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Abstract  

The application of TiO2 catalyst for an industrial water treatment process is still limited due to 

its poor reusability, low oxidation efficiency and UV light use. Taking these challenges as the 

objective of this study, we integrated particle impregnation with nitrogen-doping methods to 

hybrid nitrogen doped TiO2 nanoparticles with kaolinite (NTK) as the photocatalyst for water 

treatment. SEM/TEM, XPS and XRD results revealed that the doped nitrogen in the NTK 

particle inclined toward interstitial, and the TiO2 nanocrystals were hybridized into the 

layered kaolinite minerals.  Kaolinite was found to be an excellent TiO2 nanocatalyst 

supporter, providing promising adsorption transitions to not only sensitize TiO2 nanocrystals, 

but also enhance their photocatalytic oxidation capacity and recoverability. Kinetic studies 

showed that the NTK catalysts demonstrated a superior interfacial oxidation and 

photocatalytic degradation ability under visible light irradiation. Importantly, the NTK 

catalysts could be easily recovered for reuse with stable photo-degradation performance in a 

semi-continuous photoreactor process. The high degradation capacity, reusability and visible 

light accessibility of the NTK catalysts make the NTK-catalysed technology promising for 

industrial applications.  
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1. Introduction 
TiO2 has been widely recognised as one of a few leading photocatalysts in semiconductor 

system for water treatment, due to its chemical stability, non-toxicity and advanced oxidation 

property [1]. The basic mechanism of TiO2 stimulated photocatalysis is the creation of an 

electron-hole pair by exciting an electron from valence band to conduction band through 

photon absorption. As TiO2 rutile and anatase have their band gaps of 3.1 and 3.2 eV, the 

photo-oxidation reaction using pure TiO2 could only be stimulated by UV, which is only a 

small fraction (< 4 %) of  solar spectrum[1, 2]. In recent decades, enormous researches have 

been given to the development of nano-sized and/or structured TiO2 as pioneering 

photocatalysts for water treatment. These TiO2 nanoparticles show large surface areas and 

diverse morphologies, which are beneficial for the photocatalysis. It is believed that the nano-

sized photocatalysts are able to demonstrate enhanced oxidation efficiency in a photoreactor 

[3]. However, the separation of these TiO2 nanoparticles from the photo-reactor system for 

reuse is an expensive practice, which makes the TiO2-based technology economically 

infeasible for an industrial application [1]. Therefore, their applications for the industrial 

processes are still facing a significant challenge due to the high operational costs for recovery 

or reuse of the TiO2 catalysts, and UV light use.  

Recent studies have revealed that the incorporation of metallic or non-metallic elements, such 

as Fe, Cr, N, C and S into TiO2 can effectively narrow the band gaps and makes the TiO2 

catalyst access visible light as an energy source [3, 4]. Among those elements, nitrogen (N) is 

a favoured doping element, as it contributes to the band gap narrowing by hybridizing its p 

orbital with oxygen due to its similar size as oxygen and small ionization energy [4]. 

Commonly used techniques for the synthesis of the N-doped TiO2 catalysts include ion 

implantation of TiO2 [5], calcination of TiO2 under nitrogen atmosphere at high temperature, 

and sol-gel method [6, 7]. To enhance the recovery ability of TiO2 catalysts, some studies 
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have been conducted to immobilize or impregnate TiO2 particles into inert materials as the 

support carries such as clay [8, 9], silica beads [5] and polymers [10].  These TiO2 

immobilized hybrids can be synthesised by sol-gel [9, 11], electrochemical deposition or 

vapour deposition methods [12, 13].  Our group has synthesized a titania impregnated 

kaolinite (TiO2-K) catalyst, in which nanocrystallized TiO2 (~10 nm) were immobilized onto 

layered kaolinite (3.5 microns)[9, 14]. The TiO2-K catalysts demonstrated an enhanced 

photo-oxidation performance for organic degradation and bacterial disinfection, and 

promising recovery ability for reuse in a semi-conductor photocatalytic process. 

It has been an on-going research practice to develop functional TiO2 catalysts, which has 

enhanced photo-oxidation capability and recovery ability, as well visible light accessibility, 

making the TiO2-catalysied technology economically beneficial for industrial applications [1, 

14]. The question is whether it is possible to incorporate N-doping and catalyst 

immobilization methods together to hybrid N-doped TiO2 with functionalised carriers or 

supports [15]. We will synthesize a new composite photocatalyst of N-doped TiO2 hybridized 

with kaolinite (NTK). A two-step synthesis approach in combination of particle impregnation 

and element doping was explored to incorporate nitrogen into TiO2 nano-crystals. As the 

carrier and supporter, natural kaolinite will be first chemically modified into porous and 

multiple layered structure, and then can be used as a platform for the immobilization and 

stabilization of the N-doped TiO2. To our knowledge, this would be the first report of 

immobilization of nitrogen-doped titania onto a layer-structured kaolinite, leading to a hybrid 

NTK catalyst.  

In this study, we will evaluate the photocatalytic oxidation kinetics, degradation capacity, 

visible light accessibility, recovery and reuse ability of the NTK catalysts in a laboratory 

photoreactor system operated as a batch and semicontinuous modes. It is expected that the 



 4 

NTK catalyst, photo-degradation kinetic data, and the photoreactor operation mode from this 

study could provide useful information for the development of photocatalytic processes for 

water and wastewater treatment. 

2. Experimental  

2.1 Materials  

Physicochemical properties of kaolinite may be varied, depending upon the geographic 

source of origin. Natural dry-milled kaolinite obtained from the Unimin, Australia was used 

in this study. The kaolinite consists of SiO2 (48.7%), Al2O3 (34.6%), TiO2 (1.3%), Fe2O3 

(0.9%) and trace amount of K2O, CaO, MgO and Na2O. The detailed physical and chemical 

characteristics of this kaolinite were reported in our previous work [9]. 

Commercial TiO2 nanoparticles (P25, Degussa, Germany), composing of 80 % anatase and 

20 % rutile were used as received. P25 has a surface area of 50 ± 5 m2g-1 and a particle size 

range of 25-85 nm. Kaolinite impregnated titania nano-crystallites (TiO2-K) was prepared 

according to our previous approach [9]. Both the P25 and TiO2-K were used as the references. 

Considering its chemical structure, molecular weight and diazo bonds, Congo Red (CR)  

(C32H22N6Na2O6S2, Colour Index 22120, Labchem Ajax Finechem, Australia) was used as a 

model toxic organic contaminant to simulate the industrial wastewater for the evaluation of  

photo-degradation performance of  NTK catalysts in a photo-reactor system 

2.2 Synthesis of the NTK catalyst 

Natural kaolinite was pre-treated to enhance its surface availability prior to the subsequent 

heterocoagulation process with TiO2 sols [9]. 5g kaolinite cream was soaked in 50 ml 1 M 

HCl for 24h to obtain a slightly positively charged clay suspension. The suspension was 

filtered and washed thoroughly using Milli-Q water until no traceable chloride ion could be 
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detected. The surface treated kaolinite was dried at 200 oC and stored. 20 ml tetrabutyl 

orthotitanate (Fluka, 97 % min assay) and 10 ml triethylamine (Unilab, 99 % min assay) were 

dissolved in 50 ml absolute ethanol (Labserve, 99.5 % min assay) and stirred for 30 min at 

room temperature. 30 ml absolute ethanol and 10 ml Milli-Q water were pre-mixed in another 

flask, and then added into the above solution drop-by-drop. The mixed system was 

continuously stirred at room temperature for 2 h until a transparent sol-gel was obtained. The 

synthesized sol-gel was drop-wisely added to a 10 % aqueous suspension of pre-treated 

kaolinite and stirred at room temperature for another 2 h. The obtained gel-clay mixture was 

allowed to settle for 16 h colloidation before it  being dried at 70 °C, followed by calcination 

for 5h at designed temperatures of 300, 400, 500 and 600 oC to produce our NTK catalysts, as 

required for the studies.  

2.3 Characterisation of the NTK Catalysts 

The morphological and surface characteristics of the resultant NTK particles were analysed 

using an FEI Quanta 450 scanning electron microscope (SEM) (SEM, S-4800) equipped with 

Apollo XP SDD EDAX detector at an accelerating voltage of 10 kV. Thin platinum coating 

was applied on particle sample surface prior to analysis. TEM was performed on a Philips 

CM-100 TEM at an accelerating voltage of 100 kV. The NTK and TiO2-K particles were 

suspended in ethanol (ca. 0.01% w/v), followed by ultrasonic treatment. The dispersion was 

dropped to a copper grid and dry in room temperature for TEM measurements. 

Braunneur – Emmet – Teller (BET) specific surface area and pore size of the NTK catalysts 

were measured performed using a Micromeritics gas adsorption analyser (Gemini Type 2375) 

at 77 ± 0.5 K in liquid nitrogen. Prior to the surface analysis, the sample loaded vessels were 

vacuum treated overnight at 105˚C and evacuation pressure of 50 mTorr. Nitrogen sorption 

isotherms were analysed for the specific surface area using the BET equation. 
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The crystal structure, phase identification and quantification of the synthesized NTK particles 

were analysed by an X-ray diffraction (XRD) analysis (XRD, Bruker AXS D8 Advance 

diffractions) using a Huber Guinier Image Plate G670 with Kα radiation over an angular 

range of 5 - 90o. The XRD patterns were recorded on a Shimadzu LabX-600 diffractometer 

with Cu Kα radiation (λ = 0.1548 nm). The size of the synthesised NTK particles was 

determined using Scherrer formula L = Kλ/(βcosθ), where K is a constant of 0.89, λ is the 

wavelength characteristic of the Cu Kα radiation, β is the full width at half maximum , and θ 

is the angle at which the (100) peak appears. The mass percent of anatase in the NTK and 

TiO2/K particles was calculated from equation:  

XA = [1 + 1.26 (IR/IA)])-1       (1) 

 where XA is the mass (%) of anatase in the particles , and IR and IA were determined from the 

peak area of rutile (110)  and anatase (101) diffraction peaks, respectively.  

The surface chemical composition of the NTK samples was analysed by X-ray photoelectron 

spectroscopy (XPS) (Leybold LHS10 spectrometer) with Al Cu Kα radiation source. All the 

binding energies were referenced to the C12 peak at 284.5 eV of surface adventitious carbon. 

Fourier transform infrared spectrum (FTIR) was measured using a Nicolet 6700 FTIR with 

attenuated total reflectance assembly and scanned from the wave-numbers of 650 - 4000 cm-1.  

2.4 Photocatalytic Activity and Degradation in Laboratory Photoreactor System 

Optical absorption characteristics of the NTK and TiO2-K , and  P25 photocatalyst particles 

were measured using a UV–vis. spectroscopy at 200 - 600 nm. The photocatalytic 

degradation of these TiO2 catalysts was carried out in a self-designed 4 dm3 annular slurry 

photoreactor (ASP) [14], as showed in Fig 1(I). The photo-reactor was equipped with a 8 W 

light lamp with a designed wavelength, feeding and sampling ports, pH and temperature 

sensors, and a water jacket for temperature control. The performance of respective TiO2 
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derivatives was evaluated across the CR photo-degradation. The starting CR concentration 

was 20 ppm, while the loading of photocatalyst was adjusted to 1 g dm-3. Control trials were 

conducted using the TiO2-K catalyst and kaolinite particles under visible light irradiation, as 

well as the photoreactor system without TiO2 catalysts and kaolinite particles. To eliminate 

adsorption impact of the kaolinite particles on Congo red removal, all experiments were 

conducted under dark adsorption for 30 min prior to sampling to ensure photocatalyst 

particles could achieve equilibrium adsorption. The airflow rate of the reactor and other 

operational functionality were calibrated using the method reported by Chong et al.[14]. 

Photocatalytic oxidation performance of the NTK catalysts was evaluated using the ASP 

system operated as a batch mode. Studies on the degradation capacity and reusability of the 

NTK catalysts were carried out in a batch and semi-continuous operation mode using the 

ASP system. The semi-continuous mode was operated as a three phase cycle: wastewater 

recharge, photo-degradation reaction, and effluent discharge and catalyst reactivation, as 

sketched in Fig 1(II).  

2.5 Chemical and Data Analysis 

A monochromatic spectroscopy method using a Varian Cary 5000 UV-Vis spectrophotometer 

was used to measure the CR concentration at 496.5nm. The decolourisation and 

decomposition of Congo red were measured by detecting the absorbance at 496 and 300 nm, 

respectively. All sampling and analysis were conducted in triplicates. All data were 

calculated from the average values of the triplicates. The results presented in the table and 

figures were provided with the deviation of 95% CI.   

3. Results and Discussion 

3.1 Synthesis and Characterisation of the NTK Catalysts 
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The NTK catalysts were synthesised by a modified two-step sol-gel method. The first step 

was to prepare the N-doped TiO2 sol-gels, where triethylamine (Et3N) was chosen as the 

nitrogen source due to the chelating effect of partially deprotonated Et3N on titanium atoms. 

We used water and ethanol mixed solvent to induce the steric hindrance between precursors 

and water molecule. The NTK catalysts were synthesised by charging the above resulting N-

doped TiO2 sol-gels to the pre-treated kaolinite suspension. The slightly positive charged 

kaolinite was able to interact with the negatively charged TiO2 sol-gels through electrostatic 

interaction. The resultant NTK particles were subject to further calcination at 300, 400, 500, 

and 600 oC with their nomenclature referred as NTK300, NTK400, NTK500 and NTK600 

catalysts in this study. For comparison purpose, the TiO2-K was also prepared according to 

similar approach with the previous study [9, 14], except for the nitrogen-doping process. 

The morphological characteristics of the NTK particles are presented in Fig 2. Both SEM and 

HRTEM images show that the synthesized TiO2 crystals were comprised in a rocky texture 

rather than an even film covering kaolinite surface. The apparent size of spherical TiO2 

particles was approximately 10 nm. The low magnification SEM image shown in Fig 2c 

indicates that the layered structure of kaolinite remained in the synthesized NTK particles. 

The photo-oxidation capacity of a photocatalyst is strongly influenced by its  particle size, 

morphology, crystalline phase, specific surface area, porosity and others. Our NTK particles 

consisted of layered structured kaolinite with rocky textured TiO2 nanocrystals either on the 

surface. Such layered structures can alter the surface properties of kaolinite particles. The 

incorporation of TiO2 nanocrystals on the kaolinite minerals results in a highly porous 

structure, which remarkably increases the specific surface area and porosity of the NTK 

catalysts. These were evidenced from the specific surface areas as determined using nitrogen 

sorption measurements. Our BET results show that the specific surface area increased from 

35.6 m2 g-1 for natural kaolinite to  45.5 m2 g-1 (NTK300), 51.8 m2 g-1 (NTK400), 55.6 m2 g-1 
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(NTK500) and 48.7 m2 g-1 (NTK600). The pore sizes for the NTK catalysts varied in a range 

of 8.8 – 9.6nm when the NTK catalysts were prepared at 300 – 500 oC, while an average pore 

size of  7.8nm was measured in the raw kaolinite. The thermal activation is the most 

commonly used physical method to remove the water molecules in the clay particles.  These 

results revealed that the calcination led to the increase of the surface area and the porosity due 

to bond water release and dehydroxylation occurring. However, an additional step of thermal 

activation resulted in removing the adsorbed and hydrated water, and volatile organic 

compounds. This mechanism creates new pores and provides more adsorption sites 

facilitating higher adsorption of dyes on the NTK particles. The phase analysis of the NTK  

particles prepared at 300-600 oC was studied by XRD. The anatase phase and rutile phase 

TiO2 show different XRD patterns. The peak at the 2θ of 25.3 is the characteristic peak for the 

anatase phase (101) TiO2, while 27.3 is the characteristic peak for rutile phase (110) TiO2. 

The XRD patterns of the NTK particles prepared at different temperatures are shown in Fig 

3(I), which shows that calcination temperature plays a significant role in the formation of the 

TiO2 crystal structures, where the NTK particles have a mixed  anatase and rutile TiO2 at the 

calcination temperature above 500 oC, and only anatase  TiO2 is found in the NTK particles 

calcinated at 300-400 oC. The peaks in the NTK300 and NTK400 particles can be ascribed to 

the (101), (004), (200), (105), (211) and (118) planes of anatase TiO2 (JCPDS card No. 84-

1286). The anatase phase peaks, such as the (101), (004) and (200) planes decrease 

significantly as the temperature increases from 300 °C to 600 °C. At the same time, rutile 

phase peaks for the NTK500 and NTK600 are related to the (110), (101), (111), (210), and 

(211) planes (JCPDS card No. 84-1286). Previous studies reported that the anatase TiO2 

performed a more prominent photoactivity than the rutile TiO2 due to its lower band energy 

[2, 5, 16, 17]. The XRD results show that calcination process at a low temperature range of 

300-400 oC is more favourable  to obtain anatase  TiO2 . Beyond 400 oC, the diffraction peaks 
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of rutile phase become stronger and the intensity of diffraction peaks of anatase phases (or 

the ratio of IA/IR) decreases significantly as the temperature rises. Using the zinc oxide 

spiking method, the amount of anatase TiO2 formed on kaolinite can be estimated to be 

approximately 9-10 wt%. Further verification on the size of anatase TiO2 based on the 

Scherrer equation is consistent with that obtained from TEM (~ 10 nm). It is worthwhile to 

note that our XRD patterns do not present the Ti-N crystal phase as reported by Wang et al 

[10]. Other studies also reported the absence of Ti-N crystal peak in the XRD patterns for 

their N-doped TiO2 particles [7, 8, 18, 19].  

3.2 Chemical Analysis of the NTK Catalysts 

The XPS spectra of the NTK particles were measured to identify detailed surface chemical 

information  as shown in Fig 3(II).  P25 was also analysed as a reference. Fig 3(II)a shows 

that the intensity of the NTK particles decreases as increasing calcination temperatures. Fig 

3(II)b shows the N 1s spectra of the NTK and P25 particles. The N 1s peak is not found in the 

XPS profiles for P25 and the NTK catalysts prepared at a temperature higher than 500 °C. 

Minor nitrogen peaks at around 400 eV are observed for the NTK particles calcinated at 

300 °C and 400 °C. For the N 1s, the high binding energy of around 406 eV can be assigned 

to nitrogen species bound to various surface oxygen sites (NO or NO2 molecules) [20]. The N 

1s peak at 399-400 eV can be attributed to the nitrogen in the form of Ti-N-O linkage [21]. 

The low N 1s bonding energy peak located at 396-397 eV is known as the N atom replacing 

the oxygen atoms in the TiO2 crystal lattice to form an N-Ti-N bond [20, 22]. Asahi et al. 

reported three N 1s peaks with binding energies of 402eV, 400eV and 396 eV and assigned 

them as molecularly chemisorbed γ-N2 (BE ~ 402 eV and 400eV) and atomic β-N (BE ~ 396 

eV) [23].  Our results show the presence of N 1s on anatase titanium dioxide prepared at a 

temperature lower that 400 oC. The disappearance of N 1s peaks in the NTK prepared at 

500 °C and/or above may be due to merging of doped nitrogen atoms into nitrogen molecules. 
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It shows negligible Ti-N formation, which agrees well with our XRD data. These results 

reveal that the N might be molecularly chemisorbed on the surface of TiO2. Fig 3(II)c 

describes the Ti 2p XPS spectra the NTK and P25 catalysts. The spin-orbit components (Ti 

2p3/2 and Ti 2 p1/2) of Ti 2p peaks are located at the binding energies of 457.8-458.5 eV for 

NTK300, NTK400 and NTK500, and 458 eV for P25. The peaks around 458 eV are assigned 

to Ti 2p3/2 [16, 17]. Both NTK300 and NTK400 particles demonstrate the red shift energy of 

around 1.2 eV comparing with that of NTK500. If that is compared with P25, the red shift is 

about 0.6 eV. The above red shifts appear to be comparable with those determined from 

computational prediction modelling by Di Valentin et al.[27], who reported a predicted 

reduction of 0.73 eV for interstitial nitrogen. The XPS result suggests that Ti3+ might exist in 

NTK300 and NTK400 [18, 22]. Nonetheless, the most important implication is the reduction 

of the required energy associated with the red shift, resulting in visible light activity for the 

photo-responsive NTK catalysts.  

The photo-oxidation activity of the N-doped TiO2 in visible light region is likely to be an 

open subject. Asahi et al. proposed that nitrogen atoms were doped into the substitutional 

sites of TiO2, resulting in visible light response [23]. Previous studies reported that oxygen 

vacancies enhanced visible light photo-response and the doped nitrogen acted as a blocker for 

reoxidation of oxygen vacancies [3, 12]. A few of other studies proposed that the visible light 

response on N-doped TiO2 arises from electronic transitions from localized states to 

conduction band [19, 21]. The general accepted theory on how N-doped TiO2 works is the 

introduction of institutional or substitutional N in TiO2 crystal lattice structure, which gives 

rise to the localized states in band gaps and results in reducing the energy required for the 

interfacial photo-oxidation reaction of the catalyst [21, 22]. The N-doping leads to narrowing 

of TiO2 band gap via mixing N 2p orbital and O 2p orbital, and hence visible light–stimulated 

photocatalytic activity. N-doped anatase TiO2 contains thermally stable single N-atom either 



 12 

as a charged diamagnetic N-b centre or as a neutral paramagnetic N-b centre [17]. The N-

atoms can occupy either interstitial or substitutional positions in TiO2 crystalline [23, 24]. Di 

Valentin et al. reported a computational calculation of electronic structure using the PBE 

density function for both substitutional and interstitial N atoms of intra band gap system, in 

which occupied N 2p localized states appeared approximately 0.14 eV above the valence 

band edge, compared to the NO bond localized states (~ 0.73 eV) [27]. 

EDX scan was performed over the NTK specimen (Fig 2d) to identify the existence of N, and 

the signal of copper is selected as the reference to eliminate background noise. The data 

clearly indicate the presence of nitrogen and titanium on kaolinite layered structure resulting 

from N doping. Varley and co-workers studied mechanism of visible light photocatalysis in 

N-doped TiO2 [3]. They discovered that interstitial N forms a strong bond with O atom in the 

TiO2 lattice so that N shares the same site with an O atom in the relaxed configuration, 

leading to the split-interstitial (NO)o configuration. They also found that interstitial N can 

form a complex with N in the form of a (N2)o split interstitial. Our results support the key 

conclusions from Varley and co-workers, i.e. nitrogen prefers to occupy the oxygen site in n-

type TiO2, as proposed to interstitial sites such as (NO)o or (N2)o, and nitrogen behaves 

similarly in rutile and anatase.  

FTIR studies assist the identification of the minerals present in the NTK catalysts. The 

coupled vibrations are appreciable due to the availability of various constituents. To 

recognize mineral species and identify characteristic bands of the NTK, the FTIR spectra 

were performed in the range from 4000-400 cm-1 to investigate the effect of calcination 

temperature on the chemical composition of the NTK. We examined the FTIR spectra of the 

NTK300, NTK400 and NTK500 particles synthesised at 300, 400 and 500 oC, respectively. 

All the samples present similar spectra. The bands which maxima at 3691, 3651, 3619 and 

910 cm-1 correspond to the vibration of inner and outer structural hydroxyl groups in Al-OH, 
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bands at 1113, 1006 and 460 cm-1 belong to Si-O vibrations. The disappearance of the high 

region bands of 3700-3500 cm-1 could evidence the transformation of kaolinite to 

metakaolinite during the course of NTK preparation.  A strong band located approximately 

700 cm-1 attributed to Ti-O stretching and Ti-O-Ti bridging stretching [19]. The co-existence 

of 1080 and 780 cm-1 peaks corresponding to kaolinites and 660 cm-1 peak for the stretching 

of O-Ti-O indicates the successful synthesis of titania impregnated kaolinite. The peaks at 

1450 cm-1 and 1230 cm-1 can be assigned to the embedded nitrogen in the TiO2 lattice 

network. However, the peak for Ti-N at 730 cm-1 is not evident. These results further indicate 

that there is no nitrogen substitutional atom in the TiO2 lattice structure. From our results, we 

could conclude that the doped nitrogen atoms in our synthesized NTK particles are mainly 

interstitial. 

3.3 Photocatalytic Activity of the NTK Catalysts 

The photocatalytic activities of the NTK catalysts calcinated at 300-500 oC, and the TiO2-K 

and P25 were examined from UV to visible light range. NTK particles performed a strong 

absorption of 86-98 % over the wavelength range of 300-500 nm, while the TiO2-K and P25 

only showed a high absorption of 85-90 % in the UV region of 350-380 nm, but very low or 

no visible light absorbance. Under a visible light irradiation, the general absorbance follows 

an order of NTK300 > NTK400 > NTK500 > TiO2-K > P25. The experimental data of the 

NTK-photocatalysed reactions show a clear red-shift comparing with TiO2-K or P25. The 

red-shift should be  associated with the N-doping in intrinsic band gap of TiO2 and the 

interaction between N 2p and O 2p orbitals. The broader absorption peaks are identified to be 

related to the sub-band gap states of the NTK due to its unique  nanostructure. Using the 

NTK catalysts, we note that the absorbance order of NTK300 > NTK400 > NTK500 is 

associated with the phase transformation from anatase to rutile as evidenced from XRD 

analysis. Furthermore, the optical properties of the NTK catalysts are also subjected to the 
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amount of nitrogen doped. XPS data imply that more N atoms are presented in the NTK 

particles calcinated at low temperatures. Qiu et al reported that the photocatalytic activities of 

the N-doped TiO2 catalysts appeared to be dependant of the nitrogen doping [4]. The 

introduction of more N dopants into TiO2 nanoparticles can be beneficial for improving 

efficiency and activity of the photocatalytic oxidation. The NTK catalysts perform a broad 

photo-responsiveness which can be influenced by N-doping amount and TiO2 crystal phases 

or the IR/IA ratio.  

To evaluate the photocatalytic oxidation capability of the NTK catalysts for the degradation 

of organic contaminant in wastewater, Congo Red was selected as a model surrogate 

indicator to simulate toxic organic pollutants in industrial wastewater. Congo red is a 

secondary diazo recalcitrant dye, and causes immense technical difficulty in biological 

wastewater treatment process [9, 28, 29]. Fig 4(I) presents the profiles of the UV-vis light 

absorption spectra of CR solution in the presence of  NTK300. Before visible light irradiation 

(time = 0), two absorption peaks of Congo Red are found at 340 nm and 499 nm, where 499 

nm is directly associated with it conjugate structure. After 1 h visible light irradiation, 

obvious decrease in the absorbance is observed for both peaks. The maximum absorption 

wavelengths are found to have a slight blue shift to 320 and 496 nm. The absorption at both 

wavelengths steadily reduces after 2 h irradiation, while the absorbance reduction at 496 nm 

appears to be more significant. The 496 nm peak approaches to zero after 4 h, indicating all 

CR molecules have been degraded in association with the NTK photocatalysis. On the other 

hand, the absorbance reduction for the 320 nm peak seems rather slower. Considering the 

significant blue shift, the absorbance between 250 nm and 350 nm becomes less than 0.1 after 

6 h irradiation.  
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Ma et al.[28] and Chong et al.[14] reported that photo-catalytic oxidation using TiO2 can 

break the azo-bonds and relevant conjugate structures of Congo Red, resulting in the 

decolourisation of the dye. The CR degradation by the NTK is evident from the 

disappearance of the 496 nm peak and CR decolourisation after 2 h irradiation. The degraded 

products of naphthalene based segments or diaminobiphenyl moieties are evident from the 

existence of absorption at 250 to 300 nm. The diminishing absorbance in the UV range at 

longer reaction time could be attributed to the destruction of aromatic by-products [30]. It is 

important to note that the NTK has the capability to fully decompose Congo Red under 

visible light irradiation, as evidenced from the effective CR degradation and aromatic 

segments at 496 and 300 nm.  

3.4 Photocatalytic Degradation Kinetics using the NTK Catalysts 

Comparison study on the time-dependent CR degradation using the NTK catalysts is able to 

provide insight to the kinetics of the photo-degradation reaction. The CR photo-degradation 

at 300 and 496 nm using the NTK300 was evaluated in the ASP system. TiO2-K catalyst and 

kaolinite particles were also tested under the same reaction conditions as the references. 

Before visible light irradiation, the suspensions of catalytic particles and CR were vigorously 

stirred in dark for 30 min to ensure that equilibrium adsorption was acheived. The kinetic 

profiles of the CR degradation catalysed by NTK or TiO2-K under visible light irradiation are 

shown in Fig 4(II). No absorbance change over time is found in the control trial using light 

irradiation only, indicating that CR is relatively stable under visible light irradiation. Slight 

dye reduction can be observed in the control trials using kaolinite and TiO2-K particles at 300 

nm and 496 nm. This reduction is mainly attributed to the physical adsorption of Congo Red 

by these nanostructured kaolinite particles. Due to the presence of small proportion (~ 4%) of 

UV in visible light region, minor photo-degradation catalysed by the TiO2-K is observed. 

NTK300 demonstrates highly comparable photo-catalytic ability under visible light as 
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evidenced from a high percentage of CR disappearance with time. Under 2 h irradiation, 

approximate 80 % of CR was degraded, resulting in producing about 30 % intermediate 

products, including 4-methyly-benzaldehyde, 5-amino-2-methoxyphenol, 4-nitro-1,1-

biphenly were measured in the solution [14, 26].  Nonetheless, low degradation rates are 

observed after 3 h irradiation. Finally, 99 % of CR can be degraded and only 7 % by-products 

remained in water after at 6 h irradiation. NTK is able to deliver approximately 2-5 times 

higher oxidation efficiency on the CR degradation than that of TiO2-K catalyst and 5-10 

times higher than that of P25 under the same photo-reaction conditions. The superior 

interfacial photo-oxidation ability of the NTK under visible light irradiation is attributed by 

the doped nitrogen and its unique porous-layered structures. The doped nitrogen is able to 

alter the localised states in the band gaps towards red shift, resulting in reducing energy 

required for photo-oxidation. On the other hand, the chemically modified layered kaolinite is 

not only a supportive carrier of N-doped TiO2 nanoparticles, but also a porous absorbent. The 

coordination of kaolinite surface adsorption and visible light accessibility of N-doped TiO2 

nanoparticles on kaolinite surface gives rise to higher degradation efficiency and low energy 

cost for the semiconductor photocatalytic process. Beyond the superior degradation capacity 

and visible light accessibility, it is worthwhile to mention that the NTK-driven photocatalysis 

needs much less net TiO2 crystals than P25 used for the CR degradation trials in the ASP 

system, as the TiO2 crystals are only approximately 10 wt% of the NTK particles. 

The rate expression for a single-component heterogeneous photocatalytic reaction that 

involves molecule degradation on the surface of a photocatalyst can be described using the 

saturation kinetic expression proposed by Langmuir-Hinshelwood: 

r
dC
dt

kK C
K C
ads

ads
= − = −

+1
 (2) 
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where r is the rate of photo-oxidation for dye molecules, k is the rate constant, C is the CR 

concentration, and Kads is the dynamic Langmuir adsorption constant. The applicability of 

Equation 2 is based on the following assumptions: (i) reaction system is in dynamic 

equilibrium; (ii) the reaction is surface mediated and (3) the competition for the active surface 

sites by the intermediates and other reactive oxygen species such as O2 is not limiting. If all 

the assumptions are satisfied, the entire batch ASP system only consists of surface adsorption 

sites, dye molecules and its intermediates, electron-hole pairs and reactive oxygen species 

(i.e. O2, O2
.-). The rate constant, k, is interpreted as the intrinsic reaction rate constant, which 

includes the rate of OH. and O2
.- generation, a function of the absorbed photon flux Iabs 

[O2]ads, competition from intermediate products, and mass transport effects. The second term 

in Equation 2 is the Langmuir saturation term (KadsC/(1 + KadsC)) represents the fraction of 

surface sites occupied by dye molecules. The implicit solution for Equation 2 can be 

rearranged to Equation 3, which can be solved explicitly for t using the discrete change in dye 

concentrations C from initial concentration C0 to a zero point of reference. 

( )ln
C
C

K C C kK tads ads
0

0







 + − = −  (3) 

Equation 3 is applied to yield the exact solution for photo-oxidation of dyes on the adsorbed 

surface, where the rate constant k and Langmuir adsorption constant Kads can be determined 

from the reciprocal plot of degradation rate against initial dye concentration. Fig 5 presents 

the kinetic profiles of CR degradation using NTK, TiO2-K and P25 catalysts under 1 h visible 

light irradiation. All NTK catalysts demonstrated increasing degradation profiles against 

irradiation time. For the TiO2-K and P25 systems, only a slight CR reduction was observed 

due to their non-sensitivity to visible light irradiation. While both TiO2-K and P25 showed a 

very low profile for CR reduction, we note that the TiO2-K showed a slightly higher CR 
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removal ability than P25. This can be  attributed by dye adsorption on the TiO2-K particles 

[14, 26].  

The CR photo-degradation using the NTK catalysts obeys the first-order reaction kinetics. 

Table 1 presents the first order Langmuir-Hinshelwood degradation expressions and the 

kinetic data for the CR degradation using various NTK catalysts. From the linear regression, 

the k varies in a range of 0.0116 – 0.4019 mol.L-1min-1 and the Kads is estimated as 0.4066 – 

0.1580 min-1 for the NTK catalyzed Congo Red photo-degradation in the ASP system. 

Although NTK500 has a little higher dynamic Langmuir adsorption constant, but the rate 

constant is smaller than that of NTK300 and NTK400. The highest degradation rates under 

visible light irradiation are given by NTK300 or NTK400, which are attributed to the 

presence of more anatase phased TiO2 in their microstructures. 

3.5 Recovery and Reuse Ability of the NTK Catalysts 

In a large scale semiconductor photocatalytic system, whether the catalyst particles can be 

recovered and regenerated for reuse in a continuous or semi-continuous process is a key 

technical and economic concern. Our synthesized NTK particles have a size range of 

approximately 3 - 5 μm. We examined feasibility for separation and recovery of the NTK 

catalysts in a semiconductor ASP system. The ASP system was operated under aeration with 

pumping compressed air through a gas sparger at a flow rate of 0.25 vvm, generating fine air 

bubbles in the ASP system. These air bubbles can maintain the NTK particles be well 

suspended in liquid phase and promote their contact with CR molecules. After the completion 

of the photo-degradation operation, the NTK particles can be easily separated through a 

simple sedimentation or filtration operation. The particle settling ability is an important 

property related to separation performance. Based on the Kynch’s theory, the settling ability 

of various particles can be examined by testing their hindered settling velocities. Batch 
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settling tests of the NTK300 and commercial P25 particles in 50 mL deionised water were 

carried out to compare their settleability, where the suspended particles were allowed to settle 

under gravitation. The relation between the decline of particle interface level and settling time 

was recorded, and the interface height measured at different time intervals for each sample 

was used to plot the catalyst settling curves as shown in Fig 6(I). The settling velocities (v) 

were estimated from the initial slope of the settling curves. As expected, the NTK particles 

performed much higher settling ability than that of P25 due to their large particle sizes. The 

batch settling velocities are significantly influenced by the amounts of NTK particles in the 

suspensions. With increasing particle loading, the settling velocity reduces. This is attributed 

to the rise of overall upward fluid flux when the settling particles displace water in the 

sediment zone [31]. The particle terminal velocity (vt) can be simply calculated using 

Equation 4, where c is the volume fraction of the particles.  

 v = vt ( 1 – c) (4) 

Since the instantaneous concentrations at the interface of different zones are not constant, the 

settling velocity is dependent on the interface height, settling time and particle loading as 

expressed by Richardson and Zaki relation, Equation 5.  

 )1(log)()(log)(log 0 cNvv tt −+=  (5) 

The single particle terminal velocity (vt0) can be estimated by plotting log vt against log(1-c), 

and the vt0 is found to be 6.36×10-3 m s-1, which is similar as the 5.28×10-3 m s-1 for the TiO2-

K[31]. We repeated this batch settling tests on the regenerated NTK particles after each 

thermal regeneration cycle, and found that the regeneration process slightly affects the 

settling ability of NTK particles in suspensions. Obviously, NTK particles can facilitate post 

sedimentation separation process. The high settling ability of the NTK particles makes them 

technically promising in a slurry sequential batch reactor system for water treatment. All 
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NTK particles can been recovered for reuse by either micro-filtration using 2 μm filters or 

centrifugation at 1000 rpm for 5 min. 

In order to determine the photo-degradation capability during repetitive use of the NTK 

photocatalysts, we operated our ASP system in a semi-continuous mode. CR solution (20 

ppm) with NTK catalytic particles (1 g dm-3) were aerated at 0.25 vvm for 2 h under visible 

light irradiation and then the slurry liquid was settled for 0.5 h to remove the supernatant in 

the ASP. The remained NTK particles were reused in the following photo-degradation trials. 

Fig 6(II) presents the NTK-catalysed degradation profiles in the semi-continuous process. 

The results clearly indicate no apparent deactivation of the NTK catalysts. Photo-degradation 

rates (r) for each cycle remain at approximately 90-93% of total degradation capability within 

6 trials of the semi-continuous operations. The slight reduction in CR degradation after each 

recycling trial was attributed to the fact that very small amount of NTK particles might be 

remained in the supernatant. The NTK photocatalysts demonstrate excellent catalytic stability 

and settling ability in the heterogeneous visible-light-driven photocatalytic system to 

effectively decompose organic pollutants in water, which makes them potential application in 

water or wastewater treatment.  

4. Conclusion 

In this study, a novel visible light active photocatalyst of nitrogen-doped TiO2 hybridized 

with kaolinite was synthesised by combining the mineral impregnation and N-doping 

methods. Morphological information indicates the nano-sized N-doped TiO2 particles have 

been hybridized into layered kaolinite. Characterisation from XPS, XRD and FTIR reveals 

that the doped nitrogen in NTK particles inclines toward interstitial. The resulting NTK 

exhibits superior capacity on the photo-degradation of organic compound under visible light 

irradiation by the coordination of kaolinite surface absorption and the N-doped TiO2 
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degradation on kaolinite surface. We could claim that the porous and multiple-layered 

structure of the kaolinite particles give rise to the special properties to stabilize nitrogen 

doping and TiO2 immobilization, but also to enhance photocatalytic performance. Importantly, 

the N-doped TiO2 photo-catalysts can be easily recovered in a downstream process for reuse. 

These advantages of high catalytic ability, visible light accessibility and excellent 

recoverability make the NTK catalysts promising for the development of a cost-effective and 

energy saving technology for the industrial water and wastewater treatment.  
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Figure Captions 
 
 
 
Figure 1 (I) Photo of annular slurry photo-reactor (ASP), and (II) Sketch of a semi-

continuous operation mode with three phase cycle: (1) TiO
2
/wastewater charge; 

(2) photocatalytic reaction, and (3) discharge of 2/3 of original and UV 
reactivation on catalyst.  

Figure 2.  Morphological analysis of the NTK particles (a) SEM, (b) HRTEM, (c) Low 

magnification SEM, (d) SEM image with EDX analysis. 

Figure 3. (I) XRD patterns for the NTK catalysts prepared at different calcination 
temperatures, and (II) XPS spectra of TiO2 (P25) and various NTK catalysts 
prepared at different calcination temperatures: (a) whole XPS spectra, (b)  1s 
spectra of N, and (c)  2p spectra of Ti. 

Figure 4.  (I) UV-visible absorption spectra of Congo Red in the presence of  NTK 300 over 
6 hours, and (II) Congo Red photo-degradation profiles in the ASP system using 
the NTK300(▲),  TiO2-K(■), kaolinite(♦), and visible light(●): (a) Congo Red 
absorption band at 300 nm and (b) Congo Red absorption band at 496 nm. 

Figure 5. Photo-degradation kinetics profiles of Congo Red using NTK, TiO2-K and P25 

catalysts in the ASP system under visible light irradiation (450-550nm), (catalyst 

loading: 1g/L, Congo Red concentration C0: 20 ppm and aeration rate: 0.5 vvm) 

Figure 6. (I) Settling curves of NTK300 and P25 catalysts in 50 ml water, and (II) Photo-

degradation profiles of Congo Red using the NTK300 catalyst in semi-continuous 

operation cycles under visible light. (NTK300 catalyst loading 1g/L, Congo Red 

concentration c0 20 ppm, and aeration rate 0.5 vvm). 
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Figure 4 
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Figure 5 
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Table 1  Kinetics on the photo-degradation of Congo Red (496 nm absorption) using 

various NTK catalysts under visible light irradiation.  

 

Catalyst Langmuir-Hinshelwood 

kinetic expression  

Langmuir adsorption 

constant,  Kads  (min-1) 

Rate constant,     

k (mol.L-1min-1) 

Correlation 

coefficient, R2 

NTK300 y  = 0.0635x + 0.1236 0.1580 0.4019 0.9906 

NTK400 y = 0.0558x + 0.10282 0.1397 0.3994 0.9974 

NTK500 y = 0.0047x + 0.0139 0.4066 0.0116 0.9890 

 

 

 

 

 

 

 

 

 

 

 

 

 


