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Abstract 

A theory of contact angle hysteresis of liquid droplets on smooth, homogeneous solid 

substrates is developed in terms of shape of disjoining/conjoining pressure isotherm and 

quasi-equilibrium phenomena. It is shown that all contact angles, θ, in the range rθ <θ< aθ , 

which are different from the unique equilibrium contact angle θ ≠ eθ , correspond to the 

state of slow “microscopic” advancing or receding motion of the liquid if eθ <θ< aθ  or rθ <θ<

eθ , respectively. This “microscopic” motion almost abruptly becomes fast “macroscopic” 

advancing or receding motion after the contact angle reaches the critical values aθ  or rθ , 

correspondingly. The values of the static receding, rθ , and static advancing, aθ , contact 

angles in cylindrical capillaries were calculated earlier, based on the shape of 

disjoining/conjoining pressure isotherm. It is shown now that both advancing and receding 

contact angles of a droplet on a on smooth, homogeneous solid substrate (i) can be 

calculated based on shape of disjoining/conjoining pressure isotherm, (ii) both advancing 

and receding contact angles depend on the drop volume and are not unique 

characteristics of the liquid-solid system. The latter is different from advancing/receding 

contact angles in thin capillaries. It is shown also that the receding contact angle is much 

closer to equilibrium contact angle than the advancing contact angle. The latter conclusion 

is unexpected and is in a contradiction with commonly accepted view that the advancing 

contact angle can be taken as the first approximation for the equilibrium contact angle. The 

dependency of hysteresis contact angles on the drop volume has a direct experimental 

confirmation. 
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Introduction 

Earlier a theory of contact angle hysteresis of menisci in thin capillaries has been 

developed [1,2] based on a s-shape of disjoining/conjoining pressure isotherm. The nature 

of the disjoining/conjoining pressure can be briefly explained as follows. The properties of 

liquid in the vicinity of liquid-air and solid-liquid interfaces differ from the corresponding 

properties in the bulk because of surface forces action. We refer to these layers where the 

surface forces act, as boundary layers (nothing to do with hydrodynamic boundary layers). 

In the vicinity of an apparent three phase contact line these boundary layers overlap. This 

overlapping of boundary layers is the reason why disjoining/conjoining pressure appears. 

Contact angle hysteresis on smooth homogeneous substrates appears in the case 

of partial wetting, when disjoining/conjoining isotherm has a special s-shape. Components 

contributing to the formation of disjoining/conjoining pressure are discussed in [3-6]. These 

components are  

1) electrostatic component, which is caused by formation of electrical double layers and 

their overlapping: 

Π𝐸 = 𝑅𝑅𝑐0(exp (𝜑) + exp (−𝜑)) − 2𝑅𝑅𝑐0 −
(𝑅𝑅)2𝜀𝜀0
2𝐹2

�𝜕𝜕
𝜕𝜕
�
2
,    (1) 

 
where R,T, F, ε, ε0 are universal gas constant, temperature in oK; Faraday’s constant, 

dielectric constant of water and dielectric constant of vacuum, respectively; c0 is electrolyte 

concentration;  y and ψ are the co-ordinate normal to the liquid-air interface and 

dimensionless electric potential in F/RT units, respectively. 

The electric potential 𝜓 and the surface charge density 𝜎  in Eq.(1) are related as [5] 

𝜎ℎ = 𝜀𝜀0
𝑅𝑅
𝐹
�𝜕𝜕
𝜕𝑦
�
𝑦=ℎ

 for the liquid/vapour interface; 

𝜎𝑠 = −𝜀𝜀0
𝑅𝑅
𝐹
�𝜕𝜕
𝜕𝑦
�
𝑦=0

 for the solid/liquid interface; 

2) structural component, which is caused by water molecule dipoles orientation in a vicinity 

of interfaces and overlapping of these structured layers. This component is presented as a 

combination of both short-range and long-range interactions [7]: 

ΠS = 𝐾1 exp(−ℎ/𝜆1) + 𝐾2 exp(−ℎ/𝜆2),      (2) 

where 𝐾1, 𝐾2  and 𝜆1, 𝜆2  are parameters related to the magnitude and the characteristic 

length of the structural forces. The subscripts 1 and 2 correspond to the short-range and 
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long-range structural interactions, respectively. Currently the latter four constants can be 

extracted from experimental data only; 

3) molecular or van der Waals component [3,5]:   

36
)(

h
AhM
π

=Π ,         (3) 

where A = −AH, AH is the Hamaker constant. Note, the importance of the van der Waals 

component is usually grossly exaggerated in the literature: other components of the 

disjoining/conjoining pressure are equally or even more important in the case of aqueous 

electrolyte solutions. 

The resulting disjoining/conjoining pressure isotherm has a characteristic s-shape 
[5,7]: 

)()()()( hhhh SEM Π+Π+Π=Π .       (4) 

 

Hysteresis of contact angle on smooth homogeneous substrates 

It is usually believed that the static hysteresis of contact angle is determined by the 

surface roughness and/or heterogeneity. No doubt that a roughness and/or a chemical 

heterogeneity of the solid substrate contribute substantially to the contact angle hysteresis. 

In this case it is assumed that at each point of the surface the equilibrium value of the 

contact angle at that point is established, depending only on the local properties of the 

substrate. As a result a whole series of local thermodynamic equilibrium states can be 

realized corresponding to a certain interval of values of the contact angle. The maximum 

possible value corresponds to the value of the static advancing contact angle, aθ , and the 

minimum possible value corresponds to the static receding contact angle, rθ . 

However, the roughness and/or heterogeneity of the surface are apparently not the 

sole reasons for contact angle hysteresis. Over the last years there have been an 

increasing number of publications which confirmed the presence of contact angle 

hysteresis even on smooth, homogeneous surfaces [8-13]. The most convincing evidence 

for the presence of the above mentioned phenomenon is its presence on free liquid films 

[14-19]. In the latter case surfaces of free liquid films are not rough at all and are also 

chemically homogeneous. Hence, in the case of contact angle hysteresis on free liquid 
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films it is impossible to explain the hysteresis phenomenon by the presence of roughness 

and/or heterogeneity. 

  Below we describe a mechanism of contact angle hysteresis based on the 

consideration of surface forces, which act in the vicinity of the apparent three-phase 

contact line. This type of contact angle hysteresis is present even on a smooth, 

homogeneous substrate. Consideration of this kind of contact angle hysteresis on rough 

and/or non-homogeneous surfaces from this point of view is to be undertaken. 

Evidently only a single unique value of equilibrium contact angle, eθ , is possible on 

a smooth, homogeneous surface. Hence, the hysteresis contact angles ea θθ ≠ , er θθ ≠  

and all contact angles in between, which are observed experimentally on such surfaces, 

correspond only to non-equilibrium states of the system. The discussion of the hysteresis 

phenomenon below is based on the analysis of non-equilibrium states of the system: 

droplets on smooth homogeneous solid substrate. 

 

Equilibrium contact angle of sessile droplets and surface forces 
(disjoining/conjoining pressure) 

The equilibrium profile of a sessile two dimensional droplet is described by the 

following equation [1,2,5]: 

ePh
h
h

=P+
′+
′′

)(
)1( 2/32

γ ,         (5) 

where γ is the liquid-vapour interfacial tension, h(x) is an equilibrium droplet profile. The 

variable h and its derivatives h' and h'' are the functions of x coordinate. However, in some 

cases below the variable x is excluded and the implicit functions h'(h) and h''(h) are 

considered. 

According to the Kelvin’s law  

e

s

m
e Rp

p
v
RTP γ

−== ln ,          (6) 

where vm the molar liquid volume; ps and p are saturated vapour pressure and the 

pressure of the vapour, which the sessile droplet is at equilibrium with. See Fig.1 for 

details. As follows from Eq (6), the liquid can be at equilibrium with oversaturated vapour 

only, that is only if p>ps. It is very difficult to keep oversaturated vapour over sessile droplet 

over a prolong period of time. This explain why equilibrium sessile droplets is so difficult (if 

possible at all) to investigate experimentally. 
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According to Eq. (5) the whole profile of a drop can be subdivided into three parts 

(Fig. 1): a spherical cap (using this part a macroscopic contact angle can be determined), 

a transition zone, where both capillary pressure and disjoining/conjoining pressure are 

equally important, and a flat equilibrium liquid film region ahead of the drop.  

 
Fig. 1. Equilibrium drop: (1)  spherical cap, where capillary forces dominate, (2)  transition 

zone, where capillary forces and disjoining/conjoining pressure are equally important, and 

(3) flat equilibrium film in front of the drop solely determined by surface forces action. 

 

The second order differential equation (5) can be integrated once, which gives: 

γ

∫Π−−
=

′+

∞

h
e dhhhΠC

h

)(

1

1
2

 , (7) 

where C is an integration constant to be determined. The integration was made within 

limits from h to H, but the term Pe H is a constant which was included into the integration 

constant C. It is assumed in Eq. (7) that the droplet height H>> ts, where ts is radius of 

surface forces action. 

Note that there are two boundary conditions, which solution (7) should satisfy (see below) 

at h=he and at h=H. However, there is only one integration constant C in Eq. (7), hence, 

should be one extra condition on the solutions of Eq. (7) [1, 2]: this extra condition allows 

to express the contact angle vis disjoining pressure isotherm.  

According to the transversality condition 0)( =′ ehh  [20], the integration constant in 

Eq. (7) is ∫Π++=
∞

eh
ee dhhhΠC )(γ . Hence, the drop profile is described by the following 

equation: 

γ
ϕγ ),(

1

1
2

ePh

h

−
=

′+
       (8) 

where  
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( ) ∫Π−−=
h

eh
eee dhhhΠΠh ),(ϕ .        (9) 

 The left hand side of Eq. (8) should be always positive and less or equal to 1, hence, the 

following inequality should be satisfied: 

γϕ ≤≤ ),(0 ePh  ,        (10) 

where the left part of the inequality corresponds to a zero derivative h′ , and the right one 

corresponds to an infinite value of h′ .  

On the other hand at the drop apex, H, the derivative vanishes, 0)( =′ Hh . This 

together with Eq. (7) and assumption H >> ts results in HPC e+= γ . Then Eq. (7) can be 

rewritten as: 

γ

γ ∫Π−−+
=

′+

∞

h
e dhhhHΠ

h

)()(

1

1
2

.      (11) 

Outside the range of the disjoining/conjoining pressure action, that is at h>> ts, Eq. 

(11) reduces to 

γ
γ )(

1

1
2

hHP

h
e −+

=
′+

, (12) 

which describes the spherical cap of the drop in Fig. 1. The magnitudes h ′  [m/m] and h [m] 

describe the spherical cap profile in the absence of surface forces. Intersection of the latter 

profile with the solid substrate defines an apparent three-phase contact line and the 

macroscopic equilibrium contact angle: eh θtan)0( −=′ . Then Eq. (12) can be rewritten at 

0=h  as 
H

P e
e

)cos1( θγ −
−= . Casting this expression into Eq. (11) results in the following 

expression for the equilibrium contact angle in the case of drops on a flat substrate: 

Hthdhh

H
h

dhh

se
ehe

H

eh
e <<∫Π+≈

−

∫Π

+=
∞

~for,)(11
1

)(1

1cos
γ

γ
θ , (13) 

where 100≈st  nm is the radius of surface forces action.  

Eq.(13) shows that the equilibrium contact angle θe is only a function of the 

disjoining/conjoining pressure in the region of thicknesses he<h<H, which corresponds to 
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the transition region 2 in Fig. 1. This is because the local capillary pressure 𝛾ℎ′′

(1+ℎ′2)3/2 in 

Eq.(5) is a supplements of the disjoining/conjoining pressure Π(h) to the constant value Pe , 

which is fixed at any position x. From this point of view, the dependence Π(h) determines 

the forces acting inside the transition zone and, hence, the form of the liquid profile inside 

the transition zone as well as the value of the equilibrium contact angle in Eq. (13). 

Eq. (13) shows that for the partial wetting case the following condition should be satisfied: 

0)( <∫Π
∞

eh
dhh .          (14) 

It is possible to show [1,2] that the height of equilibrium sessile drops, H, decreases with 

increasing oversaturation, when the absolute value of Pe increases. It follows also from 

Kelvin’s equation (6): the small droplets (with low sizes Re and H) are characterized by 

higher pressure, Pe, and high oversaturation ratio, ps/p. A mathematical relation between H 

and Pe can be obtained from Eq.(11) at h'=0: 𝐻 = ℎ𝑒 + 1
𝑃𝑒
∫ Π𝑑ℎ∞
ℎ𝑒

.  

However, the decrease in H has certain limits, since drops can be at the equilibrium 

with flat films only if Pe > Πmin (Fig. 2). Curve 2 (Fig. 2) shows Πmin is the pressure 

corresponding to the minimum of the isotherm Π(h) in the case of partial wetting. For Pe < 

Πmin there is neither a film nor a drop on the solid surface at equilibrium. When Pe 

decreases and approaches Πmin, when drops whose size decreases, will be "torn" off the 

surface and pass into the vapor phase. However, at 0>Pe > Πmin when the equilibrium 

drops are possible, the equality Pe = Π(he) implies that the profile curvature corresponding 

to the first term in Eq.(5) is equal to zero at the state of equilibrium. This is a reason why a 

drop can be at equilibrium with flat films only. 

Note that the equilibrium contact angle defined by Eq. (13) is not completely 

determined by the shape of the disjoining/conjoining pressure isotherm: it also depends on 

the lower limit of integration, he, which is determined by the equilibrium excess pressure 

Pe. In other words, the equilibrium contact angle of drops depends on the equilibrium 

volume of the drop, which can vary from “infinity” (at Pe=0) to a minimum value at Pe=Πmin 

(Fig. 2).  
Fig. 2 illustrates the dependence of the disjoining/conjoining pressure on the 

thickness of a flat liquid film for the cases of complete wetting (curve 1, which corresponds 

to ( )hMΠ  typical for oil drops on glass substrates) and partial wetting (curve 2, which 
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corresponds to Eq. (14), typical for drops of aqueous electrolyte solutions on glass 

substrates).  

The dependency 2 (Fig. 2) is usually accepted in the case of partial wetting. 

However, actually only some parts of this dependency can be experimentally measured: (i) 

only disjoining/conjoining pressure at thicknesses where the stability condition, 0)(
<

Π
dh

hd
, 

is satisfied [5], (ii) only disjoining/conjoining pressure at under-saturation, that is, at Pe>0 

(Fig. 2). This means that disjoining/conjoining pressure can be experimentally measured 

only at thicknesses below t0 (α films) and above tmax (β films)(Fig.2). That is, currently it is 

impossible to say if there is only one minimum on the dependency 2 (Fig. 2) or there is one 

extra minimum on this dependency in the region Pe<0 at relatively big thicknesses h> tmax. 

The presence of such minimum (secondary minimum) is well known in the case of 

interaction between colloidal particles [5], however, the presence of the secondary 

minimum in the case of disjoining/conjoining pressure has not been discussed before. It is 

shown below that there is a reasonable theoretical background for existence of the 

secondary minimum on dependency 2 (Fig. 2). 

 
Fig. 2. Disjoining/conjoining pressure isotherms: 1 – complete wetting, 2 – partial wetting. 

The value he defines the equilibrium thickness of equilibrium flat films in the case of drops. 

 

Note, there are two solutions of the equation ee Ph =P )( at Pe<0. However, only one 

of them satisfies the thermodynamic stability condition 0
)(
<

Π
dh

hd e  [5]. 
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Static hysteresis of contact angle of sessile droplets on smooth homogeneous 
substrates 

The derivation of Eq. (5) [1,2] shows that it determines a single, unique equilibrium 

contact angle (at fixed external conditions). Experiments, however, show presence of 

contact angle hysteresis with an infinite number of apparent “quasi-equilibrium positions” 

and “quasi-equilibrium contact angles” of a drop on a solid surface: θr<θ<θa, where θr and 

θa are static receding and advancing contact angles. Below “static” is omitted.  

Let us consider a liquid drop on a horizontal substrate, which is formed by pumping 

a fixed volume of the liquid through an orifice in the solid substrate (Fig.3). After pumping 

is stopped the droplet will form a static advancing contact angle, aθ . Let us consider the 

reverse experiment: start pumping the liquid out through the same orifice from the static 

advancing contact angle, aθ , which was reached as described above. The contact angle 

will decrease without the drop base shrinking until a static receding contact angle, θr, is 

reached. After further pumping the liquid out the drop will start receding and eventually will 

disappear. For water drops on smooth homogeneous glass surfaces, θr~3° - 10°, while θa  

is in the range of 40°- 60° [2,4]. 

 
Fig. 3. Schematic illustration of the formation of a drop by appropriate liquid pumping. 

L-radius of the drop base; θ - contact angle. 1- liquid drop, 2- solid substrate with a small 

orifice in the center, 3 - liquid source/sink (syringe). 

 

Non-equilibrium states of a drop are considered below when the droplet volume is 

changed by the process described above (see Fig. 3). These states are refereed below as 

“quasi-equilibrium states”.  In this case the excess pressure, P , is different from the 

equilibrium value. As in [1,2] we assume that the main part of the liquid profile is still 
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described by Eq. (5), where now equilibrium pressure, Pe, should be replaced by a new 

non-equilibrium pressure, P:  

Ph
h

h
=P+

′+

′′
)(

)1( 2/32
γ .         (15) 

 

Possible forms of disjoining/conjoining pressure isotherm with a secondary 
minimum 

The disjoining/conjoining pressure is a sum of electrostatic, van der Waals and 

structural components according to Eq. (4) as it was discussed above. 

The structural forces arise due to the orientation of molecules of polar liquid near any 

interface [5,7]. An example of the structural components calculation according to Eq.(2) is 

shown in Fig.4.  

The parameters 𝐾1, 𝐾2 are pre-exponential factors and the length parameters 𝜆1, 𝜆2 

are the distances corresponding approximately to a half-decay of the structural forces. The 

short-range force is usually characterized by value of 𝜆1 equal to a few nanometers, while 

the long-range interaction is observed at distances up to 100 nm with values 𝜆2 = 13-62 

nm [7]. For example, in the case of hydrophobic attraction in water between mica surfaces 

of crossed cylinders hydrophobized by the adsorption layers of fluorocarbon surfactant: 

𝜆1= 2-3 nm, 𝜆2 ≈ 16 nm [7]. 

 
Fig.4. The components of the structural interaction. 

1- short-range interaction, 𝐾1 exp(−ℎ/𝜆1); 2- long-range interaction, 𝐾2 exp(−ℎ/𝜆2); 3 - the 

total structural interaction, 𝐾1 exp(−ℎ/𝜆1) + 𝐾2 exp(−ℎ/𝜆2). 

K1 = -2×107 Pa; λ1 = 1.5×10-9 m; K2 = -8×106 Pa; λ2 = 25×10-9 m. 
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In the case of presence of the short-range structural interaction only the 

disjoining/conjoining pressure isotherms are a sum of the electrostatic, van der Waals and 

short-ranged structural interactions results in appearance of a single primary minimum 

(curve 2 in Fig.2). However, the long-range structural forces can cause an additional 

secondary minimum on the isotherm (see Fig.5). A depth and position of both these 

minima are determined by parameters of the structural interactions in combination with the 

parameters of the electrostatic and van der Waals components. The characteristic length 

of the short-range structural forces, λ1 is one of the most sensitive parameters; a small 

variation in λ1 results in a substantial variation of the form of the disjoining/conjoining 

pressure isotherms (Fig.5, a-c) with various location of the primary and secondary minima. 

The parameter λ2 changes the shape of the secondary minimum, but has a weaker 

influence on the other parts of the isotherm. 

An aqueous electrolyte solution of a strong univalent electrolyte has been chosen 

with the bulk electrolyte concentration c0 = 1 mole/m3 and temperature T = 293 °K for 

calculation of plots in Figs.5,a-c. The electrostatic component of the disjoining/conjoining 

pressure was calculated for the case of constant surface charge density σs,h = const, with 

values σs= -150 mC and σh= 150 mC at the boundaries. 

           
a)      b) 
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c)      d) 

Fig.5. The disjoining/conjoining pressure isotherms according to Eq (4) for the case of the 

short-range structural attraction (a-c) (K1 < 0) and repulsion (d) (K1 > 0). 

The components of disjoining/conjoining pressure: 1- electrostatic, Π𝐸; 2 - van der Waals, 

Π𝑊; 3 -  structural, Π𝑆; 4 - total interaction, Π = Π𝐸 + Π𝑊 + Π𝑆. 

Parameters of the electrostatic interaction: constant surface charge of both solid-liquid, σs= 

-150 mC and liquid-vapour, σh= -150 mC, interfaces (Figs.5 a, b and c); σs= -150 mC; σh= 

150 mC (Fig. 5d); c0 = 1 mole/m3, T = 293 K. Parameters of the van der Waals and 

structural interactions: A = 2×10-18 J; K1 = -3.7×107 Pa; K2 = -2×105 Pa; λ2 = 25×10-9 m. 

a) λ1 = 1.35×10-9 m; b) 1.31×10-9; c) 1.5×10-9; 

d) K1 = 3×107 Pa; K2 = -2×105 Pa; λ1 = 1.45×10-9 m; λ2 = 25×10-9 m. 

 

In the case of the short-range structural repulsion, the parameter K1 in Eq.(2) is 

positive and the structural forces change a sign depending on the distance: they are 

repulsive or attractive at different distances. Now the disjoining/conjoining pressure 

isotherms can include two minima (Fig.5) separated by a barrier.  

Thus, the disjoining/conjoining pressure isotherms with two minima are possible if the 

structural interactions are included with both short-ranged and long-ranged parts acting at 

different distances: the long-range interaction is always attractive; the short-range one can 

be either attractive or repulsive. 

 

Expressions for the advancing contact angle 
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Advancing contact angles are formed at P < Pe. The condition for the existence of a 

solution of Eq. (15) is written for a quasi-equilibrium drop in the following form (identical to 

(10)): 

( ) 0, ≥≥ Phϕγ ,          (16) 

where now the function ϕ(h, P) is given by:  

( ) ( ) ( )∫Π+−−=
∞

h
dhhhHΠΠh,ϕ .        (17) 

In Fig. 6 examples of dependences ϕ(h, P) (Fig. 6, curves 2-3) for the 

disjoining/conjoining pressure isotherm Π(h) (Fig.6, curve 1) are presented. The max/min of 

ϕ(h, P) are found from the condition P = Π(h), in the same way as in the case of equilibrium, 

i.e., from the points of intersection of the disjoining/conjoining pressure isotherm with the 

straight line P = const. It follows from Eq. (17) that in the case of equilibrium drop, i.e., at P 

= Pe, the function ϕ(h, Pe) vanishes at both h = he and h = H. Since  ϕ(h, Pe)> 0, the function 

ϕ(h, Pe) has a maximum at h = h2 (Fig. 6, curve 2). 
  

 
Fig. 6. Disjoining/conjoining pressure isotherm Π(h), upper part: the case of partial wetting 

(curve 1); lower part: functions ϕ(h, P) (17).  At equilibrium, ϕ(h, Pe) (curve 2), and quasi-

equilibrium, ϕ(h, P),  before the advancing (curve 3) and receding (curve 4) starts. 
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At lower pressures, that is at P < Pe, the drop surface becomes more convex than at 

equilibrium, the line ϕ(h, P) (Figure 6, curve 3) is located above the equilibrium curve 2 

(Fig. 6). The condition of quasi-equilibrium is violated and the perimeter of the drop starts 

to advance after the maximum of ϕ(h, P) reaches the dashed line γ = const (curve 3, Fig. 

6). This condition corresponds to the appearance of a thickness with a vertical tangent h' 

=∞ on the profile of the drop. After that the liquid will flow from the drop on to the film in 

front by the so-called Frenkel’s “caterpillar” mechanism at further decrease of P, when ϕ(h, 

P)>γ. This shows that the static advancing contact angle does not depend on the 

roughness of the solid substrate if size of roughness is below the value of h3~10-30 nm 

(Fig. 6, curve 3), a phenomenon well known experimentally [27]. The values of h3 is found 

below from the shape of disjoining/conjoining pressure isotherm (see e.g. Figs. 5, 7). The 

point h3 was found to be located very close to the primary minimum at h>hmin, so the 

values h3~10-30 nm correspond approximately to the primary minimum.   

Let us calculate the value of the advancing contact angle θa, using the condition 

 ϕ(h3, P)=γ : 

( ) ( )∫ =Π+−−
∞

3

3
h

aa dhhhHΠ γ .        (18) 

Note, the droplet volume according to the procedure described above is fixed, Va.  

Keeping in mind that Pa = γ (cos θa - 1)/Ha, it is possible to conclude using Eq. 

(18) that 

∫∫
∞∞

Π≈Π+=
33

)(1)(1cos 3

hh

a
a dhhdhhhΠ

γγγ
θ .      (19) 

Let us calculate the difference ae θθ coscos −  using Eq. (13) for the equilibrium contact 

angle, θe, equilibrium excess pressure, Pe, in the drop, and Eq. (19). We obtain 

0)(11coscos
3

>∫Π+=−
h

h
ae

e

dhh
γ

θθ .        (20) 

In the case of partial wetting 𝜃𝑒 < 90° and cos 𝜃𝑒 > 0, hence, the integral 1
𝛾 ∫ Π𝑑ℎ < 0∞

ℎ𝑒
 from 

Eq.(13) and the absolute value of the integral does not exceed 1. Therefore, �1
𝛾 ∫ Π𝑑ℎℎ3

ℎ𝑒
� <

1. Hence, cos 𝜃𝑒 − cos 𝜃𝑎 > 0 and θa > θe according to Eq.(20). Thus advancing contact 

angle is always bigger than the equilibrium contact angle in agreement with experimental 

observations. 
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If we assume that the disjoining/conjoining pressure isotherm changes very abruptly 

between tmin and t1 (Fig. 2 and Fig. 6, upper part), then consttth =≈≈ 1min3 . In this case 

Eq. (19) results in  

 
γ

θ =+ −
=

SS
acos .           (21) 

The advancing contact angle according to the developed above theory is determined 

below according to the following procedure. Pa is determined from equation )( 3hPa P=  as 

a function of the thickness h3. However, the equation )( 3hPa P=  has two roots. The 

second root, not the first one of the latter equation should be selected (Fig. 6, curve 3). 

According to Eq. (18) this yields: ( ) ( )∫ =Π+−Π−
∞

3

33 )(
h

a dhhhHh γ , that provides the 

unknown height of the drop Ha as a function of  h3: 

( )

)( 3
3

3

h

dhh
hH h

a Π−

∫Π−
+=

∞

γ
, (22) 

where 0)( 3 <Π= hΠa  and ( ) 0
3

>∫Π−
∞

h
dhhγ .  

Let Ra be the radius of curvature of the drop at the moment of advancing. A simple 

geometrical consideration shows that 

)(
sinsin

3h
RL a

aaa Π
−==

θγθ , (23) 

where La is the radius of the droplet base at the moment when advancing contact angle is 

reached.  

The volume of the two-dimensional drop at the moment of advancing, Va, can be 

expressed as 

( )aaa
a

a
a

L
V θθθ

θ
cossin

sin 2

2
−= . (24) 

From Eq. (24) we conclude: 

( )aaa

a
aa

V
L

θθθ
θ

cossin
sin

−
= .  (25) 

 

Combination of Eqs. (23) and (25) results in 
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( ) )(cossin 3h
V

aaa

a

Π
−=

−
γ

θθθ
,       (26) 

where the contact angle 𝜃𝑎 is expressed as 

       (27) 

 

and  sin 𝜃𝑎 = �1 − cos2 𝜃𝑎. 

The values h3 and 𝜃𝑎 as functions of the droplet volume, Va, are found by solving 

Eqs.(26)-(27). Thus, the developed theory predicts a dependency of the advancing contact 

angle on the droplet volume Va. 

The dependency of the advancing contact angle on the droplet volume was directly 

confirmed experimentally in [21-22]. In [21] the author showed that the advancing contact 

angle of droplets really increases as the volume of the droplet decreases. In [22] the 

advancing contact angle of bubbles was considered and the authors arrived to the same 

conclusion. Such result was predictable as the equilibrium contact angle according to Eq. 

(13) is also a function of the droplet volume. Hence, that static advancing contact angle in 

the case of drops is not a unique characteristic of solid substrates but determined also by 

the droplet volume. 

 

Expressions for the receding contact angle 

If the disjoining/conjoining pressure isotherm includes the structural component, two 

additional points of intersection are possible of Π(h) with P=const (Fig.6, curve 1). In this 

case the expressions for the receding contact angle can be obtained in a similar as above 

for the case of advancing contact angle. 

At higher pressures, i.e., for P> Pe (the liquid is pumped out from the droplet, the 

arrow in Fig. 3 should be directed downward). The droplet surface becomes less convex, 

the line ϕ(h, P) (Fig. 6, curve 4) is located below the equilibrium curve 2 (Fig. 6). The 

condition of quasi-equilibrium is violated and the perimeter of the drop starts to recede after 

the minimum of ϕ(h, P) reaches zero (curve 4, Fig. 6). This condition corresponds to the 

appearance of a thickness with a horizontal tangent h' =0 on the profile of the drop. After 

that the droplet starts to slide over thick β – film.  

cos 𝜃𝑎 =
Π(ℎ3)ℎ3

𝛾
+

1
𝛾
� Π𝑑ℎ
∞

ℎ3
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The expressions for the receding contact angle can be determined from the condition ϕ(h, 
P)=0: 

     (28) 

From Eq.(28) the droplet height at the moment of receding is 

       (29) 

For the two dimensional spherical droplet: 

      (30) 

The receding contact angle is expressed from Eqs. (30) and (28) as 

    (31) 

It is assumed that the droplet base does not shrink during the transition between the 

advancing and receding contact angles, i.e. La=Lr=const, which is in accordance with 

numerous experimental observations. 

Then the radius of the base of the contact line, 𝐿𝑟 = 𝑅𝑟 sin 𝜃𝑟 , is expressed using Eq.(31) 
as 

    (32) 

The value h4 is found from Eq.(32), where La is already known from Eq. (25). The drop 
volume at the moment of receding is as follows: 

( )rrr
r

a
r

LV θθθ
θ

cossin
sin2

2

−= .        (33) 

The following algorithm of calculation of dependence of the advancing and receding 

contact angles on the droplet volume was used below: 

1. A particular disjoining/conjoining pressure isotherm and the value Va are selected. 

2. The system of Eqs (26)-(27) is solved; the values h3 and θa are determined. 

𝑃𝑟(𝐻𝑟 − ℎ4) − � Π𝑑ℎ
∞

ℎ4
= 0 

𝐻𝑟 = ℎ4 + 1
𝑃𝑟
∫ Π𝑑ℎ∞
ℎ4

. 

𝑃𝑟 = 𝛾 (cos𝜃𝑟 − 1) 𝐻𝑟⁄ . 

cos𝜃𝑟 = 1 +
𝑃𝑟𝐻𝑟
𝛾

= 1 +
𝑃𝑟ℎ4
𝛾

+
1
𝛾
� Π𝑑ℎ.
∞

ℎ4
 

𝐿𝑟 = − 𝛾
Π(ℎ4)

�1 − �1 + Π(ℎ4)ℎ4
𝛾

+ 1
𝛾 ∫ Π𝑑ℎ∞

ℎ4
�
2

= 𝐿𝑎. 
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3. The droplet base radius La for the advancing case is calculated according to Eq (25). 

4. Using the obtained value La, the value h4 is found from Eq.(32) for the receding case. 

5. The droplet heights Ha and Hr are calculated using Eqs (22) and (29). 

6. The advancing and receding contact angles are found from Eqs.(27) and (31). 

7. The function 𝜑(ℎ, 𝑃) for the both cases is plotted using Eq (17). 

8. The receding volume, Vr , is calculated according to Eq.(33). 

9. The droplet profiles are calculated by integration of Eq.(5). 

 
The calculated results are presented in Fig.7, which show that θr < θa as expected. During 

the transition from the advancing to receding state, the droplet volume decreases due to 

pumping out the liquid, hence, Vr < Va. The absolute value of the excess pressure 

decreases also, |Pr| < |Pa|; the droplet is getting ‘flatter’, i.e. the radius of curvature, Rr = -

γ/Pr,  grows (Fig.7). 

The obtained simulation results are: advancing contact angle ~ 57°, while the 

receding contact  angle is ~ 8°, which agree with experimental data [2,4]. Note, the 

disjoining/conjoining pressure isotherm used for these calculations is selected similar to 

that known for glass surfaces [4]. 

 

Fig.7. The droplet profiles at advancing and receding contact angles. 
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Advancing: Va = 1.0×10-11 m3; θa= 57.3°; Pa = -2.05×104 Pa; Ha = 2.2×10-6 m; 
Receding: Vr = 7.58×10-13 m2; θr= 7.1°; Pr = -3.09×103 Pa; Hr = 2.5×10-7 m. 

The parameters of the disjoining/conjoining pressure isotherm: σs= -150 mC; σh= 120 mC; 
c0 =1×10-2 mole/m3; A = 3.5×10-20 J; K1 = 2.0×107 Pa; K2 = -1×104 Pa; λ1 = 3.6×10-9 m; λ2 
= 26×10-9 m. 
 

The effect of variation of the drop volume, Va, on the hysteresis contact angles is 

presented in Fig.8. The higher the initial volume of the droplet Va the lower the values of 

both  θa and θr are (Fig. 8a). The highest values of the hysteresis contact angles are found 

for small drops with a high excess pressure, γ/R. This relation between the contact angle 

and the droplet volume agrees with experimental data [21, 22]. 

A final (receding) size of the droplet depends on the initial volume of the droplet. Almost 

linear dependence between the volumes Vr and Va was obtained (Fig. 8b): the bigger the 

initial droplet, the bigger the final one. 

Let us write down for comparison the expressions for the advancing, equilibrium and 

receding contact angles: 

       (34) 

        (35) 

       (36) 

cos θ𝑎 =
Π(ℎ3)ℎ3

𝛾
+

1
𝛾
� Π𝑑ℎ
∞
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cos θe = 1 +
1
𝛾
� Π𝑑ℎ
∞
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a                                                                       b 

Fig.8. The relations between the values θa, θr, θe, Va and Vr (data from Fig.7 at variation of 
Va). Note the different scales for the left and right vertical axes. 
 

As it was mentioned above equilibrium droplets can exist at oversaturation only and 

the oversaturation determines the droplet volume, which ion its turn determines Le.  

However, we made selection just the in the opposite way: we selected Le=La and 

determine the required oversaturation pressure p according to Eq.(6). The equilibrium 

values of the contact angle θe were calculated from the condition using Eq.(35). Eq.(6) and 

equation for the droplet height H below Eq.(14) are satisfied for equilibrium droplets. 

As was mentioned above the values of the equilibrium contact angle are located 

between the values for advancing and receding cases: θr < θe < θa. The calculation results 

agree with this conclusion (Fig. 8a). The calculations demonstrate also that the equilibrium 

contact angle practically does not depend on the droplet volume. A reason for this 

behavior can be understood from the shape of the disjoining/conjoining pressure isotherm 

(see e.g. Fig. 6): the value he (corresponding to a point of intersection between Π(h) and 

Pe) changes very slightly at variations of Pe. This is because Π(h) changes very abruptly at 

low h. Hence, according to Eq. (35), there is a very weak dependence of the equilibrium 

contact angle, θe, on Pe and, consequently, θe on the droplet volume. 

As follows from data presented in Fig. 8a, the values θe are much closer to θr than to 

θa, i.e. θe-θr << θa-θe.  

The experimental data presented in [23-24] showed that the hysteresis effect in the 

case of smooth homogeneous surfaces is not related to roughness or chemical 
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heterogeneity of the substrate. It was concluded in [23-24] that the hysteresis 

phenomenon can be explained within the framework of the theory [25] which was 

developed earlier using a similar approach for some particular cases of the 

disjoining/conjoining pressure isotherms. 

Note, the evaporation, which takes place more intensively in vicinity of the three-

phase contact line [26], makes the measurements of both advancing and receding contact 

angles of drops not so straightforward and unambiguous in the case of volatile liquids. It is 

the reason why a number of experiments on wetting/spreading of liquids have been 

performed in thin capillaries, where evaporation can be significantly diminished if not ruled 

out 923, 24]. 

 

Conclusions 
Based on the developed theory the contact angle hysteresis on smooth, homogeneous 

solid substrates in terms of the disjoining/conjoining pressure was theoretically 

investigated. It was shown that for any value of the contact angle, θ, from the range rθ <θ<

aθ , except the equilibrium value θ = eθ , a slow “microscopic” advancing or receding motion 

of the liquid takes place in a vicinity of the apparent three phase contact line.  

Expressions for advancing/receding contact angles of droplets on smooth homogeneous 

solid substrates deduced via isotherm of disjoining/conjoining pressure. It was shown that 

both advancing and receding contact angles of a droplet on a smooth homogeneous solid 

substrate depend on the drop volume and are not a unique characteristic of the liquid-solid 

system. It was shown also that the receding contact angle is much close to equilibrium 

contact angle. The latter conclusion is in contradiction with commonly accepted view that 

the advancing contact angle can be taken as the first approximation for equilibrium contact 

angle. The suggested mechanism of contact angle hysteresis of contact angle of droplets 

has a direct experimental confirmation. 
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