspring are

generated by swapping the features of the chromosomes after a randomly selected
locus. Such an operator has also been extended to individuals of variable length (note

that the name of the operator in such circumstances is 'cut and slice'), see Elshamli,

Abdullah and Areibi (2004), Hu and Yang (2004), Nearchou (1999), and Tu and
Yang (2003). In addition, the crossing site can be deterministically selected rather

than randomly in order to satisfy the specific constraints or improve search

performance. Such a strategy has been adopted by a number of authors (Ahn and
Ramakrishna 2002; Davies and Lingras 2003; Wu and Ruan 2004).

A straightforward extension to single point crossover is to select more than one

crossing point and exchange the genetic material lying between the two points. While

the quantity of genetic information interchanged is increased by multiple point

crossover (De Jong 1975; Goldberg 1989 and 2002), it would not necessarily improve

convergence due to the increased probability of disruption of useful sequences.
Conventional multiple point crossover operators randomly determine the crossing

sites, but Davies and Lingras (2003) restricted the positions of crossing sites to the

common genes between the parents with the gene segment between the crossing loci

being kept in the same order, thereby ensuring both connectivity and feasibility of the

resulting offspring paths.

In uniform crossover exchange occurs at the gene rather than segment level (Mitchell

1996; Osyczka 2002; Syswerda 1989), with each gene having a chance (known as

28

Chapter 2: Genetic algorithms review

mixing rate and typically taking a value of 0.5) of being swapped 'between two

parents. However, the major disadvantage of uniform crossover is the increased

probability of destroying building blocks making it unsuitable in many applications,
including the path planning problem.

The above crossover operators do not alter the content of each allele directly, only

changing it by swapping genetic information, from their parents. In arithmetic

crossover, however, the genetic contents in the offspring may differ from those of

their parents (Michalewicz 1994; Osyczka 2002). Arithmetic crossover operates on
floating-point chromosomes to provide a means of local search, defining a linear

combination of two parents in the following form.

=a -P, +(I -a) -P2
C2 =(I- a) -P, +a -P2

Equation 2.1

Equation 2.2

where C1 and C2 are the offspring following genetic modifications on Pi and P2, and

a is weighting factor randomly chosen from the interval [0,1]. Cai and Peng (2001)

used this operator with a fixed-length representation for the path planning problem.
For a chromosome of variable length, it may be necessary to determine which gene of

a parent should be combined with a particular gene of the other parent. Tberefore, its

application has rarely been found in the path planning problem, though some
algorithms (Smierzchalski and Michalewicz 2000 and 2006; Xiao et al. 1997; Zheng,

Ding and Zhou 2003) can directly operate in a continuous workspace.

The mutation operator (Goldberg 1989 and 2002; Holland 1975; Mitchell 1996;

Watanabe and Hashem 2004) is the most common asexual operator and which
functions by occasionally inverting a single gene of individuals, normally with a

small probability of being applied. The application frequency needs to be carefully

selected; too high a value results in a random search, but too low and the population

will have little diversity. As an appropriate compromise is hard to achieve, the rate
for mutation has been adaptively modified during the search process in a number of
GAs (Glickman and Sycara 2000; Li et al. 2006; Wang, H. J. et al. 2005). In a case

29

Chapter 2: Genetic algorithms review

study, Glickman and Sycara (2000) showed that a self-adapting mutation rate can
lead to premature convergence. Alm and Ramakrishna (2002) modified the

conventional mutation operator in the way such that the partial segment after a

randomly selected mutation point of an individual is regenerated by the initialisation

mechanism. A similar mutation strategy was utilised by Ji, Iwamura and Shao (2007).

There are many other asexual operators, such as repair (Hocaoglu and Sanderson

2001; Hu and Yang 2004; Smierzchalski and Michalewicz 2000 and 2006; Xiao et al.
1997) and insertion (Hocaoglu and Sanderson 2001; Smierzchalski and Michalewicz

2000 and 2006; Xiao et al. 1997), which often applied using specific knowledge of

the particular application. Due to their relevance to the current work, a detailed

description of these operators will be given in later chapters.

Many variants of genetic operators have been devised for specific applications. To

improve their effectiveness and efficiency, the current trend is to incorporate domain

knowledge as heuristics to guide the search more directly to the more promising

regions. Although rapid convergence may be achieved by heuristic guidance, there is

risk that search may become quickly trapped in a local minimum. Heuristics involved

in the application of the operators may be complex and so result in substantial

computational overheads.

2.5 Premature convergence and diversity

Premature convergence refers to the phenomenon where the evolutionary process
becomes stagnated in sub-optimal solutions and further improvement cannot be

realised by the further application of genetic operations as the population does not

contain suitable genetic material (Affenzeller and Wagner 2004; Fogel 1994;

Goldberg 2002). This phenomenon can also be considered as a loss of diversity in the

population. The similarity of individuals can be measured based on the genotypes or

phenotypes (Burke, Gustafson and Kendall 2002; Luerssen 2005; Sareni and
Krahenbuhl 1998). Due to high selection pressure, elite genes may become dominant

quickly in the population before the other areas in the search space have been fully

30

Chapter 2: Genetic algorithms review

examined. Section 2.3 described common selection strategies and recent attempts to

deploy selection methods in such a manner so as to preserve the population diversity.

Even in the absence of selection, population members will converge to a given point
in the search space due to the accumulation of stochastic errors; this important

phenomenon is known as genetic drift (Affenzeller and Wagner 2004; Chaiyaratana

and Zalzala 1997; Mahfoud 1994). More specifically, a predominant gene may

propagate into the entire population, driving out other alleles, and resulting in a loss

of genetic variation. The replacement strategy determines the survival of individuals

and so can also influence both population diversity and convergence performance. In

generational GAs, the entire population is normally replaced at each generation by the

new offspring (Goldberg 1989 and 2002; Mitchell 1996), but such a replacement

strategy may result in the loss of elite individuals, as there is no guarantee that the

offspring generated are of better fitness than their parents. To overcome this

drawback, an elitism strategy (Durnitrescu et al. 2000; Reed, Minsker and Goldberg

2001; Rudolph 1994) was developed to clone the best individuals and ensure their

presence in the next generation (perhaps in addition to their offspring depending on

whether the individuals were involved in genetic operations). The drawback of the

replacement scheme adopted in the steady-state GAs is a loss of population diversity

(Rogers and PrOgel-Bennett 1999a; Smith 2007). The elite individuals discovered

early in the evolutionary process may well cause the entire population to converge to

the same niche, but this may only contain a locally optimal solution, whereas those
individuals in different niches, one of which may contain the global optimum, are
likely to die out rapidly.

To combat loss of diversity, the mutation operator introduces new genes into the

population. In particular, the diversity introduced by the mutation operator in the later

evolution phases helps the escape from sub-optimal regions. Another strategy to

promote population diversity is reseeding, in which the population is augmented by

new individuals. For example, Rasheed (1998) developed a GA in which a set of

randomly generated individuals were inserted into a highly converged population in

order to increase diversity. More recently, Amor and Rettinger (2005) used self-

31

Chapter 2: Genetic algorithms review

organising maps to mine data from previous evolutionary processes and performed

reseeding be re-introducing a set of individuals not presented in earlier generations.

Niching methods are inspired by an ecological phenomenon in which the individuals

in separate but otherwise identical ecological niches compete with one another for

limited resources so that a range of species can be retained (Dick 2005; Mahfoud

1995a and 1995b; Sareni and Krahenbuhl 1998; Singh and Deb 2006).

One of the earliest attempts at maintaining population diversity is the so-called 'pre-

selection' scheme of Cavicchio (Cavicchio 1970; Mahfoud 1992) and is based on the

principle that only if an offspring is fitter than the worst parent is that parent replaced.

Holland (1975) introduced the sharing method to which further contributions were

made by Goldberg and Richardson (1987). In the sharing method, the resources

consumed by individuals should be proportional to the number of individuals in the

niche., An important variant of the sharing method is called clearing (Dick 2005;

Pdtrowski 1996; Sareni and Krahenbuhl 1998), where, instead of sharing the niche

resources amongst all members, all available resources are given to the winners in the

niche. More recently, the localised niching concept was introduced by Dick (2005)

and an implementation described as local clearing was applied to each location in one

dimensional space, formulated as a ring structure by connecting the ends of the space

(line). The individuals were equally placed around the ring and denies were

constructed with a certain radius around each individual and the clearing method

applied locally to each deme. Sharing approaches have been employed in the

multimodal optimisation problems, such as Hiroyasu, Miki and Watanabe (1999), Lin

and Wu (2002), Singh and Deb (2006), and Zhang et al. (2006). The deployment of

the sharing method in conjunction with other algorithms was applied by Feng et al.
(2006) where the sharing GA was used to perform global search whereas local search

was executed by a bit-climbing technique. However, sharing and clearing methods
both suffer from the need to determine a niche radius and an appropriate value for this

parameter is difficult to estimate.

De Jong (1975) described a crowding technique in which only a fraction of the

population, designated by the degree of generation gap, is involved in reproduction

32

Chapter 2: Genetic algorithms review

during each generation and where the same number of individuals is always replaced.
The replacement scheme is as follows. A sub-population of the size specified by the

crowding factor is randomly drawn from the global population and the resulting

offspring replace the individual that is genetically the most similar (based on

phenotypic distance). In such a replacement strategy, especially when the crowding
factor is small, replacement error will occur since the individuals to be replaced by

offspring may not be similar to the offspring. Deterministic crowding (DC) was
designed to reduce the replacement error and maintain the diversity by constraining

the competition between the children and parents in identical niches (Mahfoud 1995a;

Sareni and Krahenbuhl 1998). Two sets of tournaments are performed in DC, the first

involving offspring C1 pitted against parent P, and offspring C2 against parent P2 and

the second involving offspring C1 against parent
,
P2 and offspring C2 against parent P1.

A parent is replaced by the offspring should the latter have better fitness. Another

variant to crowding is probabilistic crowding (PC) (Mengsheol and Goldberg 1999)

which performs DC but with probabilistic replacement. The winner of a competition
in the tournament is determined probabilistically rather than deterministically based

on their fitness values, so that the less fit individuals still have a chance to survive.
PC is, however, likely to result in a slow convergence as compared with DC.

Affenzeller and Wagner (2004) described a new mechanism to form the next

generation by a competition between the offspring and their parents. The idea is

similar to 'pre-selection' scheme of Cavicchio (1970), but the unsuccessful offspring

are still given the chance to enter the next generation after a pre-defined fraction of

the next generation is filled by successful offspring.

A number of authors (Abbass and Deb 2003; Bui, Branke and Abbass 2005; Toffolo

and Benini 2003) introduced diversity into an objective and then applied a multi-

objective evolutionary algorithm (MOEA) (Abraham, Jain and Goldberg 2005;

Osyczka 2002). The solutions optimised by MOEA give a pareto-optimal trade-off
between the diversity and any other objectives. Such an approach may be

questionable since the diversity is really a means to improve search quality rather
than being an objective. Furthermore, the solutions obtained in this way may not yield
the global optimum with respect to other objectives as the optimal solutions of other

33

Chapter 2: Genetic algorithms review

objectives may be dominated by the solutions of the objectives combined with
diversity.

In summary, the diversity introduced by mutation operation is not sufficient to

prevent premature convergence in many practical applications and consequently a

number of approaches to improve diversity have been developed. Inserting a new set

of individuals may promote population diversity to some degree, but there may be

significant overlap between the newly introduced individuals and those individuals

already presented and examined in the previous evolution, resulting in inefficient

repeated evaluations. Sharing and clearing techniques require the determirlation of the

radius of each niche which is difficult to obtain without a prior! knowledge of the

optimisation problems. MOEA introduces artificial objective of diversity often
inhibiting the discovery of the true global optimum compared to the original single-

objective optimisation approach. DC that replaces the parent individuals by fitter

offspring in an identical niche not only preserves the diversity initially introduced, but

also makes progress towards highly fit solutions. In contrast, PC is found to exhibit

slow convergence to preserve the population diversity. It should be poted that the

execution time is as important as solution quality in the project in this thesis, but

quality needs to remain acceptable. DC may require a sufficiently large initial

population to ensure sufficient building blocks are present in the gene pool to permit

convergence to the global optimum when new genes are reinserted into the

population less frequently. Consequently, it is likely that an appropriate population

size will need to be determined experimentally (Mitchell 1996; Vekaria and Clack

1998).

2.6 Conclusions -

This chapter has discussed the current state of research with respect to steady-state
GAs, genetic representations, selection schemes, genetic operators and both

premature convergence and diversity. The review of GAs given here is by no means

exhaustive and, in particular, numerous successful applications have been reported
from a wide range of fields that have not been covered. A range of introductory

34

Chapter 2: Genetic algorithms review

publications (Goldberg 1989 and 2002; Holland 1975; Mitchell 1996; Nolfi and
Floreano 2000; Osyczka 2002) are worthy of examination for background reading. It

is important to stress that many issues concerning GAs remain unsolved; specifically,

guidance for selecting appropriate genetic representations, selection schemes, genetic

operators, and optimal parameter values, and the extent of the capabilities of GAs

have yet to be fully established.

35

Chapter 3: Navigation systems review

Chapter 3

NAVIGATION SYSTEMS

REVIEW

Based on the recent relevant work in GAs, the previous chapter extended the
introduction of GAs presented in section 1.3 by discussing those aspects related to the

algorithms developed in this research project. This chapter reviews relevant work
found in the literature and, in particular, navigation algorithms based on both

evo lutionary concept and hybrid approaches. Recent work in the literature that is

most closely related to the work in this thesis is described in greater depth. in the

relevant chapter.

3.1 Planner-based navigation systems

Planner-based navigation systems are mainly concerned with path planning for

mobile robots. The mobile robot path planning task can be described as finding a

collision-free route from a specified start location to a desired goal destination while

satisfying certain optimisation criteria (Xiao 1997; Yap 1987). Even in simple

environments containing few obstacles, planning tasks are categorised as being both

Np-complete and PSPACE-hard (Nearchou 1998; Smierzchalski and Michalewicz

2000). The model of the environment is normally constructed and maintained as a

centralised representation in this type of navigation system. One of the first issues

36

Chapter 3: Navigation systems review

that needs to be resolved when implementing any navigation system is to determine a

suitable representation of the environment. The approaches to modelling spatial

information can generally be classified as topological and metric mapping (see also

section 1.2.2). Then, the information contained in the world model is used to generate

an appropriate sequence of actions with certain constraints. Next, the design of a

suitable planning algorithm needs to be considered. In order to optimise the efficiency

of the process, the planning algorithm should generally be designed to match the

representation method used to model the environment, although many algorithms in

the literature can be applied to different models of the environment. Since no

geometrical information is generally contained within topological maps, planning
based on such maps focuses on those regions in the environment where a unique
feature can be identified. On the other hand, metric information is often required in

the quality evaluation of a generated path.

3.1.1 Environment representations
Topological representations have become increasingly popular in mobile robotics

with the advance of sensing technology. A network-like graph is constructed

containing a set of nodes corresponding to distinct places (such as corridors, halls) or
landmarks (such as gateways) which are connected by arcs. Examples of this type of

map can be found in (Gaspar, Winters and Santos-Victor 2000; Kortenkamp and
Weymouth 1994; Ranganathan, Menegatti and Dellaert 2006; Remolina and Kuipers

2004). The major advantage of topological maps is that they are compact and

consequently facilitate rapid planning. However, building topological map requires
high quality sensors capable of identifying the unique features of landmarks.

Furthermore, any error generated from inaccurate feature extraction may result in a
failure of localisation. On the other hand, a single, global coordinate system is used in

metric maps to represent geometric information regarding the robot's environment.
The most representative approaches to representing metric information are grid
(Arambula Cosio and Padilla Castaneda 2004; Payton, Rosenblatt and Keirsey 1993;

Wang, Yong and Ang Jr. 2002), meadow (Arkin 1989), Voronoi diagrams (Latombe

1991; Mahkovic and Slivnik 2000), and visibility graphs (Latombe 1991; Maaref and
Barret 2002). The grid representation is probably the simplest metric scheme and is

37

Chapter 3: Navigation systems review

frequently employed in the situations where the exact representation of the objects is

not a rigid requirement. The environment is decomposed into small square cells

comprising a grid. If a cell is occupied, at least partially, by an obstacle, the cell will
be marked as an occupied, otherwise, it will be labelled as unoccupied. A connective

graph for path planning can be generated by linking vertices representing unoccupied

cells. The meadow representation method transforms the free space (not occupied by

any obstacle) into a set of convex polygons. A characteristic of the convex polygon is

that it can be guaranteed that the robot will always traverse free space when it moves
between any pair of vertices of a convex polygon. Paths which are equidistant from

the closest pair of obstacles can be used to form the edges of a Voronoi diagram and

the points where three or more such paths meet are presented by the vertices of the

Voronoi diagram. A visibility graph is an undirected graph representing a number of
inter-visible locations. The nodes of the graph denote the vertices of the configuration

obstacles and each edge represents a visible connection between a pair of nodes. As

such maps are easier to maifitain, these techniques do, to some degree, simplify the

planning task, however, their construction involves considerable computational

overheads in terms of both execution time and memory usage. Simultaneous

localisation and mapping (SLAM) (Frese, Larsson and Duckett 2005; Masson,

Guivant and Nebot 2003; Smith and Cheeseman 1987) is a popular technique that is

able to create an accurate - metric map for an unknown environment while

concurrently maintaining the robot's location. Noisy sensor readings and inaccurate

motion models give rise to uncertainties that accumulate as the robot progresses,

significantly distorting the map. SLAM employs statistical techniques, such as
Kalman filters (Armesto and Tornero 2004) or particle filters (Adams, Zhang and Xie

2004; Howard 2006) to compensate for the uncertainty. The calculation complexity

that results from the need to incrementally build a map and to maintain the

constituent covariance matrices makes SLAM unsuitable for implementation in most

embedded real-time systems. Further difficulties may arise when constructing a

metric map using SLAM in environments that contain closed paths, although this can
be alleviated by the recording of detailed feature information for later matching.
Recent mapping scheme tends to integrate metric and topological representations to

yield a hybrid solution. One way to construct a hybrid map is to annotate metrical

38

Chapter 3: Navigation systems review

information into a topological map (Aguirre and Gonzdlez 2003; Ryu and Yang

1998). Alterbatively, the hybrid map can be created by extracting topological maps

from metric ones (for example Jia, Zhou and Chen 2004; Poncela et al. 2002; Thrun

et al. 1998; Urdiales et al. 2003a;). Hybrid maps are often found in the hybrid

architectures (Aguirre and Gonzdlez 2003; Mufloz-Salinas et al. 2005) (see section

3.3, section 6.1 and section 7.1) since such a representation strategy facilitates fast

planning and modifies local movements using the metric information in an on-line

manner. Section 6.1 and section 7.1 discuss the hybrid representation strategies found

in the literature.

3.1.2 Path planning approaches

As the environment is often modelled as a graph, the path between two specified

locations can be generated using graph search algorithms. Breadth-first search

algorithms begin at the root node and explore all neighbouring nodes before

searching the next level, whereas the depth-first search algorithm searches each

branch as far as possible before exploring the other branches (Cormen et al. 2001;

Latombe 1991). Algorithms that perform complete examination of all nodes in order

to find a path with minimum cost can guarantee that optimal paths are found, but are

computational expensive, particularly in navigation systems that adopt metric

representations. Dijkstra's algorithms (Dijkstra 1959) are commonly used to solve the

shortest path problem for a graph with single source. Such a search begins from the

source node on a directed graph containing non-negative weighted edges and

iteratively performs expansion by adding an additional node with a minimum weight

edge connecting the node with a minimum weight to the source node. In this way, the

shortest path can be generated without visiting all nodes on the graph. During the

search, a tree with all nodes visited and the length for each branch are maintained and

the branch with the minimum cost is selected for expansion. The A* algorithm (Hart,

Nilsson and Raphael 1968; Latombe 1991; Murphy 2000) is an extension of

Dijkstra's algorithm that has the aim of reducing the number of nodes for

investigation and this is achieved by incorporating a heuristic evaluation function that

estimates the distance from any given node to the destination. The total lengths of the

paths passing through candidate nodes can then be estimated by adding the distance

39

Chapter 3: Navigation systems review

travelled so far to the estimate obtained from the heuristic function. The smallest

value among the total lengths identifies the current path to explore further. As long as
the path length estimated by the heuristic function is equal to or shorter than the

actual path length, A* will always generate an optimal path. However, care is needed
to derive a suitable heuristic function that ensures the lengths of unexplored paths are

never overestimated as heuristic functions that do not meet this criteria are likely to

reduce search efficiency or generate a non-optimal solution (Luger 2002). Due to the

significant increase in computational complexity with problem size (normally

measured by the number of nodes), Dijkstra's algorithm and A* are limited to the

solution of small to medium sized problems (Soltani et al. 2002) and memory usage
(the number of cells) is likely to increase significantly with problem size as all nodes

visited during the search need to be stored. Dynamic A* (D*) (Stentz 1994) as an

extension to A* is able to perform dynamic planning for mobile robots in unknown or

partially-known environments, and has spawned several variants, including focused

D* (Stentz 1995), D* lite (Koenig and Likhachev 2002), and anytime dynamic A*

(AD*) (Likhachev et al. 2005). The D* algorithm operates in the manner described

below. The initial plan is generated by Dijkstra from the goal to the start point based

on known information regarding the environment (typically represented by a grid

map) and stores the path length from each node to the goal. When the current path
becomes impassable due to changes detected, the A* algorithm can be adapted to

repair the path based on the updated states. As the most nodes remain unaltered and
the path length from these nodes to the goal has already obtained during the initial

plan, only relatively small portions of the tree need to be repaired by the A*

algorithm, thereby gaining efficiency. However, the D* algorithm and its variations
do not explicitly consider velocity factors in planning and memory is always needed
to store the information gained during the initial plan or in an updated plan in order to

enhance the efficiency of later planning that is required due to unexpected changes.

The field methods form gradients or potentials to derive a path flowing in an artiflcial
field, defined by field values stored in the cells of a grid. Although a number of

approaches exist (such as steepest descent (Snyman 2005), and wave front

propagation (Murphy, Marzilli and Noll 1999)), the most popular of these is the

40

Chapter 3: Navigation systems review

potential field (PF) method (Arambula Cosio and Padilla Castaneda 2004; Ren et al.
2007; Ren, McIsaac and Patel 2006; Wang, Yong and Ang Jr. 2002), in which the

environment is characterised as an equivalent Potential field containing sources and

sinks. A smooth path can be generated by a combination of two virtual forces exerted

on the robot: it is attracted by the virtual force generated from the attractive potential
field around the goal point and repelled by the repulsive force of potential fields

around obstacles. Since Khatib's seminal work (Khatib 1985 and 1986) on artificial
field methods for robot path planning, PF has been the subject of investigation by

many authors (examples are Arambula Cosio and Padilla Castaneda 2004; Ge and
Cui 2000; Hussein and Elnagar 2002; Koren and Borenstein 1991; Ren et al. 2007).

One of the reasons for the popularity of this method is its mathematical elegance and

simplicity, although-a number of deficiencies were found by Koren and Borenstien

(1991). The most serious limitation inherent in the PF method is that the robot can

easily become trapped in local minima when the virtual forces sum to zero.
Substantial effort has been applied in addressing the limitations. Although fields free

of local minima can be constructed by the approaches using simulated fluid

mechanics (Rosell and Iftiguez 2002) or electro magnetic fields (Hussein and Elnagar

2002), the complexity involved in field construction prevents practical application.
Field methods in general suffer considerable computational cost overheads due to the

large number of data values involved in constructing the artificial field itself. A

number of authors (Ge and Cui 2002; Kurihara et al. 2005) investigated the

application of PF in dynamic environments containing multiple moving obstacles.
The construction of local PFs took into account the relative velocity information

between the robot and the obstacles detected. However, such repeated construction of
local fields in response to the sensed changes in positions of the moving obstacles is

computationally expensive.

Genetic algorithms are a class of adaptive search algorithms based on genetic and

evolutionary principles. A genetic algorithm searches for one or more solutions by

modifying a population of candidate solutions through the application of artificial

genetic operators. To generate optimal solutions, GAs use only the fitness of
individuals in the population and do not require gradient information or other internal

41

Chapter 3: Navigation systems review

knowledge of the problem to be solved. A more detailed discussion of GAs is

provided in chapter 2 and here only work related to path planning found in the

literature is discussed. This section gives only a general description of the relevant

work and the more detailed discussion with respect to recent developments in areas

related to the specific topics of the work in this thesis is provided in the relevant

chapter.

GAs have been employed in path planning problems largely due to the advantages
discussed above and in section 1.3. However, in order to improve search performance,

most work has employed GAs tailored to the specific problem and, in path planning,

the representation strategy and genetic operators are commonly adapted.

Sugihara and Smith (1997) used the simplest representation, namely binary with fixed

length, in their planning algorithms. However, a fixed length representation is not

sufficiently flexible when representing paths with a variable number of intermediate

nodes and so variable length representations have been generally adopted. Nearchou

(1999) used a binary string of variable length to represent a sequence of actions to

perform the movement between adjacent cells and a similar scheme was adopted by

Tu and Yang (2003) with each gene containing four binary bits, three representing the

direction and the fourth the distance the robot will move during the next step.
Floating point representations have been adopted by a number of authors (Chen and
Xu 2005; Elshamli, Abdullah and Areibi 2004; Hu and Yang 2004; Nikolos et al.
2003; Trojanowski, Michalewicz and Xiao 1997; Xiao 1997; Xiao et al. 1997; Xiao,

Michalewicz and Zhang 1996; Zheng, Ding and Zhou 2003; Zheng et al. 2005). Chen

and Xu (2005) and Geisler and Manikas (2002) used floating point chromosomes

which were of equal length. A tree representation was used in the genetic-based path

planning algorithm proposed by Hocaoglu and Sanderson (2001).

The genetic operators used in path planning have differed considerably between

authors. The one-point crossover has been commonly used without significant

modification (Elshamli, Abdullah and Areibi 2004; Geisler and Manikas 2002;

Hernianu et al. 2004; Hocaoglu and Sanderson 2001; Hu and Yang 2004;

42

Chapter 3: Navigation systems review

Michalewicz and Zhang 1996; Nikolos et al. 2003; Sedighi et al. 2004; Smierzchalski

and Michalewicz 2006; Sugihara and Smith 1997; Trojanowski, Michalewicz and

Xiao 1997; Xiao 1997; Xiao et al. 1997; Zheng et al. 2005). Other works adopted the

two-point crossover operator (Davies and Lingras 2003; Nearchou 1999) or uniform

crossover operator (Tu and Yang 2003). Although the standard mutation operator has

been commonly used, a range of asexual operators have been specifically designed in

order to affect the candidate path to become feasible, smooth and safe. Randomly-

generated initial populations are very likely to contain infeasible paths (intersecting

with one or more obstacles) and conversion to a feasible path is difficult to achieve

using standard operators. Many new operators, 'such as repair and insert, were
developed to enable rapid transformation from infeasible to feasible paths (Elshamli,

Abdullah and Areibi 2004; Hocaoglu and Sanderson 2001; Hu and Yang 2004;

Smierzchalski and Michalewicz 2006; Trojanowski, Michalewicz and Xiao 1997;

Xiao et al. 1997). In order to minimise the presence of sharp turns, specific operators

were proposed to swap, insert or delete notes by Elshamli, Abdullah and Areibi

(2004), Hu and Yang (2004), Michalewicz and Zhang (1996), Smierzchalski and
Michalewicz (2006), Trojanowski, Michalewicz and Xiao (1997), Xiao et al. (1997),

Zheng, Ding and Zhou (2003), and Zheng et al. (2005). Other publications
(Smierzchalski and Michalewicz 2006; Trojanowski, Michalewicz and Xiao 1997;

Xiao et al. 1997) described genetic operators that aid the robot in its avoidance of

obstacles. In general, while these operators incorporate problem-specific knowledge

to bias the search, their disadvantages are that they may trap the search into local

minima and that, compared with conventional operators, their implementation is

rather complex and so time consuming.

The genetic-based approaches found in the literature operate in either discrete or

continuous space (although, in practice, continuous space is also effectively

represented in a discrete manner when implemented on digital computer). The

distinction between the two types is normally based on whether the environment is

divided into discrete cells. Algorithms that operate on discrete space are described by

Chang, et al. (2005), Geisler and Manikas (2002), Hermanu et al. (2004), Hu and
Yang (2004), Nearchou (1999), Nikolos et al. (2003), Sedighi et al. (2004), Soltani et

43

Chapter 3: Navigation sYstems review

al. (2002), Sugihara and Smith (1997), and Tu and Yang (2003). The continuous

planning approaches that search the entire space for solutions and so eliminate the

need to construct a map were proposed by Elshamli, Abdullah and Areibi (2004),

Fujisawa et al. (2000), Hocaoglu and Sanderson (2001), Michalewicz and Zhang

(1996), Smierzchalski and Michalewicz (2006), Trojanowski, Michalewicz and Xiao

(1997), Vannoy and Xiao (2004), Xiao (1997), Xiao et al. (1997), Zeng (2003),

Zheng, Ding and Zhou (2003), and Zheng et al. (2005).

One of important findings from the literature review is that the evolutionary

navigator/planner (EP/N) (Lin, Xiao and Michalewicz 1994; Trojanowski,

Michalewicz and Xiao 1997; 'Xiao 1997; Xiao et al. 1997; Xiao, Michalewicz and

Zhang 1996) is among the best-performing evolutionary planners and it has been the

subject to extensive refinement and extensions as described in a series of frequently

cited papers (Ashlock, Manikas and Ashenayi 2006; Buyurgan et al. 2007; Elshamli,

Abdullah and Areibi 2004; Geisler and Manikas 2002; Hermanu et al. 2004;

Hocaoglu and Sanderson 2001; Hu and Yang 2004; Nearchou 1999; Nelson et al.
2004; Patnaik and Karibasappa 2005; Sedighi et al. 2004; Tarokh 2007; Zheng, Ding

and Zhou 2003; Zheng et al. 2005). Consequently, this thesis has used EP/N as the

basis as a standard by which to compare new navigation approaches. Section 3.1.3 is

dedicated to a detailed description of EP/N. For dynamic environments, a modified

version of EP/N, termed aEP/N++ (Smierzchalski and Michalewicz 2000 and 2006),

was proposed as a decision support system for a ship to voyage without collision on

the basis of environmental information obtained from automatic radar plotting aids.
This planner, which is closely related to the work presented in chapter 5 (an extension

to the work described in chapter 4), is discussed further in section 3.1.4. Further

justification on these choices for comparative studies is provided in chapters 4 and 5.

3.1.3 Evolutionary Planner/Navigator

EP/N uses the same algorithm for both off-line planning and on-line navigation,
incorporates a problem-specific chromosome structure and specifies a number of

application-specific operators. Only a brief overview of EP/N is given here; full
details of the EP/N algorithm can be found in the works by Lin, Xiao and

44

Chapter 3: Navigation systems review

Michalewicz (1994), Trojanowski, Michalewicz and Xiao (1997), Xiao (1997), Xiao

et al. (1997), and Xiao, Michalewicz and Zhang (1996).

The EP/N algorithm is shown in Figure 3.1. A path is represented by a series of nodes.
In the initial generation, each chromosome is produced by randomly choosing
intermediate nodes within the search space (environment), apart from the first and last

nodes, which indicate the specified start and goal points respectively. If the

terminating condition is not met, an operator is selected from the eight candidates

according to a given probability and a roulette wheel is then used to choose a single

parent (or a pair of parents if the crossover operator is selected) based on the ranks of

the individuals. The resulting offspring replace the worst individuals in the current

population to form the new generation. In order to minimise the calculation time of

each generation, a steady-state evolutionary algorithm is adopted in EP/N, that is,

each generation involves only a single application of one operator. The evolutionary

process terminates after a number of generations determined by the user or
dynamically by the algorithm, and the selected individual is the one describing the

best path found. Storing the results of previous navigation tasks can improve the

efficiency of later planning in EP/N. If a priori knowledge exists, the initial

population is generated from the paths stored for previous tasks instead of performing

random initialisation.

45 -

Chapter 3: NavigatiOn systems review

procedure EP/N planning algorithm
begin

if there exists a previous population with relevant paths then
input the previous population P

else
initialise P

end if
evaluate P

while the termination condition is not reached do

use the operator probabilities to select an operator 0

select parent(s) for the operator
produce offspring by applying operator 0 to selected parents(s)
evaluate the new offspring
replace the worst member(s) of the population P by new offspring
select the best individual p from P
every n th step

if algorithm is operating online manner and p is feasible then

move one step along path p while sensing environment
modify the values in all individuals to a new starting position
if there is any change needed to the existing plan then

update the object map
end if
evaluate P

end if
end every

end while
end

end procedure

Figure 3.1 Pseudocode for the EP/N algorithm.

There are two working modes in the EP/N system, namely off-line and on-line. In

off-line mode, paths are determined based only on information about known obstacles

in the environment. In on-line mode, the algorithm navigates the robot along the

current best known path found while monitoring for unknown objects. Taking the

robot's current position into account, as well as any newly-detected obstacles, EP/N

evaluates the best path obtained by the evolutionary process, and, if better, will use it

to replace the path currently being followed.

3.1.4 Evolutionary navigator aEP/N++

aEP/N++ extends EP/N to deal with the problem of avoiding collisions, particularly

with moving ships at sea from the perspective of an evolutionary process. This is

achieved by introducing a number of parameters, including time, the variable speed

of the ship and time-varying constraints on other ships in the vicinity. The fixed

navigation constraints (such as land, canals and shallow waters) are represented

approximately by a number of polygons, both convex and concave. Moving ships are

46

Chapter 3: Navigation systems review

modelled as hexagons whose shapes are defined by considering safe distance, speed

ratio, and bearing. As the length of the own-ship is small with respect to the

maximum length of the areas representing moving ships, the dimensions of the own-

ship are ignored in the planning process. The evolutionary algorithm shown in Figure

3.2 is applied for both off-line and on-line planning. In off-line planning stages, all

parameters reflecting the motion of the moving ships are assumed to be constant.
With the support of automatic radar plotting aids (ARPA), the values of all

parameters are monitored on a continuous basis. The on-line planning is performed in

response to any observed changes in the motion of other ships with the current
trajectory of the own-ship being corrected by the evolutionary process.

procedure %EP/N++ planning algorithm
begin

number of generations g-0;
input operation parameters;
input environmental information from sensors;
initialise the population P(g);
construct dynamic obstacles;
evaluate population P(g);
while (not termination condition) do

increment the number of generations g-g+1;
randomly select operator Oj;
select parents from P(g);
apply the operator Oj to produce offspring;
build dynamic obstacles;
evaluate population P(g),
replace worst member in population by offspring;
select the best individual p from P(g);

end while
end

end procedure

Figure 3.2 Pseudocode for the aEP/N++ algorithm.

aEP/N++ preserves the steady-state structure of EP/N and only adds one operator (to

modify the speed of the oiNm-ship from a set of discrete speeds available) to the eight
inherited from EP/N. A chromosome represents a path containing a series of nodes

with additional bits indicting the feasibility and speed value for each path segment.

The evolutionary process starts by assigning control parameters and the initial

population is randomly generated, then one of nine genetic operators is randomly

selected and applied to the individual (or a pair of individuals if crossover operator is

chosen) selected by a roulette wheel based on its rank (or their ranks) in the

47

Chapter 3: Navigation systems review

population. The best individual is selected as the current trajectory after the

evolutionary process has run for a specified number of generations, or after evolution
has stalled.

3.2 Reactive navigation systems

Active research on the reactive paradigm began in the 1980s with the introduction of

the subsumption architecture (Brooks 1985), the seminal work on the behaviour-

based approach. In reactive navigation, the robot generates emergent behaviours

through interactions between its primitive behaviours, implemented in a number of

separate layers, and its environment. Sensory information is shared among the layers

and the responses of the various behaviours are selected or fused in some manner to

produce a response. Such coordination of behaviour is accomplished under the

control of competitive or cooperative rules. In the case of competitive behaviours,

only one will atcess the robot's actuators at a particular instance, whereas cooperative
behaviours will combine to establish an action. Although some high-level deliberative

behaviour may be incorporated, such as mapping, the response to perceived stimuli is

generally accomplished through only the trained behaviours. The main features of

reactive architectures were introduced in section 1.2.1. In brief, reactive navigation

systems have their sensors and motors directly linked through a control scheme that is

embedded in an array of simple perception-action stimuli (Nolfi and Floreano 2000;

Mali 2002; Muftoz-Salinas et al. 2005; Murphy 2000; OrebAck and Christensen 2003;

Stoytchev and Arkin 2004; Urdiales et al. 2003b). In contrast to the planner-based

navigation systems surveyed in section 3.1, no internal representation of the external

world is generally required, but onboard sensors are necessary. Reactive systems are

able to provide robust and real-time navigation in dynamic environments where

unpredictable events may occur frequently; however, researchers working'on this

type of system have often received criticism for rejecting the importance of world

model.

48

Chapter 3: Navigatiln systems review

3.2.1 Brief survey of reactive approaches
There are various reactive navigation systems proposed in the literature and some

examples are provided here. The reactive approaches can be generally classified into

two categories according to whether training is carried out.
I

The most behaviour-based systems belong to the category where the system is trained,

as this is normally required to facilitate a set of high-performance behaviours (even

though some behaviours may exist from the outset). Fuzzy-logic controllers (for

example Hagras, Callaghan and Colley 2004; Malhotra and Sarkar 2005; Nefti et al.
2001; Zhu and Yang 2004) and neural networks (for example Low, Leow and Ang Jr

2003; Kubota 2004; Min 2005; Zalama et al. 2002) have been adopted in behaviour-

based systems to mimic a set of reactive behaviours. In the fuzzy-logic systems, the

parameters of the controllers need to be optimised by other techniques, such as GAs

(Rajapakse, Furuta and Kondo 2002). GAs have also employed in the selection of the

most suitable artificial neural network controller (Leon, Tosini and Acosta 2004). The

reactive navigation achieved by case-based reasoning (CBR) (for example Kira and
Arkin 2004; Urdiales et al. 2003a, 2003b and 2006) and decision-tree based

techniques (for example Cocora et al. 2006; Shah-Hamzei and Mulvaney 2000;

Swere, Mulvaney and Sillitoe 2004) also require a training process to generate a set

of control rules. CBR techniques create a set of cases for the situations encountered
during the training stage and expand the case base by including new cases discovered

during actual navigation. The closest match of the current perception to that found in

the case base is used to retrieve -the most appropriate action. In decision-tree based

navigation, an appropriate tree can be induced from training data with a number of

attributes and the tree is then used to decompose a set of control rules that directly

maps the stimuli to the corresponding actions. For these training-based approaches, a

suitable learning technique is often desirable in order to reduce both the memory

usage and the training period while maintaining a satisfactory quality of navigation

performance. Earlier work conducted by the Electronic System Design Group at
Loughborough aimed to overcome these drawbacks in a decision-tree based system
that was adopted in the work presented in this thesis and this implementation is

described in more detail in section 3.2.2. The main reason for using this method in the

49

Chapter 3: Navigation systems review

work reported in the thesis is that it is fully available both in source code and as an
I

executable.

The reactive approaches introduced below do not require a period of training. Some

reactive systems have used potential field based approaches (PF) (for example Ge and
Cui 2002; Kurihara et al. 2005; Zelek 1999), in which only a local artificial field is

constructed from obstacles observed within the range of the sensors. Local navigation
is achieved by the force generated from the local field, but the repetitive construction

of the local field is time consuming. The nearness diagram (ND) navigation method
(Minguez and Montano 2004 and 2005; Minguez, Montesano and Montano 2004;

Minguez, Osuna and Montano 2004; Montesano, Minguez and Montano 2005)

determines an avoidance command by the control law associated with the

configuration (selected from the five pre-defined configurations) that is the most

similar to that perceived. A detailed description of the ND approach'will be given in

chapter 7 due to its relevance. A number of reactive approaches, namely dynamic

windows (DW) (Fox, Burgard and Thrun 1997; Ogren and Leonard 2002 and 2005;

Stachniss and Burgard 2002), velocity obstacles (VO) (Fiorini and Shiller 1998;

Large, Laugier and Shiller 2005) and vector field histogram (VFH) (Borenstein and

Koren 1991; Ulrich and Borenstein 1998 and 2000) were designed specifically for

avoiding moving obstacles. The DW approach constructs a space (window) of

velocities achievable by the robot taking into account specific constraints and

potential collisions that may occur within a defined time frame. A suitable velocity is

then selected from the velocity space using an evaluation function. VO-based

methods construct velocity obstacles that represent the set of robot velocities that

would give rise to collision with a moving obstacle and then, using certain

optimisation criteria, select an avoidance velocity not present in the VOs. The VFH

approach uses an occupancy grid map that is generated by and updated from sensor
information. The grid map is converted into a histogram representing the free space

available to the robot and the motion direction and velocity of the robot are
determined based on the histogram. Such a mechanism is in sharp contrast to

training-based reactive approaches which do not have explicit reasoning in

determining instantaneous responses.

so

Chapter 3: Navigation systems review

The advantages and disadvantages of these reactive approaches are further discussed

in section 7.1 when the dynamic avoidance approach proposed in the thesis is

introduced. Note that although the decision-tree based technique has been adopted in

the hybrid navigation systems presented in chapters 6,7 and 8, other reactive methods,

such as fuzzy logic, neural networks, and PF, can be used without modification of the

remainder of the hybrid systems.

3.2.2 Decision-tree based reactive system
In the research described in this thesis, the reactive control is realised by suitable

learning of a decision tree (DT); an approach adopted in earlier work at

Loughborough (Mulvaney et al. 2005; Swere, Mulvaney and Sillitoe 2004). DT

learning has been applied to mobile robot navigation by a number of authors. Sillitoe

et al. (2001) analysed echoes received by an array of sonar sensors to train a DT to

classify the contours of obstacles, so enabling the identification of specific object

types for use in reactive navigation. Shah-Hamzei and Mulvaney (2000) trained I)Ts

in an off-line manner to allow a robot to learn new reactive behaviours. The I)Ts

generated were used to synthesise appropriate control rules to navigate a robot in

unseen environments.

The reactive system used here is a novel frequency-table based learning technique

(Mulvaney et al. 2005; Swere, Mulvaney and Sillitoe 2004) that was originally

developed to overcome memory and calculation time limitations of incremental DT

methods, such as IDS (Utgoff 1988), ID5R (Utgoff 1989) and ITI (Utgoff, Berkman

and Clouse 1997). Such as solution was chosen as a mobile robot often requires that

the navigation system is able to run in limited memory and in many cases need to

learn incrementally. In the current work, the frequency table is incrementally learned

from initially random movements of the robot that were rewarded by being entered

into the table if the movement resulted in the robot moving nearer to a goal. The

entries in the frequency table can be used to provide data for use by entropy-based
learning methods (Swere, Mulvaney and Sillitoe 2004), but in the current work an

ID3-based DT (Quinlan 1983) is generated for navigation purposes. This form of

51

Chapter 3: Navigation systems review

representation allows for a 'lazy learning' approach in which the DT learning is only

applied when required (Aha 1997). For example, in order to reduce the computational

requirements of a real-time application, the DT could be re-computed whenever new
feature vectors are acquired, or when it is recognised that the current tree no longer

correctly classifies the data.

The formulation of the frequency table can be described as follows. Let the feature

vectors in the training set each be of the form [fltfiý
... 9

fi
v ... qfm c]q where the set of

attribute values for featureft is given by {ail, a, 2,..., ai,,,..., at,,) and the class c'is taken

from the set of available class values [CI, C2ý.... Ci c.],. The frequency table can
then be considered to be composed of n separate two-dimensional tables each of

whose mwj rows form the attribute values of feature i for all classes and whose
columns are the attribute values of all features other than i. When a training vector is

acquired, its attribute values determine the element that is to be incremented in each

of the two-dimensional tables. Figure 3.3 shows an example of the type of frequency

table used for a mobile robot with four range sensors equally spaced circurnferentially.
The frequency table is shown for a one of the four sensors, where the rows are the

attribute values for the sensor and the columns are the attribute values for features

other than sensor 1. When a new feature vector is acquired, the feature values dictate

which particular entry in the table is incremented. The frequency tables for the other
features (angle to goal and sensors 2,3 and 4) are similarly updated on receipt of a

new feature vector.

angle to goal sensor2 sensor3 sensor4
E I

A D zero small mad large near for near for
-*a

r far

forward near 0 0 0 0 0 0 0 0 0 0 0
far 206 0 87 49

1

70 206 0 206 0 206 0

ri ht near 213 0 61 132 20 213 0 213 0 62 151'
, g far 1091 0 54 1 431 88 21 109 0 0 109

left Lear 1 44 14 5 38 6 26 64 0 59 5
ar f 81 51 57 __ 2 2 2 0 81 81 81 0 54 27

reverse Le 1 ý 0 0 0 0

W

1 0 0 1 0 1 0
far 0 0 0 0 O 0 0 0 0 0 0 0 0

Figure 3.3 An example of a frequency table used in the reactive navigation of a mobile
robot.

52

Chapter 3: Navigation systems review

3.3 Hybrid navigation systems

In practical applications, there are many situations where a complete model of the

environment is initially unavailable or is only partially available due to unpredictable

changes. To build a deliberative model, a number of reactive navigation movements,

either designed or as part of exploration activities, can be specified through such an

environment. Consequently, such navigation problems require a hybrid solution to

compensate for the individual drawbacks of reactive and deliberative paradigms and

also to adapt to unexpected changes within dynamic environments. Nevertheless, an

extensive world model is normally computationally expensive to construct and any

representation of the environment must be compact to meet memory constraints of a

practical application.

Arkin (1998) described the findings of an in-depth survey of earlier attempts to

design hybrid systems. The survey classified hybrid systems according to the form of
interface strategy adopted, namely selection, advising, adaptation, and postponing.
Planning is viewed as a hybrid system that employs a selection strategy, which
determines the behavioural composition and parameters used during execution. The

autonomous robot architecture (AuRA) (Arkin 1986 and 1987) is a representative
hybrid architecture of this type. This architecture contains two distinct components: a
deliberative hierarchical planner and a reactive controller. In hybrid systems using an

advisory interface strategy, the planer offers advice on the course of action to be

taken by the reactive layer, which is then at liberty to ignore the advice. A typical

example of this type is that described by Atlantis (Gat 1991a and 1991b). Planner-

reactor (Lyons and Hendriks 1992 and 1995) used an adaptation strategy to integrate

the deliberative and reactive components, such that the planner continuously alters

the reactive model according to the changes made within the environment and to task

requirements. A more effective course of action within hybrid architectures can, in

some cases, be achieved by a postponing strategy that defers planning until it is

required, rather than generating an overarching unchangeable single plan. An

example implementation of the postponing strategy is the procedural reasoning

system (PRS) proposed by Georgeff and Lansky (Georgeoff and Lansky 1987). From

53

Chapter 3: NavigatlOn systems review

the structural point of view, one common feature found in a number of hybrid designs,

such as Atlantis (Gat 1991a and 1991b), SSS (Connell 1992), and 3T (Bonasso et al.

1997), is that three major modules comprise the hybrid system. The three modules

embedded in those three hybrid architectures roughly equate to a reactive feedback

control module, a deliberative planner, and a sequencing module that controls the

operations of the first two modules. A comparison with the earlier three-layered

architectures was conducted by Gat (1998), revealing that having three major

components in the architecture normally corresponds to the following three states: a

current state (the reactive component), a state reflecting the past (the sequencing

component), and a state predicting the future (the deliberative component).

Recent developments in hybrid ; navigation systems are introduced below and more
detailed description can be found in sections 6.1 and 7.1 in their comparison with the

hybrid architectures proposed in this thesis.

Recent hybrid architectures largely inherit the three-layer architecture of earlier
designs, even though the three layers may not be arranged hierarchally, for example,

the reflexive, reactive, and functional layers, in the nested-loop architecture (Santos,

Castro and Ribeiro 2000) were arranged in a nested manner. Aguirre and Gonzdlez

(2003), Liu, Hu and Gu (2006), Minguez and Montano (2005), Minguez, Montesano

and Montano (2004), and Mufloz-Salinas et al. (2005) all described hierarchical

implementations consisting of reactive and deliberative components connected

through a middle layer. The hybrid architectures of Low, Leow and Ang Jr (2002 and
2003), Maaref and Barret (2002), and Wang, Yong and Ang Jr. (2002) contained
directly coupled reactive and deliberative components. When the middle layer is

absent, the local navigation is accomplished in the reactive layer without explicit
intervention of the high-level deliberative layer. Urdiales et al. (2003b) proposed a
hierarchical hybrid architecture with four layers in which two layers, geometrical

modelling and topological modelling, construct and maintain the environmental
information in two separate mapping approaches. The two mapping layers can be

grouped into one, as they have the same function of representing environmental
knowledge, though in different formats. In the four-layer architecture proposed by Li

54

Chapter 3: Navigation systems review

et al. (2004), the additional layer, called the hardware abstraction, is related to the

low-level control of sensors and actuators respectively. The low-level control is

normally integrated in the reactive component in other hybrid systems as this

component directly operates on the raw sensory information and outputs the final

action.

Based on the review of recent hybrid architectures, the following points have been

identified. A hybrid representation scheme has been frequently employed in

navigation architectures. As discussed in section 3.1.1, topological representations

can simplify the path planning task, thereby shortening the planning period, and

metric information can be used to enhance the local navigation by eliminating the

uncertainty due to identical landmarks. The experimental work carried out for most

architectures were limited to indoor environments which tend to be well structured.
Furthermore, only Santos, Castro and Ribeiro (2000) have discussed hybrid with

other architectures, although no practical results were provided.

3.4 Conclusions

The survey of planner-based system included mapping methods and planning

algorithms. Planners inspired by the evolutionary concept have been given particular
emphasis, with two GA planners being described in detail as they are directly related

to the work developed in this research. A short review of the reactive methods was

given, followed by the introduction of the reactive system employed in the research.
The final part of this survey focused- on navigations systems that have a hybrid

architecture. Where appropriate, the navigation approaches found in the literature will
be discussed further in the chapter where the related navigation system developed in

the current work is introduced.

To meet the navigation task requirement, a deliberative navigator will produce a plan
based on knowledge of the environment. Re-planning is required to respond to

unexpected and unmodelled changes that occur during the execution of the plan. Due

to the long computation time involved in calculation of deliberative plans, these

55

Chapter 3: Navigation systems review

approaches run the risk that collision may occur before re-planning is complete.
Reactive methods, on the other hand, are well suited to tackle uncertainty and

dynamic changes, but lack any means of predicting future events. The fact that the

reactive approach ignores cognition, often limits reactive robots to mimicking simple
forms (Arkin 1998). Hybrid systems hold the promise of taking advantage of the

benefits of both deliberative and reactive approaches and consequently improving

navigation performance by incorporating world models and being able to respond on

the timescales dictated by dynamic environments.

In chapters 4 and 5, the research described in this thesis implements a deliberative

planning method that enhances the performance of existing evolutionary planners
(described in sections 3.1.3 and 3.1.4) by reducing the search to a small number of

points in the environment. In chapters 6 to 8, a hybrid architecture is adopted that

takes advantage of a novel abstract representation of the environment. This hybrid

system is subsequently revised firstly by developing an avoidance behaviour to

interact with moving objects and secondly by a generalised version that is able to

navigate between any specified start and goal points.

56

Chapter 4: Vertex planner

Chapter 4

VERTEX PLANNER

This chapter describes the vertex planner developed with the aim of overcoming the

principal drawbacks of the existing planning approaches described in section 3.1.

This work was presented in IEEE International Conference on Cybernetics and
Intelligent Systems (CIS 2006) and awarded 'best paper'.

4.1 Related work in path planning in static environments

Path planning can, as discussed in section 3.1.2, be viewed as an optimisation

problem, (such as shortest path, shortest travel time, minimum energy consumption, or

some combined optimisation criteria) with certain constraints (such as collision-free).
Genetic algorithms as an adaptive search technique have seen increasing application

to optimisation problems due to their robustness, simple mechanism, no requirement
for gradient information, operation in a range of parameter spaces (see section 1.3).

Tbese'advantages were instrumental in the decision to adopt genetic algorithms for

the planner in the current work. Consequently, this section only presents approaches
based on the evolutionary concept and the examples of other methods can be found in

chapter 3.

The genetic based approaches found in the literature can be classified into two

categories according to the search space, discrete or continuous, on which the

algorithms operate.

57

Chapter 4: Vertex planner

In the discrete search space, the grid method is probably the most common method of

modelling given environments. In generating the grid, a suitable resolution is needed

in order to deal with the range of obstacles likely to be encountered. For example,

obstacles of more complex shape may require a representation of higher resolution in

order to prevent a collision, whereas a high resolution of grid makes planning
inefficient if only obstacles of simple shape are present in the environment.
Furthermore, although shorter paths are more likely to result from higher resolution

representations their determination requires more planning time. Consequently, an

appropriate trade-off between path quality and planning time is difficult to achieve in

practical situations. Three different genetic, encoding mechanisms have been

investigated. The simple binary genetic representation with fixed length was an early
implementation by Sugihara and Smith (1997) that, was adapted by Geisler and
Manikas (2002) to use the standard GA. In this approach, the environment is

modelled by a grid map of n rows (or columns), where the length of each

chromosome is restricted to n genes. A real value corresponding to each gene

represented the selected columns (or rows), whereas the rows (or columns) were
indicated by the locus of each gene. However, such a genetic representation can be so
biased that possible solutions may not be found even when they exist. In order to

overcome this limitation, an efficient genotype structure was developed that

incorporated an orientation bit which functioned to select either row-wise or the

column-wise representation (Hermanu et al. 2004; Sedighi et al. 2004). An

alternative solution that relaxes this restriction is to use the coordinates of the cells of

each gene. Hu and Yang (2004) incorporated problem-specific knowledge into their

GA in the form of designed genetic operators, such as node_repair (moving a node

that is inside an obstacle to the outside) and line_repair (repairing an infeasible line

segment by adding a new node) to improve efficiency. Note that the length of an
individual in the GA was variable and a number of grids was selected as intermediate

nodes. Nearchou (1999) developed an evolutionary-based planning algorithm that

used a tailored set of genetic operators, in which each individual was a binary string

of variable length representing a sequence. of actions to achieve transitions between

adjacent cells. A variable genetic representation was also used by Tu and Yang (2003)

where each gene contained four binary bits, three of which represented the direction

58

Chapter 4: Vertex planner

and the fourth the distance the robot will move during the next step. However, it was
later reported by Hu and Yang (2004) that many hours were needed to deliver a

solution. Discrete space has also been used in planning solutions for 3D environments.
For example, Nikolos et aL (2003) proposed an evolutionary-based path planner for

unmanned aircraft, with each gene being the coordinates of a control point selected

within the desired constrained space represented by a mesh. To generate a smooth

path, the control points were used in the construction of a spline curve.

Most planning algorithms that search continuous space adopt a floating point

representation scheme, their genetic operations are also conducted on a fraction Of

population in each generation, and, to accelerate evolution, problem-specific
knowledge is often taken into account when designing the genetic operators. One of

the most cited planning algorithms based on the evolutionary concept operating in

continuous space, is the evolutionary planner/navigator (EP/N) (Lin, Xiao and
Michalewicz 1994; Trojanowski, Michalewicz and Xiao 1997; Xiao 1997; Xiao et al.
1997; Xiao, Michalewicz and Zhang 1996).. The absolute coordinates of any point in

the environment can be encoded as the elementary information for a potential gene,

obviating the need to establish a configuration space. This is an important advantage

of the coordinate approach with respect to the grid approach, namely that an often

arbitrary, or at best, difficult to establish, minimum resolution for the representation
does not need to be determined. Eight genetic operators were developed by

incorporating problem-specific domain knowledge and each of them is applied for

each iteration (the steady-state genetic algorithm) according to operator probabilities.
A more detailed description of EP/N was given in section 3.1.3. Hocaoglu and
Sanderson (2001) described a evolutionary planning algorithm having a binary tree

structure to represent a path whose intermediate vertices are determined by a

modified Gram-Schmidt orthogonalization process. Their path planner used the

steady-state genetic algorithm with one crossover and six mutation operators, where

the mutation operators were similar in purpose to the genetic operators of EP/N, in

that they provided a means to fix or repair an infeasible path, swap two nodes in a

path, insert a new intermediate node, or fine-tune clearances. Based on EP/N, a GA

planner (Elshamli, Abdullah and Areibi 2004) was developed with a set of genetic

59

Chapter 4: Vertex planner

operators modified for dynamic environments where initially unknown static

obstacles became to be completely known during the planning. EP/N was modified in

its application to a 3D manipulator for planning movements (Vannoy and Xiao 2004).

Once a feasible trajectory had been generated, the robot followed a trajectory that was
improved by evolution carried out during movement. Zheng, Ding and Zhou (2003)

developed a route planner for an unmanned aircraft by considering multiple

constraints, such as minimum route leg length, flying altitude, and maximum turning

angle. A variable length representation was employed with each gene consisting of

coordinate information for a selected point in the workspace together with a state bit

to indicate feasibility of the path segment. A small number of members of the

population was involved in the genetic reproduction, each generation being evolved

using one crossover and six mutation operators. The planner was extended (Zheng et

al. 2005) for route planning of multiple unmanned aircraft. Smierzchalski and

Michalewicz (2000 and 2006) developed aEP/N++, an extension of EP/N applied to

planning problems at sea consisting of multiple moving ships. aEP/N++ was

introduced in section 3.1.4 and, due to its relevance to the current work, is further

discussed in chapter 5.

A quantitative comparison between a conventional GA, Dijkstra's algorithm and A*

search was conducted by Soltani et al. (2002) in their application to a material-
delivery routing problem in a construction site represented by a multi-dimensional

grid. The measures for comparison purpose were three single optimisation criteria,

namely, path length, safety, and visibility, and, overall, the GA search algorithm

performed the best in that less time was required to deliver the solution with a similar

quality to those produced by the Dijkstra and A* methods. The efficiency of the GA

algorithm was attributed to the smaller number of grid points visited by GA compared

to those examined by the other methods. The experimental results also indicated that

the GA is more competent for larger problems as the time complexities of both the

Dijkstra and A* approaches increase significantly with problem size.

The modification of genotype structures and the inclusion of problem-specific
knowledge both aim to shorten planning time. The decomposition of the continuous

60

Chapter 4: Vertex planner

environments into cells can reduce the search space (Hu and Yang 2004), yet the pre-

calculation of a suitable cell representation (such as a grid map) is time consuming
(Hocaoglu and Sanderson 2001; Xiao et al., 1997; Zheng et al. 2005). Furthermore,

flexibility in allowed movements may be restricted if a discrete map used as a basis

for planning; for example, the robot's turning circle may be constrained to ensure the

locus includes the centres of adjacent cells.

Most of the above research seeks the shortest Path as the optimisation goal, though

occasionally optimisation criteria, such as safety, smooth trajectories, and restrictions

on turning angles, have been used in planning algorithms (Nikolos et al. 2003;

Smierzchalski and Michalewicz 2000 and 2006; Xiao et al. 1997). Energy saving has

also been considered as an optimisation goal by a small number of authors (Garg and
Kumar 2001; Huang, Xu and Liang 2005). The reduction of space to be searched

while incurring little in pre-processing demands is the principal motivation in

developing the vertex planner with the optimisation goal of minimising the path
length. As stated by Hand et al. (2005) researchers do not base their work on

navigation results found in standard environments. Although Hand et al. (2005)

developed benchmarking program, this is available only for grid-based approaches

and is unsuitable for methods that operate in other space, such as that used in this

thesis.

In comparison with the map-based methods (as described in section 3.1.1 and above),

the vertex planner requires only a simple vertex graph, thereby significantly

alleviating the pre-processing demands. Whereas EP/N (Trojanowski, Michalewicz

and Xiao 1997; Xiao 1997; Xiao et al. 1997) plans using the entire continuous space

of the robot's environment, the vertex planner limits the search space to only the

vertices of the obstacle. It is reasonable to assume that imposing iuch a constraint

would result in a considerable shortening of the search process, this being the

principal reason for proposing the vertex approach.

In the vertex planner, each gene represents a single obstacle vertex selected as an
intermediate node and a variable length representation is used for the individuals to

61

Chapter 4: Vertex planner

minimise memory usage. In order to be able to compare the efficiency and

effectiveness of the proposed algorithm with the EP/N system (Trojanowski,

Michalewicz and Xiao 1997; Xiao 1997; Xiao et al. 1997), the current work has

adopted a similar steady-state genetic algorithm, as described in section 2. L As EP/N

provides a relatively well-established solution, matured through a series of revisions,
the underlying approaches taken by the EP/N researchers, continuous workspace and

problem-specific knowledge, has been frequently adopted by other researchers
(Elshamli, Abdullah and Areibi 2004; Zheng, Ding and Zhou 2003; Zheng et al.
2005), but without significant improvement. Additionally, the continuous approach

adopted in EP/N makes its comparison with grid-based approaches difficult, due to

the large number of different resolutions of grid map that a researcher can choose.

4.2 Vertex planning algorithm

I
The principal novelty of the vertex planner is that it does not need to search the entire

continuous environment for a suitable path, but rather the GA acts directly on the

vertices of the obstacles encoded in the genes. The pseudo-code for the vertex

planning algorithm is shown in Figure 4.1 and the stages in its implementation are
described below.

Procedure vertex planning algorithm
begin

t +- 0
enlarge the obstacles
encode the vertices of the obstacles
initialise P(t)
decode P(t)
evaluate P(t)
while (not terminating condition) do

t (- t+1
select operator 01 with probability pj
select parent(s) from P(t)
apply the operator oj to produce offspring
decode offspring
evaluate new offspring
replace worst member in P(t) by offspring

end
select the best individual p from PM

end

and procedure

Figure 4.1 The pseudo-code for the vertex planner.

62

Chapter 4: Vertex planner

4.2.1 Enlargement of the obstacles
So as to allow the planner to regard the robot as a single point, the obstacles are

enlarged by a value determined from the minimum distance that the robot can

approach obstacles without collision, taking into account its physical dimensions.

Figure 4.2 shows an example of the obstacle enlargement.

250-

200-

150.

100.

50-

0.

-50, - 0

4
50 100 150 200

X direction

Figure 4.2 An example of the enlargement of the obstacles for the purposes of planning.

4.2.2 Encoding and decoding

The intermediate nodes of a path contain only vertices of enlarged obstacles and each

gene contains a reference to a vertex, rather than holding"its absolute coordinates. The

vertices of the enlarged obstacles are randomly numbered and used as potential genes
for a chromosome whose phenotype presents a path between two specified locations.

4.2.3 Genetic representation and initialisation

The structure of the chromosomes is illustrated in Figure 4.3. A chromosome contains

a total number of genes 1, whose minimum value is two (a path containing only the

start and goal nodes) and whose maximum value is N+2, where N is the total number

of vertices of all the obstacles in the environment. Consequently, each chromosome

represents a path with a number of intermediate genes (nodes) in the range 0 to N
between the start and goal points (that are also both included as genes in the

chromosome). Each intermediate gene contains a reference, Vi, iE (0,1-2), to exactly

one of the N vertices. A 'feasibility bit' for each gene is used to indicate whether the
63

Chapter 4: Vertex planner

path segment originating from the vertex referenced by the node is feasible. If the

path segment connecting two consecutive vertices referenced in the chromosome

(including from the start point to any vertex or from any vertex to the goal point)
intersects one or more obstacles, then the feasibility bit of the first node of the path

segment is assigned 1 to mark this segment as infeasible. If there is no intersection, 0

is used to indicate the segment is feasible.

start gene gene I

0 V,

0/1 0/1

gene 1-2 goalgene

VI-2 N+l

0/1 0

Figure 4.3 The structure of a chromosome. The first gene in the chromosome refers to the
start point (numbered 0) and the last gene refers to the goal point (numbered N+I). The 1-2

intermediate genes refer to the vertices of obstacles in the environment. The lower row in the
gene indicates the feasibility of the path segment that starts at that gene.

S

The initial population, P(O), is generated by randomly choosing, for each

chromosome, the number of genes and their vertex references. The vertex references

are constrained so that they are not repeated within a chromosome, and that the start

and goal points are always the first and last genes of a chromosome respectively.

4.2.4 Evaluation functions

The optimisation goal is to find a collision-free path with minimum path length. To

achieve this goal, the feasibility of each chromosome is determined before the

evaluation of path quality is carried out. The approach for feasibility examination is

to check if there is any intersection between two straight lines (Pavlidid 1982). The

generated chromosomes represent feasible paths if none of the individual path

segments is infeasible, otherwise the chromosome is infeasible.

In the vertex planning method, the evaluation function, Ef, which is used to assess the

quality of the feasible paths, is simply the length of the generated path as the
intermediate nodes are selected from the vertices of the enlarged obstacles rather than
being any point in the environment. Ef is given by

Ef j, Vj, j Equation 4.1

64

Chapter 4: Vertex planner

where d(V,, V,,,) denotes the distance between the pair of vertices. Such design

favours shorter paths over longer ones. The evaluation function E, indicates hmý

deeply an infeasible path segment intersects with an obstacle and is given by

=ju 17 Equation 4.2

where p denotes the number of obstacle intersections along the entire path and il is

the mean number of intersections per infeasible segment. The reason for setting this

function is to qualify and rank the infeasible paths. If less effort is needed to correct

an infeasible path, a lower cost will be assigned. Given the two evaluation functions,

the aim of the optimisation process of the vertex planning method is to minimise the

values of Ef and E, for their respective populations.

When the population contains both feasible and infeasible paths, the infeasible paths

are all assumed to be worse than the worst feasible path.

4.2.5 Operator selection
The two standard genetic operators, crossover and mutation, and an additional

operator, repair, are utilised in the algorithm. Only one of these operators Oj is needed
in each steady-state generation and its selection is based on a roulette method whose

slots widths are in proportion to the probabilities of the operators.

4.2.6 Application of the operators
The crossover operation is performed by a conventional one-point operator, where the

crossover points are randomly selected and the parts that follow the crossover points

of the two parent individuals are swapped. This operator is the simplest form for

exchanging information between two selected individuals in order to generate better

offspring. A faster convergence may result from having two or more crossover points
during the first evolutionary phase (see section 4.2) from infeasible to feasible paths.
However, when a two or more point crossover operator is applied between two

feasible paths, the number of new path segments is greater than that produced by

single point crossover, thereby increasing the probability that infeasible paths result.
Note that the use of a uniform crossover operator is not suitable as it has the same

65

Chapter 4: Vertex planner

disruptive effect on the feasible paths as two or more point crossover.. Also, as the

search space consists of a discrete set of obstacle vertices, the arithmetic crossover

operator cannot be applied. The mutation operation mutates the genes with small

probabilities. The role of mutation is to prevent premature convergence and promote

population diversity by introducing a small perturbation to the gene values, but too

high a rate of mutation will result in a random search. The repair operator adjusts a

randomly selected infeasible segment of an infeasible path, so that it circumnavigates

the obstacles previously intersected. Figure 4.4 illustrates the repair operation. -This

genetic operator utilises problem-specific knowledge in order to produce efficiency

during the evolutionary process that alters an infeasible path into feasible one.

G

E

000 N

G

Figure 4.4 An illustration of the application of the repair operator that uses the vertices of
the enlarged obstacle (shown by a broken line) to determine a feasible path around an

obstacle.

4.2.7 Evaluation

Before evaluating the offspring, decoding of the genotype to its corresponding

phenotype is required. In order to retain a constant selection differential, the

individuals are sorted according to their fitness and a quadratic ranking scheme (De

Jong 1992) (see section 2.3) is used to determine the number of offspring. The worst
individual in terms of fitness is discarded, while the remainder and any new offspring

created form the next generation. The evolutionary process terminates if no
improvement is observed in the fitness of the best individual for a specified number

66

I Chapter 4: Vertex planner

of generations, or if a user-defined number of generations is exceeded. When this

occurs, the best individual is selected as the path planning solution.

4.3 Experiments and Results

The proposed planning algorithm was evaluated in four simulated environments, as

shown in Figure 4.5, using version 6.5 of MATLAB (Mathworks 2006) running

under Windows 2000 on a 2.8GHz Pentium P4. The first environment contains a

number of obstacles of irregular shape to simulate unstructured environments. The

second environment contains a similar number of obstacles to the first, but contains

more vertices providing increasingly irregular obstacles. The third environment

contains a relatively large proportion of infeasible space, and could be considered to

represent walkways through a series of manufacturing cells or along corridors in an

office building. The fourth simulates an open-plan office workspace. The relative

complexities of the test environments are reflected by the total number of obstacle

vertices, which doubles in each successive environment; the values being 20,40,80,

and 160 vertices in environments I to 4 respectively.

67

Chapter 4: Vertex planner

300
G

250

W6ý 200,

150

100

so

c 0

X diredon

Environment 4

3U0 -

c
250dalma

c
0 200
2?

Z,

L1) ý
: 6150

100

12 im fflso

-m 0
0 50 100 150 200 250 300 3m

X diredon

qw
ýOG

, -Jj rI
300

200

10D
s

0 100 200 300 400 500
Xdiredon

Figure 4.5 The paths generated by the vertex planner for each of the simulated
environments. The circular markers show the generated intermediate nodes.

EP/N (Xiao 1997; Xiao et al. 1997) was used in order to provide a comparative test of

the performance of the vertex planner. EP/N is a relative mature evolutionary planner
having been refined through a series of revisions (Lin, Xiao and Michalewicz 1994;

Trojanowski, - Michalewicz and Xiao 1997; Xiao 1997; Xiao et al. 1997; Xiao,

Michalewicz and Zhang 1996) and has frequently been cited by other researchers
(Ashlock, Manikas and Ashenayi 2006; Buyurgan et al. 2007; Elshamli, Abdullah

and Areibi 2004; Geisler and Manikas 2002; Hermanu et al. 2004; Hocaoglu and

Sanderson 2001; Hu and Yang 2004; Nearchou 1999; i4elson et al. 2004; Patnaik and

Karibasappa 2005; Sedighi et al. 2004; Tarokh 2007; Zheng, Ding and Zhou 2003;

Zheng et al. 2005). Furthermore, due to the difficulty in justifying a specific grid

resolution, the most appropriate comparison of the vertex planner is with another

continuous planner. As far as possible, the system parameters of the vertex planner

were defined so as to mimic those adopted by Xiao (1997) for EP/N. To facilitate

direct comparison, these parameters are maintained for all experiments in the four

68

0 50 100 150 200
X diredon

Environment 3

Chapter 4: Vertex planner

different environments, and are listed in Tables 4.1 and 4.2 for EP/N and the vertex

planner respectively. For both planners, each generation contained 30 individuals and

evolution was terminated when there was no further improvement in the fitness of the
best individual over 300 generations. For both EP/N and the vertex planner, the

maximum length of an individual in the initial generation was limited to be the sum

of the number of vertices, the start point and the goal point in the environment under
test and the minimum length was set to be two, this being the start and goal points

only. When mutation_2 is selected as a genetic operator for EP/N, only one
intermediate node will be affected.

Table 4.1 System parameters for EP/N

operator probability weights rate

I C4 1z :
1

r. 0: -ý
Z! -Q ý:

:b Z 2: ý C
.5

0
0 ý .: ý -ý, 4,

S
44 :
t3 Q

M
15 %-., 121 :t

2ý :
ý, U: ;3 ZI ,

0.6 0.8 0.5 0.5 0.5 0.5 0.9 0.8 1 0 0 0.3 0.6 0.1 0.3

Table 4.2 System parameters for the vertex planner

operator probability .1 mutation safe
crossover mutation repair rate distance

0.6 0.5 0.8 0.3 5

The paths generated by the vertex planner for the four envirorunents are shown in

Figure 4.5. Note that under visual inspection, little discernible difference was

apparent between the paths produced by the two planners.

To evaluate the efficiency of the vertex planner, the following were recorded: (a) the

execution time to obtain the first feasible path; (b) the number of generations required
to determine the first feasible path; (c) the execution time to obtain the final path; (d)

the number of generations required to determine the final path and (e) the length of

69

Chapter 4: Vertex planner

the final path. The final path is deemed to have been reached when Ef remains

unaltered for 300 consecutive runs.

Figure 4.6 shows the calculation time for the first evolutionary phase, namely that

during which all the individuals in the population represent infeasible paths. Note that

the plotting of the curves terminates as soon as one individual in the population is

feasible. Table 4.3 shows both the execution times and the number of generations

required to determine the first feasible path. The results in both Figure 4.6 and Table

4.3 are median values obtain over 50 runs.

EnVironment I
M

e EP/N
7. ý

1$

vatex

- CO)
0

Co CL

20

is
IV)
0 16

14

12

0.5 1 1.5 2
CaWafionTime(s)

Environrmnt 3

e EP/N
Vertex

46a 10 12
CalcUabon Time (s)

Environrmnt 2
7 ý7 -7EP7/N Fj- EP/N

7 1 vatex

m

4.51-
0

35-

36 -ý

25%

20

to CL 15

10

5L
0

0.5 1 1.5 2 27. r 3
Calmiaton Time (s)

EnVironrmnt 4

E) EP/N
Vertex

10 20 30 40
CalcUabon Time (s)

Figure 4.6 The infeasible path costs for the best individual from the first generation to that
when the first feasible path is generated. The results are the medians obtained over 50 runs.

70

Chapter 4: Vertex planner

Table 4.3 Execution time and number of generations to determine the first feasible path. The
results are the medians obtained over 50 runs.

planning execution time to number of generations
environment method obtain the first to determine the first

feasible path (s) feasible path

EP/N 1.78 26
Vertex 1.15 17
EP/N 2.59 23

2
Vertex 2.58 16
EP/N 11.6 49

3
Vertex 9.99 27

4
Vertex 39.7 50

Although the absolute probabilities of the three genetic operators in the vertex

planner are the same as those of the corresponding' operators in EP/N, as the vertex

planner has fewer operators (and only one can be applied in each generation), each of

its three operators are likely to be applied more frequently. This includes the repair

operator which, from manual inspection of the progress of the development of the

individuals, appears to be responsible for the relatively rapid convergence of the

vertex planner in the first evolutionary phase.

The results for the second evolutionary phase, during which the aim is to translate

feasible paths to high-quality feasible paths, are shown in Figure 4.7 and Table 4.4.

Compared with EP/N, the vertex planner shows a significant improvement in

execution time performance during the second evolutionary phase, with reductions in

the range 20% (environment 4) to 78% (environment 1). A number of the EP/N

operators are computationally more expensive to execute than those in the vertex

planner, for example insert, delete and smooth can add new nodes to the selected

path, and such enlarged individuals will subsequently require additional time to

process. In contrast, the vertex planner naturally limits the maximum, possible number

of intermediate nodes in each individual path to the total number of vertices in the

environment. Consequently, compared with the reductions in execution time, the

corresponding reductions in the number of generations required by the vertex planner

are not so great, but are significant nonetheless.

71

Chapter 4: Vertex planner

The effectiveness of the vertex planner can be seen in the path length results shown in

the final column of Table 4.4, where both planners produce similar results in terms of

path quality for environments I and 3. A marginally better path was found by the

vertex planner in environment 2, but a more significant improvement was apparent in

environment 4.

Environimnt 1
450,

EP/N
Vertex

400

0
3w.

m
CL

05 10 15 20 25 30 35

CaWabon Time (s)

Environrmnt 3
z

E) EPIN 14

vertex

440
0

420

CL

450

to KL

Environment 2
G EPIN

Vadex

350'
05 10 15 20 25 30 35

CalcUabonTirne (s)

Environrmnt 4

0 EP/N
vedex

*v;

m KL

600

L ýO 100 500 to- 100 ISO o 1'ýO 0 CalcUabon Time (s) CaIcUabonTinv (s)

Figure 4.7 The feasible path lengths for the best individual during the second evolutionary
phase. Note that the plot is from the first generation in which there existed at least one

feasible path, to the generation in which no improvement in the fitness of the best individual
has occurred over 300 successive generations. The path length is the median over 50 runs.

72

Chapter 4: Vertex planner

Table 4.4 Execution time and number of generations to determine the final path. Also shown
is the total path length obtained. The results are the medians obtained over 50 runs.

execution number of

environment planning time to find generations path
method the final path to determine length

(S) the final path

EP/N 31.6 759 268
I

Vertex 6.95 328 268
EP/N 32.3 644 371

2
Vertex 15.6 528 370
EP/N 140 1234 380

3
Vertex 33.9 487 380
F. P/N 176 1235 614

4
Vertex 141 912 566

In the comparative results above, the experiments were conducted using 30

individuals in all cases. As this population size is unlikely to be optimal, additional

experiments were carried out to assess the effect of the population size on both the

calculation time and the path cost. In each case, 50 runs were performed at each of 10

different population sizes. The calculation times and the path costs for the four

environments are shown in Figure 4.8 and Figure 4.9 respectively. As expected,

Figure 4.8 shows that the calculation times increase with the population size, but

Figure 4.9 indicates that in all environments the path length is largely independent of
the population size. Outliers found in the path length results indicate that there were

experiments in which a significantly sub-optimal solution was produced. In all the

environments, these outliers are more prevalent at smaller population sizes and only

at a population size of 100 individuals are no outliers present in any of the

envirorunents.

73

Chapter 4: Vertex planner

Environment 1

20
0
0 E
j= 15
c 0 %P (0 10

. 10 20 30 40 50 60 70 80 90 100
PopUabon Siza

Environment 3
140

- 120
0
0 loo

80

60

t
tu
) 40

20

+ .1

10 20 30 40 50 60 70 80 90 100
Population Size

50
12
a) 40

30

20

10

Environment 2

I

10 20 30 40 50 60 70 80 90 100
PopUation Size

Environment 4

z
(D

0
a

400 ,

300 , T
+ T

+ 200
T

100

n
10 20 30 40 50 60 70 80 90 100

Populabon Size

Figure 4.8 Effect of altering the number of individuals in the population on the calculation
time for the vertex planner. For each population size, the calculation time of the best

individual has been obtained over 50 runs. In the box plot, the box itself contains 50% of the
samples, so the top and bottom edges of the box indicate the upper and lower quartiles

respectively. The broken horizontal line within the box is the median value, the 'whiskers'
above and below indicate values 1.5 times that of the inter-quartiles and the outliers beyond

this range are denoted by a plus sign. More details on box plots can be found in Nelson
(1989).

74

Chapter 4: Vertex planner

Environment I Environment 2

276-

.Z 274 -

272[

CL 270

(0 CL

? 681 ------- 0-

tttttt t- t
10 20 30 40 50 60 70 80 90 100

Population Size

Environment 3
415

Ilor ++

400 +++++

395
.

390 +

385

380

Mo

385

-r- 380

375

370

365

10 20 30 40 50 60 70 80 90 100
Population Size

Environment 4

750

-ri

(0 CL

700

T T 650 T
T

BOO

sw

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Population Size Population Size

Figure 4.9 Effect of altering the number of individuals in the population on the path length
for the vertex planner. For each population size, the path length of the best individual has

been obtained over 50 runs.

4.3 Conclusion

The series of experiments presented in this chapter have investigated the efficiency

and effectiveness of a new vertex planner. Compared with previous methods, the

vertex planning approach operates in a substantially reduced search space, as a result

of adopting the obstacles' vertices as the intermediate nodes in the path. in particular,

the results show significant performance improvements in comparison with EP/N

which searches the whole of the free space for a path (assuming that in most

environments encountered, relatively little area is occupied by obstacles). However,

given its search space advantage, the convergence performance of the vertex planner

is perhaps not as good as might reasonably be expected. As the current work has

adopted the operator probabilities that have been optimised for EP/N, it is likely that

further experimentation to obtain probabilities better suited to the vertex planning

75

Chapter 4: Vertex planner

method may yield improved performance. In those cases where the free space is not

dominant, perhaps due the presence of many large obstacles (such as in environment

3), it may be expected that the performance is adversely affected. In contrast, free

space dominates in environment 4, but the mean number of vertices per obstacle is

greater. Of the environments investigated, this was the only one in which the vertex

planner appeared to encounter much difficulty in evolving a feasible path and it is

possible that a higher mutation rate should be considered in order to escape local

minima. Nevertheless, the vertex planner with a variable-length path representation

has been shown to be both efficient and effective in finding solutions of suitable

quality for the path. planning problem.

The new planning algorithm was presented and a discussion on the experimental

results was given in this chapter. However, the static environments simulated in the

tests imply a limited application of the vertex planner. Therefore, an augmented

planner was subsequently developed fora, robot operating in dynamic environments.

That work is introduced in the next chapter.

76

Chapter 5: Yertex++ planner

Chapter 5

VERTEX++ PLANNER

This chapter presents vertex++, a genetic-based algorithm for path planning in

dynamic environments (those in which one or more moving obstacles are present),

and which has the ability to deal with both static and dynamic constrains

simultaneously. Although designed initially as an off-line algorithm, vertex++ is also

appropriate for use in on-line planning, where its operation can be triggered in

response to changes in the expected movements of the dynamic obstacles. The

vertex++ navigation approach is an enhancement of the vertex planning method for

static environments'described in chapter 4. The on-line planning aspects of vertex++

planner have been presented at the 2007 IEEE International Conference on Robotics

and Automation and an -additional submission will be made to the IEEE Transactions

on Evolutionary Computation.

By restricting the planning to obstacle vertices rather than considering the entire

environment, the vertex++ planner is able to significantly reduce the calculation time

compared with other GA approaches that have been applied, in dynamic environments,

in which all points in the environment are considered as potential nodes in a path

(regardless of whether they are in free space or within an obstacle). A further novel

achievement of the new planning approach is the inclusion of robot speed into the

planning process, which takes into account the time at which obstacles are

encountered, thereby allowing the consideration of a much greater range of possible

avoidance paths.

77

Chapter 5: Yertex++ planner

5.1 Related work in path planning in dynamic environments

Planning a path for a mobile robot in dynamic environments is more complex than in

static environments, as additional parameters, such as time and velocity, need to be

considered in order to generate a collision-free path. A general description of the

existing methods that have been applied to solve planning problems in dynamic

environments was given in section 3.1, and, this section only addresses approaches
based on evolutionary concepts. It is important to note that relatively little work has

been reported in the literature that has utilised genetic algorithms as the basis for path

planning in dynamic environments.

A number
'
of researchers (Elshamli, Abdullah and Areibi 2004; Patnaik and

Karibasappa 2005; Thomaz, Pacheco and Vellasco 1999; Xiao et al. 1997) have

employed genetic algorithms in the environments where suitable sensors can capture

the obstacles that newly appear. However, as these detected obstacles remain

stationary only a re-planning process is needed using modified geometric information.

As this results in environmental representation much simpler than those needed for

the solution of planning problems in dynamic environments, this work is not closely

related to that described in this chapter.

Fujisawa et aL (2000) described a planning method using only a mutation operator to

generate a suitable action (velocity and steering controls) based on 'anytime sensing',

that is, to begin the search with a low quality of sensing information, but to gradually
improve its quality as the search progresses. More specifically, all obstacles are
initially classified into atircular virtual obstacle that is sufficiently large enough to

include all obstacles, and, as the search advances, the virtual obstacle gradually
fragmenting into smaller virtual obstacles each containing fewer obstacles. In this

way, the solution is incrementally improved while processing the sensory information.

However, in practical applications the range of influence of the algorithm is rather
local due to the limited view obtained by the sensors.

78

Chapter 5: Yertex++ planner

Smierzchalski and Michalewicz (2000) developed an evolutionary based algorithm,

termed aEP/N++, to generate a collision-free trajectory at sea. This algorithm extends

EP/N that was desig. ned to operate in static environments (Xiao et al. 1997) by

considering the speed of the other moving ships to search the entire and continuous

environment for an optimal or near optimal solution. A more detailed description of

this planner was provided in chapter 3. Path planning for ships in a continuous

environment was also investigated by Zeng (2003) who encoded not only position

and speed parameters, but also noise resulting from tide, wind, and wave effects. His

algorithm applied a crossover operator that determines the crossing site between two

parents of variable length according to the phonotypic function of parameters

(position, speed, and noise) rather than using their genetic locus. Following crossover,

one gene selected from a fitter chromosome is altered by mutation. The potential for

collision between the ship and other moving objects is assessed based on the values

of the closest points of approach. If the distance is smaller than the sum of radii of the

safe areas around the ship and the moving object, a collision risk exists.

Chen and Xu (2005) added three operations to the standard genetic algorithm to

improve global optimality in a planning problem. The first two operations, termed

restoration and reconstruction respectively, reinstate or rebuild a previous population

if the best individual after crossover and mutation is less fit than the previous best.

Otherwise, the new fitness will be remembered by recording the better operation. A

unique length representation is used in the GA, and, to reduce the string length, two

dimensional data (that is, coordinates with the original workspace X01) were

projected to one dimension by converting the original workspace into a new

coordinate system, with the origin at the start point and the x axis drawn to goal point.

The locus of a chromosome thus represents the x coordinates of a set of via points

equally spaced along the x axis, ' while the content of each gene is the y coordinate.

However, such a representation may result in the planning algorithm not finding the

optimal solution, as x coordinates are recorded in monotonic order and no reordering

operator is available. To achieve dynamic obstacle avoidance, the via points need to

be selected to ensure the distance from each via points to an obstacle is longer than

the sum of the radii of the robot and that of the obstacle under consideration. In

79

Chapter 5: Vertex++ planner

addition, the method also assumes that the number, the positions and the speeds of

obstacles can be completely captured by the sensor system.

GAs have been also applied to the path planning of multiple mobile robots. Liu, S.,

Tian and Liu, J. (2004) planned a collision-free shortest path for each robot from its

initial location to its destination while ignoring the presence of other robots. A

reactive strategy was adopted to resolve locally the conflicting paths. Each individual

was encoded as a linked list of variable length where each gene contained the

coordinates of a cell in a grid. The initial population was constrained to the range

bounded by the coordinates of the start point and the goal point, the crossover and

mutation operator was modified to cope with the planning problem and two

evaluation functions were developed to assess the quality of the feasible and

infeasible paths. The fitness function used for the infeasible paths, defined as the

inverse of the number of infeasible segments plus one, is not an intuitive parameter,

since the single straight line between the start point and the goal point is necessarily

the fittest one among infeasible paths. A similar approach in which a global

geographical path was generated and then collisions avoided using a set of behaviours

was adopted by Fu et al. (2006). The practical problem considered was to navigate a

planet rover from a start point to a target point and then return to the start point, while

passing through a set of sub-targets (and is largely equivalent to a travel salesman

problem). A local planning algorithm was designed to generate a path between pairs

of adjacent sub-targets according to the gradients of the 3D terrain modelled by a grid

map.

GAs have also been used for planning problems in 3D workspaces containing moving

objects. One example is the path planning of an unmanned aircraft (Rathbun et al.

2002), where path was composed of a set of straight lines and constant radius curves

joined smoothly. Four mutation operators were developed; at each generation one

was chosen randomly for application to each individual to alter one or more of the

following parameters: length, radius, and speed. The check for potential collision

with obstacles considered the expected position and velocity, safe approach radius

and uncertainties of the position and velocity of the obstacles. A second example is

80

Chapter 5: Fertex++ planner

genetic-based local path planning designed to avoid moving obstacle when navigating

an autonomous underwater vehicle (Chang et al. 2005). A rectangular grid map

representing the environment sensed was rotated such that the straight line from the

start point (the origin) to the goal point becomes the x axis. The location and velocity

of moving obstacles were assumed to be observed by the sonar sensor and the

avoidance was achieved by changing the heading. In addition to the standard

operators, namely, one-point crossover and mutation, an additional operator, termed

the moving operator, was designed to navigate the vehicle close to the previously

planned path while avoiding collision. The avoidance constraint was set to be larger

than the dimension of the vehicle plus the radius of the obstacle.

The approaches to navigation in dynamic environments have adopted a grid

representation or have operated on the original continuous working environments.

Although the grid representation may reduce the search space to some extent, the

construction (or reconstruction based on updated information about the dynamic

environments) requires careful selection of grid dimensions and considerable pre-

processing. Converting the x axis into a line connecting the start point and the goal

point can reduce the lengths of individuals in the genetic representation, but does not

allow any movement in the negative x direction and consequently some feasible paths

may never be discovered. To accelerate the search process or improve the path

quality, a conventional GA is rarely employed directly, but rather some modifications

are made based on problem-specific knowledge. It is important to note that in all the

work found in the literature, the proposed algorithms were only evaluated in the

specific environments developed by the respective authors and none was assessed in

their comparison with other algorithms.

The vertex++ planner presented in this chapter is able to perform planning operations
in dynamic environments and is an extension of the vertex planner described in

chapter 4. As aEP/N++ is the extended version of the EP/N to operate in dynamic

environments, it was used to provide a benchmark for the vertex++ planner.

81

Chapter 5: Yertex++ planner

5.2 Planning algorithm

This section describes the types of environment used in the experiments caffied out

with vertex++, details the internal structure of the GA used for the planner and

describes the operation of the vertex++ during both off-line and on-line planning.

5.2.1 Operating environment and constraints
The working environment for the mobile robot consists of a set of stationary obstacles

whose shapes either are defined to be, or are approximated by, bounding polygons. In

addition, the robot movement between two specified locations may be interrupted by

the presence of one or more dynamic obstacles that are also represented by polygons.

If the motion parameters (here the current heading and current speed) of those

dynamic obstacles remain constant, a safe trajectory for the robot can be generated by

the vertex++ planner in an off-line manner. In addition, the path generated off-line

can be adaptively revised in response to any changes in the motion characteristics of

the dynamic obstacles.

in the off-line planner, it is assumed that complete motion knowledge of the moving

obstacles in the environment is available. Consequently, an inherent assumption in

the off-line planner is that the information gained remains unchanged following the

generation of a safe path. In the on-line planner, it is assumed that changes to the

motion parameters of the moving obstacles are made available whenever one comes

within the sensor range. Although no particular sensor type or configuration is

specified, it is assumed that in order to allow the robot to be guided so as to avoid any

potential collisions with obstacles, there is an adequately large time interval between

the detection of obstacle movements and the, implementation of newly generated

actions. Note that this assumption may be relaxed if guidance is achieved by reactive

navigation, such as in (Mulvaney et al. 2006).

For purposes of planning, the static obstacles are enlarged by a value determined

from the minimum distance (herein referred to as the safe distance) that the robot can

approach obstacles without collision, to account for the robot dimensions (see Figure

82

Chapter 5: Yertex++ planner

5.1 for an example). Such a representation allows the physical, dimensions of the

mobile robot to be neglected and regarded as a single point.

500

450

400

350

300

250

200

150

100

50

n
0 100 200 300 400 500 600

X direction

Figure 5.1 An example of the environment representation in vertex++ planner. The grey
polygons represent exclusion areas surrounding the moving obstacles; the black obstacles are

static.

To model the motion of the dynamic obstacles in the vertex++ planner, the same

strategy as in 9EP/N++ (Smierzchalski and Michalewicz 2000) is adopted. In brief,

for each obstacle, its motion is described by a trajectory, consisting of a series of one

or more segments, each having start and finish coordinates between which the
heading (defined by the coordinates) and the speed of the obstacle are fixed.

In order to assess the possibility of the robot colliding with dynamic obstacles, the

following method has been developed and implemented in vertex++. The first
I

crossing point between the robot path proposed by the planner and the trajectory of a

moving obstacle is calculated before examining the possibility of collision. Based on

the time t required for the robot to cover the distance from the current position to the
first crossing point, the instantaneous location of the moving obstacle can be

calculated and, consequently, the exclusion area for this obstacle. If the crossing point
falls within this area, a collision would occur between the robot and the moving

obstacle. An example of such an occurrence is shown in Figure 5.2. Note that the

83

Chapter 5: Fertex++ planner

safety margins for the longitudinal and lateral dimensions of the moving obstacle are

unlikely to be the same when constructing this area, as the speeds of the robot and the

moving obstacle need to be taken into account in addition to the dimensions of the

robot. For the problem in Figure 5.2, the time t is firstly calculated for the robot to

travel from its current location to the crossing point determined from the generated

path. The instantaneous location of the moving obstacle after time t can then be

calculated according to the motion information relating to the dynamic obstacle,

allowing a region to be identified for assessment of feasibility using the algorithm for

checking polygon clipping given in (Pavlidid 1982).

static obstacle

moving obstacle

moving obstacle location
at time t

goal

crossing point at time t

AIL

robot I- It
I static obstacle -. 7k t

current location "%

Figure 5.2 Evaluation of the possibility of collision with a moving obstacle. Note that the
intermediate nodes of the generated path illustrated are vertices of the enlarged static

obstacles.

5.2.2 Pseudo-code of the vertex++ planning algorithm

The vertex++ planner preserves the structure of the steady-state GA vertex planner
described in the last chapter. The pseudo-code for the vertex++ planning algorithm is

shown in Figure 5.3 and its implementation is described in the following sections.

84

Chapter 5: Vertex++ planner

Procedure Vertex++ Planning Algorithm
begin

number of generations g=0;
input environmental information from sensors;
enlarge the static obstacles;
initialise the population P(g);
evaluate P(g);
while (not termination condition) do

increment the number of generations g=g+1;
randomly select Ojfrom four operators

(crossover, mutation, repair, and speedmutation);
select parents from P(g);
apply the operator Ojto produce offspring;
evaluate new offspring;
replace worst member in P(g) by offspring;

end while
select the best individual p from P(g);

end
end procedure

Figure 5.3 The vertex++ algorithm.

5.2.3 Genetic representation and initialisation

Candidate paths are represented by a chromosome (Figure 5.4) consisting of a total

number of genes 1, where I has a minimum value of two (a path containing only the

start and goal points) and maximum value of N+2, where N is the total number of the

vertices of all obstacles (both static and dynamic) in the environment. The absolute

coordinates of the vertices (xi, yj), are used directly in the gene

representation rather than a reference to one of the N vertices (Wang, Mulvaney and

Sillitoe 2006). The robot's speed, si in the segment originating from each gene is

selected from a set of available discrete speeds. A single bit is also provided in each

gene to indicate the feasibility of the path that originates from the gene; if the path

segment connecting two consecutive vertices intersects one or more obstacles, then

the infeasibility bit of the gene representing the originating node is assigned I to mark

this segment as infeasible (it is 0 otherwise).

85

Chapter 5: Yertex++ planner

start gene gene I gene 1-2 goalgene

XO XI XI-2 X9

Yo Yl YI-2 Y9

SO Sl ... SI-2 0

0/1 j 0

Figure 5.4 The structure of a chromosome. The first and last genes in the chromosome
indicate the start and goal points respectively. The 1-2 intermediate genes represent the

vertices of obstacles in the environment as well as the speed and feasibility of the segment
that originates from the gene.

The initial population P(O), is generated by randomly choosing for each individual

both its length (in the range 2 to N+2) and the coordinates of the vertices contained

therein, with the constraints that no vertex is repeated in a individual and that the first

and last genes are always the start and goal points respectively. The speed for each

gene is selected randomly from the set of discrete speeds. Compared with a fixed-

length chromosome approach, the variable length strategy not only reduces the

memory storage requirement, but also the processing time, as more time is generally

needed for the fitness calculations if the individuals are longer.

5.2.4 Evaluation functions

A check for the feasibility of each chromosome is performed before evaluation of the

chromosomes. Separate evaluation functions are applied to assess the qualities of
infeasible and feasible paths.

Two parameters, path length and travel time, are considered in the evaluation
function Ef for feasible paths. Ef is given by

Ef -. 11+1 d(Vj, Vj+j) + w, -
1+1 Equation 5.1 = Wd -

Zj-o
i-Ot(V,,

V,
+,

),

where Wd and w, are the weights for path length and travel time respectively,
V d(V,, v,,,) denotes the distance between the pair of vertices and I(V ,,,) represents

the time needed to cover each segment from vertex Vj. to V1+1 which can be calculated
by

86

Chapter 5: Yertex++ planner

t(V,, V,.,) = d(V,, V,, j) / s,. Equation 5.2

where s, denotes the speed of the robot when travelling from Vj to V1,1. The infeasible

paths are evaluated using the function Ej by considering the deepness of an infeasible

path's int ersections with obstacles and is given by

=, u il
30

Equation 5.3

where y denotes the number of obstacle intersections along the entire path and I is

the mean number of intersections in the infeasible segments. Given the two

evaluation functions, the aim of the optimisation process in the vertex++ planning

approach is to minimise the values of Ef and Ej for their respective populations.

When the population contains both feasible and infeasible paths, all infeasible paths

are assumed to be no better than the worst feasible path. A sufficiently large constant
C is added to the costs for the infeasible paths to ensure the evaluation values of any

given infeasible path is worse than the values for all feasible paths. This constant

value C is given by

C=(N+2)-D, Equation 5.4

where N+2 indicates the maximum possible number of genes in an individual and D

denotes the maximum length of a path segment (for example, this would be the
diagonal in a rectangular enviromnent).

5.2.5 Genetic operators and their selection
Three of the total of four genetic operators are the same as those used in the vertex

planner in the previous chapter, namely, crossover, mutation and repair. The fourth

operator, termed speedmutation, has been introduced in this work in order to mutate

the robot speed indicated in a gene and it is selected with a small probability. In order

to keep the number of system parameters to a minimum, the selection of an operator
from the four available is made randomly at each generation rather than being based

on pre-defined probabilities for those operators. The crossover operation is performed
by a conventional one-point operator, following which individuals are examined for

repeated vertices, and, in order to eliminate circular paths, those replicated vertices of
lower locus are removed (as the fitness of such individuals is worse than those

87

Chapter 5: Vertex++ planner

without a ring branch). The reason for choosing single point crossover is that when

there are two or more crossover points there is a greater probability of making

currently feasible paths infeasible. When the mutation operator is selected, only one

bit is modified in the chosen individual. Mutation is inhibited if the replacement

genes are already present in the individual. Note that the mutation rate will depend on

the length of the individuals; for example if the average length of the individuals is 10

bits for a certain planning task, then, on average, only 1 bit will be mutated in every

fourth generation (there being four operators), giving a mutation rate of 0.025. This is

why a single gene for mutation is selected from an individual rather than being based

on a pre-defined probability. Consequently, the mutation rate is effectively adapted

during the search process. The repair operator adjusts a randomly selected infeasible

segment of an infeasible path, so that it circumnavigates all obstacles previously

intersected, as illustrated in Figure 4.4 in the previous chapter.

5.2.6 Evolutionary process

As a steady-state GA has been adopted, only (following crossover) a single pair of

individuals differs between consecutive generations. The generational operation

begins with the random selection of a genetic operator and a quadratic ranking

scheme (De Jong 1992; Watanabe and Hashem 2004) (see section 2.3) is used to

retain the constant selection differential after evaluation. The parent (or parents for

the crossover operation) that is involved in the genetic operation is determined by a

roulette wheel whose slots are sized in proportion to the fitness as scaled by the

ranking technique. To form a new generation, the newly generated offspring replaces

the least fit individual (or pair of individuals if crossover is applied). The

evolutionary process continues until a termination condition is satisfied, which can be

defined to be a number of generations specified by the user or determined

dynamically by monitoring specified performance criterion. When evolution

terminates, the fittest individual is selected as the path planning solution.

5.2.7 on-line planning

On-line planning is triggered automatically to adapt to any changes in the movement

characteristics of the dynamic obstacles that have occurred since the off-line plan was

88

Chapter 5: Yertex++ planner

computed. On-line planning is instigated only when such changes are detected within

range of the robot's sensors, otherwise the robot continues to follow the previously-

planned trajectory. Information gathered from the robot's sensors, with regard to the

motion changes of obstacles, is supplied to the vertex++ planner which then uses the

current state of the robot as the start configuration for its on-line evolutionary

planning, and evolves a new path for the robot. The on-line planning algorithm is the

same as that used in off-line planning, but with the additional assumption that the

planning time is relatively short compared with that needed for the robot to

implement motion changes to avoid collision with dynamic obstacles.

5.3 Experiments and results

Three separate experiments were carried out using MATLAB (Mathworks 2006)

simulations on a 2.8GHz Pentium P4, each applied in the same set of four simulated

environments. In the first, the robot speed is constrained to remain constant over the

entire trajectory from start to goal, in the second, the robot speed was allowed to vary

between segments and in the third, the on-line planner was required to respond to a

number of motion changes made by the obstacles and the path was separately

optimised for both travel time and path length. In the simulations, the trajectories of

the dynamic obstacles along a segment joining any pair of adjacent nodes are

approximated as linear. The number of obstacles present in each of the test

environments is summarised in Table 5.1.

Table 5.1 The numbers of obstacles in the four test environments.

environment st
number of number of
atic obstacles dynamic obstacles

142
253
394
4 14 5

To provide realistic challenges to the planner, the four environments were designed to

reflect a representative range of applications in which mobile robots may be expected

to operate. Simple trajectories for the dynamic obstacles were designed for the first

89

Chapter 5: Fertex++ planner

two environments, with the obstacles simply traveling to and fro between two

specified locations. More complex paths for the dynamic obstacles were defined for

the remaining two environments, involving speed changes and movement between a

series of nodes. For off-line planning, the information regarding the motions of the
dynamic obstacles is assumed to be completely known for the four environments
before planning. Apart from the robot speed and the optimising criteria, all

parameters remained unchanged throughout the set of experiments and they are listed

in Table 5.2.

Table 5.2 System parameters for the vertex++ planner. Note that mutation acts on only one
gene to alter either the vertex or the speed of the selected segment and that the value of the

safe distance is determined from the minimum distance that the robot can approach obstacles
without collision, taking into account its physical dimensions.

population mutation rate mutation rate repair rate safe distance
size (for node) (for speed) (m)

30 one gene one gene one infeasible
segment

5.3.1 Robot of constant speed
The speeds of the obstacles in the different environments are chosen from a uniform
distribution in the interval O. Olms-1 to lms*1 and an example of generated values are

shown in Table 5.3. The results in Figure 5.5 show the paths produced for the robot

traveling at constant speed (here assumed to be 0.5ms") in the four environments first

in the absence of dynamic obstacles (left column) and secondly in their presence
(right column). In the experiments, 1000 generations was normally more than

sufficient to generate a suitable solution. The execution times to obtain feasible

solutions in the dynamic environments were longer than those for the environments

containing only static obstacles, but even in the more complex environments,

consistent results were produced in less than 60 seconds. Little variation was evident

when the navigation task was repeated. It can be seen that, in comparison with the

results from environments where all obstacles are static, the paths generated in the

presence of the moving obstacles are generally longer. In the dynamic environments,
the planner often chose an alternative route around the static obstacles in order to

avoid potential collisions with dynamic obstacles, thereby producing a shorter overall

path through the entire obstacle population. Although this did not occur in

90 -

Chapter 5: Fertex++ planner

environment 1, where only a minor deviation was needed around the first dynamic

obstacle encountered, in enviromnents 2,3 and 4 alternative routes around at least

one of the static obstacles was chosen.

The quantitative experimental results are presented in Table 5.4, where it can be seen

that when moving obstacles are present there is an increase in both the execution time

and the number of generations required to determine feasible paths. This increase is

most pronounced in environinent 3 and this appeared to be due to the complex
interactions that result from all four moving obstacles operating simultaneously in a

region that needs to be traversed by the robot. From Table 5.4, it can be seen that, for

the dynamic environments, the number of generations required to find the first

feasible path for environment I with moving obstacles is double that obtained in

dynamic environment 2, but a similar execution time is required. One possible reason
is that although the application of the four genetic operators is randomly selected,

their execution times are different. Therefore, the operators needing longer

calculation times may be selected more frequently in the experiments carried out in

dynamic environment 2 than in dynamic environment 1. Although the costs shown in

Table 5.4 are travel times, the corresponding path lengths are linearly related due to

the constant speed of the robot.

Table 5.3 Examples of speeds (in ms") for the moving obstacles in the experiments
conducted for the robot with constant speed

environment obstacle I obstacle 2 obstacle 3 obstacle 4 obstacle 5
1 0.75 0.35
2 0.15 0.28 0.32
3 0.81 0.39 0.18 0.47
4 0.53 0.35 0.18 0.43 0.27

Environment I

9
c

500
G

400

300

2DO

100

0 IOU WUU 300 400

X direction (m)
500 0 100 200 300 400 500

X direction (m)

91

Environment 1
500

400

a 300

200

1001
s

0

Chapter 5: Fertex++ planner

Environment 2 Er? AronrrLnl 2

300
E '9
C
0
*0 200 ldýý II

"D ýa
>- 100,111 MOM

0sI
0 100 200 300 400

X direction (m)

Environment 3

'9
r-
0

.
i15
2

0 50 100 150 200 250 300 350
X direction (m)

Environment 4

300

250 G

200

150

100

50

n

E
c 0 is LD

400
300

200

100

40D

30D

200

100

100 200 3W 400
X dmcbcn (m)

ErMmnmd 3

250
CG

20D

150.

la

So 100 150 2M 250 300 a,
X drecton (m)

ErMromiert 4

io

E

>..

4W

A',
300

4L

200

loo

0 100 200 300 400 0 100 200 30D 40D
X direction (m) X drecticn (m)

Figure 5.5 Comparison of the generated paths for the four environments both with no
moving obstacles (left column) and with moving obstacles (right column). The paths

generated for the robot follow a series of nodes marked by the symbol W, that indicate the
intermediate vertices. The start and goal points for the robot are indicated by the solid dots

marked IS' and V respectively. The trajectories for the moving obstacles (with nodes marked
by the symbol I*') are shown solid in those parts already traversed up to the first crossing

point (see Figure 5.4) and broken for the remainder of the trajectory yet to be followed. The
positions of the moving obstacles shown are those at the time the robot reached the first

crossing point. If crossing does not occur, the position of the moving obstacle shown is that
taken at the time the robot reaches the goal. The heading of the obstacle at the moment of the
first crossing (or at the time the robot reaches the goal) is shown by an arrow in the body of

the obstacle.

92

Chapter 5: Fertex++ planner

Table 5.4 Experimental results for the robot with constant speed in the four environments

cost - generations to execution time execution time
environment travel time find first to find first for 1000

(S) feasible path feasible path (s) generations (s)
no moving 1327 8 2.25 20 4
obstacles . 1 2 moving 1338 26 3.81 39 2
obstacles .

no moving 1053 35 3.38 22 5
obstacles . 2 3 moving
obstacles

1142 13 3.78 40.2

no moving 838. 26 3.80 30 9
3 obstacles .

4 moving
obstacles

911 54 14.0 66.1

no moving 1102 155 27.3 99 7
obstacles . 4 5 moving
obstacles

1191 166 39.4 118

5.3.2 Robot of variable speed

In these experiments, the robot's speed between a consecutive pair of vertices was

selected from the set {0.3,0.4,0.5,0.6,0.7) ms", whereas the speeds of the dynamic

obstacles were obtained from the range [0.1,1.2] ms" with a resolution of O. Ims",

examples of generated obstacle speeds are shown in Table 5.5.

Table 5.5 Examples of speed parameters (in ms') randomly generated for each path segment
of the moving obstacles for the experiments conducted with the robot operating at variable

speed.

enyironment obstacle I obstacle 2 obstacle 3 obstacle 4 obstacle 5

1 0.5,0.1, 0.1,0.5,
0.2,0.4 0.2,0.4

2 0.6,0.1, 0.3,0.6, 0.1,03,
0.4,0.7 0.1,0.4 0.2,0.4
0.8,1.1, 0.4p 0.5p 03 05 0.390.6,

3 0.7,0.3,, 0.6,0.4, 0-5,0-7,
0.5 0.3 0.2

0.6,1.2,0.7,1.2,0.3,0.2,0.2,0.7,0.4,0.9, 4 0.3,0.2 0.6,0.4,0.5,0.1,0.6,0.2,0.7,0.2,
0.5 0.6 1.0,0.4 0.5,0.2

The robot paths for this set of experiments are shown in Figure 5.6. In comparison

with the results in Figure 5.6, it can be seen that the trajectories generated have been

modified as a result of the range of speeds now available to the planner. In particular,

93

Chapter 5: Verlex i- + planner

in environment 1, the planner now chooses to drive the robot in a longer path around

the first static obstacle in order to avoid the first dynamic obstacle and, in

environment 2, the planner has determined changes to the robot speed allow a path to

be 1`61lowed that more closely resembles that taken for the same environment in

Figure 5.5 where only static obstacles were present. Although the paths generated ill

environments 3 and 4 pass through the same vertices as those in the corresponding

dynamic results in Figure 5.5, the instantaneous locations ot'the moving obstacles are

different due to the range of speeds now allowed for the robot and dynamic obstacles.

As only travel time is considered in the evaluation f'unction Ior tile 1easible paths, in

its attempts to minimise the travel time, the GA tends to choose the maxii-nuill speed

from those available. The details of the number of generations and execution times

required for generating the solutions depicted in Figure 5.6 are shown in Table 5.6. Ill

particular, it can be seen that the ability of the planner to select the operating speeds

for tile individual segments has permitted the more rapid identification Of' Suitable

individuals in the GA, and resulted in a significant reduction in the execution time in

environment 33.

Environment 1
500

G
400

k%

E
3001

.2
e? 200ý

100

0s
0 100 200 300 400 500

X direction (m)

Ermrorynerl 3
300- ---

0G
250'

A*
200,

150ý 4416

looý 4m

50,

\

'10

s

0
0 50 100 150 200 250 300

X chrecbcn (m)
350

Ermrorrmrt 2
400

300

"%, gor

,E9
im

2ffl

>

la) wem
s

0 Ion 200 300 400
X ckrecücn (m)

E rm rorynert 4
400:

300

200

loop
17- 0, 0 100 2tx) NX) X chrectico (1) 1)

Figure 5.6 The patlis generated for a mobile robot with speeds determined by the GA.

94

Chapter 5: Yertex++ planner

Table 5.6 Results in the four environments for the robot with variable speed.

cost - number of execution time execution time
environment travel generations to find to find first for 1000

time (s) first feasible path feasible path (s) generations (s)
1 982 53 4.02 39.4
2 752 54 6.31 40.8
3 651 52 7.78 59.5
4 851 151 36.4 124

53.3 On-line planning
The experiments presented in this section investigated on-line planning. The motions

of the dynamic obstacles in the four environments were changed (in both trajectory

and speed) after the robot had followed the paths generated off-line for a specified

time duration. Table 5.7 shows an example set of such obstacle speeds used in the

generation of the paths shown in Figure 5.7. In the experiments, where a change in an

obstacle's trajectory or speed was detected by the robot's sensors, the planner was re-

executed in order to generate a new plan using the updated configuration. Only those

portions of the paths that were followed after the execution of the on-line planner are

plotted in Figure 5.7 (the original paths the moving obstacles followed can be seen in

Figure 5.6). The left column in Figure 5.7 reports the trajectories planned with travel

time as the evaluation criterion for the feasible paths, whereas the right column shows

the paths evolved on the basis of minimising path length.

Table 5.7 Example of modified speed parameters (in ms") generated for each moving
obstacle path segment.

environment obstacle I obstacle 2 obstacle 3 obstacle 4 obstacle 5
1 0.1 0.55 -
2 0.4,0.1 0.2 0.5 -
3 0.3,0.5 1.1,0.4 0.7,0.4,0.6 1.2,0.5,0.4,

0.8
4 0.9 1.4,0.7 1.1,0.2,0.5 0.3,1.1 1.6,0.5,0.6

Comparing Figure 5.6 and Figure 5.7, the path generated for environment I when

optimising for travel time (left column) is modified in order to avoid the moving

obstacle, but, when optimising for path length (right column in Fig 5.8), the same

path as that obtained in Figure 5.6 can be followed. For environment 2, the re-planned

95

Chapter 5: Vertex++ planner

path in the right column of Figure 5.7 appears to be the same as that planned before

the obstacle changed trajectory, whereas, on careful examination, it can be seen that

the trajectory in the left column has required minor modifications to the choice of

intermediate nodes. The paths presented in both columns of Figure 5.7 for

environment 3 selected, as intermediate nodes, the same vertices in same order.

However, neither path for environment 4 is the same as that generated off-line

(Figure 5.6). since the planned robot movements were forced to change by the

modified motion of the dynamic obstacles. In general, it can be seen that as a result of

different optimisation criteria. the trajectories illustrated in the right column for path

length are generally shorter than those in left column for path length.

Environment 1
500

G
400

300'
c

20C

loc

C
200 3CO 43ý 5DO

X direction (m)

Environment 1
500i I

G
400,

300
C

t5
200

100

0
0 100 20t) , JUL) 4111) ý100

X direction (m)

ErurorTnert 2
400,

300
-%Apr

2001

100
NOW

0
01X 200 300 400

X chrecton (m)

Ermrorv, nert 2
400

G

300

200

c

100

0
0 100 200 300 400

X drection (m)

96

Chapter 5: Verlex I+ planner

Ermroffnert 3
300[

250

200

150

ia 100 0C41

oi
0 50 100 150 200 250 300 350

X cirection (m)

Ermrorrnert 3
3wý

lb
-4

250 Mg

, gý 2U)

150

*

10 1001
> .

0
ýo

ii)o 150 200 250 SX) 3w

X direction (m)

Ermromert 4
400

1A,,,
11

OG 1

300

.ý 200
WMU j: " ý,

gboc : ýwo #ý 100:

0

0
WO 200 300 400

X ckrection (m)

Ermrortnert 4
400

3001

4L

looýpo c

ol 0 100
200 :m 4W

X directicn (m)

Figure 5.7 The paths as planned following the motion changes ofthe obstacles (detected by
the robot when positioned at tile points marked 'C') that occurred after 400,380,300, and

320 seconds for environments 1,2,3, and 4 respectively. The lelt column contains the paths
generated for tile optinlisation goal of travel tinle, \vliercas the paths presented in right

column are the results ofoptirnising tile path length.

The quantitative results shown in Table 5.9 demonstrate that the maximum speed

(0.7nis-) is the one most frequently chosen from the set available when tile

optimisation goal is travel time, whereas lower speeds were selected more Irequently

when the path length is the optimisation criteria. Additionally, the execution time for

1000 generations in the on-line process (shown in Table 5.8) are generally less than

those found for off-line planning (Tables 5.4 and 5.6). This can be explained by the

fact that the length of the individuals is generally shorter when performing on-line

planning, simply because the robot has advanced closer to the goal and there will

likely be fewer intermediate vertices (the number of' intermediate nodes for the final

paths can be seen in Figure 5.5,5.7, and 5.8). Table 5.8 also shows that NvIlen

optimising for travel time, although the maximum speed was Frequently chosen,

occasionally a faster path could be obtained by reducing speed to avoid more

cfficiently a dynamic obstacle. In contrast, optinlising for mininium path length

97

Chapter 5: Vertex++ planner

necessitated more frequently reversion to lower speeds and consequently these paths

were likely to consume significantly less power to drive the robot to its destination.

Table 5.8 Experimental results for the on-line planning. Note that the medians over 100
independent runs are shown, except that the robot speeds are the representatives of a single

run from the 100 runs. -

environment

cost in terms of

path travel
length time

(m) (S)

generations
to find first

feasible
path

execution
time to find

first
feasible
path (s)

execution
time for 1000
generations

(S)

robots eed
(ms--V)

1 419 616 38 1.13 26.6 0.7,0.6,0.7,
optimise 0.7,0.7

for 2 358 555 43 1.61 35.6 0.4,0.7,0.7
travel 3 300 428 58.5 3 72 56 5 0.7,0.7,0.7,
time . . 0.7

4 372 531 93.5 9.09 81.3 0.7,0.7,0.7

1 407 893 38.5 1.16 25.9 0.7,0.3,0.3,
0.3

optimise 2 317 829 39 1.43 35.2 0.4,0.3,0.3
for path 3 300 552 58 3 56 56.2 0.7,0.3,0.7,
length . 0.7

4 366 817 95 5 9 63 80 0.6,0.3,0.3,
. . 0.5,0.3,0.3

5.3.4 Comparison

This section evaluates the performance of the vertex++ planner in its comparison with

aEP/N++ (Smierzchalski and Michalewicz 2006), and using optimisation goals of

path length and travel time for the on-line planning process described in the previous

section. Although only results for on-line planning are presented, the comparison is

also valid for off-line planning process, as each planner uses the same algorithm for

their respective on-line and off-line planners. The system parameters of vertex++

were kept as close as possible to those of aEP/N++ and are shown in Table 5.9. Note

that the operator for each generation was selected on a random basis from those

available (Smierzchalski and Michalewicz 2000 and 2006) and the same evaluation
function for feasible paths (see section 5.2.4) was used for both planners. The system

parameters for the vertex++ planner are shown in Table 5.2.

98

Chapter 5: Vertex++ planner

Table 5.9 System parameters for the aEP/N++ planner. Note that the weight for distance (or
time) is I if the optimisation is distance (or time), otherwise it is 0. One of nine operators is

selected randomly for each generation.

rate wei ghts I

population 0
C41
0 1 .g

2 .2m 0 0 :EA

'
r- -0

.!
2 0 0 0 0 1. - - 0

safe
distance

size B ,B t: , .2 .2 rL, -10, 0
90 2* 10 41) 0

0A 0 Q
1 9 6

0 (M) Z :3 r- m C4 2= 'R r. 0 .= Ln 0 .4 E
I I 1 .

r. E U -0 0

30 10.3 1onegene l 0.6 1 0.1 1 0.3 j onegene l11 1/0 10 10/1 11-

The experiment was arranged for two separate optimisation criteria, travel time and

path length, and the path quality and execution time were evaluated for the search

process until no improvements in fitness were detected for the best individual over
300 consecutive generations. For each of the two algorithms over 100 independent

runs were conduced for the same planning problems and the median values calculated
(as mean values are often distorted by extreme experimental data for small sample

sizes).

The first experiment conducted was to optimise the travel time for the environments.
Figure 5.9 illustrates the changes in path cost of the best individual for each

generation before obtaining the first feasible path. The quantitative results are shown
in Table S. 10.

99

Chapter 5: Verlex IF planner

Environment 1

ýEP/N++

5.5
Ver

,
tex++

0
5'i

Cý

4

0 0.5 1
Calculation Time (s)

Environment 2

6
ýýEP/N++

5.5
Vertex++

5

4.5

4

0.5 1 1'. 525
Calculation Time (s)

Environment 3

8
MP/N-
Ve rtex 7

6j

5

41

0246
Calculation Time (s)

Environment 4

15
9ýEP/N-
Vertex++

101
. i-- i

5

05 10
Calculation Time (s)

Figure 5.9 The path cost for the best individual ol'each generation obtained llor both
planning algorithms with the oplimisation goal of'rilinimising travel Iii-ne Im the first

evolutionary phase (containing all intleasible paths) during the on-line process. Note that the
medians of the path costs over 100 independent runs are shown.

'I'llc iniprovernents achieved by vertex++ in terms of execution time call be observed

in both Figure 5.9 and Table 5.10, whereas similar path qualities were obtained at tile

end ofthe first evolutionary phase during which only infeasible patlis exist. I lowever,

the number of generations required by vertex++ to obtain the first tleasible path is

generally larger than that needed by KP/N++.]'his is probably because in vertex++

the search space constrained to the vertices ofthe obstacles, whereas in ý1, I'/N+-i free

space dominates for making it relatively easy to obtain a 1'easibic path. In those

environments that contain far more space that is unoccupied than that containing

obstacles, it would perhaps be expected that the difference in tile number of

generations required would be substantially greater than that actually lound. Further

evidence can be seen in tile experimental work reported in chapter 6.1 lowever, it

100

Chapter 5: Yertex++ planner

seems that vertex++ planner does not need a very large number of generations to

deliver a feasible path, and the possible reason is as follows. In 9EP/N++, a total of

nine operators (Smierzchalski and Michalewicz 2000 and 2006) were used, whereas

the vertex++ planner has only four operators (section 5.2.5). Consequently, the

individual operators in vertex++ were applied more frequently than in 9EP/N++. In

the dynamic environments, control of speed appears to be particularly efficient in

avoiding collisions and the corresponding operator is applied more frequently in

vertex++. Also, the time inefficiency of 9EP/N++ may be attributed to those

operators that enlarge an individual's length, for example, the insert-delete operator

inserts new nodes into infeasible paths. The vertex++ planner naturally limits the path

length to the total number of vertices of the obstacles, whereas, in 9EP/N++, there is

no constraints on the path length and ihere is no specific upper bound for the path

length during the search. Clearly, longer paths need more time to check feasibility.

Table 5.10 The execution time and the number of generations to obtain the first feasible path
when minimising travel time. The medians values are obtained over 100 independent runs.

execution time to number of generations
environment planning obtain the first to determine the first

method feasible path (s) feasible path

aEP/N++ 1.28 30
I

Vertex++ 1.13 38

2 aEP/N++ 2.16 39
Vertex++ 1.61 43

3 aEP/N++ 6.02 66.5
Vertex++ 3.72 58.5

4 aEP/N++ 12.5 93
Vertex++ 9.09 93.5

Figure 5.10 shows the results obtained by the two approaches in the second phase as
feasible paths are evolved to optimal or near optimal paths. The results to find the

final path is summarised in Table 5.11, and are obtained from both evolutionary

phases.

101

Chapter 5: Vertex ++ planner

Environment 1 Environment 2

--
1200

1400 aEP/N++ 1100 aEP/N++
Verte x++ Vertex++

1200
1000

E 900

1000 800
CU

700
800

600

00 6 5001
0 20 40 60 0 10 20 30 40 50

Calculation Time (s) Calculation Time (s)

Environment 3 Environment 4
1100 1200,

1000 'JEP/N++ 1100ý aEP/N++
Vertex++ Vertex++

90% 1000f
a) E 800 E 900
.
-5 700 Z 800
> >

600 700

500 600

400 500
0 50 100 0 50 100 150

Calculation Time (s) Calculation Time (s)

Figure 5.10 The path cost of the best individual of each generation by both planning
algorithms with tile optimisation goal of minimising travel time during the second

evolutionary phase (containing all feasible paths) during the on-line process. Note that the
medians of the path costs for 100 independent runs are shown. The evolutionary process for

each run terminated when the fitness of the best individual remained UnChlinged for 300
successive generations.

From Figure 5.10. it can be seen that a significant improvement in execution time is

exhibited by the vertex++ planner when compared with 9d'P/N++ during the second

phase. The path quality obtained by the vertex++ planner remains similar to that of

ýEP/N++ for environments 1,2, and 3, while a better path was generated by the

vertex++ planner in environment 4. As KP/N++ operates ill tile entire search space

of the environment, the first feasible path obtained is likely to be far from optimal,

but, as only a few feasible paths exist when tile search space constrained to the

vertices of the obstacles, the first feasible path generated by vertex++ is likely to be

shorter. As the rate of application of the crossover operator is relatively high in tile

vertex++ planner, there will be a faster propagation of' elite genes among the

102

Chapter 5: Vertex++ planner

population, thereby accelerating convergence. Similarly, the vertex++ planner more
frequently applies the speed operator; speed control being particularly important in

determining optimal or near optimal solutions in dynamic environments. Finally, the

smooth operator that is applied only by aEP/N++ and inserts new'nodes into a
feasible path in order to reduce sharp turns, but extra time is subsequently required to

evaluate the longer paths generated.

Table 5.11 The execution time and the number of generations to determine the final path
when minimising travel time. Note that the evolutionary process terminates when the fitness
of the best individual remains unaltered for 300 successive generations. The execution time
indicates the time taken for the entire evolutionary process. The medians values are obtained

over 100 independent runs.

execution number of execution
planning time to generations time for travel path

environment method
find the to determine 1000 time length

final path the final path generation (S) (m)
(S) (S)

9EP/N++ 55.1 1202 45.7 619 411 I
Vertex++ 21.4 805 26.6 616 419
9EP/N++ 50.1 908 54.5 576 357 2 Vertex++ 29.9 839 35.6 555 358
9EP/N++ 105 1226 82.9 443 307 3 Vertex++ 53.1 939 56.5 428 300
9EP/N++ 163 1241 129 641 401 4
Vertex++ 98.1 1103 81.3 531 372

Table 5.11 shows the reduction in execution time by the vertex++ planner in

comparison with aEP/N++ for the entire search process. Overall, a reduction of

around 50% was obtained for the four environments, although a modest reduction in

the number of generations was achieved. Clearly, this implies that the average time

taken by aEP/N++ for each generation is longer, and this can also be seen from the

execution time required by the two algorithms for 1000 generations. Two possible

reasons may explain the calculation time difference: one is that one or more problem.

specific operators of aEP/N++, such as swap and smooth, are rather time consuming,

whereas the simple operators (such as crossover, mutation, and speed mutation) that

were also applied to feasible paths by vertex++ took rather less time to execute; the

other is the number of genes in the path has been increased by the smooth operator

increasing the application time of subsequent operators. Compared to aEP/N++,

103

Chapter 5: Yertex++ planner

Table 5.11 shows that minor improvements can be seen in terms of travel time by the

vertex++ planner for environments 1,2 and 3, whereas the vertex++ planner was

generally able to generate a much better path for environment 4. For path length, a
longer path was generated by the vertex++ planner for the environments I and 2, but

a shorter one for environments 3 and 4. This does not imply the vertex++ planner is

worse than aEP/N++, as the optimisation goal in the experiments was travel time.

Figure 5.11 and Table 5.12 report the results obtained by the two planning algorithms

when the minimisation of path length was the sole optimisation goal. Compared with

aEP/N++, a reduction on the execution time for the first evolutionary phase was

observed for the vertex++ planner. Again, the average time for each generation

required by the vertex++ planner is relatively short as the number of intermediate

nodes of a path was naturally limited to be no more than the number of the vertices of

the obstacles. The reduction in the number of generations required by vertex++ for

environments 3 and 4 may be due to the application rate of repair operator which is

relatively high compared with aEP/N++, aiding the rapid transformation from

infeasible to feasible paths. However, this effect is not so apparent in short search

processes as found in environments I and 2

104

Chapter 5: Vertex++ planner

5.5
(I)
o o
Co

Environment 1

ýEP/N++
Vertex++

4.5

4

0 0.5 1
Calculation Time (s)

Environment 3

8 ýEP/N- -Vertex++

7

6

5

4

046
Calculation Time (s)

Environment 2

61 5EP/N++
Vertex++

L

5.

0 0
: Fý 5
m a-

4.5

4

0 0.5 1 1.5 2 2.5
Calculation Time (s)

Environment 4

15

0
lo

co CL

P/N++
rtex++

5

Figure 5.11 The path cost offhe best individual ofeach generation produced by both

planning algorithms with optirnisation goal ot'path length for the first evolutIonary phase
(containing all infeasible paths) during the on-line process. Note that the medians ofthe path

costs over 100 Independent runs are shown.

Table 5.12 The execution time and the number ot'generations to obtain the first feasible path
when minirnising path length. The medians obtained over 100 independent runs are shown.

planning execution time to number ot'generations
environment rnethod obtain the first to determine the first

feasible path (s) feasible path

EWP/N++ 1.25 29
Vertex++ 1.16 38.5

2 5EP/N++ 2.13 39
Vertex++ 1.43 39

3 ýEP/N++ 6.6 78.5
Vertex++ 3.56 58

4 HP/N++ 13.5 103
Vertex++ 9.63 95.5

The results for the second evolutionary phase is illustrated in Figure 5.12 and the

quantitative measures for the complete process are presented in Table 5.13. The

105

05 10
Calculation Time (s)

Chapter 5: Fertex++ planner

reduction of execution time for vertex++ is evident, with the most significant

reduction being in the first environment (approximately 67%), whereas the smallest

reduction is in environment 4 (around 46%). The number of generations was also

reduced, but not so significantly. Again, the simpler set of genetic operators available

to vertex++ and the natural upper limit to the number of intermediate nodes yield a

reduction in execution time and the reduction in the number of generations is

probably due to the search space being constrained to the set of the vertices of the

obstacles. The vertex++ planner was generally able to produce the final paths with

same quality as ýEP/N++, but the paths generated by aEP/N++ for environments 3

and 4 were shorter. To avoid collisions with moving obstacles, aEP/N++ is able to

select nodes within the free space far from the vertices of the obstacles to produce a

shorter path. However, as the vertex++ planner was constrained to the vertices of the

obstacles, the collision-free path generated may be longer due to geometrical

constraints. Although the optimisation goal for this experiment was set to be path
length, the corresponding time is also shown in Table S. 13, where it can be seen that

the vertex++ planner was generally able to reach the goal in less time than aEP/N++.

106

Chapter 5: Vertex I+ planner

Environment 1
700,

650 aEP/N++
Vertex++

600

5501

1 6 500

450

400
0 10 20 30 40

Calculation Time (s)

Environment 2
600

550 9EP/N++
Vertex-

500

C: 450

Z 6 400

350

300
0 20 40 60

Calculation Time (s)

Environment 3

450
aEP/N++
Vertex++

400

C:
350

cu

300

Environment 4

13EP/N++
500

A
Vertex++

"5) 450
c

76 400
a-

350

0 20 40 60 80 0 50 100
Calculation Tirne (s) Calculation Time (s)

Figure 5.12 The path cost of the best individual of each generation produced by both

planning algorithms with the optimlsation goal of path length for tile second evohitjojlýjry

phase (containing all feasible paths) during the on-line process. Note that the medians of the

path costs over 100 independent runs are shown. The evolutionary process for each run
terminated when the fitness of tile best individual rcmamed uncliangcd over 300 SLICCCSSive

generations.

Table 5.13 The execution tirne and the number of generations to determine tile final pall,
when nifflinlising path lengt h. Note that the evolutionary process terminates when the fitness

of the best individual remai ns unaltered for 300 successive generations. T he exec ution time
indicates the time taken for the entire evolutionary process. T he niedians are obta ined over

100 inde pendent runs.

execution number of execution
planning time to find generations

time for travel path
environment method tile final to determine 1000

.
time length

path (s) the final path generation (S) (111)
(S)

aEP/N++ 44.4 977 45.6 912 407 I Vertex++ 14.6 554 25.9 893 407
'JEP/N++ 52.7 974 54.4 841 322 2 Vertex++ 25.4 722 35.2 829 317
aEP/N++ 85.0 1057 82.3 674 295 3 Vertex++ 42.5 756 56.2 552 300

4
aEP/N++ 115 934 125 888 356
Vertex++ 61.7 754 80 817 366

107

Chapter 5: Fertex++ planner

5.4 Discussion

The evolutionary process can be classified into two phases. The proposed algorithm

evolves the randomly initialised potential paths into free-collision trajectories in the
first evolution phase. Subsequently, the feasible solutions are guided to optimal or

near-optimal solutions under the guidance of the feasible evaluation function. The

rapid convergence in the first phase, when conversion from infeasible paths to
feasible paths takes place, can be attributed to the repair operator that was developed

following experimental observation. The mutation operator is less effective in the
initial evolution stage as relatively few bits are mutated. As only one gene in the

population is modified when the mutation operator is applied, its effect is diluted in

the earlier generations' population due to the greater prevalence of longer individuals.

The effective increase in the mutation rate in the later evolutionary generations

effectively promotes population diversity (and so exploration of new areas of the

search space) and inhibits premature convergence. The quality of the final solution

produced in the second phase appears to be highly dependent on the quality of the
initial individuals that are supplied following the operations of the first phase. If the
initial supply for the second evolution phase is sparse (in that all the necessary
building-blocks for the global optimal solution are not present), the process may be

led into a local minimum. The higher mutation rate apparent in later evolutionary

steps promotes the diversity by modifying the inherited building blocks; however the

mutation is not sufficiently dominant in the process to necessarily avoid the GA

becoming trapped in a local minimum. The vertex++ planning algorithm has been

demonstrated as being capable of generating an optimal or near-optimal path for the

robot in a relatively short time compared with aEP/N++ which is also able to operate
in environments containing dynamic obstacles. The search space has been constrained
to the vertices of the obstacles and reduces the number of generations required by

aEP/N++'to generate an optimal or near optimal solution. Furthermore, it appears that

the application of a small number of operators that performs only simple tasks is able
to improve the performance in terms of execution time. The current implementation

has been carried out in MATLAB and a significant improvement (reducing the

108

Chapter 5: Fertex++ planner

calculation time by a factor of five to ten times) is to be expected when executed in a

compiled language such as C.

5.5 Conclusions

A number of experiments have been presented for a range of assessment criteria in

order to verify the capability of the vertex++ planner using navigation problems in

dynamic environments. The planner searches for the optimal solution in a space
limited to the vertices of the static and dynamic obstacles, rather than requiring the

entire environment. By modelling the moving obstacles involved in the robot

environment, it has been shown to be possible to determine a collision-free path
between two specified locations in an off-line fashion. On-line planning is

appropriate when the motions of the obstacles change from those values known at the

time of generation of the original plan computed off-line.

From the experimental results, it can be seen that a suitable solution can be produced
by the proposed planner for relatively complex planning problems in a reasonable

time. Wheretravel time is crucial it was found that, in the environment considered,
full speed can be applied in most segments of the trajectory. However, environments

could easily be conceived in which operating at full speed throughout the trajectory

would result in a much extended path due to the robot's circumnavigation of dynamic

obstacles. If minimising the path length is more important, for example to conserve

energy, lower speeds can be planned and this is likely to result in a shorter overall

path.

One of the next objectives of this research is to relax the assumption that details of

the obstacles' motion changes need to be completely known and that there, is always

sufflicient time for re-planning without significant impact on robot travel times. The
investigations in this area are discussed in the following three chapters. The next

chapter introduces the waypoint-based navigation system for stationary environments.
This . system was augmented to include the navigational ability to interact with

moveable objects, which is described in chapter 7. A generalised navigation system

109

I Chapter 5: Fertex++ planner

that allows paths to be planned between any two pairs of points in the enviromnent is

described in chapter 8.

110

Chapter 6: Waypoint-based navigation in static environments

Chapter 6

WAYPOINT-BASED

NAVIGATION IN STATIC

ENVIRONMENTS

The previous two chapters contribute to the development of the planners by

enhancing path planning performance. However, both of the planners rely heavily on

world models even though a new plan could be generated for an environment

containing moving obstacles. In unknown environments, the deliberative model-

based approaches are not appropriate and earlier knowledge of the environment need

to be accumulatively acquired from navigation that has been performed reliant on

sensory information. Although navigation quality may be improved by a detailed

model of the environment, its construction (where possible) involves considerable

complexity in terms of execution time and memory usage. Any errors arising during

map building may give rise to poor performance or complete failure in subsequent

navigation tasks. Reactive navigation systems, on the other hand, afford real-time

robust reaction in a varying world, and are'tightly coupled to the available sensory

information. However, their movement (at a non-local level) is unlikely to be optimal

and may cause the robot to become trapped in local minima. A new hybrid system is

developed and presented in this chapter with the aim of addressing these issues by

combining the advantages and overcoming the drawbacks of the deliberative and

reactive approaches. The work in this chapter has been submitted to Robotica, and

III

Chapter 6: Waypoint-based navigation in static environments

part of the work was also presented at the 6th World Congress on Intelligent Control

and Automation in 2006.

The new work presented here employs a reactive navigation system to determine and

navigate between suitable locations, termed waypoints, in the robot's environment

space. The waypoint in the proposed system is defined as a location where the robot

changes its behaviour as a result of reacting to the perceived environment. However,

due to the ill-defined boundary between the
_
primitive behaviours in the reactive

implementation adopted, heading and sensory information are used in determining the

locations of the waypoints. Specifically, when under reactive control, a location is

marked as a waypoint if the robot deviates from the path it is currently following in

response to the presence of one or more detected obstacles. A, more detailed

explanation of the definition of a waypoint and a summary of the use of waypoints in

other navigation systems are described in section 6.2. A genetic based approach was
developed for deliberative planning that determines the sequence of previously-
discovered waypoints that need to be followed to satisfy future mobile robot tasks.

The deliberative navigation system also manages exploration to allow additional

waypoints in the robot's environment to be discovered if time permits. The

exploration is directed by the known waypoints to investigate relevant and promising

areas. This simplification of the required representation of the environment reduces

considerably both the computation and memory requirements without significantly

affecting navigation performance. Moreover, the method does not require a priori
knowledge of the environment and, in unseen environments, the recorded waypoints

can be used to facilitate escape from certain obstacle configurations that would

normally trap robots under the control of a reactive navigation system.

The following section presents the related work, section 6.2 outlines and explains the

new waypoint system, section 6.3 explains the planning algorithm developed, section
6.4 describes how the waypoint navigation method is able to escape from certain
obstacle shapes, section 6.5 presents the experimental procedure, section 6.6 shows
the experimental comparison of the navigation methods, section 6.7 presents further

detailed investigations of the waypoint navigator in its application to complex

112

Chapter 6: Waypoint-based navigation in static environments

environments, and section 6.8 compares the proposed system with several recent

hybrid architectures described in the literature.

6.1 Related work in hybrid systems in static environments

The earlier attempts by a number of authors to implement navigation systems using a

hybrid architecture were introduced in section 3.3. The more recent work found in the

literature largely use a three-layered architecture (following the earlier work of

Atlantis (Gat 1991a and 1991b), SSS (Connell 1992), and 3T (Bonasso et al. 1997))

arranged in a hierarchical fashion.

The nested-loop architecture (Santos, Castro and Ribeiro 2000) consists of three

loops, namely reflexive, reactive, and functional, arranged in such manner that a loop

of a lower level of abstraction is nested into the immediately higher one. In each loop

the information follow is from sensor input to generated actions. Emergency

situations, such as imminent collision and actions to escape traps, are handled in the

reflexive loop and a direct command is given immediately on their detection. The

reactive loop performs local navigation according to the path generated in functional

loop' which is responsible for determining the strategy used in local movements. The

authors also provided a comparison with other architectures in the text that described

the new method, but no experimental comparison was reported. Although such a

system may have benefits for navigation in complex environments, most actions

generated are not tightly linked to the raw sensory information but are directed by the

functional loop and consequently the computational load is increased when providing

local demands.

The hybrid architecture developed by Aguirre and Gonzilez (2003) consists of three

layers, which, in order of hierarchy were: planning, executive, and control layer. The

generation of a safe path with minimum cost is carried out in planning layer based on

the topological map of the environment using either Dijkstra (Cormen et al. 2001;

Latombe 1991) or A* (Hart, Nilsson and Raphael 1968; Murphy 2000). The middle
layer, the executive layer, determines which primitive behaviours are activated to

113

Chapter 6: Waypoint-based navigation in static environments

accomplish the plan generated, and has the additional function of monitoring the

robot performance so that potential failures can be identified. Activated behaviours

are combined to produce a single action in the lowest layer, the control layer, which is

responsible for the motion control. The sensory information is transformed to produce

suitable inputs to the mapping unit, the executive layer and the control layer, whereas

the abstracted map is shared between the planning and executive layer. The hybrid

system was tested in an office-like environment, but its suitability to other

environments is unclear. Also, no comparison with other architectures to further

evaluate the developed system is given and in the absence of the executive layer,

(which co-ordinates the individual behaviours), the success when navigating to the

goal and how the robot behaves are not reported.

The set of agents in the hybrid system described by Mufloz-Salinas et al. (2005) for

navigation in office-like environments was organised into three layers: deliberative,

execution and monitoring, and control. According to the mission assigned by an

external operator, the deliberative layer generates a path consisting of a sequence of

rooms and corridors that the robot needs to navigate in order to reach the goal. A*

search (Hart, Nilsson and Raphael 1968; Murphy 2000) was used to generate the

navigation plans using a topological representation of the environment either supplied

a priori or produced autonomously by exploration. The local navigation for partial

plans was managed by the monitor agent (in the execution and monitor layer) that

was able to perform transformation to an appropriate skill (for example find a door in

room) in order to accomplish the sub-goal. Skills were able to activate a set of fuzzy

behaviours to achieve the sub-goal. The lowest layer, the control layer, was further

subdivided into the behavioural and hardware levels. In behavioural level, a vision

agent was used to identify landmarks, and a navigation agent implemented the

specified behaviours. Two agents are contained in the hardware level: one to deal

with the communication between the agents and the second to operate the pan-tilt unit

on which a camera for detecting landmarks is mounted. The hierarchical layers were

connected in a manner that allowed bi-directional communication of navigation tasks

to be ordered in a top-down manner and errors from the lower layer to the upper layer.

The world model was shared among all agents and whether navigation would be

114

Chapter 6: Waypoint-based navigation in static environments

successful in absence of the higher-level guidelines remains unclear. Compared with

the nested loop architecture of Santos, Castro and Ribeiro, (2000), there appears to be

no agent to deal with emergent situations. No comparison with other hybrid systems

was carried out and so the advantage of this system with respect to the existing

alternatives is not clear. The experiments, being limited to office-like environments,

seem to restrict its application and modification may be required for application to

other environments.

A hybrid control architecture for navigating a robotic fish was introduced by Liu, Hu

and Gu (2006). Three layers, cognitive layer, behaviour layer and swim pattern layer,

organised in a hierarchical manner, comprised this architecture. The central layer

contained a set of behaviours realised by fuzzy-logic controllers with individual

behaviours being activated according to sensor states and combined through the

behaviour coordination component to determine a particular swim pattern. The lowest

layer, swim pattern layer, converts the specified swim pattern into the control of the

individual joints of the robotic fish. The cognitive layer produced a set of actions to

lead the robotic fish from the initial configuration to the goal configuration, with the

output being the parameters for the coordination module in the behaviour layer rather

than the actions themselves. In this way, the emergent behaviour for each movement
is largely influenced by the output of the cognitive layer. However, any errors

generated in the planning process (possibly due to inaccuracies in the representation

of the environment) may produce ill emergent behaviour. Additionally, no clear

strategy to construct the world model was reported in the paper.

Maaref and Barret (2002) combined global planning and local reactive methods into a
hybrid system. In unknown environments, the robot relies on a set of fuzzy

behaviours to move, whereas navigatio n* could be accelerated by fast tracking the path

generated by the global planner if the partial or entire world model were available. In

order to avoid deadlock problems often found in purely reactive systems, separate

strategies to coordinate the behaviour have been developed for convex and concave

obstacles. If a convex obstacle is detected, goal seeking behaviour and a behaviour to

move the centre of the collision-free space will be combined. Escaping the concave

115

Chapter 6: Waypoint-based navigation in static environments

obstacles relies on the coordination of behaviours; used for convex obstacles and wall
following behaviour. In order to follow the generated path and avoid unmodeled

obstacles, a fuzzy decision module is used to generate the final action by taking into

account the commands from a virtual robot moving in the known environment and

the robot in the actual environment. However, a longer execution time in conjunction

with a high-resolution world is needed Ao generate the final action of producing a

sufficient accurate output for the virtual robot at each step. Such a high quality model

requires the allocation of significant memory, otherwise positional errors may

accumulate to such an extent that localisation with respect to the real robot becomes

too poor for practical purposes. In the described architecture, the generation of
behaviours and the coordination between activated behaviours are not directly guided
by the deliberative module, hence basic navigation is achievable in unknown

environments.

Wang, Yong and Ang Jr. (2002) proposed a hybrid approach to navigation in an
indoor environment. Global path planning was achieved using the distance transform

that was based on a known grid map, whe reas the local navigation was guided by a

potential field. The navigation system was implemented for known environments

represented by a grid map, where each cell was assigned a distance from the goal
location by the distance transform method that propagated the distance value relative

to the goal location. Cells occupied by obstacles were labelled with a very high value

relative to unoccupied ones. A collision-free optimal path could then be generated by

the steepest descent method based on cell values in the distance map. In response to

the environmental changes, local navigation was directed by a potential field to

follow a set of sub-goals that are points with the smallest distance between the pre-

planned path and the circumference of a circle (which may not be in sensory range)

centred on the robot. The experimental study demonstrated that the local minima that

often results from the potential field approach can be overcome with the aid of global

planning. To construct an a priori grid map and a potential field is computationally

expensive. In addition, the method to determine the radius of the circle in generating
the sub-goal is not well defined and needs to be obtained empirically. Also, whether

116

Chapter 6: Waypoint-based navigation in static environments

the robot can actually escape from local minima is questionable when it enters an

unknown enviromnent and global planning is infeasible.

A hybrid architecture was proposed in by Li et al. (2004) for indoor navigation. This

system consists of 10 components which can be classified into four categories. The

deliberative components, pathplanning, generate a path according to the target

specified through userinterface. The obstacledelecting component, which belongs to

the monitor type, discovers the obstacles en route. The three components of reactive

type, goto, orienting, and obstacleavoiding, perform basic navigation to rotate and
head towards the goal (or sub-goals if any) while avoiding any obstacles detected.

The fourth type of components, called hardware abstraction, contains lasersever and

robotbasesever, which function as interfaces from other components to the laser

sensors and actuator respectively. No specific algorithm for each component was
described in the paper. This architecture clearly lacks components for map building,

localisation and exploration, and the system was not evaluated by comparison with

any other system.

An architecture built principally on the behaviour-based control was proposed by Na

and Oh (2003), in which environment was classified by a neural network into one of
16 situations. The output of this unit then selects an appropriate behaviour from a set

of neural network behaviours to control the steering angle and to configure a potential
field to generate the speed command. Although the authors described the architecture

as hybrid, such description is probably not appropriate as it did not contain a
deliberative component. It is clear that the absence of proper management in the

navigation is one of the system's major disadvantages. Moreover, the experimental

studies were performed in only indoor environments and no comparison to other

systems was carried out.

Other approaches whose relationship to the current work is not as close as those

already mentioned, include the contribution made by many of them, Santos, Castro

and Ribeiro (2000), Aguirre and Gonzdlez (2003), and Mufloz'-Salinas et al. (2005),

who all used abstract representations of environments rather than a detailed model.

117

Chapter 6: Waypoint-based navigation in static environments

The disadvantages of constructing a detailed model are that it can be difficult to

construct in many applications, it is often unnecessary for satisfactory navigation in

most practical applications, calculation time is long and considerable memory is

required for storage, and it is difficult to incorporate dynamic changes into the world

model. Most architectures (Aguirre and Gonzdlez 2003; Li et al. 2004; Maaref and
Barret 2002; Mufioz-Salinas et al. 2005; Wang, Yong and Ang Jr. 2002) were

evaluated only in indoor environments which tend to be well structured.
Consequently, the performance of such systems in outdoor unstructured environments
is unknown. Furthermore, none hybrid systems were compared by experimental study

and only the nested loop architecture was compared to other earlier systems (and even
then by discussion rather than by experimental evaluation).

6.2 Waypoint navigation system

The waypoint navigation system shown in Figure 6,1 is composed of three main units.

1. The reactive unit provides reactive navigation for the robot, which, in the current

work is achieved by a frequency-table based learning technique developed by the

Electronic System Design Group at Loughborough and that is able to generate a
decision tree (Mulvaney et al. 2005; Swere, Mulvaney and Sillitoe 2004).

Although other reactive approaches may be used in this unit rather than the

decision-trpe based method, the main reason for using this method in the current
implementation is that it is fully available both in source code and as an executable.

2. The knowledge base contains the robot's -acquired knowledge of the environment

represented as a set of waypoints and paths between waypoints. To construct a
detailed world model requires high quality sensors, longer processing time and a
large memory capacity (see section 6.1). The approach assumes that a detailed

model is unnecessary for every navigation task and only a set of points relevant to

the navigation task are recorded, thus providing a highly abstracted map for the

navigation task between specified locations.

3. The deliberative unit is a high-level control unit used for navigation when existing
knowledge of the environment is available. It contains three elements, namely
localisation, exploration and planning. This unit is included as late navigation

118

Chapter 6: Waypoint-based navigation in static environments

through the same environment can be improved by cognitive reasoning using

previous navigation experiences (resulting from either exploration or previous

navigation tasks). Also, the knowledge of the environments presented as

waypoints can aid the solution of the localisation problem for the robot.

Knowledge base

......................

Waypoint

detector

Sensors ýj

Controller

Action

LocslisaW7on

-------------- **"***
...............

Reactive unit Deliberative unit

Figure 6.1 Block diagram of the waypoint navigation system.

The three separate units in Figure 6.1 reflect three different internal states. The

reactive unit responds to the current state input from the sensors. As the reactive unit

operates on the instant state, much processing on the raw sensory data is not

necessary and should be kept minimum to reduce the response time. The previous

states are selected and stored in the knowledge base. As not every detail from

previous actions is valuable for the future navigation, data recorded are limited by

removing previous records either periodically or dynamically if rarely used. Clearly

the memory capacity and the decisions regarding the deletion of data may influence

the performance in future navigation. Section 6.2.2 discusses further how suitable

information for storage is determined. The deliberative unit predicts and plans future

navigation actions by reasoning using previous experiences, with the internal states

generated in the unit providing a future direction for the robot to follow. Note that

some modules (such as localisation) in a unit may represent state other rather than the

119

Chapter 6: Waypoint-based navigation in static environments

main state reflected by the unit. Although the current action is not directed by the

historical knowledge in the system (that is, there is one-way communication between

the reactive unit and knowledge base), the behaviour activated by the current stimuli

has been obtained through the previous training (off-line learning) and navigation

experience (on-line learning).

The detailed description of each of the units is given in the following subsections, but

a brief overview of the general operation is appropriate here. Assuming the waypoint

navigation system has no previous knowledge of its environment, it attempts to reach

a goal under reactive control, while continuously transmitting sensor information and

its current action to the knowledge base. Here, the waypoint detector selects and

records suitable locations. A point in the robot's environment is marked as a

waypoint when the robot needs to deviate from its current path due to the presence of

an obstacle. These waypoints are entered into the knowledge base and are then

available to the deliberative unit for use in exploration and planning. Suitable

waypoints for the environment can be obtained following off-line simulation or

generated on-line either as a result of executing previous navigation tasks or by

purposely invoking exploration. Note that information transfer between the waypoint

detector and the localisation unit is two-way, since localisation needs to access to the

stored waypoints in order to instruct the waypoint detector to remove duplicate

entries. The solution to a navigation task is presented by the planner as a path defined

by a sequence of waypoints.

6.2.1 Reactive unit

The reactive unit is used in the current system to investigate new areas of the robot's

environment, whether this is towards a given goal or to explore previously uncharted

regions. In the waypoint navigation system, the deliberative unit provides only a

sequence of waYPoints to follow and the reactive system is required to perform the

local navigation between consecutive pairs of waypoints.

The reactive approach adopted in this hybrid system was developed previously in our

Research Group at Loughborough University and was introduced briefly in section

120

Chapter 6: Waypoint-based navigation in static environments

3.2.2. Further information on this reactive system can be obtained in Mulvaney et al.

(2005) and Swere, Mulvaney and Sillitoe (2004). In Passone, Chung and Nassehi

(2006) and Urdiales et al. (2003b and 2006), the basic reaction to the perceived

environment was achieved by a case-based reasoning approach. A well-known
drawback of case-based approaches is that the performance is unpredictable when a

corresponding case has not been presented during the training stage. Potential field

approaches have been used in a number of navigation systems (Arambula Cosio and

Padilla Castaneda 2004; Ren et al. 2007; Ren, McIsaac and Patel 2006; Wang, Yong

and Ang Jr. 2002). Although potential fields give an elegant solution for navigation,

they require the construction of an artificial field, whereas decision tree approaches

does not -require additional functionality in the coordination of the set of primitive

behaviours presented but other systems (Aguirre and Gonzdlez 2003; Liu. - Hu and Gu

2006) require. It should be noted that, after training, the robot can autonomously

move between any pair of locations without any intervention or extra guidance. When

the navigation task was not presented in the training environment (or where

additional optimisation criteria is required later) the resulting movement may not be

optimal, but demonstrates the ability to continue navigation with degraded quality.

6.2.2 Waypoint knowledge base

To be able to plan future movements in an autonomous and intelligent manner, a

robot requires memory to record where it has already been. One approach that greatly

enhances the navigation efficiency is to build a map of the environment. However,

most mapping techniques (a short review on mapping approaches was provided in

section 3.1 - 1) involve considerable computational overheads and significant memory

capacity that is difficult to constrain as more of the environment is discovered. Since

only a small number of points need be recorded, the waypoint technique provides an

alternative to mapping with greatly reduced resource requirements. This section first

reviews the use of the waypoints in other navigation systems, and then describes the

strategy used to determine the waypoints in the proposed system.

A general definition for a waypoint is the end point of a path segment decomposed

from the planned path (Murphy 2000). Dixon, Dolan and Khosla (2004) defined the

121

Chapter 6: Waypoint-based navigation in static environments

waypoints as a sequence of locations through which the robot must pass. A number of

researchers (Ghaffari et al. 2004; Guo 2006; Kim and Shim 200; Kumon et al. 2006;

Maalouf, Saad and Saliah 2005; Parasuraman et al. 2005) used the waypoint in

navigation problems without giving an explicit definition. The navigation task

described by Macfarlane and Croft (2003), Shimoda, Kuroda, lagnemma (2007) and
Zhu, Sun and Zhou (2007) was pass through a set of pre-defined waypoints, but no

clear description was provided regarding how the waypoints were determined.

Berman, Edan and Jamshidi (2003) described a navigation approach for autonomous

ground vehicles to move through the locations defined by a set of waypoints that had

been pre-determined by a planning algorithm according to the layout of a

manufacturing environment. However, neither the definition nor the strategy to

determine the locations, with the waypoints was documented in the paper. In addition

to the location, Wendt, Irwin and Cressie (2004) incorporated a time parameter in the

waypoint representation.

The approaches in the previous paragraph did not provide a specific method to

determine the waypoints, whereas the waypoints used in papers introduced below

were generated by specified procedures. An algorithm inspired by ant trail following

was described in Vaughan et aL (2002) and applied to axesource transportation task

performed by a robot team. A waypoint indicated a location where a specified event

occurs (such as where a resource is received or dropped). The waypoints were

classified as either global task-level landmarks (which are not physical), or local

waypoints, named as crumbs, that were recorded periodically along the trail from a

particular location to a landmark. A crumb's coordinates as well as its distance (in

terms of travel time) to the landmark were recorded, together with the name of the

event that occurred. This event-driven waypoint determination is different from the

approach proposed in this chapter which can be better described as behaviour-driven

waypoint identification. In addition, the exploration strategy used by Vaughan et aL

(2002) employed random exploration, but the exploration in the current work (see

section 6.2.3) was directed by the waypoints already discovered. In a layered goal-

oriented fuzzy algorithm for motion planning (Yang, Moallem and Patel 2005), a set

of intermediate goals, called waypoints, were determined in the uppermost layer of

122

Chapter 6: Waypoint-based navigation in static environments

the planner using readings obtained from long-range sensors. Following the

calculation of the direction composed in the waypoint representation (based on the

collision-free area in a favourable direction towards the goal), the location of the

waypoint itself was determined based on the calculated direction, distance to the

detected obstacle from the robot, and robot size. The second layer of the planner used

the waypoints supplied by the uppermost layer as sub-goals to direct the navigation,

but with the aid of short-range sensory information. The waypoints were generated

periodically to deal with the situation where the waypoint as a sub-goal cannot be

reached due to environmental changes. In such a case, if the robot does not reach the

sub-goal within a time threshold (the time interval between two successive

generations of the waypoints), a new waypoint was generated to replace the current

sub-goal for the robot to seek. The, generated path was reported as being similar to

that produced by the visibility graph based approach, as the waypoints were located

either along the edges or around the vertices of obstacles. If the time taken to generate

a waypoint is relatively long, the robot may take considerable time in an attempt to

reach a previously recorded sub-goal that is now unreachable. Consequently, more

waypoints will be generated and recorded due to the increased planning frequency (in

the first layer), thereby increasing the computation complexity and memory usage,

but improving navigation quality. In practice, this trade-off may be difficult to

optimise. The authors did not exploit other uses of the discovered waypoints in their

paper, such as applying the previously-generatcd waypoints to help the robot escape

from local minima; improving the navigation performance of the future tasks by

using previously-generated waypoints to generate a plan for future navigation; the use

of discovered waypoint to help the robot in localisation.

In the current work, the selection and recording of waypoints is implemented as

follows. A point in the robot's environment is marked as a waypoint when the robot

needs to deviate from its current path due to the presence of an obstacle. The

currently-adopted reactive control approach uses a combination of several primitive

behaviours and exhibits no clear boundary between each elemental behaviour.

Therefore, rather than identifying behaviour change, the current method of

determining waypoints employs heading change as its cue. During the robot's

123

Chapter 6: Waypoint-based navigation in static environments

movements, when operating under reactive control, should the heading change by

more than a pre-defined threshold angle while- one or more obstacles are being

detected, the geometrical location at which the robot begins to change its heading is

recorded as a waypoint. Following the initial identification of a waypoint, two

possible new headings are available to the robot, as shown in Figure 6.2. As only one

of these two can be investigated immediately, a waypoint is marked as unexplored

until the second heading has been taken following a subsequent visit. In contrast, the

waypoints used by Vaughan et aL (2002) indicate the locations where certain events

occur. Although the behaviour is needed to adapt the occurrence of a particular event

at the waypoints, those waypoints do not implicitly or explicitly contain information

on the obstacle distribution. Similarly, no information about the obstacle -locations is

reflected in the waypoints selected by the approach in Yang, Moallem and Patel

(2005), as a waypoint is determined according to the free space and goal; Therefore,

the waypoints determined by either those approaches are not able to offer alternative

paths to circumnavigate obstacles encountered.

goal point

obstacle

waypoint
II

Figure 6.2 On sensing the presence of an obstacle, the robot has a choice of following one of
two paths. Under control of the reactive navigator, should the robot need to turn through an

angle greater than the pre-defined threshold, a waypoint is recorded.

The value of the pre-defined threshold angle clearly influences whether a given

location is selected as a waypoint and, consequently, the physical dimensions of the

region explored in its immediate vicinity as a result. Conversely, as the environment

withinwhich the robot moves may be large, lowering the threshold may dramatically

increase the number of waypoints generated, resulting in unnecessary computational

and memory costs.

124

Chapter 6: Waypoint-based navigation in static environments

When a waypoint is detected, its coordinates and the subsequent heading taken by the

robot are recorded, as shown in Figure 6.3. The time taken for the robot to travel from

the previous waypoint (which may be the start point) to the current waypoint is also

stored. The final waypoint is the goal point, which contains the time to travel the final

segment. Also included in the waypoint structure is an indication of the previous

waypoint. The order in which the set of waypoints is recorded in the knowledge base

is that of their discovery. If the waypoints are viewed as a set of artificial or virtual

landmarks, a topological map similar to those used by Aguirre and Gonzdlez (2003)

and Muftoz-Salinas et al. (2005) can be constructed from the collected waypoints,

with nodes indicated by the waypoints' coordinates and edges between two adjacent

nodes weighted by the distance (in terms of travel time) contained in the waypoint.

Such virtual landmarks do not require the capture of distinct features as landmarks as

needed in many navigation systems. The waypoints determined by the approach

described by Vaughan et aL (2002) contain two pieces of information: the first is the

direction to the goal point and the second is the estimated time required to reach the

goal. In contrast, the waypOints recorded in this work contain additional information

regarding an alternative heading for avoiding the obstacles as well as information

about the previous waypoint. This extra information permits back tracking and

provides a valuable indicator to guide future exploration.

Ix coordinate Iy coordinate I heading I travel time I previous waypoint I

Figure 6.3 The structure of a waypoint.

6.2.3 Deliberative unit

The deliberative control system contains three sub-units, namely localisation,

exploration and planning.

Localisation Since the waypoints are progressively acquired, the robot can identify

from where it accumulated* knowledge of the environment. As it is possible that a

same location or a location near to the previous waypoints is selected again as a new

waypoint, this duplicated information is not new to the robot but requires additional

125

Chapter 6: Waypoint-based navigation in static environments

memory if recorded. In an event driven system (Vaughan et al. 2002), if a newly-

found waypoint locates the same event as an existing waypoints, the existing

waypoint was replaced by the new waypoint. The other waypoint-based systems

introduced in section 6.2.2, however, did not address the issue of duplicated

waypoints. In our system, a simple pragmatic strategy is used to combine waypoints.

If a new waypoint is generated during the exploration phase, a test is made as to

whether any waypoints already recorded in the knowledge base lie within the

detection range of the sensors. Only if no previously recorded waypoint is within this

sensor range is the new waypoint recorded, otherwise it is assumed that the local area

has already been explored. It-is reasonable to set this distance measure between two

waypoints as the sensor range, as the robot can localise itself in this range by only one

waypoint. Not combining waypoints or the use of a shorter range may improve

reliability, but there is a clear trade-off in respect of memory use, as discussed in the

previous sub-section.

Exploration In order to generate waypoints for use in planning, exploration of the

environment is required. Given the practical task of moving from a start position to a

goal point, two practical approaches to the generation of waypoints have been

implemented. The first approach is appropriate when the robot is introduced to a new

environment and the assumption is made that it is completely known (as is the case

for EP/N and the vertex planner). The movement to the goal point (as well as relevant

exploration), is then simulated off-line and the waypoints so generated can be used to

plan the best path. The second approach is to determine suitable paths using the

waypoints already entered into the knowledge base arising from previous navigation

tasks or planned explorative movements. In this case, the robot can collect the

environmental information represented by waypoints under reactive control with no

requirement for a priori knowledge of the environments. This is achieved due to the

presence of the reactive system in the hybrid architecture. The navigation systems

mainly based on the planner (Sedighi et al. 2004; Wang, Yong and Ang Jr. 2002;

Zheng et al. 2005) need an a priori model of the environment in order to perform

navigation. On the other hand, the systems with reactive components (Liu, Hu and Gu

2006; Muftoz-Salinas et al. 2005; Vaughan et al. 2002) rely on information captured

126

Chapter 6: Waypoint-based navigation in static environments

by sensors to fulfil the navigation in unknown environments. Note that the results

presented in this chapter have been obtained using waypoints generated by the second

approach.

Exploration can be invoked deliberately (perhaps when the robot is introduced to a

new environment) or can be permitted when no tasks are currently assigned to the

robot. As each waypoint generally defines a branch in a path indicating possible

alternative routes around an obstacle, exploration from existing waypoints could

potentially provide paths better than those already discovered. Moreover, if one of the

generated paths becomes impassable due to the movement or introduction of a new

obstacle, the robot may be able to follow one of the alternative paths found during

exploration instigated in non time-critical phases, thus reducing the need to explore
during situations when the aim is to reach the goal in minimal elapsed time. To begin

exploration from an unexplored waypoint, the robot rotates through an angle equal

and opposite to that between the goal direction and the previous heading taken from

the waypoint. From this point, the robot will rely on reactive control to navigate to the

goal point or to a waypoint already discovered. Note that, during such navigation,

obstacles may be encountered and further waypoints discovered. Exploration

continues unless the robot is requested to execute a higher priority task. With the aim

of learning navigation information regarding the environment by exploration, the

strategy developed should minimise the covered distance and avoid repeated

exploration while maximising the area investigated (Dessmark and Pelc 2004;

Fleischer and Trippen 2005; Gartshore, Palmer and Illingworth 2005; Panaite and

Pelc 1999; Su and Tan 2005). In a completely unknown environment, the simplest

strategy is to perform exploration at random (Barto, Sutton and Watkins 1990).

Yamauchi (1997) proposed a frontier-based exploration approach, in which the

frontier is first established between the observed and unseen areas and the location to

explore is determined according to selection strategies (Burgard et al. 2005; Freda

and Oriolo 2005; Gonzalez-Banos and Latombe 2002). To improve efficiency,
Poncela et al. (2002) proposed an algorithm to select the next action by optimising
the view range based on a utility function in an attempt to obtain geometrical
information of the obstacles while taking a minimum number of steps. A similar idea

127

Chapter 6: Waypoint-based navigation in static environments

was developed in Jia, Zhou and Chen (2004) by taking into account time-saving (or

energy-saving) based on a different utility function. Using the accumulated

knowledge of the environment, a plan can be generated to direct the exploration to

unvisited areas. For example, in a partially known topological map, a plan may be

generated as a sequence of nodes (places) with aim of minimising the straight-line
distance and with the exploration task being the discovery of the area between two

successive nodes. Exploration planning is then similar to solving the travelling

salesman problem. A number of techniques (Dessmark and Pelc 2004; Fleischer and

Trippen 2005; Panaite and Pelc 1999; Poncela et al. 2002) have been proposed to

solve this problem, but all attempt to create a complete model for the environment. In

contrast, in this work, the exploration is directed in such a way that only those parts

of the environment relevant to specific navigation tasks are investigated.

Planning The introduction of waypoints as part of the navigation process gives the

opportunity to search for a feasible path using only the recorded collection of

waypoints rather than attempting to search the whole environment. A suitable

planning method that employs waypoints is described in detail in the next section,

and, to assess its performance, two alternative planning approýches, EP/N and the

vertex planner are also considered for comparative purposes.

6.3 Planning approach

The evaluation of the effectiveness and robustness of the proposed waypoint

navigation approach was made in its comparison with two other planning methods in

their application to four simulated environments (section 6.6). The EP/N and vertex

methods can be considered as planning approaches in their own right, whereas the

waypoint method based on steady-state GAs operates with the support of a reactive

system and follows the architecture of the system shown in Figure 6.1. None of the

hybrid architectures found in earlier work (section 6.1) conducted an experimental

comparison, perhaps because the architectures developed were very dependent on the

specific type of robot platform adopted and so a fair comparison between two distinct

hybrid architectures could not be conducted. However, in the current work,

128

Chapter 6: Waypoint-based navigation in static environments

comparative studies were made feasible: with the vertex method as the same robot

platform was adopted and with EP/N as it was entirely re-implemented by the author.
Note that indoor navigation has been the focus for the most of the hybrid system

surveyed in section 6.1, but the hybrid system proposed in this chapter has been

verified for outdoor unstructured environments. A subjective comparison with a

number of hybrid architectures is provided in section 6.8. The vertex planner was
introduced in chapter 4 and a review of EP/N was given in section 3.1.3 and hence

only the planning approach designed for waypoint navigation is described here.

The algorithm for the waypoint navigator is shown in Figure 6.4. This GA follows the

steady-state architecture and incorporates a deterministic crowding mechanism.

Although the underlying GA has largely the same structure as both the EP/N and

vertex planning techniques, here the intermediate nodes for a path are a selection of

the waypoints generated during the exploration phases under reactive control.

procedure waypoint navigator
begin

produce P with the constraint that all paths generated are feasible
evaluate P
while the termination condition is not reached do

select an operator 0
if the crossover operator is selected then

select parents P, and P2 using a roulette wheel based on individuals' rank
produce offspring C, and C2 by crossover of the parents P, and Pa
evaluate the offspring C, and C2
if distance(PI, CI) +distance (P2, C2) < distance(PI, C2) +distance (Pa, Cj) then

if fitness of C2 > fitness of P, then C, replaces P, end if
if fitness of C2 > fitness of P2 then C2 replaces P2 end if

else
if fitness of C, > fitness of P2 then C, replaces Pz and if
if fitness of C2 > fitness of P, then C2 replaces P, and if

nd if
01: 0

generate an offspring C using the insertion operator
evaluate the offspring C
replace the worst individual in P with the offspring C

and if
end while
select the best individual from P

end
end procedure

Figure 6.4 The pseudocode for the waypoint navigator algorithm.
I

6.3.1 Chromosome initialisation

Based on the heuristic knowledge gained during exploration, a set of path segments
between a pair of adjacent waypoints is made available. Rather than performing

129

Chapter 6: Waypoint-based navigation in static environments

random initialisation, the initial population is generated in conjunction with the

heuristic knowledge, so that the chromosomes in the population represent only the

feasible paths, where a path is a series of segments. Consequently, the maximum

length of a chromosome is constrained to be the longest of the potential feasible paths

(in terms of the number of waypoints). All paths commence with the first waypoint

encountered after leaving the start node and thus this is the chromosome's first gene.

The next gene is identified from the set of waypoints that are connected by segments

to the current gene and, if there is more than one branch extending from the current

waypoint, one of them is randomly selected to be the next gene. Subsequent genes are

defined in a similar manner until the goal gene is reached. To obviate the need for

encoding and decoding, the same genetic representation is employed as that already

used to store waypoints in the knowledge base unit.

6.3.2 Genetic operators

Two genetic operators, a multi-point crossover and an insertion, are used to produce

offspring. To exclude any infeasible offspring generated by the crossover operation,

the crossing points are chosen deterministically, by searching for pairs of waypoints

that are common in the parents. The segments lying between the identified pairs of

waypoints that are common to the parents are then interchanged to form the offspring

and therefore the number of crossing points varies with the number of common nodes

between the parent individuals. This is different from the crossover operator used in

EP/N (section 3.1.3) and in the vertex planner (introduced in chapter 4), which both

of used single point crossover. The likelihood of producing less fit individuals is

increased if the crossover operator used in this chapter were applied to the feasible

individuals in the EP/N and vertex planners. Note that the crossover sites are

determined at random in each of the EP/N and vertex planners, with the

commensurate possibility of generating infeasible paths. Although infeasible paths

can be gradually converted into feasible paths by the repair operator in the EP/N and

vertex planners, the process may take many generations. On the other hand, the

planning algorithm presented in this chapter excludes infeasible paths during the

evolutionary process to take advantage of exploration or previous navigation and

thereby eliminating the evolutionary process to convert infeasible paths to feasible

130

Chapter 6: Waypoint-based navigation in static environments

paths as found in the EP/N and vertex approaches. Such a crossover operator used

ensures that significant exchange of genetic information occurs between the-parents,

while population diversity is still being promoted by the application of the insertion

operator. The insertion operator plays a similar role in the evolution to a conventional

mutation operator, but is different in the sense that the insertion operator randomly

generates a new individual using the initialisation mechanism rather than mutating

genes of the selected parent based on some chosen probability value. The two

operators are applied on alternate generations rather than being selected based on pre-
defined probabilities, as in EP/N, reducing the number of system parameters that need

to be defined.

6.3.3 Selection scheme

In the waypoint navigator, offspring are generated using a crossover operator that acts

on a pair of individuals. The pair is selected by a roulette wheel whose slots are sized

in accordance with the ranks of the individuals. A quadratic ranking technique (De

Jong 1992; Watanabe and Hashem 2004) (see section 2.3) was implemented to scale

the raw fitness before selection, so that the selective pressure is independent of the

fitness distribution of the population while the selection is biased towards the

favoured individuals. An alternative would have been to adopt a purely proportionate

selection scheme, but although this method tends to exhibit rapid convergence due to

the high selection pressure during the initial phase of evolution, there is less selective

differential in the later evolution, providing little incentive for the GA to make the

appropriate selection between competing individuals (De Jong 1992; Sareni and

Krahenbuhl 1998).

6.3.4 Evaluation

As only feasible paths are involved in the evolutionary process, the quality of a path

can be determined simply by its length.

Ef Equation 6.1

131

Chapter 6: Waypoint-based navigation in static environments

where L, denotes the -length of the segment i of the path containing a total of n

segments. Alternative assessment criteria, such as the number of waypoints (the

number of turns) or travel time, could be accommodated where required.

6.3.5 Replacement strategy

Deterministic crowding (DC) (Mahfoud 1995a; Sareni and Krahenbuhl 1998) is used

as the replacement scheme for the offspring generated by the action of the crossover

operator. The competition between offspring and parents of identical niches (closest

competition) helps to maintain the diversity of the population. DC yields two set of

tournaments, the first involving offspring CI pitted against parent PI and offspring C2

against parent P2 and the second involving offspring C, against parent P2 and

offspring C2 against parent P1. A parent is replaced by the nearest offspring should

the latter have better fitness. Similarities among the individuals are defined based on

phenotypic distance. Equation 6.2 shows the similarity S defined for this problem,

S=
N+N
Np Xc

Equation 6.2

where N is the number of common waypoints between the parent and offspring, and

NP and N, denote the number of waypoints in the parent and filial paths respectively.

The aim of applying the DC technique is to retain population diversity so as to

increase the probability of evolving optimal solutions. Sharing approaches (Goldberg

and Richardson 1987) and - clearing techniques (Pdtrowski 1996; Sareni and

Krahenbuhl 1998) both require the detennination of niche radius, which is difficult in

absence of domain knowledge (section 2.5). Path quality may be improved if DC is

applied to the EP/N or vertex planner, but experimental observation showed

considerable time was needed to check similarity (defined as how many obstacles lay

between two paths with fewer obstacles implying greater similar). Consequently, the

work described in the previous two chapters did not use DC to minimise the planning

time. Note that the single offspring generated by insertion replaces the morst
individual in the population.

132

Chapter 6: Waypoint-based navigation in static environments

6.4 Investigation of the waypoint method in escaping from

'U-shaped' traps

As no memory of previous decisions is stored, most purely reactive systems are

unable to escape from the dead-end or 'U-shaped' obstacles found in many practical

environments. However, during reactive navigation in the waypoint system, a means

of providing such memory by recording recently-visited locations is readily available.

Figure 6.5 depicts the sequence of processes that the waypoint method uses to escape

successfully from a U-shaped obstacle. In (a), the robot enters the obstacle, generates

a waypoint and continues within the obstacle in such a direction that it reduces the

distance to the goal. In (b) and (c), the robot begins what appears to be oscillatory

motion and generates two further waypoints. By adopting a rule that if a newly-

generated waypoint is determined by the localisation unit to be close to one already

detected in the current exploration cycle and at which the robot has a similar heading,

the system will instigate behaviour to escape from the obstacle. This behaviour

involves generating an apparent goal location for temporary use as a target point by

the reactive navigation system. This new location is determined from the original goal

location by translation in the same direction as that of the robot heading when the

duplicated waypoint was identified, as shown in (d). The translation distance needs to

be sufficiently large to ensure escape and in practical cases this can be easily

achieved by moving the apparent goal location to the edge of the navigation

environment. Only when the robot's heading is directly towards the apparent goal, as

shown in (e), is the goal returned to its original position, as in (f). Note that,

throughout this process, the mobile robot has continued to operate purely under

reactive control. Many approaches reported in the literature to escape from U-shaped

obstacles (Minguez, Osuna and Montano 2004; Na and Oh 2003; Suzuki et al. 2005)

used a sensor that can capture the characteristics of the U-shape obstacle from a

single point of view. Often, the robot may remain trapped if the U-shaped obstacle

cannot be identified correctly and such a limitation has been experimentally examined
by Antich and Ortiz (2006). In the current work, the robot can, solely under reactive

control, escape U-shaped obstacles recognised by the sensor at single sampling
instant, since this is characterised by a single waypoint and the similar situation hag

133

Chapter 6: Waypoint-based navigation in static environments

been presented in the training stage. If such situation is detected, the robot will

reverse its heading immediately out of such a U-shape obstacle. The use of waypoints

as introduced in this section is intended to escape the traps involving in U-shape

obstacles whose features cannot in practice be identified by a sensor at a single

sampling instant, due to the relatively large size of the obstacle.

In order to avoid such deadlock problems that are often found in purely reactive

systems, schemes reported in the literature can be roughly categorised into two types:

one to incorporate wall following behaviour and the'second to establish a temporal

virtual target. In the first category, Maaref and Barret (2002) co-ordinated behaviours

for convex and concave obstacles: if a convex obstacle is detected, goal seeking

behaviour and reaching the middle of the collision-free space behaviour was

combined, whereas the escape of concave obstacles relied on the coordination of

behaviours used for convex obstacles and wall following behaviour. The approach of

adopting wall following behaviour in order to avoid traps can be also seen in the work

by Antich and Ortiz (2006). In the second category, Xu and Tso (1999) and Xu, Tso

and Fung (1998) proposed an approach to escape the trap in U-shaped obstacles using

local target switching. Here, a dummy target will be switched to the opposite

direction at which the real target exists with respect to the robot, with the potential

trap being detected by identifying an abrupt change that the robot heading suddenly

rotates from the left (or right) side to right (or left) side of the goal. Only once the

robot detects an opening on its left (or right) side will the dummy target be switched

back to coincide with that of actual target. In contrast, the approach described here,

monitoring of the sensory information is not required (thereby eliminating false

triggering of behaviour change) and the direction to the temporal goal (G') is used

instead. In the approach described by Arambula Cosio and Padilla Castaneda (2004),

four auxiliary attraction points were positioned horizontally or vertically around the

goal point and assigned suitable strengths in the grid map. The trap could then be

escaped by applying, to the robot, the combination of five forces.

134

Chapter 6: Waypoint-based navigation in static environments

9

!7

(a)

GO G'

!7

(d)

9

rq

s (b)

GO G'

r
11 IL i

S7

(e)

0G

rn

0 7ml

s (U

Figure 6.5 Illustration of the mobile robot escaping from a U-shaped obstacle. The circular
markers show the waypoints and the solid circular markers denote the start (S), goal (G) and

apparent goal (G') points,

6.5 Experimental procedure

The simulations used an autonomous mobile robotics toolbox (Brno University of

Technology 2006) running on MATLAB (Mathworks 2006) version 6.5. The toolbox

allows the definition of virtual environments and simulates the behaviour of one or

more robots, each of which can be equipped with a range of configurations of

ultrasonic sensors and laser scanners. The toolbox consists of two separate

applications, namely editor, that allows the user to create virtual environments, define

robot configurations, edit the control algorithms and load and save simulations, and

simulator, that provides a graphical view of dynamic movements and allows data to

be recorded for later analysis.

6.5.1 Toolbox features

The principal features of the toolbox are as follows (Brno University of Technology

2006).

135

Chapter 6: Waypoint-based navigation in static environments

"A graphical user interface providing simulation, creating, viewing and editing.

" The simulator supports as many as 254 robots each with its own control

algorithm.

" Control algorithms can be designed as standard MATLAB functions.

" Ultrasonic sensor and laser scanner simulators are provided in the toolbox and

their number and position can be configured for each robot.

" The virtual environment consists of static obstacles and simulated robots can be

used as moving obstacles.

" Movements for each robot are recorded and can be saved and replayed.

6.5.2 Kinematic modelling

The toolbox model of a robot has three wheels, as shown in Figure 6.6; at the front is

an undriven castor, and at the rear are two conventionally actuated and steered wheels

equipped with velocity feedback. This type of chassis provides only two degrees of

freedom and the simulated robot in the experiments presented in this thesis was

constrained to be incomplete (that is, the robot is unable to rotate without any

translational displacement except that the robot can reverse its direction immediately

when facing narrow dead end), so that the algorithm can also be applied to the robots

wiouth any translational displacement when rotating. In order to provide rotational

movement the rear wheels are driven differentially.

front wheel

Figure 6.6 Locomotion mechanism for the simulated robot.

136

rear wheels

Chapter 6: Waypoint-based navigation in static environments

This simulator has previously used in our research group at Loughborough University

for developing an autonomous navigation system. To extend the previous work

directly, the hybrid systems presented in this thesis adopted the same simulator.

Recently, this simulator was employed by Baklouti and Alimi (2007) for the

navigation of mobile robots using a fuzzy-logic controller. The toolbox allows

multiple robots to populate the environment each with their own control algorithm.

This feature was used in chapter 7 when investigating navigation problems in

dynamic environments and in which robots were used to model a set of moving

obstacles. User-defined control algorithm can be easily developed with the support of
MATLAB functions and the experimental process and results can be displayed and

analysed in the MATLAB environment.

6.6 Results of the comparisons between the navigation methods

The three navigation systems (EP/N, vertex planner and waypoint navigator) have

been implemented to carry out a range of tasks in four simulated environments
designed to exercise the robot in diverse activities. The first environment, called

shopping mall, includes a large number of small obstacles; the second, park, contains

a smaller number of larger obstacles; the third, office, simulates an open-plan office

workspace; and the fourth, manufacturing, contains a number of walkways through a

series of manufacturing cells or along corridors in an office building. The reactive

unit was developed in C in such a manner that it can be called as a separate stand-

alone executable, whereas the waypoint detector and deliberative units were realised

in MATLAB directly.

In the set of experiments that follow, the control parameters used in the three

planning methods are as listed in Table 6.1; all were determined experimentally and

remained unaltered throughout the practical experiments. For all the metho, ds, a

quadratic ranking strategy (De Jong 1992; Watanabe and Hashern 2004) (see section
2.3) was used to scale raw fitness and a roulette wheel approach was adopted for

selection purposes.

137

Chapter 6: Waypoint-based navigation in static environments

Table 6.1 The control parameters for the three planning algorithms

operator probability weights rate for
delete

79 q-) 6- S:
6

A

Z:
9

0 78 .
0
to 0 0 ,a t I z i 9: 6 S cn -U E

CO. !! -e

Q t3 10
$..

40.
1..

40.
0

EP/N 1 0.6 0.8 .5 0.5 0.5 0.9 0.8 1 0
i0 ro

-3 0.6 1 0.1 1 0.3

(a) The system parameters for EP/N. The maximum length of an individual in the initial
generation was limited to be the sum of the number of vertices, start point and goal point in
the environment under test and the minimum length was set to be two, these being the start
and goal points only. When mutation -2

is selected as a genetic operator, one intermediate
node will be affected.

operator probability
i safe distance

algorithm
crossover mutation repa r

mutat on rate (m)

vertex planning 0.5 0.3 0.9 0.1 0.2

(b) The system parameters for the vertex planning algorithm. The maximum number of
intermediate nodes for a path randomly generated in the initial generation is same as the

number of obstacle vertices in the test environments and the start and goal points are always
selected.

l i h
operator probability

a gor t m
crossover i. nsertion

waypoint navigator every other every other

I generation generation

(c) The system parameters for the waypoint navigator. The maximum length of an individual
in the initial generation is equal to the total number of waypoints in the longest feasible path
that could potentially be generated. In our simulation, the threshold angle through which the
robot needs to turn to trigger the recording of a waypoint was set to 33.3' in all experiments.

In the following comparison of the navigation approaches, the results of the

experiments are considered in terms of the following: the subjective quality of the

generated path, the relative path lengths, the number of individuals required to

generate the first feasible solution and the times to obtain the first feasible path.

138

Chapter 6: Waypoint-based navigation in static environments

6.6.1 Generated path quality

Figure 6.7,6.8, and 6.9 show the paths generated following the application of the

three planning methods to the same task in each environment. Although the paths

shown for the three techniques were obtained over 2000 generations, around 1000

generational cycles were normally found to be sufficient to generate an optimal or a

near optimal solution for the environments. Note that these planning algorithms do

not always, generate an optimal, but rather a near optimal path (as there is not exact

world model available to the robot). Consequently, the paths presented in Figure 6.7,

6.8 and 6.9 do not necessarily represent the optimal solutions.

50

45

40

35

30
.2 V
LD 25
V 20

Is

10

5

n

Shopping mall Park

S ". -

r

"

'0
-. N

-
0

35

30

25

20

15

10

5

n

X direction (m)

Office
C

III

tL'i1

40

35

30
E

25

LD 20

is

10

5

a

. le, 0/1.

. ýe-
AW ,\'

1. .ä.., g6
.

e.
0

so

45

40

35

30

25

20

Is

10 20 30 40
X direction (m)

Manufacturing

10

5ý,
Ill m01

0 --. -
:1

0 10 20 30 40 50 0 10 20 30 40 50 60
X direction (m) X direction (m)

Figure 6.7 The paths generated by the EP/N technique. The circular markers show the
intermediate nodes generated by EP/N and the solid circular markers denote the start (S) and

goal (G) points.

139

Chapter 6: Waypoint-based navigation in static environments

Shopping mail
so
45.

se,
Aff

*I#

40 r
35 lid

30

25
'0 20

4L

15
4*40

10. - A LG

0 10 20 30 40 50 60 0"

X direction (m)

40

36

30

E

20

is

10

Park

I rm

46

, A., A

0 10 20 30 40
X direction (m)

Office Manufacturing -
35

30

25

20

15

10

5

A

. lwrG

0G

45

a

35

4
Ida

I ro- 30

26

20

Is
G., ---,

10 I

0
0 10 20 30 40 50 0 10 20 30 40 50 50

X direction (m) X direction (m)

Figure 6.8 The paths generated by the vertex planning technique. The circular markers show
the intermediate nodes generated by the vertex method.

140

Chapter 6: Waypoint-based navigation in static environments

so

45

40

35

30

25

20

is

10

5

0

Shopping mail

AV 10 Al'

6 Ilk

10 ' 20 30 40 50 60

X direction (m)
0

35

30

Office

25

.2
20

15

10

5

I,

40

35

30

25

20

15

10

5

0

Park

£

0 10 20 30
X direction (m)

DU

45

40

35

30

25

: 20

15

10

5

40

IJ__-
-- -- -.

0 10 20 30 40 so 0 10 20 30 40 50 60
X direction (m) X direction (m)

Figure 6.9 The paths generated by waypoint technique. The starred points indicate all the

generated waypoints, the circular markers indicate the waypoints selected by the planner and
the planned paths are shown as thickened lines. Note that although many additional

waypoints were defined for the environment, only those relevant to the specific planning task
are shown.

Apart from the intermediate nodes, the paths generated by the EPN and vertex

planning approaches in each of the respective test environments are similar. The

circular obstacle towards the top left of the diagram in the park environment could

only be approximated for use in checking path feasibility and when performing repair

operations in the EPN. and vertex planning methods. As both these methods require

that obstacles are represented by a finite number of vertices, a trade-off needs to be

made for certain obstacles shapes in terms of representation for efficient yet collision-

free motion of the mobile robot and the time that will ultimately be consumed in

assessing feasibility. The waypoint navigation system, however, has no requirements

141

Manufacturing

Chapter 6: Waypoint-based navigation in static environments

with regard to obstacle shape and hence no such compromise needs to be made. In the

waypoint navigation system results, it can be observed that the 'best' path through the

identified sequence of waypoints does not necessarily correspond to the global

optimum. Although for the shopping mall and manufacturing environments the paths

generated by the waypoint method are similar to those determined, by the EP/N and

vertex methods, it can be observed in the park and office environments that the

waypoint planner produces somewhat longer paths than those obtained using either

the EP/N or vertex method. As the environment is modelled in the waypoint system

as a set of waypoints, only a very limit area of the environment is involved in the

planning and so it is unlikely that it will produce paths with the same quality as those

found by the EP/N and vertex approaches that operate on an detailed map.

6.6.2 Number of individuals needed to produce feasible paths

The following experiments determine the minimum population size needed to obtain

feasible paths over 30 separate runs Of the three navigation algorithms. Each

evaluation was performed either until no improvement in the convergence towards

the optimum was observed, or until identical but near-optimum solutions were

observed over ten consecutive generations. The results of the investigation to

determine the minimum number of individuals in the population that is needed to

evolve a feasible path for each algorithm are shown in Table 6.2. It can be seen that

only two individuals were needed in order for the EP/N and vertex planning

algorithms to be able to generate a feasible path for most environments. Further

investigations showed that this was largely due the effective conversion of infeasible

paths to feasible paths by the repair operator. As the evolution process carried out in

the waypoint navigator always starts with a population of feasible paths, the

minimum number of generations required to generate the initial feasible paths is

always zero.

142

Chapter 6: Waypoint-based navigation in static environments

Table 6.2 The minimum number of individuals in a population needed to obtain a feasible
path for each algorithm. The minimum was found by determining the smallest population
capable of producing feasible paths in no fewer than 19 out of 20 tests each of length 600

generations.

shopping mall park office manufacturing

EP/N 2 2 20 2

vertex planner 2 2 2 2

waypoint navigator 0 0 0 0

6.6.3 Path length

In order to compare the qualities of the paths generated by the three navigation

methods, the geometric lengths of the paths produced by each were calculated and

compared. The results presented in Figure 6.10 are the median values of the lengths

of the fittest path produced during the first 1000 generations. In the cases where the

population size for the EP/N or vertex planning algorithm fell to a value of two, the

number of individuals in the population was increased by one in order to prevent the

loss of a feasible path on application of the crossover operator. To ensure a fair

comparison, the population size used for the waypoint navigator is maintained at the

minimum population size (three individuals) adopted in the EP/N and vertex planning

algorithms. Although two individuals are sufficient for evolutionary progress, such a

small population frequently led to non-convergence. This arose due to the worst

individual in the population being replaced by an offspring; it frequently being the

case that an offspring produced by insertion was less fit than the worst individual

ejected from the current population. Children resulting from a subsequent crossover

operation would be likely to have lower fitness, inhibiting the evolutionary process

and leading to premature termination.

143

Chapter 6: Wqyj)oinl-htised navigtilion insitilic envii-onnients

Shopping mall
84j

,
82f

EP/N
Vertex planner

]

80 I '
Waypoint navig,. ,

78

76

0)
C: 74

72

70

66 ý -, 0- V-'OL4! * %ý- VV4,7'0ý'*! '*

6,
0 200 400 600 800 1000

Generations

Park
75

EP/N

0 Verlex planner
70

--
Waypoint navigatw]

E 65

C:
(D

60

CL 55

50ý

451 11
0 200 400 600 800 1000

Generations

Office
E P/N

120 Vertex pj. r, ý. r
tor Waypoint naviga

110

100
fi

90

-C 80

70

60

50' ---
0 200 400 600 800 1000

Generations

Manufacturing
95

EP/N

90 Vertex planner
Waypoint navigator

85
E

: Ei 80

75

CL

65 ýý,

+"*' fo-* '4i** 41 q) k*, 4, *, #

6,)
L-,

-, I
0 200 400 600 800 1000

Generations

Figure 6.10 The path length for the best inclividUal for generations containing paths that are
all feasible. The median valLIC ofthe path cost over 30 runs is presented.

In the shopping mall, park, and office environments, the obtained path lengths all

reached similar values by 1000 generations, although the evolutionary progress of tile

three algorithms followed different trends and tile lengths of patlis generated by tile

waypoint navigator are marginally longer than those produced by FP/N and tile

vertex planner. As both the EPiN and vertex planning techniques conduct global

planning based on complete knowledge ofthe obstacles' dimensions, a global optillial

path can often be generated, whereas, in the waypoint navigator, the robot is under

reactive control and only acquires knowledge of its environment accurilulatively. In

addition, although reasonably large regions ofthe office environment call be explored,

it is probably unrealistic to expect the waypoint method to obtain details about the

144

Chapter 6: Waypoint-based navigation in static environments

environment to the same accuracy as that made available to the global planning

methods. In the manufacturing environment, the difference in performance between

the waypoint navigator and both EP/N and the vertex planner is most marked, with

the waypoint technique producing a path length that was longer by around 6m, a

difference which may be considered significant even in such. a large environment (of

dimensions 60m by 50m). The shorter path lengths produced by EP/N and the vertex

planner are due to both methods ensuring that the robot often passed close to

obstacles during avoidance, whereas the margin between robot and obstacle is often

relatively large when the robot moves under control of the waypoint navigator.

On examining the paths themselves (Figure 6.7 to Figure 6.9), it can be seen from

Figure 6.10 that, apart from in the office environment, the waypoint navigator was

able to generate optimal paths between waypoints immediately evolution began, and

consequently subsequent convergence was achieved in a small number of generations.

As the initial generation is inherently constrained to a set of feasible solutions by the

waypoint navigation algorithm and feasible paths were identified during the

exploration, in the majority of cases the initial population already contained the

optimal path between waypoints. As the office environment generates many more

waypoints than the other environments considered, such an optimal path is less likely

to be present in the initial population rendering further evolution necessary.

In the shopping mall, park, and manufacturing environments, it is apparent that the

waypoint navigator has extracted sufficient heuristic knowledge from exploration to

allow any one of a range of conventional optimisation or search methods to be

applied rather than necessitating a solution using GAs, which would appear

somewhat superfluous in this case. However, it will be shown in section 6.7 that for

more complex environments, where the number of waypoints is greatly increased, the

use of GAs in generating the robot path will again be appropriate. It is clear that in

comparison with the EP/N and vertex-based techniques, the waypoint method not

only allows the assumption that the robot needs to be equipped with complete

knowledge of its environment before planning to be relaxed, but also represents the

145

Chapter 6: Waypoint-based navigation in static environments

information from the explored environment in such a way that it can be used in a
highly efficient manner for planning purposes.

6.6.4 Time to obtain the first feasible path
Table 6.3 lists the median time needed to obtain the first feasible path in the four

sample environments, determined from a set of 30 runs. It can be seen that the vertex

planning method is able to provide a modest reduction in calculation time compared

with EP/N, except in the manufacturing environment where the improvement is more

apparent. This may be due to the fact that the manufacturing example has a

considerably higher proportion of the environment occupied by obstacles and so a

significant number of the nodes, selected initially at random by EP/N, are likely to be

within an obstacle. The waypoint navigator takes advantage of the prior explorations

that result in a set of feasible candidates for the initial population, and consequently

no evolutionary process is required for generating the first feasible path.

Table 6.3 The median calculation times (in seconds) to obtain the first feasible path. Each
value was obtained over a series of 30 identical planning tasks.

shopping mall park office manufacturing

EP/N 20.0 18.0 33.2 14.9

vertex planner 18.6 16.4 25.6 4.0

ivigator 0 0 0 0

Figure 6.11 shows the times taken for each of the three navigation methods to

calculate planning solutions during the first 1600 generations. In each case, the

minimum population size shown in Table 6.3 is used in the first 600 generations and

evolution from the first feasible path to the final path occurs during the final 1000

generations.

146

Chapter 6: Wqyj)oinl-bttsed navigtilion insicuic envirowneills

Shopping mall
10

ýý 10'
C
0
L)
a)
A L 1 10'

E

zo 10,
75
co , EP/N

10 Vertex planner
Waypoint navigator

101 1-- - - - 0 5ý13 1 ý0 0 ý 500 2000
Generations

10
Office

Park

10'

10' a) r_

2 to'

- EPIN
10

Vertex planner
Waypoint navigator

, OIL
0 500 1000 1500 2000

Generations

Manufacturing
10

10' ID
0

10 E

10,

E:
r/tN

C) 10, eý planner

-1
V

-1
Waypoint navigator

10, -- 0 500 1000 1500 2000
Generations

LI) 10
_0

0

10'

E

100

0 EP/N
0 10'

4 Vertex planner

Waypoint navig. lo],

10
[IIII

0 500 1000 1500 2DOO

Generations

Figure 6.11 The median values for the calculation times averaged over 30 runs.

The results in Table 6.3 and Figure 6.11 demonstrate that tile calculation times to

obtain the first feasible path and to complete the defined number of' generations by

the waypoint technique are considerably shorter (around two orders of magnitude)

than those of' either the EP/N or vertex planner. Although tile repair operator In tile

EP/N and vertex planning systems is effective in achieving feasibility l'or a path, it is

one of the most costly in terms of calculation tirne. FP/N operators such as crossover,

insert, smooth and repair all increase the length ofthe individuals and consequently

adversely affect the number of calculations that need to be performed to assess path

length. Also, EP/N often attempts to convert infeasible paths to feasible ones using

the repair and insert nodes. again resulting in longer ind'viduals who, se feasibility will

then take longer to check. Further, the smooth operator, that attempts to reduce the

147

Chapter 6: Waypoint-based navigation in static environments

magnitude of the turning angle by adding new nodes, will also increase the length of

the individual and consequently the calculation time. In contrast, in the vertex

planning system, the number of intermediate nodes is limited as the number of

vertices of obstacles is known a priori, implying the length of each chromosome is

bounded and the times taken to evaluate path length and assess feasibility are
deterministic. Similarly, although the waypoint navigator allows variable length

individuals, the calculation time is also bounded as the number of waypoints

contained in the longest path (in terms of the number of waypoints) is constrained.

6.7 Application of the waypoint navigator to complex environments

As the waypoint method was able to generate solutions for the environments

considered in section 6.6 with such apparent ease, the GA-based planning algorithm

of the waypoint technique was further evaluated for four additional environments of

greater complexity, which are shown in Figure 6.12. The four test environments

contained a number of obstacles which are unsuitable for accurate representation by

polygons as required by EP/N and the vertex planner. Consequently, the application

of these methods is likely to result in a considerable computational overhead when

considering feasibility.

148

Chapter 6: Wq-17)oinl-based navigalion in sialic environmenis

Environment I

0

24
40

oil d;

30
to

064440 ýis W4 is #4 d
>ý 20 df NN 6080 s dol'i a ?II

do gill 40 1 to #so
in a0"0A. d

[I

44eq f f's Id Ia4 is

X dii-ecfioti (rn)

Envirotinient 3
60

, j7oF. #4e@ojeeloel daß .. goß z, &

Environment 2

Iýlj

40

.
C, il I
Z3

u

9 94 0*

, 48,6
me

IN

aa eh 9 db

it 40 q de
-lu 411 btj UU

X direction (fit)

Environment .1

llý

0

U

-, =

Figure 6.12 The paths generated by waypoint technique for the four complex environments.
The circular markers indicate tile recorded waypoints and tile planned paths are shown as

thickened lines. III the first environment, tile robot's task Is to move froll, (lie bottom to top,
while the robot moves from the bottom-left corner to the top-right corner In each ofthe other

three environments.

'ro illustrate the increased complexity of the planning problem now to be solved,

Table 6.4 shows the number of waypoints and path segments generated during tile

exploration phase. As the robot has fully explored all tile waypoints in these

environments, two paths emanate frorn each (apart from the start point) and hence tile

number of path segments generated is simply one more than twice tile number of

generated waypoints.

149

(hic Cli on m) X dircefion (m)

Chapter 6: Waypoint-based navigation in static environments

Table 6.4 The number of waypoints and path segments generated during the exploration
phase.

environment I environment 2 environment 3 environment 4

waypoints .
11 24 39 54

path segments 23 49 79 109

Two sets of experiments were carried out. The first investigates the effect of

population size in producing a high quality solution in a fixed time and the second

considers the effects of DC on the rate of successful convergence to an optimal

solution.

6.7.1 Effect of population size on real-time solution quality

This section investigates the optimality of the plan produced by the waypoint

navigator using the set of waypoints determined during exploration, as shown in

Figure 6.12. As the time taken to determine a plan has a significant influence on the

overall travel time in many practical applications, these results have been generated
by constraining the planner to operate in a fixed execution time rather than in a
defined number of generations. Figure 6.13 shows the performance (in terms of path

length) of the waypoint navigator for the four navigation problems while both the

population size and the number of generations were varied. The figures can be used to

aid an assessment as to whether increasing the population size or increasing the

number of generations will be the more effective in achieving a path of the desired

quality in a given execution time. Note that the results presented in Figure 6.13 were

obtained from 1000 independent runs for each navigation problem.

150

Chapter 6: Waypoini-hased navigation in slatic envit-oninenl. y

Environment 1 Environment 2

7ý 1000 1000

goo 800 "'0
800

1.0 S- oi s'-
600 -- E 700 k- E

600 00 400
500 004 -0-2

200 400, --
30 400 0.1 s

200 200 0 02 20
200

10 100 100

Generations 00 Population size Generations 00 Population size

Environment 3 Environment 4

1000 1000

900 'f- 800

800 2.0s)ýYk)M
600

700 E
,E 600 0

200
500

400 0.4 0ý1- OAS
800 0 80

02
600 200 60 1 200

.2 Is
0 ýO

2S 400 400
100

200 100
0

200 200
Generations 00 Population size Generations 00 Population size

Figure 6.13 'File optiniality achieved by tile proposed planning algorithm for the
environments shown in Figure 14 with the Population size being changing from 10 to 200

individuals in steps of 10 for the test environments.

Frorn Figure 6.13, it is evident that, in many cases, good optiniality with respect to

the available set of waypoints can be achieved by tile planning algorithm with a

modest population size in under two seconds. For the first three cnvironnicrits, tile

performance of the planning algorithm improves as dic population size is increased.

I lowever, in environment 4 this is not apparent 11or the shorter execution times and is

only observed when more generations becorne available and when the tirne

constraints are not so rigid: it can also be seen that the increased population size

cannot compensate for the evolutionary effect of the rcduced number of' generations.

There appears to be a certain threshold in terms ofthe number ofgencrations, below

which one should not fall in order to achieve a high qlillltý' Solution. In a number of'

151

Chapter 6: Waypoint-based navigation in static environments

cases it is clear that, when only a small number of individuals are present in the

population, a high-quality solution cannot be determined rapidly, but the inclusion of

the insertion operator, which is able to introduce new genetic material, generally will

facilitate the eventual generation of an optimal solution.

6.7.2 Effect of deterministic crowding on the ability to find the optimal solution

In an attempt to improve performance when population sizes are small, this section
investigates the effect of DC (Mahfoud 1995a; Sareni and Krahenbuhl 1998) on the

reliability of producing optimal solutions, given a set of supplied waypoints. Table

6.5 shows the number of optimal solutions produced based on the results ge nerated

for a population size and a number of generations selected from Figure 6.13 such that

the evolutionary computations were completed in approximately one second. It can

be seen that DC provides a substantial reduction in the number of occasions on which

the GA was unable to produce an optimal path for the given set of waypoints. This

improvement was particularly marked in environments 2 and 4, Where the failure rate

was reduced by a factor greater than 10. The generational diversity is plotted in

Figure 6.14 for the four test problems both with and without DC. For environments 2

and 3, it can be seen that DC is able to maintain the diversity present in the initial

generation, and, although the results for environments I and 3 show some tendency

towards convergence when DC is used, the population convergence is far more. rapid

without DC. Furthermore, it can be seen in Figure 6.14 that the shortest path lengths

available in the respective populations for environments 2 and 4 were reduced when

using DC, and, in fact, improvements were also observed, but were less apparent in

environments I and 3. In fact, in the general case, for any given generation during the

evolutionary process, the best individual produced when using DC was better in terms

of path length than the corresponding individual produced without DC.

152

Chapter 6: Waypoinf-based navigtilion in slalic environmenis

Table 6.5 Percentage ofruns that achieve optiniality for the four sample environments.

environment
popuiation

size generations algorithin
scheme

failure to achieve optiniality I
over 1000 runs (%)

without DC 8.1
1 10 50

with DC 3.5

without DC 37
2 20 200

with DC 2.2

without DC 15.7
3 60 200

with Dc 8.9

without DC 52.0
4 30 300

with DC 3.5

Environment 1 Environment 1
56 56

M
ean path length Mean path length

55 55 Shortest path length

54 54

-Eý
I

53 53

c a)
52 -j 52

a_
51 51

50 50

49 ý -ý 41 , ý ý
0 10 20 6 O

ýO
1 0 O O

ýO
50

Generations Generations

Environment 2 Environment 2
1 02 102 j

Mean path length 1 Mean path length
101

-
Shortest path lengthj

101
Shortest path length

100 100

99 99

98 98

0) 97 97
c c

96
. I-

9
ýE

CL 95 1 0.95
P

94 94

93 93

92
i

--- ----
L

92

0--
------- EI O 40 120 1

ý60
200

ýO ýO
110 1ý0 2 200

Generations Generations

153

Chapter 6: Waypoini-based navigtilion in slalic envii-oninews

Environment 3
124

123
Mean path length
Shortest path length

122

121

120

119

118

CL 117

116

115

114

0 40 80 120 160 2DO

Generations

158

156

154

'E 152

150
(D

148

CL

146 ý

144

142

Environment 4

Mean path length
S horlest path leng th

I

0 60 120 180 240 300
Generations

Environment 3
1241.

Mean path length
123

Shortest path length

122

121 1

120

15) 119
c a)

118

M
117

116

115

114
ýO

8,0 1ý0 1ý0 2ýO

Generations

158

156

154

152

150

148
CL

146

144

142

0 60

Environment 4

Mean path length
Shortest path length

II- 1ý0 1ý0 240 300
Generations

Figure 6.14
1
The mean values and standard deviations for the populations genel-ated by tile

waypoint navigator both without DC (left column) and with DC (right column).

6.8 Comparison with other hybrid systems

This work has developed a hybrid waypoint-based autonomous navigation Svstelll for

the navigation in static environments. The hybrid system consists of three major

components to provide response to historical, Current and future states. In tills section,

a verbal comparison is provided with existing hybrid systems (Aguirre and Gonzý'ilez

2003, Liu, Hu and Gu 2006; Mufioz-Salinas et al. 2005; Santos, Castro and Ribeiro

2000) whose structures also have three major components. The method ofintegration,

the content of each major component and tile Functions ofeach major component ill

these earlier hybrid architectures all differ frorn that ofthe waypoint system.

154

Chapter 6: Waypoint-based navigation in static environments

The nested loop architecture (Santos, Castro and Ribeiro 2000) had its three

components (reflexive loop, reactive loop, and functional loop) arranged in an

embedded manner according, to the abstraction level. The innermost loop (reflexive)

provides direct coupling between the stimuli and response for only emergent situation

and the additional behavigurs generated from the middle (reactive) loop are directed

by the outer deliberative component. Such a solution requires continual operation of

the system as a whole for the reactive system to be able to perform navigation. In

contrast, the waypoint system can perform navigation under reactive control to fulfil

the sub-goals provided by the deliberative component. This reactive system can

generate fast appropriate actions without intervention from any other component in

order to deal with the current instantaneous perception of the environment. The

nested loop architecture (Santos, Castro and Ribeiro 2000) regarded the trap situation

as an emergent situation and direct response was provided by the reflexive loop. The

system identifies traps and deadlocks by monitoring the frequency of imminent

collision and the detection of repetitive halts during rotation. In such situations, a

simple slow action will be generated to follow a defined curve so as to prevent an

oscillatory rotational motion. In the waypoint system, the robot can escape U-shaped

obstacles under reactive control when such a situation can be identified by the current

perception, otherwise, waypoints collected previously are used to detect traps and to

generate a temporal target to facility the escape. In the nested loop approach, three

motion modes are defined in the reactive loop in order to deal with local motion.

Such motion can be generated externally by the teleportation mode, or locally by

either path following or local navigation modes. This is different from the reactive

component in the waypoint system which uses no external intervention and both local

navigation and path following can be realised by the reactive system after training.

The functional loop in the nested loop architecture is responsible for path planning,

localisation and determination of the local navigation strategy whenever the local

navigation mode in the reactive loop is selected. In comparison, while the deliberative

unit in the waypoint system provides exploration, it is not involved in the decision

marking process during the local navigation. The authors of the nested loop

architecture realised it was unnecessary to build a detailed map for the environment,

155

Chapter 6: Waypoint-based navigation in static environments

but the strategy was not described in the paper. In the waypoint system, the waypoints

that reflect the estimated location and distribution of the obstacles clustered in the

environment provide the abstract of the world model. In addition, unexplored

waypoints provide heuristics for task specific exploration.

The hierarchical hybrid architecture proposed by Aguirre and Gonzdlez (2003)

consists of planning, executive and control layers. A safe shortest path is generated in

the planning layer and the executive layer selects appropriate behaviours to fulfil the

plan. The control layer is responsible for the control of the robot according to the

results of the perception process. The navigation task can be viewed as a process of

top down decomposition, with any error occurring in a lower layer being reported to

the higher layer. The system produces a topological map that contains metric

information. The waypoints in the new system described in this chapter can be

viewed as a set of virtual landmarks that are unique in that no duplication is allowed

within sensor range and the waypoints themselves contain metric information. The

executive layer in Aguirre and Gonzdlez (2003) activates and weights a set of

behaviours according to the context of applicability to the current state, with the

combination of those weighted behaviours producing the final output. The control

layer contains elementary fuzzy behaviours, whereas there is no executive layer to

coordinate the different behaviours in the waypoint system. In fact, the two layers,

executive and control layers, are effectively fused to form the single reactive layer,

since the navigation rules are generated by the training and a single steering action is

produced based on the rules. Although the authors claimed that the map can be

constructed. through exploratory tasks, no detailed explanation of the strategy was

provided in the paper, and it appears that, for the purposes of the work presented, a

complete map was built that minimised the travel distance between key locations. In

contrast, the waypoint system autonomously explores and collects waypoints, along

with the appropriate metric information. The hierarchical three layer architecture was

evaluated only in the indoor environments and no report was given on how the

system dealt with deadlock problems.

156

Chapter 6: Waypoint-hased navigation in static environments

A three-layer hybrid architecture was proposed by Mufloz-Salinas et al. (2005)

involving a set of agents allocated in deliberative, execution and monitoring, and

control layers. The deliberative layer generates an appropriate plan for a specified

navigation task, which, once received, creates several navigation skills (a skill

contains a set of activated behaviours to achieve a sub-goal) in the execution and

monitoring layer in order to achieve a sequence of sub-goals for the plan. At the same

time, the execution and monitoring layer examines the implementation of the plan for

any failure in its implementation. The control layer contains a set of agents that

implements ftizzy and visual behaviours. The navigation system requires a

topological map that includes geometric information, and the authors state that the

map can be either supplied externally or constructed autonomously, but no detailed

description of this process was-provided in the paper. The navigation task can be

considered to be decomposed by layer, with the function of the middle layer being the

translation of the plan generated in deliberative layer into a sequence of skills. In

practice, the navigation skill is effectively organised into primitive behaviours in

order to achieve sub-goals. This arrangement is different from that in the waypoint

architecture, where the reactive component requires no specific layer to arrange the

individual behaviours, since their coordination was facilitated during the training

period. The three-layer hybrid architecture was tested in office-like environments

with a complete topological map, whereas, in the waypoint system, only the

waypoints related to the current navigation task (current, initial and final locations)

are recorded and serve as a basis for planning.

Liu, Hu and Gu (2006) developed a hybrid architecture containing three layers,

namely (in order of hierarchy) cognitive, behaviour, and swim pattern. Instead of

generating a path, the cognitive layer infers a set of parameters to coordinate the

behaviours in the behaviour layer. To achieve this, states reflecting physical events

are abstracted from sensory information rather than from any spatial representation of

the environment. The swim pattern layer is designed specifically for robotic fish

navigation and converts the behaviours into the control of joints of the robotic fish.

The representation adopted by this hybrid system was highly abstracted according to

physical events, whereas the world model used in the waypoint system can be

157

Chapter 6: Waypoint-based navigation in static environments

regarded as being a behaviour driven representation, in that the waypoints indicate the

locations where the significant changes in the behaviour occur. This may cause

undesirable behaviour if any errors occur in the cognitive layer, since the combination

of the primitive behaviours is also directed by the cognitive layer. It is unclear

whether local minima exist in the robotic fish navigation, as this issue was not
discussed in the paper. In the behaviour layer, the wander behaviour performs

random exploration in the environment (a fish tank). In this way, a complete map can
be generated, but it is inefficient in that the same area may be explored for many

times. In contrast, task-oriented approach was used in the waypoint system.

Apart from in the nested loop architecture, the lowest layer in the hybrid systems
found in the literature are closely related to the low-level implementation of the

behaviours to drive the robot, but this transformation was performed in the reactive

unit in the waypoint system. Two of the above architectures were evaluated only in

indoor environments and none created its own a detailed world model, but where

present, topological maps with metric information were built. The waypoint

representation is highly abstracted and is even able to avoid the modeling of areas not

related to the current task.

6.9 Conclusions

A waypoint navigation system has been developed for mobile robot navigation and

compared with two evolutionary planning techniques, namely EPN and a vertex

planner. That suitable paths can be generated for the sample envirorunents confirms

that the waypoint system is able to navigate appropriately to the goal and. to collect

waypoints during the exploration. The waypoint technique is able to reduce the search
from the initially large physical area to just a small number of representative points

previously traversed under reactive navigation. Only these waypoints then need to be

considered in producing a suitable plan to reach the goal. The statistical results

obtained by repetitive measurement confirm that the waypoint technique is able to

significantly reduce the time taken to produce a plan: In the EP/N and vertex planning

systems, determining whether a plan is feasible is time consuming, but is unnecessary

158

Chapter 6: Waypoint-based navigation in static environments
I

in the waypoint method as the paths between pairs of waypoints are already known to

exist.

The global optimisation that can be achieved by EP/N and the vertex planner is

clearly evident in the path length results. However, this can only be achieved by

supplying complete knowledge of the environment, and this is unrealistic in most

applications and does not allow general solutions to the robot navigation problem.

The new waypoint method does not require any prior knowledge of its environment,

(which becomes gradually more familiar to the robot through exploration), keeps

minimal information regarding the nature of its surroundings and rapidly generates

suitable paths. The waypoint system is extremely robust in terms of its ability to find

a suitable path and in terms of response time, as it is always able to resort to reactive

navigation should a plan not be available in a timely fashion or if operating in a

dynamic environment.

The effectiveness of the proposed planning algorithm has been investigated in a series

of navigation problems of varying complexity. In the simpler environments, only

short evolutions are needed to produce an optimal solution given a set. of supplied

waypoints and the use of GAs is probably not required. However, in problems of

greater complexity, the use of a GA in finding suitable combinations of waypoints to

solve the navigation problem is appropriate. The frequency at which optimal

solutions could be produced in the more complex environments was shown to be

improved significantly through the use of deterministic crowding.

The hybrid structure has been evaluated by comparison to a number of recent hybrid

architectures reported in the literature. The waypoint navigation approach has been

arranged in such a manner as to take into account past, current and future information.

The system is robust and real time in that the basic reactive navigation can be realised
by tight coupling between stimuli and responses without any intervention from other

components. Furthermore, the memory requirement is kept low as only a set of

waypoints need be stored. Efficient exploration is performed in the more promising

159

Chapter 6: Waypoint-based navigation in static environments

areas closely related to the current navigation task. The plan generated is a sequence

of waypoints (sub-goals) that allows local adaptation during robot movements.

The following chapter investigates an enhanced version of the waypoint navigation

approach that involves reactive interaction with moving obstacles.

160

Chapter 7: Waypoint-based navigation in dynamic environments

Chapter 7

WAYPOINT-BASED-

NAVIGATION IN DYNAMIC

ENVIRONMENTS

The waypoint-based system introduced in the previous chapter concerns navigation in

static environments. This chapter extends this navigation system, so that it can also

operate in dynamic environments containing multiple moving obstacles. To achieve

navigation in dynamic enviroranents, two novel extensions were made with respect to

the approach described in the previous chapter. The first extension equips the robot

with the ability to avoid dynamic obstacles, based on the identification of the

necessary properties of a single dynamic obstacle which must be satisfied in order for

the robot to guarantee avoidance. The second extension uses the information gathered

over a series of exploration tasks to develop a statistical model of the extent to which

paths between pairs of waypoints are disrupted by the presence of dynamic obstacles.
However, this does not imply that the motion of the obstacles are constrained. If the

obstacles move randomly in the environment, the navigation behaviour may not be

improved as few heuristics are provided by the statistical model. The work described

in this chapter is being prepared for submission to the International Journal of

Robotics Research.

161

Chapter 7: Waypoint-based navigation in dynamic environments

The identification of waypoints utilises the same strategy as that in the previous

navigation system, but is constrained to static obstacles only. This is a common

strategy for navigation in dynamic environments (for example Low, Leow and Ang Jr

2002 and 2003; Minguez and Montano 2005; Minguez, Montesano and Montano

2004; Urdiales et al. 2003a and 2003b; Vazquez-Martin et al. 2006) where paths are
first generated globally for the static aspect of the environment and avoidance is

achieved locally. This chapter introduces related works, the proposed navigation

system, gives a description of each module and presents the results obtained for the

three separate experiments designed to verify the two extensions proposed. A

comparison with other hybrid architectures found in the literature is then presented. A

discussion of the results obtained for the navigation system is provided before the

chapter is concluded.

7.1 Related work in hybrid systems in dynamic environments

The previous chapter included a description of recent works related to the hybrid

architecture for navigation in static environments and only previous works related to

navigation in dynamic environments (those containing moving obstacles) are

presented in this section. Following a short survey of hybrid systems in dynamic

environments, two extensions made to the hybrid system introduced in the previous

chapter are discussed in greater detail.

Low, Leow and Ang Jr 2002 and 2003) proposed an architecture that integrated

planning and motion control. The planning module produced a sequence of

checkpoints between the start and end points using cell decomposition, whereby those

cells that can be connected vertically or horizontally are assigned the same label and a

greedy method is applied that searches the grid map marking as checkpoints those

closed points along the boundary. between cells of different labels. Clearly, the

generation of checkpoints requires an a priori grid map. The reactive module consists

of three lower-level modules: target reaching, obstacle avoidance, and homeostatic

control. A neural network in the target reaching module produces a sequence of

control commands to guide the robot between a pair of checkpoints, the obstacle

162

Chapter 7: Waypoint-based navigation in dynamic environments

avoidance module keeps the robot away from sensed obstacles and the homeostatic

control module maintains internal stability by monitoring the internal states. The final

output of the reactive module is a combination of the commands originating from the

three modules. The work was extended by the authors (Low, Leow and Ang Jr 2006)

to the navigation of multiple robots.

Urdiales et al. (2003b) proposed a hierarchical hybrid architecture with four layers

that are neither strictly deliberative nor reactive scheme. The geometrical modelling
layer uses on-board sensors to create a grid map from which alopological map is

abstracted by the topological modelling layer. A global collision-free path is

generated in the route planner and the path generated is decomposed into a set of sub-

goals for tracking by the local navigation layer, that is implemented by a case-based

reasoning (CBR) technique. One of the significant drawbacks of CBR is that the

robot may fail to generate an appropriate response when a significant discrepancy

exists between the current situation and the cases stored (Liu et al. 1994; Ni et al.
2003; Park, Kim and Chun 2006). A solution proposed by Urdiales et al. (2003b) is to

use a simplified version of a potential filed methods and to combine the generated
force vector with the closest matched case and store the outcome as a new case. The

system was evaluated through experiment for indoor environments with both static

and moving obstacles, but the results when avoiding moving obstacles was not clearly
documented. A slightly different version of this architecture was reported in an earlier

work (Urdiales et al. 2003a) using a potential field method as a reactive scheme

rather than CBR. A similar architecture was used for outdoor environments in the

work described by Vazquez-Martin et al. (2006).

A hybrid system described by Minguez and Montano (2005) and Minguez,

Montesano and Montano (2004) consisted of three components: model builder,

planning and reactive motion. The objective of the model builder is to construct a grid

map, incrementally constructed from a moving binary grid of a fixed size centred on
the robot. The planner computes a path by gradient search on the grid map whose

cells are labelled with the values of the distances from the goal point to the cell, and

collision-fice motion is generated by the reactive navigation module. The nearness

163

Chapter 7: Waypoint-based navigation in dynamic environments

diagram (ND) (Minguez and Montano 2004 and 2005; Minguez, Montesano and

Montano 2004; Minguez, Osuna and Montano 2004; Montesano, Minguez and

Montano 2005) navigation method is used in this module to match a configuration of

five pre-defined configurations and to guide the robot more closely so that its

configuration corresponds to one of the five configurations. The sensory information

flows into the model builder and is subsequently directed to the planner and reactive

navigation module. The output from the planner guides the reactive navigation. In

certain cases, the planner may fail to deliver a plan to the reactive module, and the

local navigation will rely solely on the reactive method. In the synchronous planner-

reactor architecture (see section 3.3), both the planner and the reactive module

operate on the current model to provide a prediction for the immediate future,

however the resulting trajectory is unlikely to be optimal as no past experience is

explicitly considered in the generation of a plan. No exploration component was

incorporated into the system for map building purposes and the grid map will

normally require more memory in comparison with the waypoint system that records

only a small number of points. The ND reactive method can be used to escape the

traps arising from U-shaped obstacles, but is limited to those obstacles whose

characteristics can be identified by the sensor at single sampling point.

In dynamic environments, it is normally unrealistic to have a priori knowledge

regarding the motion of the obstacles. Therefore, following a collision-free path that

has been generated before navigation commences (examples can be found in section

3.1.2) is not feasible. To avoid moving obstacles in dynamic environments requires

timely monitoring of environments using an appropriate configuration of sensors.

Suitable avoidance manoeuvres can be achieved by modifying the steering angle or

the velocity of the robot. The methods that have been used to compute the desired

steering commands are CBR (Kira and Arkin 2004; Urdiales et al. 2003a, 2003b and
2006) and ND (Minguez and Montano 2004 and 2005; Minguez, Montesano and
Montano 2004; Minguez, Osuna and Montano 2004; Montesano, Minguez and
Montano 2005). CBR techniques create a set of cases for the situations encountered
during the training stage and during actual navigation and the instantaneous reaction
is determined by the actions associated with the cases that most closely match sensory

164

Chapter 7: Waypoint-based navigation in dynamic environments

information. When the case base lacks a sufficient case, a solution recalled from a

secondary case is unlikely to be appropriate (Liu et al. 1994; Ni et al. 2003; Park,

Kim and Chun 2006). An alternative approach is to build a large case base, but this

requires additional memory. Another major drawback of CBR techniques is high

sensitivity to noise (Ni et al. 2003; Park, Kim and Chun 2006), potentially resulting in

the failure to deliver a final appropriate solution. The ND method generalised five

configurations for obstacles avoidance and subsequent matching with respect to the

five general cases allowed a steering action to be computed from the formulas

associated with each case. These approaches have been integrated into a hybrid

architecture (Minguez and Montano 2005; Minguez, Montesano and Montano 2004)

for dynamic environments. Section 7.6.3 exams this method in detail. The avoidance

of obstacles -using robot velocity control has been investigated using dynamic

windows (DW) (Fox, Burgard and Thrun 1997; Ogren and Leonard 2002 and 2005;

Stachniss and Burgard 2002), velocity obstacles (VO) (Fiorini and Shiller 1998;

Large, Laugier and Shiller 2005) and vector field histogram (VFH) (Borenstein and
Koren 1991; Ulrich and Borenstein 1998 and 2000). A description on DW, VO and
VFH was provided in section 3.2.1. Although good avoidance performance can be

achieved by those approaches (both DW and VO) at high velocities, they generally
decompose the continuous velocity space that guarantees collision avoidance into a
discrete set of velocities, so that the search for an optimal velocity command can be

performed quickly. However, the trade-off between the solution resolution and the

time for computing such solution may, in practice, be difficult to make, as the VO

varies in size and shape. In addition, DW is liable to become trapped in a local

minima (Kunwar and Benhabib 2006; Stachniss and Burgard 2002). A number of

authors (Ge and Cui 2002; Kurihara et al. 2005) incorporated velocity information

regarding the robot and obstacles to construct an artificial potential field (PF). The

local potential around the robot was constructed at regular intervals in order to

provide an adequate response to avoid unexpected moving obstacles. Such a

repetitive construction of the potential field containing velocity information is time

consuming. The performance of the DW, PF, and VFH approaches largely depends

on a number of parameters that are difficult to optimise for general application
(Urdiales et al. 2006), and, although those approaches are efficient in that the

165

Chapter 7: Waypoint-based navigation in dynamic environments

commands for the next step can be generated at high frequency, their purely sensor-
based approach results in a sub-optimal solution in that only the current state is

considered.

The behaviour-based avoidance techniques, such as fuzzy logic (for example
Malhotra and Sarkar 2005; Zhu and Yang 2004), neural networks (for example
Kubota 2004; Low, Leow and Ang Jr 2003; Min 2005), are different from the above-

mentioned approaches in that direct mapping between sensor inputs and action output
is established through an appropriate learning process performed either offline or

online. Once moving obstacles are detected, several primitive behaviours are

activated and coordinated to produce a single action without explicit reasoning.
However, the training processes involved are often complicated and the training

samples may be so large that they cannot be guaranteed to be limited to a pre-defined

memory constraint. The coordination of the different activated behaviours needs

careful design to eliminate poor behaviour. Additionally, the number of rules

generated by fuzzy-logic controllers increases rapidly with the number of input

variables, slowing the search for appropriate rules to be activated and consuming

additional memory, both of -which are undesirable in dynamic environments (Yang,

Watanuki and Zhao 2005). Decision-tree based reactive techniques (Cocora et al.
2006; Shah-Hamzei and Mulvaney 2000; Swere, Mulvaney and Sillitoe 2004) have

been successfully applied to navigation problems in static environments, but the

literature contains no specific reports on moving obstacle avoidance. To generate an

appropriate decision tree requires a learning process which takes into account the

motion featur&s (such as direction of motion and velocity) of the obstacles in addition

to the geometrical ones (such as the distance between the robot and the obstacles).

Those approaches introduced above generate an action only for next step and no look

ahead is involved, with the potential of allowing the robot to become caught in a local

trap and so preventing it from achieving its objective. Instead of computing the next

movement, some approaches (for example Minguez et al. 2001; Stachniss and
Burgard 2002; Ulrich and Borenstein 2000) attempt to compute a sequence of

movements for several steps ahead, depending on the time available. Ulrich and

166

Chapter 7: Waypoint-based navigation in dynamic environments

Borenstein (2000) developed VFH* which analyses the consequence of each

candidate motion direction through a look-ahead verification technique in an attempt

to eliminate the possibility of being caught in a local trap. Planning was incorporated

into the ND reactive scheme (Minguez et al. 2001) and the DW method (Stachniss

and Burgard 2002) to improve the performance of the local navigation and avoid
local minima. These approaches effectively extend the reactive schemes into a hybrid

architecture, but the grid representation of the environments adopted in those

approaches requires proper determination of the trade-off between the number of cells
in the grid map and the map resolution, since a fine resolution consumes additional

memory space and requires computational overheads, but produces a solution better

equipped to avoid narrow gaps between obstacles. The waypoint-based moving

obstacle avoidance strategy introduced in this chapter establishes constraints on the

movements of the dynamic obstacles so as to reduce the occurrence of inevitable

collisions (that is, where avoidance of the moving obstacle as detected by a specific

sensor configuration is impossible whatever action is taken by the robot). In contrast

to the behaviour-based approaches, no training is required to deliver the avoidance

solution and it can be applied in completely unknown environments even when a

model of the static aspects of the environment is unavailable. Moreover, the trajectory

generated is still optimal as the sequence of avoidance actions are determined by

look-ahead verification. The planning methods introduced in chapters 4 and 5 are not

appropriate for this purpose as the dynamics of the robot (the robot is unable to rotate

without any translational displacement) constrains the actions to be taken to avoid the

moving obstacles. Although the avoidance algorithm was developed for a single

moving obstacle, it is possible to generate avoidance manoeuvres by selecting the

intersection of the avoidance commands for each moving obstacle perceived

concurrently (if the intersection is not empty).

The exploration schemes reported in the literature have been mainly designed for map

building purposes. It would not be appropriate to record the geometrical information

of the moving obstacles in a global frame as such information rapidly becomes out of
date. The statistical exploration technique introduced in this chapter is novel in that it

167

Chapter 7: Waypoint-based navigation in dynamic environments

is different from previously reported methods since it summarises the dynamic

temporal features of the moving obstacles.

7.2 Waypoint navigation system for dynamic environments

The waypoint navigation system shown in Figure 7.1 consists of threemodules.

1) The low-level control is performed by the static behaviour module. In the

current work, this is implemented as a decision tree generated by a frequency-

table based learning technique (Mulvaney et al. 2005; Swere, Mulvaney and
Sillitoe 2004). This reactive solution has been adopted due to the availability of

the source code and access to the designers of the approach.

2) High-level behaviours in the dynamic avoidance module respond to the

detection of moving obstacles by favouring directions which avoid collisions.

Information regarding the locations of the static obstacles is used to assist in the

selection avoidance direction. In dynamic environments, the robot should be

able to react to the presence of a moving obstacle in order to complete the

navigation task. It would not be sufficient to use those avoidance techniques

employed in the static behaviour module, as the assumption made was that the

attributes of the environment were fixed.

3) The deliberative module, a high-level control unit, manages the navigation at a.

global level. It consists of three sub-modules, namely localisation, exploration,

and planning each of which operates on a set of waypoints which in turn,

indirectly, represents the position of the static obstacles within the environment.
The planner plays a tactical role by providing a sequence of sub-goals to the

robot giving the remaining modules freedom with regard to the local

movements. Due to the time variant characteristics of moving obstacles,
locations detected previously become invalid when producing a future plan.
However, the dynamic aspects of the environment are indicated in the statistical

exploration model.

168

Chapter 7: Waypoint-based navigation in dynamic environments

static
--------------------------- hehaviour

no primiti7v7e combine module
our
i

obstacleýsjr behaviour behaviours

----- --------------------

localisation

_j
static

sensors obstacleý j
waypoint
detector ion actions actuators

---------------- ------------- deliberative

---------------- ---- ------- module

moving high level
_ -level -le l

t

-
decision

obstacles
ýC

behý beh av ioujr
ý

making dynamic
avoidance

--------------- --- module

Figure 7.1 The architecture of the waypoint navigation system.

The development of this architecture mainlY relies on the partitioning of the

environment into three different types: free space, static obstacles, and moving

obstacles. None of the architectures reported in the literature (see section 7.1 for a

survey and further discussion on those architectures is provided in section 7.7) was

constructed based on such a characterisation of different types of environmental

information. This architecture is somewhat different than that introduced in the

previous chapter, since, in this hybrid system, the modules dealing with the past and
future states have been combined into one module mainly to account for the static

obstacles in the environment. However, this hybrid architecture inherits the close
. connection from history to current to future that was used as the basis for the

development of the system in the previous chapter. There are two principal reasons to

develop such hybrid architecture: 1) three different characteristics of the environment

need to be addressed independently; 2) the past experience, the current prictices, and

future prediction should be considered and combined into a single hybrid solution to

create high-level intelligence.

Each of individual modules shown in Figure 7.1 is discussed in greater depth in later

sections, but a brief overview of the entire architecture is given here for clarity. In an

environment which has not previously been encountered, and assuming no obstacles

169

Chapter 7: Waypoint-based navigation in dynamic environments

are detected, the robot's initial behaviour will be to seek a goal specified by

deliberative module. Once an obstacle is encountered, the resulting avoidance
behaviour is dependent on the motion and sensed dimension of the obstacle. If the

obstacle is stationary, the static behaviour module is activated, whereas whenever

moving obstacles are detected (regardless of whether any static obstacles are

perceived simultaneously), the dynamic avoidance module is activated. During

navigation, when the static behaviour module is activated, the current sensory

information and the corresponding actions are taken reactively and these are

transmitted to the deliberative module for interpretation by the waypoint detector.

The waypoint detector's function is to save selectively, from the stream of sensory

data, a set of locations as waypoints for further reference. A location is selected as a

waypoint whenever the robot must deviate from its current path due to the presence

of a static obstacle, in order to circumnavigate it. The set of waypoints is used later

for exploration, localisation, and planning. When the robot is free of any specified

navigation tasks, the exploration function can be activated to discover uncharted

regions, and thereby gather additional waypoints. Exploration behaviour can be

interrupted by any task that has a higher priority. In an environment that has

previously been encountered, the planner uses its current knowledge of the

environment to generate an optimal or near optimal path as a sequence of waypoints.

7.3 Static behaviour module

The reactive control undertaken when the robot is within stationary surroundings is

realised within the static behaviour module, as a combination of trained behaviours.

The same behaviour is used during exploration and when navigating between the

waypoints generated by the deliberative unit, having the effect of directing the robot

toward the desired goal while avoiding potential collisions. The method employed in

this module was detailed in section 3.2.2. Note that this module was designed for

behaviour-based reactive approaches, even though no explicit coordination

mechanism is required by the employed method, as this is carried out in the training

process.

170

Chapter 7: Waypoint-based navigation in dynamic environments

7.4 Dynamic avoidance module

Since the navigational skills learned in static environments are insufficient to avoid

collisions in dynamic environments, additional high-level behaviours are needed. It is

recognised that conditions within dynamic environments may arise such that a

collision is unavoidable, no matter what the robot's reaction. Such collisions are

referred to as inevitable collisions in the following discussions. Inevitable collisions

are mainly due to the limitations of sensor system, as their range of operation is

restricted and the ability to consider all avoidance solutions is constrained by

computational capability. In order to reduce the number of inevitable collisions, a

number of cases have been investigated in this chapter in which the relative position

and movements of the robot and a single moving obstacle were used to determine the

constraints on the dimensions and maximum velocity of the obstacles. However, the
inevitable collisions may still exist if multiple moving obstacles simultaneously

advance towards the robot. This does not mean that the application is restricted to

avoid single obstacle. Earlier work (Fiorini and Shiller 1998; Fox, Burgard and Thrun

1997; Large, Laugier and Shiller 2005; Ogren and Leonard 2005; Stachniss and
Burgard 2002) chose avoidance commands from the space that contains all collision-
free solutions, but none discussed whether or how the solution space was constrained

to be non-empty and the response that resulted if solution space was empty. In Yang,

Watanuki and Zhao (2005), the condition of collision avoidance was established by

considering a single obstacle moving in an arbitrary direction that remained unaltered
in order to estimate the collision condition. The concept of inevitable collision states

was introduced by Fraichard and Asama (2004) to be one in which a collision
between the robot and an obstacle will eventually occur whichever future trajectories

are followed. Once inevitable collision states have been identified, an avoidance

solution can be determined so as to ensure collision-free movement. However, no

constraints on the obstacle movements or dimensions were described. The avoidance

algorithm -introduced in this chapter for moving obstacles can be applied to multiple

moving obstacles simultaneously, since the avoidance actions Can be determined by

choosing the intersection of the set of actions for each moving obstacle. This strategy

was also adopted by the VO approaches (Fiorini and Shiller 1998; Large, Laugier and

171

Chapter 7: Waypoint-based navigation in dynamic environments

Shiller 2005) to account for similar circumstances. In this chapter, a path is referred

to be feasible if it is collision-free. The following section derives the necessary

constraints and then describes the additional behaviours required to avoid moving

obstacles.

7.4.1 Constraints on moving obstacle dimensions and velocity to avoid collision

The approach taken here, as shown in Figure 7.2, is to divide the robot's sensor field

of view into three sub-ranges (RI > R2 > R3), namely maximum sensor range RI,

detection range R2, and effective range R3. The maximum sensor range R, is the

maximum distance that the robot's sensor can detect within an acceptable confidence

level. When the static obstacle falls within the effective range R3. reactive control in

the static behaviour module is used to navigate the static obstacle without collision.

This range, assigned by the user, should be larger than the minimum turning radius R

of the robot to avoid any possible contact with obstacles. However, large values of R3

may lead to the robot following a much longer path than the robot needs to take to

circumnavigate obstacles. The detection range R2 needs to be specified by the user

before navigation takes place. When a moving obstacle enters the detection range, the

robot will 9valuate whether a collision may occur if the current path is maintained, or

whether a new collision-free path to avoid the obstacle needs to be produced. The

range R2 should be greater than the effective range R3, as the motion of the obstacle

needs to be taken into account to ensure a collision-free path. On the other hand, it is

apparent that this range is bounded within the maximum sensor range R1. Note that

the ability to avoid moving obstacles is dependent on the value of R2 for a given RI

and R3 and is defined to be that point at which the robot must make a decision

regarding avoiding the moving obstacle. To be able to make this decision, the robot

must be able to gain knowledge of the entire width of the moving obstacle. Therefore,

the widths of the moving obstacles in the environment have to be constrained to

ensure that the robot is able to estimate whether the robot's current path leads to a

collision-free traverse across the moving obstacle, together with the velocity

information about both the robot and the obstacle when the moving obstacle enters

the detection range. The maximum width of the moving obstacle can be determined

given the values of RI and R2.

172

Chapter 7: Wqyj)oinl-btised mwigtilion in t4ynamic envit-onmenis

Modelling the obstacle as a bounding rectangle (as shown in Figure 7.2), tile

maximum width of the moving obstacles can be deduced by mininlising the following

equation with respect to the angle 0, the vertex of which is the centre of tile robot,

one side of which is opposite to the moving direction of tile obstacle, and the other

side of which is the straight line from the robot to the nearest obstacle vertex.

ý
ýR,

- (12 cos
6ý

- R, sin 0 (0: ý 0:! ý ir 12) Equation 7.1

R

Figure 7.2 Determination of tile maximum width Ilofthe moving obstacle.

Given the lateral dimension W of the moving obstacle, Figure 7.3 illustrates the

determination of the range ofthe obstacle velocities that call be permitted without an

inevitable collision given two assumptions. The first assumption is that tile moving

obstacle has only a simple translational motion with respect to tile robot while ally

part of the obstacle is within R,. The second is that tile maximum velocity of . the

obstacle can be measured. The range of' tile velocity of' the obstacle is determined

with respect to the angle, a, subtended between the robot]leading and tile moving

direction of the obstacle with the vertex of' the angle being the ccntre of tile robot.

Ilcre we consider only the situation where the robot Illoves towards tile moving

obstacle (7r / -1 <a-.! ý 3a /2), this range of a being critical when determining the

physical characteristics ofthe moving obstacle.

173

Chapter 7: Waypoint-based navigation in dynamic environments

Figure 7.3 shows an example of a robot of cylindrical cross-section and diameter d,

moving at the velocity V, rotational velocity co, with a turning radius, R, as it

encounters an obstacle of width W. The obstacle, shown as a solid rectangle, moves at

a velocity Vb in the direction opposite to the component of the velocity of the robot

which is projected along the longitudinal dimension of the obstacle. The rectangle

with a grey border is the obstacle enlarged by d, on three sides, allowing the physical
dimensions of the robot to be ignored in the calculations.

For the case illustrated in Figure 7.3, the robot may be forced to give way to the

moving obstacle by turning left or right with respect to it current heading by an angle

of &I or Db, is the distance between the current location of the robot and the front

edge of the enlarged obstacle and its value can be obtained with respect to the three

cases shown in Figure 7.4.

Figure 7.4(a) shows the case L>W+d. and Db can be obtained from the following

equation

D,, b= NFR22-(L-W-d,
ý -d, Equation 7.2

For the case d. :5L: 5 W+d, , shown in Figure 7.4(b), Drb is as follows:

D,. b = R2 - dr Equation 7.3

'Me third case, as shown in Figure 7.4(c), is L<d, , and Db can be calculated by

Equation 7.4.

D, b = NFR22 - (d, Equation 7.4

The distance D indicates the distance that the leading edge of the obstacle moves
from the position when it is first sensed in the detection range to the escape point E,

as illustrated in Figure 7.3. The escape point, marked as E in Figure 7.3, is where the

robot completely leaves the path of the moving obstacle, following the modified path
in an attempt to avoid the moving obstacle. L represents the lateral distance from the

robot's current location to the path edge of the moving obstacle nearest to the goal
174

Chapter 7: Waypoini-based navigalion in dynamic environments,

point, and d is the lateral distance to the path ofthc moving obstacle I'Lirtliest from the

goal point.

G

(a) turning left

Iv

40

P

All

D, -h

(b) turning right

Figure 7.3 Example of the robot moving with a c0l"POlle'll OfIts Velocitý' in the direction
opposite to the moving direction of the obstacle, when the component ofthe velocily of tile
robot is projected along tile longitudinal dimension ofthe moving obstacle. (11) sll()Nvs tile

robot turning left to avoid the collision and (b) tile robot turning right.

175

Chapter 7: Wuylvinf-kised ntivigulion in tývncwn .C elli'l . 1*017ments

1,

'Ir

I

(a) L>W+d,

D, b

L:! ý W+d,.

176

Chapter 7: Waypoini-based navigalion in dynamic environments

h

L<d,

t 1,

Figure 7.4 The determination of D, I, when
(a) 1, > 4' + d,

, (b) (1,. -<
L : ý- 14' + (1,. ,and (c) L< (1,

The following sections derive the conditions for obstacle avoidance for two separate

cases. Firstly, in which the robot turns left and secondly in which tile robot turns right

with respect to the current heading of the robot and where in both cases tile robot

must identify possible paths to avoid the oncoming obstacle. The underlying concept

is given first and the detailed mathematical description follows. The condition where

tile robot is able to follow a modified path to meet the moving obstacle at the escape

point, specifies the boundary between I'casiblc and inFeasible cases. It' the robot

crosses the escape point toward the outside ofthe path ofthc moving obstacle prior to

the arrival of the moving obstacle, the path generated I'm- the robot is 1easible,

otherwise the path generated for the robot is infeasible. The case employed here

bounds a range of velocities 11or tile moving obstacle within which a collision-free

path can always be generated. Furthcrmore, it is assumcd that a new ptil call be

generated for the robot to avoid tile moving obstacle Immediately when tile moving

obstacle enters into the detection range. In tile following discussions, tile tinle 7'

indicates the time that the robot requires to move to the escape point from tile location

where the moving obstacle is first sensed in the detection range, and the distance 1),

177

Chapter 7: Waypoint-based navigation in dynamic environments

as defined above, is that the obstacle moves to reach the escape point from the
location once it enters into detection range of the robot.

A. Robot turning left

Three distinct sub-cases must be considered when the robot turns left with respect to

the current heading to avoid the obstacle as shown in Figure 7.3 (a).

(i) When L>W+ 2d, +R+R cos a, the robot can avoid collision with the obstacle,

regardless of its velocity, by turning left through an angle of 7r -a or less.

(ii) When L=W+ 2d, +R+R cos a, a collision can be avoided if the robot is able to

turn through an angle greater than ;r-a before the moving obstacle arrives. The first

point at which the robot may meet the moving obstacle is when the robot turns

through an angle &I, equal to 7r -a , and where the travel time T and the travel

distance D to the escape point are expressed as follows:

T=7-a
COr

D= Db-Rsina

Equation 7.5

Equation 7.6

(iii) When L<W+ 2d, +R+R cos a, the robot turns by an angle of &I with respect

to the current heading of the robot and then moves forward following the heading

after tuming, 8,1 before meeting the moving obstacle at escape point. Here, the travel

time and point of closest approach are

T= '8 "+ Rcosa-Rcos(a+A,,)-d A,, e (; r - a, 2; r - a) Equation 7.7
wr sin(a +, 6) - V,

and

D= Db- R sin a+R sin(a + A,,) + [d -R cos a+R cos(a + P,,,)]cot(a + A,,)

where d=L-W- 2d,.

Equation 7.8

For cases (ii) and (iii), the maximum velocity of the moving obstacle with respect to

different escape points can be deduced as follows.

178

0

Chapter 7: Waypoint-based navigation in dynamic environments

Firstly, the maximisation of Equation 7.9 is carried out with respect to Aj (note that
for case (ii) only a single value for &I is considered.)

D Vb'

v, .. = maxVbl(Ai) e (; r - a, IT - a) b

Equation 7.9

Equation 7.10

In order to ensure obstacle avoidance for any value of L, the minimum of Equation

7.10 needs to be determined as follows

Vlmax= minVbl max(L) Lr: (O, W+2d, +R+Rcosa] Equation 7.11

B. Robot turning right

Three separate cases need to be considered when turning right with respect to the

current heading of the robot by an angle of

(i) When L>W+ 2d, +R-R cos a, the avoidance strategy is independent of the

obstacle velocity.

(ii) When L=W+ 2d, +R-R cos a, the robot needs to turn an angle greater than a

before the moving obstacle arrives at the escape point. Again, only the first point at

which the robot could possibly meet the moving obstacle is considered, as this

maximises the distance that the moving obstacle traverses prior to any contact with

the robot within the minimum travel time. The time T and distance D after the robot
has turned an angle of a can be written as follows

a
cop

D=D,. b +R sin a

Equation 7.12

Equation 7.13

When L<W+ 2d, +R-R cos a, avoidance can be realised, by first turning by

an angle of fl,,. with respect to the current heading and then moving forward following

the heading after turning by an angle of, 8,,.. Equation 7.14 and 7.15 express the time
T and the distance D respectively

179

Chapter 7: Waypoint-based navigation in dynamic environments-

T= '6 "' +
L+ R cos a-R cos(a -, 6,,) 6, e (0, a) Equation 7.14

cor sin(a -, 6,,.) - V,

D= Db+ R sin a-R sin(a -, 8,,.) + [L +R cos a-R cos(a -, 80,)]cot(a -, 80,)

Equation 7.15

Thus, the maximum velocity of the moving obstacle when it meets the robot at

different escape points can be deduced by following manipulations.

Firstly, Equation 7.16 is maximised with respect to fl, (note that only a single value

of fl, is considered for case (ii)).

D
VbrT

Vb,
max = max V,, (16.,.) 8ý, E (0, a)

Equation 7.16

Equation 7.17

Secondly, Equation 7.17 is minimised with respect to L, so that obstacle avoidance

can be realised for any value of L.

V,
max ý-- min Vb,

m.
(L) Lr=(O, W+2d, +R+Rcosa] Equation 7.18

Finally, the maximum velocity for the moving obstacle is the maximum of those

obtained for turning left and right, as found in Equations 7.11 and 7.18, namely

Vbm- -ý max(Vlmax)
Vmax) Equation 7.19

Therefore, [0, Vb...,) is the range of the velocity that the moving obstacles can select

and this range ensures that there is at least a path that can be generated for the robot

to avoid the moving obstacle.

According to the above analysis, the detection range bounds the maximum width of

the moving obstacle that can be viewed before taking actions. On the other hand, the

moving velocity of the obstacle is also constrained for given detection range to avoid
inevitable collisions. Although a larger detection range provides more time for the

robot to avoid the moving obstýcle, in such a case the maximum lateral dimension of

180

Chapter 7: Waypoint-based navigation in dynamic environments

the moving obstacle to ensure a collision-free path would be reduced. The

introduction of the fixed detection range in this chapter simplifies the analysis and

provides a single value for the maximum width.

7.4.2 Mobile robot dynamic avoidance behaviour

If the current path becomes infeasible due a moving obstacle, the robot must
determine whether it should turn left or right with respect to its current heading to

avoid the collision. Should only one direction be feasible, this will be taken. However,

the situation becomes more complex if both are feasible and a choice must be made
based upon the characteristics of the possible path. The robot could select the turning

direction according to the relative lengths of the alternative paths to the goal, the time

consumed in avoiding collision threats, or the turning angle. Here, the selection of the

route to be taken is based on the length of the revised path to the goal, where the

robot chooses the shorter path and the positions of other static obstacles within the

detection range. Figure 7.5 illustrates the method by which the robot chooses the

avoidance path.

if the current path is infeasible
assess the possibilities of turning left and right
if turning left (or right) is feasible and the other is infeasible

turn left (or right)
else if turning left and right are all possible

check if any of them is blocked by static obstacles
if turning left (or right) is blocked and the other is not

turn right (or left)
also

select shorter path
end if

end if
and if

Figure 7.5 Algorithm for moving obstacle avoidance.

A. Feasibility of the current path
When determining the feasibility of a path (that is, to ensure no collision with the

obstacle will occur), the moving obstacle's dimensions are enlarged by the value of
the robot diameter, allowing the robot to be treated as a point. The algorithm first
determines the crossing point between the current path of the robot (with the robot
treated as a point and the path simply being a line) and the path edge of the moving

181

Chapter 7: Waypoint-based navigation in dynamic environments

obstacle which the robot is currently approaching. This crossing point, P, is illustrated

in Figure 7.3(b) with the straight broken line shown from the robot to the goal

representing the current path. The time from the current position of the robot to P and

the time from the current position of the obstacle to P can then be estimated in

conjunction with the velocity of both the robot and the obstacle. If the robot takes a
longer time to reach P than does the moving obstacle, the current path is infeasible. In

such a case, the robot will attempt to avoid possible collision with the moving

obstacle by turning left or right with respect to its current heading.

B. Turning left or right

Figure 7.3 shows the situation where the robot moves with a component of the

velocity of the robot in the direction opposite to the moving direction of the obstacle,

when the component of the velocity of the robot is projected along the longitudinal

dimension of the obstacle. For such situation (7r /2<a :5 3n / 2), a set E) of angles 8

for turning left (substituting P with 8,1) or right (substituting fl with P,,,) can be

deduced from the inequality in Equation 7.20. The inequality indicates that the

distance at which the obstacle moving at Vb over time T is less than D, the distance to

the escape point from the position when the moving obstacle first enters the detection

range. This ensures that the robot escapes from the path of the moving obstacle before

its arrival. The set of angles is given by

(, 0 1D> VbT, 0 <, g < 2; r) Equation 7.20

where T and D can be calculated from Equations 7.4 and 7.5 for turning left, when

L<W+ 2d, +R+R cos a or Equations 7.11 and 7.12 for turning right, when

L<W+ 2d, +R-R cos a If 0E () , then turning left or right is infeasible,

otherwise, the set 0 contains all feasible turning angles and the robot can select one

according to the optimisation goal. For the situation where L=W+ 2d, +R+ Rcosa

for turning left or L=W+ 2d, +R-R cos a for turning right, the robot should turn

by an angle greater than z-a for left or a for right. When L>W+ 2d, +R+R cos a

the moving obstacles are extended along its longitudinal dimension, so that the robot I
can n egotiate the extended obstacle under reactive control. Such manipulation enables

182

Chapter 7: Waypoint-based navigation in dynamic environments

the moving obstacle to be treated as being stationary with respect to its lateral

dimension. Furthermore, such a distance between the robot and the extended obstacle
(note this distance is larger than the minimum distance that the robot is required to

turn) ensures that the robot is able to avoid the moving obstacle. In the experiments

presented in this chapter, the extension length was set to be'sufficiently long to

prevent the robot from crossing the moving obstacle from the front of the obstacle.

Figure 7.6 shows examples of the robot turning (a) left and (b) right to avoid a

potential collision with an obstacle moving in the same direction as the component of

the velocity of the robot which is projected on to the longitudinal dimension of the

obstacle (i. e., 0: 5 a:! g 2/7r or 3/2n<a <2n). The set E) of of anglesfithat the robot

is able to turn left (substituting fl with fll) or right (substituting 8 with &) without

collision can be derived from Equation 7.20, in which T and D can be deduced from

each of the two different turning directions.

For turning left, the travel time T is

T
P.,,

+L-R cos a+R cos(a +, 8.,,)

0), V,. sin(a + fl., j)

L E(O, Rcosa+R) and 8.,, E 0, cos-i
R cos a-L- a] Equation 7.21

R

and D is

Db -R sin a+R sin(a +, 8,,) + [L -R cos a+R cos(a +, B,,)]cot(a +, 0,,)

Equation 7.22

When R+R cos a: 5 L<W+ 2d, +R+R cos a, Equations 7.21 and 7.22 remain

applicable for T and D with 8.,, r: (0, ;r- a). The robot should turn an angle greater

than 7r -a to avoid the moving obstacle, for the case when L=W+ 2d, +R+R cos a.

When L>W+ 2dr +R+ Rcos a, the robot can, under reactive control, avoid the

moving obstacle that has been extended along its longitudinal dimension.

183

Chapter 7: Waypoint-based navigation in dynamic environments

The values of T and D when turning right, are as follows. When

L>W+ 2dr +R- Rcos a, the robot is able to turn through its minimum radius to

avoid the oncoming obstacle, and this can be implemented by extending the bounding

rectangle of the moving obstacle along its longitudinal dimension and then allowing

the robot to operate under reactive control. For the case where

L=W+ 2dr +R-R cos a, the robot must turn by an angle greater than a to avoid

collision. For the case where R-R cos a<L<W+ 2d, +R-R cos a, T and D are

determined separately for two ranges of turning angles. When the turning angle is less

than a, T and D can be determined from Equations 7.23 and 7.24,

T=8 "' +L+R cos a-R cos(a -, 8,,)
6,, E (0, a) Equation 7.23

W, V, sin(a - P,,)

D= Db +R sin a-R sin(a + [L +R cos a-R cos(a -, 8,,)]cot(a - P,,)

Equation 7.24

otherwise (, 8,, E a, cos-I
R cos a+d+ a]), T and D are given by

R

T= '8 "" +d+R
cos a-R cos(a -, 8,,.)

e a, cos-I
R cos a+d

+- a
Wr V, sin(a RI

Equation 7.25

and

D,, b +R sin a-R sin(a -, 6,,) + [d +R cos a-R cos(a -, B.,,)]cot(a - P,,)

Equation 7.26

where d= L-W-2d,

Note that a turning angle fl, equal to a is considered to be infeasible as the robot
following such path is unable to escape from the moving obstacle.

184

Chapter 7: Wqyj)oinl-h(ised ntivigtilion in dyntimic envil-oninews

When L !ýR-R cos a, 7' and D can be expressed by Equations 7.23 and 7.24 with

Rc
0, a- cos-'

L+ osa

(1

(a) turning lell

6

(J
.

(b) turning right

Figure 7.6 Ail example where tile robot moves with a component ot'lls velocity ill tile sillic
direction as the moving obstacle, when the component ofthe velocity ofthe robot is pro. jected

along the loligitudinal dimension of the moving obstacle. (a) shows tile robot turning left to
avoid the collision and (b) tUrning right.

185

Chapter 7: Waypoint-based navigation in dynamic environments

The dynamic waypoint method delivers the following benefits compared with

existing approaches.
No training process is required. In contrast, an appropriate training process has to

be carried out to ensure proper avoidance behaviour in CBR (Kira and Arkin 2004;

Urdiales et al. 2003a, 2003b and 2006), fuzzy-logic approaches (Malhotra and
Sarkar 2005; Zhu and Yang 2004), and the neural network system (Kubota 2004;

Low, Leow and Ang Jr 2003; Min 2005).

2. Implementation is in the original workspace. PF (Ge and Cui 2002; Kurihara et al.
2005) and VFH (Borenstein and Koren 1991; Ulrich and Borenstein 1998 and
2000) need to construct an artificial potential field embedded with temporal
information.

3. The direction of motion is optimised by look-ahead verification using a set of

collision-free solutions. This was also achieved in the approaches in some

previous work (for example Minguez et al. 2001; Stachniss and Burgard 2002;

Ulrich and Borenstein 2000).

4. No prior environmental information is required. A number of existing avoidance

techniques (Minguez et al. 2001; Stachniss and Burgard 2002) incorporate

environmental information into the local avoidance navigation in order to deliver

an optimal solution.

5. The motion constraints are taken into account to generate the avoidance command.

online planning by aEP/N++ (Smierzchalski and Michalewicz 2000 and 2006)

and the vertex++ planner introduced in chapter 5 are not appropriate in

determining an avoidance command as no motion constraints are considered.

The dynamic waypoint method is capable of delivering a good avoidance solution

and with only a short execution time. The experimental studies' presented in section

7.6 further evaluate this algorithm. -

7.5 Deliberative module

The set of waypoints, determined by the waypoint detector, forms a compact
description of the environment and greatly reduces the memory capacity requirement.

186

Chapter 7: Waypoint-based navigation in dynamic environments

The strategy for the selection and recording of waypoints is same as that used in the

navigation system introduced in the previous chapter. However, the selection of

waypoints is constrained to those generated from the presence of static obstacles only.
Following the initial identification of a waypoint, two possible new headings are

available to the robot to circumnavigate the static obstacle indicated by the waypoint.
As only one of these two can be investigated, a waypoint is marked as unexplored

until the second heading has been taken (perhaps at a later stage as part of a separate

navigation task).

Three functions are undertaken as waypoints are acquired, namely localisation,

exploration and planning. These three functions are directly inherited from the

previous navigation system with an extension made for the exploration function.

Exploration of the segments between pairs of waypoints is performed in a statistical

manner (further explanation is provided in section 7.5.1) in order tQ provide estimates

of likely future travel times. This permits complete paths from start to goal positions

to be generated using only the waypoints and the mean travel times for each segment.

Further explanations of the additional functions can be found in the previous chapter.

7.5.1 Statistical exploration

A technique, termed as 'statistical exploration', was developed in an attempt to

summarise the dynamic characteristics of the environment. This is realised by

performing navigation between a pair of waypoints for a number of times, and the

travel time, taken for planning the segment connecting the pair of waypoints, is the

mean value of the travel times recorded for the number of navigations between the

pair of waypoints. A learning process can be employed to achieve the statistical

navigation between a pair of waypoints, when the robot is free from any assigned

navigation task. Alternatively, the dynamic characteristics between a pair of

waypoints may be estimated as a result of previously navigations between the two

waypoints. In this work, the first method is used for statistical navigation between a

pair of waypoints, where movement between all pairs of waypoints been followed for

the same number of times, as specified by user. This technique may bring benefit

when planning a suitable path in dynamic environments, particularly where a large

187

Chapter 7: Waypoint-based navigation in dynamic environments

number of moving obstacles are likely to be found between certain pairs of waypoints,
but a few are likely found between other pairs of waypoints. Section 7.6 reports the

experimental studies for this technique. In static environments, the experience

gathered from previous travels can be used to improve performance in future

navigation activities. If dynamic obstacles exhibit repetitive characteristics or their

collective movements in the environment are non-uniform in nature, such features

can be extracted into a statistical representation for use in future operations. However,

it needs to be acknowledged that such a statistical representation will provide little or

no useful information in environments where the movement of the dynamic obstacle
is random.

7.6 Experimental results

To verify the operation of the enhanced navigation system, three sets of experiments

were conducted using a set of simulated environments. The simulations used an

autonomous mobile robotics toolbox (Brno University of Technology 2006) modified

to render it compatible with version 7.0 of MATLAB (Mathworks 2006). A

description on the simulator and the robot was given in section 6.5 where justification

for such an experimental arrangement was also provided. The function of the first set

of experiments was to test the performance of the navigation architecture in the

presence of moving obstacles. The second set illustrates the effect of the path

statistics generated upon the choice of path. The final set compares the proposed

avoidance technique with the ND algorithm (Minguez et al. 2001; Minguez and
Montano 2004; Minguez, Osuna and Montano 2004; Montesano, Minguez and
Montano 2005) as used in the implementation of a hybrid architecture (Minguez and
Montano 2005; Minguez, Montesano and Montano 2004). The ND algorithm was

originally developed as a novel reactive approach for the obstacle avoidance problem

(Minguez et al. 2001; Minguez and Montano 2004), but was extended for application

to navigation in environments containing moving obstacles (Montesano, Minguez and
Montano 2005). Although the authors discussed the comparative performance of their

approach with other avoidance techniques and summarised the benefits of their

technique (further details can be found in Minguez et al. 200 1; Minguez and Montano

188

Chapter 7: Waypoint-based navigation in dynamic environments

2004), no experimental comparison was carried out. A brief description of the ND

algorithm is provided in section 7.6.3 in order to better understand the comparison

results. ND has been chosen for comparison purposes as it operates in the original

workspace and, as it computes avoidance commands according to a small set of pre-

defined general patterns, ND does not require a training process. The other methods
found in the literature are not suitable for comparison here, as they either transform

the workspace to an alternative representation (DW, VO, VFH, PF) or require a

training process (CBR, fuzzy logic, neural networks).

7.6.1 Dynamic avoidance

Figure 7.7 shows examples of trajectories followed by the robot in an environment in

which the initial placement of the moving obstacles is random. For the test presented

in Figure 7.7, a simple algorithm was designed to determine the trajectory of the

moving obstacles, namely that the each obstacle continues to move forward following

its current heading unless it detects another obstacle, whereupon it turns left. An

additional constraint on the motion of the obstacles is that they maintain their current

direction when within the detection range of the robot. The robot may fail to avoid

collisions when turning left or right due to the presence of several obstacles

approaching the robot from the front and two sides of the robot. In such

circumstances, the moving obstacles were designed to be able to reverse direction in

an attempt to avoid collision. Additional behaviour, termed 'waiting behaviour', was
developed to deal with the situation where both dynamic and static obstacles

simultaneously hinder the robot's progress. In this situation, the robot stops and waits

for the path to become clear if it is not possible to avoid collision by turning left or

right. This behaviour is apparent in the later experiments presented in Figure 7.10

where the robot waits for the junctions to become clear.

The first experiments were conducted with dynamic obstacles constrained to move at

a constant speed, Figure 7.7(a), before this constraint was relaxed, in Figure 7.7(b).

The range of the velocity for the moving obstacles was determ j ined according to their

widths, using the mathematical description in section 7.4. The constant speed for the

moving obstacles used in the experiments was 0.52ms"' which was slightly less than

189

Chapter 7: Waypoint-based navigation in dynamic environments

the upper bound of the determined range (as the upper bound was not included in the

determined range), while the robot travelled at a constant speed of O. Sms"' (this value

was used in the training of reactive behaviours). A series of experiments was

conducted in which the robot successfully avoided potential collisions with the

moving obstacles by virtue of its high-level beýhaviours.

Market

9

a

I

X direction (m)

Market

os ft

40 2

E
r2

MAIM
X direction (m)

0
b

G
4

(a) obstacles moving at constant speed (b) obstacles moving at random speed

Figure 7.7 Trajectories followed by the navigation system. The solid objects represent the
static obstacles and the moving obstacles are illustrated by non-solid objects. The solid
markers with labels, 'S' and 'G' indicate the start and goal points respectively, and the

circular markers represent the waypoints, generated.

7.6.2 Statistical exploration

The 'sea' environment simulates a set of ships cruising at sea, with the ship under

navigation moving goods repeatedly between two speci ic ports, while the chan el fn

between the ports is populated with static islands and a number of ships moving in a

shipping line passing vertically through the environment. The moving ships travel at a

constant speed of 8 knots and appear at an arrival rate of X according to a Poisson

distribution. The navigated ship also travels at 8 knots if the path is feasible, but is

able to stop and wait if the current path becomes infeasible due to the possibility of

collision. Figure 7.8 shows the navigation results for the sea environment when the

moving obstacles follow the Poisson distribution with a range of arrival rates. In each

case the navigated ship explored each path 10 times and the subsequent best paths

190

Chapter 7: Waypoint-based navigation in dynamic environments

were then generated based on the mean travel time for each path segment. The aim of

the planner was to minimise travel time, and the results are shown in Table 7.1.

Sea

.F

m

Sea

E
m 32
s
m

X direction (nautical mile)

(a) X=2 ships/hour

Sea

E

T-2 31 45

X direction (nautical mile)

0,

X direction (nautical mile)

X=4 ships/hour

Sea

E

I
"1

0
X direction (nautical mile)

(c) X=6 ships/hour (d) X=8 ships/hour

Figure 7.8 The generated paths for the sea environment for a range of arrival rates of moving
obstacles. The markers, 'S' and 'G', indicate the start and goal points respectively and

circular markers denote the generated waypoints. The thickened line is the path generated by
the planner.

191

Chapter 7: Waypoint-based navigation in dynamic environments

Table 7.1 Path costs for the best path in terms of mean travel time found from 10 traverses
of each path segment.

X (ships/hour) -2 4 6 8

travel time (hours) 0.91 0.94 1.06

From Figure 7.8 and Table 7.1, it can be seen that the navigated ship selects a more

circuitous path to reduce the longer expected delay that is likely to results when the

number of ships in the channel increases. Examples of such cases can be seen in Fig

7.8(c) and Figure 7.8(d) where a longer path around the uppermost island is taken in

order to avoid the congested area in the centre of the channel. When few ships are

likely to be present in the channel (Figure 7.8(a) and 7.8(b)), the navigated ship

continues to travel through the more direct central area, on some occasions choosing

to wait for the channel to clear. This strategy appears better able to keep travel time to

a minimum in conditions of light traffic.

The 'road' environment in Figure 7.9 simulates a network of roads and mimics traffic

levels found at different times of day. Figure 7.9(a) shows the environment which

incorporates the rule that all moving obstacles must drive on the left, as illustrated by

the arrows. However, as the robot was not equipped with knowledge of traffic

regulations, a modified version of the environment was produced to ensure the

robot's adherence to traffic rules, as shown in Figure 7.9(b) (note that the

environment was modified for only the navigation task illustrated in Figure 7.10). At

each sampling time, two separate sets of sensor readings are obtained; the set from

Figure 7.9(a) producing information regarding the dynamic environment and that

from Figure 7.9(b) reflecting the static one. In a practical implementation, the robot

could be equipped with two sets of sensors; one for sensing road markings and the

other to detect dynamic objects in the environment.

192

Chapter 7: Waypoint-based navigation in dynamic environments

Road

F
c

'0

IOU

------------- 400

ýmj
300

250 ------

200

I

"Vol I
150-

loo,

so

Ow-, Iv,!!! M 1.

F

00
200 300 406 SE 0

Road
400

400- ---------------

350-

300

250

200

ISO

100

50

01 18

--, ýF 0 100
200 300 400 so

ýE
9

10
X direction (m) X direction (m)

(a) original environment
(b) modified environment to

include traff ic rules

Figure 7.9 Robot movements in a road environment. The arrows in (a) indicate the moving
directions of the vehicles and (b) is the modified environment to ensure conformance with

traffic regulations.

The mission for the robot to conduct in the test environment was to travel between

two specific locations on a number of occasions during a day. The robot can then plan

a best path in terms of travel time based on the waypoints obtained during the

pertaining traffic patterns. The vehicles move at a constant speed of 45kmh7l when

passing through junctions, and the same speed was also assigned to the robot, except
that the robot was able to stop and wait for junctions to become clear. The waiting
behaviour was realised by viewing the road edges and traffic markings as static

obstacles. Varying traffic conditions were simulated with three separate values of

arrival rate with the aim of minimising travel time from start to goal. The paths

generated are presented in Figure 7.10 and the times needed to follow the planned

paths the three situations are listed in Table 7.2.

193

Chapter 7: Waypoint-based navigation in dynamic environments

Road Road

E
c

V
>.

450

400- -----------

350-

300'

250 ------

200

150-

loo.

50-

0
0 100 200 300 406 50

X directon (m)
0

(a) 15 vehicles per minute for each of the
twojunctions

49W 1 1------- -ý -I.

400
--

350

300

250

200

150

100

50
S
L

E

0 100 200 300 400 500
X direction (m)

(b) X= 30 vehicles per minute for the left
junction and X= 15 vehicles per minute

for the right junction

Road

'iý
C

450

400 ----------

350

300

250

200,11 11 1

15

100

50-

0
0 100 200 300 400 500

X directon (m)

(c) X= 30 vehicles per minute for each of the two
junctions

Figure 7.10 The paths generated for three traffic conditions. The markers 'S' and IG',
represent the start and goal points for the robot and circular markers denote the generated

waypoints. The thickened lines indicate the path generated by the planner.

Table 7.2 Path costs for the best path in terms of travel time obtained over 10 experiments
for each path segment.

leftjunction 15 30 30
(vchicles/min) rightjunction 15 15 30

travel time (s) 41.4 74.4 78.6

194

Chapter 7: Waypoint-based navigation in dynamic environments

It can be seen from the above results (Figure 7.10 and Table 7.2) that when there was
heavier traffic at the junctions (larger values of X), the robot selected the longer path
to the destination as this route is likely to save travel time. Figure 7.10(a) has light

traffic and the robot can take the shortest path (in length) to the destination with few

delays at the two junctions. In Figure 7.10(b), more vehicles passed through the left

junction, whereas the arrival rate remained the same the right junction. As more time
is required on average for the robot to pass through the left junction, the robot may

choose the longer path to avoid the increased traffic. The heaviest traffic conditions
for the two junctions are shown in Figure 7.10(c) and here the robot took a longer

path to the destination to reduce travel time.

7.6.3 Comparison of dynamic avoidance behaviour

This section first introduces the ND method (Minguez and Montano 2004 and 2005;

Minguez, Montesano and Montano 2004; Minguez, Osuna and Montano 2004;

Montesano, Minguez and Montano 2005), which has been chosen to provide a

comparison with the proposed avoidance technique, then presents the results of the

comparison which are finally discussed. The reason to select ND algorithm for

comparison study was given in section 7.6.

The ND algorithm solves the avoidance problem by performing simplifications and

applying the motion laws corresponding to each situation identified from the five pre.
defined environmental configurations. A binary tree was used to match the sensor

information received with the five configurations. The inputs of the binary tree are

the obstacles, the robot and goal locations, and the tree outputs one of the pre-defined

configurations by selecting a branch according to the criteria based on inputs and

their relations. According to the motion law associated with the configuration

identified, a motion command can be computed to produce the best behaviour suited

to the current configuration. For each moving obstacle, the location at which a

collision occurs in the direction of motion of the robot is computed using the current

robot and obstacle velocities, with both the robot and the moving obstacle being

assumed to move at constant linear velocities. The obstacle is then placed on the

195

Chapter 7: Waypoint-based navigation in dynamic environments

collision location as a temporary static obstacle and is taken into account in the

situation perceived when generating avoidance commands. Further information can
be found in the literature (Minguez and Montano 2004 and 2005; Minguez,

Montesano and Montano 2004; Minguez, Osuna and Montano 2004; Montesano,

Minguez and Montano 2005).

The first comparison was conducted for three simple configurations where the robot

encountered a single moving obstacle, these being representative of situations where

the angle between the moving directions of the robot and the obstacle is (0, a]. The

paths generated by the ND method and by the dynamic waypoint avoidance (DWA)

technique are shown in the left and right columns of Figure 7.11 respectively and the

quantitative results are given in Table 7.3. Figure 7.11 illustrates three situations of

potential collision between the robot and an obstacle moving from right to left. Case I

presents the situation where the horizontal component of the velocity of the robot is

in the opposite direction to that of the moving obstacle and its vertical component is

not zero, so that the angle between the directions of motion of the robot and the

moving obstacle is in the range (x/2, n), before the obstacle is detected. In the second

configuration, labelled as Case 2, the robot moves in such direction that the horizontal

component of the velocity of the robot is in the same direction as that of the moving

obstacle and therefore the angle between the robot and moving obstacle is in the

range (0,7r/2), before the obstacle is sensed. Case 3 shows the robot initially moving
in the opposite direction to the moving obstacle so that the angle between the robot

and the moving obstacle is n.

196

Chapter 7: Waypoint-based navigation in dynamic environments

Case 1 Case I

9
c

'0

Uh! iI (1)1I1U UllhI11I IiIIflhIfl hIItTI1III I1II 11W) T IJ III-U1t
1 2 3 4 5

I
6

i - 7
X direction (m)

Case 2

9
C

U

V
>-

1 2 3 4 5 6 7
X direction (m)

Case 3

9

>-

s

2
a

X direction (m)
Case 2

S

E

C

>-

G

X direction (m)
Case 3

E

>-

X direction (m) X direction (m)

Figure 7.11 The paths generated by ND (left column) and the DWA algorithm (right
column) for three cases. The markers 'S' and 'G', represent the start and goal points for the

robot. The solid lines indicate the trajectories taken by the robot, and the dashed lines present
the paths of the moving obstacle.

197

Chapter 7: Waypoint-based navigation in dynamic environments

Table 7.3 Path length and execution time taken by ND and the DWA technique for three
cases.

case algorithm path length execution
(m) time (s)

ND 8.2 5.08
DWA 7.58 8.06

2
ND

DWA
8.15
8.9

4.97
10.8

3
ND

DWA
7.25
6.33

4.69
6.84

It can be seen that the paths generated by DWA are shorter than those produced by

ND for cases 1 and 3. When moving obstacles are detected, ND attempts to adjust the

direction of motion towards free space close to the goal point, but the robot attempted

to move away from the obstacle, as shown for cases I and 3. Under the control of
DWA, the robot narrowly avoids the moving obstacle, as motion is based on the

criteria of minimising path length. For case 2, the robot took a longer trajectory under

navigation by DWA than by ND. It can be seen that the first part of the path is

different for two algorithms, with obstacle avoidance under ND beginning earlier

than that under DWA, even though the detective sensor range was the same for the

two navigation systems. To follow closely the goal direction, the robot controlled by

DWA avoids the moving obstacle only when necessary. In DWA, the robot moved
ftirther to the left in avoiding the obstacle compared with that in ND, implying that

the robot under ND control tends to be slower in its movements as the robot often

performed rotational movements when the distance between the robot and the moving

obstacle is close to the limit of the sensor range. More specifically, when the robot's
distance from the obstacle is slightly less than the sensor range, the robot attempts to

move away from the obstacle, so that it can no longer be detected and the robot then

resumes motion towards the goal point. The robot may then detect the presence of the

obstacle again and the cycle repeats. Note that ND was designed for a robot that has

no translational displacement while under rotation, which is a principal limitation

discussed by ND's authors (Minguez and Montano 2004). The execution times for the

complete trajectory as shown in Table 7.3 for the two algorithms, indicate that DWA

198

Chapter 7: Waypoint-based navigation in dynamic environments

produced a slightly slower response than did ND, but the mean execution time

required for each step of decision-marking is approximately 30ms, a promising result
for real-time navigation.

Figure 7.12 shows the paths followed by the robot under the control of ND and DWA

for the same start and goal points in each of four environments containing identically

5,7,9 and II moving obstacles. Simple motion ability was designed for each

obstacle, in that they continued to travel forwards unless any obstacle other than the

robot is detected, where it turns to the left by a pre-defined angle. Table 7.4 shows the

results of the quantitative evaluation of the path length and execution time.

Five moving obstacles

9
c

'Cý' ý ' k r ,
- t -llo v

X direction (m)
Seven moving obstacles

7.

40\ 40 E

2.

X direction (m)

G

Five moving obstacles

2.1 "1 11

X direction (m)
Seven moving obstacles

7.

X direction (m)

199

Chapter 7: Waypoint-based navigation in dynamic environments

Nine moving obstacles

ý9
c

E
a

2.1
1-

s

2.5 5 7.5 10

Nine moving obstacles

r

7. C

E

2 I

'a

,
Iý

r \
ý ý/

,

2 .
1 -

X direction (m)
Eleven moving obstacles

J 7.

2.1

j '000 s

X direction (m) X direction (m)

Figure 7.12 The paths generated by ND (left column) and DWA (right column). The
markers 'S' and 'G', represent the start and goal points for the robot. The solid lines indicate

the trajectories taken by the robot, whereas the dashed lines are the paths of the moving
obstacle.

200

X direction (m)
Eleven moving obstacles

Chapter 7: Waypoint-based navigation in dynamic environments
I

Table 7.4 Path lengths and execution times taken by ND and DWA for four configurations
shown in Figure 7.12.

number of path length execution dynamic algorithm (m) time (s)
obstacles

ND 15 24.6
5

DWA 11.7 27.8
ND 14.4 31.6

7
DWA 12.2 34.2

a
ND 21.3 53.6

DWA 12.4 42.2
ND 16.9 51.3

DWA 12.7 52.3

The paths computed by DWA are subjectively smoother than those produced by ND,

probably due to the oscillations that arise in the latter algorithm, as discussed earlier.

The shorter path generated by DWA results from the narrow margins used to avoid

moving obstacles, whereas ND tended to err on the side of caution and gave greater

leeway to moving obstacles. During the experiments, it was observed that the robot

under ND control frequently collided with the moving obstacles on more than one

occasion as it headed to the goal. Recalling that in the ND algorithm calculations are

performed by assuming the moving obstacle is at collision location, it appears this

strategy may cause problems when the robot is unable to completely leave the path of

the moving obstacle once it is at the collision location. From table 7.4, ND can be

seen to have a shorter execution time, except for the situation where 9 moving

-obstacles were present. Since the execution of the robot and moving obstacles were

performed in a sequential manner, the execution time increases with the number of

moving obstacles.

7.7 Comparison with other hybrid architectures

A number of hybrid architectures reported in the literature were designed for

navigation problems where a number of moving obstacles are presented. A brief

description of those architectures was given in section 7.1 and the reasons for

selecting architectures for comparison with DWA are as follows: (a) the planning

modules in those architectures have a tactical role in guiding the robot; (b) the

201

Chapter 7: Waypoint-based navigation in dynamic environments

reactive parts are in charge of local navigation and (c) the hybrid systems were

claimed to be able to navigate in environments containing moving obstacles.

The systems implemented by Low, Leow and Ang Jr (2002 and 2003), Minguez and
Montano (2005), Minguez, Montesano and Montano (2004) and Urdiales et al.
(2003b) all operated in grid environments, whereas DWA operates on the original

workspace of the robot to directly generate a set of waypoints for the static aspect of

the environment. No metric map is required to generate an abstract topological map

or a path.

The hybrid architecture proposed by Low, Leow and Ang Jr (2002 and 2003) was

arranged with a short time scale for the reactive model and long time scale for the

deliberative planning. The inputs for the target reaching, obstacle avoidance, and
homeostatic control of the reactive model are checkpoints, local obstacles, and the

internal states respectively. Planning operates on the world model. Four layers were
developed for the architecture in Urdiales et al. (2003b), with the geometrical

modelling layer constructing a grid map through sensors, the topological modelling
layer abstracting a topological map from the grid, the router planner operating on the

topological map, and the local navigation layer reacting directly to the sensory

information. The planning and reactive motion modules in the navigation system
described by Minguez and Montano (2005) and Minguez, Montesano and Montano

(2004) operate on the grid map constructed from the sensor readings with the path

generated in the planning module assisting the local navigation. In contrast, DWA

was specifically designed for application in dynamic environnients in that three layers

were defined according the different environmental information coupled to each layer

and the information accounting for the three different aspects of the dynamic

enviromnents.

7.8 Discussion

The experimental results presented in section 7.6 verify the strategy proposed for

avoiding collisions with moving obstacles and the effectiveness of statistical

202

Chapter 7: Waypoint-based navigation in dynamic environments

explorations for the identification of characteristics of dynamic environments.
Although the avoidance technique presented in this paper was designed to deal with a

single moving obstacle, an avoidance command can be determined for the robot
facing multiple moving obstacles by selecting the intersection of the avoidance
directions of each individual moving obstacle. Furthermore, additional behaviour was
developed to deal with the situation where both dynamic and static obstacles hinder

the robot's progress simultaneously. The waiting behaviour is more apparent in the

traffic environments (see Figure 7.10 for an example). As reversing is normally not

permitted in traffic roads, the robot stops and waits in front of the congested junctions

until they become clear. Further investigation is required to verify the navigation

strategy when multiple moving obstacles are presented concurrently. However, it

must be recognised that, in realistic environments that do not embed any intelligence

in the moving obstacles, it cannot be guaranteed that collisions can always be avoided.
The experimental results reported in the previous section show the effectiveness of

the statistical exploration in planning a suitable path while minimising travel time.

For environments that exhibited no apparent dynamic characteristics, the statistical

exploration may provide few heuristics to direct the planning.

The dynamic avoidance behaviour proposed in this chapter assumes the heading of

the moving obstacle remains the same when entering the detection range. This

assumption can be relaxed by the inclusion of the angular velocity of the moving

obstacle when generating a new path. To avoid inevitable collisions with the robot,
the angular velocity of the moving obstacle needs to be constrained within a certain

range when the moving obstacle appears in the detection range. The method

presented here can be used with minimum modification for the situation where the

moving obstacle can rotate when in the detection range.

Although the experimental results reported in this chapter were obtained for the robot

moving at constant speed, the method proposed is still applicable to a robot with

variable velocity.

203

Chapter 7: Waypoint-based navigation in dynamic environments

Also, it would be interesting to investigate what behaviours might result if the same

control algorithm is applied to multiple robots, and communication between robots

regarding traffic rules (such as walk on the left) could potentially greatly reduce the

likelihood of collision.

7.9 Conclusion

This chapter has taken an existing hybrid navigation technique that is able to avoid

static obstacles and has extended it for application in dynamic environments. The

necessary constraints on the physical dimensions and velocity of the moving

obstacles to avoid collisions with the robot have been determined. A series of

experiments in which dynamic objects moved in a random manner demonstrated that

a robot equipped with this high-level behaviour can successfully avoid collision.

Statistical recording of the times taken for the robot to traverse paths between

waypoints, during exploration was shown to be effective in planning appropriate

future paths. However, one of the limitations inherited from previous navigation

systems is that the planning of a suitable path is performed between the same start

and goal points as those used when collecting the waypoints. An approach designed

to overcome this limitation is reported in the next chapter.

204

Chapter 8: Generalised waypoint-based navigation system

Chapter 8

GENERALISED WAYPOINT-

BASED NAVIGATION SYSTEM

The navigation system presented in this chapter is a generalised version of the

waypoint-based navigation system introduced in the previous two chapters. The

navigation systems described thus far are limited to planning robot movements
between the same start and goal points as were assigned in earlier navigation tasks

and, the waypoints used in the previous two chapters are task-oriented. This chapter
describes the results of implementing a scheme to allow navigation to be planned

between arbitrary start and goal points. This is achieved by preserving the main

structure of the waypoint system, but adding an extension that is able to record and

apply information stored in a compact fashion regarding earlier navigation activities
between pairs of waypoints. The work presented in this chapter will be submitted to

the IEEE Transactions on Systems, Man and Cybernetics, part B.

This chapter firstly reviews the relevant literature, and gives an overview of the

generalised navigation system, before giving the formal definition of the waypoints

and describing in more detail the environmental knowledge stored in the database.

The planning algorithm itself is presented in section 8.4, with emphasis given to

differences from the waypoint algorithm of earlier chapters. The experimental results

are presented in section 8.5.1

205

Chapter 8: Generallsed waypoint-based navigation system

8.1 Related work to path approximation and graph search by genetic

algorithms

The navigation system introduced in this chapter preserves the main structure of the
hybrid architectures presented in the previous two chapters) albeit with modifications
to its components, knowledge base and deliberative module, so as to empower the

planning for future navigation. This section concentrates on the literature related only
to the modifications.

Spline techniques (de Boor 1978; Kvasov 2000; Noggle 1993) have been widely used

to generate trajectories by interpolating a set of points that the robot needs to traverse

(for example Connors and Elkaini 2007; Dyllong and Visioli 2003; Guan et al. 2005;

Hao and Agrawal 2005; Magid et al. 2006; Nikolos et al. 2003; Park and Bobrow

2005). The main reason to adopt splines rather than straight line segments is that

trajectories constructed by splines are smooth avoiding sharp turns and

accommodating the dynamic constraints of the robot (such as being unable to rotate

without translational displacement). In robot navigation, cubic splines are the most

popular choice as they possess the important feature of second order continuity, that

is continuity of location, speed and acceleration (Guan et al. 2005; Korb and Troch

2003). A number of authors describe the application of splines to curve-fitting

problems in robotics. Simon and Isik (1993) applied trigonometric splines to

approximate the desired robot path within a given knot tolerance. Gu and Owens

(1998) developed a system in which a parametric cubic spline was used to represent
the observed motion of a human operator to provide an imitation by a robot. Korb and
Troch (2003) developed a data reduction algorithm for manipulator path planning

using cubic splines to approximate a given path created by linear interpolation using a
least-squares method within a certain error bound. The aim was to represent the

original path by a cubic spline within the specified error bound and with as few knots

as possible. The principal idea was to assign each knot a weight estimated according
to its significance in the approximation with the knots being deleted in order of least

importance if a proposed spline satisfies the specified accuracy. However, if the

approximation accuracy is not met, the algorithm will insert additional knots close to

206

Chapter 8: Generalised waypoint-based navigation system

where the error bound was exceeded. Bessonnet; Seguin and Sardain (2005)

presented an algorithm for walking pattern synthesis where the generalised

coordinates of motion were approxianited by a spline fitted at specified knots

uniformally spaced in time along the path. A least-squares method was used to fit the

curves, there being no rigid requrement to pass through the knots.

The use of GAs when operating in grid-based or in the original workspace was

reviewed in chapters 4,5 and 6, but a specific area not covered and of relevance to

the work in this chapter is recent work in which GAs have been applied as a graph

search technique, particularly for the shortest path problem. This literature is

reviewed in this section. In recent literature, there has been an increasing number of

reports investigating the application of GAs to the shortest path problem, defined as
finding a path between two designated nodes with minimum total length or path cost.
it is a fundamental problem for many applications, such as transportation, routing and

communication (Davies and Lingras 2003; Gen, Cheng and Oren 2001; Sniedovich

1988). The GA proposed in (Ahn and Ramakrishna 2002) randomly initialised a set

of routes constrained to be feasible paths in which all nodes in the path visited only

once. The site for the one-point crossover operator was restricted to a pair of common

genes of the parents, randomly selected by the pairwise (the tournament size is two)

tournament selection strategy. The mutation operator altered the partial route from the

mutation node to the destination node using the initialisation mechanism.
Furthermore, the efficiency of the proposed GA was verified by favourable

experimental comparisons with Dijkstra's algorithm and two other GAs reported in

the literature. GAs with a similar structure were developed or adopted by a number of

researchers (Davies and Lingras 2003; Wu and Ruan 2004).

Davies and Lingras (2003) proposed a GA to solve the rerouting problem in dynamic

and stochastic networks. The initial population contained a group of candidate paths

of variable length representing a number of nodes connecting the current node to the
destination node. By use of specifically modified crossover and mutation operators,
the paths produced during the evolution were constrained to be feasible and a strategy

was adopted that combined an elitist approach with the application of a roulette wheel

207

Chapter 8: Generalised waypoint-based navigation system

to favour fitter individuals. To prevent incomplete paths appearing in gene pool, the

one-point crossover operator was constrained to sites having common- genes in the

parents and the two-point crossover required the two sets of common genes

constrained to be present in both parents in the same order. The mutation mechanism

randomly selected two genes and the part between the two genes was reproduced. To

account for the dynamic changes in the network, a weight was assigned according to

the length of waiting time assigned to each node. A GA with a similar structure was
developed by Wu and Ruan (2004) to operate in a connectivity information matrix

that was predefined to indicate the connectivity of nodes. As is the work by Davies

and Lingras (2003), the selection scheme employed was a combination of the roulette

wheel and elitism methods, but the mutation operation was slightly modified in that

the partial path after mutation node was generated from the end node to the mutation

node by an initialisation mechanism. The two GAs proposed above are generational

GAs, since the entire or at least a large fraction of the population is. altered by genetic

operations carried out between successive generations. In the GA implemented by Ji,

Iwamura and Shao (2007), a smaller number of individuals were modified by the

genetic operations. The initial population contained a set of chromosomes of variable
length, representing only the feasible paths. A rank-based selection scheme was used

to determine the parents for genetic operations. The crossover operation was

performed such that the parts after the nodes (randomly chosen from the common

nodes between a pair of parent paths) were swýpped. The mutation point was

randomly selected and a new path from the mutation node to the final destination

node was generated by chromosome initialisation. An evolutionary algorithm was

proposed by Mooney and Winstanley (2006) to solve multicriteria path optimisation

problems using a pareto-elitist approach. The randomly generated initial population

contained a set of feasible paths without loops and the individuals were assessed

using pareto domination and a number of elite individuals were copied directly into

the next generation. The pairwise (the tournament size is two) tournament selection

scheme was used to select parents and further valid paths were generated through

one-point crossover and mutation. The result obtained from real world road networks
demonstrated that the new algorithm could outperform that of Dijkstra's algorithm.
To solve the multiobjective problem for multicast routing, Garrozi and Araujo (2006)

208

Chapter 8: Generalised waypoint-based navigation system

used a single objective function 'combined nonlinearly for three separate objective

goals. Each row of a table-like chromosome represented a route from a single source

to one of the destinations and crossover operators that incorporated problem-specific
knowledge were used to exchange information between parents chosen based on their

relative fitness. The two mutation operators functioned as follows: the first one
inserted a partial path after the mutation points and the second eliminated any loops

that may have been generated during evolution.

A number of authors attempted to combine GAs with other algorithm for shortest

path problem. Those approaches are less relevant to the new planning algorithm

described in this chapter, and only very brief introduction are given below. Duan and
Yu (2003) proposed an algorithm, termed genetic shortest path algorithm, to optimise

a power distribution system, in which a local optimisation method was developed to

find local optima, from which the global optimum was generated by a GA. A

hierarchical approach was developed by Wu and Ruan (2006) that incorporated the

Floyd algorithm into a'GA in order to solve the shortest path problem with fixed

intermediate nodes but without constraints on their order in the chromosome.

8.2 Generalised waypoint navigation system

The generalised version of waypoint navigation system preserves the hybrid

architecture of the waypoint navigation systems of the previous two chapters, with the

knowledge base functioning as an interface between the reactive and deliberative

layers. Reactive control is derived from the decision trees generated by a series of

robot movements through a set of simulated environments designed to embed suitable

control rules. Deliberative planning takes advantage of knowledge of the environment

gradually acquired during earlier navigation tasks and stored as waypoints. As

explained in section 6.2, this hybrid architecture attempts to create high-level

intelligent navigation behaviour by selectively recording the past experience, timely

monitoring the current information, and tactically planning the future navigation. The

waypoints used to represent the environment consume little memory, but their

number is dependent on the navigation task currently performed. Overcoming this

209

Chapter 8: Generalised waypoint-based navigation system

limitation is the main purpose behind the development of the generalised hybrid

architecture. One principal addition in the generalised version of waypoint navigation

system is that more information is recorded regarding the reactions that result as a

consequence of the presence of static obstacles. This extra knowledge is used to

extend the capability of the deliberative control to allow path planning to be

performed between any two locations in the environment. As memory capacity is a

scarce resource in embedded systems, the raw information gathered is progressively

processed in order to reduce the data storage requirement. The information so

recorded permits paths previously taken to be approximately restored with little

computational effort to enable future path planning or to provide a localisation

reference. To permit this extra information to be used in the generation of paths
between any specified two points in the environment, the path planning approach has

also required extensive modification.

A high-level overview of the operation of the generalised waypoint navigation system
is now given. Assuming no initial knowledge of the environment, the robot navigates

to the goal under reactive control with waypoints being determined as static obstacles

are encountered. Two types of waypoints are now obtained. The first is the same as

that in the previously-described waypoint system, in that the waypoints indicate that

the robot is approaching a newly encountered obstacle and its heading is being forced

to change. The second type of waypoint is introduced in the generalised waypoint

system and the waypoint marks the location where the robot is no longer avoiding the

obstacle and instead reverts to heading directly towards the goal. On generating a

waypoint of the first type, memory is temporarily assigned to record the tracking of

the path segment that the robot follows around the obstacle. Tracking stops once a

waypoint of second type is generated. As there is an alternative path to explore to

circumnavigate the obstacle starting from a waypoint of first type, such waypoints

can be labelled as unexplored until the alternative path has been followed. As the

second type of waypoint is the end point of the path segment, no similar exploration
is required. Following the recording of a waypoint of the second type, the robot

processes the information regarding the segment and stores only that necessary to

permit the deliberative navigation module to plan future paths involving the segment.

210

Chapter 8: Generalised waypoint-based navigation system

When the robot finishes its current task and no further navigation tasks are required to

be conducted immediately, the exploration function can be invoked to follow either

alternative paths that start from unexplored waypoints or to investigate uncharted

regions by selecting locations randomly, or heuristically if the robot has knowledge of

the distribution of the obstacles.

Using the knowledge gained during reactive navigation and exploration, paths that

can take advantage of the recorded segments can be generated by the deliberative

system prior to beginning a new navigation task. As in previous waypoint
implementations, the path generated will consist of a set of sub-goals for the robot to

follow successively in the new navigation task, with the actual movements between

these sub-goals remaining under the control of the reactive layer.

8.3 Knowledge base

In navigation problems, memory is often required for the deliberative navigation

system to maintain information about its environment in order to localise the robot

and generate a plan for future navigation. An important issue -in the practical

realisation of hybrid navigation systems is not just the nature of this information, but

also its storage, as memory capacity is often limited. Some hybrid systems described

in the literature construct an exhaustive model for the environment (as discussed in

section 3.1 - 1) in order to achieve good navigation performance. Such models not only

consume substantial memory, but dealing with such large quantities of memory

involves significant computational overheads (Santos, Castro and Ribeiro 2000;

Urdiales et al. 2003b). A number of hybrid systems reported in literature adopted
hybrid maps or topological maps abstracted from a metric map (see section 6.1) to

enhance the planning efficiency. The construction of hybrid maps and abstract

topological maps is computationally complex. The implementation of the navigation

system presented in this chapter requires that only a relatively small number of points
be extracted to record the trajectories around obstacles. The memory usages for the

experiments are reported in section 8.5.5.

211

Chapter 8: Generalised waypoint-based navigation system

8.3.1 The two types of waypoint

This section defines the two types of waypoints employed in the navigation system

introduced in this chapter. In the waypoint navigation systems described in chapters 6

and 7, a location is marked as a waypoint only when the robot needs to deviate from

its current path due to the presence of a static obstacle (see section 6.2.2). In contrast,

two types of waypoints are defined in the new navigation system. As the particular

reactive system used in the current work neither identifies nor internally represents
boundaries between primitive behaviours, the identification of waypoints is instead

based on robot heading changes and sensor readings. A survey of other literature

related to waypoints was presented in section 6.2.2. No publications that determine

waypoints based on behaviour changes have been found in the literature, and so the

idea to build behaviour-driven waypoints is claimed by the author as being novel.

An example of the first type of waypoint found in previous waypoint navigation

systems is shown in Figure 8.1 represented by a circular marker. Such a waypoint is

recorded when the robot's behaviour changes from one of goal-seeking to one that

avoids static obstacles detected by its sensors. The reason to record those waypoints
is to indicate the approximate location of obstacles and those points in the

environment where the robot can take one of two alternative paths to negotiate

obstacles. On the first recording of a waypoint, only one of the two paths around an

obstacle is taken, with the waypoint being marked as unexplored until the second path
has been taken. The first type of waypoint also marks the beginning of a path segment

around the obstacle (shown by broken lines); such as a segment being the principal

method of recording information about the environment in the generalised waypoint

navigation approach.

The location at which the robot begins to move away from the obstacle that forced the

robot to change its direction and revert to heading towards the goal, is recorded as a

waypoint of the second type and is indicated by a star marker in Figure 8.1. This

location is in fact that at which avoidance of the obstacle ends and the robot reverts to

goal-seeking behaviour. The recording those points is useful as they give the
boundary between the obstacle and the free-space with respect to the current

212

Chapter 8: Generallsed waypoint-based navigation system

navigation task. A stored path segment will always end at such a location, although

this type of waypoint may, in some cases, indicate the initial point for a second path

segment around the obstacle. This is particularly likely to occur when the robot is

circumnavigating a concave obstacle edge. Although this second type of waypoint is

effectively a node that can be selected to aid obstacle avoidance in future planned

paths, it is not used to initiate exploration.

1" type of waypoint,

2"' type o

rpoint

goal point

Figure 8.1 An example of the two types of waypoint. The circular maker denotes the first
type of waypoint, whereas the second type of waypoint is indicated by star markers. The

broken lines between the two types of waypoint are path segments that the robot has followed
while avoiding the obstacle.

8.3.2 Curve segment representation
In the generalised navigation system, the path segments, such as those in Figure 8.1

originating from a waypoint of the first type and terminating at a waypoint of the

second type, are recorded for path planning purposes. The segment itself is a
trajectory generated by the reactive navigation system as a consequence of its

obstacle avoidance behaviour. The shape of the segment reflects that of the obstacle

the robot is avoiding. The previous navigation systems proposed in chapters 6 and 7
do not retain the useful information provided by such segments traversed during

earlier navigation tasks. To take advantage of such valuable information for future

planning is the main reason to record the segments instead of a few orphan points.

213

C

tee

Chapter 8: Generalised waypoint-based navigation system

In order to be able to reproduce the segment for path planning purposes, a method is

needed of recording the sequence of coordinates progressively accumulated as the

robot reactively navigates around on obstacle. To reduce the quantity of information

that needs to be retained, a spline approximation technique (de Boor 1978; Kvasov

2000; Noggle 1993) has been adopted. Splines generally provide an efficient solution

to the representation of complex shapes, as the piecewise polynomial approximation

that results is generally of a lower order than that obtained when approximating using

a single polynomial, thereby reducing the storage requirement for any given accuracy

of fit.

To make clear why a suitable approximation to the actual path taken by the robot

when performing obstacle avoidance is needed by the planner, consider' the

representation of the path segment by a straight line connecting the end points of a

path segment. Although the line can be easily manipulated, it is unable to provide a

sufficiently accurate representation of planned paths that avoid obstacle collisions.

Figure 8.2 shows an, example in which the planner is attempting to determine a

suitable path between waypoints A and B. As part of this assessment, a test of the

intersection of line AB with all path segments is required. If the path segment

between waypoints C and D is recorded as a straight line, no intersection is detected.

if the path segments around obstacles are instead recorded as splines, the planner will

identify the intersection with the spline CD and a closer representation of the actual

path the robot will need to take can be planned. Clearly this example does not identify

a specific accuracy requirement and this is discussed further in secýion 8.4.1.

214

Chapter 8: Generallsed waypoint-based navigation system

A

ist --------- type of waypoint c ------ B
'd ------- 4L

peoý D 2'd type of waypoint

obstacle
E

2 nd tvpe of waypoint

goal point

Figure 8.2 The path segment represented by a straight line. The straight line between C and
D is indicated by the grey 'dash-dot' line, whereas the dark broken line denotes the actual
curve between the pair of waypoints. The grey broken line between A and B is a proposed

path connecting two waypoints located near other obstacles.

The conventional approach when fitting a curve is to use a least-squares approach
(Guo, Gui and Yang 2003; Noggle 1993). However, in the current implementation,

cubic spline interpolation expressed in parametric form is used in place of least-

squares approximation to ensure that the spline passes through the end points of the

path segment. Although the elegant feature of second order continuity of cubic

splines makes it a popular choice for modelling trajectories (Guan et al. 2005; Korb

and Troch 2003), the choice of cubic. spline here arises more from the need to control

the computation complexity and memory usage. Cubic polynomials are chosen as a

reasonable compromise; they are more easily manipulated than polynomials of higher

order, whereas, to achieve the same resolution, splines of lower order are likely to

require additional pieces (Guan et al. 2005), thereby increasing the memory needed to

store the coefficients and breaks for the spline. Figure 8.3 illustrates the difference

between the fitting results of using least-squares approximation method (the upper

path segment) and interpolation (the lower path segment). As the spline curve

generated by least-squares approximation approach does not pass through the end

points that are the two waypoints, it may not be possible to identify correctly all
intersections that occur between the true path segment and a path that coincidently

passes through or near those waypoints. In contrast, this problem can be avoided if

215

Chapter 8: Generalised waypoint-based navigation system

the interpolation is used as the approximation technique, as breaks will coincide with

the end points of the actual path segment. Singularity problems can arise when using

the explicit equation y=f (x) to represent a planar curve which is closed or multiple

valued and has vertical tangents in a fixed Cartesian coordinate system. Although

these limitations inherent to the explicit form can be overcome by using the implicit

form f(x, y) =0 to represent the curve, its determination is computationally complex,

requiring the solution of a non-linear equation for each data point. The parametric

form x= h(l) and y= g(t) has advantages over both the explicit and implicit forms:

it is able to represent curves that the explicit equation cannot, while
; Iso having

reduced computational complexity compared with the implicit form. The path

segment is expressed in the following form, where the parameter t is travel time.

h(t) = at 3+ blt' + ct

g(t) = a, t3 +b2 t2 + c, t + d2

Equation 8.1

Equation 8.2

Q IF
least squares
approximation

% D. %, '0
,. %,.

%P ad type 2 I't fung- nfwavnnint. -., -
A, of waypoint

interpolation

2 Rd type of waypoint

goal point

Figure 8.3 An example of intersections between straight line paths (illustrated as grey dash-
dot lines) and spline curves (shown as black broken lines), generated by using least squares

approximation (between A and B) and interpolation (between A and Q.

The knot sequence is a list of monotonically non-decreasing values and one of the

critical components in constructing a spline for a given set of data points. The

-B

216

Chapter 8: Generalised waypoint-hased navigation system

uniform selection scheme (Bessonnet, Seguin and Sardain 2005; de Boor 1978) is

used to determine a knot sequence for spline construction. Residual analysis is

performed between the data and the values generated by the constructed spline for

each data site. If the evaluation indicates the current spline is unable to meet the

requirement determined from the residual criteria, the algorithm proposes a new

spline with an additional cubic polynomial and evaluates the goodness of fit of the

new spline. This process is guaranteed to complete in a finite number of iterations as

the spline will pass through all the data points exactly once the number of

polynomials in the spline is one less than the number of data points. Under normal

circumstances, process terminates once a spline meets the residual criteria. More

exacting criteria result in a better fitting spline, but one which takes longer time to

process. The residual value needs to be set according to the requirements of the

planner, rather than by the navigation actions, which are performed in a reactive

manner. Currently, the residual value is set to be equal to the step length of the robot,

namely the distance it moves between navigation decisions, as this is approximately

the error involved when recording the path segment data. Once the spline fitting is

complete, the robot stores the coefficients of the spline generated as well as the

breaks for each polynomial for future use in planning operations, while the original

data of the path segment are discarded.

8.4 The planning algorithm

When a new navigation task is assigned, the robot needs to generate a path between

the start and goal points. For a suitable path to be determined, the estimated overall

path length is found from the individual path length between pairs of waypoints

stored in a cost matrix. To perform planning, a genetic algorithm is applied that has a

steady-state structure, in the sense that successive generations differ by only a single
individual or by one pair of individuals (depending on the genetic operator applied).

The reason for choosing the steady-state structure is that the planning can be

interrupted at anytime and the best path evolved thus far can be used as the current

solution, while the generational computation is kept to a minimum (as explained in

section 2.1). A deterministic crowding technique is used to maintain the population

217

Chapter 8: Generalised waypoint-based navigation system

diversity. The overall operation of the evolutionary planning is given before

describing each component in detail in the subsequent sections. The evolutionary

process starts with the initial population randomly generated based on the cost matrix.

The population is evaluated and the individuals are ranked according to their fitness.

A roulette wheel is constructed and its slots are sized according to the ranks of the

individuals and a parent or a pair of parents is selected by the roulette wheel to

produce offspring. The new generation is formed by inserting the winners of the

competition between offspring and parent(s) in the identical niche. The best

individual is selected as the path after a suitable number of iterations. As the planning

algorithm retains the main structure of the algorithm introduced in section 6.3, a

repeated description is avoided here, and, instead, only the components that have

been modified are discussed.

8.4.1 Cost matrix

The cost matrix (Wu and Ruan 2004) is square and represents the visibility graph in a

form that is convenient for the planning algorithm to manipulate. An example of a

cost matrix and its corresponding environment are shown in Figure 8.4 and Figure 8.5

respectively. The algorithm initially constructs an empty matrix with dimension equal

to the number of waypoints so far detected plus the start and goal points. Each cell in

the matrix is the cost in terms of path length of the path segment originating from the

waypoint indicated by the row label and ending at the waypoint indicated by the

column label. The cost matrix is then used to plan
'a

path that is a sequence of path

segments each originating and terminating in a waypoint. Those cells corresponding

to path segments that the robot has previously visited show the actual path lengths

and are stored as positive values. Zeroes are permanently assigned to the cells along

the diagonal, to cells of paths originating from the goal and to those cells whose paths

end at the start point. The cost values in the remaining cells are estimated as follows.

The straight line path between the waypoints is assessed to determine whether it is

infeasible, that is, it intersects with any of the path segments represented by splines.

In practice, this evaluation simply involves solving the equation of a straight line with

the two parametric equations (Equation 8.1 and 8.2). If the evaluation indicates a
intersection between the straight line path and one of the spline curves, the cell

218

Chapter 8: Generalised waypoint-based navigation system

corresponding to this straight line segment is set to be zero, otherwise the length of

the straight line is assigned to the cell but prefixed with a negative sign to denote this

path has not previously been followed.

Start WPI WP2 WP3 WN WP5 WP6 Goal
Start 0 0 0 0 -4.16 -6.15 -2.03 0
WPI 0 0 2.55 0 0 3.08 0 0
WP2 0 2.55 0 2.38 -4.63 0 0 -2.04
WP3 0 0 2.38 0 2.58 1 -4.42 3.9 1 -1.46
WN 0 0 -4.63 2.58 0 0 0 -2.86
WP5 0 3.08 0 -4.42 0 0 -4.16 -5.29
WP6 0 0 0 3.9 0 -4.16 0 0
Goal 0 0 0 0 0 0 0 0

Figure 8.4 An example of a cost matrix used for planning a path for the navigation task
shown in Figure 8.5.

10

9

8

7
ýý
c 0 B5
cu

3

2

1
-Z-- -,

X direction (m)

Figure 8.5 Illustration of feasibility evaluation during the calculation of values in the cost
matrix. The circular and star markers indicate the first and second type of waypoints

respectively. The feasible paths are depicted as solid lines and the infeasible ones as dashed
lines. The cost matrix for this visibility graph is shown in Figure 8.4.

In addition, paths between - two waypoints of the second type are regarded as
infeasible if they connect to a common waypoint of the first type. As can be seen in

Figure 8.5, these paths are liable to be infeasible. In the'figure, the infeasible

219

Chapter 8- Generalised waypoint-based navigation system

connections are indicated by dashed lines and the solid lines are the feasible paths

(both known and unknown). Note that the first row and the last column are all

negative values indicating the navigation starts from a new location and will

terminate at a new destination. As the cost matrix is symmetrical, then, only the upper

triangle is retained.

in the implementation, if a part of the straight line segment and an intersecting curve

segment are similar in length, these values can remain in the matrix. Figure 8.6 shows

an example where the proposed straight-line path AB intersects the spline CD at

points PI and P2. If the length of the straight line between PI and P2 is within 5% of

the length of the curve between P1 and P2, the straight line AB will be regarded as a
feasible path segment. This value of 5% could be optimised according to the

navigation task, navigation ability of the robot, and whether intersections with other

path segments occur in the vicinity of P1 or P2. This strategy means the robot does

not exclude such paths that are likely to be feasible. It is important to note that once

robot movement begins, the actual navigation between waypoints will be carried out

reactively and so the route followed by the robot will likely be along the path segment
between PI and P2.

0--\ --------
Pi

: --. P2
A '6ý --------------------------

%
1" type of waypoint.., CD%

nd
B

2 type of waypoint

'Iýoobstacle

E
2 nd type of waypoint

goal

Figure 8.6 Intersection between the straight line AB and the spline CD at points PI and P2.

220

Chapter 8: Generalised waypoint-based 17(1Vig(lfi0l'IS. j'SfCI? l

The search for an optimal or near optimal path is constrained to the space containing

the cost matrix values of feasible path segments, some being known and others not.

The elimination of all infeasible path segments makes it possible that a number of'
individuals will terminate at a waypoint instead ofthe goal, however, SLICII Paths al-C
then also infeasible and so not involved in the evolutionary process.

8.4.2 Initial population

The initial population is generated by incorporating domain kilo,, N, Icdge so that all

individuals are feasible. The process first randornly selects a path scgi-nent originating

from the start point (the highlighted cell in the first row in the cost matrix). As

illustrated in Figure 8.7(a), the first row and the colunin ofthe target waypoint are not

considered in the remainder of the generation process, in order to prevent the robot's

return to the same location. Using the row Ior W115, the random selection of' W113 as
the third gene has the effect of emptying the row for W115 and the column for W113 as

shown in Figure 8.7(b). This process continues until either the goal is selected (as in

Figure 8.7(c)), or the row corresponding to the current node is blank or all zeroes. The

individuals generated in this way are not of fixed length. In each ol'Figure 8.7(a), (h)

and (c). the lengths of the individual segments are shown, note that the signs of the

lengths are ignored when determining the total path length. For this example, it
becomes clear that visiting the same node more than once can be easily avoided by

careful use of the cost matrix.

Start WPI WP2 I WP3 WP4__ W P5 -W-116 (10,11----
Start 0 0 0 0 -4.16 -6.15 -2 . 03 0
WPI 0 0 2.55 0 0

-
3 08 0

ýWP2 0 2.55 0 2.38 -4.63 0 0 -2.04
WP3 0 0 2.38 0 58 -4.42 3.9 -1.46 W P4 0 0 -4.63 2.58 0 0 0 -2.86 -ýkP5 0 3.08 0 -4.42 0 0 -ý. 16 -5.29- ýMI'6 0 0 0 3.9 0 -4.16_ 0 0

-doal 0 0 0 0 0 0 0 0

individual
gene I gene 2

nodes start WP5
segment length _ 0 __

-6.15

221

Chapter 8: Genendised wti. q)oint-buyed nuvigationsYslem

Start WPI WP2 WP3 WP4 WP5 Goal
Start
WPI 0 0 2.55 0 0 0 0
WP2 0 2.55 0 2.38 -4.63 0 -2.04
WP3 0 0 2.38 0 2.58 3.9 -1.46
WP4 0 0 -4.63 2.58 0 0 -2.86
WP5 0 3.08 0 -4.42 0 -4.16 -5.29
WP6 0 0 0 3.9 0 0 0-

Goal 0 0 0 0 0
-0

(a) the first gene is the start point and the sccond
gene has been randomly selectcd as WP5

Start WPI WP2 WP3 WP4 W115 W 116 Goal
Start
WPI 0 0 2.55 0 0 0 0
WP2 0 2.55 0 2.38 -4.63 0 -2.04
ýWP3 0 0 2.38 0 2.58 3.9 -1.46
WP4 0 0 -4.63 2.58 0 -2.86
ýiP5 0 3.08 0 -4.42 0 -4.16 -5.21)
WP6 0 0 0 3.9 0

Goal 0 0 0 0 0 0

individual
gene I gene 2 gene 3

nodes start W115 W 113

segment length 0 -6.15 -4.42

Start WPI WP2 133_ WN WP5 W 116 Goal

Start
; wp -1 0 0 2.55 0 0 0
V-V-P2 0 2.55 0 -4.63 0 -2.04
VP -3 0 0 2.38 2.58 3.9 -1.46
WP- -4 0 0 -4.63 0 0 -2.86

-)WP- -5
WP- -6 0 0 0 0 0

--Cioal 0 0 0 0 ()

(b) from the row for WP5, WN has been randonilN, selected

222

Chapter 9: Genendised wqyj)oinl-bti, ved i7tivigenionslystem

Start WPI WP2 WP3 WN W115 W116 Goal
Start
WPI 0 0 2.55 0 0 0
WP2 0 2.55 0 -4.63 0 -2.04
WP3 0 0 2.38 2.58 3.9 -1.46
WN 0 0 -4.63 0 0 -2.86
WP5
WP6 0 0 0 0 0 0
Goal 0 0 0 0 0 0

individual
gene I gene 2 gene 3 gene 4

nodes start W115 WP3 goal
segment length 0 -6.15 -4.42 -1.46

Start WPI WP2 WP3 WN WP5 116
__

W Goal
Start _

WPI 0 0 2.55 0 0
WP2 0 2.55 0 -4.63 0
WP3
WN 0 0 -4.63 0 0
WP5
WP6 0 0 0 0 0
Goal 0 0 0 0

(c) finally, the goals have been randomly sclected

Figure 8.7 Ali example of the random generation of an individual using the cost ljjjtl-lx ill
Figure 8.4, corresponding to tile environment illusti-ated ill Figure 8.5.

8.4.3 G enctic operators

Two operators are defined, namely cinvsovet- and inset-limi, the crossover operator is

extensively applied whilst the insertion operator is OCCaSiOlIally Used.

A conventional one-point crossovei- operator is used to exchange the genes hoween a

pair of individuals. The random selection for the crossover site is constrained to the

nodes that are in common between the pair of individuals. The offspring generated

competes with their most similar parent for survival into the next generation. The

definitions of the similarity and the replacement strategy were described in detail in

section 6.3.5. One-point crossover has been used, rather than the 111111ti-p(, int

crossover used in the previous systems (see chapter 6), bcCaUSC thc graph structures

are largely different. In the waypoint network presented in chaptcr 6. ifall waypoints

223

Chapter 8: Generalised waypoint-based navigation system

have one branch input and two branch outputs after the waypoint has been explored,

the number of the common nodes between a pair of parents should be one. However,

in most situations, waypoints may originate from more than one ancestor waypoint in

order to converge to the single goal point. Therefore, multi-point crossover is efficient
in such situations in that more information can be interchanged between the parents.
In contrast, each waypoint in the graph generated for the navigation problem in this

chapter have multiple input and output waypoints. This implies a significantly
increased probability of potential paths around single waypoints that need to be

exploited. Furthermore, the better efficiency of one-point crossover with respect to

multi-point crossover was observed during the experiments.

The second operator, insertion, introduces a new individual by the mechanism used to

generate the initial population, thereby promoting population diversity. The offspring

produced replaces the worst fitting member of the current population. Sections 6.3.2

and 6.3.5 provide a full discussion of this operator.

8.4.4 Evaluation

The evaluation function is a weighted sum as expressed in Equation 8.3 and has been

formulated to account for both the known and unknown path segments.

n

E=wi Li + W2 'j:
Lj Equation 8.3

For the known segments, the sum of the m known paths lengths is multiplied by a

weight wl and the sum of the n straight-line unknown path segments are multiplied b*y

a weight w2. The weights w, and W2 can be set to pre-determined values according to

whether the robot is required to give priority to exploration or to follow the known

path segments where possible. In the current implementation, wl is simply set as 1,

whereas W2 is the ratio of the estimated actual path length to the straight line path. A

value for the ratio can be obtained from the navigation tasks, in section 8.5.4. Pareto

domination (Mooney and Winstanley 2006) have been used for multicriteria
optimisation problems, but the determination of their domination requires extra

computation effort. Garrozi and Araujo (2006), combined three separate objective
functions into a single nonlinear evaluation function, but such a single function is

224

Chapter 8: Generalised waypoint-based navigation system

difficult to determine. In the navigation system presented here, a linear combination

of known and unknown path segments is used and the different emphases placed on

each part can easily be adjusted through the changes on their weight values.

8.5 Experiments and results

The navigation system proposed in this chapter has been verified through a series of

five experiments conducted in simulated environments. As the architecture of the

proposed navigation system is inherited from the navigation systems presented in

previous two chapters and the comparison with other architectures reported in the

literature can be found in the previous two chapters, this section only presents the

result of the comparison between the generalised waypoint-based navigation

algorithm and other two algorithms (Ahn and Ramakrishna 2002; Ji, Iwamura and

Shao'2007). The reasons for choosing those two benchmarks are explained in section

8.5.6.

The experimental arrangement is same as that described in chapter 6, but with

modifications to the autonomous mobile robotics toolbox. (Brno University of

Technology 2006) to render it compatible with version 7.3 of MATLAB (Mathworks

2006). Three investigations were carried out in the first environment, which was used

to produce a range of different levels of environmental knowledge for use by the

planner. A second environment was used to conduct the final two experiments:

experiments 4 and 5 investigated the effects of the weight W2 on the plan produced.

Experiments 3,4 and 5 employ a learning process to enable the robot to become

familiar with its environment. Table 8.1 summarises the parameters used; these were

determined experimentally and have not been optimised. The weight, wl, is applied to

the sum of the costs of the path segments already visited and is set to unity as their

path length values are accurately known. The costs for the unknown path are scaled

by W2 which is obtained based on previous navigational experiences.

225

Chapter 8: Generalised waypoint-based navigation system

Table 8.1 The system parameters for the planning algorithm
(w2 is estimated from the previous navigations).

population number of wei ghts operator probability
experiment size generations W1 W2 insertion crossover

1 250 100 1 1.12
other

2 300 2500 1 1.12 every generations
3 500 4500 1 1.12

'
100 rather than

4 500 4800 1 1.85 generation every 100

5 500 4800 1 1
1
generation

8.5.1 Path generated with little knowledge of the environment

The first test is a simple navigation problem where limited information of the

environment is known from a previous navigation task that generated fully explored

waypoints when moving from the lower-left comer to upper-right comer of the

environment. Figure 8.8 shows as thin lines the trajectories that the robot previously

followed and the thickened line indicates the path segments for a new navigation

problem that consists of two segments through unknown territory and a known

segment in the central part of the path.

17

1

Eý 12.
C:
0

-f, I
cu 'D

>-

X direction (m)

Figure 8.8 A path generated based on knowledge acquired during previous navigations. The
thickened and thin lines respectively represent paths generated by the deliberative planner

and that travelled by the robot during previous navigations. The new start and goal points are
indicated by the markers 'S' and 'GI.

226

Chapter 8: Generallsed waypoint-based navigation system

To illustrate the operations of the planner, Figure 8.9 shows a thickened line that

represents splines constructed to approximate the path segments around obstacles.
Note that the spline fit is constrained to approximate the actual path segment with a

maximum error of 5cm, which is the step length of the robot.
I

17.5

15

E' 12.5 A lobo
0 -P, 1 4W
cu '0 >- 7.5

2.5 4w

X direction (M)

Figure 8.9 The spline approximations to the actual path segments around the obstacles. The
spline curves are indicated by the thickened lines, whereas the thin lines present the path that

the robot had taken previously.

Figure 8.10 shows the cost matrix generated for the new navigation task shown in

Figure 8.8 (from S to G) and all the paths in the cost matrix are shown in Figure 8.11.

The negative values in Figure 8.10 correspond to the costs estimated for proposed

path segments that have not been followed in a previous robot activities and are

shown as thin lines in Figure 8.11.

227

Chapter 8: Generallsed waypoint-based navigation system

- Startj WPI WP2 WP3 WN WP51 WP6 WP7 WP8 WP91 WPIO WPII WP121 WPI3 Goal

Start Start 01 0 -1.5 -14 -14.4 -17.51 0 -3.9 -6.5 -8.3 -15.2 0 -18.81 -6.5 0

wpl, pI 0 0 1.1 0 0 0 0 2.4 0 0 0 0 0 0 0

ý WP2 P2 0 1.1 01 14.9 -15.3 -18.4 0 0 -6.7 -8.5 -15.9. 0 -19.7 -7.1 0

If. 'I WP3 0 0 14.91 0 0.6 0 0 01 0 -8.1 0 3.4 0 8 -6
WN 0 0 -15.31 0.6 0 3.2 -4.6 0 0 -8.6 3.4 0 0 0 0

WP5 0 0 -18.41 0 3.2
.

0 1.9 0 0 0 0 -3.4 2.2 0 0
ýý1? 6 0 0 -4.6 1.9 0 0 0 0 0 -3.8 0 0 0

WP7 0 2.4 0 0 0 0 0 01 5.7 -7.3 0 0 0 -6.8 -10.4,
WP8 0 0 -6.7 0 0 0 0 5.7 0 2 0 0 0 1.8 0

wpq pq 0 0 -8.5 1-8.1 -8.6 0 0 -7.3 2 0 8.3 0 0 0 -3.2
W'D I NO 0 0 -15.9 0 3.4 0 0 0 0

.
8.3 0 1 0.8 0 -8.8 . 5.5

7ý ýpj 1 0 0 0 3.4 0 -3.4 -3.8 0 0 0 0.8 0 0 0 0
-TP 12 0 0 -19.7 0 0 2.2 0 0 0 0 0 0 0 0 0

1 WP13 10 10 -7.1 18 0 0 0 -6.8 1 1.8 0 -8.8 0 0 0 -4.9
1 Goal 10 10 10 10 0 0 0 0 10

10 10 0 0

Figure 8.10 The cost matrix constructed for path planning. The positive values represent the
paths travelled by the robot during previous navigation tasks, whereas the estimated paths are

indicated by a negative sign.

17.5 4F vA
15

-12.5

10

7.5 13

5s9

2 440
2.5 11 41W

ý16

2.5 5 7.5 10 1
X direction (m)

I

Ab

6

Figure 8.11 The visibility graph corresponding to the cost matrix shown. in Figure 8.10.
While the thin lines indicate the paths that have not been followed by the robot, the paths that

the robot has followed in previous navigations are shown by thickened lines. *

228

Chapter 8: Generalised waypoint-based navigation system

Figure 8.11 shows the visibility graph corresponding to the cost matrix constructed

for a new navigation task that starts at point S and ends at point G. A small number of

path segments (indicated by thickened lines in Figure 8.11) have been followed by the

robot in the previous tasks and a larger number of path segments (shown as thin lines)

are previously unfollowed paths between waypoints from which the robot can also

choose to generate navigation solutions.

8.5.2 Path generated with greater confidence of the working environment

The planning result presented in this section was obtained after the robot has

performed a number of different navigation activities in the same environment and

consequently much more domain information was available for planning purposes.

Navigation performed from four different pairs of start and goal points are illustrated

as thin lines in Figure 8.12 and the thickened line is the path generated for the new

start and goal points. From Figure 8.12, it can be seen that no known segments are

used by the best path generated.

17

-12 E
c

>-

X direction (m)

Figure 8.12 The path generated based on the environmental knowledge gained from four
earlier navigation tasks. The markers 'S' and 'G' are the start and goal points for the current

navigation activities.

229

Chapter 8: Generalised waypoint-based navigation system

The thickened lines in Figure 8.13 are the approximations achieved by a set of splines
fitted to the path segments generated when avoiding obstacles. The cost matrix

generated for the new start and goal points is shown graphically in Figure 9.14. '

17

I

Eý 12.
r_

X direcbon (m)

Figure 8.13 The spline curves representing the actual path segments. The thickened lines
indicate the fitted curves and the thin lines the paths previously travelled.

17.

1

-12. E
C:

>-

2.

X direction (m)

Figure 8.14 The visibility graph corresponding to the cost matrix generated. The segments
unvisited are indicated by thin lines, whereas the thickened lines represent segments that have

been discovered.

230

Chapter 8: Gencralised waypoint-based navigation system

8.5.3 The paths generated based on learning

The planning performed by the proposed algorithm was further evaluated by

increasing the search space. This was realised by a learning process that repeatedly

performed navigation between pairs of randomly selected locations, each of which

must be in free space and at a distance no less than the sensor range from any obstacle.

The thin lines in Figure 8.15 ar6 the trajectories of these navigation tasks and the

thickened line is the path planned for a new navigation task. It can be seen from the

result obtained that a path can be generated with minimum cost in terms of path

length, though all path segments have not been explored in the previous navigation

tasks.

17.51 4w
4ýý

1

-12. E
c

>-

X diredion (m)

Figure 8.15 The path generated following a sequence of learning in the environment. The
thickened line is the path generated for a planned navigation task from 'S' to 'G' and thin

lines indicate the paths that have been travelled previously.

8.5.4 The effect of weight values on path planning

The final two experiments investigated the effect of the weight values for unknown

path lengths for use in planning. The cost for the unknown part of the planned path is

the length of the straight line segments scaled by this ratio. The value of w2 is

231

Chapter 8: Generalised waypoint-based navigation system

effectively estimated from the previous navigations through the same environment by

comparing the true path length to the length of the path assumed as a straight line.

This value is likely to'be larger when the environment is heavily populated with

obstacles. The weight W2 is the ratio of the actual path length taken to that if a

straight-line path could have been followed, and in the current work is estimated from

previous navigation tasks conducted between randomly selected pairs of locations. To

demonstrate the effect of the weight W2 on the path planned, two experiments are now
described. In the first experiment, the value Of W2 is set to 1.85 and the path produced

for a new navigation task is shown in Figure 8.16 as a thickened line. Apart from the

first and final segments, all the remaining segments have been previously taken by the

robot. In contrast, the path planned in Figure 8.17 when W2 is set to unity (so that

unknown path lengths are taken to be the straight-line costs) tends to follow

previously untaken paths as these are not penalised. In contrast, the path shown in

Figure 8.16 as the thickened line was generated with a different weight W2 being 1.85

estimated from the previous navigations for the unvisited part of the path.

It is apparent that high values'Of W2 tend to lead the planner to prefer previously taken

paths, whereas low values Of W2 promote the following of unknown paths. As high

values Of W2 reflect an environment that has a large proportion of the environment

filled by obstacles, known paths are more likely to be more attractive to the planner as

they guarantee obstacle avoidance. The current system includes a learning process

that uses previous navigations to increase the confldence of the value Of W2. The

accuracy of the estimated value can be further improved as more explorations are

performed in the same environment.

232

Chapter 8: Generallsed waypoint-based navigation system

17

1

-ý' 12,
r:

M

>-

X direction (m)

Figure 8.16 The path generated using a weight value w2 = 1.85.

17.

1

12.

a C
-. 0 1

(U

73
>-. 7.

X directim (m)

Figure 8.17 The path generated using a weight value w2

233

Chapter 8: Generalised waypoint-based navigation system

8.5.5 Summary of results
Table 8.2-summarises the planning performances for each experiment. The number of

waypoints and splines produced by the experiments reflects the complexity of the task

that needs to
'
be performed by the path planner. The use of splines rather than the

actual recorded data has allowed memory usage to be reduced by around an order of

magnitude. The memory usage in the spline fit could be further reduced by relaxation

of the error bound in the approximation. The planning performance in terms of

optimality (defined as the percentage of attempts that successfully evolved to the

optimal path) was evaluated by performing 300 independent runs for each experiment.
The calculation times shown in Table 8.2 were obtained from the mean values of 300

independent runs rather than median values, as there was little presence of extreme

values. For a reasonably complex planning problem, such as those in experiments 3,4,

and 5, a suitable path can be generated in well under 10s. Although this is achieved

by a large population over a large number of generations (as shown in Table 8.1), the

number of fitness evaluations that need to be performed is considerably smaller than

the number of candidate paths. Even the simplest planning problem shown in Table

8.2 contains a large number of possible paths to search. To determine the total

number of alternative paths that can be generated from the cost matrix; a depth-first

algorithm was employed. As a steady-state GA is adopted for the planner, only a

single genetic operation is performed in each generation and consequently a greater

number of generations is required compared with conventional GAs. The steady-state
GA, however, is prone to retaining potential elites until their genes have possibly
been propagated to later generations. During experiments, it was observed that the

insertion operator, compared with crossover, was responsible for fewer improvements

in the fitness of the population, even though it promoted population diversity to some
degree. The use of DC was found to promote the retention of the initial diversity and

the initial supply was observed to be more critical in progressively evolving an

optimal solution compared with the results of applying the insertion operation. It was
found that the frequency of application of the insertion operator could be reduced,
firstly as this would generally lengthen the survival rate of potential elite genes until

they had been more closely scrutinised, and secondly because its importance in

234

Chapter 8: Generalised waypoint-based navigation system

maintaining diversity was limited. Note that insertion operator was not applied to the

simplest environment, as the initial supply of genes is adequate.

Table 8.2 The planning performances for the five experiments, showing the memory needed
to store the splines. The compression ratio is the mean value of the ratio of the memory

occupied by the spline coefficients to that occupied by the raw coordinate data. The results
for the calculation time and optimality were obtained for 300 independent runs and the mean

values are shown.

experiment number of
waypoints

number
of splines

memory
usage (kB)

compression
ratio

optimality
rate

calculation
time (S)

1 13 10 12.1 8.17 93.0 0.13
2 41 33 41.6 10.6 91.6 2.34
3 90 73 108 11.3 93.7 4.72
4 92 68 93.7 12.2 92.7 6.05
5 92 68 93.7 12.2 97.0 6.03

8.5.6 Comparison of the planning algorithm with existing systems

To further evaluate the planning algorithm proposed in the navigation system, a

comparison with two existing genetic-based algorithms (Ahn and Ramakrishna 2002;

ji, Iwamura and Shao 2007) was conducted for the five experiments introduced

previously in this section. These two algorithms are closely related to the planning

algorithm proposed in this chapter, since only two genetic operators, one is used for

exchanging information between a pair of parents and the other for randomly altering

genes, were used. Alm and Ramakrishna (2002) proposed a generational GA and a

number of other authors (Davies and Lingras 2003; Mooney and Winstanley 2006;

Wu and Ruan 2004) recently reported similar approaches but with minor

modifications. Ahn and Ramakrishna (2002) performed a comparison to Dijkstra's

algorithm and the results obtained indicates their GA outperformed Dijkstra in terms

of calculation time and, moreover, the computation time required by their GA does

not increased significantly with problem size, in contrast with Dijkstra"s algorithm.

The algorithm developed by Ji, Iwamura and Shao (2007) uses only a fraction of the

population in the genetic operations for each generation.

Tables 8.3 and 8.4 summarise the system parameters used for the two algorithms
(denoted as Ahn's GA and Ji's GA) respectively. In order to produce a fair

comparison, the population size and weights for both the known and unknown parts

235

Chapter 8: Generalised waypoint-based navigation system

were assigned the same values, and the probabilities of the genetic operators used the

values documented in the literature. The probabilities of crossover and mutation listed

in Table 8.3 indicates Ahn's GA is a crossover-intensive algorithm, but Ji's GA used
the two genetic operators with equal probability. Note that the source code for Ahn's

GA was downloaded from the author's website (Ahn 2007), whereas Ji's GA was

translated from the paper (Ji, Iwamura and Shao 2007).

Table 8.3 The system parameters for Ahn's algorithm
(W2 is estimated from the previous navigations).

i population wei ghts operator probability
exper ment size W1 I W2 crossover mutation

1 250 1 1.12
2 300 1 1.12
3 500 1 1.12 1 0.05
4 500 1 1.85
5 500 1 1

Table 8.4 The system parameters for Ji's algorithm
(W2 is estimated from the previous navigations).

i population wei ghts operator probability
exper ment size W1 W2 crossover mutation

1 250 1 1.12
2 300 1 1.12
3 500 1 1.12 0.2 0.2
4 500 1
5 500 1 1

Two measures, optimality (measured as the percentage of attempts that successfully

evolved to the optimal path) and the number of fitness evaluations, were performed in

a series of five experiments used previously in this section. The results shown in

Table 8.5 were obtained for 300 independent runs when the evolution terminated after

the calculation time listed in Table 8.2, as our aim was to maximise the performance-
(in terms of optimality) with minimum calculation time. Cantu-Paz (2000) suggested
to use the number of fitness function evolutions as a criterion of convergence

performance when compared with other algorithms until equal quality of solutions is

obtained. However, it is difficult to obtain an identical solution quality if the high

quality is required, and low quality may indicate the convergence performance for

236

Chapter 8: Generalised waypoint-based navigation system

partial evolution and the later convergence towards high optimality may never be

explored. Consequently, the comparison strategy adopted is instead to constrain the

evolutions so that they terminate over a specified execution time.

It can be concluded from Table 8.5 that Ahn's and Ji's algorithms slightly

outperformed the waypoint-based planning algorithm in terms of optimality for the

simplest test, but high optimality was achieved by the waypoint-based planning

algorithm for the remaining tests. That the most rapid convergence of the waypoint-
based planning algorithm was achieved with a relatively smaller number of fitness

evaluation functions for all tests implies that DC is important in ensuring good

convergence. Ahn's and Ji's algorithms have a similar performance in the five test

problems and are capable of generating optimal solution more frequently for the

simple planning problem (experiment 1). The smallest number of fitness evaluations

was required by the waypoint-based planning algorithm indicating more time was

consumed in similarity evaluations between offspring and parents.

Table 8.5 Comparison of the performances of the planning algorithms. Optimality was
obtained for 300 independent runs and the number of fitness evaluations are estimated

according the population size and operator probabilities.

experiment 1 2 3 4 5
Ahn's optimality rate 94.8 66.7 52.6 37.8 56.2

GA fitness evaluations 729.7 20608 18216 10296 10476
Ji's optimal ity rate (%) 96 57.3 43 45.7 67.7
GA fitness evaluations 701.3 446 11573 12058 12094

waypoint optimality rate (%) 93 91.6 93.7 92.7 97
planner , fitness evaluations 450 5275 9455 10052 10052

8.6 Conclusions

This chapter has described a generalised waypoint navigation system that has

extended the waypoint navigation system introduced in chapters 5 and 6, so that it is

able to plan navigation tasks that can start and end at any point in the robot's

environment. To achieve this objective, additional information regarding the paths
taken to avoid obstacles is recorded and stored in a compact manner. A suitable path
is generated by the generalised waypoint algorithm operating on the search space

237

Chapter 8: Generalised waypoint-based navigation system

represented by a cost matrix which is constructed taking into account the new start

and goal points. Statistical evaluation of the planning performance implies the

robustness of the proposed algorithm in finding an optimal solution within a short

time even for reasonability complex problems. The planning performance required to

obtain the optimal solutions were evaluated by comparing its performance with that

of two other methods reported in the literature.

The current navigation system has a number of shortcomings. From Figure 8.15,8.16

and 8.17, it can be seen that a number of spline curves determined for in the same

obstacle overlap to a certain degree. At present, no method of combining this

information has been developed and each future investigation of the same area will

result in the storage of duplicated information. This will give rise to scaling problems,

as additional waypoints will continue to be generated even when no additional useful
information is being acquired. The scaling problem can be addressed by the

implementation of a suitable localisation technique. Scaling issues, when constructing

the cost matrix, will arise as more waypoints are discovered.

238

Chapter 9: Conclusions

Chapter 9

CONCLUSIONS

The research project work presented in the thesis is summarised and the objectives for

the research are critically reviewed. Future investigations are suggested to overcome

some of the shortcomings of the navigation systems.

9.1 Summary

The broad concepts relating to the type of robots studied in the project, the robot

navigation and genetic algorithms were introduced in chapter 1. The research

objectives were stated and the contributions of the project to knowledge listed.

Chapter 2 discussed the recent development in GAs research, including descriptions

of steady-state GAs, genetic representations, selection schemes, genetic operators,

and premature convergence and diversity. These features of GAs are closely related

to those adopted in the planning algorithms in this thesis.

Research results published in the literature that are relevant to the current project

were reviewed in chapter 3. This included an introduction to the deliberative, reactive

and hybrid architecture and described work related to the various types of planners,

particularly those based on evolutionary techniques. The reactive component of the

navigation system used in the work described in chapters 6 to 8 was also introduced.

239

Chaptcr 9: Conclusions

Chapter 4 proposed a genetic-based approach using vertex heuristics for mobile robot

path planning and presented the results for a set of simulated environments. In

comparison with an earlier genetic-based planner (EP/N), the path planning

performance was similar, but the calculation time was considerably reduced. The

results demonstrated that the performance can be further improved if the system

parameters are optimised.

The vertex++ planner introduced in chapter 5 is an extension of the vertex planner

and was designed to deal with the planning problems for dynamic environments. The

advantages and drawbacks of the vertex++ planner observed from the experimental

results are as follows. Due to the reduction in search space and simple genetic

operators, the planner can rapidly establish an optimal or near optimal path for

environments containing multiple obstacles. New information observed regarding

changes in the environment can be incorporated into the planning process to modify

the current path and avoid potential collisions. Unfortunately, such planner-based

navigation systems are generally unable to deliver a satisfactory real-time solution

when unexpected changes occur.

The new navigation system presented in chapter 6 adopted a hybrid architecture with

the waypoints representing the robot's environment in attempt to combine the

advantages and overcome the disadvantages of the reactive and deliberative

navigation. The waypoint navigation system required no a priori knowledge of the

environment, stored the information elicited regarding the environment in highly

abstract and compact form and was able to deliver real-time operation by navigating
in a reactive manner between waypoints. The experimental results showed that,

compared with EP/N and the vertex planner, the calculation time required to generate
a path was significantly reduced without compromising on the quality of the path

generated. The experiments performed in complex environments indicated that a

stable optimality was achieved by the proposed planning algorithm.

Chapter 7 introduced a navigation system for dynamic environments based on
waypoint-based navigation system presented in chapter 6. The results showed that a

240

Chapter 9: Conclusions

suitable path can be effectively generated by incorporating statistical knowledge of

the dynamic characteristics of the environment gained from the previous navigations.

The experiments conducted for the hybrid system verified the proposed policy for

avoiding both individual and small groups of moving obstacles, even though the

strategy was mainly designed for only single dynamic obstacles. The technique

developed for avoiding moving obstacles was further evaluated by comparison with a

reactive strategy found in the literature.

The generalised version of the waypoint-based navigation system was presented in

chapter 8. In order for the robot to plan future navigation between any start point and

any goal point, a new method of representing information obtained regarding the

environment was developed and this was recorded in a manner that is not expensive

in terms of memory usage or planning time. The chapter obtained path planning

results for a series of experiments in environments exhibiting a range of different

complexities and a comparison with other two algorithms reported in the literature

was conducted to benchmark the performance of the planning algorithm.

9.2 Review of research objectives

The aim of the research, to design an autonomous navigation system for a mobile

robot that has no a priori knowledge of the environment, was met to an extent by the

implementation of the waypoint navigation system in chapter 6, but with a limitation

that restricted the choice of start and end points for the navigation. The removal of

this limitation was accomplished in chapter 8, where the waypoint method was

extended to allow the determination of segments around obstacles that described

paths for obstacle avoidance that could be used in later planning activities.

The achievements with respect to the specific objectives outlined in section 1.4 are
discussed below.

1. Compared with existing implementations described in the literature, a
reduction in the time taken to generate plans for static environments was

241

Chapter 9: Conclusions

achieved by the vertex planner that restricted the search space to only the

vertices of the obstacles.
2. The vertex++ planner extended the vertex planner in such a way that the

navigation could also be carried out for dynamic obstacles. This was realised
by incorporating speed parameters into planning process. The improvement in

the calculation time of the planning algorithm can be attributed to the

reduction apparent in the search space and application of only simple genetic

operators.

3. The waypoint-based navigation system provided a simple mechanism to

automatically gather information regarding suitable paths to avoid static

obstacles in the enviromnent. This is a hybrid solution, in which the reactive

navigator identifies and stores the location at which a new obstacle is first

encountered. This location can then be used by a high-level deliberative

system for generating future plans.
4. The waypoint navigation system was enhanced by augmenting the behaviours

of the reactive component so that specific actions could be instigated on

encountering moving obstacles.
5. The generalised version of the hybrid navigation system was able to provide

navigation from any start point to any goal point in the environment. This was

achieved by acquiring additional information regarding the obstacles and
designing suitable paths that could be following to ensure avoidance.

9.3 Shortcomings of the planners and future work

This section discusses some of the drawbacks of the current approaches described in

this thesis and outlines future work to overcome these drawbacks.

9.3.1 Planner-based navigation systems

The improvement in the performance of the planners proposed in chapters 3 and 4

apparently results from the reduction in search space that requires only the vertices of
obstacles need be considered. However, objects in the test environment that were not
polygonal were approximated by bounding polygons. The trade-off between accuracy

242

Chapter 9: Conclusions

of representation and both planning time and plan viability was not investigated, and

could be the subject of further study. I

9.3.2 Waypoint-based navigation system

Although the waypoint system is clearly an important contribution to mobile robot

planning, further development and investigation is needed prior to practical
implementation. One of the principal shortcomings of the generalised waypoint

navigation system is scalability as the cost matrix is augmented with new waypoints.

Environments investigated in the study contained many obstacles and planning can be

carried out on a reasonable timescale, but this cannot be guaranteed for larger

numbers of obstacles. Practical solutions for limiting the effect of scalability exist, for

example, it may be possible to subdivide the waypoints into independent sets (for

example those contained in separate rooms) that do not need to be fully

interconnected.

No combination of the path segments around the obstacles that are produced in the

generalised waypoint system was carried out. In many cases these segments describe

largely coincident or intersecting paths, wasting memory for the storage of

information and lengthening processing time for future planning. A method to

combine waypoints needs to be developed. Such a solution would also alleviate the

scalability problems to some extent.

9.3.3 Experimental procedure

The work presented in the thesis was conducted using simulation and implementation

on a physical robot is important in demonstrating practical feasibility. This is also an

area for future research.

9.4 Conclusions

This chapter has summarised the work presented in this thesis, reviewed the

objectives, and proposed the future work based on the outline of possible

shortcomings of the navigation approaches introduced in this thesis.

243

References

References

Abbas, H. M. and Bayoumi, M. M. 2006. Volterra-system identification using adaptive

real-cbded genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics,

Part A: Systems and Humans, 36(4), 671-684.

Abbass, H. A. and Deb, K. 2003. Searching under multievolutionary pressures. In:

Proceedings of the 2nd International Conference on Evolutionary Multi-Criterion

Optimization, Apr 8-11,2003, Faro, Portugal. New York: Springer Publishing

Company, 391-404.

Abraham, A., Jain, L. and Goldberg, R. (eds.). 2005. Evolutionary Multiobjective

optimization: Theoretical Advances and Applications. London: Springer-Verlag

Publisher.

Adams, M., Zhang, S. and Xie, L. H. 2004. Particle filter based outdoor robot
localization using natural features extracted from laser scanners. In: Proceedings of

the IEEE International Conference on Robotics and Automation, Apr 26-May 1,2004,

New Orleans, USA. Los Alamitos, CA: IEEE Computer Society Press, 1493-1498.

Affenzeller, M. and Wagner, S. 2004. The influence of population genetics for the

redesign of genetic algorithms. Journal ofSystems Science, 30(4), 53-60.

Affenzeller, M. and Wagner, S. 2005. Offspring selection: a new self-adaptive

selection scheme for genetic algorithms. In: Proceedings of the 71h International
Conference on Adaptive and Natural Computing Algorithms, Mar 21-23,2005,

Coimbra, Portugal. Vienna: Springer-Verlag Publisher, 218-221.

244

References

Agrawal, A. et al. 2005. Dynamics in proportionate selection. In: Proceedings of the

71h International Conference on Adaptive and Natural Computing Algorithms, Mar

21-23,2005, Coimbra, PortugaL Vienna: Springer-Verlag Publisher, 25-28.

Aguilar-Ruiz, J. S., Giraldez, R. and Riquelme, J. C. 2007. Natural encoding for

evolutionary supervised learning. IEEE Transactions on Evolutionary Computation,

11(4), 466-479.

Aguirre, E. and Gonzdlez, A. 2003. A fuzzy perceptual model for ultrasound sensors

applied to intelligent navigation of mobile robots. Applied Intelligence, 19(3), 171-

187.

Aha, D. A. 1997. Lazy Learning. Dordrecht: Kluwier Academic Publishers.

Ahn, C. W. 2007. Genetic algorithm for shortest path routing problem.

http: //www. evolution. re. kr/, Aug 15,2007.

Ahn, C. W. and Ramakrishna, R. 2002. A gcnctic algorithm for shortcst path routing

problem and the sizing of populations. IEEE Transactions on Evolutionary

Computation, 6(6), 566-579.

Amor, H. B. and Rettinger, A. 2005. Intelligent exploration for genetic algorithms:

using self-organizing maps in, evolutionary computation. In: Proceedings of the

Genetic and Evolutionary Computation Conference, Jun 25-29,2005, Washington,

D. C., USA. New York, NY: Association for Computing Machinery, 1531-153 8.

Antich, J. and Ortiz, A. 2006. Bug-based T2: A new globally convergent potential
field approach to obstacle avoidance. In: Proceedings of the International Conference

on Intelligent Robots and Systems, Oct 1-15,2006, Beying, China. Los Alamitos,
CA: IEEE Computer Society Press, 430-435.

245

References

Arambula Cosio, F. and Padilla Castaneda, M. A. 2004. Autonomous robot navigation

using adaptive potential fields. Mathematical and Computer Modelling, 40(9-10),

1141-1156.

Arkin, R. C. 1986. Path planning for a vision-based autonomous robot. In:

Proceedings of SPIE Conference on Mobile Robots, Oct 30-31,1986, Cambridge,

MA, USA. Bellingham, WA: SPIE Press, 240-249.

Arkin, R. C. 1987. Motor schema based navigation for a mobile robot: An approach to

programming by behaviour. In: Proceedings of the IEEE International Conference on

Robotics andAutomation, Mar 31-Apr 3,1987, Raleigh, NC, USA. Los Alamitos, CA:

IEEE Computer Society Press, 264-271.

Arkin, R. C. 1989. Navigational path planning for a vision-bascd mobile robot.

Robotica, 7(l), 49-63.

Arkin, R. C. 1998. Behavior-Based Robotics. Cambridge, MA: MIT Press.

Armesto, L. and Tornero, J. 2004. SLAM based on Kalman filter for multi-rate fusion

of laser and encoder measurements. In: Proceedings of the IEEE Conference on

Intelligent Robots and Systems, Sep 28-Oct 2,2004, Sendai, Japan. Los Alamitos,

CA: IEEE Computer Society Press, 1860-1865.

Asada, M. et al. 1999. RoboCup: today and tomorrow - what we have leamed.

Artificial Intelligence, 110(2), 193-214.

Ashlock, D. A., Manikas, T. W. and Ashenayi, K. 2006. Evolving a diverse collection

of robot path planning problems. In: Proceedings of the IEEE Congress on
Evolutionary Computation, Jul 16-21,2006, Vancouver, Canada. Piscataway, NJ:

IEEE Press, 1837-1844.

246

References

Back, T., Fogel, D. and Michalewicz, Z. 1997. Handbook of Evolutionary

Computation. New York: Oxford University Press and Institute of Physics

Publishing.

Back, T., Hammel, U., and Schwefel, H. -P. 1997. Evolutionary computation:

comments on the history and current state. IEEE Transactions on Evolutionary

Computation, l(l), 3-17.

Baker, J. E. 1985. Adaptive selection methods for genetic algorithms. In: Proceedings

of the Ist International Conference on Genetic Algorithms and their Applications, Jul

24-26,1985, Pittsburgh, PA USA. NJ: Lawrence Erlbaum Associates, 101-111.

Baker, J. E. 1987. Reducing bias and ineciency in the selection algorithm. In:

Proceedings of the 2nd International Conference on Genetic Algorithms, Jul 28-31,

1987, Cambridge, AM, USA. NJ: Lawrence Erlbaurn Associates, 14-21.

Baklouti, N. and Alimi, A. M. 2007. Motion planning in dynamic and unknown

environment using an interval type-2 TSK fuzzy logic controller. In: Proceedings of

the IEEE Conference on Fuzzy Systems, Jul 23-26,2007, London, UK. Piscataway,

NJ: IEEE Press, 1-6.

Ballester, P. J. and Chrter, J. N. 2003. Real-parameter genetic algorithms for finding

multiple optimal solutions in multi-modal optimization. In: Proceedings of the

Genetic and Evolutionary Computation Conference, Jul 12-16,2003, Chicago, IL,

USA. Berlin: Springer-Verlag Publisher, 706-717.

Barto, A. G., Sutton, R. S. and Watkins, U. C. H. 1990. Learning and sequential
decision making. In: Gabriel, M. and Moore, J. (eds.), Learning and Computational

Neuroscience: Foundations ofAdaptive Networks. Cambridge, MA: MIT Press, 539-

602.

247

References

Beasley, D., Bull, D. and Martin, R. R. 1993. An overview of genetic algorithms: Part

1, fundamentals. University Computing, 15(2): 58-69.

Bekey, G. A. 2005.4utonomous Robots: From Biological Inspiration to

Implementation and Control. Cambridge, MA: MIT Press.

Berman, S., Edan, Y. and Jamshidi, M. 2003. Navigation of decentralized

autonomous automatic guided vehicles in material handling. IEEE Transactions on
Robotics andAutomation, 19(4), 743-749.

Bessonnet, G., Seguin, P. and Sardain, P. 2005. A parametric optimization approach

to walking pattern synthesis. International Journal of Robotics Research, 24(7), 523-

536.

Blickle, T. and Thiele, L. 1997. A Comparison of selection schemes used in

evolutionary algorithms. Evolutionary Computation, 4(4), 361-394.1

Bonasso, R. P. et al. 1997. Experiences with an architecture for intelligent, reactive

agents. Journal of Experimental and Theoretical Artificial Intelligence, 9(2), 237-256.

Booker, L. B. 1982. Intelligent Behavior as An Adaptation to The Task Environment.

Ph. D. thesis, University of Michigan.

Borenstein, J. and Koren, Y. 1991. The vector field histogram - fast obstacle

avoidance for mobile robots. IEEE Journal of Robotics and Automation, 7(3), 278-

288.

Brindle, A. 1981. Genetic Algorithms for Function Optimization. Ph. D. thesis,
Department of Computer Science, University of Alberta.

Brno University of Technology, Czech Republic. 2006. Autonomous mobile robotics

toolbox. http: //wes. feec. vutbr. cziUAMT/roboties/simulations/amrt/, Jul 21,2006.

248

References

Brooks, R. A. 1985. A robust layered control system for a mobile robot. IEEE Journal

ofRobotics and Automation, 2(l), 14-23.

Bui, L. T., Branke, J. and Abbass, H. A. 2005. Multiobjective optimization for

dynamic environments, In: Proceedings of the IEEE Congress on Evolutionary

Computation, Sep 2-5,2005, Edinburgh, UK. Piscataway, NJ: IEEE Press, 2349.

2356.

Bullinaria, J. A. 2004. Generational versus steady-state evolution for optimizing

neural network learning. In: Proceedings of the IEEE International Joint Conference

on Neural Networks, Jul 25-29,2004, Budapest, Hungary. Piscataway, NJ: IEEE

Press, 2297-2302.

Burgard, W. et al. 2005. Coordinated multi-robot exploration. IEEE Transaction on
Robotics, 21(3), 376-386.

Burke, E., Gustafson, S. and Kendall, G. 2002. A survey and analysis of diversity

measures in genetic programming. In: Proceedings of the Genetic and Evolutionary

Computation Conference, Jul 9-13,2002, New York, USA. San Francisco, CA:

Morgan Kaufmann Publishers, 716-723.

Buyurgan, N. et al. 2007. Real-time routing selection for automated guided vehicles
in a flexible manufacturing system. Journal of Manufacturing Technology

Management, 18(2), 169-181.

Cai, Z. and Peng, Z. 2001. The application of a novel encoding mechanism in path

planning for a mobile robot. Robot, 23(3), 230-233.

Cantu-Paz, E. 2000. Efficient and Accurate Parallel Genetic Algorithms. ' Norwell,

MA: Kluwer, 2000.

249

References

Carrano, E. G. et al. 2.006. Electric distribution network multiobjective design using a

problem-specific genetic algorithm. IEEE Transactions on Power Delivery, 21(2),

995-1005.

Cavicchio, D. J. 197.0. Adaptive Search Using Simulated Evolution. Ph. D. thesis,

University of Michigan.

Chaiyaratana, N. and Zalzala, A. M. S. 1997. Recent developments in evolutionary and

genetic algorithms: theory and applications. In: Proceedings of the 2nd International

Conference on Genetic Algorithms in Engineering Systems: Innovations and

Applications, Sep 2-4,1997, Glasgow, UK. London: IEE Press, 270-277.

Chambers, L. (ed.) 2000. The Practical Handbook of Genetic Algorithms:

Applications. 2nd ed. Boca Raton, FL: CRC Press.

Chang, S. J., Hou, H. S. and Su, Y. K. 2006. Automated passive filter synthesis using a

novel tree representation and genetic programming. IEEE Transactions on
Evolutionary Computation, 10(l), 93-100.

Chang, Z. et al. 2005. GA path planning for AUV to avoid moving obstacles based on
forward looking sonar. In: Proceedings of the International Conference on Machine

Learning and Cybernetics, Aug 18-21,2005, Guangzhou, China. Los Alamitos, CA:

IEEE Computer Society Press, 1498-1502.

Chen, D., Lee, C. Y. and Park, C. H. 2005. Hybrid genetic algorithm and simulated

annealing (HGASA) in global function optimization. In: Proceedings of the 17th

IEEE International Conference on Tools with Artificial Intelligence table of contents,
Nov 14-16,2005, Hong Kong, China. Washington, DC: IEEE Computer Society

Press, 126-131.

Chen, H. and Xu, Z. 2005. Path planning based on a new genetic algorithm. In:

Proceedings of the 2nd International Conference on Neural Networks and Brain, Oct

250

References

13-15,2005, Beying, China. Los Alamitos, CA: IEEE Computer Society Press, 788-

792.

Choset, H. et al. 2005. Principles of Robot Motion: Theory, Algorithms, and

Implementation. Cambridge, MA: MIT Press.

Cocora, A. et al. 2006. Learning relational navigation policies. In: Proceedings of 1he

International Conference on Intelligent Robots and Systems, Oct 9-15,2006, Beying,

China. Los Alamitos, CA: IEEE Computer Society Press, 2792-2797.

Conceicao Antonio, C. A. 2006. A hierarchical genetic algorithm with age structure

for multimodal optimal design of hybrid composites. Structural and Multidisciplinary

Optimization, 31(4), 280-294.

Connell, J. 1992. SSS: a hybrid architecture applied to robot navigation. In:

Proceedings of the IEEE Conference on Robotics and Automation, May 12-14,1992,

Nice, France. Los Alamitos, CA: IEEE Computer Society Press, 2719-2724.

Connors, J. and Elkaim, G. 2007. Analysis of a spline based, obstacle avoiding path

planning algorithm. In: Proceedings of the 65th Vehicular Technology Conference,

Apr 22-25,2007, Dublin, Ireland. Piscataway, NJ: IEEE Press, 2565-2569.

Cormen, T. H. et al. 2001. Introduction to Algorithms, 2nd ed. New York: MIT Press

and McGraw-Hill.

Critchlow, A-J. 1985. Introduction to Robotics. New York: Macmillan.

Davies, C. and Lingrasj P. 2003. Genetic algorithms for rerouting shortest paths in

dynamic and stochastic networks. European Journal of Operational Research, 144(l),

27-38.

de Boor, C. 1978. A Practical Guide to Splines. Berlin: Springer-Verlag Publisher.

251

References

De Jong, K. A. 1975. An Analysis of the Behaviors of A Class of Genetic Adaptive

Systems. Ph. D. thesis, University of Michigan.

De Jong, K. A. 1992. Genetic algorithms are NOT function optimizers. In: Whitley,

D. (ed.), Foundations of Genetic Algorithms 2. San Francisco, CA: Morgan

Kaufmann Publishers, 6-18.

De Jong, K. A. and Sarma, J. 1992. Generation gaps revisited. In: Whitley, L. D. (ed.),

Foundations of Genetic, 41gorithms 2. San Mateo, CA: Morgan Kaufmann Publishers,

19-28.

De Jong, K. A. and Spears, W. 1993. On the state of evolutionary computation. In:

Proceedings of the 5th International Conference on Genetic Algorithms, Jul 17-21,

1993, San Mateo, CA, USA. San Francisco: Morgan Kaufmann Publishers, 618-625.

Dengiz, 0., Dozier, G. and Smith, A. E. 2004. Non-deterministic decoding with

memory to enhance precision in binary-coded genetic algorithms. In: Proceedings of

the IEEE Congress on Evolutionary Computation, Jun 19-23,2004, Portland,

Oregon, USA. Piscataway, NJ: IEEE Press, 2166-2172.

Dessmark, A. and Pelc, A. 2004. Optimal graph exploration without good maps.
Theoretical Computer Science, 326(1-3), 343-362.

Dick, G. 2005. A comparison of localised and global niching methods. in:

Proceedings of 17thAnnual Colloquium of the Spatial Information Research Centre,

Nov 24-25,2005, Dunedin, New Zealand, USA. New Zealand: University of Otago,

91-101.

Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. In:

Numerische Mathematik, 1,269-271.

252

References

Dixon, K. R., Dolan, J. M. and Khosla, P. K. 2004. Predictive robot programming:

theoretical and experimental analysis. International Journal of Robotics Research,

23(9), 955-973.

Duan, G. and Yu, Y. 2003. Power distribution system optimization by an algorithm
for capacitated steiner tree problems with complex-flows and arbitrary cost functions.

Electrical Power and Energy Systems, 25(7), 515-523.

Durnitrescu, D. et at. 2000. Evolutionary Computation. Boca Raton, FL: CRC Press.

Dyllong, E. and Visioli, A. 2003. Planning and real-time modifications of a trajectory,

using spline techniques. Robotica, 21(5), 475-482.

Elshamli, A., Abdullah, H. A. and Areibi, S. 2004. Genetic algorithm for dynamic

path planning. In: Proceedings of the Canadian Conference on Electrical and
Computer Engineering, May 2-5,2004, Niagara Fall, Ontario, Canada. Piscataway,

NJ: IEEE Press, 677-680.

Feng, J. et al. 2006. A hybrid genetic algorithm with fitness sharing based on rough

sets theory. In: Proceedings of the IEEE 61h World Congress on Intelligent Control

andAutomation, Jun 21-23,2006, Dalian, China. Piscataway, NJ: IEEE Press, 3340-

3344.

Fiorini, P. and Shiller, Z. 1998. Motion planning in dynamic environment using

velocity obstacles. International Journal ofRobotics Research, 17(7), 760-772.

Fleischer, R. and Trippen, G. 2005. Exploring an unknown graph efficiently. Lecture

Notes in Computer Science, 3669,11-22.

Fogel, D. B. 1994. An introduction to simulated evolutionary optimization. IEEE

Transactions on Neural Networks, 5(l), 3-14.

253

References

Fonseca, C. M. and Correia, M. B. 2005. Developing redundant binary representations

for genetic search. In: Proceedings of the IEEE Congress on Evolutionary

Computation, Sep 2-5,2005, Edinburgh, UK. Piscataway, NJ: IEEE Press, 1675-1682.

Fox, D., Burgard, W. and Thrun, S. 1997. The dynamic window approach to collision

avoidance. IEEE Robotics andAutomation Magazine, 4(l), 23-33.

Fraichard, F. and Asama, H. 2004. Inevitable collision states -a step towards safer

robots? Advanced Robotics, 18(10), 1001-1024.

Freda, L. and Oriolo, G. 2005. Frontier-based probabilistic strategies for sensor-based

exploration. In: Proceedings of the IEEE International Conference on Robotics and

Automation, Apr 18-22,2005, ' Barcelona, Spain. Los Alamitos, CA: IEEE Computer

Society Press, 3892-3898.

Frese, U., Larsson, P. and Duckett, T. 2005. A multilevel relaxation algorithm for

simultaneous localization and mapping. IEEE Transactions on Robotics, 21(2), 196-

207.

Fu, Y. et al. 2006. A navigation strategy based on global geographical planning and

local feature positioning for mobile robot in large unknown environment. In:

Proceedings of the Ist International Symposium on Systems and Control in

Aerospace and Astronautics, Jan 19-21,2006, Harbin, China. Los Alamitos, CA:

IEEE Computer Society Press, 1189-1193.

Fujisawa, K. et al. 2000. Real-time -decision making for autonomous mobile robot

using evolution strategy and anytime sensing. In: Proceedings of the 261h Annual

Conference of the IEEE Industrial Electronics Society, Oct 22-28,2000, Nagoya,

Japan, Los Alamitos, CA: IEEE Computer Society Press, 2809-2814. -

Fujita, M. and Kitano, H. 1998. Development of an autonomous quadruped robot for

robot entertainment. Autonomous Robots, 5(2), 7-18.

254

References

Gaing, Z. L. and Huang, H. S. 2004. Real-coded mixed-integer genetic algorithm for

constrained optimal power flow. In: Proceedings of the IEEE Region 10 Conference

on Analog and Digital Techniques in Electrical Engineering, Nov 21-24,2004,

Chiang Mai, Thailand. Piscataway, NJ: IEEE Press, 323-326.

Garg, D. and Kumar, M. 2001. Optimal path planning and energy minimization via

genetic algorithm applied to cooperating robotic manipulators. In: Proceedings of the

, 4merican Society of Mechanical Engineers, Dynamic Systems and Control Division,

Nov 11-16,2001, New York, USA. New York NY: American Society of Mechanical

Engineers, 71-79.

Garrozi, C. and Araujo, A. F. R. 2006. Multiobjective genetic algorithm for multicast

routing. In: Proceedings of the IEEE Congress on Evolutionary Computation, Jul 16-

21,2006, Vancouver, Canada. Piscataway, NJ: IEEE Press, 2513-2520.

Gartshore, R., Palmer, P. and Illingworth, J. 2005. A novel exploration algorithm

based on an improvement strategy. International Journal of Advanced Robotic

Systems, 2(4), 287-294.

Gaspar, J., Winters, N. and Santos-Victor, J. 2000. Vision-based navigation and

environmental representations with an oranidirectional camera. IEEE Transactions on

Robotics andAutomation, 16(6), 890-898.

Gat, E. 199 1 a. Reliable Goal-directed Reactive Control for Real-world Autonomous

Mobile Robots. Ph. D. Thesis, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia.

Gat, E. 1991b. ALFA: a language for programming reactive robotic control systems.

In: Proceedings of the IEEE Conference on Robotics and Automation, Apr 9-11,1991,

Sacramento, CA, USA. Los Alamitos, CA: IEEE Computer Society Press, 1116-112 1.

255

References

Gat, E. 1998. On three-layer architectures. In: Kortenkamp, D., Bonnasso, R. P. and ,
Murphy, R. (eds.), Artificial Intelligence and Mobile Robots: Case Studies of
Successful Robot Systems. Cambridge, MA: MIT Press, 195-210.

Ge, S. S. and Cui, Y. J. 2000. New potential functions for mobile robot path planning.
IEEE Transactions on Robotics andAutomation, 16(5), 615-620.

Ge, S. S. and Cui, Y. J. 2002. Dynamic motion planning for mobile robots using

potential field method. Autonomous Robots, 13(3), 207-222.

Geisler, T. and Manikas, T. W. 2002. Autonomous robot navigation system using a

novel value encoded genetic algorithm. In: Proceedings of the 45th IEEE

International Midwest Symposium on Circuits and Systems, Aug 4-7,2002, Tulsa,

Oklahoma, USA. Piscataway, NJ: IEEE Press, 45-48.

Gen, M., Cheng, R. and Oren, S. S. 2001. Network design techniques using adapted

genetic algorithms. Advances in Engineering Software, 32(9), 731-744.

Georgeoff. M. P. and Lansky, A. L. 1987. Reactive reasoning and planning. In:

Proceedings of the 6th National Conference on 4rtificial Intelligence, Jul 13-17,

Seattle, WA USA. Menlo Park, CA: AAAI Press, 677-682.

Ghaffari, M. et al. 2004. Design of an umnanned ground vehicle, bearcat III, theory

and practice. Joumal ofRobotic Systems, 21(9), 471-480.

Glickman, M. and Sycara, K. 2000. Reasons for premature convergence of self-
adapting mutation rates. In: Proceedings of the IEEE Congress on Evolutionary

Computation, Jul 16-19,2000, La Jolla, CA, USA. Piscataway, NJ: IEEE Press, 62-69,

Goldberg, D. E. 1989. Genetic 41gorithms in Search OPtimization and Machine
Learning. Reading, MA: Addison-Wesley Publishing. -

256

References

Goldberg, D. E. 2002. The Design of Innovation: Lessons ftom and for Competent

Genetic Algorithms. Boston, MA: Kluwer Academic Publisher.

Goldberg, D. E. and Deb, K. 1991. A comparative analysis of selection schemes used

in genetic algorithms. In: Rawlins, G. J. E. (ed.), Foundations of Genetic Algorithms.

San Francisco, CA: Morgan Kaufmann Publishers, 69-93.

Goldberg, D. E., Korb, B. and Deb, K. 1989. Messy genetic algorithms: Motivation,

analysis, and first results. Complex Systems, 3(5), 493-53 0.

Goldberg, D. E. and Rechardson, J. 1987. Genetic algorithms with sharing for

multimodal optimization. In: Proceedings of the 2nd International Conference on

Genetic Algorithm, Jul 28-31,1987, Massachusetts Institute of Technology,

Cambridge, MA, USA. Hillsdale, NJ: Lawrence Erlbaum Associates, 41-49.

Gonzalez-Banos, H. H. and Latombe, J. C. 2002. Navigation strategies for exploring

indoor environments. International Journal of Robotics Research, 21(10-11), 829-

848.

Grefenstette, J. J. and Baker, J. E. 1989. How genetic algorithms work: A critical look

at implicit parallelism. In: Proceedings of the 3rd International Conference on
Genetic Algorithms, Jun 4-7,1989, Fairfax, Virginia, USA. San Francisco: Morgan

Kaufmann Publishers, 20-27.

Gu, L. and Owens, R. 1998. Visual guidance of robot motion. In: Proceedings of the

IEEE International Conference on Intelligent Processing Systems, Oct 11-14,1998,

San Diego, California, USA. Piscataway, NJ: IEEE Press, 1242-1246.

Guan, Y. et al. 2005. On robotic tra ectory planning using polynomial interpolations.

In: Proceedings of the IEEE International Conference on Robotics and Biomimetics,

Jun 29-Jul 3,2005, Hongkong, China. Los Alamitos, CA: IEEE Computer Society

Press, 111-116.

257

I

References

Guo, J. F., Gui, Q. M. and Yang, YX 2003. Least squares fitting method based on

bivariate nonuniform B-spline and its applications in surveying engineering. Journal

ofSurveying Engineering, 129(3), 105-109.

Guo, J. H. 2006. A waypoint-tracking controller for a biomimetic autonomous

underwater vehicle. Ocean Engineering, 33(17), 2369-23 80.

Guo, SX, Sawamoto, J. and Pan, QX 2005. A novel type of microrobot for

biomedical application. In: Proceedings of the IEEE International Conference on

Intelligent Robots and Systems, Aug 2-6,2005, Edmonton, Canada. Los Alamitos,

CA: IEEE Computer Society Press, 1047-1052.

Hagras, H., Callaghan, V. and Colley, A 2004. Learning and adaptation of an

intelligent mobile robot navigator operating in unstructured environment based on a

novel online fuzzy-genetic system. Fuzzy Sets and Systems, 141(l), 107-160.

Hand, A. et al. 2005. Benchmarking of robot path planning algorithms. In: Intelligent

Engineering I Systems Through Artificial Neural Networks: Smart Engineering

Systems Design: Neural Networks, fuzzy Logic, Evolutionary Prograrhming,

Complex Systems andArtificial Life. New York: ASME Press, 377-384.

Hao, Y. and Agrawal, S. K. 2005. Formation planning and control of UGVs with

trailers. Autonomous Robots, 19(3), 257-270.

Hart, P. E., Nilsson, N. J. and Raphael, B. 1968. A fonnal basis for the heuristic

determination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100-107.

Hermanu, T. et al. 2004. Autonomous robot navigation using a genetic algorithm

with an efficient genotype structure. In: Intelligent Engineering Systems Through

Artificial Neural Networks: Smart Engineering Systems Design: Neural Networks,

258

References

Fuzzy Logic, Evolutionary Programming, Complex Systems and Artificial Life. New

York: ASME Press, 319-324.

Herrera, F. and Lozano, M. 2000. Gradual distributed real-coded genetic algorithms.

IEEE Transactions on Evolutionary Computation, 4(l), 43-63.

Hiroyasu, T., Miki, M. and Watanabe, S. 1999. Distributed genetic algorithms with a

new sharing approach in multiobjective optimization problems. In: Proceedings of the

IEEE Congress on Evolutionary Computation, Jul 6-9,1999, Washington, DC, USA.

Piscataway, NJ: IEEE Press, 69-76.

Ho, Y. C. and Pepyne, D. L. 2002. Simple explanation of the No-Free-Lunch theorem

and its implications. Journal of Optimization Theory and Applications, 115(3), 115-

549.

Hocaoglu, C. and Sanderson, A. C. 2001. Planning multiple paths with evolutionary

speciation. IEEE Transactions on Evolutionary Computation, 5(3), 169-19 1.

Holland, J. H. 1975. Adaptation in Natural And Artificial Systems. Ann Arbor, MI:

University of Michigan Press.

Howard, A. 2006. Multi-robot simultaneous localization and mapping using particle
filters. International Journal ofRobotics Research, 25(12), 1243-1256.

Hrstka, 0. and Kucerova, A. 2004. Improvements of real coded genetic algorithms
based on differential operators preventing premature convergence. Advances in

Engineering Software, 35(3-4), 237-246.

Hu, Y. and Yang, SX 2004. A knowledge based genetic algorithm for path planning

of a mobile robot. In: Proceedings of the IEEE International Conference on Robotics

andAutomation, Apr 26-May 1,2004, New Orleans, LA, USA. Piscataway, NJ: IEEE

Press, 4350-4355.

259

References

Huang, P. F., Xu, Y. S. and Liang, B. 2005. Dynamic balance control of multi-arm free

floating space robots. International Journal ofAdvanced Robotic Systems, 2(2), 117-

125.

Hussein, A. M. and Elnagar, A. 2002. Motion planning using Maxwell's equations. In:

Proceedings of the International Conference on Intelligent Robots and Systems, Sep

30-Oct 4,2002, Lausanne, Switzerland. Los Alamitos, CA: IEEE Computer Society

Press, 2347-2352.

Hutt, B. and Warwick, K. 2007. Synapsing variable-Length crossover: meaningful

crossover for variable-length genomes. IEEE Transactions on Evolutionary

Computation, 11(l), 118-131.

Hutter, A 2002. Fitness uniform selection to preserve genetic diversity. in:

Proceedings of the Congress on Evolutionary Computation, May, 12-17,2002,

Honolulu, HI, USA. Piscataway, NJ: IEEE Press, 783-788.

Jablonski, J. and Posey, J. 1985. Robotics terminology. In: Nof, S. (ed.), Handbook of
Industrial Robotics. New York: John Wiley and Sons Ltd, 1271-1303.

Jerald, J. et al. 2005. Simultaneous scheduling of parts and automated guided vehicles
in an FMS environment using adaptive genetic algorithm. International Journal of
Advanced Manufacturing Technology, 29(5), 584-589.

A, X., Iwamura, K. and Shao, Z. 2007. New models for shortest path problem with
fuzzy arc lengths. Applied Mathematical Modelling, 31(2), 25 9-269.

Jia, M., Zhou, G. and Chen, Z. 2004. An efficient strategy integrating grid and
topological information for robot exploration. In: Proceedings of the IEEE
Conference on Robotics, Automation and Mechatronics, Dec 1-3,2004, Singapore.
Piscataway, NJ: IEEE Press, 667-672.

260

References

Jones, J. and Soule, T. 2006. Comparing genetic robustness in generational vs. steady

state evolutionary algorithms. In: Proceedings of the 8th Conference on Genetic and

Evolutionary Computation, Jul 8-12,2006, Seattle, Washington, USA. San Francisco,

CA: Morgan Kaufmann Publishers, 143-150.

Khatib, 0.1985. Real-time obstacle avoidance for manipulators and mobile robots.

In: Proceedings of the IEEE International Conference on Robotics and Automation,

Mar 25-28,1985, St. Louis, MO, USA. Los Alamitos, CA: IEEE Computer Society

Press, 500-505.

Khatib, 0.1986. The operational space formulation in the analysis, design, and

control of robot manipulators. In: Proceedings of the 3rd International Symposium on

Robotics Research, Oct 7-11,1986, Gouvieux, France. Cambridge, MA: MIT Press,

263-270.

Kim, H. J. and Shim, D. H. 2003. A flight control system for aerial robots: algorithms

and experiments. Control Engineering Practice, 11(12), 1389-1400.

Kim, I. Y. and De Weck, O. L. 2005. Variable chromosome length genetic algorithm

for progressive refinement in topology optimization. Structural and Multidisciplinary

optimization, 29(6), 445-456.

Kira, Z. and Arkin, R. C. 2004. Forgetting bad behavior: Memory management for

case-based navigation. In: Proceedings of the IEEE Conference on Intelligent Robots

and Systems, Sep 28-Oct 2,2004, Sendai, Japan. Los Alamitos, CA: IEEE Computer

Society Press, 3145-3152.

Kitano, H. 1990. Designing neural networks using genetic algorithms with graph

generation system. Complex Systems, 4(4), 461-476.

261

References

Koehler, G. J. 2007. Conditions that obviate the No Free Lunch theorems for

optimization. Journal on Computing, 19(2), 273-279.

Koenig, S. and Likhachev, A 2002. Improved fast replanning for robot navigation in

unknown terrain. In: Proceedings of the IEEE International Conference on Robotics

and Automation, May 11-15,2002, Washington, USA. Los Alamitos, CA: IEEE

Computer Society Press, 968-975.

Koppen, M. 2004. No-Free-Lunch theorems and the diversity of algorithms. In:

Proceedings of the IEEE Congress on Evolutionary Computation, Jun 19-23,2004,

Portland, OR, USA. Piscataway, NJ: IEEE Press, 235-241.

Korb, W. and Troch, 1.2003. Data reduction for manipulator path planning. Robotica,

21(6), 605-614.

Koren, Y. and Borenstein, J. 1991. Potential field methods and their inherent
limitations for mobile robot navigation. In: Proceedings of the IEEE International

Conference on Robotics and Automation, Apr 9-11,1991, Sacramento, California,

USA. Los Alamitos, CA: IEEE Computer Society Press, 1398-1404.

Kortenkamp, D. and Weymouth, T. 1994. - Topological mapping for mobile robots

using a combination of sonar and vision sensing. In: Proceedings of the 121h National

Conference on Artificial Intelligence, Jul 31-Aug 4,1994, Seattle, Washington, USA.

Menlo Park, CA: AAAI Press, 979-984.

Kortenkamp, D., Bonasso, R. P. and Murphy, R. R. 1998. Artiryl-cial Intelligence and
Mobile Robots. Cambridge, MA: MIT/AAA1 Press.

Kubota, N. 2004. A spiking neural network for behavior learning of a mobile robot in

a dynamic environment. In: 'Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, Oct 10-13,2004, The Hague, The Netherlands.

Piscataway, NJ: IEEE Press, 5783-5788.

262

References

Kumon, E. M. et al. 2006. Autopilot system for kiteplane. IEEE Transaction on

Mechatronics, 11(5), 615-624.

Kunwar, F. and Benhabib, B. 2006. Rendezvous-guidance trajectory planning for

robotic dynamic obstacle avoidance and interception. IEEE Transactions on Systems,

Man and Cybernetics, Part B: Cybernetics, 36(6), 1432-144 1.

Kurihara, K. et al. 2005. Mobile robots path planning method with the existence of

moving obstacles. In: Proceedings of the 10th IEEE International Conference on

Emerging Technologies and Factory Automation, Sep 19-22,2005, Catania, Italy.

Piscataway, NJ: IEEE Press, 195-202.

Kvasov, B. I. 2000. Methods of Shape-preserving Spline Approximation. Singapore:

World Scientific.

Large, F., Laugier, C. and Shilleri Z. 2005. Navigation among moving obstacles using

the NLVO: principles and applications to intelligent vehicles. Autonomous Robots

Journal, 19(2), 159-171.

I
Larraftaga, P. et al. 1999. Genetic algorithms for the travelling salesman problem: a

review of representations and operators. Artificial Intelligence Review, 13(2), 129.

170.

Latombe, J. C. 1991. Robot Motion Planning. Boston: Kluwer Academic Publishers.

Lee, W. S. 1998. Robotic Weed Control Systemfor Tomatoes. Ph. D. thesis, University

of California.

Leon, J. A. F., Tosini, M. and Acosta, G. G. 2004. Evolutionary reactive behavior for

mobile robot navigation.. In: Proceedings of the IEEE International Conference on

263

References

Cybernetics and Intelligent System, Dec 1-3,2004, Singapore. Piscataway, NJ: IEEE

Press, 532-537. -

Leonard, J. J. and Durrant-Whyte, H. F. 1991. Simultaneous map building and

localization for an autonomous mobile robot. In: Proceedings of the IEEE Workshop

on Intelligent Robots and Systems, Nov 3-5,1991, Osaka, Japan. IEEE Press, 1442-

1447.

Leung, K. S., Sun, J. Y. and Xu, Z. B. 2002. Efficiency speed-up strategies for

evolutionary computation: an adaptive implementation. Engineering Computations,

19(3), 272-304.

Levitt, T. S. and Lawton, D. T., ' 1990. Qualitative navigation for mobile robots.
Artificial Intelligence, 44,305-360.

Li, M. and Kou, J. 2005. A novel type of niching methods based on steady-state

genetic algorithm. In: Proceedings of the Ist International Conference on Advances

in Natural Computation, Aug 27-29,2005, Changsha, China. New York: Springer

Publishing Company, 37-47.

Li, Q. et al. 2006. An improved genetic algorithm of optimum path planning for

mobile robots. In: Proceedings of the 6th International Conference on Intelligent

Systems Design and Applications, Oct 16-18,2006, Xnan, China. Los Alamitos, CA:

IEEE Computer Society Press, 637-642.

Li, W. F. et al. 2004. An architecture for indoor navigation. In: Proceedings of the

IEEE International Conference on'Robotics and Automation, Apr 26-May 1,2004,

New Orleans, USA. Los Alamitos, CA: IEEE Computer Society Press, 1783-1788.

Liang, Y., Leung, K. S. and Lee, K. H. 2006. A novel binary variable representation
for genetic and evolutionary algorithms. In: Proceedings of the IEEE Congress on

264

References

Evolutionary Computation, Jul 16-21,2006, Vancouver, Canada. Piscataway, NJ:

IEEE Press, 536-543.

Liang, Y., Leung, K. S. and Xu, Z. B. 2007. A novel splicing/decomposable binary

encoding 'and its operators for genetic and evolutionary algorithms. Applied

Mathematics and Computation, 190(l), 8 87-904.

Likhachev, M. et al. 2005. Anytime dynamic A*: An anytime, replanning algorithm.
In: Proceedings of the International Conference on Automated Planning and
Scheduling, Jun 5-10,2005, Monterey CA. Menlo Park, CA: AAAI Press, 262-27 1.

Lim, S. and Cho, S. 2005. Language generation for conversational agent by evolution

of plan trees with genetic programming. Lecture Notes in Artificial Intelligence,

3558,305-315.

Lin, C. Y. and Wu, W. H. 2002. Niche identification techniques in multimodal genetic

search with sharing scheme. Advances in Engineering Software, 33(11-12), 779-79 1.

Lin, H., Xiao, J. and Michalewicz, Z. 1994. Evolutionary navigator for a mobile robot.
In: Proceedings of the IEEE International Conference on Robotics and Automation,

May 8-13,1994, San Diego, USA. Los Alamitos, CA: IEEE Computer Society Press,

2199-2204.

Liu, B. et al. 1994. Integrating case-based reasoning, knowledge-based approach and
Dijkstra algorithm for route finding. In: Proceedings of the 10th Conference on
Artificial Intelligence for Applications, Mar 1-4,1994, San Antonio, Texas, USA.

Piscataway, NJ: IEEE Press, 149-155.

Liu, J., Hu, H. and Gu, D. 2006. A layered control architecture for autonomous
robotic fish. In: Proceedings of the IEEE International Conference on Intelligent

Robots and Systems, Oct 9-13,2006, Beying, China Los Alamitos, CA: IEEE

Computer Society Press, 312-317.

265

References

Liu, S., Tian, Y. and Liu, J. 2004. Multi mobile robot path planning based on genetic

algorithm. In: Proceedings of the IEEE Sth World Congress on Intelligent Control

and Automation, Jun 15-19,2004, Hangzhou, China. Piscataway, NJ: IEEE Press,

4706-4709.

Low, K. H., Leow, W. K. and Ang Jr, M. H. 2002. Integrated planning and control of

mobile robot with self-organizing neural network. In: Proceedings of the IEEE

International Conference on Robotics andAutomation, May 11-15,2002, Washington,

D. C., USA. Los Alamitos, CA: IEEE Computer Society Press, 3870-3875.

Low, K. H., Leow, W. K. and Ang Jr, M. H. 2003. Enhancing the reactive capabilities

of integrated planning and control with cooperative extended kohonen maps. In:

Proceedings of the IEEE International Conference on Robotics and Automation, May

12-17,2003, Taipei, China. Los Alamitos, CA: IEEE Computer Society Press, 3428-

3433.

Low, K. H., Leow, W. K. and Ang Jr, M. H. 2006. Autonomic mobile sensor network

with self-coordinated task allocation and execution. IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews, 36(3), 315-327.

Luerssen, M. H. 2005. Phenotype diversity objectives for graph grammar evolution.

In: Abbass, H. A., Bossamaier, T. and Wiles, J. (eds.), RecentAdvances inArlificial

Life, Advances in Natural Computation. Singapore: World Scientific.

Luger, G. F. 2002. Artificial Intelligence: Structures and Strategies for Complex

Problem Solving, 4th ed. London: Addison-Wesley.

Lumelsky, V. 2005. Sensing, Intelligence, Motion: How Robots and Humans Move in

an Unstructured World. Hoboken, NJ: John Wiley And Sons Ltd.

266

References

Lyons, D. 1992. Reactive planning. In: Shapiro, S. (ed.), Encyclopedia of Artificial

Intelligence. New York: John Wiley and Sons Ltd, 1171-1182.

Lyons, D. and Hendriks, A. 1992. Planning for reactive robot behavior. In:

Proceedings of the IEEE International Conference on Robotics and Automation, May

10-15,1992, Nice, France. Los Alamitos, CA: IEEE Computer Society Press, 2675-

2680.

Lyons, D. and Hendriks, A. 1995. Planning as incremental adaptation of a reactive

system. Robotics andAutonomous Systems, 14(4), 255-288.

Maalouf, E., Saad, M. and Saliah, H. 2005. A higher level path tracking controller for

a four-wheel differentially steered mobile robot. Journal ofRobotics andAutonomous

Svstems, 54(l), 23 -3 3.

Maaref, H. and Barret, C. 2002. Sensor-based navigation of a mobile robot in an

indoor enviromnent. Robotics and Autonomous Systems, 38(l), 1-18.

Macfarlane, S. and Croft, E. A. 2003. Jerk-bounded manipulator trajectory planning:
design for real-time applications. IEEE Transactions on Robotics and Automation,

19(l), 42-52.

Magid, E. el al. 2006. Spline-based robot navigation. In: Proceedings of the IEEE

International Conference on Intelligent Robots and Systems, Oct 9-15,2006, Beying,

China. Los Alamitos, CA: IEEE Computer Society Press, 2296-2301.

Mahfoud, S. W. 1992. Crowding and preselection revisited. In: Proceedings of 2nd

Conference on Parallel Problem Solving ftom Nature, Sep 28-30,1992, Brussels,

Belgium. Amsterdam: North-Holland, 27-34.

267

References

Mahfoud, S. W. 1994. Genetic drift in sharing method. In: Proceedings of the Ist

IEEE International Conference on Evolutionary Computation, Jun 27-29,1994,

Orlando, FL, USA. Los Alamitos, CA: IEEE Computer Society Press, 67-72.

Mahfoud, S. W. 1995a. Niching Methods for Genetic Algorithms. Ph. D. thesis,
University of Illinois, Urbana-Champaign.

Mahfoud, S. W. 1995b. A comparison of parallel'and sequential niching methods. In:

Proceedings of the 6th International Conference on Genetic Algorithms, Jul 15-19,

1995, Pittsburgh, PA, USA. San Francisco, CA: Morgan Kaufmann Publishers, 136-

143.

Mahkovic, R. and Slivnik, T. 2000. Constructing the generalized local Voronoi

diagram from laser range scanner data. IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans, 30(6), 710-719.

Malhotra, R-. and Sarkar, A. 2005. Development of a fuzzy logic based mobile robot
for dynamic obstacle avoidance and goal acquisition in an unstructured environment.

In: Proceedings of the International Conference on Advanced Intelligent

Mechatronics, Jul 24-28,2005, Monterey, California, USA. Piscataway, NJ: IEEE

Press, 1198-1203.

Mali, A. D. 2002. On the behavior-based architectures of autonomous agents. IEEE

Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews,

32(3), 231-242.

Masson, F., Guivant, J. and Nebot, E. 2003. Robust navigation and mapping

architecture for large environments. Journal ofRobotic Systems, 20(10), 621-634.

Mathworks, 2006. MATLAB. http: //www. mathworks. com/, Jul 16,2006.

268

References

Mengsheol, 0. and Goldberg, D. 1999. Probabilistic crowding: Deterministic

crowding with probabilistic replacement. In: Proceedings of the Conference on

Genetic and Evolutionary Computation, Jul 13-17,1999, Orlando, Florida, USA. San

Francisco, CA: Morgan Kaufmann Publishers, 409-416.

Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = Evolution Programs.

2nd ed. Berlin: Springer-Verlag Publisher.

Miconi, T. and Channon, A. 2006. The N-Strikes-Out algorithm: a steady-state

algorithm for coevolution. In: Proceedings of the IEEE Congress on Evolutionary

Computation, Jul 16-21,2006, Vancouver, Canada. Piscataway, NJ: IEEE Press,

1639-1646.

Min, H. J. 2005. Navigation of a mobile robot using behavior network with Bayesian

inference. In: Proceedings of the IEEE International Conference on Mechatronics

and Automation, Jul 29-Aug 1,2005, Niagara Falls, Canada. Los Alamitos, CA:

IEEE Computer Society Press, 1479-1484.

Minarni, M., Gao, J. and Mae, Y. 2007., Chaos-driving robotic intelligence for

catching fish. In: Proceedings of the IEEE International Conference on Robotics and

Automation, Apr 10-14,2007, Roma, Italy. Los Alamitos, CA: IEEE Computer

Society Press, 85-9 1.

Minguez, 'J. et al. 2001. Global nearness diagram navigation (GND). In: Proceedings

of the IEEE International Conference on Robotics and Automation, Apr 19-21,2001,

Seoul, Korea. Los Alamitos, CA: IEEE Computer Society Press, 33-39.

Minguez, J. and Montano, L. 2004. Nearness diagram navigation (ND): collision

avoidance in troublesome scenarios. IEEE Transactions on Robotics and Automation,

20(l), 45-59.

269

References

Minguez, J. and Montano, L. 2005. Sensor-based robot motion generation in

unknown, dynamic and troublesome scenarios. Robotics and Autonomous Systems,

52(4), 290-311.

Minguez, J., Montesano, L. and Montano, L. 2004. An architecture for sensor-based

navigation in realistic dynarnic and troublesome scenarios. In: Proceedings of the

Conference on Intelligent Robots and Systems, Sep 28-Oct 2,2004, Sendai, Japan.

Los Alamitos, CA: IEEE Computer Society Press, 2750-2756.

Minguez, J., Osuna, J. and Montano, L. 2004. A "Divide and Conquer" strategy based

on situations to achieve reactive collision avoidance in troublesome scenarios. In:

Proceedings of the IEEE International Conference on Robotics and Automation, Apr

26-May 1,2004, New Orleans, LA, USA. Los Alamitos, CA: IEEE Computer Society

Press, 3855-3862.

Mitchell, M. 1996. An Introduction to Genetic Algorithms. Cambridge, MA: MIT

Press.

Montana, D. J. and Davis, L. D. 1989. Training feedback networks using genetic

algorithms. In: Proceedings of the 111h International Joint Conference on Artificial

Intelligence, Aug 13-15,1989, Detroit, MI, USA. San Francisco, CA: Morgan

Kaufmann Publishers, 762-767.

Montesano, L., Minguez, J. and Montano, L. 2005. Modeling the static and the

dynamic parts of the environment to improve sensor-based navigation. in:

Proceedings of the IEEE International Conference on Robotics andlutomation, . 4pr

18-22,2005, Barcelona, Spain. Los Alamitos, CA: IEEE Computer Society Press,

4556-4562.

Mooney, P. and Winstanley, A. 2006. An evolutionary algorithm for multicriteria

path optimization problems. International Journal of Geographical Information

Science, 20(4))'401-423.

270

References

Miffilenbein, H. and Schlierkamp-Voosen, D. 1993. Predictive models for the breeder

genetic algoritlun, I.: continuous parameter optimization. Evolutionary Computation.

l(l), 25-49.

Mulvaney, D. J. et al. 2005. Real-time machine learning in embedded software and

hardware platforms. In: Proceedings of the International Workshop on Automatic

Learning and Real-Time, Sep 7-8,2005, Siegen, Germany. 65-78.

Mulvaney, D. J., Wang, Y. and Sillitoe, I. P. W. 2006. Waypoint-based mobile robot

navigation. In: Proceedings of the IEEE 6th World Congress on Intelligent Control

andAutomation, Jun 21-23,2006, Dalian, China. Piscataway, NJ: IEEE Press, 9063.

9067.

Mufioz-Salinas, R. et al. 2005. A multi-agent system architecture for mobile robot

navigation based on fuzzy and visual behavior. Robotica, 23(6), 689-699.

Murphy, R. R. 2000. Introduction to AI Robotics. Cambridge, MA: MIT Press.

Murphy, R. R., Marzilli, A. and Noll, E. 1999. Integrating explicit path planning with

reactive control of mobile robots using trulla. Journal of Robotics and Autonomous

Systems. 27(4), 225-245.

Na, Y. K. and Oh, S. Y. 2003. Hybrid control for autonomous mobile robot navigation

using neural network based behavior modules and environment classification.
Autonomous Robots, 15(2), 193-206.

Nearchou, A. C. 1998. Path planning of a mobile robot using genetic heuristics.

Robotica, 16(5), 575-588.

Nearchou, A. C. 1999. Adaptive navigation of autonomous vehicles using

evolutionary algorithms. 4rtificial Intelligence in Engineering, 13(2), 159-173.

271

References

Nefti, S. et al. 2001. Intelligent adaptive mobile robot navigation. Journal of

Intelligent and Robotic Systems: Theory and Applications, 30(4), 311-329.

Nelson, A. L. et al. 2004. Maze exploration behaviors using an integrated

evolutionary robotics envirorunent. Robotics and Autonomous Systems, 46(3), 159-

173.

Nelson, L. S. 1989. Evaluating overlapping confidence intervals. Journal of Quality

Technology, 21(2), 140-14 1.

Ni, Z. et al. 2003. Integrated case-based reasoning. In: Proceedings of the
International Conference on Machine Learning and Cybernetics, Nov 2-5,2003,

Xi'an, China. Los Alamitos, CA: IEEE Computer Society Press, 1845-1849.

Nikolos, I. K. et al. 2003. Evolutionary algorithm based offline/online path planner for

UAV navigation. IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 33(6), 898-912.

Noggle, J. H. 1993. Practical Curve Fitting and Data Analysis. Chemical and

Information Systems Series. Chichester: Ellis Horwood-PTR Prentice Hall.

Nolfi, S. and Floreano, D. 2000. Evolutionary Robotics: the Biology, Intelligence, and
Technology ofSelf-organizing Machines. Cambridge, MA: MIT Press.

I
Ogrenj. and Leonard, N. 2002. A tractable convergent dynamic window approach

to obstacle avoidance. In: Proceeding of the IEEE International Conference on

Intelligent Robots and Systems, Sep 30-Oct 4,2002, Lausanne, Switzerland. Los

Alamitos, CA: IEEE Computer Society Press, 595-600.

Ogren, P. and Leonard, N. 2005. A convergent dynamic'window approach to obstacle

avoidance. IEEE Transactions on Robotics and Automation, 21(2), 18 8-195.

272

References

Orebdck, A. and Christensen, H. I. 2003. Evaluation of architectures for mobile

robotics. Autonomous Robots, 14(l), 33-49.

Osyczka, A. 2002. Evolutionary Algorithms for Single and Multicriteria Design

Optimization. Studies in Fuzzyness and Soft Computing. Berlin: Springer-Verlag

Publisher.

Panaite, P. and Pelc, A. 1999. Exploring unknown undirected graphs. Journal of
Algorithms, 33(2), 281-295.

Parasuraman, R. et al. 2005. A flexible delegation-type interface enhances system

performance in human supervision of multiple robots: empirical studies With

RoboFlag. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems

and Humans, 35(4), 481-493.

Park, J. and Bobrow, J. E. 2005. Reliable computation of minimum-time motions for

manipulators moving in obstacle fields using a successive search for minimum-

overload trajectories. Journal ofRobotic Systems, 22(l), 1-14.

Park, Y. J., Kim, B. C. and Chun, S. H. 2006. New knowledge extraction technique

using probability for case-based reasoning: application to medical diagnosis. Expert

Systems, 23(l), 2-20.

Passone, S., Chung, P. W. H. and Nassehi, V. 2006. Incorporating domain-specific

knowledge into a genetic algorithm to implement case-based reasoning adaptation.
Knowledge-Based Systems, 19(3), 192-201.

Patnaik, S. and Karibasappa, K. 2005. Motion planning of an intelligent robot using
GA motivated temporal associative memory. Applied Artificial Intelligence, 19(5),

515-534.

273

References

Pavlidid, T. 1982. Algorithms for Graphics And Image Processing. Rockville MD:

Computer Science Press.

Payton, D. W., Rosenblatt, J. K. and Keirsey, D. M. 1993. Grid-based mapping for

autonomous mobile robot. Robotics andAutonomous Systems, 11(l), 13-21.

Pereira, F. B. et al. 2002. GVR: a new genetic representation for the vehicle routing

problem. Lecture Notes in Computer Science, 2464,95-102.

Pdtrowski, A. 1996. A clearing procedure as a niching method for genetic algorithms.

In:, Proceedings of the IEEE International Conference on Evolutionary Computation,

May 20-22,1996, Nagoya, Japan. Los Alamitos, CA: IEEE Computer Society Press,

798-803.

Poli, R. 2005. Tournament selection, iterated coupon-collection problem, and
backward-chaining evolutionary algorithms. In: Proceedings of the 81h workshop on

the foundations of genetic algorithms, Jan 5-9,2005, Alzu-Wakamatsu City, Japan.

New York: Springer Publishing Company, 132-155.

Poncela, A. et al. 2002. Efficient integration of metric and topological maps for

directed exploration of unknown enviromnents. Robotics and Autonomous Systems,

41(l), 21-39.

Quinlan, J. R. 1983. Learning efficient classification procedures and their application

to chess endgames. In: Michalski, R. S., Carbonell, J. and Mitchell, T. M. (eds.),

Machine learning: an artificial intelligence approach. Palo Alto, CA: Tioga Press,

463-482.

Raghuwanshi, M. M. and Kakde, O. G. 2006. Genetic algorithm with species and

sexual selection. In: Proceedings of the IEEE Conference on Cybernetics and
Intelligent Systems, Jun 7-9,2006, Bangkok, Thailand. Piscataway, NJ: IEEE Press,
1-8.

274

References

Rajapakse, A., Furuta, K. and Kondo, S. 2002. Evolutionary learning of fuzzy logic

controllers and their adaptation through perpetual evolution. IEEE Transactions on
FuzzySystems, 10(3), 309-321.

Ranganathan, A., Menegatti, E. and Dellaert, F. 2006. Bayesian inference in the space

of topological maps. IEEE Transactions on Robotics, 22(l), 92-107.

Rasheed, K. 1998. GADO: A Genetic Algorithmfor Continuous Design Optimization.

PhD thesis, Department of Computer Science, Rutgers University.

Rathbun, D. et al. 2002. An evolution based path planning algorithm for autonomous

motion of a UAV through uncertain environments. In: Proceedings of the 21st Digital

Avionics Systems Conference, Oct 29-31,2002, Irvine, Canada. Piscataway, NJ:

IEEE Press, 8D21-8D212.

Reed, P. M., Minsker, B. S. and Goldberg, D. E. 2001. The practitioner's role in

competent search and optimization using genetic algorithms. World Water and
Environmental Resources Congress, May 20-24,2001, Orlando, Florida.

Remolina, E. and Kuipers, B. 2004. Towards a general theory of topological maps.
Artificial Intelligence, 152 (1), 47-104.

Ren, J., McIsaac, K. A. and Patel, R. V. 2006. Modified Newton's method applied to

potential ficld-based navigation for mobile robots. IEEE Transactions on Robotics,

22(2), 384-391.

Ren, J. et al. 2007. A potential field model using generalized sigmoid functions. IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(2), 477-484.

Rogers, A. and PrUgel-Bennett, A. 1999a. Genetic drift in genetic algorithm selection

schemes. IEEE Transactions on Evolutionary Computation, 3(4), 298-303.

275

References

Rogers, A. and PrUgel-Bennett, A. 1999b. Modelling the dynamics of a steady state

genetic algorithm. In: Banzhaf, W. and Reeves, C. (eds.), Foundations of Genetic

Algorithms 5. San Mateo, CA: Morgan Kaufmann Publishers, 57-68.

Rosell, J. and Iffiguez, P. 2002. Hierarchical and dynamic method to compute
harmonic functions for constrained motion planning. In: Proceedings of the

International Conference on Intelligent Robots and Systems, Sep 30-Oct 4,2002,

Lausanne, Switzerland. Los Alamitos, CA: IEEE Computer Society Press, 2334-2340.

Rothlauf, F. 2002. Representations for Genetic and Evolutionary Algorithms. New

York: Springer-Verlag Publisher.

Rowe, J. et al. 2004. Properties of gray and binary representations. Evolutionary

Computation, 12(l), 47-76.

Rudolph, G. 1994. Convergence analysis of canonical genetic algorithms. IEEE

Transaction on Neural Network, 5(l), 96-10 1.

Ryu, B. S. and Yang, H. S. 1998. An enhanced topological map for efficient and

reliable mobile robot navigation with imprecise sensors. Journal Robotics and
Computer Integrated Manufacturing, 14(3), 185-197.

Ryu, B. S. and Yang, H. S. 1999. Integration of reactive behaviors and enhanced

topological map for robust mobile robot navigation. IEEE Transactions on Systems,

Man and Cybernetics, Part A: Systems and Humans, 29(5), 474-485.

Sano, Y. and Kita, H. 2002. Optimization of noisy fitness functions by means of

genetic algorithms using history of search with test of estimation. In: Proceedings of
the IEEE Congress on Evolutionary Computation, May 12-17,2002, Honolulu, HI,
USA. Piscataway, NJ: IEEE Press, 360-365.

276

References

Santos, V., Castro, J. and Ribeiro, M. l. 2000. A nested-loop architecture for mobile

robot navigation. International Journal ofRobotics Research, 19(12), 1218-123 S.

Sareni, B. and Krahenbuhl, L. 1998. Fitness sharing and niching methods revisited.

IEEE Transactions on Evolutionary Computation, 2(3). 97-106.

Sasaki, H. et al. 2006. Steady-state genetic algorithm for self-localization in

illuminance measurement of a mobile'robot. In: Proceedings of the IEEE

international Conference on Systems, Man and Cybernetics, Oct 8-11,2006, Taipei,

Taiwan. Piscataway, NJ: IEEE Press, 1897-1902.

Schnier, T. and Yao, X. 2000. Using multiple representations in evolutionary

algorifluns. In: Proceedings of the IEEE Congress on Evolutionary Computation, Jul

16-19,2000, La Jolla, CA, USA. Piscataway, NJ: IEEE Press, 479-486.

Schumacher, C., Vose, M. D. and Whitley, L. D. 2001. The no free lunch and
description length. In: Proceedings of the Conference on Genetic and Evolutionary

Computation, Jul 7-11,2001, San Francisco, CA, USA. San Francisco, CA: Morgan

Kaufmann Publishers, 565-570.

Sedighi, K. H. et al. 2004. Autonomous local path planning for a mobile robot using a

genetic algorithm. In: Proceedings of the IEEE Congress on Evolutionary

Computation, Jun 19-23,2004, Portland, Oregon, USA. Piscataway, NJ: IEEE Press.

1338-1345.

Shah-Harnzei, G. H. and Mulvaney, D. J. 2000. Intelligent process control using fuzzy

ITI. Neural Computing and Applications, 9(l), 12-18.

Shi, Z., Cui, J. and Zhang, H. 2004. Parameter design of integrated attitude control

system using steady state genetic algorithm. In: Proceedings of the IEEE 51h World
Congress on Intelligent Control andAutomation, Jun 15-19,2004, Hangzhou, China.

Piscataway, NJ: IEEE Press, 2091-2094.

277

References

Shi, Z. et al. 2004. Comparison of steady state and elitist selection genetic algorithms.

In: Proceedings of the International Conference on Intelligent Mechatronics and
Automation, Aug 26-31,2004, Chengdu, China. Piscataway, NJ: IEEE Press, 495-499.

Shimoda, S., Kuroda, Y. and Iagnemma, K. 2007. High speed navigation of

unmanned ground vehicles on uneven terrain using potential fields. Robolica, 25(4),

409-424.

Siegwart, R. and Nourbakhsh, L 2004. Introduction to Autonomous Mobile Robots.

Cambridge, MA: MIT Press.

Sillitoe, I. P. W. et al. 2001. Experiments in robust bistatic sonar object classification
for local environment mapping. In: Proceedings of the IEEE International

Conference on Robotics and Automation, May 21-26,2001, Seoul, Korea. Los

Alamitos, CA: IEEE Computer Society Press, 2147-2152.

Simon, D. and Isik, C. 1993. Suboptimal robot joint interpolation within user-

specified knot tolerances. Journal ofRobotic Systems, 10(7), 889-911.

Singh, G. and Deb, K. 2006. Comparison of multi-modal optimization algorithms
based on evolutionary algorithms. ý In: Proceedings of the Conference on Genetic and
Evolutionary Computation, Jul 8-12,2006, Seattle, Washington, USA. San Francisco,

CA: Morgan Kaufmann Publishers, 1305-1312.

Smierzchalski, R. and Michalewicz, Z. 2000. Modeling of ship trajectory in collision
situations by an evolutionary algorithm. IEEE Transactions on Evolutionary

Computation, 4(3), 227-24 1.

Smierzchalski, R. and Michalewicz, Z. 2006. Path planning in dynamic environments.
In: Patnaik, S., Jain, L. C., Tzafestas, S. G., Resconi, G. and Konar, A. (eds.),

278

References

Innovations in Robot Mobility and Control. Berlin: Springer-Verlag Publisher, 135-

154.

Smith, J. 2007. On replacement strategies in steady'state evolutionary algorithms.

Evolutionary Computation, 15(l), 29-59.

Smith, R. C. and Cheeseman, P. 1987. On the representation and estimation of spatial

uncertainty. International Journal ofRobotics Research, 5(4), 56-68.

Sniedovich, M. 1988. A multiobjective routing problem revisited. Engineering

Optimization, 13(2), 99-108.

Snyman, J. A. 2005. Practical Mathematical Optimization: An Introduction to Basic

Optimization Theory and Classical and New Gradient-Based Algorithms. New York:

Springer Publishing Company.

Sokolov, A. and Whitley, D. 2005. Unbiased toumament selection. In: Proceedings of

the Genetic and Evolutionary Computation Conference, Jun 25-29,2005, Washington,

D. C., USA. New York, NY: Association for Computing Machinery, 1131-113 8.

Sokolov, A., Whitley, D. and da Motta. Salles Barreto, A. 2007. A note on the

variance of rank-based selection strategies for genetic algorithms and genetic

programming. Journal Genetic Programming and Evolvable Machines, 8(3), 221-237.

Soltani, A. R. et al. 2002. Path planning in construction sites: performance evaluation

of the Dijkstra, A*, and GA search algorithms. Advanced Engineering Information,

16 (4), 291-303.

Soska, G. V. 1985. Third generation robots: their definition, characteristics, and
applications. Robotics Age, 7(8), 20-29.

279

References

Spears. - W. M. 1992. Crossover or mutation? In: Whitley, D. (ed.), Foundations of
Genetic Algorithms 2. San Francisco, CA: Morgan Kaufmann Publishers, 221-237.

Spears, W. M. 1997, Recombination parameters. In: Baeck, T., Fogel, D. and
Michalewicz, Z. (ed.), Handbook of Evolutionary Computation, New York: Oxford

University Press and Institute of Physics Publishing.

Spears, W. M. and De Jong, K. A. 1998. Dining with GAs: operator lunch theorem. In:

Proceedings of the 5th Workshop on Foundation of Genetic Algorithms, Jul 22-25,

1998, Madison, WI, USA. San Francisco, CA: Morgan Kaufmann Publishers, 240-256.

Srinivasa, K. G., Venugopal, K. R. and Patnaik, L. M. 2007. A self-adaptiVe migration

model genetic algorithm for data mining applications. Information Sciences, 177(20),

4295-4313.

Stachniss, C. and Burgard, W. 2002. An integrated approach to goal-directed obstacle

avoidance under dynamic constraints for dynamic environments. In: Proceedings of

the International Conference on Intelligent Robots and Systems, Sep 30-Oct 4,2002,

Lausanne, Switzerland. Los Alamitos, CA: IEEE Computer Society Press, 508-513.

Stentz, A. 1994. Optimal and efficient path planning for partially-known

environments. In: Proceedings of the IEEE International Conference on Robotics and
Automation, May 8-13,1994, San Diego, 'CA, USA. Los Alamitos, CA: IEEE

Computer Soci6ty Press, 3310-3317.

Stentz, A. 1995. The focussed D* algorithm for real-Time replanning. In:

Proceedings of the International Joint Conference on Artificial Intelligence, Aug 20-

25,1995, Montreal, Canada. San Francisco, CA: Morgan Kaufmann Publishers,

1652-1659.

280

References

Stoytchev, A. and Arkin, R. C. 2004. Incorporating motivation in a hybrid robot

architecture. Journal of Advanced Computational Intelligence and Intelligent

Informatic, 8(3), 269-274.

Su, L. and Tan, M. 2005. A virtual centrifugal force based navigation algorithm for

explorative robotic tasks in unknown environments. International Journal ofRobotics

and Autonomous Systems, 51(4), 261-274.

Sugihara, K. and Smith, J. 1997. Genetic algorithms for adaptive motion planning of

an autonomous mobile robot. In: Proceedings of the IEEE International Symposium

on Computational Intelligence in Robotics and Automation, Jul 10-11,1997,

Monterey, CA, USA. Washington, DC: IEEE Computer Society Press, 138-143.

Suzuki, H., Sawai, H. and Piaseczny, W. 2006. Chemical genetic algorithms -

evolutionary optimization of binary-to-real-value translation in genetic algorithms.

Artificial Life, 12(l), 89-115.

Suzuki, T. et al. 2005. Goal-directed navigation strategy for a mobile robot under

uncertain world knowledge. In: Proceedings of the IEEE International Conference on

Mechatronics and Automation, Jul 29-Aug 1,2005, Niagara Falls, Canada. Los

Alamitos, CA: IEEE Computer Society Press, 741-746.

Swere, E., Mulvaney, D. J. and Sillitoe, I. P. W. 2004. Efficient incremental decision

tree generation for embedded applications. In: Proceedings of the IEEE International

Conference on Cybernetics and Intelligent Systems, Dec 1-3,2004, Singapore.

Piscataway, NJ: IEEE Press, I 10 1- 1106.

Syswerda, G. 1989. Uniform crossover in genetic algorithms. In: Proceedings of the
3rd International Conference on Genetic Algorithms, Jun 4- 7,1989, Fairfax, Virginia,

USA. San Francisco: Morgan Kaufmann Publishers, 2-9.

281

References

Syswerda, G. 1991. A study of reproduction in generational and steady-state genetic

algorithms. In: Rawlins, G. (ed.), Foundations of Genetic Algorithms. San Francisco,

CA: Morgan Kaufmann Publishers, 94-101.

Tarokh, M. 2007. A genetic robot path planner with fuzzy logic adaptation. In:

Proceedings of the IEERACIS International Conference on Computer and
Information Science, Jul 11-13,2007, Melbourne, Australia. Washington, DC: IEEE

Computer Society Press, 388-393.

Thomaz, C. E., Pacheco, M. A. and Vellasco, M. 1999. Mobile robot path planning

using genetic algorithms. In: Proceedings of the International Work-Conference on

Artificial and Natural Neural Networks: Foundations and Toolsfor Neural Modeling.
Alicante, Spain, Jun 2-4,1999. London: Springer-Verlag Publisher, 671-679.

Thrun, S. and Bucken, A. 1996. Integrating grid-based and topological maps for

mobile robot navigation. In: Proceedings of the 13th National Conference on

, 4rtificial Intelligence, 4ugust 1996, Portland, Oregon. Menlo Park, CA: American

Association for Artificial Intelligence, 944-950.

Thrun, S. et al. 1998. Map learning and high-Speed navigation in RHINO. In:

Kortenkamp, D., Bonasso, R. P. and Murphy, R. R. (eds.), AI-based Mobile Robots:

Case Studies ofSuccessful Robot Systems. Cambridge, MA: MIT Press, 21-52.

Toffolo, A. and Benini, E. 2003. Genetic diversity as an objective in multiobjective

evolutionary algorithms. Evolutionary Computation, 11(2), 151-168.

Trojanowski, K., Michalewicz, Z. and Xiao, J. 1997. Adding memory to the

evolutionary planner/navigator. In: Proceedings of the - IEEE International

Conference on Evolutionary Computation, Apr 13-16,1997, Indianapolis, USA. Los

Alamitos, CA: IEEE Computer Society Press, 483-487.

282

References

Tu, J. and Yang, S. 2003. Genetic algorithm based path planning for a mobile robot.

In: Proceedings of the IEEE International Conference on Robotics and Automation,

Sep 14-19,2003, Taiwan, China. Los Alamitos, CA: IEEE Computer Society Press,

1221-1226.

Ulrich, I. and Borenstein, J. 1998. VFH+: reliable obstacle avoidance for fast mobile

robots. In: Proceedings of the IEEE International Conference on Robotics and
Automation, May 16-21,1998, Leuven, Belgium. Los Alamitos, CA: IEEE Computer

Society Press, 1572-1577.

Ulrich, I. and Borenstein, J. 2000. VFH*: local obstacle avoidance with look-ahead

verification. In: Proceedings of the IEEE International Conference on Robotics and
Automation, Apr 24-28,2000, San Francisco, CA, USA. Los Alamitos, CA: IEEE

Computer Society Press, 2505-2511.

Urdiales, C. et al. 2003a. Hierarchical planning in a mobile robot for map learning

and navigation. In: Maravall, D., Ruan, D. and Zhou, C. (cds.), Autonomous Robotic

Systems - Soft Computing and Hard Computing Methodologies and Applications.

New York, NY: Springer-Verlag Publisher, 165-188.

Urdiales, C. et al. 2003b. A hybrid architecture for autonomous navigation using a
CBR reactive layer. In: Pr6ceedings of the 2003 IEEEIWIC International Conference

on Intelligent Agent Technology, Oct 13-17,2003, Halifax, Canada. Piscataway, NJ:

IEEE Press, 225-232.

Urdiales, C. et al. 2006. A purely reactive navigation scheme for dynamic

environments using Case-Based Reasoning. Autonomous Robots, 21(l), 65-78.

Utgoff, P. E. 1988. ID5: an incremental ID3. In: Proceedings of the 51h International

Conference on Machine Learning, Jun 12-14,1988, Ann Arbor, Michigan, USA. San
Francisco, CA: Morgan Kaufmann Publishers, 107-120.

283

References

Utgoff, P. E. 1989. Improved training via incremental learning. In: Proceedings of the

6th International Workshop on Machine Learning, Jun 26-27,1989, Ithaca, New

York, USA. San Francisco, CA: Morgan Kaufmann Publishers, 362-365.

Utgoff, P. E., Berkman, N. C. and Clouse, J. A. 1997. Decision tree induction based on

efficient tree restructuring. Machine Learning, 29(l), 5-44.

Vannoy, J. and Xiao, J. 2004. Real-time adaptive trajectory-optimized manipulator

motion planning. In: Proceedings of the IEEE International Conference on Intelligent

Robots and Systems, Sep 28-Oct 2,2004, Sendai, Japan. Los Alamitos, CA: IEEE

Computer Society Press, 497-502.

Vaughan, R. T. et al. 2002. Lost: localization-space trails for robot teams. IEEE

Transactions on Robotics andAutomation, 18 (5), 796-812.

Vavak, F. and Fogarty, T. C. 1996. Comparison of steady state and generational

genetic algorithms for use in non-stationary environments. In: Proceedings of the

IEEE International Conference on Evolutionary Computation, May 20-2Z 1996,

Nagoya, Japan. Piscataway, NJ: IEEE Press, 192-195.

Vazquez-Martin, R. et al. 2006. Hybrid navigation guidance for intelligent mobiles.
In: Proceedings of the IEEE 63rd Vehicular Technology Conference, May 7-10,2006,

Melbourne, Australia. Piscataway, NJ: IEEE Press, 2992-2996.

Vekaria, K. and Clack, C. 1998. Selective Crossover in Genetic Algoritluns: An

Empirical Study. Lecture Notes in Computer Science, 1498,43 8-447.

Wang, H. J. et al. 2005. An improved path planner based on adaptive genetic

algorithm for autonomous underwater vehicle. In: Proceedings of the IEEE

International Conference on Mechatronics and Automation, Jul 29-Aug 1,2005,
Niagara Falls, Canada. Los Alamitos, CA: IEEE Computer Society Press, 857-861.

284

References

Wang, L. C., Yong, L. S. and Ang Jr. M. H. 2002. Hybrid of global path planning and
local navigation implemented on a mobile robot in indoor environment. In:

Proceedings of the IEEE International Symposium on Intelligent Control, Oct 27-30,

2002, Vancouver, Canada. Los Alamitos, CA: IEEE Computer Society Press, 821-

826.

Wang, L. F., Tan, K. C. and Chew, C. M. 2006. Evolutionary Robotics: From

Algorithms to Implementations. Singapore: World Scientific.

Wang, Y., Mulvaney, D. J. and Sillitoe, I. P. W. 2006. Genetic-based mobile robot path

planning using vertex heuristics. In: Proceedings of the IEEE International

Conference on Cybernetics and Intelligent Systems, Jun 7-9,2006, Bangkok,

Thailand. Piscataway, NJ: IEEE Press, 463-468.

Wang, Z. G. et al. 2005. Optimization of multi-pass milling using parallel genetic

algorithm and parallel genetic simulated annealing. International Journal of Machine

Tools and Manufacture, 45(15), 1726-1734.

Watanabe, K. and Hashem, M. M. A. 2004. Evolutionary Computations: New

Algorithms and their Applications to Evolutionary Robots. New York: Springer

Publishing Company.

Wendt, D. A., Irwin, M. E. and Cressie, N. 2004. Waypoint analysis for command and

control. Naval Research Logistics, 51(8), 1045-1067.

Whitley. D. 1989. The GENITOR algorithm and selection pressure: why rank-based

allocation of reproductive trials is best. In: Proceedings of the 3rd International

Conference on Genetic Algorithms, Jun 4-7,1989, George Mason University,

Fairfax, Virginia, USA. San Francisco, CA: Morgan Kaufmann Publishers, 116-123.

285

References

Whitley, D. and Kauth, J. 1988. GENITOR: a different genetic algorithm. In:

Proceedings of the 3rd Rocky Mountain Conference on Artificial Intelligence, Jun 13-

15, Denver, Colorado, USA. Menlo Park, CA: AAA1 Press, 118-130.

Whitley, D., Rana, S. and Heckendorn, R. B. 1997. Representation issues in

neighbourhood search and evolutionary algorithms. In: Quagliarelli, D., Periaux, J. p
Poloni, C., Winter, G., (eds.), Genetic Algorithms in Engineering and Computer

Science. Chichester: John Wiley and Sons Ltd, 39-57.

Wiese, K. and Goodwin, S. D. 1998. Overview of selection schemes and a suggested

classification. Canadian Artificial Intelligence Conference, Jun 18-20,1998,

Vancouver, Canada.

Wolpert, D. and Macready, W. 1997. No free lunch theorems for optimisation. IEEE

Transactions on Evolutionary Computation, 1(1), 221-237.

Wu, W. and Ruan, Q. 2004. A gene-constrained genetic algorithm for solving shortest

path problem. In: Proceedings of the 7th international conference on signal

processing, Aug 31-Sep 4,2004, Beying, China. Piscataway, NJ: IEEE Press, 2510-

2513.

Wu, W. and Ruan, Q. 2006. A hierarchical approach for the shortest path problem

with obligatory intermediate nodes. In: Proceedings of the 81h International

Conference on Signal Processing, Nov 16-20,2006, Guilin, China. Piscataway, NJ:

IEEE Press, 412-416.

Xiao, J. 1997. Evolutionary planner/navigator in a mobile robot environment. In:

Bdck, T., Fogel, D. and Michalewicz, Z. (eds.), Handbook of Evolutionary

Computation. New York: Oxford University Press and Institute of Physics Publishing.

Xiao, J. et al. 1997. Adaptive evolutionary planner/navigator for mobile robots. IEEE

Transactions on Evolutionary Computation, 1(1), 18-28.

286

References

Xiao, J., Michalewicz, Z. and Zhang, L. 1996. Evolutionary planner/navigator:

operator performance and self-tuning. In: Proceedings of the IEEE International

Conference on Evolutionary Computation, May 20-22,1996, Nagoya, Japan. Los

Alamitos, CA: IEEE Computer Society Press, 366-371.

Xu, W. L. and Tso, S. K. 1999. Sensor-based fuzzy reactive navigation of a mobile
robot through local target switching. IEEE Transactions on Systems, Man and
Cybernetics, Part C. ý Applications and Reviews, 29(3), 451-459.

Xu, W. L., Tso, S. K. and Fung, Y. H. 1998. Fuzzy reactive control of a mobile robot
incorporating a real/virtual target switching strategy. Robotics and Autonomous

Systems, 23(3), 171-186.

Xu, Z. B. et al. 2003. Efficiency speed-up strategies for evolutionary computation:
fundamentals and fast-GAs. Applied Mathematics and Computation, 142(2-3), 341-

388.

Yamauchi, B. 1997. A frontier-based approach for autonomous exploration. In:
Proceedings of the IEEE International Conference on Robotics and Automation, Apr

20-25,1997, Albuquerque, New Mexico, USA. Los Alamitos, CA: IEEE Computer

Society Press, 146-15 1.

Yang, W., Watanuki, K. and Zhao, S. 2005. A quick intelligent control system for a
mobile robot to avoid collision with moving obstacles. Microsystem Technologies

archive, 11(8), 569-576.

Yang, X., Moallem, M. and Patel, RN. 2005. A layered goal-oriented fuzzy motion
planning strategy for mobile robot navigation. IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, 35(6), 1214-1224.

287

References

Yap, C. -K. 1987. Algorithmic motion planning. In: Schwartz, J. T. and Yap, CA.

(ed.), Advances in Robotics vol. 1: Algorithmic and Geometric Aspects of Robotics.

Hillsdale, NJ: Lawrence Erlbaum, 95-143.

Yildirim, M., Erkan, K. and Ozturk, S. 2006. Power generation expansion planning

with adaptive simulated annealing genetic algorithm. International Journal of Energy

Research, 30(14), 1188-1199.

Zalama, E. et al. 2002. Adaptive behavior navigation of a mobile robot. IEEE

Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 32(l),

160-169.

Zelek, J. 1999. Dynamic issues for mobile robot real-time discovery and path

planning. In: Proceedings of the IEEE International Symposium on Computational

Intelligence in Robotics and Automation, Nov 8-9,1999, Monterey, California, USA.

Piscataway, NJ: IEEE Press, 232-237.

Zeng, X. 2003. Evolution of the safe path for ship navigation. Applied Artificial

Intelligence, 17(2), 87-104.

Zhao, X. C. and Long, H. L. 2005. Multiple bit encoding-based search algorithms. In:

Proceedings of the IEEE Congress on Evolutionary Computation, Sep 2-5,2005,

Edinburgh, UK. Piscataway, NJ: IEEE Press, 1996-2001.

Zhang, G. et al. 2006. A clustering based GA for multimodal optimization in uneven

search space. In: Proceedings of the IEEE 6th World Congress on Intelligent Control

and Automation, Jun 21-23,2006, Dalian, China. Piscataway, NJ: IEEE Press, 3134-

3138.

Zheng, C., Ding, M. and Zhou, C. 2003. Real-time route planning for unmanned air

vehicle with an evolutionary algorithm. International Journal of Pattern Recognition

andArtificial Intelligence, 17(l), 63-8 1.

288

References

Zheng, C. et al. 2005. Evolutionary route planner for umnanned air vehicles. IEEE

Transactions on Robotics, 21(4), 609-620.

Zhu, A. and Yang, SX 2004. A fuzzy logic approach to reactive navigation of
behavior-based mobile robots. In: Proceedings of the IEEE International Conference

on Robotics and Automation, Apr 26-May 1,2004, New Orleans, LA, USA. Los

Alamitos, CA: IEEE Computer Society Press, 5045-5050.

Zhu, R., Sun,, D. and Zhou, Z. Y. 2007. Integrated design of trajectory planning and

control for micro air vehicles. Mechatronics, 17(4-5), 245-253.

289

