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Abstract 

ABSTRACT' 

The work described in this thesis contributes to the efficient solution of mobile robot 

navigation problems. A series of new evolutionary approaches is presented. 

Two novel evolutionary planners have been developed that reduce the computational 

overhead in generating plans of mobile robot movements. In comparison with the 

best-performing evolutionary scheme reported in the literature, the first of the 

planners significantly reduces the plan calculation time in static environments. The 

second planner was able to generate avoidance strategies in response to unexpected 

events arising from the presence of moving obstacles. 

To overcome limitations in responsiveness and the unrealistic assumptions regarding 

a priori knowledge that are inherent in planner-based navigation systems, subsequent 

work concentrated on hybrid approaches. These included a reactive component to 
identify rapidly and autonomously environmental features that were represented by a 
small number of critical waypoints. Not only is memory usage dramatically reduced 
by such a simplified representation, but also the calculation time to determine new 
plans is significantly reduced. Further significant enhancements of this work were 
firstly, dynamic avoidance to limit the likelihood of potential collisions with moving 
obstacles and secondly, exploration to identify statistically the dynamic 

characteristics of the environment. Finally, by retaining more extensive 
environmental knowledge gained during previous navigation activities, the capability 
of the hybrid navigation system was enhanced to allow planning to be performed for 

any start point and goal point. 
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Chapter 1: Introduction 

Chapter 1 

INTRODUCTION 

This chapter provides the background and context of the research work reported in 

this thesis. The chapter begins with a brief history of the mobile robots, followed by 

an introduction to the problem under investigation, namely robot navigation and the 

principal approach of genetic algorithms adopted in the research project. The 

objectives 
' 
of the research project are presented, the contributions to knowledge are 

summarised and the thesis structure is outlined. 

1.1 Mobile robots 

The popular conception of robots * is that of machines with a human appearance, 
behaviours and emotions. This image has been fostered in the media from the first 

performance of Karel Capek's play, R. U. R (Rossum's Universal Robots), to the 

modem movie series Star Wars. The practical reality is more mundane. The ma ority 

of robots are in use in the manufacturing industry, either repeatedly performing 
definable tasks or working in environments that are dangerous, perhaps toxic or 
intemperate. In contrast, relatively few specialist robots have been developed for 

research purposes, such as for operation in deep seas or in outer space. Recent 

developments include: micro-robots or nano-robots that can be injected into the 

human body to assist diagnosis and return detailed pathological data (Guo, Sawamoto 

and Pan 2005); domestic robots performing household chores such as cleaning or 

I 



Chapter 1: Introduction 

weeding (Lee 1998) and robot pets (Fujita and Kitano 1998) and football-playing 

robots (Asada et al. 1999) entertaining their human masters. 

The definition of a robot can be very general, 'any device which replaces human 

labour' (Soska 1985), or quite specific, 'a robot is a pre-programmable, multi- 
functional, manipulator designed to move material, parts, tools, or specialised devices 

through variable programmed motions for the performance of a variety of tasks' 

(Jablonski and Posey 1985). Robots themselves have been classified in various ways; 
for example, robots can be differentiated in terms of the type of control, compatibility 

level, configuration or moving ability (Critchlow 1985). As this thesis focuses on the 

ability of a robot to be mobile, the distinction between fixed and mobile robots is the 

most relevant here. Most industrial robots have their base fixed in physical location 

and consequently their workspace is constrained to be the maximum extension of 

their linkages. To overcome this problem, two approaches have been taken, namely 

flexible manufacturing cells and mobilising the robots. In the former approach, the 

change to the effective workspace volume that results from modifications to the 

robot's configuration is limited, at least in comparison with that achievable by mobile 

robots. Various locomotion mechanisms have been designed to mobilise robots, 

including wheels, tracks, legs and motor thrusters. These have enabled the 

development of serpentine robots, climbing robots, underwater robots, free-flying 

robots, and self-reconfigurable robots. A detailed explanation of locomotion 

mechanisms is presented in (Bekey 2005; Siegwart and Nourbýkhsh 2004), along 

with discussions of their biological counterparts. Although nature did not evolve any 
living species with fully-rotating actively-powered joints, wheels are the most 

common method for locomotion in human-designed systems. Much recent research 

concerning robot mobility has focused on self-reconfiguring (morphing) robots that 

can change their mode of locomotion according to either internal intention or the 

external terrain. For example, such a robot could change from a rolling machine into 

a legged robot when a well is detected. 

2 



Chapter 1: Introduction 

1.2 Robot navigation 

A mobile robot can be teleoperated, pre-programmed for repetitive tasks or navigate 
autonomously. The work in this thesis considers only autonomous navigation. Task 
descriptions for autonomous robots often need'to only specify what the operator 
wants done rather than how it is to be done. Achieving autonomous navigation 
requires the successful application of many artificial intelligence attributes, including 

sensing, actuation, planning and- problem solving algorithms, as well as the 

specification of a suitable embedded platform, including real-time software and 
hardware architectures. 

In any given environment, a mobile robot is expected to move between two or more 

specified locations in order to accomplish an assigned task. The following four 

questions reflect the functions that a navigation system must perform (Levitt and 
Lawton 1990; Murphy 2000). 

" "ere am I going? The robot should be clear about where it needs to go, and the 
destin 

' 
ation is usually determined and assigned by a human operator or a 

machine-based mission planner. Some tasks may require that a set of sub-goals is 

followed along the route to the final destination. The answer to this question is 

assumed to be known in most robot scenarios. 

" What is the best way to get there? The robot needs a plan to reach the destination 

efficiently and with consideration of optimisation criteria. Although nayigation is 

more than just path planning, this vital area has received considerable research 

attention. 

" "ere have I been? Map building helps the robot identify where it has been, 

allowing it to incrementally gain knowledge of previously unknown parts of its 

environment. Even if the robot is operating in areas of its environment previously 

visited, future performance may not only be improved by refining stored 
information, but any changes since the last visit can be re-mapped. The 

representation of environmental knowledge should be in a form which aids 

retrieval and augmentation. 

3 
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Where am P This is the localisation problem. The robot should have knowledge 

of where it is now, so that its next step can be accurately determined. Although 

global localisation provides a unique identification of position, localisation is 

often relative to a local landmark, such as the comer of a street. If localisation is 

inexact, the robot may fail to recognise when it has returned to a point already 

mapped and consequently build an inaccurate map with duplicated entries. 
Localisation errors are generally cumulative, in that the further the robot travels 

the greater the error will be. 

Leonard and Durrant-Whyte (1991) added the question "How should I get there? " 

that emphasises there may be a number of alternative routes that need to be 

considered. This is closely related to the path planning problem, an area that is given 

a particular emphasis in this thesis. 

1.2.1 Deliberative, reactive and hybrid systems 
Traditionally, two types of control methods have been adopted for robot navigation, 

namely deliberative planning and reactive behaviour (Arkin 1998; Kortenkamp, 

Bonasso and Murphy 1998; Lyons 1992; Mali 2002; Mufloz-Salinas et al. 2005; 

Murphy 2000; Oreback and Christensen 2003; Stoytchev and Arkin 2004; Urdiales et 

al. 2003b). A solution that incorporates both deliberative and reactive components is 

termed a hybrid navigation system (for example Aguirre and Gonzdlez 2003; Arkin 

1998; Kortenkamp, Bonasso and Murphy 1998; Lyons 1992; Mali 2002; Mufloz- 

Salinas et al. 2005; Murphy 2000; Oreback and Christensen 2003). 

Deliberative systems rely on an accurate world model to generate a plan for a given 

navigation task. The movement is directed by the decision, which is made in a 
hierarchical architecture involving functional decomposition, world modelling, and 

path planning (Arkin 1998; Murphy 2000). The use of perception in deliberative 

systems has been restricted to finding a means to ensure the accuracy of the global 

representation of the environment and no feedback to the planner exists from the 

robot action that results from the implementation of the plan (Arkin 1998; Mali 2002). 

The approaches in this category are also called model-based approaches, as the world 
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model is essential for deliberative reasoning. Deliberative navigation methods 

generally assume that the environment in which the robot moves, as well as its start 

and goal points, are known and the obstacles are either static or move in pre-defined 

manners. With such knowledge, the navigation task is to, plan paths without collision 
based on complete knowledge of the working environment (Nearchou 1998; Xiao et 

al. 1997). Such global planning normally results in optimal or near-optimal 

movements of the robot when moving between specified pairs of locations. In 

dynamically changing environments, deliberative methods often need to re-plan 

movements and, as these calculations can be very time consuming, deliberative 

methods are often unsuitable for real-time navigation. Also, the assumption that the 

environment is completely known is improbable in practical applications. 

Consequently, deliberative approaches to planning a collision-free path are often 

criticised for not being able to deal with uncertainties, in practical environments (Ryu 

and Yang 1999). 

In reactive approaches, the robot performs an action according to the pattern of 

perceived sensor information and the direction of the goal. Consequently, the design 

of this type of control generally forms a tight linkage between stimulus and response 

to achieve real-time performance (Kortenkamp, Bonasso and Murphy 1998; Mali 

2002; Urdiales et al. 2003b). The approaches of this type are also known as sensor- 
based approaches. As reactive methods make few, if any, assumptions regarding the 

arrangement of obstacles in its environment, they are often more robust in dealing 

with dynamic environments and are more tolerant to uncertainties in sensor 

measurements and the errors that accumulate during actuator movement sequences 
(Muftoz-Salinas et al. 2005; Ryu and Yang 1999; Urdiales et al. 2003b). The reactive 

approaches are often capable of autonomously exploring 'new regions in the 

environment and, as there is no plan to modify or repair, they are generally able to 

respond rapidly to any changes that may occur in the operating environment. 
However, without a global view of the environment, movements under reactive 

control are unlikely to be optimal and, as there is no memory of the locations at which 

previous decisions have been taken, localisation is not normally feasible, nor is 

escape possible from certain obstacle configurations. 

5 



Chapter 1: Introduction 

Hybrid architectures make use of reactive motor bchaviours that arc activated 

according to a higher deliberative cognitive process (Aguirre and Gonzdlcz 2003; 

Mali 2002; Murphy 2000; Orcbdck and Christensen 2003). The sensory information 

about the environment may be shared between the two layers: a suitable behaviour 

can be generated based on this stimulus, while cognitive functions in the deliberative 

layer integrate the observation into a world model. A plan may be subsequently made 

with up-to-date knowledge of the environment to guide the robot in accomplishing 
the navigation task. An important issue arises from the investigation of hybrid 

systems, namcly, what is the appropriate way to interface the deliberative and 

reactive systems in order to maximise navigation performance (Arkin 1998; Lyons 

1992)? The hybrid systems presented in this thesis attempt to deliver a suitable 

solution to this problem. 

1.2.2 Topological and metric navigation 
Two navigation techniques, namely topological navigation and metric navigation 
(also sometimes known as qualitative navigation and quantitative navigation 

respectively) have emerged as distinct and popular strategies for representing robot 

environments (Murphy 2000; Ryu and Yang 1998; Thrun and Bucken 1996; Urdiales 

et al. 2003a). 

Topological navigation is often viewed as a human-like way of navigating. If a visitor 

at a reception desk asks, 'Where is ScottT directives such as, 'Pass through the door, 

go up the stairs, turn left at the second floor and enter the second room on the right at 
the end' may be given to guide the visitor to Scott. Such an approach relies on the 
human ability to identify and navigate based on landmarks or features, such as 'door', 

4stairs', 'floor', 'room', and 'end'. Analogously, topological navigation uses 
distinctive landmarks (which can be natural or artificial) and their interconnections, to 
describe environments (topologically represented) and plan paths consisting of a 
sequence of identifiable landmarks. However, there are significant drawbacks: 

processing overheads are often substantial in realistic implementations, feature 
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extraction may require model-based vision processing and localisation can become 

difficult or even impossible if landmarks cannot be identified. 

Metric navigation requires the existence of a map of the environment in which the 

robot's environment is defined by a single, global coordinate system. The paths 

generated by metric techniques can usually be decomposed into a set of'path 

segments consisting of sub-goals with fixed locations or global coordinates. A data 

structure called configuration space (or c-space for short), is used in metric 

approaches to specify the position and orientation of the robot and the obstacles (that 

are represented in their own configuration space termed c-obstacle) (Choset et al. 
2005; Latombe 1991; Lumelsky 2005). C-space reduces the robot's physical 
dimensions to a single point, so that the path planning problem can be simplified to 

moving a point through a scattered set of obstacles. The objects (except for the robot) 
in c-space are normally approximated by polygons in order to reduce planning 

complexity and memory usage. 

The advantages and disadvantages of each type of navigation have been widely 

recognised (Aguirre 
' 
and Gonzdlez 2003; Mufloz-Salinas et al. 2005; Murphy 2000; 

Ryu and Yang 1998; Urdiales et al. 2003b). Due to the compact characteristic of the 

topological representation, it scales better than metric maps for larger environments. 
Also, topological maps are more tolerant to errors in metric information, but the 

ability to distinguish landmarks has proved difficult to solve in many practical 

situations, particularly when more than one landmark with the same or similar 
features is present. Additionally, global optimal navigation can be generated based on 

the metric representation, whereas it is unlikely to be able to generate an optimal 

solution (in terms of metriý criteria) using the approaches relying on topological 

representation alone. Many recent navigation schemes rely on a hybrid representation 
(for example Aguirre and Gonzdlez 2003; Jia, Zhou and Chen 2004; Muftoz-Salinas 

et al. 2005; Poncela et al. 2002; Ryu and Yang 1998; Urdiales et al. 2003a and 2003b) 

that integrates the metric information with the topological representations to 

overcome the disadvantages of the individual navigation techniques. 
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1.3 Genetic algorithms 

Genetic algorithms (GAs) generally refer to a family of computational models 
inspired from biological evolution, specifically those that follow the principle of 
6survival of the fittest' firstly laid down by Charles Darwin (Goldberg 1989 and 2002; 

Holland 1975; Mitchell 1996; Nolfi and Floreano 2000; Osyczka 2002; Wang, Tan 

and Chew 2006; Watanabe and Hashem 2004). GAs are generally used as adaptive 
heuristic search algorithms, mimicking the natural evolutionary process and 

maintaining a population of candidate solutions or 'chromosomes' that are evolved 

over a series of generations. Competitive selection favours fitter chromosomes, pairs 

of which are chosen for mating to produce the next generation; the expectation being 

that the resulting offspring will also be fitter individuals, biasing the search towards 

regions in which fitter chromosomes have already been discovered. To avoid the loss 

of population diversity, and so reduce the possibility of terminating the search at a 
local optimum, mutation of the offspring often occurs with only a small probability. 

Due to the implicit parallelism of GAs (Goldberg 1989 and 2002; Holland 1975; 

Mitchell 1996), they search a larger space with a relative small number of 

manipulations carried out on a set of artificial chromosomes. Results in the literature 

demonstrate that not only do GAs provide an alternative approach to solving 

problems, but outperform other methods for many real-world search-related problems 
(De Jong 1992; Osyczka 2002; Watanabe and Hashern 2004). With the simple and 

general form, GAs can operate on each kind of parameter space (such as, discrete, 

continues, or combinatorial spaces) to fulfil single or multiple optimisation criteria 

with no requirement of gradient information regarding the search space and any other 
internal knowledge (Beasley, Bull and Martin 1993; Wang, Tan and Chew 2006). The 

parallel implementation can be easily achieved with the concept of population, 

resulting in faster execution compared to conventional approaches (Cantu-Paz 2000; 

Watanabe and Hashern 2004). Previously intractable real-world problems can be 

solved with little need to perform deep analysis of the application itself (Rothlauf 

2002). GAs are well suited to problems in which noise exists (Sano and Kita 2002; 

Watanabe, and Hashern 2004) and GAs are sufficiently flexible to allow users to 
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modify the genetic operators (Carrano et al. 2006; Passone, Chung and Nassehi 2006) 

or even invent new operators (Vannoy and Xiao 2004) that effectively introduce 

domain knowledge to improve the performance for specific problems. The merits of 
GAs can be summarised as follows: large application domain, simple mechanisms, 

applicable to many parameter spaces, no gradient information or internal knowledge 

required, suitable for single and multiple objective optimisation, easy parallelisation, 

suitable for difficult problems, robustness and flexibility. Such advantages are central 

to the requirements of the work in this thesis, but GAs also have a number of 
drawbacks, including computational complexity (Watanabe and Hashem 2004), 

appropriate control parameters are difficult to choose (Goldberg 2002; Mitchell 1996), 

and no guarantee that the global optimal will be found (Chen, Lee and Park 2005; De 

Jong 1992; Rudolph 1994). Advances in computer hardware have to some extent 

alleviated the computational disadvantage, for example, Minami, Gao and Mae (2007) 

developed a GA for catching fish in real time. Moreover, calculation time can be 

reduced by parallel implementations (Cantu-Paz 2000; Watanabe and Hashem 2004). 

There remains no solid theoretical guidance for choosing appropriate GA parameters 
for a specific application and their determination is largely based on trail and error. It 

is difficult to predict or accurately govern the evolutionary progress to a sufficient 

extent that it can be guaranteed that the desired solutions can be found within a 

certain time limit. Other researchers have attempted to direct the search by 

incorporating domain knowledge as heuristics (for example Elshamli, Abdullah and 
Areibi 2004; Smierzchalski and Michalewicz 2000 and 2006; Zheng, Ding and Zhou 

2003; Zheng et al. 2005). GAs cannot guarantee that, with a finite population, the 

global optimal solution can be determined every time and sub-optimal solutions are 

often accepted as a necessary consequence of the finite computational resources 

available in practice (Chen, Lee and Park 2005; Rudolph 1994). 

1.3.1 A brief history and application examples 
In the 1950s and 1960s, evolutionary systems were studied with the aim of 

establishing the mechanism as an optimisation tool for engineering problems. John 

Holland (1975) proposed GAs as a method for designing robust adaptive systems. His 

GA introduced most of the features of a modem GAs, such as a population and the 
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genetic operations of crossover, inversion, and mutation. The ongoing advances in 

computational power have also helped to establish GAs in many new areas of 

application. 

GAs have been applied in a wide variety of fields. Examples in the field of 

engineenng (Abraham, Jain and Goldberg 2005; Chambers 2000) include 

optimisation tasks such as circuitry routing, job-shop scheduling and automatic 

programming to generate complex programs from programming elements. The 

applications of GAs in machine learning include evolving sensors for robots, 
determining optimal weights for neural networks, and generating rules for classifiers 

systems. There are also successful examples of the application of GAs to evolve 

social behaviours, cooperation and communication in multi-agent systems. 

1.3.2 Features of genetic algorithms and variants of the canonical form 

There is no broadly accepted definition of a genetic algorithm that distinguishes it 

from other evolutionary computation methods (Mitchell 1996; Osyczka 2002; 

Watanabe and Hashem 2004). However, the salient features are those of a population 

of chromosomes, selection based on fitness and the application of genetic operators, 

and these are common across all variations of the canonical genetic algorithm, see 
Figure 1.1. Chromosomes are generally formed of fixed-length from a binary 

encoding of the problem being tackled (Abraham, Jain and Goldberg 2005; Goldberg 

1989 and 2002; Holland 1975; Osyczka 2002; Rothlauf 2002; Wang, Tan and Chew 

2006; Watanabe and Hashem 2004), although other encoding mechanisms, such as 

real values (Herrera and Lozano 2000; Hrstka and Kucerova 2004; Montana and 
Davis 1989; Suzuki, Sawai and Piaseczny 2006) and character sets (Kitano 1990; 

Rothlauf 2002) have been successively applied in specific applications. In addition, 

variable-length chromosomes (Goldberg, Korb and Deb 1989; Hutt and Warwick 

2007; Kim and De Weck 2005), where the length of the chromosomes is adapted 
during the evolutionary process, can be well suited to problems where the length of 
the optimal search path can vary greatly from one application of the GA to the next. 
A good example of adaptive encoding is found in the messy GA (Goldberg, Korb and 
Deb 1989), a form that was specifically developed to improve the performance of 
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GAs by construct, ing longer fitter chromosomes from combinations of smaller elite 

seeds. In GAs, the selection to bias individuals towards promising regions of the 

search space is a sensitive parameter: too high a selection pressure results in rapid 

convergence towards sub-optimal solutions, but if it is too low, the evolutionary 

process is likely to be rather slow. 

procedure canonical genetic algorithm 
begin 

generate initial population randomly 
evaluate the fitness for each individual 
while optimisation criteria not met 

select parents 
apply crossover, mutation operators to parents to produce offspring 
evaluate the fitness for offspring 
form a generation 

end while 
end 

end procedure 

Figure 1.1 The structure of canonical genetic algorithm. 

GA selection schemes can be classified into two categories, namely proportionate and 

ordinal-based selection (Ahn and Ramakrishna 2002; Goldberg 2002). Proportionate 

selection chooses individuals according to their relative fitness, examples being the 

roulette wheel (De Jong 1975), stochastic remainder (Booker 1982; Brindle 1981) 

and stochastic universal selection (Baker 1987; Grefenstette and Baker 1989). 

Ordinal-based selection ranks individuals in the population, examples are tournament 

(Brindle 1981), truncation (MUhlenbein and Schlierkamp-Voosen 1993) and ranking 

selection (Baker 1985). 

The most commonly-used genetic operators are crossover and mutation, but a number 

of other operators often feature, particularly inversion, delete and swap (Goldberg, 

2002; Mitchell 1996). In applyi 
' 
ng GAs, a range of parameters need to be set, and 

these include population size, the number of generations, and the application rates of 

the applied operators. There are no general quantitative rules for choosing these 

parameters, suitable values depend largely on the nature of the problem under 
investigation and values are normally determined experimentally (De Jong 1975; 

Mitchell 1996). Altering the parameter values will likely affect the performance of 

the GA in tenns of the rate of convergence and the quality of the solution produced. 
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There is a number of different ways of replacing the population with generated 

offspring. In generational GAs, the next generation is normally formed of individuals 

resulting from genetic operations on the old population, which is entirely discarded 

(Goldberg 1989 and 2002; Holland 1975). Elitist replacement strategies (Dumitrescu 

et al. 2000; Reed, Minsker and Goldberg 2001; Rudolph 1994) clone a (typically 

small) number of best fit solutions directly into the next generation without any 

genetic alteration and the remainder of the new population is filled with offspring 

modified by operators. In the tournament replacement scheme (Smith 2007), the 

members to be inserted into the new population are determined by tournament 

between the individuals in the current population and the offspring generated. The 

crowding approach (De Jong 1975) and its variants (Affenzeller and Wagner 2004; 

Mahfoud 1995a; Mengsheol and Goldberg 1999; Sareni and Krahenbuhl 1998) have 

this replacement strategy. Another replacement approach, less common due to 

ineffectiveness, is the random replacement scheme (Ballester and Carter 2003), in 

which only those individuals randomly selected from the current population will be 

replaced by offspring. 

The following are ex=ples of variants on the canonical GA form. 

Modifying one or more GA features, the genetic representation or the structure 
Examples are messy GAs (Goldberg, Korb and Deb 1989), mentioned above, 

that permit variable-length chromosomes and steady-state GA (Syswerda 1991; 

Whitley 1989; Whitley and Kauth 1988) in which only a small frdction of 

population is involved in the genetic reproduction for the next generation. 

Adapting parameters during the evolutionary process An example is the work of 
Jerald et al. (2005) who proposed a GA that adapts the probabilities of 

application of its genetic operators. 

Implementing GAs in parallel An additional operator, namely migration, is 

commonly found in parallel GAs to define the degree of interaction between 

separate sub-population streams (Conceicao Antonio 2006; Srinivasa, Venugopal 

and Patnaik 2007). 
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Niched GAs Niching techniques attempt to maintain population diversity, 

allowing separate promising regions to be investigated simultaneously and 

reducing the risk of concentrating the search in areas that may lead to only a 
locally optimal solution. Crowding (De Jong 1975) and sharing (Goldberg and 
Rechardson 1987) techniques are common examples. 

GAs have also been combined with other optimisation algorithms in order to improve 

the overall search performance, such as in the simulated annealing genetic algorithm 
(Wang, Z. G. et al. 2005; Yildirim, Erkan and Ozturk 2006). However, such hybrid 

algorithms may behave very differently from GAs. 

The basic idea about GAs was given in this section and the next chapter extends this 

brief introduction by discussing a number of important aspects of GAs based on the 

recent developments found in the literature. 

1.4 Research aim and objectives 

The aim of the research was to design an autonomous navigation system for a mobile 

robot that has no a priori knowledge of the environment. Once the robot has had the 

opportunity to move through the environment, either as a consequence of navigation 

or exploration activities, it should be capable of obtaining and storing information 

regarding the environment for future use of planning by genetic algorithms. 

The aim was achieved in a sequence of logical stages that can be formulated as the 
following objectives. 

1. To reduce the time taken to generate plans for navigating through environments 

that contain known static obstacles. It is likely that this will require the 
development of a suitable and novel method for representing the obstacles. 

2. To extend the planner for static environments in such a way that the navigation 
technique can also deal with dynamic obstacles whose paths may not be known. 
This is likely to require the incorporation of motion parameter into planning 
process. 

13 



Chapter 1: Introduction 

3. To develop a means of automatically gathering information of the environment 

as the robot moves among the static obstacles. It is likely that a hybrid solution 

will be required, in which a reactive navigator will guide the initial movements 

and the information gained then communicated to a high-level planner. As more 
is learned of the environment, so the planner will become better placed to plan 
future movements. 

4. To eýhance the operation of the reactive part of the hybrid navigation solution so 

that it is able to avoid moving obstacles with minimal disruption to the overall 

navigation plan. 
5. To implement a generalised version of the hybrid navigation system that is able 

to provide navigation from any start point to any goal point in the environment. 
This will require that additional information is gathered from the obstacles and 

modelled in a suitable form that is not overly extravagant in terms of memory 

usage or planning time. 

1.5 Contributions to knowledge 

The contributions of the research project reported in this thesis are as follows. 

1. A new genetic-based planner for stationary enviromnents was developed that 

included the novel aspect of constraining the search space to only a set of 

vertices. The planner was found to significantly reduce planning time compared 

with earlier evolutionary planners, yet generated a similar quality of path. 
2. In an extension to the vertex planner, the adaptive modification of the planned 

route was permitted in order to allow it to be changed in response to observed 

moving obstacles. The speed parameters of both the robot and the moving 

obstacles were encoded as part of the genetic planning process, allowing the 

selection of an appropriate robot speed for each path segment. 

3. The novel waypoint-based hybrid navigation system further simplified the 

representation of the environment, reduced the memory storage requirement for 

the environmental knowledge and considerably shortened the time to deliver a 
suitable path between the detected waypoints. 
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4. Two contributions can be drawn from the research work on the waypoint-based 
hybrid navigation system for dynamic environments. Firstly, a set of algorithms 

was developed to enable the robot to avoid potential collisions with the moving 

obstacles sensed. Secondly, a new method of statistical exploration was devised 

to identify the dynamic patterns that potentially characterise a dynamic 

enviromnent. 
5. The generalised version of the waypoint navigation system enabled the 

formulation of planned paths between any pair of locations using waypoints 
determined during the previous tasks. This approach required the development 

of a novel method of describing the environmental knowledge elicited. 

Although significantly more knowledge of the environment now needed to be 

stored, its ifiernory requirement was kept to a minimum by a piece-wise 

polynomial representation. 

1.6 Structure of the thesis 

The next chapter provides a deeper introduction to GAs based on a survey of recent 

developments of GAs related to the algorithms proposed in the thesis. The three 

principal mobile robot navigation approaches, namely planner-based, reactive and 

hybrid systems are all relevant to the current research and a review of work found in 

the literature in each of these areas is discussed in chapter 3. Two specific planning 

systems described by other authors are discussed in detail as they are closely related 

to the current work. 

Chapters 4 to 8 all describe new work performed by the author. A new genetic-based 

planner that uses the vertices of obstacles to create paths through static obstacles is 

described in chapter 4. Chapter 5 extends the vertex planner of chapter 4, so that it is 

able to perform navigation in environments that contain dynamic obstacles as well as 

static obstacles. Chapter 6 describes a novel waypoint navigation system that is able 

to gather information autonomously about the environment for use in the generation 

of future plans. Chapter 7 presents a hybrid navigation system which augments the 

navigation ability of the waypoint navigation system presented in chapter 6, so that it 
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can be applied to dynamic environments. A generalised waypoint navigation system 
is described in chapter 8 and this navigation system enables path planning for future 

navigation tasks that can start at any point and end at any point. The thesis is 

concluded in chapter 9, in which the research reported in the thesis is summarised, 

achievements are outlined, shortcomings are discussed, and future work is proposed. 
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Chapter 2 

GENETIC ALGORITHMS 

REVIEW 

The previous chapter presented an overview of the research project, introduced 

mobile robots, described the general nature of navigation problems and gave a brief 

introduction to genetic algorithms (GAs). This chapter reviews the recent 

developments in GAs with particular emphasis on the aspects relevant to the 

algorithms proposed in this thesis and justification of the choice of GA structure 

adopted in this thesis. For the earlier work on GAs, good reviews can be found in 

Back, Hammel and Schwefel (1997), Chaiyaratana and Zalzala (1997) and De Jong 

and Spears (1993). A survey of the application of GAs in the robot navigation is 

given in the next chapter. 

The GA literature is extensive. All recent work cannot be covered in a thesis: many 

publications of high quality have had to be omitte d, and emphasis is given to these 

papers of upmost relevance to that investigated in this thesis. This chapter is arranged 

as follows: steady-state GAs are firstly introduced, followed by genetic representation, 

the selection schemes, genetic operators, and deterministic crowding is introduced in 

the context of premature convergence and population diversity. 
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2.1 Steady-state genetic algorithms 

As the steady-state GA is the main structure of the GAs developed in this thesis, this 
section compares its operation to the generational GA and explains the choice made. 

An implementation termed Genitor (Whitley 1989; Whitley and Kauth 1988) was 

probably the first realisation of the form of GA that later became known as 'steady- 

state' (Syswerda 1991). The majority of GAs described in the literature are 

generational, meaning that each new generation produces an offspring population that 

entirely replaces the previous population. In contrast, a small number of individuals 

(typically one or two) in the steady-state GA are involved in the genetic modification 

at each iteration, with replacement strategy being such that only the worst individuals 

in the population are replaced by offspring. In addition, ranking methods are often 

used for selection in steady-state GAs to identify individuals for mating, rather than 

using the fitness values themselves. A number of earlier works (De Jong and Sarma 

1992; Goldberg and Deb 1991; Syswerda 1991; Vavak and Fogarty 1996; Whitley 

1989) has investigated steady-state GAs in their comparison with generational 

approaches. ' The effects on performance that arise due to the first two major 
differences (that is the number of individuals involved in genetic operation and 

replacement strategy) are discussed in this section and those that arise due to the 
difference in selection strategy are considered (in conjunction of other common 

selection schemes) in section 2.3. 

As steady-state GAs modify only a small number of individuals at each iteration, 

comparisons of the frequency of alteration of individuals is difficult to make with 

generational GAs. The effect of 'birth and death rate' and 'life span' of the 

individuals in two different models has recently been examined by Jones and Soule 

(2006), in their application to a problem where the fitness landscape consists of a 
broad, low peak, and a narrow, high peak. A variable representation strategy was 

adopted for the generational and steady-state GAs, rather than using individuals of 

equal length as in standard GAs. The experimental results showed that the steady- 

state GA is able to smoothly converge to the higher peak once present in the 
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population, but the shift from the lower, broader peak to the higher, narrower peak 

occurs suddenly. This has been attributed by the authors to the different roles of 

genetic robustness (defined as a measure of the average fitness change of a 

chromosome following a genetic operation) in directing the evolutionary process. An 

individual is more genetically robust if it is located in a flatter peak, but less robust 

when on a narrow peak as it is more likely to be moved away. In steady-state GAs, 

elite individuals evolved from the previous generation are naturally inherited into 

successive generations and so fitness improvements are accumulated monotonically. 
In contrast, such smooth convergence is -rarely observed in the generational models 
due to the entire population being replaced by their offspring, resulting in sudden 

shifts in locations. Bullinaria (2004) compared generational with steady-state GAs 

that were used to optimise the aspects' of a neural network system, namely initial 

weight distributions, gradient descent learning rates, and regularisation parameters, in 

order to improve the performance of the neural network system. The simulation 

results indicated the performance of evolutionary strategies (generational or steady- 

state) is largely dependent on the specific problem being addressed and consequently 

evolutionary strategy should be tailored to fit that problem in order to achieve the best 

possible performance. Elitist selection (Dumitrescu et al. 2000; Reed, Minsker and 
Goldberg 2001) GAs were compared with steady-state GA by Shi et al. (2004), who 

concluded that the steady-state GA is simple and effective and performs well in low- 

dimensional environments, and is especially adapt at on-line optimisation, whereas 

the elitist selection GA was better in high-dimensional environments and in off-line 

optimisation. The relatively good on-line performance achieved by the steady-state 
GA was attributed to the replacement strategy used, and the better search capability 

of the elitist selection GA to the relatively larger number of schemata processed. 
Fewer schemata were explored by the steady-state GA, as only one new individual 

was examined at each generation. An effect of the steady-state replacement scheme is 

to make individuals more similar with each passing generation, resulting the loss of 
diversity, however, even the worst member still has a chance, though small, to be 

selected for genetic operation, alleviating the loss of allele. Rogers and PrOgel- 

Bennett (1999b) performed a comparison of the dynamics of steady-state and 

generational GAs using a statistical mechanics approach. As the ranking selection and 
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least fit replacement makes it difficult to directly compare to the generational GA, the 

comparison was made by isolating the genetic operation and adopting the Boltzmann 

roulette wheel selection and random deletion for the two evolutionary models. The 

analysis results indicate that loss of population variance of the steady-state GA was 
twice as rapid as that of the generational GA. An additional experiment was 

conducted on the steady-state GA to investigate the effect of rescaling of selection 

pressure while considering mutation. It is found that, with weak selection, the steady- 

state GA was able to regenerate the same dynamics as that of the generational GA 

with only half computational effort in terms of function evaluations. The analysis of 
the steady-state GA based on the experimental results, is complicated by the effect of 

the application on performance. The theoretical approaches used to evaluate the pros 

and cons of steady-state GAs as compared with generational GAs have adopted the 
decomposition (divide and conquer) strategy, isolating each part or set of parts and 

evaluating them alone. However, the interaction between the selection, genetic 

modification and replacement makes the theoretical analysis complex and non-linear, 

and no investigation has been carried out to date. Despite the theoretical 

investigations, steady-state GAs has increasingly employed in many fields often with 

some modifications of its original version, such as Li and Kou (2005), Miconi and 
Channon (2006), Raghuwanshi and Kakde (2006), Sasaki et al. (2006) and Shi, Cui 

and Zhang (2004). 

As only a single reproduction was designed to be carried out at each replacement in 

steady-state GAs used in this thesis, the evolutionary process can be interrupted at 

any time in order to extract the current best solution. Figure 2.1 illustrates a possible 

arrangement for a sensor-based planning system, where every generational operation 
is arranged in the sampling interval, so that the planning continues while the robot 

moves. 
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sensor planning 
reading 

\/ 
actuation 

1 21 tillic 

Figure 2.1. Planning arrangement for a sensor-based system. Note that i is the sampling 
interval. 

2.2 Genetic representation 

The genetic representation stores the genotypic information used to determine the 

phenotypic attributes (such as eye colour, hair colour and shape). A chromosome 

consists of a number of alleles whose value is one drawn from the set of possible 

values. For example, the value can be 0 or I for a binary allele whose cardinality is 2 

A specific phenotypic property is deten-nined by a gene containing one or more 

alleles. The representation is important in constructing an efficient GA (Bdck, Fogel 

and Michalewicz 1997; Rothlauf 2002). Binary representation is simple and 

commonly used, but many other encoding methods (such as integer, floating point, 

tree, and so on) have emerged in the literature. A number of publications (135ck, 

Fogel and Michalewicz 1997; Larrahaga el al. 1999; Mitchell 1996) have suninlarised 

the earlier representation schemes, but research in the effects of' choosing particular 

genetic representations has not been as active as in other aspects of GAs (such as 

genetic operators or selection strategies). This section presents the recent 

developments on the most common representations. 

Binary representations are the most widely used representations as they are simple to 

formulate and can be manipulated directly by digital computers. A 

splicing/decomposable binary representation was developed by Leung, Sun and Xu 

(2002), Liang, Leung and Lee (2006), Liang. Leung and Xu (2007) and Xu ef al. 
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(2003). A cell decomposition strategy was used to construct a binary string which 

represents not only an individual but also a sub-region (sub-population) and a higher 

resolution for the problem variables can be achieved by splicing one with another. 
Fonseca and Correia (2005) expressed concerns about the use of redundant binary 

representation. The non-redundant representation is the identity map between 

genotypes and phenotypes, whereas, in a redundant representation, at least one 

phenotypic trait must be determined by two or more genes, which is known as 

polygene. Dengiz, Dozier and Smith (2004) proposed a non-deterministic decoding 

technique for binary representation that maps an individual, not to the same point 

every time as the conventional decoding approaches, but to a Gaussian 

neighbourhood around it. Zhao and Long (2005) combined standard binary coding 

with gray coding (Whitley, Rana and Heckendorn 1997) into a new binary 

representation, as there is often lack of a- priori knowledge about which 

representation is suitable for a given real-world problem. The gray coding was used 

to eliminate Hamming cliffs (Rowe et al. 2004; Whitley, Rana and Heckendorn 1997) 

corresponding to an adjacent locations in numeric space whose genetic representation 

are bit complementary. For example, binary strings, 0 111 and 1000, represent 7 and 8 

in its numeric space, but a significant change in the genotype is required for a minor 

change to the decimal equivalent. 

Floating point representations (Back, Fogel and Michalewicz 1997) operate directly 

in continuous space rather than on the discrete set used by binary representations. 
Gaing and Huang (2004) presented a mixed integer representation containing 

continuous and discrete control variables for non-convex optimal power flow 

problems. Examples adopting the floating point representation are Abbas and 

Bayourni (2006), Elshamli, Abdullah and Areibi (2004), Zheng, Ding and Zhou (2003) 

and Zheng et al. (2005). Recent literature contains few contributions that describe any 

significant modification of the conventional floating point representations. Pereira et 

al. (2002) presented a genetic vehicle representation consisting of several routes, each 

of them composed by an order list represented by integer. 
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Tree representations are commonly used where mapping between the phenotypes and 

genotypes can be realised by a tree-like graph. Chang, Hou and Su (2006) developed 

a binary tree structure to represent RLC (resistor, inductor and capacitor) circuits, in 

which the labelled terminal nodes consists of the three types of electrical components 

and the non-terminal nodes represent either series or parallel connections. Tree 

structures have also been used to represent the language sentences (for example Lim 

and Cho 2005). 

Efforts have also been made to combine different representation schemes into hybrid 

representations with the intention of gaining efficiency and flexibility. Schnier and 
Yao (2000) described a hybrid strategy to create an initial population in which half of 
the individuals used a Cartesian representation and half a pseudo-polar representation. 
Aguilar-Ruiz, Giraldez and Riquelme (2007) proposed a method of hybrid coding for 

decision rule learning problems, termed nature coding, that combined binary and 
floating point representations to encode discrete and continuous attributes 

respectively. 

Although attempts have recently been made to improve the efficiency of genetic 

representation, there is still an absence of solid guidance for choosing a suitable 

representation for a specific class of problems. 

2.3 Selection schemes 

The role of selection is to favour the fitter individuals over the less fit ones and 
determine which individuals should participate in mating. Consequently, it is critical 
to choose an appropriate selection mechanism to achieve a fast convergence but with 

a desired quality of solution. A number of earlier publications (Blickle and Thiele 

1997; Goldberg and Deb 1991; Wiese and Goodwin 1998) provided comprehensive 

analyses on selection algorithms. This section attempts to summanse recent 

contributions available in the literature with regard to selection mechanisms, before a 
brief introduction is given on common selection methods. 
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As introduced in section 1.3.2, the most common selection schemes used in 

proportionate selection are roulette wheel, stochastic remainder and stochastic 

universal selection (Ahn and Ramakrishna 2002; Goldberg 2002; Mitchell 1996). The 

roulette wheel method (De'Jong 1975) randomly selects the parents by spinning a 

wheel whose slot size is tailored to be proportional to the fitness of individuals. 

Stochastic remainder selection (Booker 1982; Brindle 1981) works as follows. The 

expected number of offspring for each individual is found; its integer part is used to 
determine the number of samples'for the individual and the fractional component is 

used as the probability of whether this particular individual produces an additional 

offspring. Instead of the single pointer used in the roulette wheel method, stochastic 

universal selection (Baker 1987; Grefenstette and Baker 1989) employs N pointers 

equally separated where positions are determined by a single number randomly 

generated in the range [0,11N], generally resulting in a more diverse set of 
individuals. Such proportionate-based selection tends to result in a rapid convergence 
to promising subspaces during the initial stages of evolution, but the much lower 

selective differential provides little incentive to prefer one individual over another in 

the later stages of evolution (De Jong 1992). To preserve a constant selective pressure 
doing evolution, a number of ordinal-based approaches, namely tournament (Brindle 

1981), truncation (Mflhlenbein and Schlierkamp-Voosen 1993) and ranking selection 
(Baker 1985), have emerged to give independence to the raw values of fitness of 
individuals. 

Ranking selection (Baker 1985) chooses individuals based on their rank allocated 

after sorting according to fitness, so that the selective pressure is independent of the 

fitness distribution of the population. In the tournament selection scheme (Brindle 

1981), the winner is selected for reproduction from a number (specified by the 

tournament size) of individuals randomly chosen. The tournament size is directly 

related to the selective pressure, since the expected number of times the fittest 
individuals would be selected is equal to the tournament size (Sokolov, Whitley and 
da Motta Salles Barreto 2007). In truncation selection with a threshold (MUhlenbein 

and Schlierkamp-Voosen 1993), a fraction of fittest individuals are selected with 
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same probability for genetic reproduction. The specified threshold then controls the 

selective pressure. 

A number of recent publications have concentrated on the loss of diversity that results 
from conventional selections approaches. Hutter (2002) introduced a new selection 

algorithm, termed the fitness uniform selection scheme (FUSS). The majority of 

popular selection schemes (proportionate, truncation, ranking, and tournament) 

propagate the genetic material of fitter individuals and inhibit the spread of poor 

quality genes in the population. However, Hutter (2002) argued that it is not 

necessary for the entire population to converge to a small sub-region of the search 

space, as, in most situations, a single individual of maximal fitness is sufficient, and 
the population exhibits low diversity. FUSS was proposed to overcome these 
drawbacks. In FUSS, a fitness value is randomly chosen uniformly from the interval 

between the maximum and minimum fitness values, then, the selection algorithm 

selects the individual with the shortest distance to the chosen fitness value. A copy of 

the individual selected is inserted in the population after genetic modification, 
increasing the space available for the increased size of population. There is no 

convergence of the population, as the selection pressure is specific to a local fitness 

level (although a new fitness level may yield). The probability that a specific 
individual is chosen is proportional to the distance to the nearest fitness level, and, as 
the selection is local, a slow evolutionary process may be expected. Furthermore, a 

population with increasing size will not only require extra memory but will take more 
time to process. Appropriate selective pressure is needed in order to meet the 

requirements, with high selective pressure being desired if quick convergence is 

required with a less accurate solution, but a fine quality solution being chosen if more 
detailed exploration is needed. Consequently, suitable selection should balance 

exploration (into new and undiscorved areas) and exploitation (in the immediate 

regions around solutions so gained) according to the specific requirements of a given 

problem. 

A dynamic selection scheme was proposed by Agrawal et al. (2005) based on 

proportionate selection, where the criteria for choosing parents varies during 
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evolution and depends on the number of generations in a run and the diversity of the 

current generation. Although an improvement in the population diversity was 

obtained, slower convergence was also observed. Affenzeller and Wagner (2005) 

proposed a mechanism termed offspring selection, so called as the selection is 

performed after genetic reproduction. When the offspring are generated, they are 

compared to their parents and are accepted as a member of next generation, if and 

only if they are fitter than their parents. This selection approach is similar to 'pre- 

selection' scheme of Cavicchio (1970), see section 2.5. 

The standard tournament selection (also called random tournament selection as the 
individuals in the tournament are chosen at random) is biased and can result in loss of 
diversity in that it is likely that some individuals may not be sampled at all, yet others 

may be sampled too frequently (Poli 2005). Further, the larger the tournament, the 

more rapidly loss of population diversity occurs. To overcome this drawback, an 

unbiased tournament selection strategy (Sokolov and Whitley 2005; Sokolov, 

Whitley and da Motta Salles Barreto 2007) was proposed. In place of uniform 

sampling, the unbiased tournament selection technique uses a set of permutations of 

set size equal to the tournament size during tournament construction, thereby 

guaranteeing that every member in the population is selected for a number of times 

equal to the tournament size. One drawback recognised by the authors is that the 

unbiased tournament selection reduces the degree of parallelism compared with 

standard tournament selection. However, the experiments presented indicated better 

results were obtained by the unbiased tournament selection than conventional 
tournament selection when applied to generational GAs. Also, it appeared that the 

tournaments of smaller size benefited more from unbiased selection technique. The 

authors also remarked that this variant of tournament selection may not be suitable for 

steady-state implementation as it performs recombination one-at-a-time. Although 

tournament size needs to be determined before evolution commences (it being tightly 

related to the desired selective pressure), it is difficult to gain a priori knowledge of 
the appropriate selective pressure required by many real-world problems. 

26 



Chapter 2: Genetic algorithms review 

The ranking selection used in the steady-state GA implementations ensures that a 

constant selective differential is maintained between the best and worst individuals 

during the evolution process (assuming the population-size is fixed). Scaling may be 

applied to the ranks of the individuals before selection in order to produce appropriate 

selection pressure: for example, the quadratic ranking technique (De Jong 1992; 

Watanabe and Hashern 2004) scales the ranks of the individuals by 11, [T, where r is 

an individual's rank, with the intention of increasing the probability of selecting fitter 

individuals. The combination of rank scaling and roulette wheel selection (Goldberg 

2002) can prevent the loss of diversity to some degree (Sokolov, Whitley and da 

Motta Salles Barreto 2007). 

2.4 Genetic operators 

A wide range of different genetic operators have been applied across a range of 

applications. This section does not attempt to cover all the existing operators, but 

rather concentrates on those most relevant to the work presented in this thesis. In 

canonical GAs, significant emphasis was given to the crossover operator as it 

attempts to combine useful building blocks to generate better solutions. On the other 

hand, the mutation operator applied with a small probability perturbs the genetic 

structure to promote diversity. The inversion operator proposed by Holland (1975) is 

used to reorder the positions of alleles in order to increase the probability of linkage 

of fitter schemata and reduce the disruptive effect due to the one-point crossover 

operator (Goldberg 1989 and 2002; Mitchell 1996). A good review of the crossover 

and mutation operators developed in earlier works was provided in (Larraflaga et al. 
1999) for travelling salesman problems. Spears (1997) reviewed the earlier 
development of recombination (crossover) operators. Since the development of 

Holland's schema theory (Holland 1975), there has been considerable discussion 

regarding crossover and mutation operators, mainly from the two aspects, namely 
'disruption' (Goldberg 1989 and 2002; Holland 1975) and 'construction' (Spears 

1992; Spears and De Jong 1998). This discussion continues with the establishment of 
"no free luncW' theorem (Ho and Pepyne 2002; Koehler 2007; Koppen 2004; 

Schumacher, Vose and Whitley 2001; Wolpert and Macready 1997). 
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Genetic operators can be broadly classified into sexual (where genetic material from 

two individuals are combined), or asexual (where only the genetic material of one 
individual is operated upon). Recent research implies a trend that genetic operators 
employed in many GAs are created or modified from their prototypes by 
incorporating domain knowledge to enhance effectiveness and efficiency. 

The simplest sexual operator, one-point crossover operator (Goldberg 1989 and 2002; 

Holland 1975; Mitchell 1996), operates on a pair of equal-length chromosomes 

chosen by the selection schemes described in the previous section, and offspring are 

generated by swapping the features of the chromosomes after a randomly selected 
locus. Such an operator has also been extended to individuals of variable length (note 

that the name of the operator in such circumstances is 'cut and slice'), see Elshamli, 

Abdullah and Areibi (2004), Hu and Yang (2004), Nearchou (1999), and Tu and 
Yang (2003). In addition, the crossing site can be deterministically selected rather 

than randomly in order to satisfy the specific constraints or improve search 

performance. Such a strategy has been adopted by a number of authors (Ahn and 
Ramakrishna 2002; Davies and Lingras 2003; Wu and Ruan 2004). 

A straightforward extension to single point crossover is to select more than one 

crossing point and exchange the genetic material lying between the two points. While 

the quantity of genetic information interchanged is increased by multiple point 

crossover (De Jong 1975; Goldberg 1989 and 2002), it would not necessarily improve 

convergence due to the increased probability of disruption of useful sequences. 
Conventional multiple point crossover operators randomly determine the crossing 

sites, but Davies and Lingras (2003) restricted the positions of crossing sites to the 

common genes between the parents with the gene segment between the crossing loci 

being kept in the same order, thereby ensuring both connectivity and feasibility of the 

resulting offspring paths. 

In uniform crossover exchange occurs at the gene rather than segment level (Mitchell 

1996; Osyczka 2002; Syswerda 1989), with each gene having a chance (known as 
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mixing rate and typically taking a value of 0.5) of being swapped 'between two 

parents. However, the major disadvantage of uniform crossover is the increased 

probability of destroying building blocks making it unsuitable in many applications, 
including the path planning problem. 

The above crossover operators do not alter the content of each allele directly, only 

changing it by swapping genetic information, from their parents. In arithmetic 

crossover, however, the genetic contents in the offspring may differ from those of 

their parents (Michalewicz 1994; Osyczka 2002). Arithmetic crossover operates on 
floating-point chromosomes to provide a means of local search, defining a linear 

combination of two parents in the following form. 

=a -P, +(I -a) -P2 
C2 =(I- a) -P, +a -P2 

Equation 2.1 

Equation 2.2 

where C1 and C2 are the offspring following genetic modifications on Pi and P2, and 

a is weighting factor randomly chosen from the interval [0,1]. Cai and Peng (2001) 

used this operator with a fixed-length representation for the path planning problem. 
For a chromosome of variable length, it may be necessary to determine which gene of 

a parent should be combined with a particular gene of the other parent. Tberefore, its 

application has rarely been found in the path planning problem, though some 
algorithms (Smierzchalski and Michalewicz 2000 and 2006; Xiao et al. 1997; Zheng, 

Ding and Zhou 2003) can directly operate in a continuous workspace. 

The mutation operator (Goldberg 1989 and 2002; Holland 1975; Mitchell 1996; 

Watanabe and Hashem 2004) is the most common asexual operator and which 
functions by occasionally inverting a single gene of individuals, normally with a 

small probability of being applied. The application frequency needs to be carefully 

selected; too high a value results in a random search, but too low and the population 

will have little diversity. As an appropriate compromise is hard to achieve, the rate 
for mutation has been adaptively modified during the search process in a number of 
GAs (Glickman and Sycara 2000; Li et al. 2006; Wang, H. J. et al. 2005). In a case 
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study, Glickman and Sycara (2000) showed that a self-adapting mutation rate can 
lead to premature convergence. Alm and Ramakrishna (2002) modified the 

conventional mutation operator in the way such that the partial segment after a 

randomly selected mutation point of an individual is regenerated by the initialisation 

mechanism. A similar mutation strategy was utilised by Ji, Iwamura and Shao (2007). 

There are many other asexual operators, such as repair (Hocaoglu and Sanderson 

2001; Hu and Yang 2004; Smierzchalski and Michalewicz 2000 and 2006; Xiao et al. 
1997) and insertion (Hocaoglu and Sanderson 2001; Smierzchalski and Michalewicz 

2000 and 2006; Xiao et al. 1997), which often applied using specific knowledge of 

the particular application. Due to their relevance to the current work, a detailed 

description of these operators will be given in later chapters. 

Many variants of genetic operators have been devised for specific applications. To 

improve their effectiveness and efficiency, the current trend is to incorporate domain 

knowledge as heuristics to guide the search more directly to the more promising 

regions. Although rapid convergence may be achieved by heuristic guidance, there is 

risk that search may become quickly trapped in a local minimum. Heuristics involved 

in the application of the operators may be complex and so result in substantial 

computational overheads. 

2.5 Premature convergence and diversity 

Premature convergence refers to the phenomenon where the evolutionary process 
becomes stagnated in sub-optimal solutions and further improvement cannot be 

realised by the further application of genetic operations as the population does not 

contain suitable genetic material (Affenzeller and Wagner 2004; Fogel 1994; 

Goldberg 2002). This phenomenon can also be considered as a loss of diversity in the 

population. The similarity of individuals can be measured based on the genotypes or 

phenotypes (Burke, Gustafson and Kendall 2002; Luerssen 2005; Sareni and 
Krahenbuhl 1998). Due to high selection pressure, elite genes may become dominant 

quickly in the population before the other areas in the search space have been fully 
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examined. Section 2.3 described common selection strategies and recent attempts to 

deploy selection methods in such a manner so as to preserve the population diversity. 

Even in the absence of selection, population members will converge to a given point 
in the search space due to the accumulation of stochastic errors; this important 

phenomenon is known as genetic drift (Affenzeller and Wagner 2004; Chaiyaratana 

and Zalzala 1997; Mahfoud 1994). More specifically, a predominant gene may 

propagate into the entire population, driving out other alleles, and resulting in a loss 

of genetic variation. The replacement strategy determines the survival of individuals 

and so can also influence both population diversity and convergence performance. In 

generational GAs, the entire population is normally replaced at each generation by the 

new offspring (Goldberg 1989 and 2002; Mitchell 1996), but such a replacement 

strategy may result in the loss of elite individuals, as there is no guarantee that the 

offspring generated are of better fitness than their parents. To overcome this 

drawback, an elitism strategy (Durnitrescu et al. 2000; Reed, Minsker and Goldberg 

2001; Rudolph 1994) was developed to clone the best individuals and ensure their 

presence in the next generation (perhaps in addition to their offspring depending on 

whether the individuals were involved in genetic operations). The drawback of the 

replacement scheme adopted in the steady-state GAs is a loss of population diversity 

(Rogers and PrOgel-Bennett 1999a; Smith 2007). The elite individuals discovered 

early in the evolutionary process may well cause the entire population to converge to 

the same niche, but this may only contain a locally optimal solution, whereas those 
individuals in different niches, one of which may contain the global optimum, are 
likely to die out rapidly. 

To combat loss of diversity, the mutation operator introduces new genes into the 

population. In particular, the diversity introduced by the mutation operator in the later 

evolution phases helps the escape from sub-optimal regions. Another strategy to 

promote population diversity is reseeding, in which the population is augmented by 

new individuals. For example, Rasheed (1998) developed a GA in which a set of 

randomly generated individuals were inserted into a highly converged population in 

order to increase diversity. More recently, Amor and Rettinger (2005) used self- 
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organising maps to mine data from previous evolutionary processes and performed 

reseeding be re-introducing a set of individuals not presented in earlier generations. 

Niching methods are inspired by an ecological phenomenon in which the individuals 

in separate but otherwise identical ecological niches compete with one another for 

limited resources so that a range of species can be retained (Dick 2005; Mahfoud 

1995a and 1995b; Sareni and Krahenbuhl 1998; Singh and Deb 2006). 

One of the earliest attempts at maintaining population diversity is the so-called 'pre- 

selection' scheme of Cavicchio (Cavicchio 1970; Mahfoud 1992) and is based on the 

principle that only if an offspring is fitter than the worst parent is that parent replaced. 

Holland (1975) introduced the sharing method to which further contributions were 

made by Goldberg and Richardson (1987). In the sharing method, the resources 

consumed by individuals should be proportional to the number of individuals in the 

niche., An important variant of the sharing method is called clearing (Dick 2005; 

Pdtrowski 1996; Sareni and Krahenbuhl 1998), where, instead of sharing the niche 

resources amongst all members, all available resources are given to the winners in the 

niche. More recently, the localised niching concept was introduced by Dick (2005) 

and an implementation described as local clearing was applied to each location in one 

dimensional space, formulated as a ring structure by connecting the ends of the space 

(line). The individuals were equally placed around the ring and denies were 

constructed with a certain radius around each individual and the clearing method 

applied locally to each deme. Sharing approaches have been employed in the 

multimodal optimisation problems, such as Hiroyasu, Miki and Watanabe (1999), Lin 

and Wu (2002), Singh and Deb (2006), and Zhang et al. (2006). The deployment of 

the sharing method in conjunction with other algorithms was applied by Feng et al. 
(2006) where the sharing GA was used to perform global search whereas local search 

was executed by a bit-climbing technique. However, sharing and clearing methods 
both suffer from the need to determine a niche radius and an appropriate value for this 

parameter is difficult to estimate. 

De Jong (1975) described a crowding technique in which only a fraction of the 

population, designated by the degree of generation gap, is involved in reproduction 
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during each generation and where the same number of individuals is always replaced. 
The replacement scheme is as follows. A sub-population of the size specified by the 

crowding factor is randomly drawn from the global population and the resulting 

offspring replace the individual that is genetically the most similar (based on 

phenotypic distance). In such a replacement strategy, especially when the crowding 
factor is small, replacement error will occur since the individuals to be replaced by 

offspring may not be similar to the offspring. Deterministic crowding (DC) was 
designed to reduce the replacement error and maintain the diversity by constraining 

the competition between the children and parents in identical niches (Mahfoud 1995a; 

Sareni and Krahenbuhl 1998). Two sets of tournaments are performed in DC, the first 

involving offspring C1 pitted against parent P, and offspring C2 against parent P2 and 

the second involving offspring C1 against parent 
, 
P2 and offspring C2 against parent P1. 

A parent is replaced by the offspring should the latter have better fitness. Another 

variant to crowding is probabilistic crowding (PC) (Mengsheol and Goldberg 1999) 

which performs DC but with probabilistic replacement. The winner of a competition 
in the tournament is determined probabilistically rather than deterministically based 

on their fitness values, so that the less fit individuals still have a chance to survive. 
PC is, however, likely to result in a slow convergence as compared with DC. 

Affenzeller and Wagner (2004) described a new mechanism to form the next 

generation by a competition between the offspring and their parents. The idea is 

similar to 'pre-selection' scheme of Cavicchio (1970), but the unsuccessful offspring 

are still given the chance to enter the next generation after a pre-defined fraction of 

the next generation is filled by successful offspring. 

A number of authors (Abbass and Deb 2003; Bui, Branke and Abbass 2005; Toffolo 

and Benini 2003) introduced diversity into an objective and then applied a multi- 

objective evolutionary algorithm (MOEA) (Abraham, Jain and Goldberg 2005; 

Osyczka 2002). The solutions optimised by MOEA give a pareto-optimal trade-off 
between the diversity and any other objectives. Such an approach may be 

questionable since the diversity is really a means to improve search quality rather 
than being an objective. Furthermore, the solutions obtained in this way may not yield 
the global optimum with respect to other objectives as the optimal solutions of other 
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objectives may be dominated by the solutions of the objectives combined with 
diversity. 

In summary, the diversity introduced by mutation operation is not sufficient to 

prevent premature convergence in many practical applications and consequently a 

number of approaches to improve diversity have been developed. Inserting a new set 

of individuals may promote population diversity to some degree, but there may be 

significant overlap between the newly introduced individuals and those individuals 

already presented and examined in the previous evolution, resulting in inefficient 

repeated evaluations. Sharing and clearing techniques require the determirlation of the 

radius of each niche which is difficult to obtain without a prior! knowledge of the 

optimisation problems. MOEA introduces artificial objective of diversity often 
inhibiting the discovery of the true global optimum compared to the original single- 

objective optimisation approach. DC that replaces the parent individuals by fitter 

offspring in an identical niche not only preserves the diversity initially introduced, but 

also makes progress towards highly fit solutions. In contrast, PC is found to exhibit 

slow convergence to preserve the population diversity. It should be poted that the 

execution time is as important as solution quality in the project in this thesis, but 

quality needs to remain acceptable. DC may require a sufficiently large initial 

population to ensure sufficient building blocks are present in the gene pool to permit 

convergence to the global optimum when new genes are reinserted into the 

population less frequently. Consequently, it is likely that an appropriate population 

size will need to be determined experimentally (Mitchell 1996; Vekaria and Clack 

1998). 

2.6 Conclusions - 

This chapter has discussed the current state of research with respect to steady-state 
GAs, genetic representations, selection schemes, genetic operators and both 

premature convergence and diversity. The review of GAs given here is by no means 

exhaustive and, in particular, numerous successful applications have been reported 
from a wide range of fields that have not been covered. A range of introductory 
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publications (Goldberg 1989 and 2002; Holland 1975; Mitchell 1996; Nolfi and 
Floreano 2000; Osyczka 2002) are worthy of examination for background reading. It 

is important to stress that many issues concerning GAs remain unsolved; specifically, 

guidance for selecting appropriate genetic representations, selection schemes, genetic 

operators, and optimal parameter values, and the extent of the capabilities of GAs 

have yet to be fully established. 
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Chapter 3 

NAVIGATION SYSTEMS 

REVIEW 

Based on the recent relevant work in GAs, the previous chapter extended the 
introduction of GAs presented in section 1.3 by discussing those aspects related to the 

algorithms developed in this research project. This chapter reviews relevant work 
found in the literature and, in particular, navigation algorithms based on both 

evo lutionary concept and hybrid approaches. Recent work in the literature that is 

most closely related to the work in this thesis is described in greater depth. in the 

relevant chapter. 

3.1 Planner-based navigation systems 

Planner-based navigation systems are mainly concerned with path planning for 

mobile robots. The mobile robot path planning task can be described as finding a 

collision-free route from a specified start location to a desired goal destination while 

satisfying certain optimisation criteria (Xiao 1997; Yap 1987). Even in simple 

environments containing few obstacles, planning tasks are categorised as being both 

Np-complete and PSPACE-hard (Nearchou 1998; Smierzchalski and Michalewicz 

2000). The model of the environment is normally constructed and maintained as a 

centralised representation in this type of navigation system. One of the first issues 
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that needs to be resolved when implementing any navigation system is to determine a 

suitable representation of the environment. The approaches to modelling spatial 

information can generally be classified as topological and metric mapping (see also 

section 1.2.2). Then, the information contained in the world model is used to generate 

an appropriate sequence of actions with certain constraints. Next, the design of a 

suitable planning algorithm needs to be considered. In order to optimise the efficiency 

of the process, the planning algorithm should generally be designed to match the 

representation method used to model the environment, although many algorithms in 

the literature can be applied to different models of the environment. Since no 

geometrical information is generally contained within topological maps, planning 
based on such maps focuses on those regions in the environment where a unique 
feature can be identified. On the other hand, metric information is often required in 

the quality evaluation of a generated path. 

3.1.1 Environment representations 
Topological representations have become increasingly popular in mobile robotics 

with the advance of sensing technology. A network-like graph is constructed 

containing a set of nodes corresponding to distinct places (such as corridors, halls) or 
landmarks (such as gateways) which are connected by arcs. Examples of this type of 

map can be found in (Gaspar, Winters and Santos-Victor 2000; Kortenkamp and 
Weymouth 1994; Ranganathan, Menegatti and Dellaert 2006; Remolina and Kuipers 

2004). The major advantage of topological maps is that they are compact and 

consequently facilitate rapid planning. However, building topological map requires 
high quality sensors capable of identifying the unique features of landmarks. 

Furthermore, any error generated from inaccurate feature extraction may result in a 
failure of localisation. On the other hand, a single, global coordinate system is used in 

metric maps to represent geometric information regarding the robot's environment. 
The most representative approaches to representing metric information are grid 
(Arambula Cosio and Padilla Castaneda 2004; Payton, Rosenblatt and Keirsey 1993; 

Wang, Yong and Ang Jr. 2002), meadow (Arkin 1989), Voronoi diagrams (Latombe 

1991; Mahkovic and Slivnik 2000), and visibility graphs (Latombe 1991; Maaref and 
Barret 2002). The grid representation is probably the simplest metric scheme and is 
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frequently employed in the situations where the exact representation of the objects is 

not a rigid requirement. The environment is decomposed into small square cells 

comprising a grid. If a cell is occupied, at least partially, by an obstacle, the cell will 
be marked as an occupied, otherwise, it will be labelled as unoccupied. A connective 

graph for path planning can be generated by linking vertices representing unoccupied 

cells. The meadow representation method transforms the free space (not occupied by 

any obstacle) into a set of convex polygons. A characteristic of the convex polygon is 

that it can be guaranteed that the robot will always traverse free space when it moves 
between any pair of vertices of a convex polygon. Paths which are equidistant from 

the closest pair of obstacles can be used to form the edges of a Voronoi diagram and 

the points where three or more such paths meet are presented by the vertices of the 

Voronoi diagram. A visibility graph is an undirected graph representing a number of 
inter-visible locations. The nodes of the graph denote the vertices of the configuration 

obstacles and each edge represents a visible connection between a pair of nodes. As 

such maps are easier to maifitain, these techniques do, to some degree, simplify the 

planning task, however, their construction involves considerable computational 

overheads in terms of both execution time and memory usage. Simultaneous 

localisation and mapping (SLAM) (Frese, Larsson and Duckett 2005; Masson, 

Guivant and Nebot 2003; Smith and Cheeseman 1987) is a popular technique that is 

able to create an accurate - metric map for an unknown environment while 

concurrently maintaining the robot's location. Noisy sensor readings and inaccurate 

motion models give rise to uncertainties that accumulate as the robot progresses, 

significantly distorting the map. SLAM employs statistical techniques, such as 
Kalman filters (Armesto and Tornero 2004) or particle filters (Adams, Zhang and Xie 

2004; Howard 2006) to compensate for the uncertainty. The calculation complexity 

that results from the need to incrementally build a map and to maintain the 

constituent covariance matrices makes SLAM unsuitable for implementation in most 

embedded real-time systems. Further difficulties may arise when constructing a 

metric map using SLAM in environments that contain closed paths, although this can 
be alleviated by the recording of detailed feature information for later matching. 
Recent mapping scheme tends to integrate metric and topological representations to 

yield a hybrid solution. One way to construct a hybrid map is to annotate metrical 
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information into a topological map (Aguirre and Gonzdlez 2003; Ryu and Yang 

1998). Alterbatively, the hybrid map can be created by extracting topological maps 

from metric ones (for example Jia, Zhou and Chen 2004; Poncela et al. 2002; Thrun 

et al. 1998; Urdiales et al. 2003a; ). Hybrid maps are often found in the hybrid 

architectures (Aguirre and Gonzdlez 2003; Mufloz-Salinas et al. 2005) (see section 

3.3, section 6.1 and section 7.1) since such a representation strategy facilitates fast 

planning and modifies local movements using the metric information in an on-line 

manner. Section 6.1 and section 7.1 discuss the hybrid representation strategies found 

in the literature. 

3.1.2 Path planning approaches 

As the environment is often modelled as a graph, the path between two specified 

locations can be generated using graph search algorithms. Breadth-first search 

algorithms begin at the root node and explore all neighbouring nodes before 

searching the next level, whereas the depth-first search algorithm searches each 

branch as far as possible before exploring the other branches (Cormen et al. 2001; 

Latombe 1991). Algorithms that perform complete examination of all nodes in order 

to find a path with minimum cost can guarantee that optimal paths are found, but are 

computational expensive, particularly in navigation systems that adopt metric 

representations. Dijkstra's algorithms (Dijkstra 1959) are commonly used to solve the 

shortest path problem for a graph with single source. Such a search begins from the 

source node on a directed graph containing non-negative weighted edges and 

iteratively performs expansion by adding an additional node with a minimum weight 

edge connecting the node with a minimum weight to the source node. In this way, the 

shortest path can be generated without visiting all nodes on the graph. During the 

search, a tree with all nodes visited and the length for each branch are maintained and 

the branch with the minimum cost is selected for expansion. The A* algorithm (Hart, 

Nilsson and Raphael 1968; Latombe 1991; Murphy 2000) is an extension of 

Dijkstra's algorithm that has the aim of reducing the number of nodes for 

investigation and this is achieved by incorporating a heuristic evaluation function that 

estimates the distance from any given node to the destination. The total lengths of the 

paths passing through candidate nodes can then be estimated by adding the distance 
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travelled so far to the estimate obtained from the heuristic function. The smallest 

value among the total lengths identifies the current path to explore further. As long as 
the path length estimated by the heuristic function is equal to or shorter than the 

actual path length, A* will always generate an optimal path. However, care is needed 
to derive a suitable heuristic function that ensures the lengths of unexplored paths are 

never overestimated as heuristic functions that do not meet this criteria are likely to 

reduce search efficiency or generate a non-optimal solution (Luger 2002). Due to the 

significant increase in computational complexity with problem size (normally 

measured by the number of nodes), Dijkstra's algorithm and A* are limited to the 

solution of small to medium sized problems (Soltani et al. 2002) and memory usage 
(the number of cells) is likely to increase significantly with problem size as all nodes 

visited during the search need to be stored. Dynamic A* (D*) (Stentz 1994) as an 

extension to A* is able to perform dynamic planning for mobile robots in unknown or 

partially-known environments, and has spawned several variants, including focused 

D* (Stentz 1995), D* lite (Koenig and Likhachev 2002), and anytime dynamic A* 

(AD*) (Likhachev et al. 2005). The D* algorithm operates in the manner described 

below. The initial plan is generated by Dijkstra from the goal to the start point based 

on known information regarding the environment (typically represented by a grid 

map) and stores the path length from each node to the goal. When the current path 
becomes impassable due to changes detected, the A* algorithm can be adapted to 

repair the path based on the updated states. As the most nodes remain unaltered and 
the path length from these nodes to the goal has already obtained during the initial 

plan, only relatively small portions of the tree need to be repaired by the A* 

algorithm, thereby gaining efficiency. However, the D* algorithm and its variations 
do not explicitly consider velocity factors in planning and memory is always needed 
to store the information gained during the initial plan or in an updated plan in order to 

enhance the efficiency of later planning that is required due to unexpected changes. 

The field methods form gradients or potentials to derive a path flowing in an artiflcial 
field, defined by field values stored in the cells of a grid. Although a number of 

approaches exist (such as steepest descent (Snyman 2005), and wave front 

propagation (Murphy, Marzilli and Noll 1999)), the most popular of these is the 
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potential field (PF) method (Arambula Cosio and Padilla Castaneda 2004; Ren et al. 
2007; Ren, McIsaac and Patel 2006; Wang, Yong and Ang Jr. 2002), in which the 

environment is characterised as an equivalent Potential field containing sources and 

sinks. A smooth path can be generated by a combination of two virtual forces exerted 

on the robot: it is attracted by the virtual force generated from the attractive potential 
field around the goal point and repelled by the repulsive force of potential fields 

around obstacles. Since Khatib's seminal work (Khatib 1985 and 1986) on artificial 
field methods for robot path planning, PF has been the subject of investigation by 

many authors (examples are Arambula Cosio and Padilla Castaneda 2004; Ge and 
Cui 2000; Hussein and Elnagar 2002; Koren and Borenstein 1991; Ren et al. 2007). 

One of the reasons for the popularity of this method is its mathematical elegance and 

simplicity, although-a number of deficiencies were found by Koren and Borenstien 

(1991). The most serious limitation inherent in the PF method is that the robot can 

easily become trapped in local minima when the virtual forces sum to zero. 
Substantial effort has been applied in addressing the limitations. Although fields free 

of local minima can be constructed by the approaches using simulated fluid 

mechanics (Rosell and Iftiguez 2002) or electro magnetic fields (Hussein and Elnagar 

2002), the complexity involved in field construction prevents practical application. 
Field methods in general suffer considerable computational cost overheads due to the 

large number of data values involved in constructing the artificial field itself. A 

number of authors (Ge and Cui 2002; Kurihara et al. 2005) investigated the 

application of PF in dynamic environments containing multiple moving obstacles. 
The construction of local PFs took into account the relative velocity information 

between the robot and the obstacles detected. However, such repeated construction of 
local fields in response to the sensed changes in positions of the moving obstacles is 

computationally expensive. 

Genetic algorithms are a class of adaptive search algorithms based on genetic and 

evolutionary principles. A genetic algorithm searches for one or more solutions by 

modifying a population of candidate solutions through the application of artificial 

genetic operators. To generate optimal solutions, GAs use only the fitness of 
individuals in the population and do not require gradient information or other internal 
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knowledge of the problem to be solved. A more detailed discussion of GAs is 

provided in chapter 2 and here only work related to path planning found in the 

literature is discussed. This section gives only a general description of the relevant 

work and the more detailed discussion with respect to recent developments in areas 

related to the specific topics of the work in this thesis is provided in the relevant 

chapter. 

GAs have been employed in path planning problems largely due to the advantages 
discussed above and in section 1.3. However, in order to improve search performance, 

most work has employed GAs tailored to the specific problem and, in path planning, 

the representation strategy and genetic operators are commonly adapted. 

Sugihara and Smith (1997) used the simplest representation, namely binary with fixed 

length, in their planning algorithms. However, a fixed length representation is not 

sufficiently flexible when representing paths with a variable number of intermediate 

nodes and so variable length representations have been generally adopted. Nearchou 

(1999) used a binary string of variable length to represent a sequence of actions to 

perform the movement between adjacent cells and a similar scheme was adopted by 

Tu and Yang (2003) with each gene containing four binary bits, three representing the 

direction and the fourth the distance the robot will move during the next step. 
Floating point representations have been adopted by a number of authors (Chen and 
Xu 2005; Elshamli, Abdullah and Areibi 2004; Hu and Yang 2004; Nikolos et al. 
2003; Trojanowski, Michalewicz and Xiao 1997; Xiao 1997; Xiao et al. 1997; Xiao, 

Michalewicz and Zhang 1996; Zheng, Ding and Zhou 2003; Zheng et al. 2005). Chen 

and Xu (2005) and Geisler and Manikas (2002) used floating point chromosomes 

which were of equal length. A tree representation was used in the genetic-based path 

planning algorithm proposed by Hocaoglu and Sanderson (2001). 

The genetic operators used in path planning have differed considerably between 

authors. The one-point crossover has been commonly used without significant 

modification (Elshamli, Abdullah and Areibi 2004; Geisler and Manikas 2002; 

Hernianu et al. 2004; Hocaoglu and Sanderson 2001; Hu and Yang 2004; 
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Michalewicz and Zhang 1996; Nikolos et al. 2003; Sedighi et al. 2004; Smierzchalski 

and Michalewicz 2006; Sugihara and Smith 1997; Trojanowski, Michalewicz and 

Xiao 1997; Xiao 1997; Xiao et al. 1997; Zheng et al. 2005). Other works adopted the 

two-point crossover operator (Davies and Lingras 2003; Nearchou 1999) or uniform 

crossover operator (Tu and Yang 2003). Although the standard mutation operator has 

been commonly used, a range of asexual operators have been specifically designed in 

order to affect the candidate path to become feasible, smooth and safe. Randomly- 

generated initial populations are very likely to contain infeasible paths (intersecting 

with one or more obstacles) and conversion to a feasible path is difficult to achieve 

using standard operators. Many new operators, 'such as repair and insert, were 
developed to enable rapid transformation from infeasible to feasible paths (Elshamli, 

Abdullah and Areibi 2004; Hocaoglu and Sanderson 2001; Hu and Yang 2004; 

Smierzchalski and Michalewicz 2006; Trojanowski, Michalewicz and Xiao 1997; 

Xiao et al. 1997). In order to minimise the presence of sharp turns, specific operators 

were proposed to swap, insert or delete notes by Elshamli, Abdullah and Areibi 

(2004), Hu and Yang (2004), Michalewicz and Zhang (1996), Smierzchalski and 
Michalewicz (2006), Trojanowski, Michalewicz and Xiao (1997), Xiao et al. (1997), 

Zheng, Ding and Zhou (2003), and Zheng et al. (2005). Other publications 
(Smierzchalski and Michalewicz 2006; Trojanowski, Michalewicz and Xiao 1997; 

Xiao et al. 1997) described genetic operators that aid the robot in its avoidance of 

obstacles. In general, while these operators incorporate problem-specific knowledge 

to bias the search, their disadvantages are that they may trap the search into local 

minima and that, compared with conventional operators, their implementation is 

rather complex and so time consuming. 

The genetic-based approaches found in the literature operate in either discrete or 

continuous space (although, in practice, continuous space is also effectively 

represented in a discrete manner when implemented on digital computer). The 

distinction between the two types is normally based on whether the environment is 

divided into discrete cells. Algorithms that operate on discrete space are described by 

Chang, et al. (2005), Geisler and Manikas (2002), Hermanu et al. (2004), Hu and 
Yang (2004), Nearchou (1999), Nikolos et al. (2003), Sedighi et al. (2004), Soltani et 
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al. (2002), Sugihara and Smith (1997), and Tu and Yang (2003). The continuous 

planning approaches that search the entire space for solutions and so eliminate the 

need to construct a map were proposed by Elshamli, Abdullah and Areibi (2004), 

Fujisawa et al. (2000), Hocaoglu and Sanderson (2001), Michalewicz and Zhang 

(1996), Smierzchalski and Michalewicz (2006), Trojanowski, Michalewicz and Xiao 

(1997), Vannoy and Xiao (2004), Xiao (1997), Xiao et al. (1997), Zeng (2003), 

Zheng, Ding and Zhou (2003), and Zheng et al. (2005). 

One of important findings from the literature review is that the evolutionary 

navigator/planner (EP/N) (Lin, Xiao and Michalewicz 1994; Trojanowski, 

Michalewicz and Xiao 1997; 'Xiao 1997; Xiao et al. 1997; Xiao, Michalewicz and 

Zhang 1996) is among the best-performing evolutionary planners and it has been the 

subject to extensive refinement and extensions as described in a series of frequently 

cited papers (Ashlock, Manikas and Ashenayi 2006; Buyurgan et al. 2007; Elshamli, 

Abdullah and Areibi 2004; Geisler and Manikas 2002; Hermanu et al. 2004; 

Hocaoglu and Sanderson 2001; Hu and Yang 2004; Nearchou 1999; Nelson et al. 
2004; Patnaik and Karibasappa 2005; Sedighi et al. 2004; Tarokh 2007; Zheng, Ding 

and Zhou 2003; Zheng et al. 2005). Consequently, this thesis has used EP/N as the 

basis as a standard by which to compare new navigation approaches. Section 3.1.3 is 

dedicated to a detailed description of EP/N. For dynamic environments, a modified 

version of EP/N, termed aEP/N++ (Smierzchalski and Michalewicz 2000 and 2006), 

was proposed as a decision support system for a ship to voyage without collision on 

the basis of environmental information obtained from automatic radar plotting aids. 
This planner, which is closely related to the work presented in chapter 5 (an extension 

to the work described in chapter 4), is discussed further in section 3.1.4. Further 

justification on these choices for comparative studies is provided in chapters 4 and 5. 

3.1.3 Evolutionary Planner/Navigator 

EP/N uses the same algorithm for both off-line planning and on-line navigation, 
incorporates a problem-specific chromosome structure and specifies a number of 

application-specific operators. Only a brief overview of EP/N is given here; full 
details of the EP/N algorithm can be found in the works by Lin, Xiao and 
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Michalewicz (1994), Trojanowski, Michalewicz and Xiao (1997), Xiao (1997), Xiao 

et al. (1997), and Xiao, Michalewicz and Zhang (1996). 

The EP/N algorithm is shown in Figure 3.1. A path is represented by a series of nodes. 
In the initial generation, each chromosome is produced by randomly choosing 
intermediate nodes within the search space (environment), apart from the first and last 

nodes, which indicate the specified start and goal points respectively. If the 

terminating condition is not met, an operator is selected from the eight candidates 

according to a given probability and a roulette wheel is then used to choose a single 

parent (or a pair of parents if the crossover operator is selected) based on the ranks of 

the individuals. The resulting offspring replace the worst individuals in the current 

population to form the new generation. In order to minimise the calculation time of 

each generation, a steady-state evolutionary algorithm is adopted in EP/N, that is, 

each generation involves only a single application of one operator. The evolutionary 

process terminates after a number of generations determined by the user or 
dynamically by the algorithm, and the selected individual is the one describing the 

best path found. Storing the results of previous navigation tasks can improve the 

efficiency of later planning in EP/N. If a priori knowledge exists, the initial 

population is generated from the paths stored for previous tasks instead of performing 

random initialisation. 
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procedure EP/N planning algorithm 
begin 

if there exists a previous population with relevant paths then 
input the previous population P 

else 
initialise P 

end if 
evaluate P 

while the termination condition is not reached do 

use the operator probabilities to select an operator 0 

select parent(s) for the operator 
produce offspring by applying operator 0 to selected parents(s) 
evaluate the new offspring 
replace the worst member(s) of the population P by new offspring 
select the best individual p from P 
every n th step 

if algorithm is operating online manner and p is feasible then 

move one step along path p while sensing environment 
modify the values in all individuals to a new starting position 
if there is any change needed to the existing plan then 

update the object map 
end if 
evaluate P 

end if 
end every 

end while 
end 

end procedure 

Figure 3.1 Pseudocode for the EP/N algorithm. 

There are two working modes in the EP/N system, namely off-line and on-line. In 

off-line mode, paths are determined based only on information about known obstacles 

in the environment. In on-line mode, the algorithm navigates the robot along the 

current best known path found while monitoring for unknown objects. Taking the 

robot's current position into account, as well as any newly-detected obstacles, EP/N 

evaluates the best path obtained by the evolutionary process, and, if better, will use it 

to replace the path currently being followed. 

3.1.4 Evolutionary navigator aEP/N++ 

aEP/N++ extends EP/N to deal with the problem of avoiding collisions, particularly 

with moving ships at sea from the perspective of an evolutionary process. This is 

achieved by introducing a number of parameters, including time, the variable speed 

of the ship and time-varying constraints on other ships in the vicinity. The fixed 

navigation constraints (such as land, canals and shallow waters) are represented 

approximately by a number of polygons, both convex and concave. Moving ships are 
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modelled as hexagons whose shapes are defined by considering safe distance, speed 

ratio, and bearing. As the length of the own-ship is small with respect to the 

maximum length of the areas representing moving ships, the dimensions of the own- 

ship are ignored in the planning process. The evolutionary algorithm shown in Figure 

3.2 is applied for both off-line and on-line planning. In off-line planning stages, all 

parameters reflecting the motion of the moving ships are assumed to be constant. 
With the support of automatic radar plotting aids (ARPA), the values of all 

parameters are monitored on a continuous basis. The on-line planning is performed in 

response to any observed changes in the motion of other ships with the current 
trajectory of the own-ship being corrected by the evolutionary process. 

procedure %EP/N++ planning algorithm 
begin 

number of generations g-0; 
input operation parameters; 
input environmental information from sensors; 
initialise the population P(g); 
construct dynamic obstacles; 
evaluate population P(g); 
while (not termination condition) do 

increment the number of generations g-g+1; 
randomly select operator Oj; 
select parents from P(g); 
apply the operator Oj to produce offspring; 
build dynamic obstacles; 
evaluate population P(g), 
replace worst member in population by offspring; 
select the best individual p from P(g); 

end while 
end 

end procedure 

Figure 3.2 Pseudocode for the aEP/N++ algorithm. 

aEP/N++ preserves the steady-state structure of EP/N and only adds one operator (to 

modify the speed of the oiNm-ship from a set of discrete speeds available) to the eight 
inherited from EP/N. A chromosome represents a path containing a series of nodes 

with additional bits indicting the feasibility and speed value for each path segment. 

The evolutionary process starts by assigning control parameters and the initial 

population is randomly generated, then one of nine genetic operators is randomly 

selected and applied to the individual (or a pair of individuals if crossover operator is 

chosen) selected by a roulette wheel based on its rank (or their ranks) in the 
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population. The best individual is selected as the current trajectory after the 

evolutionary process has run for a specified number of generations, or after evolution 
has stalled. 

3.2 Reactive navigation systems 

Active research on the reactive paradigm began in the 1980s with the introduction of 

the subsumption architecture (Brooks 1985), the seminal work on the behaviour- 

based approach. In reactive navigation, the robot generates emergent behaviours 

through interactions between its primitive behaviours, implemented in a number of 

separate layers, and its environment. Sensory information is shared among the layers 

and the responses of the various behaviours are selected or fused in some manner to 

produce a response. Such coordination of behaviour is accomplished under the 

control of competitive or cooperative rules. In the case of competitive behaviours, 

only one will atcess the robot's actuators at a particular instance, whereas cooperative 
behaviours will combine to establish an action. Although some high-level deliberative 

behaviour may be incorporated, such as mapping, the response to perceived stimuli is 

generally accomplished through only the trained behaviours. The main features of 

reactive architectures were introduced in section 1.2.1. In brief, reactive navigation 

systems have their sensors and motors directly linked through a control scheme that is 

embedded in an array of simple perception-action stimuli (Nolfi and Floreano 2000; 

Mali 2002; Muftoz-Salinas et al. 2005; Murphy 2000; OrebAck and Christensen 2003; 

Stoytchev and Arkin 2004; Urdiales et al. 2003b). In contrast to the planner-based 

navigation systems surveyed in section 3.1, no internal representation of the external 

world is generally required, but onboard sensors are necessary. Reactive systems are 

able to provide robust and real-time navigation in dynamic environments where 

unpredictable events may occur frequently; however, researchers working'on this 

type of system have often received criticism for rejecting the importance of world 

model. 

48 



Chapter 3: Navigatiln systems review 

3.2.1 Brief survey of reactive approaches 
There are various reactive navigation systems proposed in the literature and some 

examples are provided here. The reactive approaches can be generally classified into 

two categories according to whether training is carried out. 
I 

The most behaviour-based systems belong to the category where the system is trained, 

as this is normally required to facilitate a set of high-performance behaviours (even 

though some behaviours may exist from the outset). Fuzzy-logic controllers (for 

example Hagras, Callaghan and Colley 2004; Malhotra and Sarkar 2005; Nefti et al. 
2001; Zhu and Yang 2004) and neural networks (for example Low, Leow and Ang Jr 

2003; Kubota 2004; Min 2005; Zalama et al. 2002) have been adopted in behaviour- 

based systems to mimic a set of reactive behaviours. In the fuzzy-logic systems, the 

parameters of the controllers need to be optimised by other techniques, such as GAs 

(Rajapakse, Furuta and Kondo 2002). GAs have also employed in the selection of the 

most suitable artificial neural network controller (Leon, Tosini and Acosta 2004). The 

reactive navigation achieved by case-based reasoning (CBR) (for example Kira and 
Arkin 2004; Urdiales et al. 2003a, 2003b and 2006) and decision-tree based 

techniques (for example Cocora et al. 2006; Shah-Hamzei and Mulvaney 2000; 

Swere, Mulvaney and Sillitoe 2004) also require a training process to generate a set 

of control rules. CBR techniques create a set of cases for the situations encountered 
during the training stage and expand the case base by including new cases discovered 

during actual navigation. The closest match of the current perception to that found in 

the case base is used to retrieve -the most appropriate action. In decision-tree based 

navigation, an appropriate tree can be induced from training data with a number of 

attributes and the tree is then used to decompose a set of control rules that directly 

maps the stimuli to the corresponding actions. For these training-based approaches, a 

suitable learning technique is often desirable in order to reduce both the memory 

usage and the training period while maintaining a satisfactory quality of navigation 

performance. Earlier work conducted by the Electronic System Design Group at 
Loughborough aimed to overcome these drawbacks in a decision-tree based system 
that was adopted in the work presented in this thesis and this implementation is 

described in more detail in section 3.2.2. The main reason for using this method in the 

49 



Chapter 3: Navigation systems review 

work reported in the thesis is that it is fully available both in source code and as an 
I 

executable. 

The reactive approaches introduced below do not require a period of training. Some 

reactive systems have used potential field based approaches (PF) (for example Ge and 
Cui 2002; Kurihara et al. 2005; Zelek 1999), in which only a local artificial field is 

constructed from obstacles observed within the range of the sensors. Local navigation 
is achieved by the force generated from the local field, but the repetitive construction 

of the local field is time consuming. The nearness diagram (ND) navigation method 
(Minguez and Montano 2004 and 2005; Minguez, Montesano and Montano 2004; 

Minguez, Osuna and Montano 2004; Montesano, Minguez and Montano 2005) 

determines an avoidance command by the control law associated with the 

configuration (selected from the five pre-defined configurations) that is the most 

similar to that perceived. A detailed description of the ND approach'will be given in 

chapter 7 due to its relevance. A number of reactive approaches, namely dynamic 

windows (DW) (Fox, Burgard and Thrun 1997; Ogren and Leonard 2002 and 2005; 

Stachniss and Burgard 2002), velocity obstacles (VO) (Fiorini and Shiller 1998; 

Large, Laugier and Shiller 2005) and vector field histogram (VFH) (Borenstein and 

Koren 1991; Ulrich and Borenstein 1998 and 2000) were designed specifically for 

avoiding moving obstacles. The DW approach constructs a space (window) of 

velocities achievable by the robot taking into account specific constraints and 

potential collisions that may occur within a defined time frame. A suitable velocity is 

then selected from the velocity space using an evaluation function. VO-based 

methods construct velocity obstacles that represent the set of robot velocities that 

would give rise to collision with a moving obstacle and then, using certain 

optimisation criteria, select an avoidance velocity not present in the VOs. The VFH 

approach uses an occupancy grid map that is generated by and updated from sensor 
information. The grid map is converted into a histogram representing the free space 

available to the robot and the motion direction and velocity of the robot are 
determined based on the histogram. Such a mechanism is in sharp contrast to 

training-based reactive approaches which do not have explicit reasoning in 

determining instantaneous responses. 
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The advantages and disadvantages of these reactive approaches are further discussed 

in section 7.1 when the dynamic avoidance approach proposed in the thesis is 

introduced. Note that although the decision-tree based technique has been adopted in 

the hybrid navigation systems presented in chapters 6,7 and 8, other reactive methods, 

such as fuzzy logic, neural networks, and PF, can be used without modification of the 

remainder of the hybrid systems. 

3.2.2 Decision-tree based reactive system 
In the research described in this thesis, the reactive control is realised by suitable 

learning of a decision tree (DT); an approach adopted in earlier work at 

Loughborough (Mulvaney et al. 2005; Swere, Mulvaney and Sillitoe 2004). DT 

learning has been applied to mobile robot navigation by a number of authors. Sillitoe 

et al. (2001) analysed echoes received by an array of sonar sensors to train a DT to 

classify the contours of obstacles, so enabling the identification of specific object 

types for use in reactive navigation. Shah-Hamzei and Mulvaney (2000) trained I)Ts 

in an off-line manner to allow a robot to learn new reactive behaviours. The I)Ts 

generated were used to synthesise appropriate control rules to navigate a robot in 

unseen environments. 

The reactive system used here is a novel frequency-table based learning technique 

(Mulvaney et al. 2005; Swere, Mulvaney and Sillitoe 2004) that was originally 

developed to overcome memory and calculation time limitations of incremental DT 

methods, such as IDS (Utgoff 1988), ID5R (Utgoff 1989) and ITI (Utgoff, Berkman 

and Clouse 1997). Such as solution was chosen as a mobile robot often requires that 

the navigation system is able to run in limited memory and in many cases need to 

learn incrementally. In the current work, the frequency table is incrementally learned 

from initially random movements of the robot that were rewarded by being entered 

into the table if the movement resulted in the robot moving nearer to a goal. The 

entries in the frequency table can be used to provide data for use by entropy-based 
learning methods (Swere, Mulvaney and Sillitoe 2004), but in the current work an 

ID3-based DT (Quinlan 1983) is generated for navigation purposes. This form of 
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representation allows for a 'lazy learning' approach in which the DT learning is only 

applied when required (Aha 1997). For example, in order to reduce the computational 

requirements of a real-time application, the DT could be re-computed whenever new 
feature vectors are acquired, or when it is recognised that the current tree no longer 

correctly classifies the data. 

The formulation of the frequency table can be described as follows. Let the feature 

vectors in the training set each be of the form [fltfiý 
... 9 

fi 
v ... qfm c]q where the set of 

attribute values for featureft is given by {ail, a, 2,..., ai,,,..., at,, ) and the class c'is taken 

from the set of available class values [CI, C2ý.... Ci c. ],. The frequency table can 
then be considered to be composed of n separate two-dimensional tables each of 

whose mwj rows form the attribute values of feature i for all classes and whose 
columns are the attribute values of all features other than i. When a training vector is 

acquired, its attribute values determine the element that is to be incremented in each 

of the two-dimensional tables. Figure 3.3 shows an example of the type of frequency 

table used for a mobile robot with four range sensors equally spaced circurnferentially. 
The frequency table is shown for a one of the four sensors, where the rows are the 

attribute values for the sensor and the columns are the attribute values for features 

other than sensor 1. When a new feature vector is acquired, the feature values dictate 

which particular entry in the table is incremented. The frequency tables for the other 
features (angle to goal and sensors 2,3 and 4) are similarly updated on receipt of a 

new feature vector. 

angle to goal sensor2 sensor3 sensor4 
E I 

A D zero small mad large near for near for 
-*a 

r far 

forward near 0 0 0 0 0 0 0 0 0 0 0 
far 206 0 87 49 

1 

70 206 0 206 0 206 0 

ri ht near 213 0 61 132 20 213 0 213 0 62 151' 
, g far 1091 0 54 1 431 88 21 109 0 0 109 

left Lear 1 44 14 5 38 6 26 64 0 59 5 
ar f 81 51 57 __ 2 2 2 0 81 81 81 0 54 27 

reverse Le 1 ý 0 0 0 0 

W 

1 0 0 1 0 1 0 
far 0 0 0 0 O 0 0 0 0 0 0 0 0 

Figure 3.3 An example of a frequency table used in the reactive navigation of a mobile 
robot. 
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3.3 Hybrid navigation systems 

In practical applications, there are many situations where a complete model of the 

environment is initially unavailable or is only partially available due to unpredictable 

changes. To build a deliberative model, a number of reactive navigation movements, 

either designed or as part of exploration activities, can be specified through such an 

environment. Consequently, such navigation problems require a hybrid solution to 

compensate for the individual drawbacks of reactive and deliberative paradigms and 

also to adapt to unexpected changes within dynamic environments. Nevertheless, an 

extensive world model is normally computationally expensive to construct and any 

representation of the environment must be compact to meet memory constraints of a 

practical application. 

Arkin (1998) described the findings of an in-depth survey of earlier attempts to 

design hybrid systems. The survey classified hybrid systems according to the form of 
interface strategy adopted, namely selection, advising, adaptation, and postponing. 
Planning is viewed as a hybrid system that employs a selection strategy, which 
determines the behavioural composition and parameters used during execution. The 

autonomous robot architecture (AuRA) (Arkin 1986 and 1987) is a representative 
hybrid architecture of this type. This architecture contains two distinct components: a 
deliberative hierarchical planner and a reactive controller. In hybrid systems using an 

advisory interface strategy, the planer offers advice on the course of action to be 

taken by the reactive layer, which is then at liberty to ignore the advice. A typical 

example of this type is that described by Atlantis (Gat 1991a and 1991b). Planner- 

reactor (Lyons and Hendriks 1992 and 1995) used an adaptation strategy to integrate 

the deliberative and reactive components, such that the planner continuously alters 

the reactive model according to the changes made within the environment and to task 

requirements. A more effective course of action within hybrid architectures can, in 

some cases, be achieved by a postponing strategy that defers planning until it is 

required, rather than generating an overarching unchangeable single plan. An 

example implementation of the postponing strategy is the procedural reasoning 

system (PRS) proposed by Georgeff and Lansky (Georgeoff and Lansky 1987). From 
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the structural point of view, one common feature found in a number of hybrid designs, 

such as Atlantis (Gat 1991a and 1991b), SSS (Connell 1992), and 3T (Bonasso et al. 

1997), is that three major modules comprise the hybrid system. The three modules 

embedded in those three hybrid architectures roughly equate to a reactive feedback 

control module, a deliberative planner, and a sequencing module that controls the 

operations of the first two modules. A comparison with the earlier three-layered 

architectures was conducted by Gat (1998), revealing that having three major 

components in the architecture normally corresponds to the following three states: a 

current state (the reactive component), a state reflecting the past (the sequencing 

component), and a state predicting the future (the deliberative component). 

Recent developments in hybrid ; navigation systems are introduced below and more 
detailed description can be found in sections 6.1 and 7.1 in their comparison with the 

hybrid architectures proposed in this thesis. 

Recent hybrid architectures largely inherit the three-layer architecture of earlier 
designs, even though the three layers may not be arranged hierarchally, for example, 

the reflexive, reactive, and functional layers, in the nested-loop architecture (Santos, 

Castro and Ribeiro 2000) were arranged in a nested manner. Aguirre and Gonzdlez 

(2003), Liu, Hu and Gu (2006), Minguez and Montano (2005), Minguez, Montesano 

and Montano (2004), and Mufloz-Salinas et al. (2005) all described hierarchical 

implementations consisting of reactive and deliberative components connected 

through a middle layer. The hybrid architectures of Low, Leow and Ang Jr (2002 and 
2003), Maaref and Barret (2002), and Wang, Yong and Ang Jr. (2002) contained 
directly coupled reactive and deliberative components. When the middle layer is 

absent, the local navigation is accomplished in the reactive layer without explicit 
intervention of the high-level deliberative layer. Urdiales et al. (2003b) proposed a 
hierarchical hybrid architecture with four layers in which two layers, geometrical 

modelling and topological modelling, construct and maintain the environmental 
information in two separate mapping approaches. The two mapping layers can be 

grouped into one, as they have the same function of representing environmental 
knowledge, though in different formats. In the four-layer architecture proposed by Li 
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et al. (2004), the additional layer, called the hardware abstraction, is related to the 

low-level control of sensors and actuators respectively. The low-level control is 

normally integrated in the reactive component in other hybrid systems as this 

component directly operates on the raw sensory information and outputs the final 

action. 

Based on the review of recent hybrid architectures, the following points have been 

identified. A hybrid representation scheme has been frequently employed in 

navigation architectures. As discussed in section 3.1.1, topological representations 

can simplify the path planning task, thereby shortening the planning period, and 

metric information can be used to enhance the local navigation by eliminating the 

uncertainty due to identical landmarks. The experimental work carried out for most 

architectures were limited to indoor environments which tend to be well structured. 
Furthermore, only Santos, Castro and Ribeiro (2000) have discussed hybrid with 

other architectures, although no practical results were provided. 

3.4 Conclusions 

The survey of planner-based system included mapping methods and planning 

algorithms. Planners inspired by the evolutionary concept have been given particular 
emphasis, with two GA planners being described in detail as they are directly related 

to the work developed in this research. A short review of the reactive methods was 

given, followed by the introduction of the reactive system employed in the research. 
The final part of this survey focused- on navigations systems that have a hybrid 

architecture. Where appropriate, the navigation approaches found in the literature will 
be discussed further in the chapter where the related navigation system developed in 

the current work is introduced. 

To meet the navigation task requirement, a deliberative navigator will produce a plan 
based on knowledge of the environment. Re-planning is required to respond to 

unexpected and unmodelled changes that occur during the execution of the plan. Due 

to the long computation time involved in calculation of deliberative plans, these 
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approaches run the risk that collision may occur before re-planning is complete. 
Reactive methods, on the other hand, are well suited to tackle uncertainty and 

dynamic changes, but lack any means of predicting future events. The fact that the 

reactive approach ignores cognition, often limits reactive robots to mimicking simple 
forms (Arkin 1998). Hybrid systems hold the promise of taking advantage of the 

benefits of both deliberative and reactive approaches and consequently improving 

navigation performance by incorporating world models and being able to respond on 

the timescales dictated by dynamic environments. 

In chapters 4 and 5, the research described in this thesis implements a deliberative 

planning method that enhances the performance of existing evolutionary planners 
(described in sections 3.1.3 and 3.1.4) by reducing the search to a small number of 

points in the environment. In chapters 6 to 8, a hybrid architecture is adopted that 

takes advantage of a novel abstract representation of the environment. This hybrid 

system is subsequently revised firstly by developing an avoidance behaviour to 

interact with moving objects and secondly by a generalised version that is able to 

navigate between any specified start and goal points. 
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Chapter 4 

VERTEX PLANNER 

This chapter describes the vertex planner developed with the aim of overcoming the 

principal drawbacks of the existing planning approaches described in section 3.1. 

This work was presented in IEEE International Conference on Cybernetics and 
Intelligent Systems (CIS 2006) and awarded 'best paper'. 

4.1 Related work in path planning in static environments 

Path planning can, as discussed in section 3.1.2, be viewed as an optimisation 

problem, (such as shortest path, shortest travel time, minimum energy consumption, or 

some combined optimisation criteria) with certain constraints (such as collision-free). 
Genetic algorithms as an adaptive search technique have seen increasing application 

to optimisation problems due to their robustness, simple mechanism, no requirement 
for gradient information, operation in a range of parameter spaces (see section 1.3). 

Tbese'advantages were instrumental in the decision to adopt genetic algorithms for 

the planner in the current work. Consequently, this section only presents approaches 
based on the evolutionary concept and the examples of other methods can be found in 

chapter 3. 

The genetic based approaches found in the literature can be classified into two 

categories according to the search space, discrete or continuous, on which the 

algorithms operate. 
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In the discrete search space, the grid method is probably the most common method of 

modelling given environments. In generating the grid, a suitable resolution is needed 

in order to deal with the range of obstacles likely to be encountered. For example, 

obstacles of more complex shape may require a representation of higher resolution in 

order to prevent a collision, whereas a high resolution of grid makes planning 
inefficient if only obstacles of simple shape are present in the environment. 
Furthermore, although shorter paths are more likely to result from higher resolution 

representations their determination requires more planning time. Consequently, an 

appropriate trade-off between path quality and planning time is difficult to achieve in 

practical situations. Three different genetic, encoding mechanisms have been 

investigated. The simple binary genetic representation with fixed length was an early 
implementation by Sugihara and Smith (1997) that, was adapted by Geisler and 
Manikas (2002) to use the standard GA. In this approach, the environment is 

modelled by a grid map of n rows (or columns), where the length of each 

chromosome is restricted to n genes. A real value corresponding to each gene 

represented the selected columns (or rows), whereas the rows (or columns) were 
indicated by the locus of each gene. However, such a genetic representation can be so 
biased that possible solutions may not be found even when they exist. In order to 

overcome this limitation, an efficient genotype structure was developed that 

incorporated an orientation bit which functioned to select either row-wise or the 

column-wise representation (Hermanu et al. 2004; Sedighi et al. 2004). An 

alternative solution that relaxes this restriction is to use the coordinates of the cells of 

each gene. Hu and Yang (2004) incorporated problem-specific knowledge into their 

GA in the form of designed genetic operators, such as node_repair (moving a node 

that is inside an obstacle to the outside) and line_repair (repairing an infeasible line 

segment by adding a new node) to improve efficiency. Note that the length of an 
individual in the GA was variable and a number of grids was selected as intermediate 

nodes. Nearchou (1999) developed an evolutionary-based planning algorithm that 

used a tailored set of genetic operators, in which each individual was a binary string 

of variable length representing a sequence. of actions to achieve transitions between 

adjacent cells. A variable genetic representation was also used by Tu and Yang (2003) 

where each gene contained four binary bits, three of which represented the direction 
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and the fourth the distance the robot will move during the next step. However, it was 
later reported by Hu and Yang (2004) that many hours were needed to deliver a 

solution. Discrete space has also been used in planning solutions for 3D environments. 
For example, Nikolos et aL (2003) proposed an evolutionary-based path planner for 

unmanned aircraft, with each gene being the coordinates of a control point selected 

within the desired constrained space represented by a mesh. To generate a smooth 

path, the control points were used in the construction of a spline curve. 

Most planning algorithms that search continuous space adopt a floating point 

representation scheme, their genetic operations are also conducted on a fraction Of 

population in each generation, and, to accelerate evolution, problem-specific 
knowledge is often taken into account when designing the genetic operators. One of 

the most cited planning algorithms based on the evolutionary concept operating in 

continuous space, is the evolutionary planner/navigator (EP/N) (Lin, Xiao and 
Michalewicz 1994; Trojanowski, Michalewicz and Xiao 1997; Xiao 1997; Xiao et al. 
1997; Xiao, Michalewicz and Zhang 1996).. The absolute coordinates of any point in 

the environment can be encoded as the elementary information for a potential gene, 

obviating the need to establish a configuration space. This is an important advantage 

of the coordinate approach with respect to the grid approach, namely that an often 

arbitrary, or at best, difficult to establish, minimum resolution for the representation 
does not need to be determined. Eight genetic operators were developed by 

incorporating problem-specific domain knowledge and each of them is applied for 

each iteration (the steady-state genetic algorithm) according to operator probabilities. 
A more detailed description of EP/N was given in section 3.1.3. Hocaoglu and 
Sanderson (2001) described a evolutionary planning algorithm having a binary tree 

structure to represent a path whose intermediate vertices are determined by a 

modified Gram-Schmidt orthogonalization process. Their path planner used the 

steady-state genetic algorithm with one crossover and six mutation operators, where 

the mutation operators were similar in purpose to the genetic operators of EP/N, in 

that they provided a means to fix or repair an infeasible path, swap two nodes in a 

path, insert a new intermediate node, or fine-tune clearances. Based on EP/N, a GA 

planner (Elshamli, Abdullah and Areibi 2004) was developed with a set of genetic 
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operators modified for dynamic environments where initially unknown static 

obstacles became to be completely known during the planning. EP/N was modified in 

its application to a 3D manipulator for planning movements (Vannoy and Xiao 2004). 

Once a feasible trajectory had been generated, the robot followed a trajectory that was 
improved by evolution carried out during movement. Zheng, Ding and Zhou (2003) 

developed a route planner for an unmanned aircraft by considering multiple 

constraints, such as minimum route leg length, flying altitude, and maximum turning 

angle. A variable length representation was employed with each gene consisting of 

coordinate information for a selected point in the workspace together with a state bit 

to indicate feasibility of the path segment. A small number of members of the 

population was involved in the genetic reproduction, each generation being evolved 

using one crossover and six mutation operators. The planner was extended (Zheng et 

al. 2005) for route planning of multiple unmanned aircraft. Smierzchalski and 

Michalewicz (2000 and 2006) developed aEP/N++, an extension of EP/N applied to 

planning problems at sea consisting of multiple moving ships. aEP/N++ was 

introduced in section 3.1.4 and, due to its relevance to the current work, is further 

discussed in chapter 5. 

A quantitative comparison between a conventional GA, Dijkstra's algorithm and A* 

search was conducted by Soltani et al. (2002) in their application to a material- 
delivery routing problem in a construction site represented by a multi-dimensional 

grid. The measures for comparison purpose were three single optimisation criteria, 

namely, path length, safety, and visibility, and, overall, the GA search algorithm 

performed the best in that less time was required to deliver the solution with a similar 

quality to those produced by the Dijkstra and A* methods. The efficiency of the GA 

algorithm was attributed to the smaller number of grid points visited by GA compared 

to those examined by the other methods. The experimental results also indicated that 

the GA is more competent for larger problems as the time complexities of both the 

Dijkstra and A* approaches increase significantly with problem size. 

The modification of genotype structures and the inclusion of problem-specific 
knowledge both aim to shorten planning time. The decomposition of the continuous 
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environments into cells can reduce the search space (Hu and Yang 2004), yet the pre- 

calculation of a suitable cell representation (such as a grid map) is time consuming 
(Hocaoglu and Sanderson 2001; Xiao et al., 1997; Zheng et al. 2005). Furthermore, 

flexibility in allowed movements may be restricted if a discrete map used as a basis 

for planning; for example, the robot's turning circle may be constrained to ensure the 

locus includes the centres of adjacent cells. 

Most of the above research seeks the shortest Path as the optimisation goal, though 

occasionally optimisation criteria, such as safety, smooth trajectories, and restrictions 

on turning angles, have been used in planning algorithms (Nikolos et al. 2003; 

Smierzchalski and Michalewicz 2000 and 2006; Xiao et al. 1997). Energy saving has 

also been considered as an optimisation goal by a small number of authors (Garg and 
Kumar 2001; Huang, Xu and Liang 2005). The reduction of space to be searched 

while incurring little in pre-processing demands is the principal motivation in 

developing the vertex planner with the optimisation goal of minimising the path 
length. As stated by Hand et al. (2005) researchers do not base their work on 

navigation results found in standard environments. Although Hand et al. (2005) 

developed benchmarking program, this is available only for grid-based approaches 

and is unsuitable for methods that operate in other space, such as that used in this 

thesis. 

In comparison with the map-based methods (as described in section 3.1.1 and above), 

the vertex planner requires only a simple vertex graph, thereby significantly 

alleviating the pre-processing demands. Whereas EP/N (Trojanowski, Michalewicz 

and Xiao 1997; Xiao 1997; Xiao et al. 1997) plans using the entire continuous space 

of the robot's environment, the vertex planner limits the search space to only the 

vertices of the obstacle. It is reasonable to assume that imposing iuch a constraint 

would result in a considerable shortening of the search process, this being the 

principal reason for proposing the vertex approach. 

In the vertex planner, each gene represents a single obstacle vertex selected as an 
intermediate node and a variable length representation is used for the individuals to 
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minimise memory usage. In order to be able to compare the efficiency and 

effectiveness of the proposed algorithm with the EP/N system (Trojanowski, 

Michalewicz and Xiao 1997; Xiao 1997; Xiao et al. 1997), the current work has 

adopted a similar steady-state genetic algorithm, as described in section 2. L As EP/N 

provides a relatively well-established solution, matured through a series of revisions, 
the underlying approaches taken by the EP/N researchers, continuous workspace and 

problem-specific knowledge, has been frequently adopted by other researchers 
(Elshamli, Abdullah and Areibi 2004; Zheng, Ding and Zhou 2003; Zheng et al. 
2005), but without significant improvement. Additionally, the continuous approach 

adopted in EP/N makes its comparison with grid-based approaches difficult, due to 

the large number of different resolutions of grid map that a researcher can choose. 

4.2 Vertex planning algorithm 

I 
The principal novelty of the vertex planner is that it does not need to search the entire 

continuous environment for a suitable path, but rather the GA acts directly on the 

vertices of the obstacles encoded in the genes. The pseudo-code for the vertex 

planning algorithm is shown in Figure 4.1 and the stages in its implementation are 
described below. 

Procedure vertex planning algorithm 
begin 

t +- 0 
enlarge the obstacles 
encode the vertices of the obstacles 
initialise P(t) 
decode P(t) 
evaluate P(t) 
while (not terminating condition) do 

t (- t+1 
select operator 01 with probability pj 
select parent(s) from P(t) 
apply the operator oj to produce offspring 
decode offspring 
evaluate new offspring 
replace worst member in P(t) by offspring 

end 
select the best individual p from PM 

end 

and procedure 

Figure 4.1 The pseudo-code for the vertex planner. 
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4.2.1 Enlargement of the obstacles 
So as to allow the planner to regard the robot as a single point, the obstacles are 

enlarged by a value determined from the minimum distance that the robot can 

approach obstacles without collision, taking into account its physical dimensions. 

Figure 4.2 shows an example of the obstacle enlargement. 
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Figure 4.2 An example of the enlargement of the obstacles for the purposes of planning. 

4.2.2 Encoding and decoding 

The intermediate nodes of a path contain only vertices of enlarged obstacles and each 

gene contains a reference to a vertex, rather than holding"its absolute coordinates. The 

vertices of the enlarged obstacles are randomly numbered and used as potential genes 
for a chromosome whose phenotype presents a path between two specified locations. 

4.2.3 Genetic representation and initialisation 

The structure of the chromosomes is illustrated in Figure 4.3. A chromosome contains 

a total number of genes 1, whose minimum value is two (a path containing only the 

start and goal nodes) and whose maximum value is N+2, where N is the total number 

of vertices of all the obstacles in the environment. Consequently, each chromosome 

represents a path with a number of intermediate genes (nodes) in the range 0 to N 
between the start and goal points (that are also both included as genes in the 

chromosome). Each intermediate gene contains a reference, Vi, iE (0,1-2), to exactly 

one of the N vertices. A 'feasibility bit' for each gene is used to indicate whether the 
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path segment originating from the vertex referenced by the node is feasible. If the 

path segment connecting two consecutive vertices referenced in the chromosome 

(including from the start point to any vertex or from any vertex to the goal point) 
intersects one or more obstacles, then the feasibility bit of the first node of the path 

segment is assigned 1 to mark this segment as infeasible. If there is no intersection, 0 

is used to indicate the segment is feasible. 

start gene gene I 

0 V, 

0/1 0/1 

gene 1-2 goalgene 

VI-2 N+l 

0/1 0 

Figure 4.3 The structure of a chromosome. The first gene in the chromosome refers to the 
start point (numbered 0) and the last gene refers to the goal point (numbered N+I). The 1-2 

intermediate genes refer to the vertices of obstacles in the environment. The lower row in the 
gene indicates the feasibility of the path segment that starts at that gene. 

S 

The initial population, P(O), is generated by randomly choosing, for each 

chromosome, the number of genes and their vertex references. The vertex references 

are constrained so that they are not repeated within a chromosome, and that the start 

and goal points are always the first and last genes of a chromosome respectively. 

4.2.4 Evaluation functions 

The optimisation goal is to find a collision-free path with minimum path length. To 

achieve this goal, the feasibility of each chromosome is determined before the 

evaluation of path quality is carried out. The approach for feasibility examination is 

to check if there is any intersection between two straight lines (Pavlidid 1982). The 

generated chromosomes represent feasible paths if none of the individual path 

segments is infeasible, otherwise the chromosome is infeasible. 

In the vertex planning method, the evaluation function, Ef, which is used to assess the 

quality of the feasible paths, is simply the length of the generated path as the 
intermediate nodes are selected from the vertices of the enlarged obstacles rather than 
being any point in the environment. Ef is given by 

Ef j, Vj, j Equation 4.1 
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where d(V,, V,,, ) denotes the distance between the pair of vertices. Such design 

favours shorter paths over longer ones. The evaluation function E, indicates hmý 

deeply an infeasible path segment intersects with an obstacle and is given by 

=ju 17 Equation 4.2 

where p denotes the number of obstacle intersections along the entire path and il is 

the mean number of intersections per infeasible segment. The reason for setting this 

function is to qualify and rank the infeasible paths. If less effort is needed to correct 

an infeasible path, a lower cost will be assigned. Given the two evaluation functions, 

the aim of the optimisation process of the vertex planning method is to minimise the 

values of Ef and E, for their respective populations. 

When the population contains both feasible and infeasible paths, the infeasible paths 

are all assumed to be worse than the worst feasible path. 

4.2.5 Operator selection 
The two standard genetic operators, crossover and mutation, and an additional 

operator, repair, are utilised in the algorithm. Only one of these operators Oj is needed 
in each steady-state generation and its selection is based on a roulette method whose 

slots widths are in proportion to the probabilities of the operators. 

4.2.6 Application of the operators 
The crossover operation is performed by a conventional one-point operator, where the 

crossover points are randomly selected and the parts that follow the crossover points 

of the two parent individuals are swapped. This operator is the simplest form for 

exchanging information between two selected individuals in order to generate better 

offspring. A faster convergence may result from having two or more crossover points 
during the first evolutionary phase (see section 4.2) from infeasible to feasible paths. 
However, when a two or more point crossover operator is applied between two 

feasible paths, the number of new path segments is greater than that produced by 

single point crossover, thereby increasing the probability that infeasible paths result. 
Note that the use of a uniform crossover operator is not suitable as it has the same 
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disruptive effect on the feasible paths as two or more point crossover.. Also, as the 

search space consists of a discrete set of obstacle vertices, the arithmetic crossover 

operator cannot be applied. The mutation operation mutates the genes with small 

probabilities. The role of mutation is to prevent premature convergence and promote 

population diversity by introducing a small perturbation to the gene values, but too 

high a rate of mutation will result in a random search. The repair operator adjusts a 

randomly selected infeasible segment of an infeasible path, so that it circumnavigates 

the obstacles previously intersected. Figure 4.4 illustrates the repair operation. -This 

genetic operator utilises problem-specific knowledge in order to produce efficiency 

during the evolutionary process that alters an infeasible path into feasible one. 

G 

E 

000 N 

G 

Figure 4.4 An illustration of the application of the repair operator that uses the vertices of 
the enlarged obstacle (shown by a broken line) to determine a feasible path around an 

obstacle. 

4.2.7 Evaluation 

Before evaluating the offspring, decoding of the genotype to its corresponding 

phenotype is required. In order to retain a constant selection differential, the 

individuals are sorted according to their fitness and a quadratic ranking scheme (De 

Jong 1992) (see section 2.3) is used to determine the number of offspring. The worst 
individual in terms of fitness is discarded, while the remainder and any new offspring 

created form the next generation. The evolutionary process terminates if no 
improvement is observed in the fitness of the best individual for a specified number 
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of generations, or if a user-defined number of generations is exceeded. When this 

occurs, the best individual is selected as the path planning solution. 

4.3 Experiments and Results 

The proposed planning algorithm was evaluated in four simulated environments, as 

shown in Figure 4.5, using version 6.5 of MATLAB (Mathworks 2006) running 

under Windows 2000 on a 2.8GHz Pentium P4. The first environment contains a 

number of obstacles of irregular shape to simulate unstructured environments. The 

second environment contains a similar number of obstacles to the first, but contains 

more vertices providing increasingly irregular obstacles. The third environment 

contains a relatively large proportion of infeasible space, and could be considered to 

represent walkways through a series of manufacturing cells or along corridors in an 

office building. The fourth simulates an open-plan office workspace. The relative 

complexities of the test environments are reflected by the total number of obstacle 

vertices, which doubles in each successive environment; the values being 20,40,80, 

and 160 vertices in environments I to 4 respectively. 
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Figure 4.5 The paths generated by the vertex planner for each of the simulated 
environments. The circular markers show the generated intermediate nodes. 

EP/N (Xiao 1997; Xiao et al. 1997) was used in order to provide a comparative test of 

the performance of the vertex planner. EP/N is a relative mature evolutionary planner 
having been refined through a series of revisions (Lin, Xiao and Michalewicz 1994; 

Trojanowski, - Michalewicz and Xiao 1997; Xiao 1997; Xiao et al. 1997; Xiao, 

Michalewicz and Zhang 1996) and has frequently been cited by other researchers 
(Ashlock, Manikas and Ashenayi 2006; Buyurgan et al. 2007; Elshamli, Abdullah 

and Areibi 2004; Geisler and Manikas 2002; Hermanu et al. 2004; Hocaoglu and 

Sanderson 2001; Hu and Yang 2004; Nearchou 1999; i4elson et al. 2004; Patnaik and 

Karibasappa 2005; Sedighi et al. 2004; Tarokh 2007; Zheng, Ding and Zhou 2003; 

Zheng et al. 2005). Furthermore, due to the difficulty in justifying a specific grid 

resolution, the most appropriate comparison of the vertex planner is with another 

continuous planner. As far as possible, the system parameters of the vertex planner 

were defined so as to mimic those adopted by Xiao (1997) for EP/N. To facilitate 

direct comparison, these parameters are maintained for all experiments in the four 
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different environments, and are listed in Tables 4.1 and 4.2 for EP/N and the vertex 

planner respectively. For both planners, each generation contained 30 individuals and 

evolution was terminated when there was no further improvement in the fitness of the 
best individual over 300 generations. For both EP/N and the vertex planner, the 

maximum length of an individual in the initial generation was limited to be the sum 

of the number of vertices, the start point and the goal point in the environment under 
test and the minimum length was set to be two, this being the start and goal points 

only. When mutation_2 is selected as a genetic operator for EP/N, only one 
intermediate node will be affected. 

Table 4.1 System parameters for EP/N 

operator probability weights rate 

I C4 1z : 
1 

r. 0: -ý 
Z! -Q ý: 

:b Z 2: ý C 
.5 

0 
0 ý .: ý -ý, 4, 

S 
44 : 
t3 Q 

M 
15 %-., 121 :t 

2ý : 
ý, U: ;3 ZI , 

0.6 0.8 0.5 0.5 0.5 0.5 0.9 0.8 1 0 0 0.3 0.6 0.1 0.3 

Table 4.2 System parameters for the vertex planner 

operator probability .1 mutation safe 
crossover mutation repair rate distance 

0.6 0.5 0.8 0.3 5 

The paths generated by the vertex planner for the four envirorunents are shown in 

Figure 4.5. Note that under visual inspection, little discernible difference was 

apparent between the paths produced by the two planners. 

To evaluate the efficiency of the vertex planner, the following were recorded: (a) the 

execution time to obtain the first feasible path; (b) the number of generations required 
to determine the first feasible path; (c) the execution time to obtain the final path; (d) 

the number of generations required to determine the final path and (e) the length of 
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the final path. The final path is deemed to have been reached when Ef remains 

unaltered for 300 consecutive runs. 

Figure 4.6 shows the calculation time for the first evolutionary phase, namely that 

during which all the individuals in the population represent infeasible paths. Note that 

the plotting of the curves terminates as soon as one individual in the population is 

feasible. Table 4.3 shows both the execution times and the number of generations 

required to determine the first feasible path. The results in both Figure 4.6 and Table 

4.3 are median values obtain over 50 runs. 
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Figure 4.6 The infeasible path costs for the best individual from the first generation to that 
when the first feasible path is generated. The results are the medians obtained over 50 runs. 
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Table 4.3 Execution time and number of generations to determine the first feasible path. The 
results are the medians obtained over 50 runs. 

planning execution time to number of generations 
environment method obtain the first to determine the first 

feasible path (s) feasible path 

EP/N 1.78 26 
Vertex 1.15 17 
EP/N 2.59 23 

2 
Vertex 2.58 16 
EP/N 11.6 49 

3 
Vertex 9.99 27 

4 
Vertex 39.7 50 

Although the absolute probabilities of the three genetic operators in the vertex 

planner are the same as those of the corresponding' operators in EP/N, as the vertex 

planner has fewer operators (and only one can be applied in each generation), each of 

its three operators are likely to be applied more frequently. This includes the repair 

operator which, from manual inspection of the progress of the development of the 

individuals, appears to be responsible for the relatively rapid convergence of the 

vertex planner in the first evolutionary phase. 

The results for the second evolutionary phase, during which the aim is to translate 

feasible paths to high-quality feasible paths, are shown in Figure 4.7 and Table 4.4. 

Compared with EP/N, the vertex planner shows a significant improvement in 

execution time performance during the second evolutionary phase, with reductions in 

the range 20% (environment 4) to 78% (environment 1). A number of the EP/N 

operators are computationally more expensive to execute than those in the vertex 

planner, for example insert, delete and smooth can add new nodes to the selected 

path, and such enlarged individuals will subsequently require additional time to 

process. In contrast, the vertex planner naturally limits the maximum, possible number 

of intermediate nodes in each individual path to the total number of vertices in the 

environment. Consequently, compared with the reductions in execution time, the 

corresponding reductions in the number of generations required by the vertex planner 

are not so great, but are significant nonetheless. 
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The effectiveness of the vertex planner can be seen in the path length results shown in 

the final column of Table 4.4, where both planners produce similar results in terms of 

path quality for environments I and 3. A marginally better path was found by the 

vertex planner in environment 2, but a more significant improvement was apparent in 

environment 4. 
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Figure 4.7 The feasible path lengths for the best individual during the second evolutionary 
phase. Note that the plot is from the first generation in which there existed at least one 

feasible path, to the generation in which no improvement in the fitness of the best individual 
has occurred over 300 successive generations. The path length is the median over 50 runs. 
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Table 4.4 Execution time and number of generations to determine the final path. Also shown 
is the total path length obtained. The results are the medians obtained over 50 runs. 

execution number of 

environment planning time to find generations path 
method the final path to determine length 

(S) the final path 

EP/N 31.6 759 268 
I 

Vertex 6.95 328 268 
EP/N 32.3 644 371 

2 
Vertex 15.6 528 370 
EP/N 140 1234 380 

3 
Vertex 33.9 487 380 
F. P/N 176 1235 614 

4 
Vertex 141 912 566 

In the comparative results above, the experiments were conducted using 30 

individuals in all cases. As this population size is unlikely to be optimal, additional 

experiments were carried out to assess the effect of the population size on both the 

calculation time and the path cost. In each case, 50 runs were performed at each of 10 

different population sizes. The calculation times and the path costs for the four 

environments are shown in Figure 4.8 and Figure 4.9 respectively. As expected, 

Figure 4.8 shows that the calculation times increase with the population size, but 

Figure 4.9 indicates that in all environments the path length is largely independent of 
the population size. Outliers found in the path length results indicate that there were 

experiments in which a significantly sub-optimal solution was produced. In all the 

environments, these outliers are more prevalent at smaller population sizes and only 

at a population size of 100 individuals are no outliers present in any of the 

envirorunents. 
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Figure 4.8 Effect of altering the number of individuals in the population on the calculation 
time for the vertex planner. For each population size, the calculation time of the best 

individual has been obtained over 50 runs. In the box plot, the box itself contains 50% of the 
samples, so the top and bottom edges of the box indicate the upper and lower quartiles 

respectively. The broken horizontal line within the box is the median value, the 'whiskers' 
above and below indicate values 1.5 times that of the inter-quartiles and the outliers beyond 

this range are denoted by a plus sign. More details on box plots can be found in Nelson 
(1989). 
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Figure 4.9 Effect of altering the number of individuals in the population on the path length 
for the vertex planner. For each population size, the path length of the best individual has 

been obtained over 50 runs. 

4.3 Conclusion 

The series of experiments presented in this chapter have investigated the efficiency 

and effectiveness of a new vertex planner. Compared with previous methods, the 

vertex planning approach operates in a substantially reduced search space, as a result 

of adopting the obstacles' vertices as the intermediate nodes in the path. in particular, 

the results show significant performance improvements in comparison with EP/N 

which searches the whole of the free space for a path (assuming that in most 

environments encountered, relatively little area is occupied by obstacles). However, 

given its search space advantage, the convergence performance of the vertex planner 

is perhaps not as good as might reasonably be expected. As the current work has 

adopted the operator probabilities that have been optimised for EP/N, it is likely that 

further experimentation to obtain probabilities better suited to the vertex planning 
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method may yield improved performance. In those cases where the free space is not 

dominant, perhaps due the presence of many large obstacles (such as in environment 

3), it may be expected that the performance is adversely affected. In contrast, free 

space dominates in environment 4, but the mean number of vertices per obstacle is 

greater. Of the environments investigated, this was the only one in which the vertex 

planner appeared to encounter much difficulty in evolving a feasible path and it is 

possible that a higher mutation rate should be considered in order to escape local 

minima. Nevertheless, the vertex planner with a variable-length path representation 

has been shown to be both efficient and effective in finding solutions of suitable 

quality for the path. planning problem. 

The new planning algorithm was presented and a discussion on the experimental 

results was given in this chapter. However, the static environments simulated in the 

tests imply a limited application of the vertex planner. Therefore, an augmented 

planner was subsequently developed fora, robot operating in dynamic environments. 

That work is introduced in the next chapter. 
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Chapter 5 

VERTEX++ PLANNER 

This chapter presents vertex++, a genetic-based algorithm for path planning in 

dynamic environments (those in which one or more moving obstacles are present), 

and which has the ability to deal with both static and dynamic constrains 

simultaneously. Although designed initially as an off-line algorithm, vertex++ is also 

appropriate for use in on-line planning, where its operation can be triggered in 

response to changes in the expected movements of the dynamic obstacles. The 

vertex++ navigation approach is an enhancement of the vertex planning method for 

static environments'described in chapter 4. The on-line planning aspects of vertex++ 

planner have been presented at the 2007 IEEE International Conference on Robotics 

and Automation and an -additional submission will be made to the IEEE Transactions 

on Evolutionary Computation. 

By restricting the planning to obstacle vertices rather than considering the entire 

environment, the vertex++ planner is able to significantly reduce the calculation time 

compared with other GA approaches that have been applied, in dynamic environments, 

in which all points in the environment are considered as potential nodes in a path 

(regardless of whether they are in free space or within an obstacle). A further novel 

achievement of the new planning approach is the inclusion of robot speed into the 

planning process, which takes into account the time at which obstacles are 

encountered, thereby allowing the consideration of a much greater range of possible 

avoidance paths. 
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5.1 Related work in path planning in dynamic environments 

Planning a path for a mobile robot in dynamic environments is more complex than in 

static environments, as additional parameters, such as time and velocity, need to be 

considered in order to generate a collision-free path. A general description of the 

existing methods that have been applied to solve planning problems in dynamic 

environments was given in section 3.1, and, this section only addresses approaches 
based on evolutionary concepts. It is important to note that relatively little work has 

been reported in the literature that has utilised genetic algorithms as the basis for path 

planning in dynamic environments. 

A number 
' 
of researchers (Elshamli, Abdullah and Areibi 2004; Patnaik and 

Karibasappa 2005; Thomaz, Pacheco and Vellasco 1999; Xiao et al. 1997) have 

employed genetic algorithms in the environments where suitable sensors can capture 

the obstacles that newly appear. However, as these detected obstacles remain 

stationary only a re-planning process is needed using modified geometric information. 

As this results in environmental representation much simpler than those needed for 

the solution of planning problems in dynamic environments, this work is not closely 

related to that described in this chapter. 

Fujisawa et aL (2000) described a planning method using only a mutation operator to 

generate a suitable action (velocity and steering controls) based on 'anytime sensing', 

that is, to begin the search with a low quality of sensing information, but to gradually 
improve its quality as the search progresses. More specifically, all obstacles are 
initially classified into atircular virtual obstacle that is sufficiently large enough to 

include all obstacles, and, as the search advances, the virtual obstacle gradually 
fragmenting into smaller virtual obstacles each containing fewer obstacles. In this 

way, the solution is incrementally improved while processing the sensory information. 

However, in practical applications the range of influence of the algorithm is rather 
local due to the limited view obtained by the sensors. 
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Smierzchalski and Michalewicz (2000) developed an evolutionary based algorithm, 

termed aEP/N++, to generate a collision-free trajectory at sea. This algorithm extends 

EP/N that was desig. ned to operate in static environments (Xiao et al. 1997) by 

considering the speed of the other moving ships to search the entire and continuous 

environment for an optimal or near optimal solution. A more detailed description of 

this planner was provided in chapter 3. Path planning for ships in a continuous 

environment was also investigated by Zeng (2003) who encoded not only position 

and speed parameters, but also noise resulting from tide, wind, and wave effects. His 

algorithm applied a crossover operator that determines the crossing site between two 

parents of variable length according to the phonotypic function of parameters 

(position, speed, and noise) rather than using their genetic locus. Following crossover, 

one gene selected from a fitter chromosome is altered by mutation. The potential for 

collision between the ship and other moving objects is assessed based on the values 

of the closest points of approach. If the distance is smaller than the sum of radii of the 

safe areas around the ship and the moving object, a collision risk exists. 

Chen and Xu (2005) added three operations to the standard genetic algorithm to 

improve global optimality in a planning problem. The first two operations, termed 

restoration and reconstruction respectively, reinstate or rebuild a previous population 

if the best individual after crossover and mutation is less fit than the previous best. 

Otherwise, the new fitness will be remembered by recording the better operation. A 

unique length representation is used in the GA, and, to reduce the string length, two 

dimensional data (that is, coordinates with the original workspace X01) were 

projected to one dimension by converting the original workspace into a new 

coordinate system, with the origin at the start point and the x axis drawn to goal point. 

The locus of a chromosome thus represents the x coordinates of a set of via points 

equally spaced along the x axis, ' while the content of each gene is the y coordinate. 

However, such a representation may result in the planning algorithm not finding the 

optimal solution, as x coordinates are recorded in monotonic order and no reordering 

operator is available. To achieve dynamic obstacle avoidance, the via points need to 

be selected to ensure the distance from each via points to an obstacle is longer than 

the sum of the radii of the robot and that of the obstacle under consideration. In 

79 



Chapter 5: Vertex++ planner 

addition, the method also assumes that the number, the positions and the speeds of 

obstacles can be completely captured by the sensor system. 

GAs have been also applied to the path planning of multiple mobile robots. Liu, S., 

Tian and Liu, J. (2004) planned a collision-free shortest path for each robot from its 

initial location to its destination while ignoring the presence of other robots. A 

reactive strategy was adopted to resolve locally the conflicting paths. Each individual 

was encoded as a linked list of variable length where each gene contained the 

coordinates of a cell in a grid. The initial population was constrained to the range 

bounded by the coordinates of the start point and the goal point, the crossover and 

mutation operator was modified to cope with the planning problem and two 

evaluation functions were developed to assess the quality of the feasible and 

infeasible paths. The fitness function used for the infeasible paths, defined as the 

inverse of the number of infeasible segments plus one, is not an intuitive parameter, 

since the single straight line between the start point and the goal point is necessarily 

the fittest one among infeasible paths. A similar approach in which a global 

geographical path was generated and then collisions avoided using a set of behaviours 

was adopted by Fu et al. (2006). The practical problem considered was to navigate a 

planet rover from a start point to a target point and then return to the start point, while 

passing through a set of sub-targets (and is largely equivalent to a travel salesman 

problem). A local planning algorithm was designed to generate a path between pairs 

of adjacent sub-targets according to the gradients of the 3D terrain modelled by a grid 

map. 

GAs have also been used for planning problems in 3D workspaces containing moving 

objects. One example is the path planning of an unmanned aircraft (Rathbun et al. 

2002), where path was composed of a set of straight lines and constant radius curves 

joined smoothly. Four mutation operators were developed; at each generation one 

was chosen randomly for application to each individual to alter one or more of the 

following parameters: length, radius, and speed. The check for potential collision 

with obstacles considered the expected position and velocity, safe approach radius 

and uncertainties of the position and velocity of the obstacles. A second example is 
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genetic-based local path planning designed to avoid moving obstacle when navigating 

an autonomous underwater vehicle (Chang et al. 2005). A rectangular grid map 

representing the environment sensed was rotated such that the straight line from the 

start point (the origin) to the goal point becomes the x axis. The location and velocity 

of moving obstacles were assumed to be observed by the sonar sensor and the 

avoidance was achieved by changing the heading. In addition to the standard 

operators, namely, one-point crossover and mutation, an additional operator, termed 

the moving operator, was designed to navigate the vehicle close to the previously 

planned path while avoiding collision. The avoidance constraint was set to be larger 

than the dimension of the vehicle plus the radius of the obstacle. 

The approaches to navigation in dynamic environments have adopted a grid 

representation or have operated on the original continuous working environments. 

Although the grid representation may reduce the search space to some extent, the 

construction (or reconstruction based on updated information about the dynamic 

environments) requires careful selection of grid dimensions and considerable pre- 

processing. Converting the x axis into a line connecting the start point and the goal 

point can reduce the lengths of individuals in the genetic representation, but does not 

allow any movement in the negative x direction and consequently some feasible paths 

may never be discovered. To accelerate the search process or improve the path 

quality, a conventional GA is rarely employed directly, but rather some modifications 

are made based on problem-specific knowledge. It is important to note that in all the 

work found in the literature, the proposed algorithms were only evaluated in the 

specific environments developed by the respective authors and none was assessed in 

their comparison with other algorithms. 

The vertex++ planner presented in this chapter is able to perform planning operations 
in dynamic environments and is an extension of the vertex planner described in 

chapter 4. As aEP/N++ is the extended version of the EP/N to operate in dynamic 

environments, it was used to provide a benchmark for the vertex++ planner. 
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5.2 Planning algorithm 

This section describes the types of environment used in the experiments caffied out 

with vertex++, details the internal structure of the GA used for the planner and 

describes the operation of the vertex++ during both off-line and on-line planning. 

5.2.1 Operating environment and constraints 
The working environment for the mobile robot consists of a set of stationary obstacles 

whose shapes either are defined to be, or are approximated by, bounding polygons. In 

addition, the robot movement between two specified locations may be interrupted by 

the presence of one or more dynamic obstacles that are also represented by polygons. 

If the motion parameters (here the current heading and current speed) of those 

dynamic obstacles remain constant, a safe trajectory for the robot can be generated by 

the vertex++ planner in an off-line manner. In addition, the path generated off-line 

can be adaptively revised in response to any changes in the motion characteristics of 

the dynamic obstacles. 

in the off-line planner, it is assumed that complete motion knowledge of the moving 

obstacles in the environment is available. Consequently, an inherent assumption in 

the off-line planner is that the information gained remains unchanged following the 

generation of a safe path. In the on-line planner, it is assumed that changes to the 

motion parameters of the moving obstacles are made available whenever one comes 

within the sensor range. Although no particular sensor type or configuration is 

specified, it is assumed that in order to allow the robot to be guided so as to avoid any 

potential collisions with obstacles, there is an adequately large time interval between 

the detection of obstacle movements and the, implementation of newly generated 

actions. Note that this assumption may be relaxed if guidance is achieved by reactive 

navigation, such as in (Mulvaney et al. 2006). 

For purposes of planning, the static obstacles are enlarged by a value determined 

from the minimum distance (herein referred to as the safe distance) that the robot can 

approach obstacles without collision, to account for the robot dimensions (see Figure 
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5.1 for an example). Such a representation allows the physical, dimensions of the 

mobile robot to be neglected and regarded as a single point. 
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Figure 5.1 An example of the environment representation in vertex++ planner. The grey 
polygons represent exclusion areas surrounding the moving obstacles; the black obstacles are 

static. 

To model the motion of the dynamic obstacles in the vertex++ planner, the same 

strategy as in 9EP/N++ (Smierzchalski and Michalewicz 2000) is adopted. In brief, 

for each obstacle, its motion is described by a trajectory, consisting of a series of one 

or more segments, each having start and finish coordinates between which the 
heading (defined by the coordinates) and the speed of the obstacle are fixed. 

In order to assess the possibility of the robot colliding with dynamic obstacles, the 

following method has been developed and implemented in vertex++. The first 
I 

crossing point between the robot path proposed by the planner and the trajectory of a 

moving obstacle is calculated before examining the possibility of collision. Based on 

the time t required for the robot to cover the distance from the current position to the 
first crossing point, the instantaneous location of the moving obstacle can be 

calculated and, consequently, the exclusion area for this obstacle. If the crossing point 
falls within this area, a collision would occur between the robot and the moving 

obstacle. An example of such an occurrence is shown in Figure 5.2. Note that the 
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safety margins for the longitudinal and lateral dimensions of the moving obstacle are 

unlikely to be the same when constructing this area, as the speeds of the robot and the 

moving obstacle need to be taken into account in addition to the dimensions of the 

robot. For the problem in Figure 5.2, the time t is firstly calculated for the robot to 

travel from its current location to the crossing point determined from the generated 

path. The instantaneous location of the moving obstacle after time t can then be 

calculated according to the motion information relating to the dynamic obstacle, 

allowing a region to be identified for assessment of feasibility using the algorithm for 

checking polygon clipping given in (Pavlidid 1982). 

static obstacle 

moving obstacle 

moving obstacle location 
at time t 

goal 

crossing point at time t 

AIL 
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I static obstacle -. 7k t 
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Figure 5.2 Evaluation of the possibility of collision with a moving obstacle. Note that the 
intermediate nodes of the generated path illustrated are vertices of the enlarged static 

obstacles. 

5.2.2 Pseudo-code of the vertex++ planning algorithm 

The vertex++ planner preserves the structure of the steady-state GA vertex planner 
described in the last chapter. The pseudo-code for the vertex++ planning algorithm is 

shown in Figure 5.3 and its implementation is described in the following sections. 
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Procedure Vertex++ Planning Algorithm 
begin 

number of generations g=0; 
input environmental information from sensors; 
enlarge the static obstacles; 
initialise the population P(g); 
evaluate P(g); 
while (not termination condition) do 

increment the number of generations g=g+1; 
randomly select Ojfrom four operators 

(crossover, mutation, repair, and speedmutation); 
select parents from P(g); 
apply the operator Ojto produce offspring; 
evaluate new offspring; 
replace worst member in P(g) by offspring; 

end while 
select the best individual p from P(g); 

end 
end procedure 

Figure 5.3 The vertex++ algorithm. 

5.2.3 Genetic representation and initialisation 

Candidate paths are represented by a chromosome (Figure 5.4) consisting of a total 

number of genes 1, where I has a minimum value of two (a path containing only the 

start and goal points) and maximum value of N+2, where N is the total number of the 

vertices of all obstacles (both static and dynamic) in the environment. The absolute 

coordinates of the vertices (xi, yj), are used directly in the gene 

representation rather than a reference to one of the N vertices (Wang, Mulvaney and 

Sillitoe 2006). The robot's speed, si in the segment originating from each gene is 

selected from a set of available discrete speeds. A single bit is also provided in each 

gene to indicate the feasibility of the path that originates from the gene; if the path 

segment connecting two consecutive vertices intersects one or more obstacles, then 

the infeasibility bit of the gene representing the originating node is assigned I to mark 

this segment as infeasible (it is 0 otherwise). 
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Figure 5.4 The structure of a chromosome. The first and last genes in the chromosome 
indicate the start and goal points respectively. The 1-2 intermediate genes represent the 

vertices of obstacles in the environment as well as the speed and feasibility of the segment 
that originates from the gene. 

The initial population P(O), is generated by randomly choosing for each individual 

both its length (in the range 2 to N+2) and the coordinates of the vertices contained 

therein, with the constraints that no vertex is repeated in a individual and that the first 

and last genes are always the start and goal points respectively. The speed for each 

gene is selected randomly from the set of discrete speeds. Compared with a fixed- 

length chromosome approach, the variable length strategy not only reduces the 

memory storage requirement, but also the processing time, as more time is generally 

needed for the fitness calculations if the individuals are longer. 

5.2.4 Evaluation functions 

A check for the feasibility of each chromosome is performed before evaluation of the 

chromosomes. Separate evaluation functions are applied to assess the qualities of 
infeasible and feasible paths. 

Two parameters, path length and travel time, are considered in the evaluation 
function Ef for feasible paths. Ef is given by 

Ef -. 11+1 d(Vj, Vj+j) + w, - 
1+1 Equation 5.1 = Wd - 

Zj-o 
i-Ot(V,, 

V, 
+, 

), 

where Wd and w, are the weights for path length and travel time respectively, 
V d(V,, v,,, ) denotes the distance between the pair of vertices and I(V ,,, ) represents 

the time needed to cover each segment from vertex Vj. to V1+1 which can be calculated 
by 
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t(V,, V,., ) = d(V,, V,, j) / s,. Equation 5.2 

where s, denotes the speed of the robot when travelling from Vj to V1,1. The infeasible 

paths are evaluated using the function Ej by considering the deepness of an infeasible 

path's int ersections with obstacles and is given by 

=, u il 
30 

Equation 5.3 

where y denotes the number of obstacle intersections along the entire path and I is 

the mean number of intersections in the infeasible segments. Given the two 

evaluation functions, the aim of the optimisation process in the vertex++ planning 

approach is to minimise the values of Ef and Ej for their respective populations. 

When the population contains both feasible and infeasible paths, all infeasible paths 

are assumed to be no better than the worst feasible path. A sufficiently large constant 
C is added to the costs for the infeasible paths to ensure the evaluation values of any 

given infeasible path is worse than the values for all feasible paths. This constant 

value C is given by 

C=(N+2)-D, Equation 5.4 

where N+2 indicates the maximum possible number of genes in an individual and D 

denotes the maximum length of a path segment (for example, this would be the 
diagonal in a rectangular enviromnent). 

5.2.5 Genetic operators and their selection 
Three of the total of four genetic operators are the same as those used in the vertex 

planner in the previous chapter, namely, crossover, mutation and repair. The fourth 

operator, termed speedmutation, has been introduced in this work in order to mutate 

the robot speed indicated in a gene and it is selected with a small probability. In order 

to keep the number of system parameters to a minimum, the selection of an operator 
from the four available is made randomly at each generation rather than being based 

on pre-defined probabilities for those operators. The crossover operation is performed 
by a conventional one-point operator, following which individuals are examined for 

repeated vertices, and, in order to eliminate circular paths, those replicated vertices of 
lower locus are removed (as the fitness of such individuals is worse than those 
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without a ring branch). The reason for choosing single point crossover is that when 

there are two or more crossover points there is a greater probability of making 

currently feasible paths infeasible. When the mutation operator is selected, only one 

bit is modified in the chosen individual. Mutation is inhibited if the replacement 

genes are already present in the individual. Note that the mutation rate will depend on 

the length of the individuals; for example if the average length of the individuals is 10 

bits for a certain planning task, then, on average, only 1 bit will be mutated in every 

fourth generation (there being four operators), giving a mutation rate of 0.025. This is 

why a single gene for mutation is selected from an individual rather than being based 

on a pre-defined probability. Consequently, the mutation rate is effectively adapted 

during the search process. The repair operator adjusts a randomly selected infeasible 

segment of an infeasible path, so that it circumnavigates all obstacles previously 

intersected, as illustrated in Figure 4.4 in the previous chapter. 

5.2.6 Evolutionary process 

As a steady-state GA has been adopted, only (following crossover) a single pair of 

individuals differs between consecutive generations. The generational operation 

begins with the random selection of a genetic operator and a quadratic ranking 

scheme (De Jong 1992; Watanabe and Hashem 2004) (see section 2.3) is used to 

retain the constant selection differential after evaluation. The parent (or parents for 

the crossover operation) that is involved in the genetic operation is determined by a 

roulette wheel whose slots are sized in proportion to the fitness as scaled by the 

ranking technique. To form a new generation, the newly generated offspring replaces 

the least fit individual (or pair of individuals if crossover is applied). The 

evolutionary process continues until a termination condition is satisfied, which can be 

defined to be a number of generations specified by the user or determined 

dynamically by monitoring specified performance criterion. When evolution 

terminates, the fittest individual is selected as the path planning solution. 

5.2.7 on-line planning 

On-line planning is triggered automatically to adapt to any changes in the movement 

characteristics of the dynamic obstacles that have occurred since the off-line plan was 
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computed. On-line planning is instigated only when such changes are detected within 

range of the robot's sensors, otherwise the robot continues to follow the previously- 

planned trajectory. Information gathered from the robot's sensors, with regard to the 

motion changes of obstacles, is supplied to the vertex++ planner which then uses the 

current state of the robot as the start configuration for its on-line evolutionary 

planning, and evolves a new path for the robot. The on-line planning algorithm is the 

same as that used in off-line planning, but with the additional assumption that the 

planning time is relatively short compared with that needed for the robot to 

implement motion changes to avoid collision with dynamic obstacles. 

5.3 Experiments and results 

Three separate experiments were carried out using MATLAB (Mathworks 2006) 

simulations on a 2.8GHz Pentium P4, each applied in the same set of four simulated 

environments. In the first, the robot speed is constrained to remain constant over the 

entire trajectory from start to goal, in the second, the robot speed was allowed to vary 

between segments and in the third, the on-line planner was required to respond to a 

number of motion changes made by the obstacles and the path was separately 

optimised for both travel time and path length. In the simulations, the trajectories of 

the dynamic obstacles along a segment joining any pair of adjacent nodes are 

approximated as linear. The number of obstacles present in each of the test 

environments is summarised in Table 5.1. 

Table 5.1 The numbers of obstacles in the four test environments. 

environment st 
number of number of 
atic obstacles dynamic obstacles 

142 
253 
394 
4 14 5 

To provide realistic challenges to the planner, the four environments were designed to 

reflect a representative range of applications in which mobile robots may be expected 

to operate. Simple trajectories for the dynamic obstacles were designed for the first 
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two environments, with the obstacles simply traveling to and fro between two 

specified locations. More complex paths for the dynamic obstacles were defined for 

the remaining two environments, involving speed changes and movement between a 

series of nodes. For off-line planning, the information regarding the motions of the 
dynamic obstacles is assumed to be completely known for the four environments 
before planning. Apart from the robot speed and the optimising criteria, all 

parameters remained unchanged throughout the set of experiments and they are listed 

in Table 5.2. 

Table 5.2 System parameters for the vertex++ planner. Note that mutation acts on only one 
gene to alter either the vertex or the speed of the selected segment and that the value of the 

safe distance is determined from the minimum distance that the robot can approach obstacles 
without collision, taking into account its physical dimensions. 

population mutation rate mutation rate repair rate safe distance 
size (for node) (for speed) (m) 

30 one gene one gene one infeasible 
segment 

5.3.1 Robot of constant speed 
The speeds of the obstacles in the different environments are chosen from a uniform 
distribution in the interval O. Olms-1 to lms*1 and an example of generated values are 

shown in Table 5.3. The results in Figure 5.5 show the paths produced for the robot 

traveling at constant speed (here assumed to be 0.5ms") in the four environments first 

in the absence of dynamic obstacles (left column) and secondly in their presence 
(right column). In the experiments, 1000 generations was normally more than 

sufficient to generate a suitable solution. The execution times to obtain feasible 

solutions in the dynamic environments were longer than those for the environments 

containing only static obstacles, but even in the more complex environments, 

consistent results were produced in less than 60 seconds. Little variation was evident 

when the navigation task was repeated. It can be seen that, in comparison with the 

results from environments where all obstacles are static, the paths generated in the 

presence of the moving obstacles are generally longer. In the dynamic environments, 
the planner often chose an alternative route around the static obstacles in order to 

avoid potential collisions with dynamic obstacles, thereby producing a shorter overall 

path through the entire obstacle population. Although this did not occur in 
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environment 1, where only a minor deviation was needed around the first dynamic 

obstacle encountered, in enviromnents 2,3 and 4 alternative routes around at least 

one of the static obstacles was chosen. 

The quantitative experimental results are presented in Table 5.4, where it can be seen 

that when moving obstacles are present there is an increase in both the execution time 

and the number of generations required to determine feasible paths. This increase is 

most pronounced in environinent 3 and this appeared to be due to the complex 
interactions that result from all four moving obstacles operating simultaneously in a 

region that needs to be traversed by the robot. From Table 5.4, it can be seen that, for 

the dynamic environments, the number of generations required to find the first 

feasible path for environment I with moving obstacles is double that obtained in 

dynamic environment 2, but a similar execution time is required. One possible reason 
is that although the application of the four genetic operators is randomly selected, 

their execution times are different. Therefore, the operators needing longer 

calculation times may be selected more frequently in the experiments carried out in 

dynamic environment 2 than in dynamic environment 1. Although the costs shown in 

Table 5.4 are travel times, the corresponding path lengths are linearly related due to 

the constant speed of the robot. 

Table 5.3 Examples of speeds (in ms") for the moving obstacles in the experiments 
conducted for the robot with constant speed 

environment obstacle I obstacle 2 obstacle 3 obstacle 4 obstacle 5 
1 0.75 0.35 
2 0.15 0.28 0.32 
3 0.81 0.39 0.18 0.47 
4 0.53 0.35 0.18 0.43 0.27 
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Figure 5.5 Comparison of the generated paths for the four environments both with no 
moving obstacles (left column) and with moving obstacles (right column). The paths 

generated for the robot follow a series of nodes marked by the symbol W, that indicate the 
intermediate vertices. The start and goal points for the robot are indicated by the solid dots 

marked IS' and V respectively. The trajectories for the moving obstacles (with nodes marked 
by the symbol I*') are shown solid in those parts already traversed up to the first crossing 

point (see Figure 5.4) and broken for the remainder of the trajectory yet to be followed. The 
positions of the moving obstacles shown are those at the time the robot reached the first 

crossing point. If crossing does not occur, the position of the moving obstacle shown is that 
taken at the time the robot reaches the goal. The heading of the obstacle at the moment of the 
first crossing (or at the time the robot reaches the goal) is shown by an arrow in the body of 

the obstacle. 
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Table 5.4 Experimental results for the robot with constant speed in the four environments 

cost - generations to execution time execution time 
environment travel time find first to find first for 1000 

(S) feasible path feasible path (s) generations (s) 
no moving 1327 8 2.25 20 4 
obstacles . 1 2 moving 1338 26 3.81 39 2 
obstacles . 

no moving 1053 35 3.38 22 5 
obstacles . 2 3 moving 
obstacles 

1142 13 3.78 40.2 

no moving 838. 26 3.80 30 9 
3 obstacles . 

4 moving 
obstacles 

911 54 14.0 66.1 

no moving 1102 155 27.3 99 7 
obstacles . 4 5 moving 
obstacles 

1191 166 39.4 118 

5.3.2 Robot of variable speed 

In these experiments, the robot's speed between a consecutive pair of vertices was 

selected from the set {0.3,0.4,0.5,0.6,0.7) ms", whereas the speeds of the dynamic 

obstacles were obtained from the range [0.1,1.2] ms" with a resolution of O. Ims", 

examples of generated obstacle speeds are shown in Table 5.5. 

Table 5.5 Examples of speed parameters (in ms') randomly generated for each path segment 
of the moving obstacles for the experiments conducted with the robot operating at variable 

speed. 

enyironment obstacle I obstacle 2 obstacle 3 obstacle 4 obstacle 5 

1 0.5,0.1, 0.1,0.5, 
0.2,0.4 0.2,0.4 

2 0.6,0.1, 0.3,0.6, 0.1,03, 
0.4,0.7 0.1,0.4 0.2,0.4 
0.8,1.1, 0.4p 0.5p 03 05 0.390.6, 

3 0.7,0.3,, 0.6,0.4, 0-5,0-7, 
0.5 0.3 0.2 

0.6,1.2,0.7,1.2,0.3,0.2,0.2,0.7,0.4,0.9, 4 0.3,0.2 0.6,0.4,0.5,0.1,0.6,0.2,0.7,0.2, 
0.5 0.6 1.0,0.4 0.5,0.2 

The robot paths for this set of experiments are shown in Figure 5.6. In comparison 

with the results in Figure 5.6, it can be seen that the trajectories generated have been 

modified as a result of the range of speeds now available to the planner. In particular, 
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in environment 1, the planner now chooses to drive the robot in a longer path around 

the first static obstacle in order to avoid the first dynamic obstacle and, in 

environment 2, the planner has determined changes to the robot speed allow a path to 

be 1`61lowed that more closely resembles that taken for the same environment in 

Figure 5.5 where only static obstacles were present. Although the paths generated ill 

environments 3 and 4 pass through the same vertices as those in the corresponding 

dynamic results in Figure 5.5, the instantaneous locations ot'the moving obstacles are 

different due to the range of speeds now allowed for the robot and dynamic obstacles. 

As only travel time is considered in the evaluation f'unction Ior tile 1easible paths, in 

its attempts to minimise the travel time, the GA tends to choose the maxii-nuill speed 

from those available. The details of the number of generations and execution times 

required for generating the solutions depicted in Figure 5.6 are shown in Table 5.6. Ill 

particular, it can be seen that the ability of the planner to select the operating speeds 

for tile individual segments has permitted the more rapid identification Of' Suitable 

individuals in the GA, and resulted in a significant reduction in the execution time in 

environment 33. 
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Figure 5.6 The patlis generated for a mobile robot with speeds determined by the GA. 
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Table 5.6 Results in the four environments for the robot with variable speed. 

cost - number of execution time execution time 
environment travel generations to find to find first for 1000 

time (s) first feasible path feasible path (s) generations (s) 
1 982 53 4.02 39.4 
2 752 54 6.31 40.8 
3 651 52 7.78 59.5 
4 851 151 36.4 124 

53.3 On-line planning 
The experiments presented in this section investigated on-line planning. The motions 

of the dynamic obstacles in the four environments were changed (in both trajectory 

and speed) after the robot had followed the paths generated off-line for a specified 

time duration. Table 5.7 shows an example set of such obstacle speeds used in the 

generation of the paths shown in Figure 5.7. In the experiments, where a change in an 

obstacle's trajectory or speed was detected by the robot's sensors, the planner was re- 

executed in order to generate a new plan using the updated configuration. Only those 

portions of the paths that were followed after the execution of the on-line planner are 

plotted in Figure 5.7 (the original paths the moving obstacles followed can be seen in 

Figure 5.6). The left column in Figure 5.7 reports the trajectories planned with travel 

time as the evaluation criterion for the feasible paths, whereas the right column shows 

the paths evolved on the basis of minimising path length. 

Table 5.7 Example of modified speed parameters (in ms") generated for each moving 
obstacle path segment. 

environment obstacle I obstacle 2 obstacle 3 obstacle 4 obstacle 5 
1 0.1 0.55 - 
2 0.4,0.1 0.2 0.5 - 
3 0.3,0.5 1.1,0.4 0.7,0.4,0.6 1.2,0.5,0.4, 

0.8 
4 0.9 1.4,0.7 1.1,0.2,0.5 0.3,1.1 1.6,0.5,0.6 

Comparing Figure 5.6 and Figure 5.7, the path generated for environment I when 

optimising for travel time (left column) is modified in order to avoid the moving 

obstacle, but, when optimising for path length (right column in Fig 5.8), the same 

path as that obtained in Figure 5.6 can be followed. For environment 2, the re-planned 

95 



Chapter 5: Vertex++ planner 

path in the right column of Figure 5.7 appears to be the same as that planned before 

the obstacle changed trajectory, whereas, on careful examination, it can be seen that 

the trajectory in the left column has required minor modifications to the choice of 

intermediate nodes. The paths presented in both columns of Figure 5.7 for 

environment 3 selected, as intermediate nodes, the same vertices in same order. 

However, neither path for environment 4 is the same as that generated off-line 

(Figure 5.6). since the planned robot movements were forced to change by the 

modified motion of the dynamic obstacles. In general, it can be seen that as a result of 

different optimisation criteria. the trajectories illustrated in the right column for path 

length are generally shorter than those in left column for path length. 
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Figure 5.7 The paths as planned following the motion changes ofthe obstacles (detected by 
the robot when positioned at tile points marked 'C') that occurred after 400,380,300, and 

320 seconds for environments 1,2,3, and 4 respectively. The lelt column contains the paths 
generated for tile optinlisation goal of travel tinle, \vliercas the paths presented in right 

column are the results ofoptirnising tile path length. 

The quantitative results shown in Table 5.9 demonstrate that the maximum speed 

(0.7nis-) is the one most frequently chosen from the set available when tile 

optimisation goal is travel time, whereas lower speeds were selected more Irequently 

when the path length is the optimisation criteria. Additionally, the execution time for 

1000 generations in the on-line process (shown in Table 5.8) are generally less than 

those found for off-line planning (Tables 5.4 and 5.6). This can be explained by the 

fact that the length of the individuals is generally shorter when performing on-line 

planning, simply because the robot has advanced closer to the goal and there will 

likely be fewer intermediate vertices (the number of' intermediate nodes for the final 

paths can be seen in Figure 5.5,5.7, and 5.8). Table 5.8 also shows that NvIlen 

optimising for travel time, although the maximum speed was Frequently chosen, 

occasionally a faster path could be obtained by reducing speed to avoid more 

cfficiently a dynamic obstacle. In contrast, optinlising for mininium path length 
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necessitated more frequently reversion to lower speeds and consequently these paths 

were likely to consume significantly less power to drive the robot to its destination. 

Table 5.8 Experimental results for the on-line planning. Note that the medians over 100 
independent runs are shown, except that the robot speeds are the representatives of a single 

run from the 100 runs. - 

environment 

cost in terms of 

path travel 
length time 

(m) (S) 

generations 
to find first 

feasible 
path 

execution 
time to find 

first 
feasible 
path (s) 

execution 
time for 1000 
generations 

(S) 

robots eed 
(ms--V ) 

1 419 616 38 1.13 26.6 0.7,0.6,0.7, 
optimise 0.7,0.7 

for 2 358 555 43 1.61 35.6 0.4,0.7,0.7 
travel 3 300 428 58.5 3 72 56 5 0.7,0.7,0.7, 
time . . 0.7 

4 372 531 93.5 9.09 81.3 0.7,0.7,0.7 

1 407 893 38.5 1.16 25.9 0.7,0.3,0.3, 
0.3 

optimise 2 317 829 39 1.43 35.2 0.4,0.3,0.3 
for path 3 300 552 58 3 56 56.2 0.7,0.3,0.7, 
length . 0.7 

4 366 817 95 5 9 63 80 0.6,0.3,0.3, 
. . 0.5,0.3,0.3 

5.3.4 Comparison 

This section evaluates the performance of the vertex++ planner in its comparison with 

aEP/N++ (Smierzchalski and Michalewicz 2006), and using optimisation goals of 

path length and travel time for the on-line planning process described in the previous 

section. Although only results for on-line planning are presented, the comparison is 

also valid for off-line planning process, as each planner uses the same algorithm for 

their respective on-line and off-line planners. The system parameters of vertex++ 

were kept as close as possible to those of aEP/N++ and are shown in Table 5.9. Note 

that the operator for each generation was selected on a random basis from those 

available (Smierzchalski and Michalewicz 2000 and 2006) and the same evaluation 
function for feasible paths (see section 5.2.4) was used for both planners. The system 

parameters for the vertex++ planner are shown in Table 5.2. 
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Table 5.9 System parameters for the aEP/N++ planner. Note that the weight for distance (or 
time) is I if the optimisation is distance (or time), otherwise it is 0. One of nine operators is 

selected randomly for each generation. 
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The experiment was arranged for two separate optimisation criteria, travel time and 

path length, and the path quality and execution time were evaluated for the search 

process until no improvements in fitness were detected for the best individual over 
300 consecutive generations. For each of the two algorithms over 100 independent 

runs were conduced for the same planning problems and the median values calculated 
(as mean values are often distorted by extreme experimental data for small sample 

sizes). 

The first experiment conducted was to optimise the travel time for the environments. 
Figure 5.9 illustrates the changes in path cost of the best individual for each 

generation before obtaining the first feasible path. The quantitative results are shown 
in Table S. 10. 
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Figure 5.9 The path cost for the best individual ol'each generation obtained llor both 
planning algorithms with the oplimisation goal of'rilinimising travel Iii-ne Im the first 

evolutionary phase (containing all intleasible paths) during the on-line process. Note that the 
medians of the path costs over 100 independent runs are shown. 

'I'llc iniprovernents achieved by vertex++ in terms of execution time call be observed 

in both Figure 5.9 and Table 5.10, whereas similar path qualities were obtained at tile 

end ofthe first evolutionary phase during which only infeasible patlis exist. I lowever, 

the number of generations required by vertex++ to obtain the first tleasible path is 

generally larger than that needed by KP/N++. ]'his is probably because in vertex++ 

the search space constrained to the vertices ofthe obstacles, whereas in ý1, I'/N+-i free 

space dominates for making it relatively easy to obtain a 1'easibic path. In those 

environments that contain far more space that is unoccupied than that containing 

obstacles, it would perhaps be expected that the difference in tile number of 

generations required would be substantially greater than that actually lound. Further 

evidence can be seen in tile experimental work reported in chapter 6.1 lowever, it 
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seems that vertex++ planner does not need a very large number of generations to 

deliver a feasible path, and the possible reason is as follows. In 9EP/N++, a total of 

nine operators (Smierzchalski and Michalewicz 2000 and 2006) were used, whereas 

the vertex++ planner has only four operators (section 5.2.5). Consequently, the 

individual operators in vertex++ were applied more frequently than in 9EP/N++. In 

the dynamic environments, control of speed appears to be particularly efficient in 

avoiding collisions and the corresponding operator is applied more frequently in 

vertex++. Also, the time inefficiency of 9EP/N++ may be attributed to those 

operators that enlarge an individual's length, for example, the insert-delete operator 

inserts new nodes into infeasible paths. The vertex++ planner naturally limits the path 

length to the total number of vertices of the obstacles, whereas, in 9EP/N++, there is 

no constraints on the path length and ihere is no specific upper bound for the path 

length during the search. Clearly, longer paths need more time to check feasibility. 

Table 5.10 The execution time and the number of generations to obtain the first feasible path 
when minimising travel time. The medians values are obtained over 100 independent runs. 

execution time to number of generations 
environment planning obtain the first to determine the first 

method feasible path (s) feasible path 

aEP/N++ 1.28 30 
I 

Vertex++ 1.13 38 

2 aEP/N++ 2.16 39 
Vertex++ 1.61 43 

3 aEP/N++ 6.02 66.5 
Vertex++ 3.72 58.5 

4 aEP/N++ 12.5 93 
Vertex++ 9.09 93.5 

Figure 5.10 shows the results obtained by the two approaches in the second phase as 
feasible paths are evolved to optimal or near optimal paths. The results to find the 

final path is summarised in Table 5.11, and are obtained from both evolutionary 

phases. 
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Figure 5.10 The path cost of the best individual of each generation by both planning 
algorithms with tile optimisation goal of minimising travel time during the second 

evolutionary phase (containing all feasible paths) during the on-line process. Note that the 
medians of the path costs for 100 independent runs are shown. The evolutionary process for 

each run terminated when the fitness of the best individual remained UnChlinged for 300 
successive generations. 

From Figure 5.10. it can be seen that a significant improvement in execution time is 

exhibited by the vertex++ planner when compared with 9d'P/N++ during the second 

phase. The path quality obtained by the vertex++ planner remains similar to that of 

ýEP/N++ for environments 1,2, and 3, while a better path was generated by the 

vertex++ planner in environment 4. As KP/N++ operates ill tile entire search space 

of the environment, the first feasible path obtained is likely to be far from optimal, 

but, as only a few feasible paths exist when tile search space constrained to the 

vertices of the obstacles, the first feasible path generated by vertex++ is likely to be 

shorter. As the rate of application of the crossover operator is relatively high in tile 

vertex++ planner, there will be a faster propagation of' elite genes among the 
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population, thereby accelerating convergence. Similarly, the vertex++ planner more 
frequently applies the speed operator; speed control being particularly important in 

determining optimal or near optimal solutions in dynamic environments. Finally, the 

smooth operator that is applied only by aEP/N++ and inserts new'nodes into a 
feasible path in order to reduce sharp turns, but extra time is subsequently required to 

evaluate the longer paths generated. 

Table 5.11 The execution time and the number of generations to determine the final path 
when minimising travel time. Note that the evolutionary process terminates when the fitness 
of the best individual remains unaltered for 300 successive generations. The execution time 
indicates the time taken for the entire evolutionary process. The medians values are obtained 

over 100 independent runs. 

execution number of execution 
planning time to generations time for travel path 

environment method 
find the to determine 1000 time length 

final path the final path generation (S) (m) 
(S) (S) 

9EP/N++ 55.1 1202 45.7 619 411 I 
Vertex++ 21.4 805 26.6 616 419 
9EP/N++ 50.1 908 54.5 576 357 2 Vertex++ 29.9 839 35.6 555 358 
9EP/N++ 105 1226 82.9 443 307 3 Vertex++ 53.1 939 56.5 428 300 
9EP/N++ 163 1241 129 641 401 4 
Vertex++ 98.1 1103 81.3 531 372 

Table 5.11 shows the reduction in execution time by the vertex++ planner in 

comparison with aEP/N++ for the entire search process. Overall, a reduction of 

around 50% was obtained for the four environments, although a modest reduction in 

the number of generations was achieved. Clearly, this implies that the average time 

taken by aEP/N++ for each generation is longer, and this can also be seen from the 

execution time required by the two algorithms for 1000 generations. Two possible 

reasons may explain the calculation time difference: one is that one or more problem. 

specific operators of aEP/N++, such as swap and smooth, are rather time consuming, 

whereas the simple operators (such as crossover, mutation, and speed mutation) that 

were also applied to feasible paths by vertex++ took rather less time to execute; the 

other is the number of genes in the path has been increased by the smooth operator 

increasing the application time of subsequent operators. Compared to aEP/N++, 
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Table 5.11 shows that minor improvements can be seen in terms of travel time by the 

vertex++ planner for environments 1,2 and 3, whereas the vertex++ planner was 

generally able to generate a much better path for environment 4. For path length, a 
longer path was generated by the vertex++ planner for the environments I and 2, but 

a shorter one for environments 3 and 4. This does not imply the vertex++ planner is 

worse than aEP/N++, as the optimisation goal in the experiments was travel time. 

Figure 5.11 and Table 5.12 report the results obtained by the two planning algorithms 

when the minimisation of path length was the sole optimisation goal. Compared with 

aEP/N++, a reduction on the execution time for the first evolutionary phase was 

observed for the vertex++ planner. Again, the average time for each generation 

required by the vertex++ planner is relatively short as the number of intermediate 

nodes of a path was naturally limited to be no more than the number of the vertices of 

the obstacles. The reduction in the number of generations required by vertex++ for 

environments 3 and 4 may be due to the application rate of repair operator which is 

relatively high compared with aEP/N++, aiding the rapid transformation from 

infeasible to feasible paths. However, this effect is not so apparent in short search 

processes as found in environments I and 2 
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Figure 5.11 The path cost offhe best individual ofeach generation produced by both 

planning algorithms with optirnisation goal ot'path length for the first evolutIonary phase 
(containing all infeasible paths) during the on-line process. Note that the medians ofthe path 

costs over 100 Independent runs are shown. 

Table 5.12 The execution time and the number ot'generations to obtain the first feasible path 
when minirnising path length. The medians obtained over 100 independent runs are shown. 

planning execution time to number ot'generations 
environment rnethod obtain the first to determine the first 

feasible path (s) feasible path 

EWP/N++ 1.25 29 
Vertex++ 1.16 38.5 

2 5EP/N++ 2.13 39 
Vertex++ 1.43 39 

3 ýEP/N++ 6.6 78.5 
Vertex++ 3.56 58 

4 HP/N++ 13.5 103 
Vertex++ 9.63 95.5 

The results for the second evolutionary phase is illustrated in Figure 5.12 and the 

quantitative measures for the complete process are presented in Table 5.13. The 
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reduction of execution time for vertex++ is evident, with the most significant 

reduction being in the first environment (approximately 67%), whereas the smallest 

reduction is in environment 4 (around 46%). The number of generations was also 

reduced, but not so significantly. Again, the simpler set of genetic operators available 

to vertex++ and the natural upper limit to the number of intermediate nodes yield a 

reduction in execution time and the reduction in the number of generations is 

probably due to the search space being constrained to the set of the vertices of the 

obstacles. The vertex++ planner was generally able to produce the final paths with 

same quality as ýEP/N++, but the paths generated by aEP/N++ for environments 3 

and 4 were shorter. To avoid collisions with moving obstacles, aEP/N++ is able to 

select nodes within the free space far from the vertices of the obstacles to produce a 

shorter path. However, as the vertex++ planner was constrained to the vertices of the 

obstacles, the collision-free path generated may be longer due to geometrical 

constraints. Although the optimisation goal for this experiment was set to be path 
length, the corresponding time is also shown in Table S. 13, where it can be seen that 

the vertex++ planner was generally able to reach the goal in less time than aEP/N++. 
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Figure 5.12 The path cost of the best individual of each generation produced by both 

planning algorithms with the optimlsation goal of path length for tile second evohitjojlýjry 

phase (containing all feasible paths) during the on-line process. Note that the medians of the 

path costs over 100 independent runs are shown. The evolutionary process for each run 
terminated when the fitness of tile best individual rcmamed uncliangcd over 300 SLICCCSSive 

generations. 

Table 5.13 The execution tirne and the number of generations to determine tile final pall, 
when nifflinlising path lengt h. Note that the evolutionary process terminates when the fitness 

of the best individual remai ns unaltered for 300 successive generations. T he exec ution time 
indicates the time taken for the entire evolutionary process. T he niedians are obta ined over 

100 inde pendent runs. 

execution number of execution 
planning time to find generations 

time for travel path 
environment method tile final to determine 1000 

. 
time length 

path (s) the final path generation (S) (111) 
(S) 

aEP/N++ 44.4 977 45.6 912 407 I Vertex++ 14.6 554 25.9 893 407 
'JEP/N++ 52.7 974 54.4 841 322 2 Vertex++ 25.4 722 35.2 829 317 
aEP/N++ 85.0 1057 82.3 674 295 3 Vertex++ 42.5 756 56.2 552 300 

4 
aEP/N++ 115 934 125 888 356 
Vertex++ 61.7 754 80 817 366 
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5.4 Discussion 

The evolutionary process can be classified into two phases. The proposed algorithm 

evolves the randomly initialised potential paths into free-collision trajectories in the 
first evolution phase. Subsequently, the feasible solutions are guided to optimal or 

near-optimal solutions under the guidance of the feasible evaluation function. The 

rapid convergence in the first phase, when conversion from infeasible paths to 
feasible paths takes place, can be attributed to the repair operator that was developed 

following experimental observation. The mutation operator is less effective in the 
initial evolution stage as relatively few bits are mutated. As only one gene in the 

population is modified when the mutation operator is applied, its effect is diluted in 

the earlier generations' population due to the greater prevalence of longer individuals. 

The effective increase in the mutation rate in the later evolutionary generations 

effectively promotes population diversity (and so exploration of new areas of the 

search space) and inhibits premature convergence. The quality of the final solution 

produced in the second phase appears to be highly dependent on the quality of the 
initial individuals that are supplied following the operations of the first phase. If the 
initial supply for the second evolution phase is sparse (in that all the necessary 
building-blocks for the global optimal solution are not present), the process may be 

led into a local minimum. The higher mutation rate apparent in later evolutionary 

steps promotes the diversity by modifying the inherited building blocks; however the 

mutation is not sufficiently dominant in the process to necessarily avoid the GA 

becoming trapped in a local minimum. The vertex++ planning algorithm has been 

demonstrated as being capable of generating an optimal or near-optimal path for the 

robot in a relatively short time compared with aEP/N++ which is also able to operate 
in environments containing dynamic obstacles. The search space has been constrained 
to the vertices of the obstacles and reduces the number of generations required by 

aEP/N++'to generate an optimal or near optimal solution. Furthermore, it appears that 

the application of a small number of operators that performs only simple tasks is able 
to improve the performance in terms of execution time. The current implementation 

has been carried out in MATLAB and a significant improvement (reducing the 

108 



Chapter 5: Fertex++ planner 

calculation time by a factor of five to ten times) is to be expected when executed in a 

compiled language such as C. 

5.5 Conclusions 

A number of experiments have been presented for a range of assessment criteria in 

order to verify the capability of the vertex++ planner using navigation problems in 

dynamic environments. The planner searches for the optimal solution in a space 
limited to the vertices of the static and dynamic obstacles, rather than requiring the 

entire environment. By modelling the moving obstacles involved in the robot 

environment, it has been shown to be possible to determine a collision-free path 
between two specified locations in an off-line fashion. On-line planning is 

appropriate when the motions of the obstacles change from those values known at the 

time of generation of the original plan computed off-line. 

From the experimental results, it can be seen that a suitable solution can be produced 
by the proposed planner for relatively complex planning problems in a reasonable 

time. Wheretravel time is crucial it was found that, in the environment considered, 
full speed can be applied in most segments of the trajectory. However, environments 

could easily be conceived in which operating at full speed throughout the trajectory 

would result in a much extended path due to the robot's circumnavigation of dynamic 

obstacles. If minimising the path length is more important, for example to conserve 

energy, lower speeds can be planned and this is likely to result in a shorter overall 

path. 

One of the next objectives of this research is to relax the assumption that details of 

the obstacles' motion changes need to be completely known and that there, is always 

sufflicient time for re-planning without significant impact on robot travel times. The 
investigations in this area are discussed in the following three chapters. The next 

chapter introduces the waypoint-based navigation system for stationary environments. 
This . system was augmented to include the navigational ability to interact with 

moveable objects, which is described in chapter 7. A generalised navigation system 
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that allows paths to be planned between any two pairs of points in the enviromnent is 

described in chapter 8. 
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Chapter 6 

WAYPOINT-BASED 

NAVIGATION IN STATIC 

ENVIRONMENTS 

The previous two chapters contribute to the development of the planners by 

enhancing path planning performance. However, both of the planners rely heavily on 

world models even though a new plan could be generated for an environment 

containing moving obstacles. In unknown environments, the deliberative model- 

based approaches are not appropriate and earlier knowledge of the environment need 

to be accumulatively acquired from navigation that has been performed reliant on 

sensory information. Although navigation quality may be improved by a detailed 

model of the environment, its construction (where possible) involves considerable 

complexity in terms of execution time and memory usage. Any errors arising during 

map building may give rise to poor performance or complete failure in subsequent 

navigation tasks. Reactive navigation systems, on the other hand, afford real-time 

robust reaction in a varying world, and are'tightly coupled to the available sensory 

information. However, their movement (at a non-local level) is unlikely to be optimal 

and may cause the robot to become trapped in local minima. A new hybrid system is 

developed and presented in this chapter with the aim of addressing these issues by 

combining the advantages and overcoming the drawbacks of the deliberative and 

reactive approaches. The work in this chapter has been submitted to Robotica, and 
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part of the work was also presented at the 6th World Congress on Intelligent Control 

and Automation in 2006. 

The new work presented here employs a reactive navigation system to determine and 

navigate between suitable locations, termed waypoints, in the robot's environment 

space. The waypoint in the proposed system is defined as a location where the robot 

changes its behaviour as a result of reacting to the perceived environment. However, 

due to the ill-defined boundary between the 
_ 
primitive behaviours in the reactive 

implementation adopted, heading and sensory information are used in determining the 

locations of the waypoints. Specifically, when under reactive control, a location is 

marked as a waypoint if the robot deviates from the path it is currently following in 

response to the presence of one or more detected obstacles. A, more detailed 

explanation of the definition of a waypoint and a summary of the use of waypoints in 

other navigation systems are described in section 6.2. A genetic based approach was 
developed for deliberative planning that determines the sequence of previously- 
discovered waypoints that need to be followed to satisfy future mobile robot tasks. 

The deliberative navigation system also manages exploration to allow additional 

waypoints in the robot's environment to be discovered if time permits. The 

exploration is directed by the known waypoints to investigate relevant and promising 

areas. This simplification of the required representation of the environment reduces 

considerably both the computation and memory requirements without significantly 

affecting navigation performance. Moreover, the method does not require a priori 
knowledge of the environment and, in unseen environments, the recorded waypoints 

can be used to facilitate escape from certain obstacle configurations that would 

normally trap robots under the control of a reactive navigation system. 

The following section presents the related work, section 6.2 outlines and explains the 

new waypoint system, section 6.3 explains the planning algorithm developed, section 
6.4 describes how the waypoint navigation method is able to escape from certain 
obstacle shapes, section 6.5 presents the experimental procedure, section 6.6 shows 
the experimental comparison of the navigation methods, section 6.7 presents further 

detailed investigations of the waypoint navigator in its application to complex 
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environments, and section 6.8 compares the proposed system with several recent 

hybrid architectures described in the literature. 

6.1 Related work in hybrid systems in static environments 

The earlier attempts by a number of authors to implement navigation systems using a 

hybrid architecture were introduced in section 3.3. The more recent work found in the 

literature largely use a three-layered architecture (following the earlier work of 

Atlantis (Gat 1991a and 1991b), SSS (Connell 1992), and 3T (Bonasso et al. 1997)) 

arranged in a hierarchical fashion. 

The nested-loop architecture (Santos, Castro and Ribeiro 2000) consists of three 

loops, namely reflexive, reactive, and functional, arranged in such manner that a loop 

of a lower level of abstraction is nested into the immediately higher one. In each loop 

the information follow is from sensor input to generated actions. Emergency 

situations, such as imminent collision and actions to escape traps, are handled in the 

reflexive loop and a direct command is given immediately on their detection. The 

reactive loop performs local navigation according to the path generated in functional 

loop' which is responsible for determining the strategy used in local movements. The 

authors also provided a comparison with other architectures in the text that described 

the new method, but no experimental comparison was reported. Although such a 

system may have benefits for navigation in complex environments, most actions 

generated are not tightly linked to the raw sensory information but are directed by the 

functional loop and consequently the computational load is increased when providing 

local demands. 

The hybrid architecture developed by Aguirre and Gonzilez (2003) consists of three 

layers, which, in order of hierarchy were: planning, executive, and control layer. The 

generation of a safe path with minimum cost is carried out in planning layer based on 

the topological map of the environment using either Dijkstra (Cormen et al. 2001; 

Latombe 1991) or A* (Hart, Nilsson and Raphael 1968; Murphy 2000). The middle 
layer, the executive layer, determines which primitive behaviours are activated to 
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accomplish the plan generated, and has the additional function of monitoring the 

robot performance so that potential failures can be identified. Activated behaviours 

are combined to produce a single action in the lowest layer, the control layer, which is 

responsible for the motion control. The sensory information is transformed to produce 

suitable inputs to the mapping unit, the executive layer and the control layer, whereas 

the abstracted map is shared between the planning and executive layer. The hybrid 

system was tested in an office-like environment, but its suitability to other 

environments is unclear. Also, no comparison with other architectures to further 

evaluate the developed system is given and in the absence of the executive layer, 

(which co-ordinates the individual behaviours), the success when navigating to the 

goal and how the robot behaves are not reported. 

The set of agents in the hybrid system described by Mufloz-Salinas et al. (2005) for 

navigation in office-like environments was organised into three layers: deliberative, 

execution and monitoring, and control. According to the mission assigned by an 

external operator, the deliberative layer generates a path consisting of a sequence of 

rooms and corridors that the robot needs to navigate in order to reach the goal. A* 

search (Hart, Nilsson and Raphael 1968; Murphy 2000) was used to generate the 

navigation plans using a topological representation of the environment either supplied 

a priori or produced autonomously by exploration. The local navigation for partial 

plans was managed by the monitor agent (in the execution and monitor layer) that 

was able to perform transformation to an appropriate skill (for example find a door in 

room) in order to accomplish the sub-goal. Skills were able to activate a set of fuzzy 

behaviours to achieve the sub-goal. The lowest layer, the control layer, was further 

subdivided into the behavioural and hardware levels. In behavioural level, a vision 

agent was used to identify landmarks, and a navigation agent implemented the 

specified behaviours. Two agents are contained in the hardware level: one to deal 

with the communication between the agents and the second to operate the pan-tilt unit 

on which a camera for detecting landmarks is mounted. The hierarchical layers were 

connected in a manner that allowed bi-directional communication of navigation tasks 

to be ordered in a top-down manner and errors from the lower layer to the upper layer. 

The world model was shared among all agents and whether navigation would be 
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successful in absence of the higher-level guidelines remains unclear. Compared with 

the nested loop architecture of Santos, Castro and Ribeiro, (2000), there appears to be 

no agent to deal with emergent situations. No comparison with other hybrid systems 

was carried out and so the advantage of this system with respect to the existing 

alternatives is not clear. The experiments, being limited to office-like environments, 

seem to restrict its application and modification may be required for application to 

other environments. 

A hybrid control architecture for navigating a robotic fish was introduced by Liu, Hu 

and Gu (2006). Three layers, cognitive layer, behaviour layer and swim pattern layer, 

organised in a hierarchical manner, comprised this architecture. The central layer 

contained a set of behaviours realised by fuzzy-logic controllers with individual 

behaviours being activated according to sensor states and combined through the 

behaviour coordination component to determine a particular swim pattern. The lowest 

layer, swim pattern layer, converts the specified swim pattern into the control of the 

individual joints of the robotic fish. The cognitive layer produced a set of actions to 

lead the robotic fish from the initial configuration to the goal configuration, with the 

output being the parameters for the coordination module in the behaviour layer rather 

than the actions themselves. In this way, the emergent behaviour for each movement 
is largely influenced by the output of the cognitive layer. However, any errors 

generated in the planning process (possibly due to inaccuracies in the representation 

of the environment) may produce ill emergent behaviour. Additionally, no clear 

strategy to construct the world model was reported in the paper. 

Maaref and Barret (2002) combined global planning and local reactive methods into a 
hybrid system. In unknown environments, the robot relies on a set of fuzzy 

behaviours to move, whereas navigatio n* could be accelerated by fast tracking the path 

generated by the global planner if the partial or entire world model were available. In 

order to avoid deadlock problems often found in purely reactive systems, separate 

strategies to coordinate the behaviour have been developed for convex and concave 

obstacles. If a convex obstacle is detected, goal seeking behaviour and a behaviour to 

move the centre of the collision-free space will be combined. Escaping the concave 

115 



Chapter 6: Waypoint-based navigation in static environments 

obstacles relies on the coordination of behaviours; used for convex obstacles and wall 
following behaviour. In order to follow the generated path and avoid unmodeled 

obstacles, a fuzzy decision module is used to generate the final action by taking into 

account the commands from a virtual robot moving in the known environment and 

the robot in the actual environment. However, a longer execution time in conjunction 

with a high-resolution world is needed Ao generate the final action of producing a 

sufficient accurate output for the virtual robot at each step. Such a high quality model 

requires the allocation of significant memory, otherwise positional errors may 

accumulate to such an extent that localisation with respect to the real robot becomes 

too poor for practical purposes. In the described architecture, the generation of 
behaviours and the coordination between activated behaviours are not directly guided 
by the deliberative module, hence basic navigation is achievable in unknown 

environments. 

Wang, Yong and Ang Jr. (2002) proposed a hybrid approach to navigation in an 
indoor environment. Global path planning was achieved using the distance transform 

that was based on a known grid map, whe reas the local navigation was guided by a 

potential field. The navigation system was implemented for known environments 

represented by a grid map, where each cell was assigned a distance from the goal 
location by the distance transform method that propagated the distance value relative 

to the goal location. Cells occupied by obstacles were labelled with a very high value 

relative to unoccupied ones. A collision-free optimal path could then be generated by 

the steepest descent method based on cell values in the distance map. In response to 

the environmental changes, local navigation was directed by a potential field to 

follow a set of sub-goals that are points with the smallest distance between the pre- 

planned path and the circumference of a circle (which may not be in sensory range) 

centred on the robot. The experimental study demonstrated that the local minima that 

often results from the potential field approach can be overcome with the aid of global 

planning. To construct an a priori grid map and a potential field is computationally 

expensive. In addition, the method to determine the radius of the circle in generating 
the sub-goal is not well defined and needs to be obtained empirically. Also, whether 
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the robot can actually escape from local minima is questionable when it enters an 

unknown enviromnent and global planning is infeasible. 

A hybrid architecture was proposed in by Li et al. (2004) for indoor navigation. This 

system consists of 10 components which can be classified into four categories. The 

deliberative components, pathplanning, generate a path according to the target 

specified through userinterface. The obstacledelecting component, which belongs to 

the monitor type, discovers the obstacles en route. The three components of reactive 

type, goto, orienting, and obstacleavoiding, perform basic navigation to rotate and 
head towards the goal (or sub-goals if any) while avoiding any obstacles detected. 

The fourth type of components, called hardware abstraction, contains lasersever and 

robotbasesever, which function as interfaces from other components to the laser 

sensors and actuator respectively. No specific algorithm for each component was 
described in the paper. This architecture clearly lacks components for map building, 

localisation and exploration, and the system was not evaluated by comparison with 

any other system. 

An architecture built principally on the behaviour-based control was proposed by Na 

and Oh (2003), in which environment was classified by a neural network into one of 
16 situations. The output of this unit then selects an appropriate behaviour from a set 

of neural network behaviours to control the steering angle and to configure a potential 
field to generate the speed command. Although the authors described the architecture 

as hybrid, such description is probably not appropriate as it did not contain a 
deliberative component. It is clear that the absence of proper management in the 

navigation is one of the system's major disadvantages. Moreover, the experimental 

studies were performed in only indoor environments and no comparison to other 

systems was carried out. 

Other approaches whose relationship to the current work is not as close as those 

already mentioned, include the contribution made by many of them, Santos, Castro 

and Ribeiro (2000), Aguirre and Gonzdlez (2003), and Mufloz'-Salinas et al. (2005), 

who all used abstract representations of environments rather than a detailed model. 
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The disadvantages of constructing a detailed model are that it can be difficult to 

construct in many applications, it is often unnecessary for satisfactory navigation in 

most practical applications, calculation time is long and considerable memory is 

required for storage, and it is difficult to incorporate dynamic changes into the world 

model. Most architectures (Aguirre and Gonzdlez 2003; Li et al. 2004; Maaref and 
Barret 2002; Mufioz-Salinas et al. 2005; Wang, Yong and Ang Jr. 2002) were 

evaluated only in indoor environments which tend to be well structured. 
Consequently, the performance of such systems in outdoor unstructured environments 
is unknown. Furthermore, none hybrid systems were compared by experimental study 

and only the nested loop architecture was compared to other earlier systems (and even 
then by discussion rather than by experimental evaluation). 

6.2 Waypoint navigation system 

The waypoint navigation system shown in Figure 6,1 is composed of three main units. 

1. The reactive unit provides reactive navigation for the robot, which, in the current 

work is achieved by a frequency-table based learning technique developed by the 

Electronic System Design Group at Loughborough and that is able to generate a 
decision tree (Mulvaney et al. 2005; Swere, Mulvaney and Sillitoe 2004). 

Although other reactive approaches may be used in this unit rather than the 

decision-trpe based method, the main reason for using this method in the current 
implementation is that it is fully available both in source code and as an executable. 

2. The knowledge base contains the robot's -acquired knowledge of the environment 

represented as a set of waypoints and paths between waypoints. To construct a 
detailed world model requires high quality sensors, longer processing time and a 
large memory capacity (see section 6.1). The approach assumes that a detailed 

model is unnecessary for every navigation task and only a set of points relevant to 

the navigation task are recorded, thus providing a highly abstracted map for the 

navigation task between specified locations. 

3. The deliberative unit is a high-level control unit used for navigation when existing 
knowledge of the environment is available. It contains three elements, namely 
localisation, exploration and planning. This unit is included as late navigation 
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through the same environment can be improved by cognitive reasoning using 

previous navigation experiences (resulting from either exploration or previous 

navigation tasks). Also, the knowledge of the environments presented as 

waypoints can aid the solution of the localisation problem for the robot. 

Knowledge base 

...................... 

Waypoint 

detector 

Sensors ýj 

Controller 

Action 

LocslisaW7on 

------------- 

-------------- **"*** 
............... 

Reactive unit Deliberative unit 

Figure 6.1 Block diagram of the waypoint navigation system. 

The three separate units in Figure 6.1 reflect three different internal states. The 

reactive unit responds to the current state input from the sensors. As the reactive unit 

operates on the instant state, much processing on the raw sensory data is not 

necessary and should be kept minimum to reduce the response time. The previous 

states are selected and stored in the knowledge base. As not every detail from 

previous actions is valuable for the future navigation, data recorded are limited by 

removing previous records either periodically or dynamically if rarely used. Clearly 

the memory capacity and the decisions regarding the deletion of data may influence 

the performance in future navigation. Section 6.2.2 discusses further how suitable 

information for storage is determined. The deliberative unit predicts and plans future 

navigation actions by reasoning using previous experiences, with the internal states 

generated in the unit providing a future direction for the robot to follow. Note that 

some modules (such as localisation) in a unit may represent state other rather than the 
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main state reflected by the unit. Although the current action is not directed by the 

historical knowledge in the system (that is, there is one-way communication between 

the reactive unit and knowledge base), the behaviour activated by the current stimuli 

has been obtained through the previous training (off-line learning) and navigation 

experience (on-line learning). 

The detailed description of each of the units is given in the following subsections, but 

a brief overview of the general operation is appropriate here. Assuming the waypoint 

navigation system has no previous knowledge of its environment, it attempts to reach 

a goal under reactive control, while continuously transmitting sensor information and 

its current action to the knowledge base. Here, the waypoint detector selects and 

records suitable locations. A point in the robot's environment is marked as a 

waypoint when the robot needs to deviate from its current path due to the presence of 

an obstacle. These waypoints are entered into the knowledge base and are then 

available to the deliberative unit for use in exploration and planning. Suitable 

waypoints for the environment can be obtained following off-line simulation or 

generated on-line either as a result of executing previous navigation tasks or by 

purposely invoking exploration. Note that information transfer between the waypoint 

detector and the localisation unit is two-way, since localisation needs to access to the 

stored waypoints in order to instruct the waypoint detector to remove duplicate 

entries. The solution to a navigation task is presented by the planner as a path defined 

by a sequence of waypoints. 

6.2.1 Reactive unit 

The reactive unit is used in the current system to investigate new areas of the robot's 

environment, whether this is towards a given goal or to explore previously uncharted 

regions. In the waypoint navigation system, the deliberative unit provides only a 

sequence of waYPoints to follow and the reactive system is required to perform the 

local navigation between consecutive pairs of waypoints. 

The reactive approach adopted in this hybrid system was developed previously in our 

Research Group at Loughborough University and was introduced briefly in section 
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3.2.2. Further information on this reactive system can be obtained in Mulvaney et al. 

(2005) and Swere, Mulvaney and Sillitoe (2004). In Passone, Chung and Nassehi 

(2006) and Urdiales et al. (2003b and 2006), the basic reaction to the perceived 

environment was achieved by a case-based reasoning approach. A well-known 
drawback of case-based approaches is that the performance is unpredictable when a 

corresponding case has not been presented during the training stage. Potential field 

approaches have been used in a number of navigation systems (Arambula Cosio and 

Padilla Castaneda 2004; Ren et al. 2007; Ren, McIsaac and Patel 2006; Wang, Yong 

and Ang Jr. 2002). Although potential fields give an elegant solution for navigation, 

they require the construction of an artificial field, whereas decision tree approaches 

does not -require additional functionality in the coordination of the set of primitive 

behaviours presented but other systems (Aguirre and Gonzdlez 2003; Liu. - Hu and Gu 

2006) require. It should be noted that, after training, the robot can autonomously 

move between any pair of locations without any intervention or extra guidance. When 

the navigation task was not presented in the training environment (or where 

additional optimisation criteria is required later) the resulting movement may not be 

optimal, but demonstrates the ability to continue navigation with degraded quality. 

6.2.2 Waypoint knowledge base 

To be able to plan future movements in an autonomous and intelligent manner, a 

robot requires memory to record where it has already been. One approach that greatly 

enhances the navigation efficiency is to build a map of the environment. However, 

most mapping techniques (a short review on mapping approaches was provided in 

section 3.1 - 1) involve considerable computational overheads and significant memory 

capacity that is difficult to constrain as more of the environment is discovered. Since 

only a small number of points need be recorded, the waypoint technique provides an 

alternative to mapping with greatly reduced resource requirements. This section first 

reviews the use of the waypoints in other navigation systems, and then describes the 

strategy used to determine the waypoints in the proposed system. 

A general definition for a waypoint is the end point of a path segment decomposed 

from the planned path (Murphy 2000). Dixon, Dolan and Khosla (2004) defined the 
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waypoints as a sequence of locations through which the robot must pass. A number of 

researchers (Ghaffari et al. 2004; Guo 2006; Kim and Shim 200; Kumon et al. 2006; 

Maalouf, Saad and Saliah 2005; Parasuraman et al. 2005) used the waypoint in 

navigation problems without giving an explicit definition. The navigation task 

described by Macfarlane and Croft (2003), Shimoda, Kuroda, lagnemma (2007) and 
Zhu, Sun and Zhou (2007) was pass through a set of pre-defined waypoints, but no 

clear description was provided regarding how the waypoints were determined. 

Berman, Edan and Jamshidi (2003) described a navigation approach for autonomous 

ground vehicles to move through the locations defined by a set of waypoints that had 

been pre-determined by a planning algorithm according to the layout of a 

manufacturing environment. However, neither the definition nor the strategy to 

determine the locations, with the waypoints was documented in the paper. In addition 

to the location, Wendt, Irwin and Cressie (2004) incorporated a time parameter in the 

waypoint representation. 

The approaches in the previous paragraph did not provide a specific method to 

determine the waypoints, whereas the waypoints used in papers introduced below 

were generated by specified procedures. An algorithm inspired by ant trail following 

was described in Vaughan et aL (2002) and applied to axesource transportation task 

performed by a robot team. A waypoint indicated a location where a specified event 

occurs (such as where a resource is received or dropped). The waypoints were 

classified as either global task-level landmarks (which are not physical), or local 

waypoints, named as crumbs, that were recorded periodically along the trail from a 

particular location to a landmark. A crumb's coordinates as well as its distance (in 

terms of travel time) to the landmark were recorded, together with the name of the 

event that occurred. This event-driven waypoint determination is different from the 

approach proposed in this chapter which can be better described as behaviour-driven 

waypoint identification. In addition, the exploration strategy used by Vaughan et aL 

(2002) employed random exploration, but the exploration in the current work (see 

section 6.2.3) was directed by the waypoints already discovered. In a layered goal- 

oriented fuzzy algorithm for motion planning (Yang, Moallem and Patel 2005), a set 

of intermediate goals, called waypoints, were determined in the uppermost layer of 
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the planner using readings obtained from long-range sensors. Following the 

calculation of the direction composed in the waypoint representation (based on the 

collision-free area in a favourable direction towards the goal), the location of the 

waypoint itself was determined based on the calculated direction, distance to the 

detected obstacle from the robot, and robot size. The second layer of the planner used 

the waypoints supplied by the uppermost layer as sub-goals to direct the navigation, 

but with the aid of short-range sensory information. The waypoints were generated 

periodically to deal with the situation where the waypoint as a sub-goal cannot be 

reached due to environmental changes. In such a case, if the robot does not reach the 

sub-goal within a time threshold (the time interval between two successive 

generations of the waypoints), a new waypoint was generated to replace the current 

sub-goal for the robot to seek. The, generated path was reported as being similar to 

that produced by the visibility graph based approach, as the waypoints were located 

either along the edges or around the vertices of obstacles. If the time taken to generate 

a waypoint is relatively long, the robot may take considerable time in an attempt to 

reach a previously recorded sub-goal that is now unreachable. Consequently, more 

waypoints will be generated and recorded due to the increased planning frequency (in 

the first layer), thereby increasing the computation complexity and memory usage, 

but improving navigation quality. In practice, this trade-off may be difficult to 

optimise. The authors did not exploit other uses of the discovered waypoints in their 

paper, such as applying the previously-generatcd waypoints to help the robot escape 

from local minima; improving the navigation performance of the future tasks by 

using previously-generated waypoints to generate a plan for future navigation; the use 

of discovered waypoint to help the robot in localisation. 

In the current work, the selection and recording of waypoints is implemented as 

follows. A point in the robot's environment is marked as a waypoint when the robot 

needs to deviate from its current path due to the presence of an obstacle. The 

currently-adopted reactive control approach uses a combination of several primitive 

behaviours and exhibits no clear boundary between each elemental behaviour. 

Therefore, rather than identifying behaviour change, the current method of 

determining waypoints employs heading change as its cue. During the robot's 
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movements, when operating under reactive control, should the heading change by 

more than a pre-defined threshold angle while- one or more obstacles are being 

detected, the geometrical location at which the robot begins to change its heading is 

recorded as a waypoint. Following the initial identification of a waypoint, two 

possible new headings are available to the robot, as shown in Figure 6.2. As only one 

of these two can be investigated immediately, a waypoint is marked as unexplored 

until the second heading has been taken following a subsequent visit. In contrast, the 

waypoints used by Vaughan et aL (2002) indicate the locations where certain events 

occur. Although the behaviour is needed to adapt the occurrence of a particular event 

at the waypoints, those waypoints do not implicitly or explicitly contain information 

on the obstacle distribution. Similarly, no information about the obstacle -locations is 

reflected in the waypoints selected by the approach in Yang, Moallem and Patel 

(2005), as a waypoint is determined according to the free space and goal; Therefore, 

the waypoints determined by either those approaches are not able to offer alternative 

paths to circumnavigate obstacles encountered. 

goal point 

obstacle 

waypoint 
II 

Figure 6.2 On sensing the presence of an obstacle, the robot has a choice of following one of 
two paths. Under control of the reactive navigator, should the robot need to turn through an 

angle greater than the pre-defined threshold, a waypoint is recorded. 

The value of the pre-defined threshold angle clearly influences whether a given 

location is selected as a waypoint and, consequently, the physical dimensions of the 

region explored in its immediate vicinity as a result. Conversely, as the environment 

withinwhich the robot moves may be large, lowering the threshold may dramatically 

increase the number of waypoints generated, resulting in unnecessary computational 

and memory costs. 
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When a waypoint is detected, its coordinates and the subsequent heading taken by the 

robot are recorded, as shown in Figure 6.3. The time taken for the robot to travel from 

the previous waypoint (which may be the start point) to the current waypoint is also 

stored. The final waypoint is the goal point, which contains the time to travel the final 

segment. Also included in the waypoint structure is an indication of the previous 

waypoint. The order in which the set of waypoints is recorded in the knowledge base 

is that of their discovery. If the waypoints are viewed as a set of artificial or virtual 

landmarks, a topological map similar to those used by Aguirre and Gonzdlez (2003) 

and Muftoz-Salinas et al. (2005) can be constructed from the collected waypoints, 

with nodes indicated by the waypoints' coordinates and edges between two adjacent 

nodes weighted by the distance (in terms of travel time) contained in the waypoint. 

Such virtual landmarks do not require the capture of distinct features as landmarks as 

needed in many navigation systems. The waypoints determined by the approach 

described by Vaughan et aL (2002) contain two pieces of information: the first is the 

direction to the goal point and the second is the estimated time required to reach the 

goal. In contrast, the waypOints recorded in this work contain additional information 

regarding an alternative heading for avoiding the obstacles as well as information 

about the previous waypoint. This extra information permits back tracking and 

provides a valuable indicator to guide future exploration. 

Ix coordinate Iy coordinate I heading I travel time I previous waypoint I 

Figure 6.3 The structure of a waypoint. 

6.2.3 Deliberative unit 

The deliberative control system contains three sub-units, namely localisation, 

exploration and planning. 

Localisation Since the waypoints are progressively acquired, the robot can identify 

from where it accumulated* knowledge of the environment. As it is possible that a 

same location or a location near to the previous waypoints is selected again as a new 

waypoint, this duplicated information is not new to the robot but requires additional 
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memory if recorded. In an event driven system (Vaughan et al. 2002), if a newly- 

found waypoint locates the same event as an existing waypoints, the existing 

waypoint was replaced by the new waypoint. The other waypoint-based systems 

introduced in section 6.2.2, however, did not address the issue of duplicated 

waypoints. In our system, a simple pragmatic strategy is used to combine waypoints. 

If a new waypoint is generated during the exploration phase, a test is made as to 

whether any waypoints already recorded in the knowledge base lie within the 

detection range of the sensors. Only if no previously recorded waypoint is within this 

sensor range is the new waypoint recorded, otherwise it is assumed that the local area 

has already been explored. It-is reasonable to set this distance measure between two 

waypoints as the sensor range, as the robot can localise itself in this range by only one 

waypoint. Not combining waypoints or the use of a shorter range may improve 

reliability, but there is a clear trade-off in respect of memory use, as discussed in the 

previous sub-section. 

Exploration In order to generate waypoints for use in planning, exploration of the 

environment is required. Given the practical task of moving from a start position to a 

goal point, two practical approaches to the generation of waypoints have been 

implemented. The first approach is appropriate when the robot is introduced to a new 

environment and the assumption is made that it is completely known (as is the case 

for EP/N and the vertex planner). The movement to the goal point (as well as relevant 

exploration), is then simulated off-line and the waypoints so generated can be used to 

plan the best path. The second approach is to determine suitable paths using the 

waypoints already entered into the knowledge base arising from previous navigation 

tasks or planned explorative movements. In this case, the robot can collect the 

environmental information represented by waypoints under reactive control with no 

requirement for a priori knowledge of the environments. This is achieved due to the 

presence of the reactive system in the hybrid architecture. The navigation systems 

mainly based on the planner (Sedighi et al. 2004; Wang, Yong and Ang Jr. 2002; 

Zheng et al. 2005) need an a priori model of the environment in order to perform 

navigation. On the other hand, the systems with reactive components (Liu, Hu and Gu 

2006; Muftoz-Salinas et al. 2005; Vaughan et al. 2002) rely on information captured 
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by sensors to fulfil the navigation in unknown environments. Note that the results 

presented in this chapter have been obtained using waypoints generated by the second 

approach. 

Exploration can be invoked deliberately (perhaps when the robot is introduced to a 

new environment) or can be permitted when no tasks are currently assigned to the 

robot. As each waypoint generally defines a branch in a path indicating possible 

alternative routes around an obstacle, exploration from existing waypoints could 

potentially provide paths better than those already discovered. Moreover, if one of the 

generated paths becomes impassable due to the movement or introduction of a new 

obstacle, the robot may be able to follow one of the alternative paths found during 

exploration instigated in non time-critical phases, thus reducing the need to explore 
during situations when the aim is to reach the goal in minimal elapsed time. To begin 

exploration from an unexplored waypoint, the robot rotates through an angle equal 

and opposite to that between the goal direction and the previous heading taken from 

the waypoint. From this point, the robot will rely on reactive control to navigate to the 

goal point or to a waypoint already discovered. Note that, during such navigation, 

obstacles may be encountered and further waypoints discovered. Exploration 

continues unless the robot is requested to execute a higher priority task. With the aim 

of learning navigation information regarding the environment by exploration, the 

strategy developed should minimise the covered distance and avoid repeated 

exploration while maximising the area investigated (Dessmark and Pelc 2004; 

Fleischer and Trippen 2005; Gartshore, Palmer and Illingworth 2005; Panaite and 

Pelc 1999; Su and Tan 2005). In a completely unknown environment, the simplest 

strategy is to perform exploration at random (Barto, Sutton and Watkins 1990). 

Yamauchi (1997) proposed a frontier-based exploration approach, in which the 

frontier is first established between the observed and unseen areas and the location to 

explore is determined according to selection strategies (Burgard et al. 2005; Freda 

and Oriolo 2005; Gonzalez-Banos and Latombe 2002). To improve efficiency, 
Poncela et al. (2002) proposed an algorithm to select the next action by optimising 
the view range based on a utility function in an attempt to obtain geometrical 
information of the obstacles while taking a minimum number of steps. A similar idea 
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was developed in Jia, Zhou and Chen (2004) by taking into account time-saving (or 

energy-saving) based on a different utility function. Using the accumulated 

knowledge of the environment, a plan can be generated to direct the exploration to 

unvisited areas. For example, in a partially known topological map, a plan may be 

generated as a sequence of nodes (places) with aim of minimising the straight-line 
distance and with the exploration task being the discovery of the area between two 

successive nodes. Exploration planning is then similar to solving the travelling 

salesman problem. A number of techniques (Dessmark and Pelc 2004; Fleischer and 

Trippen 2005; Panaite and Pelc 1999; Poncela et al. 2002) have been proposed to 

solve this problem, but all attempt to create a complete model for the environment. In 

contrast, in this work, the exploration is directed in such a way that only those parts 

of the environment relevant to specific navigation tasks are investigated. 

Planning The introduction of waypoints as part of the navigation process gives the 

opportunity to search for a feasible path using only the recorded collection of 

waypoints rather than attempting to search the whole environment. A suitable 

planning method that employs waypoints is described in detail in the next section, 

and, to assess its performance, two alternative planning approýches, EP/N and the 

vertex planner are also considered for comparative purposes. 

6.3 Planning approach 

The evaluation of the effectiveness and robustness of the proposed waypoint 

navigation approach was made in its comparison with two other planning methods in 

their application to four simulated environments (section 6.6). The EP/N and vertex 

methods can be considered as planning approaches in their own right, whereas the 

waypoint method based on steady-state GAs operates with the support of a reactive 

system and follows the architecture of the system shown in Figure 6.1. None of the 

hybrid architectures found in earlier work (section 6.1) conducted an experimental 

comparison, perhaps because the architectures developed were very dependent on the 

specific type of robot platform adopted and so a fair comparison between two distinct 

hybrid architectures could not be conducted. However, in the current work, 
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comparative studies were made feasible: with the vertex method as the same robot 

platform was adopted and with EP/N as it was entirely re-implemented by the author. 
Note that indoor navigation has been the focus for the most of the hybrid system 

surveyed in section 6.1, but the hybrid system proposed in this chapter has been 

verified for outdoor unstructured environments. A subjective comparison with a 

number of hybrid architectures is provided in section 6.8. The vertex planner was 
introduced in chapter 4 and a review of EP/N was given in section 3.1.3 and hence 

only the planning approach designed for waypoint navigation is described here. 

The algorithm for the waypoint navigator is shown in Figure 6.4. This GA follows the 

steady-state architecture and incorporates a deterministic crowding mechanism. 

Although the underlying GA has largely the same structure as both the EP/N and 

vertex planning techniques, here the intermediate nodes for a path are a selection of 

the waypoints generated during the exploration phases under reactive control. 

procedure waypoint navigator 
begin 

produce P with the constraint that all paths generated are feasible 
evaluate P 
while the termination condition is not reached do 

select an operator 0 
if the crossover operator is selected then 

select parents P, and P2 using a roulette wheel based on individuals' rank 
produce offspring C, and C2 by crossover of the parents P, and Pa 
evaluate the offspring C, and C2 
if distance(PI, CI) +distance (P2, C2) < distance(PI, C2) +distance (Pa, Cj) then 

if fitness of C2 > fitness of P, then C, replaces P, end if 
if fitness of C2 > fitness of P2 then C2 replaces P2 end if 

else 
if fitness of C, > fitness of P2 then C, replaces Pz and if 
if fitness of C2 > fitness of P, then C2 replaces P, and if 

nd if 
01: 0 

generate an offspring C using the insertion operator 
evaluate the offspring C 
replace the worst individual in P with the offspring C 

and if 
end while 
select the best individual from P 

end 
end procedure 

Figure 6.4 The pseudocode for the waypoint navigator algorithm. 
I 

6.3.1 Chromosome initialisation 

Based on the heuristic knowledge gained during exploration, a set of path segments 
between a pair of adjacent waypoints is made available. Rather than performing 
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random initialisation, the initial population is generated in conjunction with the 

heuristic knowledge, so that the chromosomes in the population represent only the 

feasible paths, where a path is a series of segments. Consequently, the maximum 

length of a chromosome is constrained to be the longest of the potential feasible paths 

(in terms of the number of waypoints). All paths commence with the first waypoint 

encountered after leaving the start node and thus this is the chromosome's first gene. 

The next gene is identified from the set of waypoints that are connected by segments 

to the current gene and, if there is more than one branch extending from the current 

waypoint, one of them is randomly selected to be the next gene. Subsequent genes are 

defined in a similar manner until the goal gene is reached. To obviate the need for 

encoding and decoding, the same genetic representation is employed as that already 

used to store waypoints in the knowledge base unit. 

6.3.2 Genetic operators 

Two genetic operators, a multi-point crossover and an insertion, are used to produce 

offspring. To exclude any infeasible offspring generated by the crossover operation, 

the crossing points are chosen deterministically, by searching for pairs of waypoints 

that are common in the parents. The segments lying between the identified pairs of 

waypoints that are common to the parents are then interchanged to form the offspring 

and therefore the number of crossing points varies with the number of common nodes 

between the parent individuals. This is different from the crossover operator used in 

EP/N (section 3.1.3) and in the vertex planner (introduced in chapter 4), which both 

of used single point crossover. The likelihood of producing less fit individuals is 

increased if the crossover operator used in this chapter were applied to the feasible 

individuals in the EP/N and vertex planners. Note that the crossover sites are 

determined at random in each of the EP/N and vertex planners, with the 

commensurate possibility of generating infeasible paths. Although infeasible paths 

can be gradually converted into feasible paths by the repair operator in the EP/N and 

vertex planners, the process may take many generations. On the other hand, the 

planning algorithm presented in this chapter excludes infeasible paths during the 

evolutionary process to take advantage of exploration or previous navigation and 

thereby eliminating the evolutionary process to convert infeasible paths to feasible 
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paths as found in the EP/N and vertex approaches. Such a crossover operator used 

ensures that significant exchange of genetic information occurs between the-parents, 

while population diversity is still being promoted by the application of the insertion 

operator. The insertion operator plays a similar role in the evolution to a conventional 

mutation operator, but is different in the sense that the insertion operator randomly 

generates a new individual using the initialisation mechanism rather than mutating 

genes of the selected parent based on some chosen probability value. The two 

operators are applied on alternate generations rather than being selected based on pre- 
defined probabilities, as in EP/N, reducing the number of system parameters that need 

to be defined. 

6.3.3 Selection scheme 

In the waypoint navigator, offspring are generated using a crossover operator that acts 

on a pair of individuals. The pair is selected by a roulette wheel whose slots are sized 

in accordance with the ranks of the individuals. A quadratic ranking technique (De 

Jong 1992; Watanabe and Hashem 2004) (see section 2.3) was implemented to scale 

the raw fitness before selection, so that the selective pressure is independent of the 

fitness distribution of the population while the selection is biased towards the 

favoured individuals. An alternative would have been to adopt a purely proportionate 

selection scheme, but although this method tends to exhibit rapid convergence due to 

the high selection pressure during the initial phase of evolution, there is less selective 

differential in the later evolution, providing little incentive for the GA to make the 

appropriate selection between competing individuals (De Jong 1992; Sareni and 

Krahenbuhl 1998). 

6.3.4 Evaluation 

As only feasible paths are involved in the evolutionary process, the quality of a path 

can be determined simply by its length. 

Ef Equation 6.1 

131 



Chapter 6: Waypoint-based navigation in static environments 

where L, denotes the -length of the segment i of the path containing a total of n 

segments. Alternative assessment criteria, such as the number of waypoints (the 

number of turns) or travel time, could be accommodated where required. 

6.3.5 Replacement strategy 

Deterministic crowding (DC) (Mahfoud 1995a; Sareni and Krahenbuhl 1998) is used 

as the replacement scheme for the offspring generated by the action of the crossover 

operator. The competition between offspring and parents of identical niches (closest 

competition) helps to maintain the diversity of the population. DC yields two set of 

tournaments, the first involving offspring CI pitted against parent PI and offspring C2 

against parent P2 and the second involving offspring C, against parent P2 and 

offspring C2 against parent P1. A parent is replaced by the nearest offspring should 

the latter have better fitness. Similarities among the individuals are defined based on 

phenotypic distance. Equation 6.2 shows the similarity S defined for this problem, 

S= 
N+N 
Np Xc 

Equation 6.2 

where N is the number of common waypoints between the parent and offspring, and 

NP and N, denote the number of waypoints in the parent and filial paths respectively. 

The aim of applying the DC technique is to retain population diversity so as to 

increase the probability of evolving optimal solutions. Sharing approaches (Goldberg 

and Richardson 1987) and - clearing techniques (Pdtrowski 1996; Sareni and 

Krahenbuhl 1998) both require the detennination of niche radius, which is difficult in 

absence of domain knowledge (section 2.5). Path quality may be improved if DC is 

applied to the EP/N or vertex planner, but experimental observation showed 

considerable time was needed to check similarity (defined as how many obstacles lay 

between two paths with fewer obstacles implying greater similar). Consequently, the 

work described in the previous two chapters did not use DC to minimise the planning 

time. Note that the single offspring generated by insertion replaces the morst 
individual in the population. 
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6.4 Investigation of the waypoint method in escaping from 

'U-shaped' traps 

As no memory of previous decisions is stored, most purely reactive systems are 

unable to escape from the dead-end or 'U-shaped' obstacles found in many practical 

environments. However, during reactive navigation in the waypoint system, a means 

of providing such memory by recording recently-visited locations is readily available. 

Figure 6.5 depicts the sequence of processes that the waypoint method uses to escape 

successfully from a U-shaped obstacle. In (a), the robot enters the obstacle, generates 

a waypoint and continues within the obstacle in such a direction that it reduces the 

distance to the goal. In (b) and (c), the robot begins what appears to be oscillatory 

motion and generates two further waypoints. By adopting a rule that if a newly- 

generated waypoint is determined by the localisation unit to be close to one already 

detected in the current exploration cycle and at which the robot has a similar heading, 

the system will instigate behaviour to escape from the obstacle. This behaviour 

involves generating an apparent goal location for temporary use as a target point by 

the reactive navigation system. This new location is determined from the original goal 

location by translation in the same direction as that of the robot heading when the 

duplicated waypoint was identified, as shown in (d). The translation distance needs to 

be sufficiently large to ensure escape and in practical cases this can be easily 

achieved by moving the apparent goal location to the edge of the navigation 

environment. Only when the robot's heading is directly towards the apparent goal, as 

shown in (e), is the goal returned to its original position, as in (f). Note that, 

throughout this process, the mobile robot has continued to operate purely under 

reactive control. Many approaches reported in the literature to escape from U-shaped 

obstacles (Minguez, Osuna and Montano 2004; Na and Oh 2003; Suzuki et al. 2005) 

used a sensor that can capture the characteristics of the U-shape obstacle from a 

single point of view. Often, the robot may remain trapped if the U-shaped obstacle 

cannot be identified correctly and such a limitation has been experimentally examined 
by Antich and Ortiz (2006). In the current work, the robot can, solely under reactive 

control, escape U-shaped obstacles recognised by the sensor at single sampling 
instant, since this is characterised by a single waypoint and the similar situation hag 
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been presented in the training stage. If such situation is detected, the robot will 

reverse its heading immediately out of such a U-shape obstacle. The use of waypoints 

as introduced in this section is intended to escape the traps involving in U-shape 

obstacles whose features cannot in practice be identified by a sensor at a single 

sampling instant, due to the relatively large size of the obstacle. 

In order to avoid such deadlock problems that are often found in purely reactive 

systems, schemes reported in the literature can be roughly categorised into two types: 

one to incorporate wall following behaviour and the'second to establish a temporal 

virtual target. In the first category, Maaref and Barret (2002) co-ordinated behaviours 

for convex and concave obstacles: if a convex obstacle is detected, goal seeking 

behaviour and reaching the middle of the collision-free space behaviour was 

combined, whereas the escape of concave obstacles relied on the coordination of 

behaviours used for convex obstacles and wall following behaviour. The approach of 

adopting wall following behaviour in order to avoid traps can be also seen in the work 

by Antich and Ortiz (2006). In the second category, Xu and Tso (1999) and Xu, Tso 

and Fung (1998) proposed an approach to escape the trap in U-shaped obstacles using 

local target switching. Here, a dummy target will be switched to the opposite 

direction at which the real target exists with respect to the robot, with the potential 

trap being detected by identifying an abrupt change that the robot heading suddenly 

rotates from the left (or right) side to right (or left) side of the goal. Only once the 

robot detects an opening on its left (or right) side will the dummy target be switched 

back to coincide with that of actual target. In contrast, the approach described here, 

monitoring of the sensory information is not required (thereby eliminating false 

triggering of behaviour change) and the direction to the temporal goal (G') is used 

instead. In the approach described by Arambula Cosio and Padilla Castaneda (2004), 

four auxiliary attraction points were positioned horizontally or vertically around the 

goal point and assigned suitable strengths in the grid map. The trap could then be 

escaped by applying, to the robot, the combination of five forces. 
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Figure 6.5 Illustration of the mobile robot escaping from a U-shaped obstacle. The circular 
markers show the waypoints and the solid circular markers denote the start (S), goal (G) and 

apparent goal (G') points, 

6.5 Experimental procedure 

The simulations used an autonomous mobile robotics toolbox (Brno University of 

Technology 2006) running on MATLAB (Mathworks 2006) version 6.5. The toolbox 

allows the definition of virtual environments and simulates the behaviour of one or 

more robots, each of which can be equipped with a range of configurations of 

ultrasonic sensors and laser scanners. The toolbox consists of two separate 

applications, namely editor, that allows the user to create virtual environments, define 

robot configurations, edit the control algorithms and load and save simulations, and 

simulator, that provides a graphical view of dynamic movements and allows data to 

be recorded for later analysis. 

6.5.1 Toolbox features 

The principal features of the toolbox are as follows (Brno University of Technology 

2006). 
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"A graphical user interface providing simulation, creating, viewing and editing. 

" The simulator supports as many as 254 robots each with its own control 

algorithm. 

" Control algorithms can be designed as standard MATLAB functions. 

" Ultrasonic sensor and laser scanner simulators are provided in the toolbox and 

their number and position can be configured for each robot. 

" The virtual environment consists of static obstacles and simulated robots can be 

used as moving obstacles. 

" Movements for each robot are recorded and can be saved and replayed. 

6.5.2 Kinematic modelling 

The toolbox model of a robot has three wheels, as shown in Figure 6.6; at the front is 

an undriven castor, and at the rear are two conventionally actuated and steered wheels 

equipped with velocity feedback. This type of chassis provides only two degrees of 

freedom and the simulated robot in the experiments presented in this thesis was 

constrained to be incomplete (that is, the robot is unable to rotate without any 

translational displacement except that the robot can reverse its direction immediately 

when facing narrow dead end), so that the algorithm can also be applied to the robots 

wiouth any translational displacement when rotating. In order to provide rotational 

movement the rear wheels are driven differentially. 

front wheel 

Figure 6.6 Locomotion mechanism for the simulated robot. 
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This simulator has previously used in our research group at Loughborough University 

for developing an autonomous navigation system. To extend the previous work 

directly, the hybrid systems presented in this thesis adopted the same simulator. 

Recently, this simulator was employed by Baklouti and Alimi (2007) for the 

navigation of mobile robots using a fuzzy-logic controller. The toolbox allows 

multiple robots to populate the environment each with their own control algorithm. 

This feature was used in chapter 7 when investigating navigation problems in 

dynamic environments and in which robots were used to model a set of moving 

obstacles. User-defined control algorithm can be easily developed with the support of 
MATLAB functions and the experimental process and results can be displayed and 

analysed in the MATLAB environment. 

6.6 Results of the comparisons between the navigation methods 

The three navigation systems (EP/N, vertex planner and waypoint navigator) have 

been implemented to carry out a range of tasks in four simulated environments 
designed to exercise the robot in diverse activities. The first environment, called 

shopping mall, includes a large number of small obstacles; the second, park, contains 

a smaller number of larger obstacles; the third, office, simulates an open-plan office 

workspace; and the fourth, manufacturing, contains a number of walkways through a 

series of manufacturing cells or along corridors in an office building. The reactive 

unit was developed in C in such a manner that it can be called as a separate stand- 

alone executable, whereas the waypoint detector and deliberative units were realised 

in MATLAB directly. 

In the set of experiments that follow, the control parameters used in the three 

planning methods are as listed in Table 6.1; all were determined experimentally and 

remained unaltered throughout the practical experiments. For all the metho, ds, a 

quadratic ranking strategy (De Jong 1992; Watanabe and Hashern 2004) (see section 
2.3) was used to scale raw fitness and a roulette wheel approach was adopted for 

selection purposes. 
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Table 6.1 The control parameters for the three planning algorithms 
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(a) The system parameters for EP/N. The maximum length of an individual in the initial 
generation was limited to be the sum of the number of vertices, start point and goal point in 
the environment under test and the minimum length was set to be two, these being the start 
and goal points only. When mutation -2 

is selected as a genetic operator, one intermediate 
node will be affected. 

operator probability 
i safe distance 

algorithm 
crossover mutation repa r 

mutat on rate (m) 

vertex planning 0.5 0.3 0.9 0.1 0.2 

(b) The system parameters for the vertex planning algorithm. The maximum number of 
intermediate nodes for a path randomly generated in the initial generation is same as the 

number of obstacle vertices in the test environments and the start and goal points are always 
selected. 

l i h 
operator probability 

a gor t m 
crossover i. nsertion 

waypoint navigator every other every other 

I generation generation 

(c) The system parameters for the waypoint navigator. The maximum length of an individual 
in the initial generation is equal to the total number of waypoints in the longest feasible path 
that could potentially be generated. In our simulation, the threshold angle through which the 
robot needs to turn to trigger the recording of a waypoint was set to 33.3' in all experiments. 

In the following comparison of the navigation approaches, the results of the 

experiments are considered in terms of the following: the subjective quality of the 

generated path, the relative path lengths, the number of individuals required to 

generate the first feasible solution and the times to obtain the first feasible path. 
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6.6.1 Generated path quality 

Figure 6.7,6.8, and 6.9 show the paths generated following the application of the 

three planning methods to the same task in each environment. Although the paths 

shown for the three techniques were obtained over 2000 generations, around 1000 

generational cycles were normally found to be sufficient to generate an optimal or a 

near optimal solution for the environments. Note that these planning algorithms do 

not always, generate an optimal, but rather a near optimal path (as there is not exact 

world model available to the robot). Consequently, the paths presented in Figure 6.7, 

6.8 and 6.9 do not necessarily represent the optimal solutions. 
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Figure 6.7 The paths generated by the EP/N technique. The circular markers show the 
intermediate nodes generated by EP/N and the solid circular markers denote the start (S) and 

goal (G) points. 
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Figure 6.8 The paths generated by the vertex planning technique. The circular markers show 
the intermediate nodes generated by the vertex method. 
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Figure 6.9 The paths generated by waypoint technique. The starred points indicate all the 

generated waypoints, the circular markers indicate the waypoints selected by the planner and 
the planned paths are shown as thickened lines. Note that although many additional 

waypoints were defined for the environment, only those relevant to the specific planning task 
are shown. 

Apart from the intermediate nodes, the paths generated by the EPN and vertex 

planning approaches in each of the respective test environments are similar. The 

circular obstacle towards the top left of the diagram in the park environment could 

only be approximated for use in checking path feasibility and when performing repair 

operations in the EPN. and vertex planning methods. As both these methods require 

that obstacles are represented by a finite number of vertices, a trade-off needs to be 

made for certain obstacles shapes in terms of representation for efficient yet collision- 

free motion of the mobile robot and the time that will ultimately be consumed in 

assessing feasibility. The waypoint navigation system, however, has no requirements 
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with regard to obstacle shape and hence no such compromise needs to be made. In the 

waypoint navigation system results, it can be observed that the 'best' path through the 

identified sequence of waypoints does not necessarily correspond to the global 

optimum. Although for the shopping mall and manufacturing environments the paths 

generated by the waypoint method are similar to those determined, by the EP/N and 

vertex methods, it can be observed in the park and office environments that the 

waypoint planner produces somewhat longer paths than those obtained using either 

the EP/N or vertex method. As the environment is modelled in the waypoint system 

as a set of waypoints, only a very limit area of the environment is involved in the 

planning and so it is unlikely that it will produce paths with the same quality as those 

found by the EP/N and vertex approaches that operate on an detailed map. 

6.6.2 Number of individuals needed to produce feasible paths 

The following experiments determine the minimum population size needed to obtain 

feasible paths over 30 separate runs Of the three navigation algorithms. Each 

evaluation was performed either until no improvement in the convergence towards 

the optimum was observed, or until identical but near-optimum solutions were 

observed over ten consecutive generations. The results of the investigation to 

determine the minimum number of individuals in the population that is needed to 

evolve a feasible path for each algorithm are shown in Table 6.2. It can be seen that 

only two individuals were needed in order for the EP/N and vertex planning 

algorithms to be able to generate a feasible path for most environments. Further 

investigations showed that this was largely due the effective conversion of infeasible 

paths to feasible paths by the repair operator. As the evolution process carried out in 

the waypoint navigator always starts with a population of feasible paths, the 

minimum number of generations required to generate the initial feasible paths is 

always zero. 
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Table 6.2 The minimum number of individuals in a population needed to obtain a feasible 
path for each algorithm. The minimum was found by determining the smallest population 
capable of producing feasible paths in no fewer than 19 out of 20 tests each of length 600 

generations. 

shopping mall park office manufacturing 

EP/N 2 2 20 2 

vertex planner 2 2 2 2 

waypoint navigator 0 0 0 0 

6.6.3 Path length 

In order to compare the qualities of the paths generated by the three navigation 

methods, the geometric lengths of the paths produced by each were calculated and 

compared. The results presented in Figure 6.10 are the median values of the lengths 

of the fittest path produced during the first 1000 generations. In the cases where the 

population size for the EP/N or vertex planning algorithm fell to a value of two, the 

number of individuals in the population was increased by one in order to prevent the 

loss of a feasible path on application of the crossover operator. To ensure a fair 

comparison, the population size used for the waypoint navigator is maintained at the 

minimum population size (three individuals) adopted in the EP/N and vertex planning 

algorithms. Although two individuals are sufficient for evolutionary progress, such a 

small population frequently led to non-convergence. This arose due to the worst 

individual in the population being replaced by an offspring; it frequently being the 

case that an offspring produced by insertion was less fit than the worst individual 

ejected from the current population. Children resulting from a subsequent crossover 

operation would be likely to have lower fitness, inhibiting the evolutionary process 

and leading to premature termination. 
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Figure 6.10 The path length for the best inclividUal for generations containing paths that are 
all feasible. The median valLIC ofthe path cost over 30 runs is presented. 

In the shopping mall, park, and office environments, the obtained path lengths all 

reached similar values by 1000 generations, although the evolutionary progress of tile 

three algorithms followed different trends and tile lengths of patlis generated by tile 

waypoint navigator are marginally longer than those produced by FP/N and tile 

vertex planner. As both the EPiN and vertex planning techniques conduct global 

planning based on complete knowledge ofthe obstacles' dimensions, a global optillial 

path can often be generated, whereas, in the waypoint navigator, the robot is under 

reactive control and only acquires knowledge of its environment accurilulatively. In 

addition, although reasonably large regions ofthe office environment call be explored, 

it is probably unrealistic to expect the waypoint method to obtain details about the 
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environment to the same accuracy as that made available to the global planning 

methods. In the manufacturing environment, the difference in performance between 

the waypoint navigator and both EP/N and the vertex planner is most marked, with 

the waypoint technique producing a path length that was longer by around 6m, a 

difference which may be considered significant even in such. a large environment (of 

dimensions 60m by 50m). The shorter path lengths produced by EP/N and the vertex 

planner are due to both methods ensuring that the robot often passed close to 

obstacles during avoidance, whereas the margin between robot and obstacle is often 

relatively large when the robot moves under control of the waypoint navigator. 

On examining the paths themselves (Figure 6.7 to Figure 6.9), it can be seen from 

Figure 6.10 that, apart from in the office environment, the waypoint navigator was 

able to generate optimal paths between waypoints immediately evolution began, and 

consequently subsequent convergence was achieved in a small number of generations. 

As the initial generation is inherently constrained to a set of feasible solutions by the 

waypoint navigation algorithm and feasible paths were identified during the 

exploration, in the majority of cases the initial population already contained the 

optimal path between waypoints. As the office environment generates many more 

waypoints than the other environments considered, such an optimal path is less likely 

to be present in the initial population rendering further evolution necessary. 

In the shopping mall, park, and manufacturing environments, it is apparent that the 

waypoint navigator has extracted sufficient heuristic knowledge from exploration to 

allow any one of a range of conventional optimisation or search methods to be 

applied rather than necessitating a solution using GAs, which would appear 

somewhat superfluous in this case. However, it will be shown in section 6.7 that for 

more complex environments, where the number of waypoints is greatly increased, the 

use of GAs in generating the robot path will again be appropriate. It is clear that in 

comparison with the EP/N and vertex-based techniques, the waypoint method not 

only allows the assumption that the robot needs to be equipped with complete 

knowledge of its environment before planning to be relaxed, but also represents the 
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information from the explored environment in such a way that it can be used in a 
highly efficient manner for planning purposes. 

6.6.4 Time to obtain the first feasible path 
Table 6.3 lists the median time needed to obtain the first feasible path in the four 

sample environments, determined from a set of 30 runs. It can be seen that the vertex 

planning method is able to provide a modest reduction in calculation time compared 

with EP/N, except in the manufacturing environment where the improvement is more 

apparent. This may be due to the fact that the manufacturing example has a 

considerably higher proportion of the environment occupied by obstacles and so a 

significant number of the nodes, selected initially at random by EP/N, are likely to be 

within an obstacle. The waypoint navigator takes advantage of the prior explorations 

that result in a set of feasible candidates for the initial population, and consequently 

no evolutionary process is required for generating the first feasible path. 

Table 6.3 The median calculation times (in seconds) to obtain the first feasible path. Each 
value was obtained over a series of 30 identical planning tasks. 

shopping mall park office manufacturing 

EP/N 20.0 18.0 33.2 14.9 

vertex planner 18.6 16.4 25.6 4.0 

ivigator 0 0 0 0 

Figure 6.11 shows the times taken for each of the three navigation methods to 

calculate planning solutions during the first 1600 generations. In each case, the 

minimum population size shown in Table 6.3 is used in the first 600 generations and 

evolution from the first feasible path to the final path occurs during the final 1000 

generations. 
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Figure 6.11 The median values for the calculation times averaged over 30 runs. 

The results in Table 6.3 and Figure 6.11 demonstrate that tile calculation times to 

obtain the first feasible path and to complete the defined number of' generations by 

the waypoint technique are considerably shorter (around two orders of magnitude) 

than those of' either the EP/N or vertex planner. Although tile repair operator In tile 

EP/N and vertex planning systems is effective in achieving feasibility l'or a path, it is 

one of the most costly in terms of calculation tirne. FP/N operators such as crossover, 

insert, smooth and repair all increase the length ofthe individuals and consequently 

adversely affect the number of calculations that need to be performed to assess path 

length. Also, EP/N often attempts to convert infeasible paths to feasible ones using 

the repair and insert nodes. again resulting in longer ind'viduals who, se feasibility will 

then take longer to check. Further, the smooth operator, that attempts to reduce the 
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magnitude of the turning angle by adding new nodes, will also increase the length of 

the individual and consequently the calculation time. In contrast, in the vertex 

planning system, the number of intermediate nodes is limited as the number of 

vertices of obstacles is known a priori, implying the length of each chromosome is 

bounded and the times taken to evaluate path length and assess feasibility are 
deterministic. Similarly, although the waypoint navigator allows variable length 

individuals, the calculation time is also bounded as the number of waypoints 

contained in the longest path (in terms of the number of waypoints) is constrained. 

6.7 Application of the waypoint navigator to complex environments 

As the waypoint method was able to generate solutions for the environments 

considered in section 6.6 with such apparent ease, the GA-based planning algorithm 

of the waypoint technique was further evaluated for four additional environments of 

greater complexity, which are shown in Figure 6.12. The four test environments 

contained a number of obstacles which are unsuitable for accurate representation by 

polygons as required by EP/N and the vertex planner. Consequently, the application 

of these methods is likely to result in a considerable computational overhead when 

considering feasibility. 
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Figure 6.12 The paths generated by waypoint technique for the four complex environments. 
The circular markers indicate tile recorded waypoints and tile planned paths are shown as 

thickened lines. III the first environment, tile robot's task Is to move froll, (lie bottom to top, 
while the robot moves from the bottom-left corner to the top-right corner In each ofthe other 

three environments. 

'ro illustrate the increased complexity of the planning problem now to be solved, 

Table 6.4 shows the number of waypoints and path segments generated during tile 

exploration phase. As the robot has fully explored all tile waypoints in these 

environments, two paths emanate frorn each (apart from the start point) and hence tile 

number of path segments generated is simply one more than twice tile number of 

generated waypoints. 
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Table 6.4 The number of waypoints and path segments generated during the exploration 
phase. 

environment I environment 2 environment 3 environment 4 

waypoints . 
11 24 39 54 

path segments 23 49 79 109 

Two sets of experiments were carried out. The first investigates the effect of 

population size in producing a high quality solution in a fixed time and the second 

considers the effects of DC on the rate of successful convergence to an optimal 

solution. 

6.7.1 Effect of population size on real-time solution quality 

This section investigates the optimality of the plan produced by the waypoint 

navigator using the set of waypoints determined during exploration, as shown in 

Figure 6.12. As the time taken to determine a plan has a significant influence on the 

overall travel time in many practical applications, these results have been generated 
by constraining the planner to operate in a fixed execution time rather than in a 
defined number of generations. Figure 6.13 shows the performance (in terms of path 

length) of the waypoint navigator for the four navigation problems while both the 

population size and the number of generations were varied. The figures can be used to 

aid an assessment as to whether increasing the population size or increasing the 

number of generations will be the more effective in achieving a path of the desired 

quality in a given execution time. Note that the results presented in Figure 6.13 were 

obtained from 1000 independent runs for each navigation problem. 
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Figure 6.13 'File optiniality achieved by tile proposed planning algorithm for the 
environments shown in Figure 14 with the Population size being changing from 10 to 200 

individuals in steps of 10 for the test environments. 

Frorn Figure 6.13, it is evident that, in many cases, good optiniality with respect to 

the available set of waypoints can be achieved by tile planning algorithm with a 

modest population size in under two seconds. For the first three cnvironnicrits, tile 

performance of the planning algorithm improves as dic population size is increased. 

I lowever, in environment 4 this is not apparent 11or the shorter execution times and is 

only observed when more generations becorne available and when the tirne 

constraints are not so rigid: it can also be seen that the increased population size 

cannot compensate for the evolutionary effect of the rcduced number of' generations. 

There appears to be a certain threshold in terms ofthe number ofgencrations, below 

which one should not fall in order to achieve a high qlillltý' Solution. In a number of' 
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cases it is clear that, when only a small number of individuals are present in the 

population, a high-quality solution cannot be determined rapidly, but the inclusion of 

the insertion operator, which is able to introduce new genetic material, generally will 

facilitate the eventual generation of an optimal solution. 

6.7.2 Effect of deterministic crowding on the ability to find the optimal solution 

In an attempt to improve performance when population sizes are small, this section 
investigates the effect of DC (Mahfoud 1995a; Sareni and Krahenbuhl 1998) on the 

reliability of producing optimal solutions, given a set of supplied waypoints. Table 

6.5 shows the number of optimal solutions produced based on the results ge nerated 

for a population size and a number of generations selected from Figure 6.13 such that 

the evolutionary computations were completed in approximately one second. It can 

be seen that DC provides a substantial reduction in the number of occasions on which 

the GA was unable to produce an optimal path for the given set of waypoints. This 

improvement was particularly marked in environments 2 and 4, Where the failure rate 

was reduced by a factor greater than 10. The generational diversity is plotted in 

Figure 6.14 for the four test problems both with and without DC. For environments 2 

and 3, it can be seen that DC is able to maintain the diversity present in the initial 

generation, and, although the results for environments I and 3 show some tendency 

towards convergence when DC is used, the population convergence is far more. rapid 

without DC. Furthermore, it can be seen in Figure 6.14 that the shortest path lengths 

available in the respective populations for environments 2 and 4 were reduced when 

using DC, and, in fact, improvements were also observed, but were less apparent in 

environments I and 3. In fact, in the general case, for any given generation during the 

evolutionary process, the best individual produced when using DC was better in terms 

of path length than the corresponding individual produced without DC. 
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Table 6.5 Percentage ofruns that achieve optiniality for the four sample environments. 
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Figure 6.14 
1 
The mean values and standard deviations for the populations genel-ated by tile 

waypoint navigator both without DC (left column) and with DC (right column). 

6.8 Comparison with other hybrid systems 

This work has developed a hybrid waypoint-based autonomous navigation Svstelll for 

the navigation in static environments. The hybrid system consists of three major 

components to provide response to historical, Current and future states. In tills section, 

a verbal comparison is provided with existing hybrid systems (Aguirre and Gonzý'ilez 

2003, Liu, Hu and Gu 2006; Mufioz-Salinas et al. 2005; Santos, Castro and Ribeiro 

2000) whose structures also have three major components. The method ofintegration, 

the content of each major component and tile Functions ofeach major component ill 

these earlier hybrid architectures all differ frorn that ofthe waypoint system. 
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The nested loop architecture (Santos, Castro and Ribeiro 2000) had its three 

components (reflexive loop, reactive loop, and functional loop) arranged in an 

embedded manner according, to the abstraction level. The innermost loop (reflexive) 

provides direct coupling between the stimuli and response for only emergent situation 

and the additional behavigurs generated from the middle (reactive) loop are directed 

by the outer deliberative component. Such a solution requires continual operation of 

the system as a whole for the reactive system to be able to perform navigation. In 

contrast, the waypoint system can perform navigation under reactive control to fulfil 

the sub-goals provided by the deliberative component. This reactive system can 

generate fast appropriate actions without intervention from any other component in 

order to deal with the current instantaneous perception of the environment. The 

nested loop architecture (Santos, Castro and Ribeiro 2000) regarded the trap situation 

as an emergent situation and direct response was provided by the reflexive loop. The 

system identifies traps and deadlocks by monitoring the frequency of imminent 

collision and the detection of repetitive halts during rotation. In such situations, a 

simple slow action will be generated to follow a defined curve so as to prevent an 

oscillatory rotational motion. In the waypoint system, the robot can escape U-shaped 

obstacles under reactive control when such a situation can be identified by the current 

perception, otherwise, waypoints collected previously are used to detect traps and to 

generate a temporal target to facility the escape. In the nested loop approach, three 

motion modes are defined in the reactive loop in order to deal with local motion. 

Such motion can be generated externally by the teleportation mode, or locally by 

either path following or local navigation modes. This is different from the reactive 

component in the waypoint system which uses no external intervention and both local 

navigation and path following can be realised by the reactive system after training. 

The functional loop in the nested loop architecture is responsible for path planning, 

localisation and determination of the local navigation strategy whenever the local 

navigation mode in the reactive loop is selected. In comparison, while the deliberative 

unit in the waypoint system provides exploration, it is not involved in the decision 

marking process during the local navigation. The authors of the nested loop 

architecture realised it was unnecessary to build a detailed map for the environment, 
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but the strategy was not described in the paper. In the waypoint system, the waypoints 

that reflect the estimated location and distribution of the obstacles clustered in the 

environment provide the abstract of the world model. In addition, unexplored 

waypoints provide heuristics for task specific exploration. 

The hierarchical hybrid architecture proposed by Aguirre and Gonzdlez (2003) 

consists of planning, executive and control layers. A safe shortest path is generated in 

the planning layer and the executive layer selects appropriate behaviours to fulfil the 

plan. The control layer is responsible for the control of the robot according to the 

results of the perception process. The navigation task can be viewed as a process of 

top down decomposition, with any error occurring in a lower layer being reported to 

the higher layer. The system produces a topological map that contains metric 

information. The waypoints in the new system described in this chapter can be 

viewed as a set of virtual landmarks that are unique in that no duplication is allowed 

within sensor range and the waypoints themselves contain metric information. The 

executive layer in Aguirre and Gonzdlez (2003) activates and weights a set of 

behaviours according to the context of applicability to the current state, with the 

combination of those weighted behaviours producing the final output. The control 

layer contains elementary fuzzy behaviours, whereas there is no executive layer to 

coordinate the different behaviours in the waypoint system. In fact, the two layers, 

executive and control layers, are effectively fused to form the single reactive layer, 

since the navigation rules are generated by the training and a single steering action is 

produced based on the rules. Although the authors claimed that the map can be 

constructed. through exploratory tasks, no detailed explanation of the strategy was 

provided in the paper, and it appears that, for the purposes of the work presented, a 

complete map was built that minimised the travel distance between key locations. In 

contrast, the waypoint system autonomously explores and collects waypoints, along 

with the appropriate metric information. The hierarchical three layer architecture was 

evaluated only in the indoor environments and no report was given on how the 

system dealt with deadlock problems. 
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A three-layer hybrid architecture was proposed by Mufloz-Salinas et al. (2005) 

involving a set of agents allocated in deliberative, execution and monitoring, and 

control layers. The deliberative layer generates an appropriate plan for a specified 

navigation task, which, once received, creates several navigation skills (a skill 

contains a set of activated behaviours to achieve a sub-goal) in the execution and 

monitoring layer in order to achieve a sequence of sub-goals for the plan. At the same 

time, the execution and monitoring layer examines the implementation of the plan for 

any failure in its implementation. The control layer contains a set of agents that 

implements ftizzy and visual behaviours. The navigation system requires a 

topological map that includes geometric information, and the authors state that the 

map can be either supplied externally or constructed autonomously, but no detailed 

description of this process was-provided in the paper. The navigation task can be 

considered to be decomposed by layer, with the function of the middle layer being the 

translation of the plan generated in deliberative layer into a sequence of skills. In 

practice, the navigation skill is effectively organised into primitive behaviours in 

order to achieve sub-goals. This arrangement is different from that in the waypoint 

architecture, where the reactive component requires no specific layer to arrange the 

individual behaviours, since their coordination was facilitated during the training 

period. The three-layer hybrid architecture was tested in office-like environments 

with a complete topological map, whereas, in the waypoint system, only the 

waypoints related to the current navigation task (current, initial and final locations) 

are recorded and serve as a basis for planning. 

Liu, Hu and Gu (2006) developed a hybrid architecture containing three layers, 

namely (in order of hierarchy) cognitive, behaviour, and swim pattern. Instead of 

generating a path, the cognitive layer infers a set of parameters to coordinate the 

behaviours in the behaviour layer. To achieve this, states reflecting physical events 

are abstracted from sensory information rather than from any spatial representation of 

the environment. The swim pattern layer is designed specifically for robotic fish 

navigation and converts the behaviours into the control of joints of the robotic fish. 

The representation adopted by this hybrid system was highly abstracted according to 

physical events, whereas the world model used in the waypoint system can be 
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regarded as being a behaviour driven representation, in that the waypoints indicate the 

locations where the significant changes in the behaviour occur. This may cause 

undesirable behaviour if any errors occur in the cognitive layer, since the combination 

of the primitive behaviours is also directed by the cognitive layer. It is unclear 

whether local minima exist in the robotic fish navigation, as this issue was not 
discussed in the paper. In the behaviour layer, the wander behaviour performs 

random exploration in the environment (a fish tank). In this way, a complete map can 
be generated, but it is inefficient in that the same area may be explored for many 

times. In contrast, task-oriented approach was used in the waypoint system. 

Apart from in the nested loop architecture, the lowest layer in the hybrid systems 
found in the literature are closely related to the low-level implementation of the 

behaviours to drive the robot, but this transformation was performed in the reactive 

unit in the waypoint system. Two of the above architectures were evaluated only in 

indoor environments and none created its own a detailed world model, but where 

present, topological maps with metric information were built. The waypoint 

representation is highly abstracted and is even able to avoid the modeling of areas not 

related to the current task. 

6.9 Conclusions 

A waypoint navigation system has been developed for mobile robot navigation and 

compared with two evolutionary planning techniques, namely EPN and a vertex 

planner. That suitable paths can be generated for the sample envirorunents confirms 

that the waypoint system is able to navigate appropriately to the goal and. to collect 

waypoints during the exploration. The waypoint technique is able to reduce the search 
from the initially large physical area to just a small number of representative points 

previously traversed under reactive navigation. Only these waypoints then need to be 

considered in producing a suitable plan to reach the goal. The statistical results 

obtained by repetitive measurement confirm that the waypoint technique is able to 

significantly reduce the time taken to produce a plan: In the EP/N and vertex planning 

systems, determining whether a plan is feasible is time consuming, but is unnecessary 
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in the waypoint method as the paths between pairs of waypoints are already known to 

exist. 

The global optimisation that can be achieved by EP/N and the vertex planner is 

clearly evident in the path length results. However, this can only be achieved by 

supplying complete knowledge of the environment, and this is unrealistic in most 

applications and does not allow general solutions to the robot navigation problem. 

The new waypoint method does not require any prior knowledge of its environment, 

(which becomes gradually more familiar to the robot through exploration), keeps 

minimal information regarding the nature of its surroundings and rapidly generates 

suitable paths. The waypoint system is extremely robust in terms of its ability to find 

a suitable path and in terms of response time, as it is always able to resort to reactive 

navigation should a plan not be available in a timely fashion or if operating in a 

dynamic environment. 

The effectiveness of the proposed planning algorithm has been investigated in a series 

of navigation problems of varying complexity. In the simpler environments, only 

short evolutions are needed to produce an optimal solution given a set. of supplied 

waypoints and the use of GAs is probably not required. However, in problems of 

greater complexity, the use of a GA in finding suitable combinations of waypoints to 

solve the navigation problem is appropriate. The frequency at which optimal 

solutions could be produced in the more complex environments was shown to be 

improved significantly through the use of deterministic crowding. 

The hybrid structure has been evaluated by comparison to a number of recent hybrid 

architectures reported in the literature. The waypoint navigation approach has been 

arranged in such a manner as to take into account past, current and future information. 

The system is robust and real time in that the basic reactive navigation can be realised 
by tight coupling between stimuli and responses without any intervention from other 

components. Furthermore, the memory requirement is kept low as only a set of 

waypoints need be stored. Efficient exploration is performed in the more promising 
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areas closely related to the current navigation task. The plan generated is a sequence 

of waypoints (sub-goals) that allows local adaptation during robot movements. 

The following chapter investigates an enhanced version of the waypoint navigation 

approach that involves reactive interaction with moving obstacles. 
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Chapter 7 

WAYPOINT-BASED- 

NAVIGATION IN DYNAMIC 

ENVIRONMENTS 

The waypoint-based system introduced in the previous chapter concerns navigation in 

static environments. This chapter extends this navigation system, so that it can also 

operate in dynamic environments containing multiple moving obstacles. To achieve 

navigation in dynamic enviroranents, two novel extensions were made with respect to 

the approach described in the previous chapter. The first extension equips the robot 

with the ability to avoid dynamic obstacles, based on the identification of the 

necessary properties of a single dynamic obstacle which must be satisfied in order for 

the robot to guarantee avoidance. The second extension uses the information gathered 

over a series of exploration tasks to develop a statistical model of the extent to which 

paths between pairs of waypoints are disrupted by the presence of dynamic obstacles. 
However, this does not imply that the motion of the obstacles are constrained. If the 

obstacles move randomly in the environment, the navigation behaviour may not be 

improved as few heuristics are provided by the statistical model. The work described 

in this chapter is being prepared for submission to the International Journal of 

Robotics Research. 
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The identification of waypoints utilises the same strategy as that in the previous 

navigation system, but is constrained to static obstacles only. This is a common 

strategy for navigation in dynamic environments (for example Low, Leow and Ang Jr 

2002 and 2003; Minguez and Montano 2005; Minguez, Montesano and Montano 

2004; Urdiales et al. 2003a and 2003b; Vazquez-Martin et al. 2006) where paths are 
first generated globally for the static aspect of the environment and avoidance is 

achieved locally. This chapter introduces related works, the proposed navigation 

system, gives a description of each module and presents the results obtained for the 

three separate experiments designed to verify the two extensions proposed. A 

comparison with other hybrid architectures found in the literature is then presented. A 

discussion of the results obtained for the navigation system is provided before the 

chapter is concluded. 

7.1 Related work in hybrid systems in dynamic environments 

The previous chapter included a description of recent works related to the hybrid 

architecture for navigation in static environments and only previous works related to 

navigation in dynamic environments (those containing moving obstacles) are 

presented in this section. Following a short survey of hybrid systems in dynamic 

environments, two extensions made to the hybrid system introduced in the previous 

chapter are discussed in greater detail. 

Low, Leow and Ang Jr 2002 and 2003) proposed an architecture that integrated 

planning and motion control. The planning module produced a sequence of 

checkpoints between the start and end points using cell decomposition, whereby those 

cells that can be connected vertically or horizontally are assigned the same label and a 

greedy method is applied that searches the grid map marking as checkpoints those 

closed points along the boundary. between cells of different labels. Clearly, the 

generation of checkpoints requires an a priori grid map. The reactive module consists 

of three lower-level modules: target reaching, obstacle avoidance, and homeostatic 

control. A neural network in the target reaching module produces a sequence of 

control commands to guide the robot between a pair of checkpoints, the obstacle 
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avoidance module keeps the robot away from sensed obstacles and the homeostatic 

control module maintains internal stability by monitoring the internal states. The final 

output of the reactive module is a combination of the commands originating from the 

three modules. The work was extended by the authors (Low, Leow and Ang Jr 2006) 

to the navigation of multiple robots. 

Urdiales et al. (2003b) proposed a hierarchical hybrid architecture with four layers 

that are neither strictly deliberative nor reactive scheme. The geometrical modelling 
layer uses on-board sensors to create a grid map from which alopological map is 

abstracted by the topological modelling layer. A global collision-free path is 

generated in the route planner and the path generated is decomposed into a set of sub- 

goals for tracking by the local navigation layer, that is implemented by a case-based 

reasoning (CBR) technique. One of the significant drawbacks of CBR is that the 

robot may fail to generate an appropriate response when a significant discrepancy 

exists between the current situation and the cases stored (Liu et al. 1994; Ni et al. 
2003; Park, Kim and Chun 2006). A solution proposed by Urdiales et al. (2003b) is to 

use a simplified version of a potential filed methods and to combine the generated 
force vector with the closest matched case and store the outcome as a new case. The 

system was evaluated through experiment for indoor environments with both static 

and moving obstacles, but the results when avoiding moving obstacles was not clearly 
documented. A slightly different version of this architecture was reported in an earlier 

work (Urdiales et al. 2003a) using a potential field method as a reactive scheme 

rather than CBR. A similar architecture was used for outdoor environments in the 

work described by Vazquez-Martin et al. (2006). 

A hybrid system described by Minguez and Montano (2005) and Minguez, 

Montesano and Montano (2004) consisted of three components: model builder, 

planning and reactive motion. The objective of the model builder is to construct a grid 

map, incrementally constructed from a moving binary grid of a fixed size centred on 
the robot. The planner computes a path by gradient search on the grid map whose 

cells are labelled with the values of the distances from the goal point to the cell, and 

collision-fice motion is generated by the reactive navigation module. The nearness 
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diagram (ND) (Minguez and Montano 2004 and 2005; Minguez, Montesano and 

Montano 2004; Minguez, Osuna and Montano 2004; Montesano, Minguez and 

Montano 2005) navigation method is used in this module to match a configuration of 

five pre-defined configurations and to guide the robot more closely so that its 

configuration corresponds to one of the five configurations. The sensory information 

flows into the model builder and is subsequently directed to the planner and reactive 

navigation module. The output from the planner guides the reactive navigation. In 

certain cases, the planner may fail to deliver a plan to the reactive module, and the 

local navigation will rely solely on the reactive method. In the synchronous planner- 

reactor architecture (see section 3.3), both the planner and the reactive module 

operate on the current model to provide a prediction for the immediate future, 

however the resulting trajectory is unlikely to be optimal as no past experience is 

explicitly considered in the generation of a plan. No exploration component was 

incorporated into the system for map building purposes and the grid map will 

normally require more memory in comparison with the waypoint system that records 

only a small number of points. The ND reactive method can be used to escape the 

traps arising from U-shaped obstacles, but is limited to those obstacles whose 

characteristics can be identified by the sensor at single sampling point. 

In dynamic environments, it is normally unrealistic to have a priori knowledge 

regarding the motion of the obstacles. Therefore, following a collision-free path that 

has been generated before navigation commences (examples can be found in section 

3.1.2) is not feasible. To avoid moving obstacles in dynamic environments requires 

timely monitoring of environments using an appropriate configuration of sensors. 

Suitable avoidance manoeuvres can be achieved by modifying the steering angle or 

the velocity of the robot. The methods that have been used to compute the desired 

steering commands are CBR (Kira and Arkin 2004; Urdiales et al. 2003a, 2003b and 
2006) and ND (Minguez and Montano 2004 and 2005; Minguez, Montesano and 
Montano 2004; Minguez, Osuna and Montano 2004; Montesano, Minguez and 
Montano 2005). CBR techniques create a set of cases for the situations encountered 
during the training stage and during actual navigation and the instantaneous reaction 
is determined by the actions associated with the cases that most closely match sensory 
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information. When the case base lacks a sufficient case, a solution recalled from a 

secondary case is unlikely to be appropriate (Liu et al. 1994; Ni et al. 2003; Park, 

Kim and Chun 2006). An alternative approach is to build a large case base, but this 

requires additional memory. Another major drawback of CBR techniques is high 

sensitivity to noise (Ni et al. 2003; Park, Kim and Chun 2006), potentially resulting in 

the failure to deliver a final appropriate solution. The ND method generalised five 

configurations for obstacles avoidance and subsequent matching with respect to the 

five general cases allowed a steering action to be computed from the formulas 

associated with each case. These approaches have been integrated into a hybrid 

architecture (Minguez and Montano 2005; Minguez, Montesano and Montano 2004) 

for dynamic environments. Section 7.6.3 exams this method in detail. The avoidance 

of obstacles -using robot velocity control has been investigated using dynamic 

windows (DW) (Fox, Burgard and Thrun 1997; Ogren and Leonard 2002 and 2005; 

Stachniss and Burgard 2002), velocity obstacles (VO) (Fiorini and Shiller 1998; 

Large, Laugier and Shiller 2005) and vector field histogram (VFH) (Borenstein and 
Koren 1991; Ulrich and Borenstein 1998 and 2000). A description on DW, VO and 
VFH was provided in section 3.2.1. Although good avoidance performance can be 

achieved by those approaches (both DW and VO) at high velocities, they generally 
decompose the continuous velocity space that guarantees collision avoidance into a 
discrete set of velocities, so that the search for an optimal velocity command can be 

performed quickly. However, the trade-off between the solution resolution and the 

time for computing such solution may, in practice, be difficult to make, as the VO 

varies in size and shape. In addition, DW is liable to become trapped in a local 

minima (Kunwar and Benhabib 2006; Stachniss and Burgard 2002). A number of 

authors (Ge and Cui 2002; Kurihara et al. 2005) incorporated velocity information 

regarding the robot and obstacles to construct an artificial potential field (PF). The 

local potential around the robot was constructed at regular intervals in order to 

provide an adequate response to avoid unexpected moving obstacles. Such a 

repetitive construction of the potential field containing velocity information is time 

consuming. The performance of the DW, PF, and VFH approaches largely depends 

on a number of parameters that are difficult to optimise for general application 
(Urdiales et al. 2006), and, although those approaches are efficient in that the 
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commands for the next step can be generated at high frequency, their purely sensor- 
based approach results in a sub-optimal solution in that only the current state is 

considered. 

The behaviour-based avoidance techniques, such as fuzzy logic (for example 
Malhotra and Sarkar 2005; Zhu and Yang 2004), neural networks (for example 
Kubota 2004; Low, Leow and Ang Jr 2003; Min 2005), are different from the above- 

mentioned approaches in that direct mapping between sensor inputs and action output 
is established through an appropriate learning process performed either offline or 

online. Once moving obstacles are detected, several primitive behaviours are 

activated and coordinated to produce a single action without explicit reasoning. 
However, the training processes involved are often complicated and the training 

samples may be so large that they cannot be guaranteed to be limited to a pre-defined 

memory constraint. The coordination of the different activated behaviours needs 

careful design to eliminate poor behaviour. Additionally, the number of rules 

generated by fuzzy-logic controllers increases rapidly with the number of input 

variables, slowing the search for appropriate rules to be activated and consuming 

additional memory, both of -which are undesirable in dynamic environments (Yang, 

Watanuki and Zhao 2005). Decision-tree based reactive techniques (Cocora et al. 
2006; Shah-Hamzei and Mulvaney 2000; Swere, Mulvaney and Sillitoe 2004) have 

been successfully applied to navigation problems in static environments, but the 

literature contains no specific reports on moving obstacle avoidance. To generate an 

appropriate decision tree requires a learning process which takes into account the 

motion featur&s (such as direction of motion and velocity) of the obstacles in addition 

to the geometrical ones (such as the distance between the robot and the obstacles). 

Those approaches introduced above generate an action only for next step and no look 

ahead is involved, with the potential of allowing the robot to become caught in a local 

trap and so preventing it from achieving its objective. Instead of computing the next 

movement, some approaches (for example Minguez et al. 2001; Stachniss and 
Burgard 2002; Ulrich and Borenstein 2000) attempt to compute a sequence of 

movements for several steps ahead, depending on the time available. Ulrich and 
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Borenstein (2000) developed VFH* which analyses the consequence of each 

candidate motion direction through a look-ahead verification technique in an attempt 

to eliminate the possibility of being caught in a local trap. Planning was incorporated 

into the ND reactive scheme (Minguez et al. 2001) and the DW method (Stachniss 

and Burgard 2002) to improve the performance of the local navigation and avoid 
local minima. These approaches effectively extend the reactive schemes into a hybrid 

architecture, but the grid representation of the environments adopted in those 

approaches requires proper determination of the trade-off between the number of cells 
in the grid map and the map resolution, since a fine resolution consumes additional 

memory space and requires computational overheads, but produces a solution better 

equipped to avoid narrow gaps between obstacles. The waypoint-based moving 

obstacle avoidance strategy introduced in this chapter establishes constraints on the 

movements of the dynamic obstacles so as to reduce the occurrence of inevitable 

collisions (that is, where avoidance of the moving obstacle as detected by a specific 

sensor configuration is impossible whatever action is taken by the robot). In contrast 

to the behaviour-based approaches, no training is required to deliver the avoidance 

solution and it can be applied in completely unknown environments even when a 

model of the static aspects of the environment is unavailable. Moreover, the trajectory 

generated is still optimal as the sequence of avoidance actions are determined by 

look-ahead verification. The planning methods introduced in chapters 4 and 5 are not 

appropriate for this purpose as the dynamics of the robot (the robot is unable to rotate 

without any translational displacement) constrains the actions to be taken to avoid the 

moving obstacles. Although the avoidance algorithm was developed for a single 

moving obstacle, it is possible to generate avoidance manoeuvres by selecting the 

intersection of the avoidance commands for each moving obstacle perceived 

concurrently (if the intersection is not empty). 

The exploration schemes reported in the literature have been mainly designed for map 

building purposes. It would not be appropriate to record the geometrical information 

of the moving obstacles in a global frame as such information rapidly becomes out of 
date. The statistical exploration technique introduced in this chapter is novel in that it 
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is different from previously reported methods since it summarises the dynamic 

temporal features of the moving obstacles. 

7.2 Waypoint navigation system for dynamic environments 

The waypoint navigation system shown in Figure 7.1 consists of threemodules. 

1) The low-level control is performed by the static behaviour module. In the 

current work, this is implemented as a decision tree generated by a frequency- 

table based learning technique (Mulvaney et al. 2005; Swere, Mulvaney and 
Sillitoe 2004). This reactive solution has been adopted due to the availability of 

the source code and access to the designers of the approach. 

2) High-level behaviours in the dynamic avoidance module respond to the 

detection of moving obstacles by favouring directions which avoid collisions. 

Information regarding the locations of the static obstacles is used to assist in the 

selection avoidance direction. In dynamic environments, the robot should be 

able to react to the presence of a moving obstacle in order to complete the 

navigation task. It would not be sufficient to use those avoidance techniques 

employed in the static behaviour module, as the assumption made was that the 

attributes of the environment were fixed. 

3) The deliberative module, a high-level control unit, manages the navigation at a. 

global level. It consists of three sub-modules, namely localisation, exploration, 

and planning each of which operates on a set of waypoints which in turn, 

indirectly, represents the position of the static obstacles within the environment. 
The planner plays a tactical role by providing a sequence of sub-goals to the 

robot giving the remaining modules freedom with regard to the local 

movements. Due to the time variant characteristics of moving obstacles, 
locations detected previously become invalid when producing a future plan. 
However, the dynamic aspects of the environment are indicated in the statistical 

exploration model. 
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Figure 7.1 The architecture of the waypoint navigation system. 

The development of this architecture mainlY relies on the partitioning of the 

environment into three different types: free space, static obstacles, and moving 

obstacles. None of the architectures reported in the literature (see section 7.1 for a 

survey and further discussion on those architectures is provided in section 7.7) was 

constructed based on such a characterisation of different types of environmental 

information. This architecture is somewhat different than that introduced in the 

previous chapter, since, in this hybrid system, the modules dealing with the past and 
future states have been combined into one module mainly to account for the static 

obstacles in the environment. However, this hybrid architecture inherits the close 
. connection from history to current to future that was used as the basis for the 

development of the system in the previous chapter. There are two principal reasons to 

develop such hybrid architecture: 1) three different characteristics of the environment 

need to be addressed independently; 2) the past experience, the current prictices, and 

future prediction should be considered and combined into a single hybrid solution to 

create high-level intelligence. 

Each of individual modules shown in Figure 7.1 is discussed in greater depth in later 

sections, but a brief overview of the entire architecture is given here for clarity. In an 

environment which has not previously been encountered, and assuming no obstacles 
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are detected, the robot's initial behaviour will be to seek a goal specified by 

deliberative module. Once an obstacle is encountered, the resulting avoidance 
behaviour is dependent on the motion and sensed dimension of the obstacle. If the 

obstacle is stationary, the static behaviour module is activated, whereas whenever 

moving obstacles are detected (regardless of whether any static obstacles are 

perceived simultaneously), the dynamic avoidance module is activated. During 

navigation, when the static behaviour module is activated, the current sensory 

information and the corresponding actions are taken reactively and these are 

transmitted to the deliberative module for interpretation by the waypoint detector. 

The waypoint detector's function is to save selectively, from the stream of sensory 

data, a set of locations as waypoints for further reference. A location is selected as a 

waypoint whenever the robot must deviate from its current path due to the presence 

of a static obstacle, in order to circumnavigate it. The set of waypoints is used later 

for exploration, localisation, and planning. When the robot is free of any specified 

navigation tasks, the exploration function can be activated to discover uncharted 

regions, and thereby gather additional waypoints. Exploration behaviour can be 

interrupted by any task that has a higher priority. In an environment that has 

previously been encountered, the planner uses its current knowledge of the 

environment to generate an optimal or near optimal path as a sequence of waypoints. 

7.3 Static behaviour module 

The reactive control undertaken when the robot is within stationary surroundings is 

realised within the static behaviour module, as a combination of trained behaviours. 

The same behaviour is used during exploration and when navigating between the 

waypoints generated by the deliberative unit, having the effect of directing the robot 

toward the desired goal while avoiding potential collisions. The method employed in 

this module was detailed in section 3.2.2. Note that this module was designed for 

behaviour-based reactive approaches, even though no explicit coordination 

mechanism is required by the employed method, as this is carried out in the training 

process. 
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7.4 Dynamic avoidance module 

Since the navigational skills learned in static environments are insufficient to avoid 

collisions in dynamic environments, additional high-level behaviours are needed. It is 

recognised that conditions within dynamic environments may arise such that a 

collision is unavoidable, no matter what the robot's reaction. Such collisions are 

referred to as inevitable collisions in the following discussions. Inevitable collisions 

are mainly due to the limitations of sensor system, as their range of operation is 

restricted and the ability to consider all avoidance solutions is constrained by 

computational capability. In order to reduce the number of inevitable collisions, a 

number of cases have been investigated in this chapter in which the relative position 

and movements of the robot and a single moving obstacle were used to determine the 

constraints on the dimensions and maximum velocity of the obstacles. However, the 
inevitable collisions may still exist if multiple moving obstacles simultaneously 

advance towards the robot. This does not mean that the application is restricted to 

avoid single obstacle. Earlier work (Fiorini and Shiller 1998; Fox, Burgard and Thrun 

1997; Large, Laugier and Shiller 2005; Ogren and Leonard 2005; Stachniss and 
Burgard 2002) chose avoidance commands from the space that contains all collision- 
free solutions, but none discussed whether or how the solution space was constrained 

to be non-empty and the response that resulted if solution space was empty. In Yang, 

Watanuki and Zhao (2005), the condition of collision avoidance was established by 

considering a single obstacle moving in an arbitrary direction that remained unaltered 
in order to estimate the collision condition. The concept of inevitable collision states 

was introduced by Fraichard and Asama (2004) to be one in which a collision 
between the robot and an obstacle will eventually occur whichever future trajectories 

are followed. Once inevitable collision states have been identified, an avoidance 

solution can be determined so as to ensure collision-free movement. However, no 

constraints on the obstacle movements or dimensions were described. The avoidance 

algorithm -introduced in this chapter for moving obstacles can be applied to multiple 

moving obstacles simultaneously, since the avoidance actions Can be determined by 

choosing the intersection of the set of actions for each moving obstacle. This strategy 

was also adopted by the VO approaches (Fiorini and Shiller 1998; Large, Laugier and 
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Shiller 2005) to account for similar circumstances. In this chapter, a path is referred 

to be feasible if it is collision-free. The following section derives the necessary 

constraints and then describes the additional behaviours required to avoid moving 

obstacles. 

7.4.1 Constraints on moving obstacle dimensions and velocity to avoid collision 

The approach taken here, as shown in Figure 7.2, is to divide the robot's sensor field 

of view into three sub-ranges (RI > R2 > R3), namely maximum sensor range RI, 

detection range R2, and effective range R3. The maximum sensor range R, is the 

maximum distance that the robot's sensor can detect within an acceptable confidence 

level. When the static obstacle falls within the effective range R3. reactive control in 

the static behaviour module is used to navigate the static obstacle without collision. 

This range, assigned by the user, should be larger than the minimum turning radius R 

of the robot to avoid any possible contact with obstacles. However, large values of R3 

may lead to the robot following a much longer path than the robot needs to take to 

circumnavigate obstacles. The detection range R2 needs to be specified by the user 

before navigation takes place. When a moving obstacle enters the detection range, the 

robot will 9valuate whether a collision may occur if the current path is maintained, or 

whether a new collision-free path to avoid the obstacle needs to be produced. The 

range R2 should be greater than the effective range R3, as the motion of the obstacle 

needs to be taken into account to ensure a collision-free path. On the other hand, it is 

apparent that this range is bounded within the maximum sensor range R1. Note that 

the ability to avoid moving obstacles is dependent on the value of R2 for a given RI 

and R3 and is defined to be that point at which the robot must make a decision 

regarding avoiding the moving obstacle. To be able to make this decision, the robot 

must be able to gain knowledge of the entire width of the moving obstacle. Therefore, 

the widths of the moving obstacles in the environment have to be constrained to 

ensure that the robot is able to estimate whether the robot's current path leads to a 

collision-free traverse across the moving obstacle, together with the velocity 

information about both the robot and the obstacle when the moving obstacle enters 

the detection range. The maximum width of the moving obstacle can be determined 

given the values of RI and R2. 
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Modelling the obstacle as a bounding rectangle (as shown in Figure 7.2), tile 

maximum width of the moving obstacles can be deduced by mininlising the following 

equation with respect to the angle 0, the vertex of which is the centre of tile robot, 

one side of which is opposite to the moving direction of tile obstacle, and the other 

side of which is the straight line from the robot to the nearest obstacle vertex. 

ý 
ýR, 

- (12 cos 
6ý 

- R, sin 0 (0: ý 0:! ý ir 12) Equation 7.1 

R 

Figure 7.2 Determination of tile maximum width Ilofthe moving obstacle. 

Given the lateral dimension W of the moving obstacle, Figure 7.3 illustrates the 

determination of the range ofthe obstacle velocities that call be permitted without an 

inevitable collision given two assumptions. The first assumption is that tile moving 

obstacle has only a simple translational motion with respect to tile robot while ally 

part of the obstacle is within R,. The second is that tile maximum velocity of . the 

obstacle can be measured. The range of' tile velocity of' the obstacle is determined 

with respect to the angle, a, subtended between the robot ]leading and tile moving 

direction of the obstacle with the vertex of' the angle being the ccntre of tile robot. 

Ilcre we consider only the situation where the robot Illoves towards tile moving 

obstacle ( 7r / -1 <a-.! ý 3a /2), this range of a being critical when determining the 

physical characteristics ofthe moving obstacle. 
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Figure 7.3 shows an example of a robot of cylindrical cross-section and diameter d, 

moving at the velocity V, rotational velocity co, with a turning radius, R, as it 

encounters an obstacle of width W. The obstacle, shown as a solid rectangle, moves at 

a velocity Vb in the direction opposite to the component of the velocity of the robot 

which is projected along the longitudinal dimension of the obstacle. The rectangle 

with a grey border is the obstacle enlarged by d, on three sides, allowing the physical 
dimensions of the robot to be ignored in the calculations. 

For the case illustrated in Figure 7.3, the robot may be forced to give way to the 

moving obstacle by turning left or right with respect to it current heading by an angle 

of &I or Db, is the distance between the current location of the robot and the front 

edge of the enlarged obstacle and its value can be obtained with respect to the three 

cases shown in Figure 7.4. 

Figure 7.4(a) shows the case L>W+d. and Db can be obtained from the following 

equation 

D,, b= NFR22-(L-W-d, 
ý -d, Equation 7.2 

For the case d. :5L: 5 W+d, , shown in Figure 7.4(b), Drb is as follows: 

D,. b = R2 - dr Equation 7.3 

'Me third case, as shown in Figure 7.4(c), is L<d, , and Db can be calculated by 

Equation 7.4. 

D, b = NFR22 - (d, Equation 7.4 

The distance D indicates the distance that the leading edge of the obstacle moves 
from the position when it is first sensed in the detection range to the escape point E, 

as illustrated in Figure 7.3. The escape point, marked as E in Figure 7.3, is where the 

robot completely leaves the path of the moving obstacle, following the modified path 
in an attempt to avoid the moving obstacle. L represents the lateral distance from the 

robot's current location to the path edge of the moving obstacle nearest to the goal 
174 



Chapter 7: Waypoini-based navigalion in dynamic environments, 

point, and d is the lateral distance to the path ofthc moving obstacle I'Lirtliest from the 

goal point. 

G 

(a) turning left 

Iv 

---------- 

40 

P 

All 

D, -h 

(b) turning right 

Figure 7.3 Example of the robot moving with a c0l"POlle'll OfIts Velocitý' in the direction 
opposite to the moving direction of the obstacle, when the component ofthe velocily of tile 
robot is projected along tile longitudinal dimension ofthe moving obstacle. (11) sll()Nvs tile 

robot turning left to avoid the collision and (b) tile robot turning right. 
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1, 

'Ir 

I 

(a) L>W+d, 

D, b 

L:! ý W+d,. 
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h 

L<d, 

t 1, 

Figure 7.4 The determination of D, I, when 
(a) 1, > 4' + d, 

, (b) (1,. -< 
L : ý- 14' + (1,. ,and (c) L< (1, 

The following sections derive the conditions for obstacle avoidance for two separate 

cases. Firstly, in which the robot turns left and secondly in which tile robot turns right 

with respect to the current heading of the robot and where in both cases tile robot 

must identify possible paths to avoid the oncoming obstacle. The underlying concept 

is given first and the detailed mathematical description follows. The condition where 

tile robot is able to follow a modified path to meet the moving obstacle at the escape 

point, specifies the boundary between I'casiblc and inFeasible cases. It' the robot 

crosses the escape point toward the outside ofthe path ofthc moving obstacle prior to 

the arrival of the moving obstacle, the path generated I'm- the robot is 1easible, 

otherwise the path generated for the robot is infeasible. The case employed here 

bounds a range of velocities 11or tile moving obstacle within which a collision-free 

path can always be generated. Furthcrmore, it is assumcd that a new ptil call be 

generated for the robot to avoid tile moving obstacle Immediately when tile moving 

obstacle enters into the detection range. In tile following discussions, tile tinle 7' 

indicates the time that the robot requires to move to the escape point from tile location 

where the moving obstacle is first sensed in the detection range, and the distance 1), 
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as defined above, is that the obstacle moves to reach the escape point from the 
location once it enters into detection range of the robot. 

A. Robot turning left 

Three distinct sub-cases must be considered when the robot turns left with respect to 

the current heading to avoid the obstacle as shown in Figure 7.3 (a). 

(i) When L>W+ 2d, +R+R cos a, the robot can avoid collision with the obstacle, 

regardless of its velocity, by turning left through an angle of 7r -a or less. 

(ii) When L=W+ 2d, +R+R cos a, a collision can be avoided if the robot is able to 

turn through an angle greater than ;r-a before the moving obstacle arrives. The first 

point at which the robot may meet the moving obstacle is when the robot turns 

through an angle &I, equal to 7r -a , and where the travel time T and the travel 

distance D to the escape point are expressed as follows: 

T=7-a 
COr 

D= Db-Rsina 

Equation 7.5 

Equation 7.6 

(iii) When L<W+ 2d, +R+R cos a, the robot turns by an angle of &I with respect 

to the current heading of the robot and then moves forward following the heading 

after tuming, 8,1 before meeting the moving obstacle at escape point. Here, the travel 

time and point of closest approach are 

T= '8 "+ Rcosa-Rcos(a+A,, )-d A,, e (; r - a, 2; r - a) Equation 7.7 
wr sin(a +, 6) - V, 

and 

D= Db- R sin a+R sin(a + A,, ) + [d -R cos a+R cos(a + P,,, )]cot(a + A,, ) 

where d=L-W- 2d,. 

Equation 7.8 

For cases (ii) and (iii), the maximum velocity of the moving obstacle with respect to 

different escape points can be deduced as follows. 
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Firstly, the maximisation of Equation 7.9 is carried out with respect to Aj (note that 
for case (ii) only a single value for &I is considered. ) 

D Vb' 

v, .. = maxVbl(Ai) e (; r - a, IT - a) b 

Equation 7.9 

Equation 7.10 

In order to ensure obstacle avoidance for any value of L, the minimum of Equation 

7.10 needs to be determined as follows 

Vlmax= minVbl max(L) Lr: (O, W+2d, +R+Rcosa] Equation 7.11 

B. Robot turning right 

Three separate cases need to be considered when turning right with respect to the 

current heading of the robot by an angle of 

(i) When L>W+ 2d, +R-R cos a, the avoidance strategy is independent of the 

obstacle velocity. 

(ii) When L=W+ 2d, +R-R cos a, the robot needs to turn an angle greater than a 

before the moving obstacle arrives at the escape point. Again, only the first point at 

which the robot could possibly meet the moving obstacle is considered, as this 

maximises the distance that the moving obstacle traverses prior to any contact with 

the robot within the minimum travel time. The time T and distance D after the robot 
has turned an angle of a can be written as follows 

a 
cop 

D=D,. b +R sin a 

Equation 7.12 

Equation 7.13 

When L<W+ 2d, +R-R cos a, avoidance can be realised, by first turning by 

an angle of fl,,. with respect to the current heading and then moving forward following 

the heading after turning by an angle of, 8,,.. Equation 7.14 and 7.15 express the time 
T and the distance D respectively 
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T= '6 "' + 
L+ R cos a-R cos(a -, 6,, ) 6, e (0, a) Equation 7.14 

cor sin(a -, 6,,. ) - V, 

D= Db+ R sin a-R sin(a -, 8,,. ) + [L +R cos a-R cos(a -, 80, )]cot(a -, 80, ) 

Equation 7.15 

Thus, the maximum velocity of the moving obstacle when it meets the robot at 

different escape points can be deduced by following manipulations. 

Firstly, Equation 7.16 is maximised with respect to fl, (note that only a single value 

of fl, is considered for case (ii)). 

D 
VbrT 

Vb, 
max = max V,, (16.,. ) 8ý, E (0, a) 

Equation 7.16 

Equation 7.17 

Secondly, Equation 7.17 is minimised with respect to L, so that obstacle avoidance 

can be realised for any value of L. 

V, 
max ý-- min Vb, 

m. 
(L) Lr=(O, W+2d, +R+Rcosa] Equation 7.18 

Finally, the maximum velocity for the moving obstacle is the maximum of those 

obtained for turning left and right, as found in Equations 7.11 and 7.18, namely 

Vbm- -ý max(Vlmax ) 
Vmax ) Equation 7.19 

Therefore, [0, Vb..., ) is the range of the velocity that the moving obstacles can select 

and this range ensures that there is at least a path that can be generated for the robot 

to avoid the moving obstacle. 

According to the above analysis, the detection range bounds the maximum width of 

the moving obstacle that can be viewed before taking actions. On the other hand, the 

moving velocity of the obstacle is also constrained for given detection range to avoid 
inevitable collisions. Although a larger detection range provides more time for the 

robot to avoid the moving obstýcle, in such a case the maximum lateral dimension of 
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the moving obstacle to ensure a collision-free path would be reduced. The 

introduction of the fixed detection range in this chapter simplifies the analysis and 

provides a single value for the maximum width. 

7.4.2 Mobile robot dynamic avoidance behaviour 

If the current path becomes infeasible due a moving obstacle, the robot must 
determine whether it should turn left or right with respect to its current heading to 

avoid the collision. Should only one direction be feasible, this will be taken. However, 

the situation becomes more complex if both are feasible and a choice must be made 
based upon the characteristics of the possible path. The robot could select the turning 

direction according to the relative lengths of the alternative paths to the goal, the time 

consumed in avoiding collision threats, or the turning angle. Here, the selection of the 

route to be taken is based on the length of the revised path to the goal, where the 

robot chooses the shorter path and the positions of other static obstacles within the 

detection range. Figure 7.5 illustrates the method by which the robot chooses the 

avoidance path. 

if the current path is infeasible 
assess the possibilities of turning left and right 
if turning left (or right) is feasible and the other is infeasible 

turn left (or right) 
else if turning left and right are all possible 

check if any of them is blocked by static obstacles 
if turning left (or right) is blocked and the other is not 

turn right (or left) 
also 

select shorter path 
end if 

end if 
and if 

Figure 7.5 Algorithm for moving obstacle avoidance. 

A. Feasibility of the current path 
When determining the feasibility of a path (that is, to ensure no collision with the 

obstacle will occur), the moving obstacle's dimensions are enlarged by the value of 
the robot diameter, allowing the robot to be treated as a point. The algorithm first 
determines the crossing point between the current path of the robot (with the robot 
treated as a point and the path simply being a line) and the path edge of the moving 
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obstacle which the robot is currently approaching. This crossing point, P, is illustrated 

in Figure 7.3(b) with the straight broken line shown from the robot to the goal 

representing the current path. The time from the current position of the robot to P and 

the time from the current position of the obstacle to P can then be estimated in 

conjunction with the velocity of both the robot and the obstacle. If the robot takes a 
longer time to reach P than does the moving obstacle, the current path is infeasible. In 

such a case, the robot will attempt to avoid possible collision with the moving 

obstacle by turning left or right with respect to its current heading. 

B. Turning left or right 

Figure 7.3 shows the situation where the robot moves with a component of the 

velocity of the robot in the direction opposite to the moving direction of the obstacle, 

when the component of the velocity of the robot is projected along the longitudinal 

dimension of the obstacle. For such situation ( 7r /2<a :5 3n / 2), a set E) of angles 8 

for turning left (substituting P with 8,1) or right (substituting fl with P,,, ) can be 

deduced from the inequality in Equation 7.20. The inequality indicates that the 

distance at which the obstacle moving at Vb over time T is less than D, the distance to 

the escape point from the position when the moving obstacle first enters the detection 

range. This ensures that the robot escapes from the path of the moving obstacle before 

its arrival. The set of angles is given by 

(, 0 1D> VbT, 0 <, g < 2; r) Equation 7.20 

where T and D can be calculated from Equations 7.4 and 7.5 for turning left, when 

L<W+ 2d, +R+R cos a or Equations 7.11 and 7.12 for turning right, when 

L<W+ 2d, +R-R cos a If 0E () , then turning left or right is infeasible, 

otherwise, the set 0 contains all feasible turning angles and the robot can select one 

according to the optimisation goal. For the situation where L=W+ 2d, +R+ Rcosa 

for turning left or L=W+ 2d, +R-R cos a for turning right, the robot should turn 

by an angle greater than z-a for left or a for right. When L>W+ 2d, +R+R cos a 

the moving obstacles are extended along its longitudinal dimension, so that the robot I 
can n egotiate the extended obstacle under reactive control. Such manipulation enables 
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the moving obstacle to be treated as being stationary with respect to its lateral 

dimension. Furthermore, such a distance between the robot and the extended obstacle 
(note this distance is larger than the minimum distance that the robot is required to 

turn) ensures that the robot is able to avoid the moving obstacle. In the experiments 

presented in this chapter, the extension length was set to be'sufficiently long to 

prevent the robot from crossing the moving obstacle from the front of the obstacle. 

Figure 7.6 shows examples of the robot turning (a) left and (b) right to avoid a 

potential collision with an obstacle moving in the same direction as the component of 

the velocity of the robot which is projected on to the longitudinal dimension of the 

obstacle (i. e., 0: 5 a:! g 2/7r or 3/2n<a <2n). The set E) of of anglesfithat the robot 

is able to turn left (substituting fl with fll) or right (substituting 8 with &) without 

collision can be derived from Equation 7.20, in which T and D can be deduced from 

each of the two different turning directions. 

For turning left, the travel time T is 

T 
P.,, 

+L-R cos a+R cos(a +, 8.,, ) 

0), V,. sin(a + fl., j) 

L E(O, Rcosa+R) and 8.,, E 0, cos-i 
R cos a-L- a] Equation 7.21 

R 

and D is 

Db -R sin a+R sin(a +, 8,, ) + [L -R cos a+R cos(a +, B,, )]cot(a +, 0,, ) 

Equation 7.22 

When R+R cos a: 5 L<W+ 2d, +R+R cos a, Equations 7.21 and 7.22 remain 

applicable for T and D with 8.,, r: (0, ;r- a). The robot should turn an angle greater 

than 7r -a to avoid the moving obstacle, for the case when L=W+ 2d, +R+R cos a. 

When L>W+ 2dr +R+ Rcos a, the robot can, under reactive control, avoid the 

moving obstacle that has been extended along its longitudinal dimension. 
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The values of T and D when turning right, are as follows. When 

L>W+ 2dr +R- Rcos a, the robot is able to turn through its minimum radius to 

avoid the oncoming obstacle, and this can be implemented by extending the bounding 

rectangle of the moving obstacle along its longitudinal dimension and then allowing 

the robot to operate under reactive control. For the case where 

L=W+ 2dr +R-R cos a, the robot must turn by an angle greater than a to avoid 

collision. For the case where R-R cos a<L<W+ 2d, +R-R cos a, T and D are 

determined separately for two ranges of turning angles. When the turning angle is less 

than a, T and D can be determined from Equations 7.23 and 7.24, 

T=8 "' +L+R cos a-R cos(a -, 8,, ) 
6,, E (0, a) Equation 7.23 

W, V, sin(a - P,, ) 

D= Db +R sin a-R sin(a + [L +R cos a-R cos(a -, 8,, )]cot(a - P,, ) 

Equation 7.24 

otherwise (, 8,, E a, cos-I 
R cos a+d+ a]), T and D are given by 

R 

T= '8 "" +d+R 
cos a-R cos(a -, 8,,. ) 

e a, cos-I 
R cos a+d 

+- a 
Wr V, sin(a RI 

Equation 7.25 

and 

D,, b +R sin a-R sin(a -, 6,, ) + [d +R cos a-R cos(a -, B.,, )]cot(a - P,, ) 

Equation 7.26 

where d= L-W-2d, 

Note that a turning angle fl, equal to a is considered to be infeasible as the robot 
following such path is unable to escape from the moving obstacle. 
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When L !ýR-R cos a, 7' and D can be expressed by Equations 7.23 and 7.24 with 

Rc 
0, a- cos-' 

L+ osa 

(1 

(a) turning lell 

6 

(J 
. 

(b) turning right 

Figure 7.6 Ail example where tile robot moves with a component ot'lls velocity ill tile sillic 
direction as the moving obstacle, when the component ofthe velocity ofthe robot is pro. jected 

along the loligitudinal dimension of the moving obstacle. (a) shows tile robot turning left to 
avoid the collision and (b) tUrning right. 
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The dynamic waypoint method delivers the following benefits compared with 

existing approaches. 
No training process is required. In contrast, an appropriate training process has to 

be carried out to ensure proper avoidance behaviour in CBR (Kira and Arkin 2004; 

Urdiales et al. 2003a, 2003b and 2006), fuzzy-logic approaches (Malhotra and 
Sarkar 2005; Zhu and Yang 2004), and the neural network system (Kubota 2004; 

Low, Leow and Ang Jr 2003; Min 2005). 

2. Implementation is in the original workspace. PF (Ge and Cui 2002; Kurihara et al. 
2005) and VFH (Borenstein and Koren 1991; Ulrich and Borenstein 1998 and 
2000) need to construct an artificial potential field embedded with temporal 
information. 

3. The direction of motion is optimised by look-ahead verification using a set of 

collision-free solutions. This was also achieved in the approaches in some 

previous work (for example Minguez et al. 2001; Stachniss and Burgard 2002; 

Ulrich and Borenstein 2000). 

4. No prior environmental information is required. A number of existing avoidance 

techniques (Minguez et al. 2001; Stachniss and Burgard 2002) incorporate 

environmental information into the local avoidance navigation in order to deliver 

an optimal solution. 

5. The motion constraints are taken into account to generate the avoidance command. 

online planning by aEP/N++ (Smierzchalski and Michalewicz 2000 and 2006) 

and the vertex++ planner introduced in chapter 5 are not appropriate in 

determining an avoidance command as no motion constraints are considered. 

The dynamic waypoint method is capable of delivering a good avoidance solution 

and with only a short execution time. The experimental studies' presented in section 

7.6 further evaluate this algorithm. - 

7.5 Deliberative module 

The set of waypoints, determined by the waypoint detector, forms a compact 
description of the environment and greatly reduces the memory capacity requirement. 
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The strategy for the selection and recording of waypoints is same as that used in the 

navigation system introduced in the previous chapter. However, the selection of 

waypoints is constrained to those generated from the presence of static obstacles only. 
Following the initial identification of a waypoint, two possible new headings are 

available to the robot to circumnavigate the static obstacle indicated by the waypoint. 
As only one of these two can be investigated, a waypoint is marked as unexplored 

until the second heading has been taken (perhaps at a later stage as part of a separate 

navigation task). 

Three functions are undertaken as waypoints are acquired, namely localisation, 

exploration and planning. These three functions are directly inherited from the 

previous navigation system with an extension made for the exploration function. 

Exploration of the segments between pairs of waypoints is performed in a statistical 

manner (further explanation is provided in section 7.5.1) in order tQ provide estimates 

of likely future travel times. This permits complete paths from start to goal positions 

to be generated using only the waypoints and the mean travel times for each segment. 

Further explanations of the additional functions can be found in the previous chapter. 

7.5.1 Statistical exploration 

A technique, termed as 'statistical exploration', was developed in an attempt to 

summarise the dynamic characteristics of the environment. This is realised by 

performing navigation between a pair of waypoints for a number of times, and the 

travel time, taken for planning the segment connecting the pair of waypoints, is the 

mean value of the travel times recorded for the number of navigations between the 

pair of waypoints. A learning process can be employed to achieve the statistical 

navigation between a pair of waypoints, when the robot is free from any assigned 

navigation task. Alternatively, the dynamic characteristics between a pair of 

waypoints may be estimated as a result of previously navigations between the two 

waypoints. In this work, the first method is used for statistical navigation between a 

pair of waypoints, where movement between all pairs of waypoints been followed for 

the same number of times, as specified by user. This technique may bring benefit 

when planning a suitable path in dynamic environments, particularly where a large 
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number of moving obstacles are likely to be found between certain pairs of waypoints, 
but a few are likely found between other pairs of waypoints. Section 7.6 reports the 

experimental studies for this technique. In static environments, the experience 

gathered from previous travels can be used to improve performance in future 

navigation activities. If dynamic obstacles exhibit repetitive characteristics or their 

collective movements in the environment are non-uniform in nature, such features 

can be extracted into a statistical representation for use in future operations. However, 

it needs to be acknowledged that such a statistical representation will provide little or 

no useful information in environments where the movement of the dynamic obstacle 
is random. 

7.6 Experimental results 

To verify the operation of the enhanced navigation system, three sets of experiments 

were conducted using a set of simulated environments. The simulations used an 

autonomous mobile robotics toolbox (Brno University of Technology 2006) modified 

to render it compatible with version 7.0 of MATLAB (Mathworks 2006). A 

description on the simulator and the robot was given in section 6.5 where justification 

for such an experimental arrangement was also provided. The function of the first set 

of experiments was to test the performance of the navigation architecture in the 

presence of moving obstacles. The second set illustrates the effect of the path 

statistics generated upon the choice of path. The final set compares the proposed 

avoidance technique with the ND algorithm (Minguez et al. 2001; Minguez and 
Montano 2004; Minguez, Osuna and Montano 2004; Montesano, Minguez and 
Montano 2005) as used in the implementation of a hybrid architecture (Minguez and 
Montano 2005; Minguez, Montesano and Montano 2004). The ND algorithm was 

originally developed as a novel reactive approach for the obstacle avoidance problem 

(Minguez et al. 2001; Minguez and Montano 2004), but was extended for application 

to navigation in environments containing moving obstacles (Montesano, Minguez and 
Montano 2005). Although the authors discussed the comparative performance of their 

approach with other avoidance techniques and summarised the benefits of their 

technique (further details can be found in Minguez et al. 200 1; Minguez and Montano 
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2004), no experimental comparison was carried out. A brief description of the ND 

algorithm is provided in section 7.6.3 in order to better understand the comparison 

results. ND has been chosen for comparison purposes as it operates in the original 

workspace and, as it computes avoidance commands according to a small set of pre- 

defined general patterns, ND does not require a training process. The other methods 
found in the literature are not suitable for comparison here, as they either transform 

the workspace to an alternative representation (DW, VO, VFH, PF) or require a 

training process (CBR, fuzzy logic, neural networks). 

7.6.1 Dynamic avoidance 

Figure 7.7 shows examples of trajectories followed by the robot in an environment in 

which the initial placement of the moving obstacles is random. For the test presented 

in Figure 7.7, a simple algorithm was designed to determine the trajectory of the 

moving obstacles, namely that the each obstacle continues to move forward following 

its current heading unless it detects another obstacle, whereupon it turns left. An 

additional constraint on the motion of the obstacles is that they maintain their current 

direction when within the detection range of the robot. The robot may fail to avoid 

collisions when turning left or right due to the presence of several obstacles 

approaching the robot from the front and two sides of the robot. In such 

circumstances, the moving obstacles were designed to be able to reverse direction in 

an attempt to avoid collision. Additional behaviour, termed 'waiting behaviour', was 
developed to deal with the situation where both dynamic and static obstacles 

simultaneously hinder the robot's progress. In this situation, the robot stops and waits 

for the path to become clear if it is not possible to avoid collision by turning left or 

right. This behaviour is apparent in the later experiments presented in Figure 7.10 

where the robot waits for the junctions to become clear. 

The first experiments were conducted with dynamic obstacles constrained to move at 

a constant speed, Figure 7.7(a), before this constraint was relaxed, in Figure 7.7(b). 

The range of the velocity for the moving obstacles was determ j ined according to their 

widths, using the mathematical description in section 7.4. The constant speed for the 

moving obstacles used in the experiments was 0.52ms"' which was slightly less than 

189 



Chapter 7: Waypoint-based navigation in dynamic environments 

the upper bound of the determined range (as the upper bound was not included in the 

determined range), while the robot travelled at a constant speed of O. Sms"' (this value 

was used in the training of reactive behaviours). A series of experiments was 

conducted in which the robot successfully avoided potential collisions with the 

moving obstacles by virtue of its high-level beýhaviours. 
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Figure 7.7 Trajectories followed by the navigation system. The solid objects represent the 
static obstacles and the moving obstacles are illustrated by non-solid objects. The solid 
markers with labels, 'S' and 'G' indicate the start and goal points respectively, and the 

circular markers represent the waypoints, generated. 

7.6.2 Statistical exploration 

The 'sea' environment simulates a set of ships cruising at sea, with the ship under 

navigation moving goods repeatedly between two speci ic ports, while the chan el fn 

between the ports is populated with static islands and a number of ships moving in a 

shipping line passing vertically through the environment. The moving ships travel at a 

constant speed of 8 knots and appear at an arrival rate of X according to a Poisson 

distribution. The navigated ship also travels at 8 knots if the path is feasible, but is 

able to stop and wait if the current path becomes infeasible due to the possibility of 

collision. Figure 7.8 shows the navigation results for the sea environment when the 

moving obstacles follow the Poisson distribution with a range of arrival rates. In each 

case the navigated ship explored each path 10 times and the subsequent best paths 
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were then generated based on the mean travel time for each path segment. The aim of 

the planner was to minimise travel time, and the results are shown in Table 7.1. 
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Figure 7.8 The generated paths for the sea environment for a range of arrival rates of moving 
obstacles. The markers, 'S' and 'G', indicate the start and goal points respectively and 

circular markers denote the generated waypoints. The thickened line is the path generated by 
the planner. 
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Table 7.1 Path costs for the best path in terms of mean travel time found from 10 traverses 
of each path segment. 

X (ships/hour) -2 4 6 8 

travel time (hours) 0.91 0.94 1.06 

From Figure 7.8 and Table 7.1, it can be seen that the navigated ship selects a more 

circuitous path to reduce the longer expected delay that is likely to results when the 

number of ships in the channel increases. Examples of such cases can be seen in Fig 

7.8(c) and Figure 7.8(d) where a longer path around the uppermost island is taken in 

order to avoid the congested area in the centre of the channel. When few ships are 

likely to be present in the channel (Figure 7.8(a) and 7.8(b)), the navigated ship 

continues to travel through the more direct central area, on some occasions choosing 

to wait for the channel to clear. This strategy appears better able to keep travel time to 

a minimum in conditions of light traffic. 

The 'road' environment in Figure 7.9 simulates a network of roads and mimics traffic 

levels found at different times of day. Figure 7.9(a) shows the environment which 

incorporates the rule that all moving obstacles must drive on the left, as illustrated by 

the arrows. However, as the robot was not equipped with knowledge of traffic 

regulations, a modified version of the environment was produced to ensure the 

robot's adherence to traffic rules, as shown in Figure 7.9(b) (note that the 

environment was modified for only the navigation task illustrated in Figure 7.10). At 

each sampling time, two separate sets of sensor readings are obtained; the set from 

Figure 7.9(a) producing information regarding the dynamic environment and that 

from Figure 7.9(b) reflecting the static one. In a practical implementation, the robot 

could be equipped with two sets of sensors; one for sensing road markings and the 

other to detect dynamic objects in the environment. 

192 



Chapter 7: Waypoint-based navigation in dynamic environments 

Road 

F 
c 

'0 

IOU 

------------- 400 

ýmj 
300 

250 ------ 

200 

I 

"Vol I 
150- 

loo, 

so 
-------------- 

Ow-, Iv,!!! M 1. 

F 

00 
200 300 406 SE 0 

Road 
400 

400- --------------- 

350- 

300 

250 

200 

ISO 

100 

50 
------------- 

01 18 

--, ýF 0 100 
200 300 400 so 

ýE 
9 

10 
X direction (m) X direction (m) 

(a) original environment 
(b) modified environment to 

include traff ic rules 

Figure 7.9 Robot movements in a road environment. The arrows in (a) indicate the moving 
directions of the vehicles and (b) is the modified environment to ensure conformance with 

traffic regulations. 

The mission for the robot to conduct in the test environment was to travel between 

two specific locations on a number of occasions during a day. The robot can then plan 

a best path in terms of travel time based on the waypoints obtained during the 

pertaining traffic patterns. The vehicles move at a constant speed of 45kmh7l when 

passing through junctions, and the same speed was also assigned to the robot, except 
that the robot was able to stop and wait for junctions to become clear. The waiting 
behaviour was realised by viewing the road edges and traffic markings as static 

obstacles. Varying traffic conditions were simulated with three separate values of 

arrival rate with the aim of minimising travel time from start to goal. The paths 

generated are presented in Figure 7.10 and the times needed to follow the planned 

paths the three situations are listed in Table 7.2. 

193 



Chapter 7: Waypoint-based navigation in dynamic environments 

Road Road 

E 
c 

V 
>. 

450 

400- ----------- 

350- 

300' 

250 ------ 

200 

150- 

loo. 

50- 

0 
0 100 200 300 406 50 

X directon (m) 
0 

(a) 15 vehicles per minute for each of the 
twojunctions 

49W 1 1------- -ý -I. 

400 
-- 

---------- 

350 

300 

250 

200 

150 

100 

50 
S 
L 

E 

0 100 200 300 400 500 
X direction (m) 

(b) X= 30 vehicles per minute for the left 
junction and X= 15 vehicles per minute 

for the right junction 

Road 

'iý 
C 

450 

400 ---------- 

350 

300 

250 

200,11 11 1 

15 

100 

50- 
------------- 

0 
0 100 200 300 400 500 

X directon (m) 

(c) X= 30 vehicles per minute for each of the two 
junctions 

Figure 7.10 The paths generated for three traffic conditions. The markers 'S' and IG', 
represent the start and goal points for the robot and circular markers denote the generated 

waypoints. The thickened lines indicate the path generated by the planner. 

Table 7.2 Path costs for the best path in terms of travel time obtained over 10 experiments 
for each path segment. 

leftjunction 15 30 30 
(vchicles/min) rightjunction 15 15 30 

travel time (s) 41.4 74.4 78.6 
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It can be seen from the above results (Figure 7.10 and Table 7.2) that when there was 
heavier traffic at the junctions (larger values of X), the robot selected the longer path 
to the destination as this route is likely to save travel time. Figure 7.10(a) has light 

traffic and the robot can take the shortest path (in length) to the destination with few 

delays at the two junctions. In Figure 7.10(b), more vehicles passed through the left 

junction, whereas the arrival rate remained the same the right junction. As more time 
is required on average for the robot to pass through the left junction, the robot may 

choose the longer path to avoid the increased traffic. The heaviest traffic conditions 
for the two junctions are shown in Figure 7.10(c) and here the robot took a longer 

path to the destination to reduce travel time. 

7.6.3 Comparison of dynamic avoidance behaviour 

This section first introduces the ND method (Minguez and Montano 2004 and 2005; 

Minguez, Montesano and Montano 2004; Minguez, Osuna and Montano 2004; 

Montesano, Minguez and Montano 2005), which has been chosen to provide a 

comparison with the proposed avoidance technique, then presents the results of the 

comparison which are finally discussed. The reason to select ND algorithm for 

comparison study was given in section 7.6. 

The ND algorithm solves the avoidance problem by performing simplifications and 

applying the motion laws corresponding to each situation identified from the five pre. 
defined environmental configurations. A binary tree was used to match the sensor 

information received with the five configurations. The inputs of the binary tree are 

the obstacles, the robot and goal locations, and the tree outputs one of the pre-defined 

configurations by selecting a branch according to the criteria based on inputs and 

their relations. According to the motion law associated with the configuration 

identified, a motion command can be computed to produce the best behaviour suited 

to the current configuration. For each moving obstacle, the location at which a 

collision occurs in the direction of motion of the robot is computed using the current 

robot and obstacle velocities, with both the robot and the moving obstacle being 

assumed to move at constant linear velocities. The obstacle is then placed on the 
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collision location as a temporary static obstacle and is taken into account in the 

situation perceived when generating avoidance commands. Further information can 
be found in the literature (Minguez and Montano 2004 and 2005; Minguez, 

Montesano and Montano 2004; Minguez, Osuna and Montano 2004; Montesano, 

Minguez and Montano 2005). 

The first comparison was conducted for three simple configurations where the robot 

encountered a single moving obstacle, these being representative of situations where 

the angle between the moving directions of the robot and the obstacle is (0, a]. The 

paths generated by the ND method and by the dynamic waypoint avoidance (DWA) 

technique are shown in the left and right columns of Figure 7.11 respectively and the 

quantitative results are given in Table 7.3. Figure 7.11 illustrates three situations of 

potential collision between the robot and an obstacle moving from right to left. Case I 

presents the situation where the horizontal component of the velocity of the robot is 

in the opposite direction to that of the moving obstacle and its vertical component is 

not zero, so that the angle between the directions of motion of the robot and the 

moving obstacle is in the range (x/2, n), before the obstacle is detected. In the second 

configuration, labelled as Case 2, the robot moves in such direction that the horizontal 

component of the velocity of the robot is in the same direction as that of the moving 

obstacle and therefore the angle between the robot and moving obstacle is in the 

range (0,7r/2), before the obstacle is sensed. Case 3 shows the robot initially moving 
in the opposite direction to the moving obstacle so that the angle between the robot 

and the moving obstacle is n. 
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Figure 7.11 The paths generated by ND (left column) and the DWA algorithm (right 
column) for three cases. The markers 'S' and 'G', represent the start and goal points for the 

robot. The solid lines indicate the trajectories taken by the robot, and the dashed lines present 
the paths of the moving obstacle. 
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Table 7.3 Path length and execution time taken by ND and the DWA technique for three 
cases. 

case algorithm path length execution 
(m) time (s) 

ND 8.2 5.08 
DWA 7.58 8.06 

2 
ND 

DWA 
8.15 
8.9 

4.97 
10.8 

3 
ND 

DWA 
7.25 
6.33 

4.69 
6.84 

It can be seen that the paths generated by DWA are shorter than those produced by 

ND for cases 1 and 3. When moving obstacles are detected, ND attempts to adjust the 

direction of motion towards free space close to the goal point, but the robot attempted 

to move away from the obstacle, as shown for cases I and 3. Under the control of 
DWA, the robot narrowly avoids the moving obstacle, as motion is based on the 

criteria of minimising path length. For case 2, the robot took a longer trajectory under 

navigation by DWA than by ND. It can be seen that the first part of the path is 

different for two algorithms, with obstacle avoidance under ND beginning earlier 

than that under DWA, even though the detective sensor range was the same for the 

two navigation systems. To follow closely the goal direction, the robot controlled by 

DWA avoids the moving obstacle only when necessary. In DWA, the robot moved 
ftirther to the left in avoiding the obstacle compared with that in ND, implying that 

the robot under ND control tends to be slower in its movements as the robot often 

performed rotational movements when the distance between the robot and the moving 

obstacle is close to the limit of the sensor range. More specifically, when the robot's 
distance from the obstacle is slightly less than the sensor range, the robot attempts to 

move away from the obstacle, so that it can no longer be detected and the robot then 

resumes motion towards the goal point. The robot may then detect the presence of the 

obstacle again and the cycle repeats. Note that ND was designed for a robot that has 

no translational displacement while under rotation, which is a principal limitation 

discussed by ND's authors (Minguez and Montano 2004). The execution times for the 

complete trajectory as shown in Table 7.3 for the two algorithms, indicate that DWA 
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produced a slightly slower response than did ND, but the mean execution time 

required for each step of decision-marking is approximately 30ms, a promising result 
for real-time navigation. 

Figure 7.12 shows the paths followed by the robot under the control of ND and DWA 

for the same start and goal points in each of four environments containing identically 

5,7,9 and II moving obstacles. Simple motion ability was designed for each 

obstacle, in that they continued to travel forwards unless any obstacle other than the 

robot is detected, where it turns to the left by a pre-defined angle. Table 7.4 shows the 

results of the quantitative evaluation of the path length and execution time. 
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Figure 7.12 The paths generated by ND (left column) and DWA (right column). The 
markers 'S' and 'G', represent the start and goal points for the robot. The solid lines indicate 
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obstacle. 

200 

X direction (m) 
Eleven moving obstacles 



Chapter 7: Waypoint-based navigation in dynamic environments 
I 

Table 7.4 Path lengths and execution times taken by ND and DWA for four configurations 
shown in Figure 7.12. 

number of path length execution dynamic algorithm (m) time (s) 
obstacles 

ND 15 24.6 
5 

DWA 11.7 27.8 
ND 14.4 31.6 

7 
DWA 12.2 34.2 

a 
ND 21.3 53.6 

DWA 12.4 42.2 
ND 16.9 51.3 

DWA 12.7 52.3 

The paths computed by DWA are subjectively smoother than those produced by ND, 

probably due to the oscillations that arise in the latter algorithm, as discussed earlier. 

The shorter path generated by DWA results from the narrow margins used to avoid 

moving obstacles, whereas ND tended to err on the side of caution and gave greater 

leeway to moving obstacles. During the experiments, it was observed that the robot 

under ND control frequently collided with the moving obstacles on more than one 

occasion as it headed to the goal. Recalling that in the ND algorithm calculations are 

performed by assuming the moving obstacle is at collision location, it appears this 

strategy may cause problems when the robot is unable to completely leave the path of 

the moving obstacle once it is at the collision location. From table 7.4, ND can be 

seen to have a shorter execution time, except for the situation where 9 moving 

-obstacles were present. Since the execution of the robot and moving obstacles were 

performed in a sequential manner, the execution time increases with the number of 

moving obstacles. 

7.7 Comparison with other hybrid architectures 

A number of hybrid architectures reported in the literature were designed for 

navigation problems where a number of moving obstacles are presented. A brief 

description of those architectures was given in section 7.1 and the reasons for 

selecting architectures for comparison with DWA are as follows: (a) the planning 

modules in those architectures have a tactical role in guiding the robot; (b) the 
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reactive parts are in charge of local navigation and (c) the hybrid systems were 

claimed to be able to navigate in environments containing moving obstacles. 

The systems implemented by Low, Leow and Ang Jr (2002 and 2003), Minguez and 
Montano (2005), Minguez, Montesano and Montano (2004) and Urdiales et al. 
(2003b) all operated in grid environments, whereas DWA operates on the original 

workspace of the robot to directly generate a set of waypoints for the static aspect of 

the environment. No metric map is required to generate an abstract topological map 

or a path. 

The hybrid architecture proposed by Low, Leow and Ang Jr (2002 and 2003) was 

arranged with a short time scale for the reactive model and long time scale for the 

deliberative planning. The inputs for the target reaching, obstacle avoidance, and 
homeostatic control of the reactive model are checkpoints, local obstacles, and the 

internal states respectively. Planning operates on the world model. Four layers were 
developed for the architecture in Urdiales et al. (2003b), with the geometrical 

modelling layer constructing a grid map through sensors, the topological modelling 
layer abstracting a topological map from the grid, the router planner operating on the 

topological map, and the local navigation layer reacting directly to the sensory 

information. The planning and reactive motion modules in the navigation system 
described by Minguez and Montano (2005) and Minguez, Montesano and Montano 

(2004) operate on the grid map constructed from the sensor readings with the path 

generated in the planning module assisting the local navigation. In contrast, DWA 

was specifically designed for application in dynamic environnients in that three layers 

were defined according the different environmental information coupled to each layer 

and the information accounting for the three different aspects of the dynamic 

enviromnents. 

7.8 Discussion 

The experimental results presented in section 7.6 verify the strategy proposed for 

avoiding collisions with moving obstacles and the effectiveness of statistical 
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explorations for the identification of characteristics of dynamic environments. 
Although the avoidance technique presented in this paper was designed to deal with a 

single moving obstacle, an avoidance command can be determined for the robot 
facing multiple moving obstacles by selecting the intersection of the avoidance 
directions of each individual moving obstacle. Furthermore, additional behaviour was 
developed to deal with the situation where both dynamic and static obstacles hinder 

the robot's progress simultaneously. The waiting behaviour is more apparent in the 

traffic environments (see Figure 7.10 for an example). As reversing is normally not 

permitted in traffic roads, the robot stops and waits in front of the congested junctions 

until they become clear. Further investigation is required to verify the navigation 

strategy when multiple moving obstacles are presented concurrently. However, it 

must be recognised that, in realistic environments that do not embed any intelligence 

in the moving obstacles, it cannot be guaranteed that collisions can always be avoided. 
The experimental results reported in the previous section show the effectiveness of 

the statistical exploration in planning a suitable path while minimising travel time. 

For environments that exhibited no apparent dynamic characteristics, the statistical 

exploration may provide few heuristics to direct the planning. 

The dynamic avoidance behaviour proposed in this chapter assumes the heading of 

the moving obstacle remains the same when entering the detection range. This 

assumption can be relaxed by the inclusion of the angular velocity of the moving 

obstacle when generating a new path. To avoid inevitable collisions with the robot, 
the angular velocity of the moving obstacle needs to be constrained within a certain 

range when the moving obstacle appears in the detection range. The method 

presented here can be used with minimum modification for the situation where the 

moving obstacle can rotate when in the detection range. 

Although the experimental results reported in this chapter were obtained for the robot 

moving at constant speed, the method proposed is still applicable to a robot with 

variable velocity. 
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Also, it would be interesting to investigate what behaviours might result if the same 

control algorithm is applied to multiple robots, and communication between robots 

regarding traffic rules (such as walk on the left) could potentially greatly reduce the 

likelihood of collision. 

7.9 Conclusion 

This chapter has taken an existing hybrid navigation technique that is able to avoid 

static obstacles and has extended it for application in dynamic environments. The 

necessary constraints on the physical dimensions and velocity of the moving 

obstacles to avoid collisions with the robot have been determined. A series of 

experiments in which dynamic objects moved in a random manner demonstrated that 

a robot equipped with this high-level behaviour can successfully avoid collision. 

Statistical recording of the times taken for the robot to traverse paths between 

waypoints, during exploration was shown to be effective in planning appropriate 

future paths. However, one of the limitations inherited from previous navigation 

systems is that the planning of a suitable path is performed between the same start 

and goal points as those used when collecting the waypoints. An approach designed 

to overcome this limitation is reported in the next chapter. 
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Chapter 8 

GENERALISED WAYPOINT- 

BASED NAVIGATION SYSTEM 

The navigation system presented in this chapter is a generalised version of the 

waypoint-based navigation system introduced in the previous two chapters. The 

navigation systems described thus far are limited to planning robot movements 
between the same start and goal points as were assigned in earlier navigation tasks 

and, the waypoints used in the previous two chapters are task-oriented. This chapter 
describes the results of implementing a scheme to allow navigation to be planned 

between arbitrary start and goal points. This is achieved by preserving the main 

structure of the waypoint system, but adding an extension that is able to record and 

apply information stored in a compact fashion regarding earlier navigation activities 
between pairs of waypoints. The work presented in this chapter will be submitted to 

the IEEE Transactions on Systems, Man and Cybernetics, part B. 

This chapter firstly reviews the relevant literature, and gives an overview of the 

generalised navigation system, before giving the formal definition of the waypoints 

and describing in more detail the environmental knowledge stored in the database. 

The planning algorithm itself is presented in section 8.4, with emphasis given to 

differences from the waypoint algorithm of earlier chapters. The experimental results 

are presented in section 8.5.1 
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8.1 Related work to path approximation and graph search by genetic 

algorithms 

The navigation system introduced in this chapter preserves the main structure of the 
hybrid architectures presented in the previous two chapters) albeit with modifications 
to its components, knowledge base and deliberative module, so as to empower the 

planning for future navigation. This section concentrates on the literature related only 
to the modifications. 

Spline techniques (de Boor 1978; Kvasov 2000; Noggle 1993) have been widely used 

to generate trajectories by interpolating a set of points that the robot needs to traverse 

(for example Connors and Elkaini 2007; Dyllong and Visioli 2003; Guan et al. 2005; 

Hao and Agrawal 2005; Magid et al. 2006; Nikolos et al. 2003; Park and Bobrow 

2005). The main reason to adopt splines rather than straight line segments is that 

trajectories constructed by splines are smooth avoiding sharp turns and 

accommodating the dynamic constraints of the robot (such as being unable to rotate 

without translational displacement). In robot navigation, cubic splines are the most 

popular choice as they possess the important feature of second order continuity, that 

is continuity of location, speed and acceleration (Guan et al. 2005; Korb and Troch 

2003). A number of authors describe the application of splines to curve-fitting 

problems in robotics. Simon and Isik (1993) applied trigonometric splines to 

approximate the desired robot path within a given knot tolerance. Gu and Owens 

(1998) developed a system in which a parametric cubic spline was used to represent 
the observed motion of a human operator to provide an imitation by a robot. Korb and 
Troch (2003) developed a data reduction algorithm for manipulator path planning 

using cubic splines to approximate a given path created by linear interpolation using a 
least-squares method within a certain error bound. The aim was to represent the 

original path by a cubic spline within the specified error bound and with as few knots 

as possible. The principal idea was to assign each knot a weight estimated according 
to its significance in the approximation with the knots being deleted in order of least 

importance if a proposed spline satisfies the specified accuracy. However, if the 

approximation accuracy is not met, the algorithm will insert additional knots close to 
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where the error bound was exceeded. Bessonnet; Seguin and Sardain (2005) 

presented an algorithm for walking pattern synthesis where the generalised 

coordinates of motion were approxianited by a spline fitted at specified knots 

uniformally spaced in time along the path. A least-squares method was used to fit the 

curves, there being no rigid requrement to pass through the knots. 

The use of GAs when operating in grid-based or in the original workspace was 

reviewed in chapters 4,5 and 6, but a specific area not covered and of relevance to 

the work in this chapter is recent work in which GAs have been applied as a graph 

search technique, particularly for the shortest path problem. This literature is 

reviewed in this section. In recent literature, there has been an increasing number of 

reports investigating the application of GAs to the shortest path problem, defined as 
finding a path between two designated nodes with minimum total length or path cost. 
it is a fundamental problem for many applications, such as transportation, routing and 

communication (Davies and Lingras 2003; Gen, Cheng and Oren 2001; Sniedovich 

1988). The GA proposed in (Ahn and Ramakrishna 2002) randomly initialised a set 

of routes constrained to be feasible paths in which all nodes in the path visited only 

once. The site for the one-point crossover operator was restricted to a pair of common 

genes of the parents, randomly selected by the pairwise (the tournament size is two) 

tournament selection strategy. The mutation operator altered the partial route from the 

mutation node to the destination node using the initialisation mechanism. 
Furthermore, the efficiency of the proposed GA was verified by favourable 

experimental comparisons with Dijkstra's algorithm and two other GAs reported in 

the literature. GAs with a similar structure were developed or adopted by a number of 

researchers (Davies and Lingras 2003; Wu and Ruan 2004). 

Davies and Lingras (2003) proposed a GA to solve the rerouting problem in dynamic 

and stochastic networks. The initial population contained a group of candidate paths 

of variable length representing a number of nodes connecting the current node to the 
destination node. By use of specifically modified crossover and mutation operators, 
the paths produced during the evolution were constrained to be feasible and a strategy 

was adopted that combined an elitist approach with the application of a roulette wheel 
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to favour fitter individuals. To prevent incomplete paths appearing in gene pool, the 

one-point crossover operator was constrained to sites having common- genes in the 

parents and the two-point crossover required the two sets of common genes 

constrained to be present in both parents in the same order. The mutation mechanism 

randomly selected two genes and the part between the two genes was reproduced. To 

account for the dynamic changes in the network, a weight was assigned according to 

the length of waiting time assigned to each node. A GA with a similar structure was 
developed by Wu and Ruan (2004) to operate in a connectivity information matrix 

that was predefined to indicate the connectivity of nodes. As is the work by Davies 

and Lingras (2003), the selection scheme employed was a combination of the roulette 

wheel and elitism methods, but the mutation operation was slightly modified in that 

the partial path after mutation node was generated from the end node to the mutation 

node by an initialisation mechanism. The two GAs proposed above are generational 

GAs, since the entire or at least a large fraction of the population is. altered by genetic 

operations carried out between successive generations. In the GA implemented by Ji, 

Iwamura and Shao (2007), a smaller number of individuals were modified by the 

genetic operations. The initial population contained a set of chromosomes of variable 
length, representing only the feasible paths. A rank-based selection scheme was used 

to determine the parents for genetic operations. The crossover operation was 

performed such that the parts after the nodes (randomly chosen from the common 

nodes between a pair of parent paths) were swýpped. The mutation point was 

randomly selected and a new path from the mutation node to the final destination 

node was generated by chromosome initialisation. An evolutionary algorithm was 

proposed by Mooney and Winstanley (2006) to solve multicriteria path optimisation 

problems using a pareto-elitist approach. The randomly generated initial population 

contained a set of feasible paths without loops and the individuals were assessed 

using pareto domination and a number of elite individuals were copied directly into 

the next generation. The pairwise (the tournament size is two) tournament selection 

scheme was used to select parents and further valid paths were generated through 

one-point crossover and mutation. The result obtained from real world road networks 
demonstrated that the new algorithm could outperform that of Dijkstra's algorithm. 
To solve the multiobjective problem for multicast routing, Garrozi and Araujo (2006) 
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used a single objective function 'combined nonlinearly for three separate objective 

goals. Each row of a table-like chromosome represented a route from a single source 

to one of the destinations and crossover operators that incorporated problem-specific 
knowledge were used to exchange information between parents chosen based on their 

relative fitness. The two mutation operators functioned as follows: the first one 
inserted a partial path after the mutation points and the second eliminated any loops 

that may have been generated during evolution. 

A number of authors attempted to combine GAs with other algorithm for shortest 

path problem. Those approaches are less relevant to the new planning algorithm 

described in this chapter, and only very brief introduction are given below. Duan and 
Yu (2003) proposed an algorithm, termed genetic shortest path algorithm, to optimise 

a power distribution system, in which a local optimisation method was developed to 

find local optima, from which the global optimum was generated by a GA. A 

hierarchical approach was developed by Wu and Ruan (2006) that incorporated the 

Floyd algorithm into a'GA in order to solve the shortest path problem with fixed 

intermediate nodes but without constraints on their order in the chromosome. 

8.2 Generalised waypoint navigation system 

The generalised version of waypoint navigation system preserves the hybrid 

architecture of the waypoint navigation systems of the previous two chapters, with the 

knowledge base functioning as an interface between the reactive and deliberative 

layers. Reactive control is derived from the decision trees generated by a series of 

robot movements through a set of simulated environments designed to embed suitable 

control rules. Deliberative planning takes advantage of knowledge of the environment 

gradually acquired during earlier navigation tasks and stored as waypoints. As 

explained in section 6.2, this hybrid architecture attempts to create high-level 

intelligent navigation behaviour by selectively recording the past experience, timely 

monitoring the current information, and tactically planning the future navigation. The 

waypoints used to represent the environment consume little memory, but their 

number is dependent on the navigation task currently performed. Overcoming this 
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limitation is the main purpose behind the development of the generalised hybrid 

architecture. One principal addition in the generalised version of waypoint navigation 

system is that more information is recorded regarding the reactions that result as a 

consequence of the presence of static obstacles. This extra knowledge is used to 

extend the capability of the deliberative control to allow path planning to be 

performed between any two locations in the environment. As memory capacity is a 

scarce resource in embedded systems, the raw information gathered is progressively 

processed in order to reduce the data storage requirement. The information so 

recorded permits paths previously taken to be approximately restored with little 

computational effort to enable future path planning or to provide a localisation 

reference. To permit this extra information to be used in the generation of paths 
between any specified two points in the environment, the path planning approach has 

also required extensive modification. 

A high-level overview of the operation of the generalised waypoint navigation system 
is now given. Assuming no initial knowledge of the environment, the robot navigates 

to the goal under reactive control with waypoints being determined as static obstacles 

are encountered. Two types of waypoints are now obtained. The first is the same as 

that in the previously-described waypoint system, in that the waypoints indicate that 

the robot is approaching a newly encountered obstacle and its heading is being forced 

to change. The second type of waypoint is introduced in the generalised waypoint 

system and the waypoint marks the location where the robot is no longer avoiding the 

obstacle and instead reverts to heading directly towards the goal. On generating a 

waypoint of the first type, memory is temporarily assigned to record the tracking of 

the path segment that the robot follows around the obstacle. Tracking stops once a 

waypoint of second type is generated. As there is an alternative path to explore to 

circumnavigate the obstacle starting from a waypoint of first type, such waypoints 

can be labelled as unexplored until the alternative path has been followed. As the 

second type of waypoint is the end point of the path segment, no similar exploration 
is required. Following the recording of a waypoint of the second type, the robot 

processes the information regarding the segment and stores only that necessary to 

permit the deliberative navigation module to plan future paths involving the segment. 
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When the robot finishes its current task and no further navigation tasks are required to 

be conducted immediately, the exploration function can be invoked to follow either 

alternative paths that start from unexplored waypoints or to investigate uncharted 

regions by selecting locations randomly, or heuristically if the robot has knowledge of 

the distribution of the obstacles. 

Using the knowledge gained during reactive navigation and exploration, paths that 

can take advantage of the recorded segments can be generated by the deliberative 

system prior to beginning a new navigation task. As in previous waypoint 
implementations, the path generated will consist of a set of sub-goals for the robot to 

follow successively in the new navigation task, with the actual movements between 

these sub-goals remaining under the control of the reactive layer. 

8.3 Knowledge base 

In navigation problems, memory is often required for the deliberative navigation 

system to maintain information about its environment in order to localise the robot 

and generate a plan for future navigation. An important issue -in the practical 

realisation of hybrid navigation systems is not just the nature of this information, but 

also its storage, as memory capacity is often limited. Some hybrid systems described 

in the literature construct an exhaustive model for the environment (as discussed in 

section 3.1 - 1) in order to achieve good navigation performance. Such models not only 

consume substantial memory, but dealing with such large quantities of memory 

involves significant computational overheads (Santos, Castro and Ribeiro 2000; 

Urdiales et al. 2003b). A number of hybrid systems reported in literature adopted 
hybrid maps or topological maps abstracted from a metric map (see section 6.1) to 

enhance the planning efficiency. The construction of hybrid maps and abstract 

topological maps is computationally complex. The implementation of the navigation 

system presented in this chapter requires that only a relatively small number of points 
be extracted to record the trajectories around obstacles. The memory usages for the 

experiments are reported in section 8.5.5. 
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8.3.1 The two types of waypoint 

This section defines the two types of waypoints employed in the navigation system 

introduced in this chapter. In the waypoint navigation systems described in chapters 6 

and 7, a location is marked as a waypoint only when the robot needs to deviate from 

its current path due to the presence of a static obstacle (see section 6.2.2). In contrast, 

two types of waypoints are defined in the new navigation system. As the particular 

reactive system used in the current work neither identifies nor internally represents 
boundaries between primitive behaviours, the identification of waypoints is instead 

based on robot heading changes and sensor readings. A survey of other literature 

related to waypoints was presented in section 6.2.2. No publications that determine 

waypoints based on behaviour changes have been found in the literature, and so the 

idea to build behaviour-driven waypoints is claimed by the author as being novel. 

An example of the first type of waypoint found in previous waypoint navigation 

systems is shown in Figure 8.1 represented by a circular marker. Such a waypoint is 

recorded when the robot's behaviour changes from one of goal-seeking to one that 

avoids static obstacles detected by its sensors. The reason to record those waypoints 
is to indicate the approximate location of obstacles and those points in the 

environment where the robot can take one of two alternative paths to negotiate 

obstacles. On the first recording of a waypoint, only one of the two paths around an 

obstacle is taken, with the waypoint being marked as unexplored until the second path 
has been taken. The first type of waypoint also marks the beginning of a path segment 

around the obstacle (shown by broken lines); such as a segment being the principal 

method of recording information about the environment in the generalised waypoint 

navigation approach. 

The location at which the robot begins to move away from the obstacle that forced the 

robot to change its direction and revert to heading towards the goal, is recorded as a 

waypoint of the second type and is indicated by a star marker in Figure 8.1. This 

location is in fact that at which avoidance of the obstacle ends and the robot reverts to 

goal-seeking behaviour. The recording those points is useful as they give the 
boundary between the obstacle and the free-space with respect to the current 
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navigation task. A stored path segment will always end at such a location, although 

this type of waypoint may, in some cases, indicate the initial point for a second path 

segment around the obstacle. This is particularly likely to occur when the robot is 

circumnavigating a concave obstacle edge. Although this second type of waypoint is 

effectively a node that can be selected to aid obstacle avoidance in future planned 

paths, it is not used to initiate exploration. 

1" type of waypoint, 

2"' type o 

rpoint 

goal point 

Figure 8.1 An example of the two types of waypoint. The circular maker denotes the first 
type of waypoint, whereas the second type of waypoint is indicated by star markers. The 

broken lines between the two types of waypoint are path segments that the robot has followed 
while avoiding the obstacle. 

8.3.2 Curve segment representation 
In the generalised navigation system, the path segments, such as those in Figure 8.1 

originating from a waypoint of the first type and terminating at a waypoint of the 

second type, are recorded for path planning purposes. The segment itself is a 
trajectory generated by the reactive navigation system as a consequence of its 

obstacle avoidance behaviour. The shape of the segment reflects that of the obstacle 

the robot is avoiding. The previous navigation systems proposed in chapters 6 and 7 
do not retain the useful information provided by such segments traversed during 

earlier navigation tasks. To take advantage of such valuable information for future 

planning is the main reason to record the segments instead of a few orphan points. 
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In order to be able to reproduce the segment for path planning purposes, a method is 

needed of recording the sequence of coordinates progressively accumulated as the 

robot reactively navigates around on obstacle. To reduce the quantity of information 

that needs to be retained, a spline approximation technique (de Boor 1978; Kvasov 

2000; Noggle 1993) has been adopted. Splines generally provide an efficient solution 

to the representation of complex shapes, as the piecewise polynomial approximation 

that results is generally of a lower order than that obtained when approximating using 

a single polynomial, thereby reducing the storage requirement for any given accuracy 

of fit. 

To make clear why a suitable approximation to the actual path taken by the robot 

when performing obstacle avoidance is needed by the planner, consider' the 

representation of the path segment by a straight line connecting the end points of a 

path segment. Although the line can be easily manipulated, it is unable to provide a 

sufficiently accurate representation of planned paths that avoid obstacle collisions. 

Figure 8.2 shows an, example in which the planner is attempting to determine a 

suitable path between waypoints A and B. As part of this assessment, a test of the 

intersection of line AB with all path segments is required. If the path segment 

between waypoints C and D is recorded as a straight line, no intersection is detected. 

if the path segments around obstacles are instead recorded as splines, the planner will 

identify the intersection with the spline CD and a closer representation of the actual 

path the robot will need to take can be planned. Clearly this example does not identify 

a specific accuracy requirement and this is discussed further in secýion 8.4.1. 
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Figure 8.2 The path segment represented by a straight line. The straight line between C and 
D is indicated by the grey 'dash-dot' line, whereas the dark broken line denotes the actual 
curve between the pair of waypoints. The grey broken line between A and B is a proposed 

path connecting two waypoints located near other obstacles. 

The conventional approach when fitting a curve is to use a least-squares approach 
(Guo, Gui and Yang 2003; Noggle 1993). However, in the current implementation, 

cubic spline interpolation expressed in parametric form is used in place of least- 

squares approximation to ensure that the spline passes through the end points of the 

path segment. Although the elegant feature of second order continuity of cubic 

splines makes it a popular choice for modelling trajectories (Guan et al. 2005; Korb 

and Troch 2003), the choice of cubic. spline here arises more from the need to control 

the computation complexity and memory usage. Cubic polynomials are chosen as a 

reasonable compromise; they are more easily manipulated than polynomials of higher 

order, whereas, to achieve the same resolution, splines of lower order are likely to 

require additional pieces (Guan et al. 2005), thereby increasing the memory needed to 

store the coefficients and breaks for the spline. Figure 8.3 illustrates the difference 

between the fitting results of using least-squares approximation method (the upper 

path segment) and interpolation (the lower path segment). As the spline curve 

generated by least-squares approximation approach does not pass through the end 

points that are the two waypoints, it may not be possible to identify correctly all 
intersections that occur between the true path segment and a path that coincidently 

passes through or near those waypoints. In contrast, this problem can be avoided if 
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the interpolation is used as the approximation technique, as breaks will coincide with 

the end points of the actual path segment. Singularity problems can arise when using 

the explicit equation y=f (x) to represent a planar curve which is closed or multiple 

valued and has vertical tangents in a fixed Cartesian coordinate system. Although 

these limitations inherent to the explicit form can be overcome by using the implicit 

form f(x, y) =0 to represent the curve, its determination is computationally complex, 

requiring the solution of a non-linear equation for each data point. The parametric 

form x= h(l) and y= g(t) has advantages over both the explicit and implicit forms: 

it is able to represent curves that the explicit equation cannot, while 
; Iso having 

reduced computational complexity compared with the implicit form. The path 

segment is expressed in the following form, where the parameter t is travel time. 

h(t) = at 3+ blt' + ct 

g(t) = a, t3 +b2 t2 + c, t + d2 

Equation 8.1 

Equation 8.2 

Q IF 
least squares 
approximation 

% D. %, '0 
,. %,. 

%P ad type 2 I't fung- nfwavnnint. -., - 
A, of waypoint 

interpolation 

2 Rd type of waypoint 

goal point 

Figure 8.3 An example of intersections between straight line paths (illustrated as grey dash- 
dot lines) and spline curves (shown as black broken lines), generated by using least squares 

approximation (between A and B) and interpolation (between A and Q. 

The knot sequence is a list of monotonically non-decreasing values and one of the 

critical components in constructing a spline for a given set of data points. The 

-B 
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uniform selection scheme (Bessonnet, Seguin and Sardain 2005; de Boor 1978) is 

used to determine a knot sequence for spline construction. Residual analysis is 

performed between the data and the values generated by the constructed spline for 

each data site. If the evaluation indicates the current spline is unable to meet the 

requirement determined from the residual criteria, the algorithm proposes a new 

spline with an additional cubic polynomial and evaluates the goodness of fit of the 

new spline. This process is guaranteed to complete in a finite number of iterations as 

the spline will pass through all the data points exactly once the number of 

polynomials in the spline is one less than the number of data points. Under normal 

circumstances, process terminates once a spline meets the residual criteria. More 

exacting criteria result in a better fitting spline, but one which takes longer time to 

process. The residual value needs to be set according to the requirements of the 

planner, rather than by the navigation actions, which are performed in a reactive 

manner. Currently, the residual value is set to be equal to the step length of the robot, 

namely the distance it moves between navigation decisions, as this is approximately 

the error involved when recording the path segment data. Once the spline fitting is 

complete, the robot stores the coefficients of the spline generated as well as the 

breaks for each polynomial for future use in planning operations, while the original 

data of the path segment are discarded. 

8.4 The planning algorithm 

When a new navigation task is assigned, the robot needs to generate a path between 

the start and goal points. For a suitable path to be determined, the estimated overall 

path length is found from the individual path length between pairs of waypoints 

stored in a cost matrix. To perform planning, a genetic algorithm is applied that has a 

steady-state structure, in the sense that successive generations differ by only a single 
individual or by one pair of individuals (depending on the genetic operator applied). 

The reason for choosing the steady-state structure is that the planning can be 

interrupted at anytime and the best path evolved thus far can be used as the current 

solution, while the generational computation is kept to a minimum (as explained in 

section 2.1). A deterministic crowding technique is used to maintain the population 
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diversity. The overall operation of the evolutionary planning is given before 

describing each component in detail in the subsequent sections. The evolutionary 

process starts with the initial population randomly generated based on the cost matrix. 

The population is evaluated and the individuals are ranked according to their fitness. 

A roulette wheel is constructed and its slots are sized according to the ranks of the 

individuals and a parent or a pair of parents is selected by the roulette wheel to 

produce offspring. The new generation is formed by inserting the winners of the 

competition between offspring and parent(s) in the identical niche. The best 

individual is selected as the path after a suitable number of iterations. As the planning 

algorithm retains the main structure of the algorithm introduced in section 6.3, a 

repeated description is avoided here, and, instead, only the components that have 

been modified are discussed. 

8.4.1 Cost matrix 

The cost matrix (Wu and Ruan 2004) is square and represents the visibility graph in a 

form that is convenient for the planning algorithm to manipulate. An example of a 

cost matrix and its corresponding environment are shown in Figure 8.4 and Figure 8.5 

respectively. The algorithm initially constructs an empty matrix with dimension equal 

to the number of waypoints so far detected plus the start and goal points. Each cell in 

the matrix is the cost in terms of path length of the path segment originating from the 

waypoint indicated by the row label and ending at the waypoint indicated by the 

column label. The cost matrix is then used to plan 
'a 

path that is a sequence of path 

segments each originating and terminating in a waypoint. Those cells corresponding 

to path segments that the robot has previously visited show the actual path lengths 

and are stored as positive values. Zeroes are permanently assigned to the cells along 

the diagonal, to cells of paths originating from the goal and to those cells whose paths 

end at the start point. The cost values in the remaining cells are estimated as follows. 

The straight line path between the waypoints is assessed to determine whether it is 

infeasible, that is, it intersects with any of the path segments represented by splines. 

In practice, this evaluation simply involves solving the equation of a straight line with 

the two parametric equations (Equation 8.1 and 8.2). If the evaluation indicates a 
intersection between the straight line path and one of the spline curves, the cell 

218 



Chapter 8: Generalised waypoint-based navigation system 

corresponding to this straight line segment is set to be zero, otherwise the length of 

the straight line is assigned to the cell but prefixed with a negative sign to denote this 

path has not previously been followed. 

Start WPI WP2 WP3 WN WP5 WP6 Goal 
Start 0 0 0 0 -4.16 -6.15 -2.03 0 
WPI 0 0 2.55 0 0 3.08 0 0 
WP2 0 2.55 0 2.38 -4.63 0 0 -2.04 
WP3 0 0 2.38 0 2.58 1 -4.42 3.9 1 -1.46 
WN 0 0 -4.63 2.58 0 0 0 -2.86 
WP5 0 3.08 0 -4.42 0 0 -4.16 -5.29 
WP6 0 0 0 3.9 0 -4.16 0 0 
Goal 0 0 0 0 0 0 0 0 

Figure 8.4 An example of a cost matrix used for planning a path for the navigation task 
shown in Figure 8.5. 
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Figure 8.5 Illustration of feasibility evaluation during the calculation of values in the cost 
matrix. The circular and star markers indicate the first and second type of waypoints 

respectively. The feasible paths are depicted as solid lines and the infeasible ones as dashed 
lines. The cost matrix for this visibility graph is shown in Figure 8.4. 

In addition, paths between - two waypoints of the second type are regarded as 
infeasible if they connect to a common waypoint of the first type. As can be seen in 

Figure 8.5, these paths are liable to be infeasible. In the'figure, the infeasible 
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connections are indicated by dashed lines and the solid lines are the feasible paths 

(both known and unknown). Note that the first row and the last column are all 

negative values indicating the navigation starts from a new location and will 

terminate at a new destination. As the cost matrix is symmetrical, then, only the upper 

triangle is retained. 

in the implementation, if a part of the straight line segment and an intersecting curve 

segment are similar in length, these values can remain in the matrix. Figure 8.6 shows 

an example where the proposed straight-line path AB intersects the spline CD at 

points PI and P2. If the length of the straight line between PI and P2 is within 5% of 

the length of the curve between P1 and P2, the straight line AB will be regarded as a 
feasible path segment. This value of 5% could be optimised according to the 

navigation task, navigation ability of the robot, and whether intersections with other 

path segments occur in the vicinity of P1 or P2. This strategy means the robot does 

not exclude such paths that are likely to be feasible. It is important to note that once 

robot movement begins, the actual navigation between waypoints will be carried out 

reactively and so the route followed by the robot will likely be along the path segment 
between PI and P2. 

0--\ -------- 
Pi 

: --. P2 
A '6ý -------------------------- 

% 
1" type of waypoint.., CD% 

nd 
B 

2 type of waypoint 

'Iýoobstacle 

E 
2 nd type of waypoint 

goal 

Figure 8.6 Intersection between the straight line AB and the spline CD at points PI and P2. 
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The search for an optimal or near optimal path is constrained to the space containing 

the cost matrix values of feasible path segments, some being known and others not. 

The elimination of all infeasible path segments makes it possible that a number of' 
individuals will terminate at a waypoint instead ofthe goal, however, SLICII Paths al-C 
then also infeasible and so not involved in the evolutionary process. 

8.4.2 Initial population 

The initial population is generated by incorporating domain kilo,, N, Icdge so that all 

individuals are feasible. The process first randornly selects a path scgi-nent originating 

from the start point (the highlighted cell in the first row in the cost matrix). As 

illustrated in Figure 8.7(a), the first row and the colunin ofthe target waypoint are not 

considered in the remainder of the generation process, in order to prevent the robot's 

return to the same location. Using the row Ior W115, the random selection of' W113 as 
the third gene has the effect of emptying the row for W115 and the column for W113 as 

shown in Figure 8.7(b). This process continues until either the goal is selected (as in 

Figure 8.7(c)), or the row corresponding to the current node is blank or all zeroes. The 

individuals generated in this way are not of fixed length. In each ol'Figure 8.7(a), (h) 

and (c). the lengths of the individual segments are shown, note that the signs of the 

lengths are ignored when determining the total path length. For this example, it 
becomes clear that visiting the same node more than once can be easily avoided by 

careful use of the cost matrix. 

Start WPI WP2 I WP3 WP4__ W P5 -W-116 (10,11---- 
Start 0 0 0 0 -4.16 -6.15 -2 . 03 0 
WPI 0 0 2.55 0 0 

- 
3 08 0 

ýWP2 0 2.55 0 2.38 -4.63 0 0 -2.04 
WP3 0 0 2.38 0 58 -4.42 3.9 -1.46 W P4 0 0 -4.63 2.58 0 0 0 -2.86 -ýkP5 0 3.08 0 -4.42 0 0 -ý. 16 -5.29- ýMI'6 0 0 0 3.9 0 -4.16_ 0 0 

-doal 0 0 0 0 0 0 0 0 

individual 
gene I gene 2 

nodes start WP5 
segment length _ 0 __ 

-6.15 
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Start WPI WP2 WP3 WP4 WP5 Goal 
Start 
WPI 0 0 2.55 0 0 0 0 
WP2 0 2.55 0 2.38 -4.63 0 -2.04 
WP3 0 0 2.38 0 2.58 3.9 -1.46 
WP4 0 0 -4.63 2.58 0 0 -2.86 
WP5 0 3.08 0 -4.42 0 -4.16 -5.29 
WP6 0 0 0 3.9 0 0 0- 

Goal 0 0 0 0 0 
-0 

(a) the first gene is the start point and the sccond 
gene has been randomly selectcd as WP5 

Start WPI WP2 WP3 WP4 W115 W 116 Goal 
Start 
WPI 0 0 2.55 0 0 0 0 
WP2 0 2.55 0 2.38 -4.63 0 -2.04 
ýWP3 0 0 2.38 0 2.58 3.9 -1.46 
WP4 0 0 -4.63 2.58 0 -2.86 
ýiP5 0 3.08 0 -4.42 0 -4.16 -5.21) 
WP6 0 0 0 3.9 0 

Goal 0 0 0 0 0 0 

individual 
gene I gene 2 gene 3 

nodes start W115 W 113 

segment length 0 -6.15 -4.42 

Start WPI WP2 133_ WN WP5 W 116 Goal 

Start 
; wp -1 0 0 2.55 0 0 0 
V-V-P2 0 2.55 0 -4.63 0 -2.04 
VP -3 0 0 2.38 2.58 3.9 -1.46 
WP- -4 0 0 -4.63 0 0 -2.86 

-)WP- -5 
WP- -6 0 0 0 0 0 

--Cioal 0 0 0 0 () 

(b) from the row for WP5, WN has been randonilN, selected 
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Start WPI WP2 WP3 WN W115 W116 Goal 
Start 
WPI 0 0 2.55 0 0 0 
WP2 0 2.55 0 -4.63 0 -2.04 
WP3 0 0 2.38 2.58 3.9 -1.46 
WN 0 0 -4.63 0 0 -2.86 
WP5 
WP6 0 0 0 0 0 0 
Goal 0 0 0 0 0 0 

individual 
gene I gene 2 gene 3 gene 4 

nodes start W115 WP3 goal 
segment length 0 -6.15 -4.42 -1.46 

Start WPI WP2 WP3 WN WP5 116 
__ 

W Goal 
Start _ 

WPI 0 0 2.55 0 0 
WP2 0 2.55 0 -4.63 0 
WP3 
WN 0 0 -4.63 0 0 
WP5 
WP6 0 0 0 0 0 
Goal 0 0 0 0 

(c) finally, the goals have been randomly sclected 

Figure 8.7 Ali example of the random generation of an individual using the cost ljjjtl-lx ill 
Figure 8.4, corresponding to tile environment illusti-ated ill Figure 8.5. 

8.4.3 G enctic operators 

Two operators are defined, namely cinvsovet- and inset-limi, the crossover operator is 

extensively applied whilst the insertion operator is OCCaSiOlIally Used. 

A conventional one-point crossovei- operator is used to exchange the genes hoween a 

pair of individuals. The random selection for the crossover site is constrained to the 

nodes that are in common between the pair of individuals. The offspring generated 

competes with their most similar parent for survival into the next generation. The 

definitions of the similarity and the replacement strategy were described in detail in 

section 6.3.5. One-point crossover has been used, rather than the 111111ti-p(, int 

crossover used in the previous systems (see chapter 6), bcCaUSC thc graph structures 

are largely different. In the waypoint network presented in chaptcr 6. ifall waypoints 
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have one branch input and two branch outputs after the waypoint has been explored, 

the number of the common nodes between a pair of parents should be one. However, 

in most situations, waypoints may originate from more than one ancestor waypoint in 

order to converge to the single goal point. Therefore, multi-point crossover is efficient 
in such situations in that more information can be interchanged between the parents. 
In contrast, each waypoint in the graph generated for the navigation problem in this 

chapter have multiple input and output waypoints. This implies a significantly 
increased probability of potential paths around single waypoints that need to be 

exploited. Furthermore, the better efficiency of one-point crossover with respect to 

multi-point crossover was observed during the experiments. 

The second operator, insertion, introduces a new individual by the mechanism used to 

generate the initial population, thereby promoting population diversity. The offspring 

produced replaces the worst fitting member of the current population. Sections 6.3.2 

and 6.3.5 provide a full discussion of this operator. 

8.4.4 Evaluation 

The evaluation function is a weighted sum as expressed in Equation 8.3 and has been 

formulated to account for both the known and unknown path segments. 

n 

E=wi Li + W2 'j: 
Lj Equation 8.3 

For the known segments, the sum of the m known paths lengths is multiplied by a 

weight wl and the sum of the n straight-line unknown path segments are multiplied b*y 

a weight w2. The weights w, and W2 can be set to pre-determined values according to 

whether the robot is required to give priority to exploration or to follow the known 

path segments where possible. In the current implementation, wl is simply set as 1, 

whereas W2 is the ratio of the estimated actual path length to the straight line path. A 

value for the ratio can be obtained from the navigation tasks, in section 8.5.4. Pareto 

domination (Mooney and Winstanley 2006) have been used for multicriteria 
optimisation problems, but the determination of their domination requires extra 

computation effort. Garrozi and Araujo (2006), combined three separate objective 
functions into a single nonlinear evaluation function, but such a single function is 
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difficult to determine. In the navigation system presented here, a linear combination 

of known and unknown path segments is used and the different emphases placed on 

each part can easily be adjusted through the changes on their weight values. 

8.5 Experiments and results 

The navigation system proposed in this chapter has been verified through a series of 

five experiments conducted in simulated environments. As the architecture of the 

proposed navigation system is inherited from the navigation systems presented in 

previous two chapters and the comparison with other architectures reported in the 

literature can be found in the previous two chapters, this section only presents the 

result of the comparison between the generalised waypoint-based navigation 

algorithm and other two algorithms (Ahn and Ramakrishna 2002; Ji, Iwamura and 

Shao'2007). The reasons for choosing those two benchmarks are explained in section 

8.5.6. 

The experimental arrangement is same as that described in chapter 6, but with 

modifications to the autonomous mobile robotics toolbox. (Brno University of 

Technology 2006) to render it compatible with version 7.3 of MATLAB (Mathworks 

2006). Three investigations were carried out in the first environment, which was used 

to produce a range of different levels of environmental knowledge for use by the 

planner. A second environment was used to conduct the final two experiments: 

experiments 4 and 5 investigated the effects of the weight W2 on the plan produced. 

Experiments 3,4 and 5 employ a learning process to enable the robot to become 

familiar with its environment. Table 8.1 summarises the parameters used; these were 

determined experimentally and have not been optimised. The weight, wl, is applied to 

the sum of the costs of the path segments already visited and is set to unity as their 

path length values are accurately known. The costs for the unknown path are scaled 

by W2 which is obtained based on previous navigational experiences. 

225 



Chapter 8: Generalised waypoint-based navigation system 

Table 8.1 The system parameters for the planning algorithm 
(w2 is estimated from the previous navigations). 

population number of wei ghts operator probability 
experiment size generations W1 W2 insertion crossover 

1 250 100 1 1.12 
other 

2 300 2500 1 1.12 every generations 
3 500 4500 1 1.12 

' 
100 rather than 

4 500 4800 1 1.85 generation every 100 

5 500 4800 1 1 
1 
generation 

8.5.1 Path generated with little knowledge of the environment 

The first test is a simple navigation problem where limited information of the 

environment is known from a previous navigation task that generated fully explored 

waypoints when moving from the lower-left comer to upper-right comer of the 

environment. Figure 8.8 shows as thin lines the trajectories that the robot previously 

followed and the thickened line indicates the path segments for a new navigation 

problem that consists of two segments through unknown territory and a known 

segment in the central part of the path. 

17 

1 

Eý 12. 
C: 
0 

-f, I 
cu 'D 

>- 

X direction (m) 

Figure 8.8 A path generated based on knowledge acquired during previous navigations. The 
thickened and thin lines respectively represent paths generated by the deliberative planner 

and that travelled by the robot during previous navigations. The new start and goal points are 
indicated by the markers 'S' and 'GI. 
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To illustrate the operations of the planner, Figure 8.9 shows a thickened line that 

represents splines constructed to approximate the path segments around obstacles. 
Note that the spline fit is constrained to approximate the actual path segment with a 

maximum error of 5cm, which is the step length of the robot. 
I 

17.5 

15 

E' 12.5 A lobo 
0 -P, 1 4W 
cu '0 >- 7.5 

2.5 4w 

X direction (M) 

Figure 8.9 The spline approximations to the actual path segments around the obstacles. The 
spline curves are indicated by the thickened lines, whereas the thin lines present the path that 

the robot had taken previously. 

Figure 8.10 shows the cost matrix generated for the new navigation task shown in 

Figure 8.8 (from S to G) and all the paths in the cost matrix are shown in Figure 8.11. 

The negative values in Figure 8.10 correspond to the costs estimated for proposed 

path segments that have not been followed in a previous robot activities and are 

shown as thin lines in Figure 8.11. 
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- Startj WPI WP2 WP3 WN WP51 WP6 WP7 WP8 WP91 WPIO WPII WP121 WPI3 Goal 

Start Start 01 0 -1.5 -14 -14.4 -17.51 0 -3.9 -6.5 -8.3 -15.2 0 -18.81 -6.5 0 

wpl, pI 0 0 1.1 0 0 0 0 2.4 0 0 0 0 0 0 0 

ý WP2 P2 0 1.1 01 14.9 -15.3 -18.4 0 0 -6.7 -8.5 -15.9. 0 -19.7 -7.1 0 

If. 'I WP3 0 0 14.91 0 0.6 0 0 01 0 -8.1 0 3.4 0 8 -6 
WN 0 0 -15.31 0.6 0 3.2 -4.6 0 0 -8.6 3.4 0 0 0 0 

WP5 0 0 -18.41 0 3.2 
. 

0 1.9 0 0 0 0 -3.4 2.2 0 0 
ýý1? 6 0 0 -4.6 1.9 0 0 0 0 0 -3.8 0 0 0 

WP7 0 2.4 0 0 0 0 0 01 5.7 -7.3 0 0 0 -6.8 -10.4, 
WP8 0 0 -6.7 0 0 0 0 5.7 0 2 0 0 0 1.8 0 

wpq pq 0 0 -8.5 1-8.1 -8.6 0 0 -7.3 2 0 8.3 0 0 0 -3.2 
W'D I NO 0 0 -15.9 0 3.4 0 0 0 0 

. 
8.3 0 1 0.8 0 -8.8 . 5.5 

7ý ýpj 1 0 0 0 3.4 0 -3.4 -3.8 0 0 0 0.8 0 0 0 0 
-TP 12 0 0 -19.7 0 0 2.2 0 0 0 0 0 0 0 0 0 

1 WP13 10 10 -7.1 18 0 0 0 -6.8 1 1.8 0 -8.8 0 0 0 -4.9 
1 Goal 10 10 10 10 0 0 0 0 10 

10 10 0 0 

Figure 8.10 The cost matrix constructed for path planning. The positive values represent the 
paths travelled by the robot during previous navigation tasks, whereas the estimated paths are 

indicated by a negative sign. 

17.5 4F vA 
15 

-12.5 
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7.5 13 

5s9 

2 440 
2.5 11 41W 

ý16 

2.5 5 7.5 10 1 
X direction (m) 

I 

Ab 

6 

Figure 8.11 The visibility graph corresponding to the cost matrix shown. in Figure 8.10. 
While the thin lines indicate the paths that have not been followed by the robot, the paths that 

the robot has followed in previous navigations are shown by thickened lines. * 
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Figure 8.11 shows the visibility graph corresponding to the cost matrix constructed 

for a new navigation task that starts at point S and ends at point G. A small number of 

path segments (indicated by thickened lines in Figure 8.11) have been followed by the 

robot in the previous tasks and a larger number of path segments (shown as thin lines) 

are previously unfollowed paths between waypoints from which the robot can also 

choose to generate navigation solutions. 

8.5.2 Path generated with greater confidence of the working environment 

The planning result presented in this section was obtained after the robot has 

performed a number of different navigation activities in the same environment and 

consequently much more domain information was available for planning purposes. 

Navigation performed from four different pairs of start and goal points are illustrated 

as thin lines in Figure 8.12 and the thickened line is the path generated for the new 

start and goal points. From Figure 8.12, it can be seen that no known segments are 

used by the best path generated. 

17 

-12 E 
c 

>- 

X direction (m) 

Figure 8.12 The path generated based on the environmental knowledge gained from four 
earlier navigation tasks. The markers 'S' and 'G' are the start and goal points for the current 

navigation activities. 
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The thickened lines in Figure 8.13 are the approximations achieved by a set of splines 
fitted to the path segments generated when avoiding obstacles. The cost matrix 

generated for the new start and goal points is shown graphically in Figure 9.14. ' 

17 

I 

Eý 12. 
r_ 

X direcbon (m) 

Figure 8.13 The spline curves representing the actual path segments. The thickened lines 
indicate the fitted curves and the thin lines the paths previously travelled. 
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Figure 8.14 The visibility graph corresponding to the cost matrix generated. The segments 
unvisited are indicated by thin lines, whereas the thickened lines represent segments that have 

been discovered. 
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8.5.3 The paths generated based on learning 

The planning performed by the proposed algorithm was further evaluated by 

increasing the search space. This was realised by a learning process that repeatedly 

performed navigation between pairs of randomly selected locations, each of which 

must be in free space and at a distance no less than the sensor range from any obstacle. 

The thin lines in Figure 8.15 ar6 the trajectories of these navigation tasks and the 

thickened line is the path planned for a new navigation task. It can be seen from the 

result obtained that a path can be generated with minimum cost in terms of path 

length, though all path segments have not been explored in the previous navigation 

tasks. 

17.51 4w 
4ýý 

1 

-12. E 
c 

>- 

X diredion (m) 

Figure 8.15 The path generated following a sequence of learning in the environment. The 
thickened line is the path generated for a planned navigation task from 'S' to 'G' and thin 

lines indicate the paths that have been travelled previously. 

8.5.4 The effect of weight values on path planning 

The final two experiments investigated the effect of the weight values for unknown 

path lengths for use in planning. The cost for the unknown part of the planned path is 

the length of the straight line segments scaled by this ratio. The value of w2 is 
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effectively estimated from the previous navigations through the same environment by 

comparing the true path length to the length of the path assumed as a straight line. 

This value is likely to'be larger when the environment is heavily populated with 

obstacles. The weight W2 is the ratio of the actual path length taken to that if a 

straight-line path could have been followed, and in the current work is estimated from 

previous navigation tasks conducted between randomly selected pairs of locations. To 

demonstrate the effect of the weight W2 on the path planned, two experiments are now 
described. In the first experiment, the value Of W2 is set to 1.85 and the path produced 

for a new navigation task is shown in Figure 8.16 as a thickened line. Apart from the 

first and final segments, all the remaining segments have been previously taken by the 

robot. In contrast, the path planned in Figure 8.17 when W2 is set to unity (so that 

unknown path lengths are taken to be the straight-line costs) tends to follow 

previously untaken paths as these are not penalised. In contrast, the path shown in 

Figure 8.16 as the thickened line was generated with a different weight W2 being 1.85 

estimated from the previous navigations for the unvisited part of the path. 

It is apparent that high values'Of W2 tend to lead the planner to prefer previously taken 

paths, whereas low values Of W2 promote the following of unknown paths. As high 

values Of W2 reflect an environment that has a large proportion of the environment 

filled by obstacles, known paths are more likely to be more attractive to the planner as 

they guarantee obstacle avoidance. The current system includes a learning process 

that uses previous navigations to increase the confldence of the value Of W2. The 

accuracy of the estimated value can be further improved as more explorations are 

performed in the same environment. 
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Figure 8.16 The path generated using a weight value w2 = 1.85. 
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Figure 8.17 The path generated using a weight value w2 
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8.5.5 Summary of results 
Table 8.2-summarises the planning performances for each experiment. The number of 

waypoints and splines produced by the experiments reflects the complexity of the task 

that needs to 
' 
be performed by the path planner. The use of splines rather than the 

actual recorded data has allowed memory usage to be reduced by around an order of 

magnitude. The memory usage in the spline fit could be further reduced by relaxation 

of the error bound in the approximation. The planning performance in terms of 

optimality (defined as the percentage of attempts that successfully evolved to the 

optimal path) was evaluated by performing 300 independent runs for each experiment. 
The calculation times shown in Table 8.2 were obtained from the mean values of 300 

independent runs rather than median values, as there was little presence of extreme 

values. For a reasonably complex planning problem, such as those in experiments 3,4, 

and 5, a suitable path can be generated in well under 10s. Although this is achieved 

by a large population over a large number of generations (as shown in Table 8.1), the 

number of fitness evaluations that need to be performed is considerably smaller than 

the number of candidate paths. Even the simplest planning problem shown in Table 

8.2 contains a large number of possible paths to search. To determine the total 

number of alternative paths that can be generated from the cost matrix; a depth-first 

algorithm was employed. As a steady-state GA is adopted for the planner, only a 

single genetic operation is performed in each generation and consequently a greater 

number of generations is required compared with conventional GAs. The steady-state 
GA, however, is prone to retaining potential elites until their genes have possibly 
been propagated to later generations. During experiments, it was observed that the 

insertion operator, compared with crossover, was responsible for fewer improvements 

in the fitness of the population, even though it promoted population diversity to some 
degree. The use of DC was found to promote the retention of the initial diversity and 

the initial supply was observed to be more critical in progressively evolving an 

optimal solution compared with the results of applying the insertion operation. It was 
found that the frequency of application of the insertion operator could be reduced, 
firstly as this would generally lengthen the survival rate of potential elite genes until 

they had been more closely scrutinised, and secondly because its importance in 
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maintaining diversity was limited. Note that insertion operator was not applied to the 

simplest environment, as the initial supply of genes is adequate. 

Table 8.2 The planning performances for the five experiments, showing the memory needed 
to store the splines. The compression ratio is the mean value of the ratio of the memory 

occupied by the spline coefficients to that occupied by the raw coordinate data. The results 
for the calculation time and optimality were obtained for 300 independent runs and the mean 

values are shown. 

experiment number of 
waypoints 

number 
of splines 

memory 
usage (kB) 

compression 
ratio 

optimality 
rate 

calculation 
time (S) 

1 13 10 12.1 8.17 93.0 0.13 
2 41 33 41.6 10.6 91.6 2.34 
3 90 73 108 11.3 93.7 4.72 
4 92 68 93.7 12.2 92.7 6.05 
5 92 68 93.7 12.2 97.0 6.03 

8.5.6 Comparison of the planning algorithm with existing systems 

To further evaluate the planning algorithm proposed in the navigation system, a 

comparison with two existing genetic-based algorithms (Ahn and Ramakrishna 2002; 

ji, Iwamura and Shao 2007) was conducted for the five experiments introduced 

previously in this section. These two algorithms are closely related to the planning 

algorithm proposed in this chapter, since only two genetic operators, one is used for 

exchanging information between a pair of parents and the other for randomly altering 

genes, were used. Alm and Ramakrishna (2002) proposed a generational GA and a 

number of other authors (Davies and Lingras 2003; Mooney and Winstanley 2006; 

Wu and Ruan 2004) recently reported similar approaches but with minor 

modifications. Ahn and Ramakrishna (2002) performed a comparison to Dijkstra's 

algorithm and the results obtained indicates their GA outperformed Dijkstra in terms 

of calculation time and, moreover, the computation time required by their GA does 

not increased significantly with problem size, in contrast with Dijkstra"s algorithm. 

The algorithm developed by Ji, Iwamura and Shao (2007) uses only a fraction of the 

population in the genetic operations for each generation. 

Tables 8.3 and 8.4 summarise the system parameters used for the two algorithms 
(denoted as Ahn's GA and Ji's GA) respectively. In order to produce a fair 

comparison, the population size and weights for both the known and unknown parts 

235 



Chapter 8: Generalised waypoint-based navigation system 

were assigned the same values, and the probabilities of the genetic operators used the 

values documented in the literature. The probabilities of crossover and mutation listed 

in Table 8.3 indicates Ahn's GA is a crossover-intensive algorithm, but Ji's GA used 
the two genetic operators with equal probability. Note that the source code for Ahn's 

GA was downloaded from the author's website (Ahn 2007), whereas Ji's GA was 

translated from the paper (Ji, Iwamura and Shao 2007). 

Table 8.3 The system parameters for Ahn's algorithm 
(W2 is estimated from the previous navigations). 

i population wei ghts operator probability 
exper ment size W1 I W2 crossover mutation 

1 250 1 1.12 
2 300 1 1.12 
3 500 1 1.12 1 0.05 
4 500 1 1.85 
5 500 1 1 

Table 8.4 The system parameters for Ji's algorithm 
(W2 is estimated from the previous navigations). 

i population wei ghts operator probability 
exper ment size W1 W2 crossover mutation 

1 250 1 1.12 
2 300 1 1.12 
3 500 1 1.12 0.2 0.2 
4 500 1 
5 500 1 1 

Two measures, optimality (measured as the percentage of attempts that successfully 

evolved to the optimal path) and the number of fitness evaluations, were performed in 

a series of five experiments used previously in this section. The results shown in 

Table 8.5 were obtained for 300 independent runs when the evolution terminated after 

the calculation time listed in Table 8.2, as our aim was to maximise the performance- 
(in terms of optimality) with minimum calculation time. Cantu-Paz (2000) suggested 
to use the number of fitness function evolutions as a criterion of convergence 

performance when compared with other algorithms until equal quality of solutions is 

obtained. However, it is difficult to obtain an identical solution quality if the high 

quality is required, and low quality may indicate the convergence performance for 
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partial evolution and the later convergence towards high optimality may never be 

explored. Consequently, the comparison strategy adopted is instead to constrain the 

evolutions so that they terminate over a specified execution time. 

It can be concluded from Table 8.5 that Ahn's and Ji's algorithms slightly 

outperformed the waypoint-based planning algorithm in terms of optimality for the 

simplest test, but high optimality was achieved by the waypoint-based planning 

algorithm for the remaining tests. That the most rapid convergence of the waypoint- 
based planning algorithm was achieved with a relatively smaller number of fitness 

evaluation functions for all tests implies that DC is important in ensuring good 

convergence. Ahn's and Ji's algorithms have a similar performance in the five test 

problems and are capable of generating optimal solution more frequently for the 

simple planning problem (experiment 1). The smallest number of fitness evaluations 

was required by the waypoint-based planning algorithm indicating more time was 

consumed in similarity evaluations between offspring and parents. 

Table 8.5 Comparison of the performances of the planning algorithms. Optimality was 
obtained for 300 independent runs and the number of fitness evaluations are estimated 

according the population size and operator probabilities. 

experiment 1 2 3 4 5 
Ahn's optimality rate 94.8 66.7 52.6 37.8 56.2 

GA fitness evaluations 729.7 20608 18216 10296 10476 
Ji's optimal ity rate (%) 96 57.3 43 45.7 67.7 
GA fitness evaluations 701.3 446 11573 12058 12094 

waypoint optimality rate (%) 93 91.6 93.7 92.7 97 
planner , fitness evaluations 450 5275 9455 10052 10052 

8.6 Conclusions 

This chapter has described a generalised waypoint navigation system that has 

extended the waypoint navigation system introduced in chapters 5 and 6, so that it is 

able to plan navigation tasks that can start and end at any point in the robot's 

environment. To achieve this objective, additional information regarding the paths 
taken to avoid obstacles is recorded and stored in a compact manner. A suitable path 
is generated by the generalised waypoint algorithm operating on the search space 

237 



Chapter 8: Generalised waypoint-based navigation system 

represented by a cost matrix which is constructed taking into account the new start 

and goal points. Statistical evaluation of the planning performance implies the 

robustness of the proposed algorithm in finding an optimal solution within a short 

time even for reasonability complex problems. The planning performance required to 

obtain the optimal solutions were evaluated by comparing its performance with that 

of two other methods reported in the literature. 

The current navigation system has a number of shortcomings. From Figure 8.15,8.16 

and 8.17, it can be seen that a number of spline curves determined for in the same 

obstacle overlap to a certain degree. At present, no method of combining this 

information has been developed and each future investigation of the same area will 

result in the storage of duplicated information. This will give rise to scaling problems, 

as additional waypoints will continue to be generated even when no additional useful 
information is being acquired. The scaling problem can be addressed by the 

implementation of a suitable localisation technique. Scaling issues, when constructing 

the cost matrix, will arise as more waypoints are discovered. 
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Chapter 9 

CONCLUSIONS 

The research project work presented in the thesis is summarised and the objectives for 

the research are critically reviewed. Future investigations are suggested to overcome 

some of the shortcomings of the navigation systems. 

9.1 Summary 

The broad concepts relating to the type of robots studied in the project, the robot 

navigation and genetic algorithms were introduced in chapter 1. The research 

objectives were stated and the contributions of the project to knowledge listed. 

Chapter 2 discussed the recent development in GAs research, including descriptions 

of steady-state GAs, genetic representations, selection schemes, genetic operators, 

and premature convergence and diversity. These features of GAs are closely related 

to those adopted in the planning algorithms in this thesis. 

Research results published in the literature that are relevant to the current project 

were reviewed in chapter 3. This included an introduction to the deliberative, reactive 

and hybrid architecture and described work related to the various types of planners, 

particularly those based on evolutionary techniques. The reactive component of the 

navigation system used in the work described in chapters 6 to 8 was also introduced. 
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Chapter 4 proposed a genetic-based approach using vertex heuristics for mobile robot 

path planning and presented the results for a set of simulated environments. In 

comparison with an earlier genetic-based planner (EP/N), the path planning 

performance was similar, but the calculation time was considerably reduced. The 

results demonstrated that the performance can be further improved if the system 

parameters are optimised. 

The vertex++ planner introduced in chapter 5 is an extension of the vertex planner 

and was designed to deal with the planning problems for dynamic environments. The 

advantages and drawbacks of the vertex++ planner observed from the experimental 

results are as follows. Due to the reduction in search space and simple genetic 

operators, the planner can rapidly establish an optimal or near optimal path for 

environments containing multiple obstacles. New information observed regarding 

changes in the environment can be incorporated into the planning process to modify 

the current path and avoid potential collisions. Unfortunately, such planner-based 

navigation systems are generally unable to deliver a satisfactory real-time solution 

when unexpected changes occur. 

The new navigation system presented in chapter 6 adopted a hybrid architecture with 

the waypoints representing the robot's environment in attempt to combine the 

advantages and overcome the disadvantages of the reactive and deliberative 

navigation. The waypoint navigation system required no a priori knowledge of the 

environment, stored the information elicited regarding the environment in highly 

abstract and compact form and was able to deliver real-time operation by navigating 
in a reactive manner between waypoints. The experimental results showed that, 

compared with EP/N and the vertex planner, the calculation time required to generate 
a path was significantly reduced without compromising on the quality of the path 

generated. The experiments performed in complex environments indicated that a 

stable optimality was achieved by the proposed planning algorithm. 

Chapter 7 introduced a navigation system for dynamic environments based on 
waypoint-based navigation system presented in chapter 6. The results showed that a 
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suitable path can be effectively generated by incorporating statistical knowledge of 

the dynamic characteristics of the environment gained from the previous navigations. 

The experiments conducted for the hybrid system verified the proposed policy for 

avoiding both individual and small groups of moving obstacles, even though the 

strategy was mainly designed for only single dynamic obstacles. The technique 

developed for avoiding moving obstacles was further evaluated by comparison with a 

reactive strategy found in the literature. 

The generalised version of the waypoint-based navigation system was presented in 

chapter 8. In order for the robot to plan future navigation between any start point and 

any goal point, a new method of representing information obtained regarding the 

environment was developed and this was recorded in a manner that is not expensive 

in terms of memory usage or planning time. The chapter obtained path planning 

results for a series of experiments in environments exhibiting a range of different 

complexities and a comparison with other two algorithms reported in the literature 

was conducted to benchmark the performance of the planning algorithm. 

9.2 Review of research objectives 

The aim of the research, to design an autonomous navigation system for a mobile 

robot that has no a priori knowledge of the environment, was met to an extent by the 

implementation of the waypoint navigation system in chapter 6, but with a limitation 

that restricted the choice of start and end points for the navigation. The removal of 

this limitation was accomplished in chapter 8, where the waypoint method was 

extended to allow the determination of segments around obstacles that described 

paths for obstacle avoidance that could be used in later planning activities. 

The achievements with respect to the specific objectives outlined in section 1.4 are 
discussed below. 

1. Compared with existing implementations described in the literature, a 
reduction in the time taken to generate plans for static environments was 
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achieved by the vertex planner that restricted the search space to only the 

vertices of the obstacles. 
2. The vertex++ planner extended the vertex planner in such a way that the 

navigation could also be carried out for dynamic obstacles. This was realised 
by incorporating speed parameters into planning process. The improvement in 

the calculation time of the planning algorithm can be attributed to the 

reduction apparent in the search space and application of only simple genetic 

operators. 

3. The waypoint-based navigation system provided a simple mechanism to 

automatically gather information regarding suitable paths to avoid static 

obstacles in the enviromnent. This is a hybrid solution, in which the reactive 

navigator identifies and stores the location at which a new obstacle is first 

encountered. This location can then be used by a high-level deliberative 

system for generating future plans. 
4. The waypoint navigation system was enhanced by augmenting the behaviours 

of the reactive component so that specific actions could be instigated on 

encountering moving obstacles. 
5. The generalised version of the hybrid navigation system was able to provide 

navigation from any start point to any goal point in the environment. This was 

achieved by acquiring additional information regarding the obstacles and 
designing suitable paths that could be following to ensure avoidance. 

9.3 Shortcomings of the planners and future work 

This section discusses some of the drawbacks of the current approaches described in 

this thesis and outlines future work to overcome these drawbacks. 

9.3.1 Planner-based navigation systems 

The improvement in the performance of the planners proposed in chapters 3 and 4 

apparently results from the reduction in search space that requires only the vertices of 
obstacles need be considered. However, objects in the test environment that were not 
polygonal were approximated by bounding polygons. The trade-off between accuracy 
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of representation and both planning time and plan viability was not investigated, and 

could be the subject of further study. I 

9.3.2 Waypoint-based navigation system 

Although the waypoint system is clearly an important contribution to mobile robot 

planning, further development and investigation is needed prior to practical 
implementation. One of the principal shortcomings of the generalised waypoint 

navigation system is scalability as the cost matrix is augmented with new waypoints. 

Environments investigated in the study contained many obstacles and planning can be 

carried out on a reasonable timescale, but this cannot be guaranteed for larger 

numbers of obstacles. Practical solutions for limiting the effect of scalability exist, for 

example, it may be possible to subdivide the waypoints into independent sets (for 

example those contained in separate rooms) that do not need to be fully 

interconnected. 

No combination of the path segments around the obstacles that are produced in the 

generalised waypoint system was carried out. In many cases these segments describe 

largely coincident or intersecting paths, wasting memory for the storage of 

information and lengthening processing time for future planning. A method to 

combine waypoints needs to be developed. Such a solution would also alleviate the 

scalability problems to some extent. 

9.3.3 Experimental procedure 

The work presented in the thesis was conducted using simulation and implementation 

on a physical robot is important in demonstrating practical feasibility. This is also an 

area for future research. 

9.4 Conclusions 

This chapter has summarised the work presented in this thesis, reviewed the 

objectives, and proposed the future work based on the outline of possible 

shortcomings of the navigation approaches introduced in this thesis. 
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