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HYDRAULIC ACTUATION TECHNOLOGY FOR FULL- AND SEMI-ACTIVE 

RAILWAY SUSPENSIONS 

Abstract 

The paper describes a simulation study that provides a comprehensive comparison 

between full-active and semi-active suspensions for improving the vertical ride quality on 

railway vehicles. It includes an assessment of the ride quality benefits that can 

theoretically be achieved with idealised devices, and also examines the impact of real 

devices based upon hydraulic actuation technology.  

Keywords: Mechatronics, active suspension, actuator, secondary suspension, railway 

vehicle, simulation 

1.  INTRODUCTION 

In the last two decades, much research has been completed in order to improve ride 

quality on railway vehicles. An overall summary of the possibilities of using active suspensions 

for railway vehicles is included in [1], and it is generally accepted that such concepts applied to 

the secondary suspension system offer significant improvements in ride quality, including the 

effects of different actuator technologies – see for example [2, 3]. Tilting trains, which are an 

example of active suspension technology, represent what is nowadays a standard railway 

technology which is offered and supplied by all major rail vehicle manufacturers in high-speed 

trains and for regional applications [1].  However a broader use of active secondary suspensions 

has been very limited. This is largely because a higher level of passenger comfort is not strongly 

cost beneficial, and since semi-active devices are cheaper and simpler a number of workers 

have investigated the use of these both theoretically and via experiment (see for example [4, 5]). 

 

Full-active and semi-active approaches have a significant difference. A full-active 

approach includes a fully-controllable force actuator that includes a power supply, whereas the 
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semi-active concept utilises a suspension component with a controllable characteristic. The 

energy flow of a semi-active suspension is controlled but not augmented, and furthermore the 

energy flow’s direction is limited to one direction. More precisely, it is only possible to 

dissipate energy but not inject it (although with an accumulator it is possible to partly utilize the 

energy stored [6]), and this behaviour results in a fundamentally nonlinear concept which offers 

less improvement compared with full-active. In principle any passive component whose 

characteristics can be changed electrically would comprise a semi-active device, but in practice 

a semi-active actuator is usually a conventional damper with the ability of variable damping by 

using electro hydraulic or electro-rheological fluid devices. On the other side, full-active 

actuators mostly use electro-hydraulic, pneumatic or electro-mechanical technology.  Electro- 

and magneto-rheological fluids have also been studied for semi-active devices, but at present 

these are not appropriate for the actuation required for full-active suspensions.  

 

The papers referenced above 

[1-5] are examples of many studies of 

both full-active and semi-active 

suspensions for improving the ride 

quality on railway vehicles, but none 

has properly compared their relative 

performance using a consistent set of 

criteria. It has also not been possible to define what can theoretically be achieved with idealised 

devices compared with real active and semi-active hydraulic actuation.  This paper provides a 

consistent comparative assessment for a vertical suspension system based upon a “side-view” 

suspension model for a four-axle vehicle focussed upon the comparisons as indicated by Fig 1. 

The passive v. semi-active v. full-active comparison identifies the conceptual benefits of active 

control, and provides an aspirational basis for possible developments in actuator technology for 

                Fig 1 Assessment framework 
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active suspensions, including the fundamental limitations of semi-active compared with active 

solutions. The ideal v. real comparison, in this paper for a single technology, moderates 

expectations of what is achievable in practice and perhaps guides technology improvements. 

2. MODELLING AND ASSESSMENT 

This section describes the simulation models for the vehicle suspension and the full- and 

semi-active devices used in the study, and also explains the requirements and approach used for 

assessment.  

2.1 Sideview vehicle model 

The simulation studies are undertaken using a passive side-view model that includes four axles, 

two bogies and primary and secondary vertical suspensions shown by Fig. 2. Typical 

parameters for a modern high-speed train with an airspring suspension are used [7] (notation, 

equations and values are listed in the Appendix). Note that, for both the full- and semi-active 

solutions, the surge reservoir and orifice damping represented by kSecD and cSec are omitted 

since damping is then provided through active control. The corresponding equations are not 

included here because they have been adequately described by many papers. 
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Fig 2 Side view model of railway vehicle 

2.2 Full and semi-active device models 

The actuators are fitted in parallel with the secondary suspension as indicated in Fig 2, and their 

modelling requires different approaches for each of the four options. The ideal full-active 

actuator is simply a perfect force actuator that generates the commanded force irrespective of 

the movements across it and with no time delay. It can produce bi-directional force when the 

actuator is moving in both directions, i.e. it can operate in all four quadrants of the 

force-velocity graph, although a real actuator will of course be subject to dynamic constraints 

relating to how quickly it can transition from one quadrant to another. 

However even the ideal semi-active damper is a non-linear device with a force/velocity 

coefficient that can be varied instantly up to a maximum defined value – more discussion of this 

is given below.  However this is not true for the semi-active device, and Figure 3 provides a 

generalised characteristic which illustrates that it is constrained to operate in a relatively small 

area of the graph.  Not only is operation in the upper left and lower right quadrants completely 

impossible, but also the minimum and maximum damping rates provide a limitation in the other 
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two quadrants.  This type of characteristic emphasises the fundamentally non-linear nature of 

all semi-active suspensions. 

 

Fig 3 Semi-active damper Force-Velocity characteristic 

For the “real” actuator a well-established model described by Neal [8] is depicted in Fig. 4. The 

equations that are used to represent the compressibility of the oil in the cylinder and the 

nonlinear flow/pressure relationship associated with the servo-valve are given in the Appendix, 

also based upon Neal’s well-established approach. The corresponding linearised block diagram 

model is given by Figure 5, which includes a no flow pressure gain Kc and a transfer function to 

allow for the valve dynamic response. 
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Fig 4 Real hydraulic actuator scheme 

 

Fig 5 Real hydraulic actuator linearised block diagram 

 

The “real” semi-active device is a relatively straightforward adaptation of the full-active 

hydraulic model, but without the hydraulic power supply, as shown in Fig 6. The valve is then a 

simple variable device connected between the two sides of the actuator. Although in principle it 

is possible to account for the different effective areas by shaping the opening characteristics of 

the valves, for this study a “through-rod” actuator has been assumed so that, unlike the 

full-active actuator, the flows are equalised.  The same flow/pressure relationship as the full 

actuator is used.  

 

Fig 6 Semi-active damper scheme 

By means of simulations with the ideal full active suspension it was possible to undertake an 
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“outline design”, and this defined actuator force and velocity requirements of 15kN and 0.4 m/s 

respectively. A supply pressure of 210 bar was assumed, and these values enabled the 

calculation of other parameters, e.g. the area of the piston, and to choose an appropriate cylinder 

and valve. Parameter values based upon this outline hydraulic design process are listed in the 

Appendix. 

2.3 Performance assessment approach 

The secondary suspension of a railway vehicle has to cope with deterministic and stochastic 

disturbances. The former are caused by guiding the vehicle along the intended track variations, 

such as gradients or curves. The latter occur due to track irregularities. The design aim is to 

limit the maximum suspension deflection for the deterministic input, while isolating the 

stochastic component and achieving the best possible ride quality. It should be emphasised that 

the maximum suspension deflection is often not considered for a normal passive suspension, 

but this does become an important constraint with the active suspension control strategies, 

which are most appropriately based upon absolute or “skyhook” damping [9].   

Track irregularities 

Although it is possible to use real measured track irregularities to give predictions for a real 

section of track, for a research assessment a generalised simplified power spectrum to represent 

track irregularities can be used [9] which provides a good representation of the irregularities in 

the range 0.1-10Hz, although it over-emphasises their size at higher frequencies.  

( ) 2tt fS
t

v

f
A

=  (1) 

where Av is the track roughness factor and ft  is a spatial frequency [cycles/m]. Using the speed 

of the train v this can be converted to a temporal frequency and the track vertical velocity input 
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modelled by a band-limited Gaussian white noise with a flat spectrum given in Equation 2, 

where the units are now (ms-1)2/Hz. 

( ) ( ) vAf v
2

t
2zG π=  (2) 

The roughness factor was taken as 1x10-7m and the velocity as 55 m/s, i.e. to represent typical 

conditions for a 200 km/h train. Appropriate speed-dependent time delays are used to provide 

the inputs to the other three axles of the vehicle. 

Ride quality has been assessed using RMS acceleration values. It would be possible to use 

frequency weighting to allow for human susceptibility to vibration, for example as specified by 

ISO 2631, but in fact unweighted accelerations are used in this study.  

Deterministic input 

A gradient of 2% was assumed as the deterministic input, which included a transition section 

having a superimposed vertical acceleration of 0.3m/s2. Obviously these values will vary 

between different administrations and routes, but represent a typical worst case for which the 

suspension control might have to be designed. 

3.  DEFINITION OF CONTROL STRATEGIES 

There are two distinct issues to be described: firstly the basic suspension control strategy which 

generates active force commands that are appropriate to provide ride quality improvements; 

secondly, when the actuator is non-ideal, the inner loop that achieves force control of the 

actuator (Figure 5). These two issues are explained in the following sub-sections. 
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3.1 Suspension control strategies 

Although there is a wide variety of active secondary suspension control possibilities that have 

been described, in one way or another they normally employ the concept of “skyhook” 

damping, or absolute velocity damping (which is a more scientific description). Both the full- 

and semi-active controllers used for this analysis are based upon skyhook damping, although 

each has important variations, and Figures 7-10 describe the progressive development of the 

basic skyhook strategy to accommodate the different practicalities. 

Full-active control 

A practical skyhook control strategy involves modifying the basic skyhook concept in two 

important ways: 

i. Pure absolute velocity damping creates large suspension deflections on track gradients 

(or curves for an active lateral suspension), and it is necessary to include a high-pass 

filter to remove the inputs associated with such features [9]. This filter diminishes the 

improvements that are possible, but is essential to meet the maximum deflection 

constraint. Normally the absolute velocity measurement is derived by integrating the 

signal from an accelerometer, and in order to avoid integrator drift it is practical to 

combine with the high-pass filter (Figure 7), in other words the high-pass effect serves 

two purposes. Cut-off frequency of 0.16 Hz (1 rad/s) has been used, the same as in [9]. 

ii. Applying the damping in modal sense (bounce and pitch for a vertical suspension) is 

beneficial for ride quality, as shown in Figure 8. This is because it is possible to use a 

higher skyhook damping coefficient in the pitch mode than the bounce mode, a 

consequence of the deterministic input into the pitch mode being much smaller. 
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Fig 7 Scheme of the skyhook damping suspension controller 
 

 

Fig 8 Scheme of modal skyhook control strategy [new figure] 

Semi-active control 

The same suspension control strategy can be used but it’s necessary to convert the force 

command into a control signal for the semi-active device, essentially a damper setting, and 

Figure 9 illustrates the way that this can be done, also taking into account the maximum and 

minimum damping rate limits available for the device. Due to the division by actuator velocity, 

the demanded damping rate may clearly become very large, but the controller prevents this by 

means of the maximum limit (although the program code would need to have overflow and 

divide by zero protection).  
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Fig 9 Basic semi-active control strategy [new figure] 
 

3.2 Real actuator control  

Actuator for full-active suspension 

 

 

Figure 10 Real actuator controller [new figure] 

Figure 10 shows the scheme for a force-feedback controller. Achieving fast control action is a 

challenge for the design of the controller itself. Since the controller has a relatively low gain, 

high force errors are needed to produce enough flow, but the suspension strategy demands very 

small force at high frequency to provide a good ride quality, and these two requirements are in 

conflict. Better performance can be achieved by including a spring in series with the actuator, 

and a spring with a stiffness ksecF of 20 times the secondary suspension stiffness ksec was used – 
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essentially this is in series with the compressibility of the oil in the actuator chambers.  A 

corresponding integral plus phase advance controller was designed based upon optimising the 

force tracking performance of the inner loop.  The parameters both for the force controller and 

for the “modal skyhook” suspension controller are given in the Appendix. 

Semi-active device 

 

 

Figure 11 Scheme of the real semi-active device controller 

Figure 11 shows the controller used for the semi-active device, including the actuator model as 

previously described.  The skyhook force command is generated using the same controller as 

for the full-active solution.  The scheme of Fig 9 is used to define the required damping 

constant, with cmin and cmax defined as 0.2 csec and 2csec respectively.  (The relationship between 

valve current and damping constant is derived using the damper equations assuming a very high 

value of series stiffness.) 

4.  SIMULATION STUDIES 

A large number of simulations involving both time and frequency domain analysis were 

undertaken to determine optimum settings for the various parameters and the values used for 

the suspension controller (bounce and pitch skyhook damping values, high-pass filter cut-off 
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frequency) are listed in the Appendix. 

4.1 Time domain results  

Table 1 shows the overall performance comparison derived from the time domain simulation, 

both in absolute RMS acceleration and percentage change (negative is an improvement in ride 

quality), with the ride quality of the passive suspension as a reference. It can be seen both that 

full-active always out-performs the semi-active approach, and also that adding “real” actuator 

technology inevitably provides some degradation. The percentage figures highlighted in grey 

indicate the size of this degradation, real v. ideal. 

The table emphasises the crucial benefit when using active control. It shows that the 

improvement at the front and rear of the vehicle is significantly higher than in the middle, with 

the rear of the vehicle benefitting from the highest improvement (although in terms of absolute 

values the rear starts off as the worst). 

Table 1 Ride quality and suspension deflection results from time simulation 

 RMS values of the body vertical acceleration (%g) Max defl. 
(mm) 

  

RMS 

Front 

%age 
Real v. 
ideal 

 

%age v. 
passive 

 

RMS 

Centre 

%age 
Real v. 
ideal 

 

%age v. 
passive 

 

RMS 

Rear 

%age 
Real v. 
ideal 

 

%age v. 
passive 

Front Rear 

Passive 3.14  ¬ 1.65  ¬ 3.58  ¬   

Ideal full 1.41 ¬ -55.1% 1.02 ¬ -38.2% 1.51 ¬ -57.2% 28.5 25.9 

Real full 1.70 +20.6% -45.9% 1.16 +13.7% -29.7% 1.78 +17.9% -50.3% 28.5 25.4 

Ideal semi 1.94 ¬ -38.2% 1.31 ¬ -20.6% 2.02 ¬ -43.6% 24.9 24.4 

Real semi 2.06 +6.2% -34.4% 1.37 +4.6% -17.6% 2.13 +5.4% -40.5% 24.8 24.1 
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Since the full-active suspension system is entirely linear the RMS values can also be derived 

analytically based upon frequency response analysis and using a calculation of the transfer 

function from disturbances to acceleration with the inner force and outer skyhook loops closed. 

The RMS values are given by 

( ) ( )∫
∞

=
0

z
2

i
G ωωω djjHaRMS                                                         (3) 

where the transfer function ( )ωjH  has to include the speed-dependent time delay information 

between track input and the four wheel sets, i.e.  

( ) ( ) ( ) v
y

j

i
i

i

ejHjHjH
ω

ωωω
−

=
∑+=

3

1
0                                                    (4) 

Table 2 gives these analytical results for the full-active system, which shows an excellent match 

with the corresponding results in Table 1. As already mentioned the semi-active skyhook 

control law is highly non-linear and so the same analysis cannot be applied to the semi-active 

suspension. 

Table 2 RMS body acceleration and relative benefits – values based on analytical calculations 

 RMS values of the body’s vertical acceleration in %g 

 Front 

RMS 

 

%age v. 
Passive 

Centre 

RMS 

 

%age v. 
Passive 

Rear 

RMS 

 

%age v. 
Passive 

Passive 3.11 ¬ 1.60 ¬ 3.55 ¬ 

Ideal full 1.39 - 55.3% 1.00 - 37.1% 1.48 - 58.3% 

Real full 1.69 - 45.7% 1.15 - 28.8% 1.76 - 50.5% 

 

4.2 PSD Analysis  

Power spectral density information has also been investigated (partly in the process of 

optimising the control schemes). Of course this reflects what has been seen in previous active 
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suspension studies, but it is useful to include some results in order to show where the various 

benefits are achieved in terms of different frequencies. In all cases the comparisons are based 

upon acceleration PSDs over the rear suspension of the vehicle. 

Figure 12 shows the passive vehicle response in comparison with ideal full-active and 

ideal semi-active, which shows the profound improvements that are possible with both types of 

active suspension.  Figure 13 omits the passive response and gives a clearer view of the 

additional improvements achievable with full-active: the semi-active solution gives slightly 

reduced acceleration levels at low frequencies below about 0.6Hz, whereas the full-active is 

superior for higher frequencies. 

 

Fig 12 Acceleration PSDs at rear of vehicle, passive v. ideal full- and semi-active 
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Fig 13 Acceleration PSDs at rear of vehicle, ideal full- and semi-active 

Figures 14 and 15 show the effects of real actuator technology. Very little difference is 

seen for the real semi-active solution in Figure 14, which reflects the small degradation of 5.4% 

listed in Table 1, whereas Figure 15 shows a larger change for the real full-active, Table 1 

indicating a 17.9% degradation. Note that from 1-3 Hz the real actuator is slightly better, but the 

degradation arises from the higher accelerations which can just be seen beyond 5Hz, but the 

true impact is obscured by the restricted logarithmic frequency axis: Figure 16 has a linear axis 

extending from 10Hz to 30Hz and shows that the degradation occurs at higher frequencies, 

particularly around 20Hz, a problem that doesn’t happen with the real semi-active solution, 

results for which are shown in Figure 17. 
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Fig 14 Acceleration PSDs at rear of vehicle, ideal v. real semi-active 

 

 

Fig 15 Acceleration PSDs at rear of vehicle, ideal v. real full-active 
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Fig 16 PSDs at rear of vehicle, ideal v. real full-active (30Hz frequency range) 

 

Fig 17 PSDs at rear of vehicle, ideal v. real semi-active (30Hz frequency range) 

4.3 Overall summary   

Table 1 is the principal outcome of the research study and effectively answers the research 

question regarding the relative performance of the control options. It is also useful to present 
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the percentage improvements in the context of the overall problem as set out in Figure 1, and 

Figure 18 indicates the performance benefits based upon the average improvement (front, 

centre and rear). 

 

Figure 18 Overall performance summary 

The average improvement (percentage reduction in RMS acceleration) across the vehicle is 

50.2% for full-active compared with 34% for semi-active, and the effect of actuator technology 

is to change these to 42% and 30.8% for full- and semi-active respectively. 

5.  CONCLUSIONS 

The study provides a rigorous assessment of the relative benefits of full- active versus 

semi-active suspension approaches for the vertical suspension of a railway vehicle. It is clear 

that full-active provides more improvements in ride quality, but semi-active can certainly 

provide improvements throughout the vehicle. The results provide a basis for understanding the 

trade-off between the additional ride quality benefits of the full-active approach set  against the 

greater complexity. 

Further work should consider other actuator technologies, in particular electro-mechanical, 

although the characteristics make this less practical as a semi-active solution.  It is also 

necessary to repeat the assessment for the lateral secondary suspension so that a full picture of 
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the relative benefits of full- and semi-active suspensions can be completed. 
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APPENDIX – Modelling details 

Suspension equations 
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where z and Θ are body vertical and pitch displacements, and zi and Θi are bogie vertical and 

pitch displacements with [ ]2,1∈i  

Table A1 Suspension parameters 

Description Notation Value 

Mass of the vehicle mB 38,000 kg 

Body pitch Inertia IxxB 2.31× 106 kgm2 

Mass of the bogie frame mb 2,500 kg 

Bogie frame pitch Inertia Ixxb 2.604 × 103 kgm2 

Semi longitudinal spacing of the sec. susp. yb 9 m 

Semi longitudinal spacing of the wheelsets yw 1.25 m 

Secondary spring stiffness per bogie kSec 508 kNm-1  
Secondary damping stiffness per bogie kSecD 1.016 MNm-1  
Secondary passive damping per bogie cSec 64.11 kNsm-1 

Primary spring stiffness per axle kPri 4.935 MNm-1  
Primary passive damping per axle cPri 50.74 kNsm-1  

 Full active actuator – equations 
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Where the piston velocity is vp and ( )vo xA  signifies the opening area of the valve and vx  is the 
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valve position. 

The load pressure is defined by the difference of the pressure in the chambers 21 pppL −= , 

where the sum is constant and equal to the supply pressure 21 ppps += . The load flow 2
21 qq

Lq +=  

is simply the average flow through the valve. By means of these definitions the differential 

equations of the chamber pressures result in one differential equation for the load pressure 

which is given by 

β4
t

LFL
VpdvΑq +=  ( 2 ) 

where 
2

21 AAAF
+

=  is the area of the piston and 0201 VVVt +=  is the entire volume. 

Table A2 Full active actuator parameters 

Description  Notation Value 

Effective area of cylinder AF 10.66× 10-4 m2 

Chamber volumes of cylinder V01,  V02 1.066× 10-4 m3 

Constant discharge coefficient Α 0.7 

Bulk modulus of the oil β 1.38× 109 Pa 

Density of the oil ρ 858.2 kgm-3 

Area gradient of the valve 

 

D 5.6734× 10-6 m2/% 

Supply pressure Ps 210× 105 Pa 

Tank pressure PT ~0 Pa 

Flow gain Kq 0.01196 m3s-1/% 

Flow pressure sensitivity Kc 4.492× 10-13 m3s-1Pa-1 

Unit conversion gain Ka 33.333 %/A 

Damping of the servo-valve ζVF 0.3 

Undamped natural freq. of the servo-valve ωVF 2π×100 rad/sec 
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Table A3 Semi-active actuator parameters 

Description Notation Value 

Effective area of cylinder AS 60.23× 10-4 m2 

Chamber volumes of cylinder VtS 6.023× 10-4 m3 

Bulk modulus of the oil β 1.38× 109 Pa 

Damping of the servo-valve ζVS 0.3 

Undamped natural freq. of the bypass-valve ωVS 2π×50 rad/sec 

 

Table A4 Controller parameters 

Description Notation Value 

Damping ratio of the high pass filter  ζHPF 0.7 

Cut off frequency of the high pass filter  ωHPF 1 rad/sec 

Bounce mode skyhook damping coefficient (full-act)  cbF 65 kNsm-1 

Pitch mode skyhook damping coefficient (full-act) cpF 100 kNsm-1 

Bounce mode skyhook damping coefficient (full-act) cbS 1.4 × cbF
 

Pitch mode skyhook damping coefficient (full-act) cpS 1.8 × cpF
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