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ABSTRACT 

The values of a given manipulator's dynamics coefficients need to be accurately 

identified in order to employ model-based algorithms in the control of its motion. This 

thesis details the development of a novel form of adaptive network which is capable of 

accurately learning the coefficients of systems, such as manipulator inverse dynamics, 

where the algebraic form is known but the coefficients' values are not. Empirical motion 

data from a pair of PUMA 560' s has been processed by the Context-Sensitive Linear 

Combiner (CSLC) network developed, and the coefficients of their inverse dynamics 

identified. The resultant precision of control is shown to be superior to that achieved from 

employing dynamics coefficients derived from direct measurement. 

As part of the development of the CSLC network, the process of network learning is 

examined. This analysis reveals that current network architectures for processing analogue 

output systems with high input order are highly unlikely to produce solutions that are 

good estimates throughout the entire problem space. In contrast, the CSLC network is 

shown to generalise intrinsically as a result of its structure, whilst its training is greatly 

simplified by the presence of only one minima in the network's error hypersurface. 

Furthermore, a fine-tuning algorithm for network training is presented which takes 

advantage of the CSLC network's single adaptive layer structure and does not rely upon 

gradient descent of the network error hypersurface, which commonly slows the later 

stages of network training. 
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1. INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM 

Accurate dynamic control of robotic manipulators' motion is clearly desirable for many 

applications, however the design of such systems is hampered by the complex manner 

in which forces and torques applied to a manipulator interact to influence its motion. The 

acceleration response of a manipulator is clearly a function of the forces and/or torques 

applied to it, but in general this function is nonlinear and configuration dependent, that 

is, varies with the instantaneous position and velocity of each section of the manipulator. 

Continuously precise control of a manipulator's motion cannot therefore be achieved by 

purely error driven control algorithms (such as PID), as their performance will vary 

greatly over the manipulator's work space and any specified steady state positions will 

not be achieved by sections subject to external forces such as gravity. 

Model-based control algorithms allow some or all of a system's nonlinearity and 

configuration dependency to be compensated for, by incorporating models of these 

characteristics into the control algorithm. A fully compensated model-based controller can 

therefore provide ideal linear control of a system. Such an approach has often been 

proposed for controlling robotic manipulators as the form of their dynamics is relatively 

well understood. However, the performance of such model-based controllers is greatly 

affected by the degree to which the values of the coefficients within the manipulator's 

dynamics can be identified. These coefficients consist of grouped physical parameters 

such as inertias and positions of centroids, which are difficult to measure accurately and 

usually require the disassembly of the manipulator. Furthermore, grouping these 

parameters together compounds the effects of the inherent measurement errors, such that 

the resultant control performance is often unacceptable. 

1.2 METHOD OF SOLUTION 

A class of adaptive algorithms known as adaptive networks are employed. By using 

information on a given manipulator's motion to adapt a network it is possible to obtain 

a model of the manipulator's inverse dynamics. A novel form of network is devised, to 

be known as the Context Sensitive Linear Combiner (CSLC) network, where the 
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network's structure exactly matches the algebraic form of the system to be modelled, in 

this case the manipulator's inverse dynamics. This means that the parameter values within 

the adapted network are direct estimates of the manipulator dynamics coefficients, and 

that these values can be used independently of the network, in particular, within model­

based control algorithms. Additionally, it will be shown that this type of network 

overcomes many of the traditional problems associated with adaptive networks, such as 

failure to obtain the optimal system model, failure of the network solution to generalise 

and non-transparency of operation. 

The accuracy to which the manipulator dynamics coefficients will be identified by the 

CSLC network is expected to be largely dependent upon the accuracy of the motion data 

used to adapt the network. In general, motion data measurement error is much smaller 

than that inherent in measuring a manipulator's physical parameters directly. 

1.3 RELATED WORKS 

The majority of technical references are made in the main body of the thesis, after 

appropriate terminology and concepts have been introduced. However, in order to provide 

a context for the work, it is useful to review here a number of studies made by other 

researchers. 

A review of manipulator control laws is presented by [Leahy & Saridis 1989] which 

examines a variety of both simple error driven algorithms and model-based controllers. 

Such model-based controllers, when applied to manipulator dynamics, are known as 

· computed torque algorithms. Other studies into computed torque techniques include [Paul 

1972, Fu et al. 1987, Luh et al. 1980, Lee et al. 1982, Neuman & Tourassia 1987]. Such 

algorithms are shown to be capable of providing excellent control characteristics, as 

shown by [An et al. 1987, Khosla & Kanada 1988, Leahy & Saridis 1987], but, in 

practice, have been hampered by an inability to provide them with accurate values for the 

dynamics coefficients. Crucially, [Whitcomb et al. 1993] demonstrates how computed 

torque controllers can perform less well than simple error driven algorithms when the 

control model is inaccurate, stating that "the degree of performance improvement afforded 

by all model-based algorithms is strictly limited by the accuracy of the plant model 

employed." 

The identification of manipulator dynamics coefficients has, up until now, been attempted 

through direct measurement of the many physical parameters that comprise them. An 

appreciation of the practical difficulties, and inherent inaccuracies, involved in this task 

can be gained by consideration of [Corke & Armstrong-Helouvry 1994]. This review of 

reported dynamics coefficients for the most well documented manipulator found in the 
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research community is revealingly entitled "A Search for Consensus Among Model 

Parameters Reported for the PUMA 560 Robot." It demonstrates how the values given 

by 11 different sources for the manipulator's physical parameters vary enormously: in 

particular, the stated inertia values for differing components vary by between 200% and 

450%. Of all the identification experiments examined, perhaps the most thorough is that 

of [Armstrong et al. 1986]. Not only does this study provide estimates of the dynamics 

coefficients, but also reports expected error margins. These margins have magnitudes of 

up to 50% of the stated values for the more significant coefficients, and up to 400% for 

those of less significance. 

Adaptive techniques of many types have been employed in efforts to identify various 

properties of manipulators' dynamics; common amongst these techniques are adaptive 

networks (often called neural networks when representing nonlinear systems). Broadly 

speaking, the adaptive networks applied to solving manipulator dynamics can be split into 

two categories; those, such as employed by [Bassi & Bekey 1989], that attempt to learn 

the values that are constant across the whole of the problem space, and those such as 

[Miller et al. 1990], that learn values of localised variables. The advantage of attempting 

to find good estimates to a localised model is the reduced complexity of such problems, 

however, such adaption must be performed on line, which often requires an abbreviation 

of the dynamics model due to the requirement to limit computation time. The estimation 

of problem-space-wide parameters, on the other hand, may be performed either on or off 

line, allowing it to be considered separately from the control scheme. 

1.4 LAYOUT OF THIS THESIS 

The motion of robotic manipulators is examined in Chapter 2. In particular, the inverse 

dynamics equations for a manipulator are derived, first in general, and then in respect to 

the chosen case study manipulator, the PUMA 560. The need for a complete model of 

the inverse dynamics, with accurately identified coefficients, is shown in relation to the 

ideally linearised computed torque control algorithm. 

An introduction to adaptive networks is given in Chapter 3. The major network types and 

methods of adaption are discussed. The use of adaptive networks in the modelling of 

manipulator dynamics is also reviewed, the limited practical success obtained noted and 

current areas of difficulty identified. 

The mechanism of adaption in networks with analogue valued outputs is analysed in 

Chapter 4. This often hard to visualise process is both clarified and better defined by 

considering the analogous operation of fitting a polynomial curve to a given set of points. 

The analogy gives rise to the definition of a network's order, and helps demonstrate why 
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conventional adaptive networks cannot be trained to model high-order systems with 

analogue outputs across the whole of the system's problem space. 

Chapter 5 presents a novel adaptive network structure, to be known as the Context 

Sensitive Linear Combiner network. This type of network is shown to be capable of 

accurately modelling a high-order analogue system (with known form, but initially 

unknown coefficients) across all of its problem space. A number of other advantages over 

conventional network types are also discussed, and the structure a CSLC network for 

identifying a PUMA 560' s dynamics coefficients illustrated. 

In order to hasten the often laborious process of network adaption, a novel network fine­

tuning algorithm is presented in Chapter 6. Based on the concept of assigning adjustments 

to each adaptive network component relative to its significance, the algorithm is to be 

known as Proportional Error Allocation (PERAL). Empirical comparisons are made 

between PERAL and the ubiquitous Backpropagation algorithm in the modelling of two 

different classes of problem. 

The implementation of a CSLC network to identify the dynamics coefficients of a given 

manipulator is discussed in Chapter 7. The results of processing empirical motion data 

from a pair of PUMA 560s are presented, and the coefficients identified are shown to 

provide a significantly improved model of the manipulators' motion than those identified 

from direct measurement. 

The conclusions that can be drawn from this thesis are detailed in Chapter 8. Also 

discussed are the avenues for further investigation that follow from this work. 

For those who may wish to perform similar studies, a technical summary of the 

identification methodology developed in the main body of the thesis is additionally 

presented in Appendix C. 

1.5 DECLARATION OF ORIGINALITY 

The information and theory presented in chapters four to eight are the result of original 

research, and, to the best of the author's knowledge, does not yet appear in any other 

publication. In particular, the major contributions made by this thesis are as follows. 

• The dissection of the network adaption process, and identification of the primary 

reasons why conventional network types fail to produce problem-space-wide 

models of high-order analogue systems. 
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• The derivation of a relative measure of the amount of data required to cause a 

network to adapt successfully. 

• The definition of a novel type of adaptive network which is capable of modelling 

high-order analogue systems in general, and the identification of a manipulator's 

dynamics coefficients in particular. 

• The derivation of a novel algorithm for the fine-tuning of adaptive networks. 

• The identification of dynamics coefficients for the PUMA 560 manipulator, from 

motion data alone, which afford a superior dynamics model than that provided by 

coefficients obtained from direct measurement. 

1.6 CONVENTIONS AND NOMENCLATURE 

Throughout this work, the first use of a significant technical term or parameter within the 

text is denoted by the expression appearing italicised. In all such cases it is accompanied 

by a definition, and in the case of parameters, its algebraic representation is also noted 

if it is to be used in any equations. 

So as to make algebraic terms clearly distinguishable, Roman alphabetical characters 

within a parameter name always appear italicised, however, Greek characters and 

characters representing algebraic terms that are not parameters (such as numerals or 

operators) do not. The commonly accepted algebraic notation for each parameter has been 

adopted wherever possible. Since this work encompasses both the fields of manipulator 

dynamics and adaptive networks, this has lead to the occasional repetition of notation 

between differing parameters, however, this is restricted to parameters with clearly 

different usages. Although each parameter's notation is defined at the appropriate points 

in the main body of this work, a list of all unique algebraic parameter labels, complete 

with shortened definitions, is supplied in Appendix A for ease of reference. Without 

exception, scalar parameters are denoted by lower-case characters and matrices by 

uppercase characters, whilst vector parameters may be denoted by either. Note that the 

sometimes used convention of lowering a parameter label's case, whilst referring to a 

component element of that parameter, is not used. That is, the top left element of the 

matrix A is referred to here as A 11 , and not as a 11 • 

Chapters, sections and subsections are labelled in numerical order and delimited by 

periods, such that the fifth subsection of the fourth section of the third chapter is labelled 

3.4.5. Both equations and figures are independently labelled with respect to the section 

in which they appear, in order of appearance. Thus the fourth equation appearing in 
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section three of the second chapter is labelled 2.3-4 (regardless of which sub-section, if 

any, it appears in). Note that the term "figure" is used to refer to all plots, images, 

diagrams and tables. 

Due to the disparate topics covered in this thesis, and for ease of reading, the lists of 

references and suggested further reading material are presented at the end of each chapter. 
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2. THE MOTION OF ROBOTIC MANIPULATORS 

Given the desire for model-based control of manipulators, a representation of manipulator 

motion is required. Several aspects of manipulator motion are discussed in this chapter, 

most especially, the derivation of the equations of motion for the general rigid bodied 

case. Phenomena that are not modelled in the ideal case, such as friction and mechanical 

imperfections, are also considered, and compensation for their effects incorporated into 

the general model of a manipulator's inverse dynamics. Examination of this generalised 

inverse dynamics model provides valuable insights into the problem of identifying a given 

manipulator's dynamics coefficients. 

Section 2.6 covers the derivation of dynamics components specific to a particular 

manipulator, using the PUMA 560 as its example. In particular, it is shown how the 

definition of a suitable algebraic representation of the PUMA 560' s geometry allows the 

manipulator's inverse dynamics coefficients to be expressed solely in terms of physical 

parameters such as lengths and masses. Section 2.7 provides a context for the coefficient 

identification problem by describing the fully compensated computed torque control law, 

and discusses the performance of such algorithms compared to a non model-based 

controllers. 

2.1 THE STRUCTURE OF A MANIPULATOR 

For the purposes of analysis, a manipulator can be considered to be a set of links (or 

limbs), interconnected by joints. Although there are many possible designs of joint, they 

can all be thought of as being made up of just two fundamental types, namely revolute, 

with a single rotational degree of freedom, and prismatic, with a single translational 

degree of freedom. Likewise, the links ascribed to a given manipulator need not resemble 

precisely its physical components, as long as one link and one joint are associated with 

each degree of freedom of the manipulator, and the system so defined is capable of all 

configurations possible by the physical manipulator. For example, a ball-and-socket joint 

can be considered to be two revolute joints, with different axes of rotation, interconnected 

by a link of zero length. 
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2.2 MANIPULATOR DYNAMICS 

Robotic manipulators are, in general, constructed to operate as rigid bodied machines to 

within engineering accuracy, that is, the shape of each manipulator link does not vary 

significantly. The rare exceptions to this include the NASA Space Shuttle manipulator 

arm, where minimising mass was considered more desirable than simplifying the control, 

such that the manipulator links are prone to significant flexing [Lowe et al. 1995]. 

However, the over-whelming majority of manipulators can be modelled satisfactorily 

using rigid body mechanics, which is the case considered here. 

There exist two principal methods for analysing the dynamics of rigid bodied robotic 

manipulators, known as the Lagrangian and the Newton-Euler formulations. These 

formulations result in generalised expressions for the equations of motion that are quite 

different in form, but, when evaluated for a given manipulator, produce exactly the same 

algebraic solutions. In the Lagrangian formulation, the manipulator is treated as a whole 

and the analysis performed using a Lagrangian function (the difference between the 

kinetic energy and the potential energy). In contrast, in the Newton-Euler formulation, 

the dynamics of each link of the robot is described in turn, and a so-called forward­

backward recursion is then performed which combines the dynamics of all the links, and 

leads to a description of the manipulator as a whole. 

Both formulations are regarded as having their own distinct merits, additionally, a variety 

of expressions for the equations of motion, each with different properties, can be obtained 

from each formulation. The Newton-Euler formulation results in forms of the generalised 

inverse dynamics that require significantly fewer numerical operations to evaluate than 

those obtainable from the Lagrangian formulation. This can be an important consideration 

for the real-time control of a manipulator, however, in practise the greatest computational 

efficiency is usually obtained by expressing the inverse dynamics explicitly in 

manipulator specific terms and combining constant terms that factor common variables 

[Armstrong et al. 1986]. The Lagrangian formulation is commonly used to produce a 

closed form differential equation representation of the generalised inverse dynamics, 

where the contributions to the generalised force from the separate mechanical effects 

acting on a manipulator are clearly identifiable. This explicitly provides a state equation 

for a manipulator's dynamics and enhances ease of comprehension and analysis compared 

with the generalised inverse dynamics obtained from the Newton-Euler formulation, 

which consist of a set of recursive equations with less distinct structures and containing 

cross-product operators. 

Although the consideration of both formulations may provide additional insight into 

manipulator dynamics, such detail is beyond the scope of this work. Due to its results 

being easier to understand, analyse and convert into control algorithms, the Lagrangian 
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formulation will be the method explained within this thesis. For those wishing to study 

the equations of motion obtainable form the Newton-Euler formulation, some of the first 

work in this area was done by [Armstrong 1979, Orin et al. 1979], whilst an even more 

computation efficient variant was produced by [Luh et al. 1980] by stating quantities with 

respect to their local links. Variants obtainable from the Lagrange formulation, but which 

are not discussed here include the generalised d' Alembert equations of motion [Lee et al. 

1983], and the recursive Lagrange equations derived by [Hollerbach 1980]. For 

discussions of the equivalence of the two formulations see [Turney 1980, Silver 1982]. 

2.3 LAGRANGE'S EQUATION OF MOTION 

The governing dynamic equations of motion for a manipulator comprising of rigid links 

will now be defined, in the general case, starting with the La grange equations of motion 

of the second kind for a conservative system [Lagrange 1965, Marion 1965, Whittaker 

1944]. These are a set of differential equations that can describe the time evolution of any 

system which is subject to holonomic constraints that satisfy the principle of virtual work. 

A system of material points is said to be holonomic if the position of the points are either 

not constrained, or constrained by a function of the system coordinates and time 

[Rutherford 1957]. The kinetic and potential energies of a manipulator will then be 

derived and substituted back into the Lagrange equations to form what is known as the 

Euler-Lagrange equations [Uicker 1965, Bejczy 1974, Lewis 1974]. 

If there exists a vector of generalised coordinates, q, and the corresponding vector of 

generalised forces/torques is defined as 't, then the Lagrange equations can be written in 

the form 

d ilL_ ilL _ 
--- --- 't 
dt ilq ilq 

(2.3-1) 

where Lis called the Lagrangian, and is equal to K- P, where K is the kinetic energy, 

and P is the potential energy, within the system. In a manipulator's case, q will be the 

variable joint position vector, consisting of angles in the case of revolute joints, and 

offsets in the case of prismatic joints. Its first derivative, q, is termed the generalised 

joint velocity vector, and the second derivative, ij, is the generalised joint acceleration 

vector. Thus 't will be a vector containing torque elements corresponding to the revolute 

joints, and force elements corresponding to the prismatic joints. 
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2.3.1 Reference Coordinate Frames 

Before developing the terms of the Lagrange equation, it is necessary to first define the 

coordinate system that will be employed. For any point expressed in the coordinate frame 

i as 

1r~[xyz1]T 

its position expressed in a different frame j can be found from 

lr ~ IT 1r 
I 

(2.3-2) 

(2.3-3) 

where 1T1 is a 4x4 matrix known as a homogeneous transform [Denavit & Hartenberg 

1955], of the form 

IT ~ [IR, lp,] 
I 0 1 

(2.3-4) 

where 1R
1 

is a 3x3 rotation matrix, ip
1 

is a translation vector and the 1 represents a 

scaling factor. A homogeneous transform can be thought of as both a transformation that 

takes the representation of a vector in frame i to its representation in frame j, and as a 

description of frame i in terms of frame j. IR
1 

describes the orientation of the axes of 

frame i in terms of frame j, and ip1 describes the origin of frame i in terms of the 

coordinates of frame j. 

One important property of homogeneous transforms, that will be used later, is 

'T~'TIT 
I I I 

(2.3-5) 

By convention, the base or world coordinate frame is denoted as frame 0; thus a 

homogeneous transform to the base frame is written with either a leading 0 superscript 

or, as is adopted here, no leading superscript at all. For a more detailed discussion of 

spatial descriptions and transformations see [Craig 1986, Fu et al. 1987]. 

2.3.2 Manipulator Kinetic Energy 

Given a point on link i with coordinates of 1r (with respect to a frame !), then r, the 

coordinates of that point with respect to the base frame, can be found from 

r ~ T 1r 
I 

(2.3-6) 

Note that T, is a function of q1, q2, ••• q1 • Consequently, the velocity "\l of the point 

expressed in base coordinates is 

"\l ~ __:: ~ L -'lj. 'r d '(CJT) 
dt 1., oq

1 
J 

(2.3-7) 
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Also, as 

iJT, 
=0 for j>i 

dii; 
the upper summation limit in Eqn. 2.3-7 can be replaced by n, the number of links. 

Now, the kinetic energy in terms of a stationary base frame of an infinitesimal mass, dm, 

moving with velocity u, can be expressed as 

(2.3-8) 

where Tr(.) denotes the trace of a matrix (the sum of the leading diagonal). Substituting 

in Eqn. 2.3-7, and taking advantage of the matrix identity ArBr"' (BAl, the following is 

obtained 

Clearly, the total kinetic energy for link i is given by 

K1 = J dK1 
linlcl 

(2.3-9) 

(2.3-10) 

Substituting Eqn. 2.3-9 into the above, the integral may be taken inside the summations. 

Thus, defining the 4x4 pseudo-inertia matrix for link i as 

I1 "' J 1r 'rT dm (2.3-11) 
link I 

the kinetic energy equation for link i can be expressed as 

(2.3-12) 

Before proceeding with the definition of the total manipulator kinetic energy, it is useful 

to examine the pseudo-inertia matrix. Expandin Eqn. 2.3-11 yields 

Jx'dm Jyxdm Jzxdm Jxdm 

I, 
Jxydm Jy'dm Jzydm Jydm 
Jxzdm Jyzdm Jz'dm Jzdm (2.3-13) 

Jxdm Jydm Jzdm Jdm link i 

Where x, y, z are the Cartesian coordinates of the infinitesimal mass dm, with respect to 

frame i, and the integrals are taken over the volume of link i. If frame i is attached to 

link i, and link i is rigid, then I1 is a constant matrix dependent only on the geometry and 

mass distribution of the link. In other words, it is dependent upon the mass moments of 
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inertia 

'Ixx = J<y2+z2)elm 

1
/YY J<x2

+ z2
) elm 

'I, = J(x2
+ y 2

) dm 

the mass cross-products of inertia 

11"' = Jxy elm 

1/xz = Jxz dm 

11 = jyz dm yz 

and the first moments 

m 1r I X 

m 1r I y 

= Jxelm 

Jydm 

m 1r = I z Jzdm 

where m1 is the total mass of link i and ( 'rx 
of its centre of gravity. 

(2.3-14) 

(2.3-15) 

(2.3-16) 

1r, 1r, 1? are the coordinates, in frame i, 

Thus, rewriting /1 in terms of these quantities produces 

- 11 + 11 + 11 
'I 'I m 1r .u yy u 

2 "' " I X 

'I 
11 - 11 + 11 

'I m 1r XX )'Y ZZ 

I, "' 2 yz I y (2.3-17) = 

'I 'I 
11 + 1/ - 1/ 

m 1r XX YY ZZ 
xz yz 2 I z 

m 1r I X 
m 1r I y m 1r I z m, 

In general, given a reference frame whose origin is fixed with respect to a body, the axes 

of the frame can be orientated so that all the body's mass products of inertia are zero 

[Shames 1997]. In this case, the axes of the frame are known as the body's principal 

axes, and the mass moments of inertia the principal moments, for that reference frame 

origin. 

Now consider the parallel axis theorem [Shames 1997], which states that for any given 

body of mass m 

"I = 'I + m('?+ 'r2
) 

ZZ zz X J 

"I = cl + m "r "r ry ry xy 

(2.3-18) 

(2.3-19) 

where the frame c is located at the centre of gravity, and a denotes an arbitrarily 

translated frame. (Note: Eqn. 2.3-19 is incorrectly stated in [Craig 1986], though correct 

14 



in the earlier edition of that book). 

Making use of both the principal axes and parallel axis theorems, I1 can be restated, for 

any coordinate frame whose axes are parallel to the principal axes which lie at the centre 

of gravity of link i, as 

I, 

where 

m 1r I X 

m 1r 1r I X y 

m 1r I y m 1r I z 

m 1r I x 

m 1r I y 

m 1r 
I z 

m, 

(2.3-20) 

P'Ixx, P'fyy, P'Iu =the principal moments of inertia about link i's centre of gravity 

Although inertia terms cannot be measured directly, the mass moments (but not products) 

of inertia around a link's centre of gravity can be crudely estimated from measurements 

of the detached limb, using a device known as a inertia pendulum [Armstrong et al. 

1986]. 

Returning to the development of the Euler-Lagrange equation, the total manipulator 

kinetic energy may now be written as 

(2.3-21) 

Since the trace of a sum of matrices is equal to the sum of their individual traces, the 

summations may be interchanged with the trace operator to obtain 

n n 

K = +:E:EM1,qJ'i> 
}•1 k•l 

(2.3-22) 

• 
or, in matrix terminology 

K = !._qT M(q) q 
2 

where the nxn mass matrix, M( q), (also known as the inertia matrix, dynamic inertia 

matrix, or kinetic energy matrix) is defined as 

(2.3-23) 
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Since 

ar, 
= 0 for j > i 

dii; 
the mass matrix may be defined more efficiently as 

(2.3-24) 

Furthermore, since performing the product of three nxn matrices and taking the trace of 

the result is computationally very inefficient, one can instead take advantage of the 

identity 

" " " 
Tr(ABC) = L L L A,1 B1, c,, 

h•l g•l /•1 

As M1• = M•1 , the mass matrix is symmetric. Since kinetic energy is positive, vanishing 

only when the generalised velocity tj is equal to zero, the mass matrix is also positive 

definite. 

We now have a convenient expression for the manipulator kinetic energy in terms of 

physical parameters and the joint variables q and tj. 

2.3.3 Manipulator Potential Energy 

If link i has a mass m1 and a centre of gravity at 1r, , then the potential energy of the link 

is given by 

P T T I 
I = -m, 8vtc I re 

where g,., is the gravity vector (in base coordinates) defined as 

g~, = (gx gy g, 0) 

(2.3-25) 

(2.3-26) 

If, as is normally the case, the manipulator's base coordinate frame's z-axis is aligned 

vertically upward, then 

g~, = (0 0 -g 0) 

where g is the scalar value of the local acceleration due to gravity. For example, if the 

manipulator is situated at sea level then g = 9.8062 m/s2 
• 

Therefore, the total manipulator potential energy term is 

n 

p = - L m, g~c T, ire 
1•1 

(2.3-27) 

Note that Pis dependent on the joint positions, q, only. Noting also that m
1 

1r, is the last 
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column of the pseudo-inertia matrix /1 , it is possible to rewrite the above equation as 

n 

P = - L g-:" T1(q) 11 14 
(2.3-28) 

1•1 

where 1, is the last column of the 4x4 identity matrix, that is 1, = (0 0 0 I? . 

2.4 THE EULER·LAGRANGE EQUATION 

The manipulator Lagrangian can be expressed as 

L(q,q) = K(q,q)- P(q) = !.. qT M(q)q- P(q) 
2 

(2.4-1) 

Note that the kinetic energy is a quadratic function of the joint velocity vector and the 

potential energy is independent of q. 

The terms within Lagrange's equation (Eqn. 2.3-1) are as follows. 

d iJL 

dt iJq 

iJK =M(). Tq q q 

~~ = M(q)ij + M(q)q 

iJL 
aq 

= .:_i_( ·T M( ) ·) _ iJP(q) 
2 iJq q q q iJq 

Therefore the Euler-Lagrange equation for a manipulator's dynamics is 

M(q)ij + M(q)q- .:_i_(qT M(q)q) + iJP(q) = 't 
2 iJq iJq 

(2.4-2) 

This form of the equation presents a difficulty: the differentiation of a matrix, namely 

M(q), by a vector, q. Such derivatives are not matrices, but tensors of order three-that 

is, they have three indices, not two. This presents no problem to those familiar with 

tensor mathematics, however those in the field of robotics have tended to adopt matrix 

devices such as Kronecker Product Analysis [Brewer 1978] instead. It is possible to avoid 

all such conceptual difficulties by breaking down the matrix operations involved into 

scalar mathematics. Thus, combining the second and third terms of the above equation 

and defining them as V, the velocity term, they can be expressed in scalar form, for link 

i, as 

(2.4-3) 

Now, taking advantage of the mass matrix's symmetry this can be rewritten as 

v, (2.4-4) 
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Thus the Christoffel symbols (of the first kind) [Corben & Stehle 1950, Borisenko & 

Tarapov 1968] can be defined as 

c = , (aM" + aMu _ aM1,J 
ljk - 2 -;rq; """d"q; % 

Given that the mass matrix is symmetrical, it is clear 

computational efficiency may be gained by noting that 

aMu = 0 
aq, 

for i?. k~j 

(2.4-5) 

that cu• = c110 • Further 

which in turn implies that for any iJ & k, one term in Eqn. 2.4-5 is equal to zero, and 

that cu• = 0 for i = k ?. j . 

The velocity term of the Euler-Lagrange equation can now be expressed as 

• • 
V,<q.q) = E E cu• tiA (2.4-6) 

• j 

The terms in the above equation can be classified into two types. Those involving a 

product of the type q,', which represent centrifugal effects, and those involving a product 

of the type q
1 
q
1 

where i "#. j , which represent the Coriolis effects [Koditschek 1984, Gu 

& Loh 1988]. 

Finally, if the gravity effect vector (also known as simply the gravity term), G, is defined 

as 

G(q) = aP(q) --;rq 
then the Euler-Lagrange equation may be rewritten thus 

M(q)ij + V(q,q) + G(q) = "t 

2.5 NON-LAGRANGIAN DYNAMICS 

(2.4-7) 

(2.4-8) 

So far the Euler-Lagrange equation derived includes terms for inertia, velocity and gravity 

effects. However, the dynamics of a real manipulator are also significantly affected by 

several further effects: 

2.5.1 Friction Effects 

All practical mechanisms are, of course, affected by frictional forces and torques. 

Although friction is relatively complex to model, it is at least decoupled between joints, 

that is the frictional effects acting upon a joint are dependent only upon the properties of 
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that joint. From empirical observation it is apparent that the friction experienced by a 

manipulator's joint is almost entirely dependent on the joint's velocity [Leahy 1985]. 

Friction can also be affected by joint position due to, for instance, gears which are not 

perfectly circular. However, for most manipulators, including the PUMA 560 [Leahy & 

Saridis 1989], the frictional effects can be acceptably modelled for engineering purposes 

as a function of the joint velocity alone. 

The majority of a friction profile can usually be modelled by viscous friction, in which 

the frictional effect is proportional to the joint velocity. Thus if the friction effect vector 

is denoted as F, then the friction model can be defined as 

(2.5-1) 

where k' is the viscous friction coefficient vector, and the Euler-Lagrange equation is 

extended to include friction effects, such that 

M(q)ij + V(q,tj) + G(q) + F(q) = 't (2.5-2) 

A refinement to the friction model is the inclusion of dry friction (sometimes called 

Coulomb friction or dynamicfriction)[Smith & Smith 1935], which allows for offsets in 

the value of F1 , with respect to q
1 

• Dry friction's magnitude is constant, and opposes the 

motion of the joint. Hence the friction model becomes 

F1 = k; q1 + k: sgn(q) (2.5-3) 

where K' is the dry friction coefficient vector, and sgn(.) denotes the signum or sign 

function. 

The above combination models the friction profile of most manipulators adequately for 

engineering purposes, except when q1 is close to zero, where the resistance to movement 

can be much higher than predicted. To model this region, a third component known as 

static friction is defined [Schilling 1990], so that the total frictional effect is given by 

F - k' · + < · )[kd + (k'- kd) (-liJ,I] I - I ql sgn ql I I I exp T (2.5-4) 

where k' is the static friction magnitude coefficient vector, and y is the static friction 

slope coefficient vector. 

Thus the three part friction model described by Eqn. 2.5-4 results in the profile shown 

in Fig. 2.5-1. 

Commonly, friction in manipulators is modelled by either the viscous component alone, 

or by the combination of viscous and dry friction terms. Although the significance of 

static friction effects varies depending on the type of joint in question, one of the main 
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reasons that a static friction term is commonly not included in the friction model is it that 

many manipulators do not have velocity sensors. This requires q to be derived by 

numerical differentiation of position measurements, which is inherently inaccurate. Thus 

when lj1 is close to zero (the only time when the added static friction effect is not 

vanishingly small), the sign of lj1 cannot be known with confidence. 

F 

----------------~---------------+4 

slope= k"_--

Figure 2.5.]: The friction profile produced by the three part model in Eqn. 2.5-4 
(Subscripts omitted: all terms refer to a single given joint) 

Note that the use of dry and/or static friction components in the friction model introduces 

discontinuities into the otherwise continuous Euler-Lagrange equation. 

2.5.2 Actuator Dynamics 

The derivation of the inverse dynamics performed so far has assumed that a manipulator 

is constructed solely from a set of solid links. However, manipulators need actuators to 

move them; these are generally either electrically or hydraulically driven. In either case, 

it can be shown [de Silva 1989] that the actuator effects are decoupled. Therefore, the 

friction acting upon the actuators is indistinguishable from the friction acting upon the 

joints, and the friction coefficient vectors can be chosen to encompass both sources. 

Furthermore, the motion of the actuators does not affect the gravity term, consequently 

the gravity model is unchanged as long as the values for link masses and centres of mass 

take into account the masses of the actuators. 

In the case of electric motors, when a given link moves, its actuator's axis of rotation is 
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usually in motion relative to the coordinate frame attached to that link. This motion gives 

rise to a gyroscopic couple. However, it can be shown [Murphy & Wen 1993) that such 

gyroscopic forces have negligible effect upon the manipulator's links, although they can 

have significant effects on a manipulator's platform if it is free to move. Therefore, 

gyroscopic effects can be safely neglected except in special cases such as when the 

manipulator in question is mounted on a space vehicle. 

However, the torque or force acting upon a link must overcome the resistance to motion 

caused by the mass of the moving parts of the attached actuator. In the case of a motor, 

this resistance is closely related to its mass moment of inertia measured around the axis 

of rotation. For a piston, it is closely related to the mass. The effect of these quantities 

at each joint is dependent on the transmission between the joints and the actuators, 

however these effective inertias/masses are constant for all common transmission devices. 

For example, taking the most common arrangement of a motor, embedded in the 

preceding link and driving a revolute joint via a simple gear train; if the gear ratio is 

denoted r (such that the joint speed is r times the motor speed), then 

where 

la m[= 
-;:r 

m! = the effective inertia of the motor acting at the joint 

I a = the mass moment of inertia of the motor about its axis 

(2.5-5) 

As the effect of actuators on the mass term does not vary with q, then by the definition 

of the velocity term (Eqn. 2.4-3), there is no contribution to the velocity term due to the 

presence of actuators. 

Consequently, the Euler-Lagrange equation can be employed as stated in Eqn. 2.5-2, but 

with the mass matrix redefined as 

for i = j 

otherwise 

(2.5-6) 

where M' is the mass matrix excluding actuator effects (Eqn. 2.3-24), and m/ is the 

constant and generalised effective motor inertia vector. 

2.5.3 Compliance and Backlash 

Power transmission devices include gears, power screws, pulley systems, chain drives and 

harmonic drives [Groover et al. 1986, Stadler 1995]. All of these are prone to two 

unwanted effects, namely compliance and backlash. 
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Compliance is defined as the deflection under load of the power transmission device, 

essentially the degree of spring in the transmission. For example, in a gear train this 

might be due to the bending of the individual teeth, or due to deflections of the bearing 

supporting the gears. The compliance of a manipulator as a whole is mainly the result of 

transmission compliance. Compliance is not commonly incorporated into models of 

manipulators' dynamics, as its effects are usually small in comparison to those of other 

sources of system disturbance. Furthermore, compensation for compliance would hugely 

increase the complexity of the inverse dynamics model as it varies with time and so 

cannot be calculated for a given instant without knowledge of its prior value [Shames 

1997]. 

Backlash represents the free movement within the transmission. In gears, for example, 

this is can be due to spaces between the gear teeth mesh, as shown below in Fig. 2.5-2. 

c=========:::::::::::;:;. 

Figure 2.5-2: Backlash shown at a gear interface 
(the lower gear is driving the upper gear) 

Here the lower gear is driving the upper gear in the direction shown by the arrows, if the 

motion of the lower gear were to change direction, the tooth currently driving the upper 

gear would move from its present position to the position shown by the dotted lines, 

whilst the upper gear free-wheels. The degree of backlash for joint i, denoted b1 , is the 

maximum angle or distance through which joint i can be moved freely, whilst its actuator 

remains stationary. 

All transmission devices display backlash effects to some degree, giving rise to hysteresis 

in the drive system. In hydraulic systems, for instance, backlash relates to compression 

of the transmission fluid. An absquare hysteresis profile is shown in Fig. 2.5-3 which 

describes a transmission with idealised backlash effects and zero compliance. The acute 

corners of the hysteresis loop represent occasions when the actuator velocity has changed 
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direction. Whilst the transmission system is described by the horizontal sections of the 

loop, the joint is said to be experiencing backlash. In reality, the hysteresis loop of a 

manipulator's transmission system is rarely as neat as the trapezium in Fig. 2.5-3 due to 

such occurrences as gears rebounding from each other at the end of a backlash period and 

mechanical compliance. However, consideration of Figs. 2.5-2 and 2.5-3 do allow one 

to appreciate the effects backlash will have on manipulator dynamics. 

Figure 2.5-3: An absquare hysteresis profile caused by backlash 
(Subscripts omitted: all terms refer to a single joint, 

arrows show direction of path around hysteresis loop) 

If the value of q1 is derived from measurement of the actuator position, as is often the 

case, then it is clear that q1 suffers a disturbance that can be of either sign and of up to 

b1 in magnitude depending upon the conditions prevailing when the joint position was 

aligned with the actuator position. Although this disturbance will be either of two values 

(whose magnitudes total b1) whilst the transmission can be said to be "tight", it will vary 

smoothly from one to the other whilst the joint is experiencing backlash. Furthermore, 

if the joint velocity and/or acceleration is computed from measurements of the actuator 

position, then these values will also contain disturbances whilst the joint is experiencing 

backlash. However, more serious is the fact that during a backlash period the actuator is 

detached from the link, thus the torque applied to a link by its actuator will be zero (in 

the absence of compliance), the geartrain contribution to the mass matrix will decrease 

(possibly to zero, depending on which gear interface in the train is experiencing backlash) 

and the friction coefficients will also lessen. In effect, to comprehensively model a 

manipulator's motion one requires two sets of values for many of the dynamics' 

coefficients, as well as an accurate method for detecting when a joint is experiencing 

backlash. 

To date, to the best of the author's knowledge, no published manipulator control 
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algorithm has attempted to compensate for backlash through modelling the resultant 

dynamics. There are two main reasons for this; Firstly, it adds a large degree of 

complexity to the controller to compensate for a relatively short lived effect. Secondly, 

there exist techniques and devices, such as harmonic drives and transmissions with high 

(unity) gear ratios, for minimising the effects of backlash [Dagalakis & Myers 1985). 

However, even if backlash effects are not modelled it is still extremely important to 

identify if joints are experiencing backlash when employing an adaptive coefficient 

identification system, so that the backlash periods can be neglected for the purposes of 

adaption such that they do not affect the resultant estimates. To this end, if one considers 

the transmission for joint i as being a single interface, it is possible to describe three 

conditions when backlash will not occur; 

where 

I) sgn('t
1
) of. sgn(q

1
) 

2) sgn('t,) of. sgn(ij,) 

3) sgn(1:, + mp,) = sgn(v; + G1 + 'F,) 

mp, = Frictional effects of the motor or other actuator 

'F, = Frictional effects of the link's joint 

Condition 3 is difficult to verify in practice, so a convenient logical statement that 

includes at least all the occurrences of backlash at joint i is; 

(2.5-7) 

2.6 THE INVERSE DYNAMICS OF THE PUMA 560 

In Sections 2.3 through to 2.5, the equations derived for manipulators' inverse dynamics 

are in terms of the general case. At various points within this work it will be desirable 

to examine processes associated with manipulator dynamics with respect to the detailed 

Euler-Lagrange equations for a specific manipulator. In all such cases the manipulator 

chosen is the PUMA 560. This section describes the PUMA 560 and the theory required 

to derive its specific algebraic expressions for the components of the full Euler-Lagrange 

equation (Eqn. 2.5-2). 

The PUMA® (Programmable Universal Machine for Assembly) series of industrial 

manipulators was designed by Vie Schienman and manufactured for many years by 

Unimation Ltd, before that company was bought Westinghouse, and then by Stiiubli 

International AG, whereupon they were marketed under the composite name [Stiiubli­

Unimation). Although some spares and servicing are still available, the PUMA 560 is no 

24 



longer produced, however, it is still the most common manipulator to be found in robotics 

research laboratories, due, in part, to its relative flexibility of operation compared to most 

other industrial manipulators. Because of its ubiquity, there exists probably more 

published attempts at identifying the values of its dynamics coefficients than for any other 

manipulator (for example [Paul et al. 1983, Tarn et al. 1985, Armstrong et al. 1986, 

Leahy & Saridis 1989, Liu 1991, Kozlowski 1992]). Fig. 2.6-1 contains a picture of a 

PUMA 560 C, the most modem of the three PUMA 560 variants. The differences 

between the 560 Mk. I, 560 Mk. 2 and the 560 C are largely concerned with the control 

systems and do not affect the form of the inverse dynamics. 

Figure 2.6-1: A PUMA 560 C 

The PUMA 560 possesses six degrees of freedom, with all of its joints being revolute. 

As can be seen from Fig. 2.6-2, this manipulator arm is of anthromorphic design, that is, 

its configuration resembles that of a human arm. The first joint can be thought of as the 

manipulator's waist, the second as a shoulder, the third an elbow, and the fourth and fifth 

as a wrist. The rolling motion of the wrist is performed by the fourth joint and the flex ion 

by the fifth. The motion of the sixth joint however has no direct anthromorphic parallel, 

being a further rolling rotation of the tool mount at the tip of the arm, known as the end­

effector. 
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'-£'} Axlo4 v"' 280. 

Figure 2.6-2: The six axes of rotation possessed by a PUMA 560 

(Stated values denote range of movement for each axis) 

2.6.1 Frame Assignment and Notation 

As can be seen from Eqns. 2.3-24, 2.3-28, 2.4-4, 2.4-7, 2.5-2 & 2.5-4, the precise 

algebraic form of the inverse dynamics for a specific manipulator is dependent only upon 

the base homogeneous transforms which describe the configuration of the manipulator's 

joints. 

A manipulator's homogeneous transforms are in turn dependent on the orientation of the 

coordinate frames attached to each link. There are several different conventions and 

notations for the task of assigning frames to manipulators' links, including the original 

Denavit-Hartenberg method [Denavit-Hartenberg 1955], the modified Denavit-Hartenberg 

method [Craig 1985) and ISO standard number 9787 (1990), which is reproduced in the 

European standard EN 29787. Of these, the modified D-H method is the simplest to 

perform and results in the most efficient algebraic representations of the homogeneous 

transforms. Furthermore, the modified D-H method was used by [Armstrong et al. 1986) 

to produce the inverse dynamics for the PUMA 560, whose coefficients were then 

estimated from empirical measurements of the dismantled manipulator. To date, this work 
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represents the most thorough investigation of its kind, therefore the adoption of the same 

frame assignment method will allow for direct comparison of coefficient values. 

Within the modified D-H method, the assignment convention rigidly attaches frame i to 

link i, such that the z-axis of the frame coincides with the axis of joint i, and the x-axis 

of the frame is perpendicular to the axis of joint i+ 1. For simplicity, the base or reference 

frame (frame 0) is positioned such that its origin and z-axis coincide with those of frame 

1. Note that this convention does not necessarily produce a unique set of possible frame 

orientations, thus, for any given manipulator there is often an element of choice. Here, 

the same frame assignments as specified by Armstrong et al. are made (see Fig. 2.6-3). 

Figure 2.6-3: The frame assignments for a PUMA 560 shown at its zero position 
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In general, the position and orientation of any given set of axes i, with respect to another 

set i-1, can be expressed by just four quantities known as Denavit-Hartenberg parameters. 

In terms of a manipulator's frames, these parameters are; the twist and length of link i-1 

(a1_1 & a1_1), the offset of link i (d1) and the angle of joint i (81). The first two of these 

parameters between them define the fixed relationship between the two joint axes, whilst 

the second pair describe the nature of the connection between neighbouring links. They 

are defined as follows, 
• 

a 1_1 = the angle between the axes of joints i-1 and i when projected onto a plane 

whose normal is orthogonal to both axes. 

a1_1 = the distance between the axes of joints i-1 and i measured along a line 

orthogonal to both axes. 

d1 = the distance between the mutual orthogonal of axes i-1 and i, and the mutual 

orthogonal of axes i and i+ 1, measured along the axis of joint i. 

e, = the angle between the mutual orthogonals of axes i-1 & i, and axes i & i+ 1, 

when projected onto a plane orthogonal to the axis of joint i. 

Note that for any one joint, three of the Denavit-Hartenberg parameters will be constant, 

and one will be variable. In the revolute case, the joint variable is e,, for a prismatic 

joint, d1 varies with movement. When the modified D-H convention for frame assignment 

has been employed, the definitions of the D-H parameters become greatly simplified, such 

that 

a1_1 = the angle from z1_1 to z1, measured about x1_1• 

a1_1 = the distance from z1_1 to z1, measured along x1_1• 

d1 = the distance from x1_1 to x1, measured along z1• 

e, = the angle from x,_, to x,, measured about z,. 

To finalise the assignment and notation of a manipulator's coordinate frames, one must 

define a datum position where each of the joint variables is zero. There are two popular 

choices for a PUMA 560' s zero position, the first has the arm pointing directly upwards, 

the second is the crooked arm configuration shown in Fig. 2.6-3. Again, the crooked zero 

position was selected in order to be able to compare results to those of Armstrong et al. 

Thus, from inspection only of the assembled and static PUMA 560, its links' relative 

orientations and positions, known as the manipulator's kinematics, can be described by 

the 24 modified D-H parameters which appear in Fig. 2.6-4. Note that from thoughtful 

placement of the coordinate frames, seven of the twelve distance terms have been defined 

as being zero, leaving just five unknown D-H parameter constants to appear in the 

manipulator's inverse dynamics. 
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i a.i-1 al-t d, a, 

1 0 0 0 q, 

2 -90° 0 d2 q2 

3 0 a, d, q, 

4 90° a, a. q. 

5 -90° 0 0 q, 

6 90° 0 0 q6 

Figure 2.6-4: The modified Denavit-Hartenberg parameters 

for a PUMA 560, as identifiable without measurement 

2.6.2 Formulation of Homogeneous Transforms 

The relative homogeneous transforms for the PUMA 560 can be easily found from the 

values in Fig. 2.6-4, and from these, the base homogeneous transforms can be determined 

(Eqn. 2.3-5). In the table of modified D-H parameters, each row contains the information 

to move to the correspondingly numbered frame from its predecessor, such that in 

general, for a given frame i, the relative homogeneous transform •- 1T
1 

is given by 

,_
1T1 = Rot(x,_Pai-1) Trans(xi-l,ai-1) Trans(z,,d,) Rot(z

1
,9

1
) (2.6-1) 

where 

Rot(u,<j>) = the 4x4 transform describing a rotation of eo about the u-axis 

Trans(u,l) = the 4x4 transform describing a translation of I parallel to the u-axis 

Specifically, 

1 0 0 0 1 0 0 I 

0 cos( eo) -sin( eo) 0 0 1 0 0 
Rot(i,co) = Trans(i,l) = 

0 sin( eo) cos( eo) 0 0 0 1 0 

0 0 0 1 0 0 0 1 

1 0 0 0 cos( eo) -sin( eo) 0 0 

0 1 0 0 sin( eo) cos( eo) 0 0 
Trans(z,l) = Rot(z,co) = 

0 0 1 I 0 0 1 0 

0 0 0 I 0 0 0 1 
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To verify Eqn. 2.6-1, consider Fig. 2.6-3 and select any of the first five frames, imagine 

another set of axes coincident with the selected frame, then perform each of the four 

transformations described in Eqn. 2.6-1 (with values taken from the table in Fig. 2.6-4) 

to that set of axes in sequence (left to right). The resulting position and orientation of the 

imagined set of axes will coincide with the coordinate frame which the originally selected 

frame precedes. 

Now that the PUMA 560's relative homogeneous transforms have been defined, its base 

homogeneous transforms can be calculated from an extension of Eqn 2.3-5, thus: 

T - 0T 1T 1-1y i - I 2 ... I (2.6-2) 

Note that for any manipulator with parallel consecutive revolute joint axes, such as the 

PUMA 560's second and third joints, premultiplying the corresponding relative 

homogenous transforms within Eqn. 2.6-2, in this case 1T2 and 2T3 , enables one to take 

advantage of the sum of angles identities and thus simplify the resultant expression. 

2.6.3 Non-Lagranglan Effects 

The first three links of the PUMA 560 are neither small nor light, therefore it is not 

surprising that frictional effects have been reported as being significant to the 

manipulator's motion [Leahy & Saridis 1989]. Although often not modelled, and 

occurring only at low joint speeds, even static friction can have detectable effects. 

All the driving motors within a PUMA 560 have geartrains with ratios (r) much less than 

unity [Armstrong et al. 1986]. From Eqn. 2.5-5, it can be seen that the inertias of these 

motors are greatly magnified in terms of their effect on the manipulator's motion, and 

thus must be incorporated in the inverse dynamics model. 

2.6.4 Detailed Inverse Dynamics 

The equations for the fully detailed inverse dynamics of the PUMA 560 can be found in 

Appendix B, these are exactly equivalent to the equations reported by [Armstrong et al. 

1986], with the addition of a friction model. The equations have been parameterised and 

presented in a style suitable for use with an adaptive network (see Chapter 5). Note that 

the parameterisation performed by Armstrong et al. (for computational efficiency) 

produces a different set of coefficients than those found in the appendix. Although under 

less stringent restrictions as to how to group physical parameters within the inverse 

dynamics into constant coefficients, Armstrong et al. chose to treat the effective motor 

inertias separately, hence producing a longer list of mass and velocity term coefficients 
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than achieved here (29 instead of 26). 

The generalised Euler-Lagrange equation for manipulators inverse dynamics (Eqn. 2.5-2) 

hides considerable complexity.lt can be seen from Eqn. 2.6-2 that the base homogeneous 

transform for a given frame grows in complexity the greater the number of intermediate 

frames between it and the base frame. Now consider Eqn. 2.3-24, the definition of the 

mass matrix (without actuator effects), from this one can appreciate how large expressions 

within the inverse dynamics can become. In the case of the PUMA 560, with frame 

assignments as described in this section, the top left most element of the mass matrix 

alone has 224 separate terms when fully expanded, similarly, several of the 105 unique 

Christoffel symbols also each contain over two hundred separate terms. 

2.7 MODEL-BASED CONTROL ALGORITHMS 

Although the method for identifying manipulator dynamics coefficients presented in this 

work is independent of which algorithm is employed to control the manipulator's motion, 

a brief description of a model-based algorithm is given here to aid the reader's 

understanding of the purpose of this work. By incorporating a model of the manipulator's 

inverse dynamics into a control algorithm, often in conjunction with one or more error 

based terms, the nonlinear and configuration dependent characteristics of the 

manipulator's dynamics can be compensated for. Known as computed torque control 

[Paul 1972, Fu et al. 1987], various degrees of compensation for the manipulator's 

dynamics are possible. However, it has been shown [Leahy & Saridis 1989] that the more 

complete the model of the inverse dynamics which is incorporated into the controller, the 

better the trajectory-following performance. Another study that demonstrates the 

superiority of model-based control over conventional PD control [Whitcomb et al. 1993], 

also points out the importance of having accurately identified system parameters, 

describing how a model-based controller with only approximately correct parameters may 

perform less well than a simple PD controller. Hence, accurately identified values of a 

manipulator's dynamics coefficients are vital for the advantages of model-based control 

are to be realised in practice. 

2.7.1 Fully Compensated Computed Torque 

Recalling that the complete inverse dynamics for a rigid bodied manipulator (Eqn. 2.5-2) 

can be described as 

't=Mij+V+G+F 

and given that a comprehensive controller should adjust the applied torques/forces to 

correct for deviations from a desired trajectory, whilst compensating for the orientation 
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dependent dynamics, then it is clear to see how fully compensated computed torque can 

be defined as 

1: = M(ij•+ K,(t'J.- tj) + K_<q.- q)) +V+ G + F 

where, for a chosen trajectory, 

qd 

tjd 

= 
= 

the desired general position vector for the given instant 

the desired general velocity vector for the given instant 

(2.7-1) 

ijd = the desired general acceleration vector for the given instant 

and 

K, = the (diagonal) velocity error gain matrix 

KP = the (diagonal) positional error gain matrix 

It can be seen that the control law represented by Eqn. 2.7-1 contains information on the 

desired movement at each given instant, in the form of the desired joint accelerations, two 

error driven terms based on deviations in expected joint positions and velocities, and 

compensation for mass, velocity, gravity and frictional effects. The operation of the fully 

compensated computed torque control scheme is shown graphically in Fig 2.7-1. Note 

the inclusion of a variable disturbance term, D, which occurs due to noise and imperfectly 

modelled inverse dynamics. 

a 
Manipulator 

F(B) 

V 

~----~--~+~E~---~------------~~----~ 

a.---:+"'l E ,.-{--------+------------------~ 

Figure 2.7-1: Fully compensated computed torque control 

(Dashed lines show nonlinear dependencies) 
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For the ideal case, where the model of the manipulator's inverse dynamics is precise and 

the measurement of positions and velocities are exact, the disturbance term D is zero. In 

these circumstances, if the gain matrices (KP & K,) are diagonal, Eqn 2.7-1 represents a 

perfectly linearised controller. That is, the acceleration induced in a given joint is a linear 

function of the desired acceleration, position error and velocity error of solely that joint. 

Furthermore, it can be shown [Leahy & Saridis 1989] that for such a perfectly linearised 

controller 

and (2.6-2) 

where 

~ = the error response damping ratios vector 

ro. = the error response natural frequencies vector 

2.8 SUMMARY 

Within this chapter, the Euler-Lagrange equation for a rigid bodied manipulator's inverse 

dynamics has been derived from first principles and in the general case. Compensation 

has been included in the inverse dynamics model for the effects of both friction and 

actuators, and the consequences of compliance and backlash within the geartrain have 

been considered. The importance of discerning when a joint is experiencing backlash was 

also noted for systems where measurements of the manipulator's motion are used for 

identifying the inverse dynamics. 

The PUMA 560 manipulator has been described and its configuration defined using the 

modified Denavit-Hartenberg technique. The spatial relationship parameters obtained were 

used to form the fully detailed algebraic representation of the PUMA 560' s inverse 

dynamics. This includes expressions for tbe inverse dynamics coefficients that entirely 

consist of physical parameters, such as lengths and masses. The considerable size and 

complexity of the inverse dynamics model was also noted. Furthermore, all of the 

dynamical components for which terms have been derived in this chapter have been 

reported by other researchers to have significant effects on the motion of the PUMA 560 

manipulator. Thus the suitably comprehensive Euler-Lagrange model of its inverse 

dynamics is highly non-linear, discontinuous, configuration dependent and contains a 

huge number of terms. 

For most manipulators it is not possible to measure the physical parameters that appear 

in their inverse dynamics, in particular the frictional and inertial parameters, to an 

acceptable degree of accuracy. Therefore, the relationship between a manipulator's 

instantaneous generalised positions, velocities and accelerations, and the forces and/or 
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torques applied to it must be identified indirectly. As the majority manipulators are 

constructed to be feedback controlled devices, information on a manipulator's motion is 

commonly available in the form of instantaneous joint position measurements, which can 

be compared to the applied forces and/or torques. Some manipulators also possess 

encoders that directly measure instantaneous velocities, whilst a few additionally have 

encoders capable of measuring the instantaneous accelerations. For the majority of 

manipulators, such as the unmodified PUMA 560, that do not have velocity or 

acceleration sensors, the instantaneous values of q and q can be estimated from 

numerical differentiation. 

In the next chapter, adaptive networks are introduced for the purpose of modelling 

manipulator dynamics. By iteratively processing data on a given manipulator's motion, 

a network can adapt to form a model of that specific manipulator's inverse dynamics, 

thus providing information on the values of the dynamics coefficients. 
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3. ADAPTIVE NETWORKS 

Adaptive networks are connectionist models of systems with initially unknown properties. 

Automatic adaption techniques can be employed on these networks to improve their 

processing performance, in the absence of system knowledge, and using only potentially 

imperfect sample data from the modelled system. Originally developed as classifying and 

decision making tools for discrete systems, adaptive networks are now used in a vast 

assortment of applications, including the modelling of systems with analogue inputs 

and/or outputs. As such, it is intended to use an adaptive network to identify the inverse 

dynamics coefficients of a given manipulator from measurements of its motion. 

A general overview of adaptive networks, including an introduction to the accompanying 

terminology, is given in Section 3.1. The advantageous properties common to all adaptive 

networks are discussed in Section 3.2, illustrating the primary reasons for their use in the 

coefficient identification problem. Various aspects of network design are examined in 

Section 3.3, whilst automatic adaption methods are investigated in Section 3.4. The 

analysis of both is general, but particular emphasis is made of their use in modelling 

analogue output systems such as the chosen application. The specifics of applying 

adaptive networks to problems involving manipulator dynamics are examined in Section 

3.5, including a review of other researchers' work in this area. The major obstacles 

currently preventing acceptable coefficient identification via adaptive networks are 

investigated, leading to a discussion of the currently postulated theories for poor network 

generalisation in Section 3.6. 

3.1 GENERAL ADAPTIVE NETWORK DEFINITIONS 

Due to their original source of inspiration, and the properties they share with biological 

neural systems, adaptive networks (especially those containing nonlinear functions) are 

often referred to as artificial neural networks. 

All adaptive networks are based on the same structure; data, in the form of numeric 

values, is passed through a network of nodes (sometimes called cells, processing elements 

or artificial neurons), each of which performs some function on its inputs to produce a 

single output. The connections between nodes are called links, and each one has a weight 
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associated with it which factors values passing along that link. Nodes are usually 

organised into distinct layers, where the outputs of the nodes in a given layer do not feed 

into other nodes within the same layer. The example network in Fig. 3.1-1 has two layers, 

one of whose outputs are also the network outputs, and is therefore known as the output 

layer. Layers which are not output layers are known as hidden layers, a network may 

have any number of hidden layers including zero. 

Input V aloes 

Output Signals 

f--.- Yz 

Figure 3.1-1: An example network (nodes shown shaded, weights not shown) 

The adjustment of a network's weight values, often performed iteratively, is known as 

training. The aim of training is to increase some measure of the network's performance 

in processing supplied data. The weight adjustment values are calculated by a chosen 

learning algorithm, of which there are three main categories, those that perform 

supervised learning, those that perform reinforcement learning and those that perform 

unsupervised learning. 

In the case of supervised learning, the output signal from the network is compared to a 

desired target set of values to create an error signal. This error is then operated upon by 

a learning algorithm with the aim of producing new weight values that will cause the 

network to yield smaller errors when processing similar inputs. To provide a measure of 

a network's processing performance, networks usually have associated with them a cost 

function, this acts upon the network errors to produce an error cost. A network is said 

to be fully trained when it produces the minimum possible error cost. A single vector of 

input values, plus any associated vector of target outputs, is called a training pattern, and 

the complete set of patterns used in a training process is called the training set. 

Reinforcement learning is similar to supervised learning except that the learning algorithm 

is supplied with only an evaluation score or grade, instead of a target value for each 

output. These grades need not be supplied at every training iteration, and obviate the need 

for a precise target value for each training pattern to be known. Due to this, 

reinforcement learning is particularly suited to working in a dynamic environment, such 

39 



as exists in the local optimisation of robot dynamics [Zomaya & Nabhan 1993]. However, 

the identification of a manipulator's global inverse dynamics parameters is not a dynamic 

problem, and in such cases reinforcement learning usually requires more iterations than 

supervised learning to fully train the network. 

Unsupervised learning algorithms (which are employed on self-organising networks) 

receive no external measure of performance but instead use in-built rules to modify the 

network weights. The aim of such algorithms is usually to produce consistent outputs, 

that is, similar input patterns should produce the same pattern of outputs. The training 

process, therefore, extracts the statistical properties of the set of inputs used and groups 

them into classes. It is clear that such qualitative analysis is not readily suited to the task 

of parameter identification. 

Note that in Fig. 3.1-1 all the data within the network flows one way, that is, there are 

no feedback loops. Such networks are called feedforward or non recurrent networks and 

are the most common choice of configuration for system modelling. 

3.2 PROPERTIES OF ADAPTIVE NETWORKS 

Several characteristics of adaptive networks set them apart from conventional computing 

and artificial intelligence approaches. This section outlines three important and 

advantageous properties that all adaptive networks share, namely, a mathematical basis, 

an ability to learn and an ability to generalise. 

3.2.1 Mathematical Basis 

Adaptive networks are one of the few AI-related technologies that have a rigorous 

mathematical foundation. This produces a comparative ease of analysis, as well as 

allowing the incorporation of other, of already well understood, mathematical tools and 

techniques. 

3.2.2 Learning 

Adaptive networks can modify their behaviour in response to their environment. This 

factor, more than any other, is responsible for the interest they have received. Given a set 

of inputs (perhaps with desired outputs), they can automatically self-adjust to produce 

consistent responses without first possessing any knowledge of the system which 

produced the training set. Many dozens of learning algorithms have been developed to 
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perform this task, some specific to certain network types, others general, and all with 

their own strengths and weaknesses [Rumelhart & McClelland 1986, Anderson & 

Rosenfeld 1988, Hassoun 1995]. 

3.2.3 Generalisation 

Once trained, a network can, to a degree, correctly respond to inputs that it has not 

processed before. Generalisation takes the ability to learn and self-adjust a step further: 

the network is able to hypothesise a response based on previous experiences. Note that 

adaptive networks generalise automatically as a result of their structure, not by using 

human intelligence embedded in the form of ad hoc computer programs. 

Although the property of generalisation is often cited, in practice many networks' ability 

to accurately generalise extends only to interpolation between supplied training data, as 

opposed to the desired extrapolation to the whole problem space [Caelli et al. 1993, 

Bishop 1995]. The analysis of network training presented in Chapter 4 will show that the 

majority of high input order networks with analogue valued outputs can never be made 

to generalise to the whole problem space as a result of training. 

3.3 NETWORK ARCHITECTURES 

The quality which differentiates networks is their architecture, that is, their number of 

nodes, the connectivity of the nodes and the functions present within the nodes. Some 

architectures require the use of specialist learning algorithms, but many are capable of 

being trained using one of a selection of learning algorithms. The different types of node 

are often named after the class of function they contain. 

This section introduces the three major types of node, namely the hard-limiters, linear 

combiners and locally sensitive nodes. The use of network input preprocessing and of 

context sensitive weights are also discussed. 

3.3.1 The Hard-Limiter 

Historically the first type of trainable adaptive network node developed [Rosenblatt 1958], 

a hard-limiter (also known as a perceptron) is a two-class classifier, such as the step 

function shown in Fig 3.3-1; If the sum of its weighted inputs is greater than or equal to 

zero, its output is one, otherwise its output is zero. 
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y 

Hard-Limiting Node 

Figure 3.3-1: The functionality of a Hard-Limiting Node 

To express the operation performed by a hard-limiter algebraically, the node's operation 

is broken down into two parts. The first is the summation of the weighted inputs, which 

is general to almost all types of network node and produces the scalar value s, such that 

(3.3-1) 

The second is particular to the type of node, in the case of a zero/one classifying hard­

limiter this function is the step function, expressed as 

{
1 if s~O 

y = 0 otherwise 
(3.3-2) 

The hard-limiting node was intended to be a simplified model of a biological neuron 

within the brain, it having been noted that neurons either fire an impulse of a fixed 

magnitude, or do not, based on the sum charge applied to them. Because of this, the 

function performed by a node on the summed input value s is often called the activation 

function. Note that in order to provide a non-zero threshold for the activation function it 

is common to fix one of the network's inputs to a constant value of one, the weight 

associated with the link from this input to the node in question is then known as the 

node's bias. Biasing is common in many different types of network. 

Note that although the hard-limiter was originally known as the perceptron, this name has 

been corrupted to refer to almost any node containing a step-like, or even just locally 

sensitive, activation function. Hence, use of the name perceptron is avoided in this report. 

The discrete nature of a hard-limiter's output is clearly better suited to problems with 

discrete answers than to those with analogue ones. Hard-limiter networks are therefore 

principally used for problems pertaining to classifying data. 
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3.3.2 The Linear Combiner 

Developed by Widrow and Hoff, the adaptive linear combiner element (ADALINE) 

[Widrow 1962] possesses no activation function as such, instead the output is simply the 

sum of the weighted inputs, that is y = s. When such networks have an error cost function 

associated with them that is a polynomial function of the output error moduli (such as the 

mean squared error or mean weighted error moduli), they possess a very important 

property. If one plots the error cost of a network containing n weights, for all possible 

weight values, in an n+ 1 dimensional space, then the hypersurface which describes the 

error cost is continuous, smooth and contains only one minima. That minima represents 

the optimal state of the network weights for the training set employed. Furthermore, any 

learning algorithm which correctly follows the gradient of the error cost hypersurface 

downwards will ultimately train the network to this state. 

Despite the desirable properties stated above, standard feedforward networks (such as in 

Fig. 3.1-1) which are entirely made up from linear combiner nodes are rarely used, this 

is because they can only ever model linear systems. It can be shown [Wasserman 1989], 

that regardless of the number of nodes or how they are interconnected, a standard 

feedforward linear combiner network is always equivalent to a linear combiner network 

with only a single layer (where all the nodes' outputs are network outputs and do not 

feed into other nodes). An example of this is shown in Fig 3.3-2; 

x, 

x2 

x3 

y, 

Yz 
x3 

Figure 3.3-2: Linear Combiner network equivalence 

(The two layer network on the left is equivalent in operation to 

the single layer network on the right) 

y, 

Y2 

Clearly, single layer linear combiner networks can be represented by a single matrix of 

weight values acting on the input vector. For example, the right-hand representation of 

the network in Fig. 3.3-2 could be described by 

xW = y 

where x and y are the input and output row vectors, and W denotes a 3x2 weights matrix. 

Therefore, any system adequately modelled by a conventional linear combiner network 
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can, for many purposes, be better analysed by linear algebra techniques [Strang 1988, 

Faddeev & Faddeeva 1963, Kolman 1988]. 

3.3.3 Locally Sensitive Nodes 

There exists a type of node whose activation function is continuous but has near zero 

gradient for all but one localised area of the node's input space, such nodes are referred 

to as being locally sensitive. In particular, a subcategory of these are designed to combine 

the decision making property of hard-limiters with the continuous quality of linear 

combiners and are collectively called smoothed step or sigmoidal nodes [Nelson & 

Illingworth 1991]. These contain activation functions which approximate a step, so 

producing nonlinearities, but are differentiable, ensuring a continuous error cost 

hypersurface. Two examples of sigmoidal functions are shown below; 

y y 

The Logistic Function The Hyperbolic Tangent Function 

y = 
1 

y = tanh(s) 

Another important subcategory of locally sensitive activation functions are Radial Basis 

Functions (RBFs) [Powell 1987]. Although theoretically not restricted to being locally 

sensitive, almost all RBFs used in adaptive networks are chosen to be so, the most 

common amongst these being the Gaussian (bell-shaped) function. RBF nodes have a 

more complex form than the simpler smoothed step nodes, such that their area of local 

sensitivity is defined in the multi-dimensional node input space, rather than the one 

dimensional summed node input space. This in part gives rise to a number of properties 

which are useful for system approximation and adaption (regularisation; [Poggio and 

Girosi 1990], best approximation; [Girosi and Poggio 1990], kernel regression [Scott 

1992], noisy interpolation; Webb [1994]), however, RBFs require specialised learning 

algorithms and place restrictions on the topology of the network. 

Analogue output adaptive networks commonly contain locally sensitive nodes. One 

important reason for this is that many locally sensitive continuous functions are capable 
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of universal approximation, that is, a linear superposition of enough such functions can 

approximate any continuous real-valued system function [Hornik et al. 1989, Baldi 1990, 

Light 1992, Park and Sandberg 1993]. 

3.3.4 Network Preprocessing 

Preprocessing of network inputs can have significant benefits, particularly where it is 

possible to reduce the order of the system that the network models [Specht 1966, Barron 

1984]. A good example of this is the logical exclusive or (XOR) problem; Marvin 

Minsky infamously eo-wrote a book [Minsky & Papert 1969] with the intention of 

demonstrating the inadequacies of adaptive networks. In this he "proved" that a single­

layer hard-limiter based network can never model an XOR operator, regardless of weight 

values or topology (multilayer network training algorithms did not exist at that time, see 

Section 3.4). This is due to the linear operation of such networks and the nonlinear nature 

of the XOR operator. However, it can be seen from Figs. 3.3-3 & 3.3-4 that with 

relatively simple preprocessing of the network inputs, and the addition of a bias, the XOR 

problem can in fact be modelled by a network consisting of just a single hard-limiting 

node. 
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Figure 3.3-3: XOR modelling hard-limiter network employing input preprocessing 

The preprocessor in the XOR modelling network performs nonlinear combinations of the 

two inputs (x"x2 ) to produce x~,x1 x2 and xi. These three quantities, along with the 

original two inputs and a constant bias are then used as input data for the single hard­

limiting node. Since there is no requirement for network inputs to be independent of each 

other, the preprocessing performed in the XOR problem has been able to take a system 

that is not linearly separable in (x1, x2 ) space (see Fig. 3.3-4) and made it instead linearly 

separable in a five dimensional space which has a direct mapping from (x1 , x2 ). 
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Figure 3.3-4: Graphical representation of the trained XOR network's output 

(ellipse shows where the sum of the node's inputs equals zero) 

The importance and usefulness of preprocessing network inputs has been increasingly 

accepted during recent years. However it is evident that one requires some knowledge of 

the form of the modelled system in order to sensibly choose which preprocessing to 

employ. In the absence of such a priori knowledge, statistical methods can be used to find 

correlations between the system output and arbitrarily processed inputs which are stronger 

than the correlations between the system output and the unprocessed inputs. However, as 

there are an infinite number of possible preprocessing functions, such statistical methods 

are not reliable substitutes for genuine understanding of the form of the modelled system. 

Preprocessing therefore provides a good opportunity to incorporate a priori system 

knowledge into a network's design, to the benefit of both the network's simplicity and 

its accuracy once trained. For an example of its use in a practical application see [Specht 

1967]. 

3.3.5 Context Sensitive Networks 

First proposed by [Yeung 1989, Yeung & Gekey 1989], context sensitive networks differ 

from other networks by having weights that take different values for each pattern 

processed, often these context sensitive weight values are the outputs of another 

subnetwork. Such networks are fundamentally more sophisticated than the conventional 

networks so far discussed, in which data is weighted, summed and then acted upon by 

a single-input-single-output activation function whose output may then be weighted, 
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summed with some more data, then acted upon, and so on until it is outputted. In a 

context sensitive link, data is actually multiplied by other data, producing nonlinear 

double-input-single-output combinations. This expansion in the kind of information 

processing possible within a network allows context sensitive networks to potentially 

model many more types of system than is possible with conventional network 

architectures. 

Yt 

Yz 

Figure 3.3-5: Example of a context sensitive network 

A diagram of an example context sensitive network is shown in Fig. 3.3-5. The weight 

values for the links connecting to the output nodes are calculated be the subnetwork in 

the lower part of the figure. These weights are context sensitive, as their values vary with 

each pattern processed. Whereas the remaining links in the network possess conventional 

weights, whose values are constant throughout a training set but are subject to training. 

Clearly, context sensitive weights are themselves not adjusted by training, however, it has 

be shown [Y eung 1990] that the training of context sensitive networks can be 

accomplished by standard learning algorithms (which adjust only the values of the 

conventional weights). 

3.4 LEARNING ALGORITHMS 

To date, many dozens of learning algorithms have been formulated (for descriptions and 

reviews of relative merits see [Rumelhart & McClelland 1986, Anderson & Rosenfeld 
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1988, Nelson & Illingworth 1991, Hassoun 1995]). This section will detail the two most 

well-known algorithms. Both are supervised learning techniques and as such aim to 

minimise the error cost associated with the training patterns. The first algorithm 

examined, the Perceptron Rule, operates exclusively on discrete output single-layer 

networks, it is historically important but very limited in its application. The second, 

Backpropagation, overcomes many of the limitations experienced by the Perceptron Rule 

(and others), operates exclusively on networks with continuous activation functions, and 

is an example of a gradient descent method (see Subsection 3.4.2 for definition). These 

two algorithms are discussed here because of the Perceptron Rule's simplicity and 

Backpropagation's general applicability and gradient descent behaviour, furthermore, 

between them they demonstrate many of the important concepts in network training. 

A third learning algorithm developed as part of the current work is termed Proportional 

Error Allocation (PERAL), and is presented in detail in Chapter 6. 

Regardless of which learning algorithm is employed, it can be applied to a network in 

one of two ways. In sequential training, the network processes a single training pattern, 

then its weights are adjusted by the learning algorithm before the next pattern is 

processed. In batch training, the entire training set is processed before the network's 

weights are adjusted, using values that are averages determined by the learning algorithm 

from across the whole set. In either case, the processing of all the data in the training set 

and the associated training, is collectively known as an epoch. 

In a sequential training, the order in which the training patterns are processed can affect 

the network's learning, thus the order in which the training patterns are considered is 

usually changed between epochs to minimise such ordering effects. Also, when training 

is terminated, the network obtained will clearly be disproportionately dependent on the 

last few patterns processed than on those earlier within the training set. 

The aim of training is usually to minimise the error cost of each training pattern averaged 

throughout the entire set, thus batch training is the more intuitive, and mathematically 

rigorous, choice. However, the random disturbances to the learning caused by sequential 

training can increase the effectiveness of certain learning algorithms, allowing them to 

advance the state of a network past non-optimal weight values at which the individual 

errors in the set cancel each other out or otherwise fail to provide a learning impulse 

[Wasserrnan 1989]. Though sequential training can be faster, due to many weight changes 

per epoch rather than just one, the equations that govern both network processing and 

learning can usually be expanded into matrix form to provide rapid parallel calculation 

methods. Furthermore, batch training is more resilient to random (zero mean) noise in the 

training data due to the averaging out of its effects. 
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For ease of comprehension, the equations that follow refer to the learning algorithms' 

application in sequential mode. To obtain the equivalent batch equations, one needs only 

to expand the appropriate vectors into matrices with one row per training pattern, and 

divide the resultant weight adjustments by the number of patterns in the training set. 

3.4.1 The Perceptron Rule 

The Perceptron Rule [Rosenblatt 1958] is specific to single layer adaptive networks 

employing hard-limiting nodes, and, although rarely used today, is significant as being 

the earliest learning algorithm actually used with a real information processing network. 

Its limitations also allow one to better appreciate the more sophisticated, though usually 

more complex, learning algorithms. 

Recalling Subsection 3.3.1, the operation of a single layer hard-limiter based network can 

be expressed as 

y = r(xW) 

where 

y = network output vector, of size 1 x o 

X = network input vector, of size I x o 

w = weights matrix, of size i x o 

r = elementwise step function 

and 

= number of input nodes 

o = number of output nodes 

The weights matrix may possess arbitrary values prior to training. For each epoch of 

training, the Perceptron Rule states that the adjustments to the weights matrix is given by 

where 

(3.4.1) 

L\ W = the increases in the values of the weights matrix 

11 = learning rate (usually a constant scalar with a value less than one) 

t = desired target output vector 

The difference between the desired target values and the network output values clearly 

provide an error signal, with possible values of 1, 0 or -1 . Thus it can be seen that each 

individual weight will have its value increased by the product of its corresponding input 

and error (averaged, in the case of batch training, over the set of patterns processed). 

The reason why the Perceptron Rule is limited to single layer networks is clear since the 
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algorithm is driven by a measure of each node's error. This is simple to calculate for an 

output layer node, as the value it outputs can be compared to the corresponding target 

value, but there is no such measure for nodes in preceding layers. 

Restricting a network to a single layer means that each network output is the result of just 

one single node. Therefore, for a network trained by the Perceptron Rule to be potentially 

capable of correctly modelling a system, it must fulfil the condition of linear separability. 

This states that for each output, it must be possible to draw a hyperplane through the 

i -dimensional space that contains the network's input patterns, separating the data points 

into the desired two classes. 

Furthermore, it can be shown that, given linear separability, the Perceptron Rule will 

develop a weights matrix that correctly separates the classes in a finite number of training 

epochs, regardless of the initial values of the weights [Rosenblatt 1958]. 

3.4.2 Backpropagation 

The invention of the Backpropagation algorithm played a large part in the resurgence of 

interest in adaptive networks that occurred in the 1980s. Backpropagation was the first 

systematic method for training multilayered networks, thus vastly increasing the 

complexity and therefore usefulness of trainable adaptive networks. The basic algorithm 

was first described by [Werbos 1974], was made popular by [Rumelhart et al. 1986], and 

draws upon the theory of error gradient descent, which was developed independently by 

[Amari 1967 & 1968, Bryson & Ho 1969, Werbos 1974, Parker 1985]. The premise of 

gradient descent learning is to formulate an error function for the network and then to 

minimise it locally over the space of possible weight settings. In particular, if the error 

function used is differentiable with respect to the network weights, (requiring the use of 

differentiable activation functions within the network nodes) gradient descent will 

naturally lead to a learning rule. 

Almost universally in Backpropagation training, the error function minimised is the 

instantaneous (half) sum of squared error [Widrow & Hoff 1960, Hassoun 1995], given 

by 

(3.4-2) 

Consider the network in Fig. 3.4-1. The weights have been grouped into two matrices 

such that W11 is the weight associated with the link from input j to node k in the hidden 

layer. Similarly, W,~ is the weight associated with the link from node k in the hidden 

layer to node I in the output layer. In the following formulation the two processing layers 

are also denoted as A, the hidden layer, and B, the output layer. As before, i is the 
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number of inputs, o the number of output nodes and h is defined as the number of hidden 

nodes. 

Hidden Layer 
(A) 

Output Layer 
(H) 

Yt 

Yo 

Figure 3.4-1: A generalised two layered network 

Since the targets for the output layer nodes are explicitly stated, the output layer is the 

simplest for which to formulate the learning algorithm. In terms of the weight increment 

matrix, the error gradient descent method produces 

where 

B ilW., = 

sA = vector of summed weighted inputs for layer A 

f. = activation function for layer A 

(3.4-3) 

Note that the last function in Eqn. 3.4-3 is simply the output of the preceding layer. Also, 

although TJ is commonly defined to be constant throughout a network, it has been shown 

that better training performance is likely when the learning rate is successively lower for 

each layer after the first (such that, in this case, the learning rate for ilWA should be less 

than the learning rate for ilW 8
) [Rigler et al. 1991]. 

The provision of a learning algorithm for the hidden layer's weights ( WA) is not as 

straightforward as for the output layer, as there is no available set of target values for the 

hidden nodes. However, one may derive an algorithm by attempting to minimise the 

output layer's error. This amounts to propagating the output errors (t- y) back through 

the output layer toward the hidden layer, in an attempt to estimate targets for these nodes. 

51 



Therefore gradient descent is performed on the error function (Eqn. 3.4-2), but this time 

the gradient is calculated with respect to the hidden weights: 

(3.4-4) 

Using the chain rule for partial derivatives, one may express the partial differentiation in 

the above as 

ae ae aJiS:) as,• 
aw; aJ.<s:) as: aw1t 

(3.4-5) 

where 

as: 
a~: 

= XI (3.4-6) 

and 

ae 

0 

= - L ( t, - Y,) f.'(S,") w:, (3.4-7) ,_, 

Substituting Eqn.s 3.4-6 and 3.4-7 back into Eqn. 3.4-5, and using Eqn. 3.4-4, the desired 

learning algorithm is obtained: 

(3.4-8) 

By comparing the above with Eqn. 3.4-3, it is clear that the summed terms within the 

square bracket represent an estimate of the difference between the desired and actual 

output of the hidden layer. The Backpropagation equations can therefore be generalised 

for similar networks of any number of layers. To achieve this, A and B are generalised 

to denote any two consecutive layers, followed, in the case of B not being the output 

layer, by a further layer C. Then, taking advantage of matrix algebra, the Back­

propagation algorithm for the weights matrix preceding layer B can be expressed as 

where 

if B is the output layer 

otherwise 

and • denotes the element by element multiplication of two vectors/matrices. 
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Clearly, when B is the first processing layer of a network, the output of the previous 

layer, J;,(S"), is simply the network inputs, x. 

Due to the need for differentiable activation functions, discontinuous functions, such as 

hard-limiters, cannot be used. Sigmoidal functions, however, are commonly used and 

usually have derivatives which can be expressed in terms of the original function. For 

example the logistic function 

f(SI) = 1 -s 
1 + e 1 

and the hyperbolic tangent function 

f(S1) = tanh(S1) 

Simpler still is the case of linear combiner functions; 

As has already been stated, the universal use of linear combiner nodes within a network 

guarantees that the error hypersurface (which is a function of the network weights) will 

be smooth and possess a single minima which represents the network's optimal state. 

Thus, an error gradient descent method such as Backpropagation, employing an infinite 

number of infinitely small iterations, will always tend towards this minima, regardless of 

the initial values of the network weights. For practical application, a suitable finite 

iteration size (related to the learning coefficient) can be found from trial and error or 

from automatic algorithms such as proposed by [Jacobs 1988, Chen & Mars 1990, Le 

Cun et al. 1993]. In contrast, due to the localised effect of sigmoidal functions, a network 

employing such activation functions will have a "lumpy" and irregular error hypersurface. 

The most significant aspect of this is that Backpropagation may cause the network 

weights to tend toward one of the local (non-optimal) minima instead of the global 

(optimal) one. Therefore, the state into which the network settles will, in this case, 

depend on the initial values of the network's weights [Kolen & Pollack 1990]. Local 

minima are a particular example of the more general problem of flat-spots, areas of the 

error hypersurface with near zero gradient. As both the size and direction of the 

Backpropagation learning increment are related to this gradient, flat-spots of all types 

cause standard Backpropagation learning to become unacceptably slow [Fahlman 1988]. 

Clearly, the more nonlinear activation functions present in a network, the more 

convoluted the error hypersurface with a greater number of flat-spots within it. Studies 

of error hypersurface shapes are presented in [Sontag & Sussrnann 1989, Chen et al. 

1993, Liang et al. 1995]. 

Numerous variants of the standard Backpropagation algorithm have been proposed 
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[Stometta & Huberman 1987, Fablman 1988, Hagiwara 1990, Li 1990], many of which 

are intended to learn faster and/or allow training to evolve a network out of a non-optimal 

state and across flat-spots. However, most of these variations' enhancements are gained 

at the expense of the standard Backpropagation' s mathematical pedigree and gradient 

descent behaviour [Bishop 1995]. 

3.5 ADAPTIVE NETWORKS AND MANIPULATOR DYNAMICS 

Adaptive networks have been applied to almost all areas of robotics, including image 

processing, mobile robot navigation, kinematics, and of course, dynamics. One of the 

early uses of an adaptive network was the motion control of a manipulator using the 

Cerebellar Model Articulation Controller (CMAC) [Aibus 1975], which incorporated 

look-up tables in the determination of suitable control torques. Although adaptive 

networks have been popular tools for the enhancement of manipulator control for some 

time, resulting in many differing schemes being proposed, the work done to date can be 

split into two fundamentally different approaches: 

Some researchers have attempted to train a network to directly model a manipulator's 

problem-space-wide dynamics [Kawato et al. 1987, Psaltis et al.1987, Miyamoto et al. 

1988, Bassi & Bekey 1989, Kuschewski et al. 1993, Sillitoe et al. 1994]. As can be seen 

from Chapter 2, the complete inverse dynamics of multi-jointed manipulators can be 

extremely complicated, requiring a vast amount of training data to representatively span 

the problem space. Attempts at learning the inverse dynamics of manipulators with more 

than three degrees of freedom, from empirical motion data, have yet to produce 

acceptable results throughout the whole problem space. However, this approach is still 

the subject of much work as the successful approximation of a manipulator's inverse 

dynamics obviates the need for on-line training and allows the development of near ideal 

controllers. 

Other researchers have employed adaptive networks as localised inverse dynamics models 

or as adjustment terms to a standard controller (either non-model-based or using estimates 

of the dynamics coefficients derived by other means) [Seraji 1989, Ishiguro et al. 1992, 

Jacobs & Jordan 1993, Zomaya & Nabhan 1993, Whitcomb et al. 1993, Yamada & 

Yabuta 1993, Sanger 1994], such that training is either performed continuously as the 

manipulator moves or else performed on data from a specific trajectory that is localised 

within the problem space. This approach deliberately tackles a very much simpler 

problem than that of system-wide inverse dynamics identification, as it only needs to 

model localised dynamics. There are, however, several disadvantages with these 

techniques. Firstly, if on-line adaption is used to adjust a control algorithm, then the 

resultant controller is liable to be non-ideal, that is, the relationship between the desired 
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and actual movement will be nonlinear and the controllers performance will vary over the 

space. Furthermore, it may not be possible to train the network quickly enough to cope 

with rapid movement across the problem space. Optimising control for a specific 

trajectory (to the detriment of others) is clearly suitable for repetitive motion tasks such 

as may be required by a production manipulator, but is of limited use elsewhere. 

Several ideas expressed in the literature are of significant note, and, in the author's 

opinion, are of great potential in the modelling of manipulator inverse dynamics. To 

tackle the problem of system complexity, [Bassi & Bekey 1989) suggested the 

decomposition of the network representation of the inverse dynamics, such that individual 

subnetworks model separate terms within the Euler-Lagrange equation. A related proposal 

was made for localised network controllers by [Jacobs & Jordan 1993], suggesting the 

training of several networks, each for a different trajectory/payload, and switching 

between them. To increase network training rate and accuracy, [Armstrong 1989) 

developed a technique which transforms a given training data trajectory to one locally 

optimised to cause the minimum error in the values of identified parameters due to 

experimental noise. Importantly, [Craig 1988] noted that inverse dynamics coefficients 

are linearly related (by the generalised position, velocity and acceleration vectors) to the 

torque/force vector, and that this could be exploited in adaptive coefficient identification. 

Lastly, several researchers have noted the applicability of context sensitive networks (see 

Subsection 3.3.5) to modelling manipulator inverse dynamics, given that they are known 

to be configuration dependent. 

The majority of networks currently proposed for modelling problem-space-wide inverse 

dynamics consist of a large numbers of nodes with continuous and locally sensitive 

activation functions, commonly either radial basis or sigmoidal functions. However, the 

vast size of such networks is often due to reliance upon the property of universal 

approximation (where a given network is capable of approximating any continuous 

system if it contains a large enough number of suitable nodes) and belies the lack of 

analysis performed on the inverse dynamics. For example, as has been stated previously 

in Subsection 2.5.1, manipulator dynamics are known to be discontinuous due to the 

effect of dry and static friction, and that this discontinuity is often significant. 

Furthermore, in many networks, the values of revolute joint positions are directly fed into 

an adaptive network as inputs (without preprocessing) despite this clearly making it 

improbable that the trained network will provide similar outputs for pairs of position 

values such as zero and 21t radians. 

The major challenge, at present, in the area of adaptive network modelling of inverse 

dynamics, and indeed of many other complex systems, is that of obtaining an accurate 

representation of the entire system by training a network on a subset of it. In other words, 

the problem is one of generalisation, or rather the lack of it routinely displayed by 
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networks trained on empirical data. The next section discusses generalisation and two 

techniques currently used to enhance it in networks subject to supervised learning. 

3.6 OVERTRAINING AND GENERALISATION 

When an adaptive network is trained using a supervised learning technique, the weights 

within the network are adjusted in order to decrease the error produced by the training 

patterns. The aim of such training, however, is for the network to become a better model 

of the generalised system of which the training set is a sample. In particular, a training 

set can never represent all of the points within a. problem space with analogue inputs or 

outputs and will commonly contain some degree of spurious information due to sampling, 

such as measurement errors. Assuming that the network has at least as many nodes as 

would be required to be capable of accurately approximating the system, then at some 

point during training, often in the later stages once the more obvious features of the 

system have been learnt, the network will start to reduce the training set error by learning 

these idiosyncrasies of the training data that do not exist in the system in general. This 

phenomenon is termed overtraining or overfitting, an example and discussion of which 

is presented in [Chauvin 1990]. The consequences of overtraining, and a means of largely 

avoiding it, are fully discussed as part of the concept of network flexibility in Chapter 

4, however, at present, overtraining is mitigated by the use of either stop sets or network 

pruning. 

3.6.1 Stop Sets 

This method involves using two sets of data, a training set and a validation set (or stop 

set) [Hecht-Nielsen 1990]. The network is trained as normal using the training set, but 

the network error produced by the stop set is noted periodically. The stop set error is 

assumed to be a valid indicator of the network's performance at modelling the problem 

system in general, and so training is terminated when the stop set error ceases to decrease 

between training epochs. A representation of overtraining is shown in Fig. 3.6-1 , 

complete with a comparative stop set error curve. 

The ability of the stop set to accurately represent the system in general is clearly a major 

factor in the effectiveness of the stop set technique. If the stop set represents only a 

subsection of the whole system, then it can only provide information on the network's 

processing performance for that subsection of the problem space. This may cause the 

termination of learning, as indicated by the increase in stop set error cost, to be either 

earlier or later than optimal. 
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Stop-Set Error 

Training Epochs 

Figure 3.6-1: Overtraining to the detriment of generalised performance 

(The optimal point to cease training, as indicated by the 

stop set, is marked by the vertical dashed line) 

3.6.2 Network Pruning 

An alternative method of limiting overtraining is to restrict the ability of the network to 

learn the spurious correlations in the training data. This can be done by finding the least 

complex network that will adequately fit the training data, assuming that the 

idiosyncrasies of the training set used are less significant than the system response 

characteristics. Training many different network configurations would clearly be very time 

consuming, so a less arduous method is to train a large network (with many nodes and 

links) and to then apply some form of pruning technique. 

The simplest kind of pruning technique tests the sensitivity of the training set error to the 

removal of each network link. If the removal of a link produces a marked increase in the 

error it is restored, otherwise it is permanently removed. If a node has all the links 

leading from it removed, then it is itself removed, along with all of the links leading to 

it. Once all of the insensitive links have been removed it is assumed that what is left is 

the minimum complexity network required to model the generalised system. 

A survey of different pruning techniques is presented in [Reed 1993]. 
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3.7 SUMMARY 

The basics of adaptive network theory have been introduced in this chapter, with 

particular reference to the modelling of analogue output systems, specifically inverse 

dynamics. The three major node types, hard-limiters, linear combiners and locally 

sensitive nodes, have been examined and the properties with which they endow a network 

reviewed. In particular, the effect of different activation functions on the form of network 

output error hypersurface, a function of the network weights, was discussed. It was noted 

that continuous activation functions produce continuous error hypersurfaces, but that with 

the significant exception of linear combiners, these surfaces are often complicated, hard 

to visualise or analysis and contain multiple local minima. The benefits of input 

preprocessing and context sensitivity in networks were shown, both of which extend the 

types of problems that adaptive networks can be applied to. 

The process of network training was illustrated using the Perceptron Rule and 

Backpropagation learning algorithms. In particular, Backpropagation was noted as an 

example of an error gradient descent method, applicable to a large variety of network 

types, but prone to slow or unsuccessful learning due to flat-spots and local minima when 

applied to networks with nonlinear activation functions. 

The networks employed by other researchers in the area of manipulator motion control 

were reviewed, in general they can be separated into those that attempt to model the 

entire problem-space-wide inverse dynamics, and those that learn localised relationships. 

The relative benefits of both were discussed, with the former being presented as the ideal 

case if successful training can be achieved, however, to date, this approach has failed to 

provide a generalised model for all but the simplest of manipulators. Important 

observations and ideas from the current literature and relevant to the modelling of inverse 

dynamics with adaptive networks were also reported. These included the functional 

decomposition of networks, selecting training data with high robustness to noise, the 

linear relationship between inverse dynamics coefficients and the generalised force/torque, 

and the suitability of context sensitivity to modelling inverse dynamics. 

The often minimal degree of analysis performed on the form of manipulator inverse 

dynamics prior to the attempted modelling of such a system was commented upon, with 

reference to some of the deficiencies commonly found in such networks. 

The reported poor performance of most analogue output networks' solution to accurately 

generalise between or beyond the data with which the networks were trained was noted. 

In particular, the problems associated with overfitting the network model were discussed 

and the use of stop sets and network pruning as a means of reducing overfitting were 

explained. 
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It is clear that the behaviour of network models undergoing supervised learning is not 

fully understood at present, this is not surprising given the high dimensionality and 

nonlinearity of most networks. However, it. is apparent that this process must be more 

closely examined if the problem of poor generalisation is to be properly addressed. The 

analysis performed in the following chapter sheds new light on the general problem of 

training analogue output networks and the reasons for their degree of generalisation. 
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4. ANALYSIS OF TRAINING IN ANALOGUE 
OUTPUT NETWORKS 

The behaviour of adaptive networks and their learning algorithms is difficult to visualise, 

partly due to the high dimensionality of most networks, and partly due to the "black-box" 

nature in which the process of training is often treated. In particular, the processes 

involved in training networks that model systems with analogue outputs, and the reasons 

why these networks usually fail to generalise outside of the training data, are especially 

poorly understood. When dealing with complex or poorly understood processes the ability 

to make an analogy between it and a more readily comprehensible mechanism can be 

enormously useful. Whilst one must, of course, make sure that any corollaries drawn are 

valid, many valuable insights into difficult problems can often be gained by considering 

simpler, but analogous, ones. 

In this chapter an analogy is drawn between the training of analogue output adaptive 

networks via supervised learning algorithms and the relatively well-understood problem 

of finding the best fit for a polynomial curve to a given set of points. This has previously 

been touched upon by [Bishop 1995], however, the analogy is examined here in much 

greater detail. The insights gained are used to show why most networks employed for 

modelling analogue output systems, including those currently used for the estimation of 

manipulator dynamics, are inappropriate. This analysis also provides the inspiration for 

a valid network architecture for system-space-wide modelling of manipulator inverse 

dynamics and other systems where the algebraic form is known but the coefficients are 

not. 

4.1 WHY CURVE-FITTING IS ANALOGOUS TO NETWORK TRAINING 

In the curve-fitting problem, the objective is to find a polynomial curve which will pass 

through, or close to, every point in a set of data such that the errors arising from the 

curve not passing directly through each point are minimised. Conceptually this is a very 

similar operation to network training. The set of data points are equivalent to the training 

set, the curve is the network and the errors in both systems are the differences between 

the data points' and the model's outputs evaluated at the data points' input values. 
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Indeed, the only major differences between polynomial curve-fitting and training analogue 

output networks are that networks may have responses other than polynomials, and the 

input and output spaces for the curve-fitting problem are limited to one dimension. This 

apparent obstacle to the analogy caused by networks having higher dimensionality is 

easily surmounted, one needs only to imagine two mappings that take the i-dimensional 

network input space, and the a-dimensional output space, and transform them into the one 

dimensional spaces represented by the x-axis and y-axis values (respectively) in which 

the curve exists. 

The curve-fitting problem is not just similar to network training, it is exactly the same 

process performed on systems of a more restricted class, and as such can provide 

practical mathematical information. To demonstrate this, consider the problem of training 

a linear combiner network with p training patterns, and compare it to the problem of 

fitting an n., order polynomial (possessing only non-zero powers of x) to p data points. 

The solution method to the curve-fitting problem is well known. Let A be a matrix such 

that each row refers to a different data point's x-value, and each column is a different 

power of x from 1 to n. Furthermore let c denote the column vector whose elements are 

the desired polynomial coefficients, in the order corresponding to the columns in A (that 

is, 1 ton), and lastly,let B denote the column vector whose elements are they-values of 

the data points, in the same order as the rows in A (that is, 1 top), such that 

'x 'x' 'x" c, 

··ltl 'x 'x' 'x" c, (4.1-1) A c = 

•x •x' Px" 
c, 

where the leading superscripts denote individual data points. The coefficients of the best­

fit curve (in a least squared error sense) can then be found from 

c = A\B (4.1-2) 

where the backslash character denotes the matrix division of A into B. If A is an n><n 

matrix and B is a column vector with n components, or a matrix with several such 

columns, then c = A \B is the exact solution to the equation A c = B via Gaussian 

elimination (with pivoting). If A is an p><n matrix (with p not equal to n) and B is a 

column vector with p components, or a matrix with several such columns, then 

c = A \B is the solution in the least squares sense to the under- or over-determined 

system of equations A c = B . 

Clearly, the solution method employed on the curve-fitting problem is directly applicable 

to the (single-layer) linear combiner network. If X is a p><n matrix, where each row is the 

network input vector (x) for a particular pattern, w is the weights vector and T is the 
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vector of target output values for all patterns, such that 

lx lx lx 

T • [] 

I 2 • wl 
2x 2x ... 2x 

w2 (4.1-3) X I 2 • = w = 

w, 
Px Px Px 

I 2 • 

where the leading superscripts denote individual training patterns. Then the optimal 

weights vector (in a least squared error sense) for the patterns processed, denoted w , can 

be found from 

w = X\T (4.1-4) 

Furthermore, if the network concerned has more than one output, such that W denotes the 

weights matrix (defined in the usual way) and T is instead a pxo matrix of target values, 

where o is the number of petwork outputs, such that 

lt 
I 

lt 
2 

lt 
0 

2t 2t 21 
(4.1-5) T = I 2 0 

Pfl Pt2 Pto 

then, once again, the optimal least square error solution for the weights matrix, denoted 

W, can be found from 

W = X\T (4.1-6) 

4.2 NETWORK ORDER 

A significant concept that can be taken from curve-fitting is the idea of network order. 

It is well known that to determine the coefficients of the polynomial curve uniquely, for 

the case so far presented where the curve possesses no constant term, one requires at least 

as many independent data points as the order of the polynomial. The same is apparent 

from Eqn. 4.1-2, where, if the rank of A is less than the number of coefficients to be 

determined, no unique solution to the equation is obtainable. This rule will also apply to 

training networks with learning algorithms. 

In general, for a given network with analogue outputs, there will exist a single optimal 

state for approximating the whole of the modelled system. If, however, there is no unique 

solution for a given training set, then that set must be inadequately representative of the 

whole of the system being modelled, and the trained network state obtained from using 
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that set will almost certainly not be a close approximation of the system-wide optimal 

state. Thus it is vitally important to ensure that any training set used is likely to provide 

a unique solution for the network being trained. 

For a fully connected feed-forward one-layer network, such as those discussed in the 

previous section, where each link has a unique weight associated with it, the order of the 

network is clearly equal to the number of input nodes. This is true regardless of the 

activation functions chosen for the output nodes, as long as they are uniquely invertible 

across the function's output range (that is, strictly increasing or decreasing). The number 

of output nodes also has no effect on the network order, as each output can be regarded 

as part of a separate system. 

For the purpose of determining the orders of multi layered networks, and/or those that 

are less than fully connected, consider the network in Fig. 4.2-1 . As previously stated, 

the two outputs can each be thought of as representing separate hypersurfaces which can 

be determined independently from each other with respect to the output layer weights. 

Thus it can be seen from the number of links leading to the output nodes that y1 has an 

order of two, in terms of the values produced by the hidden layer, and y2 an order of 

three. If one now ignores the output layer and instead regards the hidden layer as 

representing hypersurfaces that must be uniquely defined, then the four hidden nodes can 

be seen to have orders of 2, 3, 3, & 2, viewed top to bottom respectively, in terms of the 

network inputs. 

Figure 4.2-1: A less than fully connected two-layer adaptive network 

The order of an output node in terms of the inputs, here denoted as cr(y1), is simply the 

highest valued product of their order with respect to the hidden nodes, and the associated 

hidden nodes' order with respect to the inputs. Thus, 

cr(y
1
) = 2x max (2,3) = 6 
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cr(y2) 3x max (2,3,2) 9 

Therefore, the order of the network as a whole is simply the higher of the two outputs' 

orders, namely nine. 

This method allows one to calculate the order of any given feedforward network (with 

strictly increasing or decreasing activation functions) which is in its most compact form, 

that is, not equivalent to a network with fewer nodes or links (see Subsection 3.3.2). If 

every node within a given network is assigned a value equal to the number of 

independently weighted links that pass signals to that node, then the network's order is 

equal to the highest product of these values from any one route connecting the input layer 

to the output layer. 

In practical applications, the data used to form a network's training patterns is almost 

always taken from empirical samples of the system to be modelled. Prior to training, 

there is often no simple way of determining whether the training patterns formed from 

this data are independent of one another, or to what degree measurement noise will 

detrimentally affect learning. Due to this, it is clear that the order of a network provides 

only a lower bound for the required number of training patterns, not an exact value. 

However, it is still useful to know the order of a network in order to estimate the number 

of patterns required in a given training set. For instance, if a network's training set 

contained I 00 patterns, and the network was found to have an order of 85, then there 

would be a significant probability that the trained state of the network was not a unique 

solution to the training set, and therefore very unlikely to be an approximation of the 

system-wide solution. 

4.3 NETWORK FLEXIBILITY 

In the previous section, the order of the network was compared with the number of 

patterns in the training set. Here, the importance of a network's order is examined in 

relation to the order of the system being modelled. For the generalised problem of 

modelling a continuous analogue output system, one can visualise the system output(s) 

as an unbroken but "lumpy" hypersurface when plotted against the system inputs. The 

output(s) of the network chosen to model the system will form a similar hypersurface, 

existing in the same space, but initially of a different shape. If, for instance, all of the 

network's weights are initialised to zero, before training, then the network output in this 

state would form a level hyperplane. The process of training the network, with example 

patterns taken from the system space, is intended to alter the shape of the network 

hypersurface and mould it into a close approximation of the system hypersurface. With 

the curve-fitting analogy in mind, it is clear that the network must possess at least as high 
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an order as the modelled system for its hypersurface to be sufficiently flexible to be 

moulded into the shape of the system hypersurface. Note that a network's flexibility is 

closely related to the network's order, but is also dependent on architectural 

characteristics, such as the type of activation functions used. However, when the 

network's order exceeds that of the system being modelled then the problem of 

potentially localised learning emerges. To demonstrate this, consider again the curve­

fitting problem, as shown in Fig. 4.3-1, where the order of the polynomial being fitted 

is higher than the order of the system that generated the data points. 

In Fig. 4.3-1, the data points were generated from a cubic system equation, with a small 

disturbance term added to represent measurement noise. The best-fit curves are both 

quintics and were fitted to six data points each. Clearly both curves provide good 

estimates of the system response within the region spanned by the data points, however, 

outside this region these estimates vary wildly and produce very poor approximations to 

the system equation. 

I 
I 

I 
I 

I 
I 

I 
I 

I 

' 

x-values 

' ' 

Figure 4.3-1: Two best-fit curves showing localised modelling of underlying system 

(solid line fitted to circles, dotted line to crosses) 

This problem of over flexibility and localised learning also applies to training networks. 

When the network hypersurface has degrees of flexibility not possessed by the modelled 

system then training will cause these extra terms to model the noise in the training set, 

thus learning characteristics that do not exist in the underlying system. The effect of these 

extra terms may be small within the region spanned by the training patterns, but are likely 

to swamp the true response elsewhere. In an attempt to address this problem, literature 
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on adaptive network applications often glibly states that "a large training set was used, 

with patterns from across the problem space, to ensure the system is well represented." 

Similarly, when stop-sets are employed in attempts to avoid overtraining (see Subsection 

3.6.1), a symptom of network over-flexibility, they themselves must be representative of 

the whole system. This naturally leads to the question: just how big a data set does one 

need for it to be representative? As a pertinent example of a type of complex system, 

consider the inverse dynamics of a six degrees of freedom manipulator (such as the 

PUMA 560). This system has, in general, 18 inputs (six positions, six velocities and six 

accelerations) and 6 outputs (the applied forces and/or torques), furthermore it is known 

that the system response is highly non linear and liable to vary considerably over the input 

space. If one was optimistic and believed that each input dimension could be 

representatively spanned by just 10 measurements, taken at intervals from across the 

whole of that input's possible working range, then the network's training set would 

require 1018 training patterns from interspaced points within the problem space. Even this 

conservative value clearly far exceeds the number of measurements that could be gathered 

in a human lifetime. 

This then presents a serious dilemma for the modelling of an analogue output system. If 

the chosen network's hypersurface is less flexible than that of the system it is modelling, 

it cannot form an accurate approximation. Conversely, if the network is more flexible 

than the system, and the system has many inputs, then there is no practical way of 

gathering enough training data to make the network approximate the whole system. A 

solution to this predicament is to build a network whose response has exactly the same 

form as that of the system's response, thus, as the network weights are adjusted by 

training, there are no extraneous terms that can learn from input independent noise, and 

the network's hypersurface can precisely fit the system's hypersurface. Although this is 

similar in principle to using network pruning (see Subsection 3.6.2), there is a crucial 

difference: pruning reduces network flexibility by decreasing the number of nodes and 

links within a network, however, it does not guarantee a close match between the forms 

of the network and system responses due to the fact that a large degree of the network 

response's form is dictated by features such as the activation functions. For example, 

consider the problems inherent in using a network with sigmoidal activation functions, 

to model a system with a cyclic response (such as a trigonometric function). Furthermore, 

pruning algorithms intrinsically require data sets which are representative of the whole 

system in order to test the significance of network components. Therefore, to achieve an 

exact match in response forms for the majority of complex systems where the form, but 

not the coefficients, of the system equation are known, requires the development of the 

Context Sensitive Linear Combiner network (see Chapter 5). 

72 



4.4 SUMMARY 

The process of training an analogue output adaptive network has been analysed by 

making use of the much more readily understood analogy of curve-fitting. From this, the 

concept of network order has been obtained and a method for determining the order of 

a given network (which exclusively contains nodes with strictly increasing or decreasing 

activation functions) was derived and demonstrated. This involved determining the 

number of unique weights contributing to each node, known as the node order, and then 

finding the highest possible product of these node orders from any one signal path 

connecting the inputs to the output layer. 

By examining the consequences of a network's order with respect to its training set and 

to the dimensionality of the system being modelled, it has been shown that for systems 

with high input order and analogue outputs (which comprise the majority of engineering 

problems), networks which do not directly replicate the form of the modelled system are 

unlikely to accurately generalise as a result of supervised learning, when trained with real 

(partial and imperfect) data. 

Given that the networks currently used for modelling manipulator inverse dynamics do 

not meet this requirement, a method for constructing analogue output networks which are 

capable of producing generally accurate representations of the modelled system, from 

partial and imperfect data, has been outlined and will be developed in the following 

chapter. 
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5. THE CONTEXT SENSITIVE LINEAR COMBINER 
NETWORK FOR INVERSE DYNAMICS 

In this chapter, a novel Context Sensitive Linear Combiner (CSLC) network is developed 

for the modelling of a manipulator's inverse dynamics. Although expressed in terms of 

the chosen application, CSLC networks are applicable, indeed often necessary (see 

Section 4.3), for a large number of complex systems whose algebraic forms are known, 

but whose coefficients are not. The form of the CSLC network is developed by 

examining the detailed algebraic representation of a PUMA 560' s inverse dynamics. Its 

properties are discussed, and its performance in modelling simulated inverse dynamics 

investigated. 

The basis of the CSLC network is that it should possess exactly the same algebraic form 

as the system being modelled (in this case the inverse dynamics), thus avoiding the 

problems of over or under flexibility. This allows the network to be trained on a 

reasonable number of training patterns and be able to accurately approximate the inverse 

dynamics across the whole of the problem space. Furthermore, as with any engineering 

model, it is always desirable to use as much of the available a priori knowledge about the 

system as possible in an adaptive network's design. Therefore, the starting point for the 

CSLC network's development is a thorough analysis of the chosen system, that is, the 

inverse dynamics of a PUMA 560. 

5.1 DECOMPOSITION OF THE INVERSE DYNAMICS OF A PUMA 560 

The general Euler-Lagrange equation for a manipulator's inverse dynamics was developed 

in Sections 2.4 & 2.5, and was stated in Eqn. 2.5-2 as being 

M(q)ij + V(q,q) + G(q) + F(q) = 1: 

As has been noted previously, the detailed expressions for the elements of the above 

equation are wholly dependent on the manipulator's configuration (as described by its 

homogeneous transforms, see ·section 2.6) and may contain many hundreds of terms. 

However, it has been shown that significant computational efficiency gains can be 

obtained from combining constants that multiply common variable parameters [Murray 

& Neuman 1984, Armstrong et al. 1986). Furthermore, in the case of the PUMA 560, it 
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has been shown that the majority of terms that appear within the detailed expressions of 

elements of the mass matrix and the Christoffel symbols are insignificant, specifically, 

their values are less than I% of the largest term in the same element, or less than 0.1% 

of the largest constant term relevant to the same joint [Armstrong et al. 1986]. By 

disregarding these insignificant terms a less complex, more computationally efficient, 

network could be constructed. However, judgements upon the comparative magnitudes 

of terms within a manipulator's inverse dynamics can only be made after the constant 

coefficients (which are combinations of the manipulator's physical parameters) have been 

accurately identified. Therefore, in order to demonstrate that the design method of the 

CSLC network is generally applicable to any manipulator, it will be assumed that no 

estimates of the manipulator's physical parameter values are available. The network 

designed must therefore model the manipulator's inverse dynamics in their entirety. 

Given that the terms in Eqn. 2.5-2 are functions of different combinations of q, q and 

ij , it is proposed to construct the CSLC network from several distinct subnetworks. This 

partitioned network approach was suggested by both [Bassi & Bekey 1989] and [Zomaya 

& Nabhan 1993] specifically for the modelling of manipulator dynamics. The 

subnetworks are considered individually in the following subsections. 

5.1.1 The Mass Term 

Consider the problem of representing the mass matrix as part of an adaptive network. For 

any manipulator of n degrees of freedom, M is known to have ~n2+ n} unique elements, 

and for the PUMA 560 in particular, it is known that each of these elements contain 

between zero and 113 separate terms when fully expanded. Despite the apparent 

complexity of some of these expressions however, they share a common format. To 

demonstrate this, consider the following partial expression of an element of the PUMA 

560' s mass matrix; 

M23 = "'I"+ aim4 - P
5J,c;+ a2 °r,m0 c2 s23 c5 + a2 °r,m0 s2 c23 c5 + ... (5.1-1) 

where 

The first two terms in Eqn. 5.1-1 are constant, the others vary with trigonometric 

functions of q. These trigonometric functions are a consequence of the PUMA 560's 

revolute joints. In the case of prismatic joints, the corresponding q1 would appear without 

being acted upon by such functions. The c23 and s23 functions are the result of 

simplifications made possible by the z-axes of frames two and three being parallel. There 

are of course no q or ij terms within M, although the general acceleration vector is 

multiplied by the mass matrix in order to form the mass term, which it is now useful to 
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denote as 't". 

Thus, for any given manipulator, it is possible to factorise the elements of the mass 

matrix for each unique product of the position dependent quantities they contain. This 

forms each element of M into a summation of terms, where each term consists of a 

unique product of position dependent quantities, or unity, factored by a group of constant 

parameters. Stating this explicitly for the example expression given in Eqn. 5.1-1, the 

foiiowing is obtained 

M23 = (p6Iu + a;m4 + ... ) + ( _ps/YY + ... )c; 
+ ( az 6rz m6 + ... ) Cz sz3 Cs + { az 6rz m6 + ... } sz c23 Cs + •.. 

Performing the summation of the individual terms in the above expression requires only 

a linear combiner layer within the network, where each bracketed group of constant 

parameters would be modeiled by a weight value, and the weight matrix would possess 

only those links needed to perform the required factoring. However, the nonlinear 

problem remains of how to produce the various groups of position dependent quantities 

from the link position values. The solution is remarkably simple: as there is no 

requirement for a network's inputs to be independent of each other, the joint positions 

can simply be preprocessed to form ail of the different products of position dependent 

quantities that appear with the algebraic representation of the inverse dynamics (see Fig. 

5.1-1). 

59 Preprocessed 
Inputs 

21 Mass 
Matrix Nodes 

6 Mass 
Term Nodes 

Figure 5.1-1: The mass term section of the PUMA 560 CSLC network 

(Only those links of W"' relevant to the partial Eqn. 5.1-1 are shown in full) 
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Now that a partial network can be formed to produce the elements of the mass matrix, 

it needs to be extended to incorporate the matrix multiplication of the link acceleration 

vector. To perform multiplications within an adaptive network, between sets of values 

which both vary with input patterns, the principle of context sensitivity must be used. To 

perform the matrix multiplication, each of the output values of the nodes calculating the 

unique mass matrix values needs to be directly multiplied by either one, or in the case 

of off-diagonal elements, two, of the acceleration values: the appropriate summations can 

then be made to obtain the six elements of the mass term. This can be achieved by the 

addition of another linear combiner layer to the partial network so far described, where 

the weight values are the link accelerations (thus using system inputs directly as context­

sensitive weights), and the weight matrix has only those links required to perform the 

matrix multiplication (see Fig. 5.1-1). 

Within the mass term subnetwork shown in Fig. 5.1-1, W" denotes the weights matrix 

linking the preprocessed input layer and the first linear combiner layer (whose outputs 

are the elements of the mass matrix). Note the these layers are not fully connected, 

therefore many of the elements of W" are null, that is, do not exist. Those links that do 

exist have associated weights equal to elements of k!", the vector of mass coefficients 

whose values it is the intention to identify, where each coefficient is a collection of 

constant physical parameters. Comparing the mass term subnetwork (Fig. 5.1-1) to Eqn. 

5 .1-1, it can be seen that 

k;;_ p6Iu + aJ m4 + (all other constant terms within M23 ) 

k~ = - P
5
JYY + (all other constant terms which factor ci within M 23 ) 

k3M = a2 'r, m6 + (all other constant terms which factor c2 s23 c5 within M
23

) 

(5.1-2) 

Note that not all of the elements of W" are unique, one of several alternative definitions 

of k;' is given by 

k3M = a2 
6r, m6 + (all other constant parameters facto red by s2 c23 c5 

within M
23

) 

In total, there are 114 links within W", sharing integer multiples of just 26 coefficients. 

Whereas the inputs to the first linear combiner layer are highly dependent on the 

kinematics of the manipulator in question, the inputs to the second layer are fixed. For 

any manipulator of n degrees of freedom there will be ~n2+ n) mass matrix nodes and, 

of course, n mass term nodes. Each mass term node will have n links to it from mass 

matrix nodes which share one of the same indices, that is, a mass matrix node denoted 
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M11 is linked only to 't~ and weighted by ij1 , a node denoted Mu is linked to both't~ 

and 't1M, and weighted by ij
1 

and ij1 respectively. 

5.1.2 The Velocity Term 

It is clear from Eqn.s 3.4-5 & 3.4-6 that the form of the velocity term is closely related 

to that of the mass term. However, instead of a matrix being multiplied by the 

acceleration vector, the tensor of Christoffel symbols is multiplied twice by the velocity 

vector. This implies that the velocity section of the inverse dynamics CSLC network will 

require two context sensitive layers rather than just the one that appears in the mass 

section. As for calculating the Christoffel symbols themselves, it can be shown that they 

have the same general algebraic form as the mass matrix elements, and therefore, can be 

computed in a similar fashion by a single layer of linear combiner nodes. 

Eqn. 2.4-5 defines the Christoffel symbols as follows; 

c = , (aM,, + aMu _ aM,,) 
u• - 2 d'ri; dq; aq, 

Therefore, although the particular products of position dependent quantities will differ 

from those appearing in the mass term (due to differentiation), the constant coefficients 

that occur in each of the Christoffel symbols' algebraic representations will consist of one 

or more of the mass matrix's coefficients. Therefore, instead of requiring another vector 

of coefficients for the velocity section of the CSLC network, the weight values of the 

links connecting the preprocessed inputs and the Christoffel symbol nodes can be 

expressed in terms of the mass coefficients. In particular, due to one of the differentiated 

terms in Eqn. 2.4-5 always being zero, the links connecting to a node denoted c,1, have 

weights equal to plus or minus half the value of either one or a pair of the weights 

associated with links connecting to Mu, M1, and M,.. 

To illustrate the functionality of the velocity term subnetwork, consider the following two 

representative Christoffel symbols 

(5.1-3) 

(5.1-4) 

and the diagram of the subnetwork presented in Fig. 5.1-2. 
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Figure 5.1-2: The velocity term section of the PUMA 560 CSLC network 

(Only those links of W" relevant to Eqn.s 5.1-3 & 5.1-4 are shown in full) 

The weights matrix W" is defined is a similar fashion to W", that is, not all of its 

elements exist or have unique weights, and the element w,J is the weight associated with 

the link from the i'" preprocessed input to the j'" Christoffel symbol node. The outputs of 

the second hidden layer are denoted as elements of the velocity matrix, C, which is 

defined as 

• 
cu = L c,J,q, (5.1-5) ,_, 

such that 

• 
v, = L Cuql (5.1-6) 

J-1 

Thus the combination of Eqn.s 5.1-5 & 5.1-6 (and the identity c,1, = c"<l) produces the 

same definition of the velocity term as Eqn. 3.4-6. Note, however, that the described 

velocity subnetwork contains only those nodes pertaining to Christoffel symbols which 

are non-zero and unique in the general case. Hence, for a manipulator of n degrees of 

freedom, there will be +(n3
- n) Christoffel symbol nodes, where each node denoted cw 

will have just the one link leading from it to the velocity matrix layer, whilst those 

denoted c,1,, where j ;t k, will have two. As there is no inherent redundancy within the 

velocity matrix, the second hidden layer contains all n2 velocity matrix nodes, each with 

a single link leading from it to the corresponding velocity term node. As an aid to 

comprehension, it is useful to remember that the first index of c, C and V always refers 
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to the particular output/joint to which the term in question contributes. 

As in the mass section of the CSLC network, the important and unconventional aspects 

of the velocity term subnetwork are the preprocessing of the inputs by functions 

determined from factoring the algebraic representation of the inverse dynamics, and the 

use of input values, in this case 4, as (non-trainable) weights. 

5.1.3 The Gravity Term 

In contrast to the previous two terms, it can be seen from Eqn.s 2.4-7 & 2.3-28 that there 

is no matrix multiplication of input vectors required in the calculation of a, the gravity 

term. Although a is a nonlinear function of q, examination shows that, in general, there 

exists linear relationships between the elements of the gravity term and a set of functions 

of q, where these functions can be determined in the same manner as those of the mass 

matrix and the Christoffel symbols. 

In the case of the PUMA 560, the elements of the gravity term can be factored such that 

a, = 0 

a, G + kG + kG + k,G "'G G k4 cl I sz s s23 SzJCs + CzJ + k2 Cz3c4ss 

a, kG + k,G + ~ + kl 5 S23 S23CS C23 Cz3C4SS 

a. G - k2 s,,s.s, 
a, = kl +kl s23c4cs czJss 

a. = 0 

where kG is the vector of gravity coefficients, defined in this case as 

k~ = 2r m g y 2 

kl = - 6r m g 
' 6 

k~ = - a3m4 g- a3m5 g- a3m6 g 

k'} = - a2m3 g- a2m4 g- a2m5 g- a2m6 g- \m2 g 

kG 
5 = 3ry m3 g- 'r,m4 g- d4m4 g- d4m5 g- d4m6 g 

Thus the gravity term of the PUMA 560 can be represented by the subnetwork shown in 

Fig. 5.1-3. 
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Figure 5.1-3: The gravity term section of the PUMA 560 CSLC network 

Through the use of the preprocessing layer, and analysis of the algebraic representation 

of the gravity term, it has been possible to produce a subnetwork which is entirely linear 

with respect to the processed inputs and contains only conventional (context insensitive) 

trainable weights. 

5.1.4 The Friction Term 

From Subsection 2.5.1, it can be seen that the effects of friction are decoupled, that is, 

they are independent of joints other than the one upon which they act. Furthermore, the 

stated friction term models are all functions of the generalised velocity vector only. Eqn. 

2.5-3 shows how the friction in manipulators can be modelled by a combination of a 

viscous friction term and a dry friction term. As has been previously stated, the effects 

of static friction upon a PUMA 560 are not insignificant, but the PUMA 560 is not, as 

standard, equipped with velocity transducers. This makes modelling the static friction of 

doubtful value given that the estimation of joint velocities from joint position 

measurements is inherently noisy, leading to uncertainty in the sign of the static friction 

term when its magnitude is at its greatest (when the joint velocity is near zero). 

The viscous friction term, denoted ~·. can be expressed as a very simple linear combiner 
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subnetwork without any preprocessing of terms, as can be seen in Fig. 5.1-4. 

% 
k; ·@ 

42 
k; <!D 

. . . 
46 

k; ·© 

Figure 5.1-4: The viscous friction section of the PUMA 560 CSLC network 

The elements of the dry friction term, denoted 't", are proportional to the signum of the 

joint velocities. Therefore, to express their calculation as a subnetwork requires only a 

linear combiner layer with a preprocessor to find the signs of q. The resultant subnetwork 

is shown in Fig. 5.1-5. 

k~ 'tf 

% 
~ k: ~ -.; 

l 46 
k: -.: 

Figure 5.1-5: The dry friction section of the PUMA 560 CSLC network 

5.1.5 The Complete CSLC Network 

Now that subnetworks have been formulated for each term within the Euler-Lagrange 

equation, the full network can be described by simply joining the five subnetworks (Figs. 

5.1-1 to 5.1-5), superimposing the output nodes of each subnetwork to form the six nodes 

that calculate the elements of 't. An overview of the resultant CSLC network's 

functionality is presented in Fig. 5.1-6. Details of the composition of the processed input 
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vectors, the weights matrices (W"', W" & W") and the coefficient vectors k!" and k0
, for 

a PUMA 560, can all be found in Appendix B. 

q 

q Prepro. X 

q Prepro. 

q 

q Prepro. kd 

q Prepro. 

q q 

Figure 5.1-6: Functionality of the CSLC network for manipulator inverse dynamics 

(depicting, from top to bottom, the mass, gravity, viscous friction, 

dry friction and velocity subnetworks) 

5.2 PROPERTIES OF THE CSLC NETWORK 

The advantageous properties of the CSLC network, compared with conventional 

networks, are listed below: 

• Good modelling capability 

• Good generalisation capability 

• Single minima in network's error hypersurface 

• Transparency of operation 

• Network modularity 

• Low network order 

• Computational efficiency 

• Unrestricted choice of learning algorithm(s) 

The principal limitation of CSLC networks is that they require the algebraic form of the 
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system being modelled to be known. (Note that this cannot be viewed as a disadvantage 

when compared to conventional networks, which, as discussed in Chapter 4, are incapable 

of accurately learning problem-space-wide models of high input order systems such as 

the PUMA 560 from empirical data). 

These qualities are general to any CSLC network applied to any suitable application. 

Each of the listed properties is discussed in detail below with respect to learning the 

PUMA 560' s inverse dynamics and thus identifying its dynamics coefficients. 

5.2.1 Good Modelling and Generalisation Capabilities 

The function performed by the network is exactly that of the most complete set of inverse 

dynamics equations derived to date, namely the Euler-Lagrange equations with 

compensation for friction and actuator effects. The minor differences that will inevitably 

exist between a real manipulator's motion, and that predicted for it by the Euler-Lagrange 

equation, are expected to be a lesser source of noise than disturbances such as 

quantisation error (see Section 7.2 for a full discussion of possible sources of noise). Due 

to this match between the algebraic forms of the network and of the manipulator's inverse 

dynamics, the network is capable of accurately modelling the PUMA 560's motion. For 

the same reason, the solution obtained as a result of fully training the network is expected 

to be general to the whole of the problem space. 

5.2.2 Sole Error Hypersurface Minima 

Although the outputs of the CSLC network are nonlinear functions of the input values, 

and discontinuous in terms of the non-preprocessed inputs, they are linearly related to the 

trainable weight values. This means that the network's n+l dimensional error 

hypersurface (where n is the number of unique weights, 43 in the case of the PUMA 560) 

is continuous and possesses only one minima. This greatly simplifies learning compared 

to networks which employ non-linear activation functions: in the absence of noise, 

gradient descent learning algorithms, such as Backpropagation, are guaranteed to 

eventually identify the optimal solution, irrespective of initial weight values. 

5.2.3 Transparent Operation 

In marked contrast to most adaptive networks, all the values computed in the operation 

of the CSLC network represent real quantities, each being some part of the well 

understood inverse dynamics equations. This compares favourably with the obscure 
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"black-box" type of operation typical of most conventional networks, replacing it with 

the ability to analyse both weights and node outputs from a position of understanding as 

to what they each represent. For instance, in the case of the PUMA 560, several of the 

mass and velocity subnetworks' weight coefficients are the sums of various masses, 

inertias and/or squared terms, this means that these coefficients' true values must be 

positive. This information can be used to sensibly restrict the initial values of the 

corresponding weights to the correct signs, and as an aid to checking the state of the 

network during training. 

5.2.4 Network Modularity 

Each separate term within the Euler-Lagrange equation is represented by a distinct 

subnetwork, this allows each to be analysed, trained or calculated independently. For 

instance, if a manipulator which has had its physical parameters identified by a CSLC 

network has its bearings cleaned, it would be desirable to relearn the friction coefficients, 

but unnecessary to expend computational effort in re learning the gravity or mass/velocity 

coefficients. This can be achieved by allocating separate learning rates to each 

subnetwork, and setting all but the dry and viscous friction subnetworks' to zero. 

The ability to set different learning rates for different network sections is of general 

usefulness when employing learning algorithms, such as Backpropagation, that can 

overemphasise the training of significant terms. As can be seen from Eqn. 3.4-9, the 

effect of Backpropagation is to concentrate learning on those weights which cause the 

greatest contributions to the network outputs. Although this property can initially hasten 

the decline in network error, if not countered it can make the identification of less 

significant weights more difficult, ultimately causing training to take longer to reach a 

given error tolerance. Therefore, it is useful to define separate values for Back­

propagation's learning rate, T], for each subnetwork, dependent upon their significance. 

5.2.5 Low Network Order 

Despite containing a relatively large number of nodes, the CSLC network is sparsely 

connected and contains only 43 independent weights (26 mass/velocity coefficients, 5 

gravity, 6 viscous friction and 6 dry friction). This accounts for the CSLC network's low 

order of just 28, which is due to the most dependent output, 1:2, being a function of 28 

independent weights (21 mass/velocity coefficients, 5 gravity, I viscous friction and I dry 

friction). This means that, in the absence of noise, the CSLC network will reliably learn 

the global solution to the PUMA 560' s inverse dynamics from as few as 28 training 

patterns whose input values are linearly independent. 
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5.2.6 Computational Efficiency 

Due to the sparsity of network links, the sharing of common weight values and the 

independence of the subnetworks, the number of mathematical operations required to 

process and train the CSLC network is relatively small compared to that required by other 

networks proposed for modelling manipulator dynamics (for example [Bassi & Bekey 

1989, Miller et al. 1990]). Also, during training, the preprocessing of the input values 

needs only be performed once, rather than for every epoch. 

Furthermore, as the weight values associated with links in the velocity term subnetwork 

are a subset of those associated with links in the mass term subnetwork, it is not strictly 

necessary to apply a learning algorithm to the velocity term section of the network. This 

would mean that the adjustment to a common weight value would be equal to the average 

of the relevant elements of MV", rather than elements of both .1.W" and .1.W". 
Disregarding the effects of noise, the final estimate of common weight values will be 

identical to those obtained from applying learning to both subnetworks. Given that the 

velocity term subnetwork is by far the largest component of the total network, 

disregarding it for the purposes of calculating weight adjustments greatly re~uces the 

computational effort required for each training epoch. 

5.2.7 Unrestricted Choice of Learning Algorithm 

Unlike some network architectures, the CSLC network does not require a specialised 

learning algorithm. Neither the input preprocessing nor the context-sensitivity place any 

restrictions on the kinds of learning algorithm that can be employed. Therefore, any of 

the large number of learning algorithms that are appropriate for training linear combiner 

nodes (such as Backpropagation) can be used in the training of the CSLC network. 

5.3 PRELIMINARY PARAMETER IDENTIFICATION SIMULATION 

The training of the PUMA 560 CSLC network on real empirical data is presented in 

detail in Chapter 7, however, it is useful at this point to briefly discuss the training of the 

CSLC network on simulation data. The analyse of learning is made much simpler when 

dealing with data produced by simulation, due to the ideal network state being known. 

As the CSLC network's error hypersurface has only one minima, gradient descent 

learning algorithms would appear well suited. However, whilst using Backpropagation to 

train the PUMA 560 network, the rate of learning progressively slowed as training 

advanced. This is to be expected given that the error hypersurface gradient that 
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Backpropagation relies upon to provide a learning impulse tends towards zero as the 

network state approaches the optimal solution. This is because the optimal solution exists 

at the error hypersurface' s minima, where the error gradient is zero in all dimensions, that 

is, for all weights. Thus the region surrounding the minima comprises a flat-spot (a region 

of the error hypersurface with near zero gradient). Furthermore, the spatial interval 

between re-evaluating the instantaneous error gradient must be kept small as the network 

approaches its optimal state, in order for Backpropagation to reliably produce weight 

adjustments that cause the network's error cost to decrease between epochs. This 

translates to ever smaller values of 11 being required to ensure positive learning as 

training progresses. 

As has already been mentioned in Subsection 3.4.2, there have been several variants of 

Backpropagation proposed specifically for overcoming the difficulties caused by flat-spots 

and local minima [Stornetta & Huberman 1987, Fahlman 1988, Hagiwara 1990, Li 1990], 

however, these algorithms often have little mathematical foundation [Bishop 1995], and 

by definition, are not gradient descent techniques. The preferable solution is to employ 

a learning algorithm which does not rely upon determining the error surface gradient and 

which is capable of rapidly training a CSLC network, most particularly when the network 

weights are close to their optimal values. 

5.4 SUMMARY 

The formulation of a Context Sensitive Linear Combiner network has been demonstrated 

in this chapter, using the inverse dynamics of a PUMA 560 as the example application. 

Forming an exactly matching network representation of the system required the 

decomposition of the Euler-Lagrange equation into several subnetworks, the application 

of input preprocessing and the use of some system inputs ( q & ij) as context sensitive 

weights. The detailed form of the Euler-Lagrange equation specific to the PUMA 560 was 

examined. It was shown how the elements of the mass matrix, the gravity effect vector 

and the Christoffel symbols could all be expressed as individual summations of terms, 

where each term consists of a group of manipulator physical parameters, defined to be 

an inverse dynamics coefficient, which, for nonconstant terms, factors a trigonometric 

function, or group of functions, that vary with q. This representation of the dynamics' 

elements leads naturally to the formation of the corresponding subnetworks, where the 

trigonometric functions form the (preprocessed) inputs, and the coefficients are the 

weights of the network links leading from them. With the position dependent quantities 

represented in a network form, context sensitive links are then required to perform the 

vector products which occur in the mass and velocity terms. This capability to combine 

information from two pattern dependent sources through multiplication is unique to 

context sensitive networks. It was also noted that the velocity subnetwork weights are 

87 



linear functions of the mass subnetwork weights. 

The properties of the CSLC network were discussed, noting that its properties are general 

to this type of network and not restricted to the inverse dynamics application. These 

include good modelling capability and generalisation of the obtained model to the whole 

problem space due to the match between the algebraic form of the network and that of 

the system, the existence of only one minima in the network's error hypersurface, the 

transparency of operation due to the weights and node outputs within the network being 

recognisable quantities that appear in the system equation, network modularity due to the 

dependencies of each term within the system equation being known, the lack of 

restrictions on the learning algorithm that can be used for training, the low network order 

due to the sparsity of node links and the sharing of weights between several links, and 

the low computational effort required to process the network. For a manipulator inverse 

dynamics CSLC network in particular, it was explained how the velocity subnetwork 

(which is by far the largest subnetwork in terms of nodes, links and computational load) 

can be omitted from the learning segment of the training process (but not the calculation 

of the network output) in order to decrease the time taken to process each epoch. It is 

important to note that many of the CSLC network's properties, significantly those of 

generalisation and single minima, are not possessed by conventional networks when used 

to model nonlinear systems (such as manipulator inverse dynamics). 

Finally, a preliminary examination of Backpropagation training has shown that, although 

the optimal solution was reliably identified by gradient descent of the network's error 

hypersurface, training rates progressively decreased, making training tedious. To address 

this problem, a novel learning algorithm, which does not rely upon gradient descent, will 

be introduced in the next chapter. 
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6. PROPORTIONAL ERROR ALLOCATION 

In order to hasten network training, and in particular to prevent the maximum attainable 

rate of error cost reduction tending to zero as a given network approaches its optimal 

state, a novel learning algorithm has been developed which does not rely upon gradient 

descent, but which is capable of high error cost reduction rates, especially when the 

network weights are near-optimal. The algorithm is termed Proportional Error Allocation 

(PERAL), and its derivation is described in this chapter. The theoretical basis for PERAL 

is first described and analysed. This is followed by an explanation of its practical 

implementation and limitations. Empirical results from training two different classes of 

networks are also presented, complete with comparisons of the PERAL learning 

algorithm's performance to that achieved with Backpropagation. 

Although PERAL will be shown to be a useful tool in the training of the adaptive 

networks considered, a full study of its applicability has not yet been completed (see 

Section 8.2). Neither has there yet been a comparison of its training performance with a 

broader range of published learning algorithms, in particular those designed to perform 

rapid training, such as [Battiti 1992, Riedmiller & Bravin 1993, Moller 1993]. However, 

PERAL is presented here not only because of its potential capability to reduce training 

times, but also because it employs a novel approach to minimising a given network's 

output error, which is not dependent upon the error cost hypersurface. 

6.1 THEORETICAL BASIS 

The aim of the PERAL algorithm is to adjust the value passed through each link in a 

given network by a fraction of the network output error, where that fraction is 

proportional to the link's significance. The significance of a link is regarded as the 

relative contribution it makes to a node, compared to the contributions of all the links that 

connect to the same node. 

To examine this principle consider the single summation node network in Fig. 6.1-1, 

which can be thought of as a network in its own right or as a subsection of a more 

complex network. 
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Figure 6.1-1: A single summation node network 

Let w denote the vector of optimal weight values, of which w is the current estimate. 

Associated with the output, for each training pattern, will be a desired target value t. The 

simple difference output error for a given pattern is thus defined as 

e = t- y (6.1-1) 

Therefore, for the network in Fig. 6.1-1, it is desirable to increase the weighted values 

in then links by a sum total of e. If the adjustments made are proportional to each link's 

true significance, in other words their significance when the network is in its optimal 

state, then, for a given link j, 

lx1 wA e 
(6.1-2) 

As the input vector is constant, the following learning algorithm can be obtained: 

sgn(w1) 1 w11 e 
A w1 = - • .----

L lxm wml 
m•l 

(6.1-3) 

Clearly this equation in its present form cannot be used on practical problems, since it 

requires the optimal weight values to be known. However Eqn. 6.1-3 is worth examining 

for the desirable properties it displays. In the trivial case of n being equal to one, and in 

the absence of noise, all training patterns will produce the same t.w, which adjusts the 

weights vector to its optimal value. In the more general case of n > 1, Eqn. 6.1-3 

describes an iterative training process, such that for any given iteration and any given 

training pattern, the algorithm produces an adjustment to w, which, in the absence of 

noise, will in turn cause the network to produce a zero error in response to that pattern 

(and, in general, that pattern only). Thus, the value of t.w obtained will differ for each 

pattern. However, if a batch learning approach is used, that is, if the mean t.w from 

across all the patterns is employed at each iteration, then the adjustments to the weights 

will always take the network closer to its optimum state. This ensures that, for any initial 

91 



weight values (except n wj = 0), the weights' optimal values will be identified, to 

within any chosen accuracy, in a finite number of iterations. 

There is an important exception to this process. The above does not hold if there are 

fewer independent signum of the training patterns than there are weights. That is, if one 

forms a matrix where each row is the signum function of x for a specific pattern, then the 

mean of the weight adjustments specified by Eqn. 6.1-3 is only guaranteed to progress 

the network towards its optimal state if the matrix has full rank. The reason for this is 

straightforward: to identify uniquely the optimal weights for the training set one requires 

at least as many patterns as weights (see Section 4.2). However, if the training set 

contains two or more patterns whose vectors of input value signum are not linearly 

independent, then training will behave exactly as if those patterns had been replaced by 

a single pattern equal to their sum. Therefore the effective training set can always be 

reduced to contain only independent signum, but to be capable of inducing successful 

learning must still have at least as many patterns as weights. 

Clearly this idealised version of PERAL learning is potentially very useful when 

processing data produced by a linear combination and devoid of noise, however, a 

practical learning algorithm should also be robust to non-ideal disturbances within its 

training set. If one regards all the sources of noise within a given training pattern in terms 

of the network output, such that 

xw = y-k (6.1-4) 

where 

k = disturbance term due to noise 

then, from Eqns. 6.1-1 and 6.1-4, it can be seen that the training described by Eqn. 6.1-3 

will be adversely affected unless the noise is uncorrelated, and 

L x1k = 0 for all j (6.1-5) 
all patterns 

The simplest way to approximate the above condition is to employ a large training set. 

Thus, if the disturbances due to noise are uncorrelated and have zero mean, Eqn. 6.1-5 

is likely to be approximately true and training will not be significantly affected. 

The choice of initial weights can begin to affect the result of training when the training 

set contains noise, but evidence so far collected suggests that the tolerances within which 

the network's optimal weight values can be identified are largely related to 

I L xk 
p an patterns 

(6.1-6) 

(where p, as before, denotes the number of patterns in the training set). 
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6.2 PRACTICAL APPLICATION 

Within this section the PERAL learning algorithm developed so far is generalised and 

modified for practical application. This requires the approximation of w by w, which 

restricts the use of PERAL to fine-tuning, that is, w must be partly trained or some other 

rough estimate of the optimal weights obtained prior to employing PERAL. 

As it is not clear how best to produce an estimate of output error for nodes which 

precede further adaptive (context insensitive) layers, the description ofPERAL's practical 

application presented here is restricted to networks which possess just one adaptive layer. 

The same generalised two-layer adaptive network (and accompanying notation) as was 

used in the development of Backpropagation (Subsection 3.5.2), is used here (reproduced 

as Fig. 6.2-1 ), but with the weights matrix W" defined as being context sensitive and 

employing network inputs directly as weight values. The CSLC mass subnetwork is 

therefore a specialisation of the network shown below. Furthermore, as with networks 

trained using Backpropagation, the activation functions performed by the network nodes 

are assumed to be continuous, which implies that the network contains only linear 

combiner and/or locally sensitive nodes. 

Hidden Layer 
(A) 

Output Layer 
(B) 

Yt 

Yt 

Yo 

Figure 6.2-1: A generalised two-layer network 

Consider the arbitrary output node I, which performs the activation function f8 • If it 

produces an output y1 which is an estimate of a target value of t
1 

, and f 8 is locally 

sensitive, then one may well presume that it is desirable to adjust the summed input to 

node l by f. 1{t1) - ].
1
{y1) • However, to do this would mean that one is effectively 

training a summation layer with target values of f.1 {t1) and ignoring the purpose of the 

activation function, which is to produce areas of relative sensitivity to errors. That is, 
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because locally sensitive activation functions bias their associated output errors within 

particular regions of interest, training should also be likewise biased to enhance learning 

within these regions. Thus if, for example, f 8 is a hyperbolic tangent function, learning 

should be concentrated at the region where S~ (the summed input to node I in layer B) 

is close to zero. Therefore, it is desirable to make adjustments so that 

11 s• = { t1 - Y1 
I y - t 

I I 

if / 8 is strictly increasing 
if f 8 is strictly decreasing 

(6.2-1) 

Note that linear combiner nodes can be thought of having an identity activation function, 

which is strictly increasing. 

Now consider a link which connects node k of the hidden layer with node I of the output 

layer: the weighted value it passes to the output layer is J;.(S:) w:,. Thus, the desired 

adjustment to this value, as an approximation of Eqn 6.1-2, is 

I A 81 B J;.(S,)Wu !1S1 

h 

L lt.<S~)W!II 
(6.2-2) 

m• I 

Therefore, the adjustment to the output of node kin the hidden layer, averaged across the 

o nodes to which it connects, is 

I o = "("' 
- £..., 
0 1•1 

I o 

-E 
0 1•1 

I A B I B J;.(S,) W,1 !1 S1 

h 

w:, E lt.<S~) w!~l 
m• I 

lt.<s:>l sgn(W:,) !1 S1
8 

h 

L lt.<S~)W!II 
m•l 

This equation can be generalised for the whole layer such that 

(6.2-3) 

(6.2-4) 

where both the division inside the brackets, and the multiplication denoted by *• are 

performed element by element. 

Finally, the adjustments to the weights matrix connecting the inputs to the hidden layer 

( WA ) are determined. Again, an appropriately biased value for the desired adjustments 

to the summed inputs of the hidden layer can be obtained by specifying 
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if f. is strictly increasing 

if f. is strictly decreasing 
(6.2-5) 

Thus the adjustment to the weight associated with the link from input j to the hidden 

layer node k is obtained from 

TJ sgn(x1 )~~~~.1s: 
I 

L lx~w~.l 
(6.2-6) 

m• I 

The inclusion here of a learning coefficient (TJ) of less than unitary value, increases the 

probability of the training process being stable (successively reducing the network error 

cost) and thus ultimately producing the optimal network state. 

The above equation can be generalised for the whole weights matrix, such that 

(6.2-7) 

As with the equations which describe the learning algorithms in Section 3.4, Eqns. 6.2-4 

and 6.2-7 can both be generalised for batch training, where the whole training set is 

processed in parallel, by replacing the row vectors with corresponding matrices (that 

contain one row for each pattern) and dividing by p, the number of patterns. 

6.3 EMPIRICAL RESULTS 

This section details the training of two very different types of network in order to 

compare the batch forms of PERAL and Backpropagation. The first system examined, 

that of object categorisation, is a classification problem with ideally discrete outputs. In 

contrast, the second system, the PUMA 560 simulated inverse dynamics, is a continuous 

output modelling problem. Consequently, together these provide examples from both sides 

of the most significant distinction between network types. Historically, the theory of 

adaptive networks was developed mainly for use on classification problems, but more 

recently, has been increasingly employed on systems with analogue outputs. 

6.3.1 Ultrasound Object Identification 

This problem is concerned with the identification of three dimensional objects 

encountered by a mobile robot [Sillitoe & Elomaa 1994]. An ultrasound emitter mounted 
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on the robot periodically sends out pulses into the area in front of the vehicle, two 

receivers mounted equidistantly on either side of the emitter then pick up the signals 

reflected back towards the robot by any objects within this detection field (see Fig. 6.3-1 ). 

The aim is to train an adaptive network to recognise objects and surfaces, by correctly 

classifying them as one of ten broadly defined categories, from data of the reflected 

signals picked up by the receivers. 

To create the data set the robot was kept stationary and its emitter fired just once per 

pattern. For each pattern, a single object or structure which clearly fell into one of the ten 

chosen object categories was placed within the detection field. To create the network 

input values, the two received signals were processed in order to provide the angle to 

which the object lies off the robot's centre line, the distance from the robot to the object 

and a measure of the total power of the signals received. In addition to these, the two 

signal profiles were broken down into 11 coefficients each, to provide data on the shape 

(over time) of the received signals. Thus each training pattern consists of 25 input values 

and 10 target outputs (one for each object category), where only one of the targets will 

have a value of 1, denoting the correct category, whilst the other nine will have values 

of -I. In total, 5000 patterns were recorded, of which 3150 were used as the training set 

(315 of each object type) and the rest formed the comparative set. 

Figure 6.3-1: Plan view of mobile robot with a 90° convex edge 

directly in front of it and a pole slightly to its right 

Several different network architectures were tested, with varying degrees of success. For 

ease of analysis, the simplest of these architectures is discussed here. The network 

consists of just one fully connected weights matrix connecting the 25 inputs and one bias 

term to 10 output nodes with hyperbolic tangent activation functions, as shown in Fig. 

6.3-2. The activation functions are incorporated so as to restrict the network output values 

to a finite range, as well as to polarise the outputs between the "true" and "false" values. 
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For the task of gauging whether the network has correctly identified a given input pattern, 

a simple winner-takes-all system is used, such that the category associated with the 

highest valued output is taken to be the one proposed by the network. However, the ten 

outputs also provide quantitative measures for the degree of certainty associated with the 

network's selection. Output values of near 1 or -1 show that the network has decisively 

selected or ruled out a category, whilst near zero values demonstrate uncertainty. Both 

Backpropagation and PERAL require this quantitative measure of error in order to induce 

learning. 

+1 

Angle 

Distance 

Power 

Left Reciever 
Coefficients 

Right Reciever 
Coefficients 

Figure 6.3-2: Ultrasound object identification network 

Several training sessions were performed, using random initial weight values. To compare 

the fine-tuning performance of PERAL, the weight values learnt from incomplete 

Backpropagation training were recorded at the point that the learning network first 

achieved a mean correct classification rate of 30% or more, and then used as the initial 

weights for PERAL training. To ensure that both learning algorithms made weight 

adjustments at their optimal (highest whilst remaining stable) rate, the learning parameter 

(11) was modified before each epoch such that if a 10% increase in 11 produced a further 

8% or greater reduction in the mean error modulus then the learning rate was increased 

by 10%, or if a 10% decrease in 11 caused any further reduction in the mean error 

modulus then the learning rate was reduced by 10%. This approach increased the actual 

time spent calculating each epoch, but maximised the error reduction per epoch caused 

by each learning algorithm. 

As could be expected from such a simple network architecture, the final network 

solutions obtained are not completely successful in categorising all of the training objects. 

(Certain, more complex, architectures have achieved 100% correct categorisation 
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[Mulvaney & Sillitoe 1995]). However, a high error optimal solution is ideal for testing 

the ability of PERAL to learn from training data with significant disturbance terms. 

A plot of the correct classification percentage for a typical comparison experiment is 

shown in Fig 6.3-3. This shows how Backpropagation was initially used to train the 

network for 41 epochs, at which point the network had a correct classification rate of 

30%. Both Backpropagation and PERAL were then used to train from this point, with 

PERAL showing a markedly faster progression towards the optimal solution region. If 

the end of training is defined as the point when the classification rate of the training set 

reaches 50%, then, for this particular comparison, the Backpropagation training took a 

total of 382 epochs to complete, meaning that the fine-tuning section of the learning was 

approximately five times faster (measured in epochs) under PERAL. 
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Figure 6.3-3: Comparative plot of the error curves produced by FERAL and 

Backpropagation when applied to the ultrasound object identification problem 

6.3.2 Simulated Manipulator Inverse Dynamics 

This subsection compares the training under PERAL and Backpropagation of the CSLC 

network described in Chapter 5, using data obtained from a simulation of the PUMA 

560's inverse dynamics (basic model taken from [Arrnstrong et al. 1986] with friction 
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components from [Leahy & Saridis 1989]). A full discussion of the issues involved in 

training the CSLC network are presented in Chapter 7, where the added complexities of 

empirical data gathering can also be addressed. For now though, it is important only to 

note that the PUMA 560 simulation contains a static friction term, whereas the CSLC 

network does not, thus providing a source of correlated noise. 

Multiple training sessions were performed, with different levels of added noise and 

different initial weight values. The same method as described in subsection 6.3.1 was 

employed to ensure optimal rates of learning for both learning algorithms, though the 

CSLC network employed five separate learning rates, one for each subnetwork. Fig. 6.3-4 

shows a typical comparative error plot of a training attempt, where both the (unprocessed) 

input data and target torques data contain large Gaussian noise terms. 
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Figure 6.3-4: Comparative plot of the error curves produced by PERAL and 

Backpropagation when applied to the simulated inverse dynamics problem 

For the training comparison shown in Fig. 6.3-4, the PERAL algorithm was applied after 

500 epochs of training by Backpropagation. As with all instances where PERAL was 

introduced at this point or later, it immediately made a significant and sustained reduction 

in the mean network error cost. 
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6.3.3 Discussion Of Results 

The Proportional Error Allocation algorithm clearly has potential for shortening the 

network training process, in terms of the number of epochs of learning required to reach 

a suitably low average error. The actual time taken to perform each epoch will depend 

on a number of factors, such as the speed of the computer used, but any difference in 

learning algorithms' computation time will be largely due to the number of mathematical 

operations each requires. Operations such as floating point multiplications or additions 

take significantly more time than operations such as signum or modulus functions, 

therefore, for comparing the relative time taken to perform either Backpropagation or 

PERAL, only the floating point operations are considered. Similarly, the operations 

required to determine terms whose values do not vary between epochs are also not 

counted, as it is assumed such values are only calculated once in the entire training 

process. Furthermore, values derived in the calculation of the network's outputs, during 

what is often called the feedforward phase of training, are assumed to be retained if used 

by the learning algorithm during the weight adjustment (feedback) phase. For the general 

two-layer network, each of the nodes is assumed to contain a hyperbolic tangent, or other 

similar activation function, whose derivative is easily expressible in terms of the original 

function and therefore requires only two floating point operations per pattern to calculate 

(if this is not the case then the performance of the Backpropagation algorithm may 

require considerably more floating point operations). Note that the values in the table 

below (Fig. 6.3-5) include the number of floating point operations performed in the 

feedforward phase of learning. 

Network Type Backpropagation PERAL 

General Two-Layer 
4ih + ?h + 2ho + 9o ?ih + 4h + 6ho + 4o 

(Fig. 6.2-1) 

Object Identification 
1080 1850 

(Fig. 6.3-2) 

PUMA 560 CSLC 
2904 4875 

(Figs. 5.1-1 to 5.1-6) 

Figure 6.3-5: Total no. of floating point operations required to peiform one iteration 

of the indicated learning algorithm upon one training pattern 

(i = no. of inputs, h = no. of hidden nodes, o = no. of outputs) 

It can be seen from the table that, for most network architectures, PERAL requires more 

floating point operations to perform than Backpropagation. The exact comparative ratio 
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depends on the particular network considered. However, in the two test cases, PERAL's 

superior training rate per epoch more than made up for its lower rate of epochs per 

second. 

An important property of the PERAL algorithm is that it does not rely upon the error 

hypersurface gradient to provide information on weight adjustments, and is therefore not 

affected by flat-spots in the error hypersurface. Furthermore, as the network approaches 

its optimal solution state, the estimate-based PERAL algorithm (Eqn. 6.2-2) more closely 

approximates the ideal algorithm (Eqn. 6.1-2). Thus, PERAL's learning rate parameter 

can be increased as training advances, whilst maintaining stable successive error cost 

reduction. This is in marked contrast to Backpropagation, where the learning rate must 

necessarily be reduced as training advances, in order to maintain the same stable learning. 

6.4 SUMMARY 

A novel learning algorithm has been introduced, based upon adjusting a network's 

weights in accordance with the relative magnitude of the corresponding links contribution 

to the network outputs. The beneficial consequences of employing such Proportional 

Error Allocation learning were examined under the theoretical case of the optimal weight 

values being known, and the algorithms robustness to noise evaluated. 

A practical implementation of the PERAL principle was developed in Section 6.2 by 

approximating the optimal weight values with the current estimates. This approximation 

limits the operational use of the algorithm to the fine-tuning of a given network 

subsequent to some other means having been used to identify an approximate solution. 

However, by considering the results shown in the two case studies, it can be seen that 

this region of adequate solution approximation can be substantial, and that the use of 

PERAL can greatly hasten training compared to the Backpropagation algorithm. 

The benefits of the PERAL algorithm not being based upon gradient descent of the 

network error hypersurface were discussed. It was also noted that, in contrast to gradient 

descent techniques, the constructive weight adjustments performed by PERAL do not 

become vanishingly small as the network approaches its optimal state. 

Up until now, the theory surrounding the identification of a manipulator's dynamics has 

been almost entirely developed in either a theoretical or simulated context. Given the 

information and knowledge that has been acquired, it will be possible in the next chapter 

to progress the examination of the identification problem into the context of empirical 

experimentation and practical results. 
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7. COEFFICIENT IDENTIFICATION 
FOR A PUMA 560 

This chapter details and discusses a coefficient identification experiment, performed on 

two real PUMA 560s, using the CSLC network developed in Chapter 6. The hardware 

involved in the experiment is first described, then the potential sources of disturbances 

to the Euler-Lagrange representation of the inverse dynamics are reviewed. Of particular 

concern is the need to derive the manipulators' joint velocities and accelerations from the 

sampled joint positions, as this is a notorious source of input noise. In order to address 

this, a novel application of spline fitting is developed, which is capable of smoothing the 

quantised joint position profiles and can be algebraically differentiated. 

The requirements of a good data set, and the measures taken in order to achieve them, 

are discussed in Section 7.4. The details of how training was applied are presented in 

Section 7.5, and the results of the identification experiment are discussed in Section 7 .5, 

where comparisons are made with coefficients identified from direct measurement and 

a combination of direct measurement and regression. 

7.1 EQUIPMENT 

The two PUMA 560 Mk. 2 manipulators under investigation reside at the [Robotics 

Institute] of Camegie Mellon University. Data on the manipulators' motion was kindly 

collected by Dr. Richard Voyles, a then Ph.D student at the institute. Coefficient 

identification was performed on two identical manipulators so that it would be possible 

to verify the results obtained through comparison. 

Both manipulators are controlled by TRC004 PUMA interface boards, these allow low­

level control of the manipulators' motion [TRC004 User's Manual]. Combined with a 

real-time computer, the TRC004 replaces the archaic LSI/11 controller that PUMA 560 

Mk. 2s were originally supplied with. The TRC004 interface board is manufactured by 

[Trident Robotics and Research Inc.], a spinoff of Carnegie Mellon and Stanford 

Universities that produces various low-cost products aimed at the robotics research 

community. The TRC004 consists of an I/0 board with AID converters, D/ A converters, 
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encoder counters and digital 110 lines, capable of connecting to several bus architectures 

including VMEbus, IBM-PC bus, Multibus and IndustryPack bus. It allows direct control 

of. the PUMA 560' s six motors, and measurement of the joint positions. 

Position encoders are attached to all of the manipulators' motors. Under ideal trans­

mission conditions, that is, in the absence of backlash or mechanical compliance in the 

transmission components, the encoders have joint position measurement precisions of 

[0.10035 0.073156 0.11700 0.082663 0.087376 0.081885] milliradians respectively 

(from joint one to six). Note that these values are encoder precisions, expressed in terms 

of the joint positions, that is, multiplied by the gear ratio r. 

7.2 SOURCES OF NOISE 

There are several known sources of disturbance to the Euler-Lagrange equation (when 

applied to a real manipulator) which have the potential to cause noise in the data 

collected. These include the principal inertia substitution within the pseudo-inertia 

matrices, the lack of a static friction term, the motor torque generation linearity limits, 

backlash, compliance, quantisation and estimation of the joint velocities and accelerations. 

Each of these is discussed below. 

7 .2.1 The Principal Inertia Substitution 

In the development of the kinetic energy term for a general manipulator (Subsection 

2.3.2), it was useful to define the pseudo-inertia matrix for each link in terms of their 

mass moments of inertia, products of inertia, and first moments (Eqn. 2.3-17). It was then 

shown how the expression for any given pseudo-inertia matrix could be simplified, by 

use of the parallel axis theorem (Eqns. 2.3-18 & 2.3-19), so as to contain only the 

principal mass moments of inertia at the body's centre of gravity and the first moments 

(Eqn. 2.3-20). As stated in Section 2.3, this simpler representation is only correct when 

the axes of the coordinate frame attached to the body are parallel to the corresponding 

principal axes at the body's centre of gravity. However, in the case of manipulator links, 

these principal axes are usually impossible to determine exactly. In practice, it is 

commonly assumed that the principal axes at the link's centre of gravity are closely 

approximated by a set of axes, two pairs of which each describe a plane of symmetry in 

the link's external dimensions. This estimated set of axes and the true principal axes only 

ever coincide exactly when the given link is mass symmetric in the same planes as its 

exterior dimensions are volumetrically symmetric. As this is extremely unlikely in a real 

manipulator, this simplification introduces errors into the Euler-Lagrange equations, 

caused by the existence of neglected products of inertia in the manipulator's true inverse 
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dynamics for the frames chosen. 

This simplification has in the past been universally used during the derivation of specific 

manipulators inverse dynamics, the reason for this is the difficulty in finding a link's 

products of inertia. The inertia pendulum method [Armstrong et al. 1986] is the most 

practical way of determining the inertia characteristics of a link, once it has been 

detached from the rest of the manipulator, but this only provides information on the mass 

moment of inertia about a chosen axis. Therefore, when using the inertia pendulum, it is 

assumed that the chosen axis is a principal axis of the link, because if it is not, there is 

no practical way to measure the arising non-zero products of inertia. 

Given that the method of coefficient identification used here is not dependent upon direct 

measurement of physical parameters, it would be a simple matter to develop the Euler­

Lagrange equation without the approximation presented by the principal axes theorem. 

This would result in a slightly more complex representation of the manipulator's inverse 

dynamics, for which a CSLC network could be just as readily formulated as for the 

simpler version so far discussed. However, in order for the parameter values obtained 

from the identification method to be directly comparable to those obtained from direct 

measurement, the less accurate model used by other researchers (specifically [Armstrong 

et al. 1986]) is adopted. The errors caused by using the simplified inverse dynamics will 

act as noise in the coefficient identification process. However, the cross products of 

inertia at the links' centroids (the neglected quantities) will always be small compared to 

terms such as the moments of inertia (see Eqns. 2.3-14 & 2.3-15), regardless of the axes 

orientation chosen. Thus the effect of the principal inertia substitution is expected to be 

correspondingly small. 

7.2.2 Static Friction Term 

The other known deficiency of the CSLC network's representation of the PUMA 560' s 

inverse dynamics is the lack of a static friction term. For most of the problem space this 

term is negligible (see Subsection 2.5.1), but at low joint velocities, it can begin to have 

significant effects. As discussed in Subsection 2.5.1, the estimation of link velocities from 

the corresponding link positions, as is required in this case study, causes the sign of a 

given joint's static friction term to be in doubt at the only time its magnitude is not 

vanishingly small. It has therefore been decided not to include a model of the static 

friction in the CSLC network, as it would be unlikely to reduce the overall modelling 

error. 

The disturbance within the training data caused by the omission of a static friction model 

is not expected to significantly affect the training of the mass, gravity of velocity sections 
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of the CSLC network. This is because tbe mass and gravity terms are uncorrelated with 

joint velocities, thus, if the training set contains a roughly equal number of low velocities 

in the positive direction as for the negative direction, for all joints, then the averaged 

error will be approximately zero. The velocity term is effectively uncorrelated as it 

approaches zero for low joint velocities. However, the viscous and dry friction terms are 

clearly correlated, so to avoid affecting their training a threshold velocity magnitude is 

defined for each joint, below which static friction is significant. During training, all 

patterns possessing velocity magnitudes below this threshold are neglected for the 

purposes of training the viscous and dry friction subnetworks only. As tbe frictional 

effects are decoupled, different patterns can be neglected for different joints. By 

consideration of Fig. 2.5-1 it can be seen tbat, without the use of suitable thresholds, the 

corresponding subnetworks are liable to learn erroneously low values for the viscous 

friction coefficients and erroneously high values for the dry friction, in order to minimise 

the training set's error cost. 

7.2.3 Motor Linearity Limits 

The electric motors within a PUMA 560 are supplied by the manufacturer with accurate 

ratings for their torque generation per unit of power. However, this linear relationship 

between torque and power is only true for a fraction of the motor's range. As can be seen 

from Fig. 7.2-1, tbe torque-power relationship for a given motor is linear at low demands, 

but starts to produce progressively less torque per unit power at higher demands. The 

point at which the relationship stops being linear is known as tbat motor's limit of 

linearity. 
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Figure 7.2-1: Motor response curve with limit of linearity 
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Therefore, in order to not introduce errors between demanded and generated torque, the 

torque-power relationship of the PUMA 560s motors must be checked, to ascertain their 

limits of linearity. The PUMA 560s' motors are all of the same design, but vary in rated 

maximum output, it is therefore reasonable to assume that they share approximately the 

same torque-power profiles, when scaled down by their maximum output, and that their 

limits of linearity are similarly related. Thus an experiment was devised to check the 

motor response of joint 2, which would act as the datum for approximating the limits for 

the rest of the motors. 

The experiment consists of locking all of the joints except joint 2 with the arm pointing 

directly outwards, suspending a range of weights from the flange of the manipulator's end 

effector, then using a standard PD controller with gravity compensation (the gravity 

section of the abbreviated model with relevant parameter values from [Armstrong et al. 

1986]) to oscillate link 2 around the horizontal position. The average applied torque 

required to do this is then plotted against the mass of the suspended weight. The arm is 

oscillated, rather than simply commanded to be stationary in the horizontal position, so 

as to average out the effects of friction. If the arm was stationary, one would not know 

if the frictional effects were acting in the same direction between measurements. It is not 

necessary to know the distance from the axis of joint 2 to the point through which the 

suspended weights act, only that it is constant. Clearly, whilst the motor is acting within 

its range of linearity, the plotted results should lie on a straight line, however, the 

measured "torques" are in fact measurements of the power required by the motor, 

expressed in terms of torques (applied at the joint). Thus if a large weight was used that 

caused the motor to exceed its limit of linearity, it would appear to require more torque 

per unit of added mass than for lesser weights. 

The results of this experiment are shown in Fig. 7.2-2, in which a total of 12 

measurements are plotted, including three where no weight was used. The best-fit line (in 

a least squares sense) of the measurements pertaining to the 11 lightest weights is also 

shown. If the motor's limit of linearity was less than the torque required by the heaviest 

weight, then the point on the graph corresponding to that weight would be expected to 

appear above the best-fit line. As this is not the case, it is reasonable to assume that the 

limit of linearity lies beyond the torque range of this experiment. Furthermore, as the 

required torques for the data gathering trajectories (see Section 7.4) do not exceed this 

range, or its equivalent for joints other than number two, it is considered unnecessary to 

investigate the limits of linearity further. 
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Figure 7.2-2: Motor response for joint of a PUMA 560 

(best-fit line found for all points except the furthest right) 

As a double-check, the same experiment was performed on joint 3, with similar results. 

7.2.4 Backlash and Compliance 

The joint angular position encoders on the studied PUMA 560s are attached directly to 

the respective motor shafts, thus creating the potential for positional errors whilst joints 

are experiencing backlash. To reduce the effects of backlash, forces are applied to the 

cogs in each of the geartrains, pushing them against each other at the cogteeth interfaces. 

This technique is known as overmeshing: it can greatly reduce the degree of backlash in 

a manipulator's joints, but it also increases the effective friction, and, at high levels, can 

increase the degree of mechanical compliance. A moderate level of overmeshing is 

employed on the PUMA 560s, such that any offset between measurements of a given 

joint's position taken before and after a backlash period (b,) are assumed to be small. 

However, as discussed in Subsection 2.5.3, it is important to identify when a joint is 

experiencing backlash so that the characteristics of non-driven motion are not learnt by 

the CSLC network. As joints are likely to experience backlash at different times from one 

another, disregarding a whole training pattern because of backlash in one or more of the 
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joints is likely to greatly increase the amount of raw data required. However, the 

disturbance to the inverse dynamics caused by backlash is decoupled, that is, if a given 

joint is experiencing backlash, then there will be a reduction in the effective values of the 

friction coefficients and the motor inertia for that joint only. Therefore, it is possible to 

use all the available training patterns by ignoring the network output errors (for a given 

pattern) of only those links identified by Eqn. 2.5· 7 as being likely to be experiencing 

backlash. 

Disturbances due to mechanical compliance can be largely characterised by two types of 

phenomenon, those of sag and elasticity. Sag represents the time independent deformation 

of the manipulator due to its configuration, such as bowing of a link (or more plausibly, 

its actuator) due to the weight acting upon it. Given the PUMA 560' s metallic 

construction, the degree sag is expected to be small. Elasticity within a manipulator's 

components cause its links to oscillate about their steady-state positions, as such, its 

effects are clearly time dependent. However, as they are not significantly correlated with 

any of the CSLC network's inputs, the effects of elasticity are expected to cancel out 

when considered over the whole of a training set. 

7.2.5 Quantisatlon And Input Estimation 

The link positions are measured in terms of movement counts of the corresponding 

encoders, thus the values for joint positions are integer multiples of the measurement 

precisions stated in Section 7.1. This causes what is known as quantisation, where the 

measured values for a given joint's position are constrained to be members of a set of 

discrete values, in this case, with a constant interval equal to the encoder precision. Thus, 

the measured motor positions (evaluated in terms of the joint positions) may deviated 

from the true positions by up to the value of the corresponding encoder tolerance. Even 

given that the true measurement tolerances of joint positions will be somewhat higher 

than the value derived from the encoders' precisions, due to mechanical compliance and 

backlash in the transmission, the measured values of q, and therefore the preprocessed 

CSLC network inputs, are acceptably accurate estimations of the true values. 

However, the problems caused by the quantisation of q become much more significant 

when attempting to derive values for q and ij . Thus, the method for deriving the joint 

velocities and accelerations from position measurements needs to be carefully considered. 

For the purposes of demonstrating the potential problems connected with quantisation, 

consider the estimation of a joint's velocity and acceleration from simple numerical 

differentiation of neighbouring patterns. If the estimate of a given joint's positions, 

denoted ij , is set equal to the corresponding measured values, numerical differentiation 
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of the consecutive patterns n-2 to n+2 can then be expressed as 

where 

iln.q- qn-1 
2X 

ij. = estimated value of the joint position for pattern n 

ij. = estimated value of the joint velocity for pattern n 

ij. = estimated value of the joint acceleration for pattern n 

A = time interval between measurements 

(7.2-1) 

(7.2-2) 

As with any numerical differentiation technique, the estimation accuracy is clearly related 

to the length of the measurement interval, such that a smaller A yields greater accuracy. 

However, it can be seen from Eqn 7.2-1 that the quantisation intervals of q will be equal 

to the quantisation intervals of q divided by 2A, and in turn, from Eqn. 7.2-2, the 

quantisation intervals of ij will be equal to the quantisation intervals of q divided by 4A2
• 

Therefore, if measurements were taken every thousandth of a second, the quantisation 

intervals for the joint accelerations will be 250 thousand times greater than the those of 

the positions, and clearly a major cause of noise. 

In the following section a technique to be known as spline smoothing is described, which, 

under certain predictable conditions, eliminates quantisation for joint positions and thus 

allows accurate estimation of the joint velocities and accelerations. 

7.3 SPLINE SMOOTHING OF MEASURED POSITIONS 

In Subsection 7 .2.5 the need for eliminating quantisation effects from the measured 

positions was identified. Within this section, a novel application of splines, for the 

smoothing of quantised data, is discussed. Splines take their name from the thin strips of 

wood that ship designers would bend between pegs to provide natural looking curves 

between specific points. In particular, cubic splines provide the most aesthetically 

pleasing smooth curves between several given points in two dimensions. A cubic spline 

is made up from a series of cubic curves, each one having different coefficients and 

smoothly joining to the next in the series at one of the given points. The conventional use 

of splines, however, is to provide interpolation between known values. In the case of 

position measurements though, the true values are not known exactly (due to quantisation, 

backlash and compliance) and the only data available to aid in correcting a given 

measurement is from other measurements taken around the same time. 
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The technique devi sed involves creating cubic splincs from different subsets or the 

measured values, then averagi ng these splincs to create the desi red smooth curve. For a 

given link and smooth trajectory, if one takes every/'' po int from the set of joint position 

measurement , then one can create a cubic splinc which will exactly pass through the 

chosen points, whilst closely and smoothly approx imating those in between. There arc a 

tota l ofj possible spl ines thus obtainable, with di rrerent choices or the sta r1 ing point for 

the spli ne (the first, second, .. . or/'' member of the data set). Thus, the average of these 

cubic splincs provides a smooth curve which close ly approximates all the measu rements, 

without necessarily passing through any or them. 

To demonstrate the usefulnc s of this technique, consider Figs. 7.3-1 & 7.3-2 . The former 

shows a selection or points whose y-values arc the quantised output or a quadratic 

equation, three cubic splines arc also shown, each one filled to every third point. The 

range or the data extends either side of the graph, but allention is focused on the saddle 

point a it is the most difficult part of a curve to approx imate from quantiscd data. otc 

in pat1icular how quantisa tion has apparently nallcncd the original eq uation's 

representation at the bottom of the curve. 

11 12 13 14 15 16 17 18 19 
Multiples of Measurement Interval 

Figure 7.3- 1: Three cubic splines passing through three subsets of quantised data 

From consideration of Fig. 7.3-2 it can be een that the average of the th ree fitted splinc 

curves shown in Fig. 7.3- 1 provides a smooth, close approx imation to the original 

(nonquantiscd) data. In part icular, note how the spline smoothing has reversed the 

nallening due to quanti sat ion or the quadratic equation at the bottom or the saddle point. 
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Figure 7.3-2: Comparison of averaged cubic curve and nonquantised data 

Now that a suitably accurate and nonquantised approximation of the true joint positions 

is possible, within certain limitations which are discussed below, it can be used to provide 

nonquantised estimates of the joint velocities and accelerations. The estimate of a given 

joint's position profile ( ij) is a cubic expression, with differing coefficients in each 

measurement interval, such that, for a given pattern n, it can be expressed as 

ii. = K,+ K 1n+ K,n2 + JSn3 (7.3-1) 

where 

K1 = coefficient of the i'" order element, for the current measurement interval 

Note that as measurement intervals join at measurement points, there will, in general, be 

two different sets of values that can be employed as coefficients in Eqn 7.3-1 . 

Estimates of a given joint's velocity and acceleration can be found from the first and 

second instantaneous differentials of Eqn. 7 .3-1. Thus, for the n .. estimated position, the 

following are obtained 

K 1 2JS 3JS 2 "X+ Tn+ Tn 
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Clearly j, the number of splines used, has an effect on the approximations obtained. The 

larger the value of j, the less sensitive the resultant approximation will be to changes in 

the data that occur over short periods. This insensitivity will make the approximations 

robust to noise, but if j is set too high, the approximations may fail to capture legitimate 

features of the underlying data, for example, approximating acute peaks by more shallow 

ones. Thus the value of j should be adjusted to best suit the data being examined. 

The primary limitation of the spline smoothing technique is that to smooth a given pattern 

requires information from patterns measured both before and after it. Therefore, this 

technique can not be used in real-time, that is, smoothing can only be performed 

sometime after the measurements are taken. However, this does not present a problem for 

the currently considered application of smoothing joint position measurements in order 

to create the input data for the CSLC network. 

A second limitation is that the technique requires the underlying curve that it 

approximates to be continuous and smooth. Fortunately, in the case of joint positions and 

velocities, their true values are guaranteed to be continuous. Any lack of smoothness is 

related to discontinuities (within the measurement timescale) in the acceleration profile. 

When controlling a manipulator, the signal that regulates how much torque the motors 

apply to each joint is updated at discrete intervals, causing the motor torque profile 

(against time) to be a series of steps. This will theoretically cause the joint accelerations 

to be step-like too. However, compliance within the transmission is liable to cause a 

degree of smoothing in the torque profile applied to the manipulator joints. What is more, 

if the torque update interval is set equal to the measurement interval, then the acceleration 

profile will appear continuous. Any errors arising from the treatment of a series of steps 

as a smooth curve are expected to be small if the measurement interval is small, as well 

as averaging to zero if the mean of the acceleration profile's derivative is zero (see 

Subsection 7.4.1). 

Another, potentially more serious, source of discontinuity in the acceleration profiles is 

the effects of friction. If one considers Eqn. 2.5-4, it is clear that both the dry and static 

friction components are discontinuous, taking the same signs as the corresponding link 

velocities. In particular, static friction is expected to be the greater contributor to the 

discontinuity that occurs in a joint's acceleration as that joint's velocity traverses zero, 

due to being closely modelled by an exponential function of q . So as not to remove 

information on such events from the estimate of ij , the angular position profiles for each 

joint are subdivided into sections with either monotonically increasing or monotonically 

decreasing changes in value between sample points. These are then smoothed separately, 

such that the resultant smoothed velocities for each section all share the same sign, and 

discontinuities can exist in the acceleration profiles at the points that the corresponding 

velocity profiles transverse zero. 
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7.4 DATA GATHERING TRAJECTORIES 

The trajectories performed by the manipulators whilst gathering data are discussed in this 

section. The distinction is made between the trajectory chosen for the process of gathering 

training data, and the trajectory used for testing the model represented by the trained 

CSLC network. The former is designed to minimise any disturbance in tbe training set 

obtained, whilst the latter is representative of the most common class of trajectory 

demanded of this type of manipulator. 

In both cases tbe encoder values were sampled every two thousandths of a second, at 

(effectively) the same instants as the motor demands were updated. This means that the 

applied torques are theoretically discontinuous at the sampling points. However, in 

practice, the change in the torque applied by each of tbe manipulators' motors at each 

update point is not instantaneous, primarily due to mechanical compliance in the trans­

mission. An (exaggerated) example of an applied torque profile is shown in Fig. 7.4-1. 

Assuming that there is no error between the applied torques and those demanded by the 

controller, within a period equal to the sampling/update interval, it can be seen that the 

applied torque that generates the manipulator configuration sampled at n, is equal to the 

torque demanded at n-1. Thus each pattern processed by the CSLC network consists of 

input values derived from a given sampling/update point, and tbe demanded torque values 

for the previous point. 

Torque Demand 
atn ----------

Torque Dellllllld 
at n-1 --

I 
I 

Update n 

Update n-1 

Time 

Figure 7.4-1: Comparison between demanded and applied torques 
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7 .4.1 Training Trajectory 

As discussed in Sections 6.1 & 7.2, the degradation of the CSLC network's learning 

caused by many of the disturbances to the manipulator model can be greatly reduced or 

eliminated if the training data contains disturbance terms of zero mean. The errors caused 

by the principal inertia substitution (Subsection 7.2.1), the lack of a static friction term 

(Subsection 7.2.2) and backlash offsets (Subsection 7.2.4) are all configuration dependent, 

that is they vary with the manipulator joints' positions, velocities and/or accelerations. 

Thus, a simple method for minimising the effects of disturbance terms is to design a 

trajectory where, for each joint, the sections of the velocity and acceleration profiles in 

the positive direction are matched as much as possible by counterpart sections in the 

negative direction. Practical considerations require that the trajectory's initial velocities 

are zero, which implies that the position profiles are matched about their mean values in 

a similar manner to the velocities and accelerations. Furthermore, as discussed in Section 

7.3, it is also desirable for the acceleration profiles to be smooth. Therefore, the trajectory 

chosen for accumulating training data consists of a sinusoidal path for each link, such as 

that shown in Fig. 7.4-2. 
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Figure 7.4-2: Desired sinusoidal position, velocity and acceleration profiles 

for a given joint 

(centre-line denotes zero velocity & acceleration, and mean position) 
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To calculate an applied torque profile that would perform such a trajectory precisely 

would require an accurate model of the manipulator's dynamics, which of course is not 

available prior to the accurate identification of its dynamics coefficients. However, it is 

known that the highly significant elements of the mass matrix lie on its leading diagonal 

(as these represent the effective link inertias, as opposed to the off-diagonal coupling 

inertias). Thus, the motion of the PUMA 560's joints can often be thought of as being 

largely decoupled. Furthermore, if a sinusoidal trajectory was approximated, it is clear 

that the frictional effects on each joint would average out as zero over time. Therefore, 

approximately sinusoidal acceleration profiles can be obtained by employing applied 

torque profiles which consist of sinusoidal terms plus some form of gravity compensation. 

A further important consideration for a training trajectory is its degree of excitation 

[Craig 1986, Sastry 1984], which can be thought of as a measure of disparateness in the 

patterns obtained, and is related to the training efficiency and immunity to noise of the 

training set [Armstrong 1989]. It is therefore desirable to maximise the degree of 

uniqueness in the patterns obtained from the sinusoidal acceleration based training 

trajectory by ensuring that no configurations are repeated, thereby increasing the training 

set's degree of excitation. For the chosen training trajectory, the position, velocity and 

acceleration of each joint will be approximately cyclic, thus different cycle periods for 

each joint are employed to enlarge the unique configurations span within the trajectory. 

The use of prime number factors of a base time unit for the period lengths ensures the 

absence of configuration repetition for the maximum span, the length of which is the 

product of all the periods, measured in terms of the base time unit. To further increase 

the disparateness of the information on the dynamics' configuration dependency 

incorporated within the training data, the torque profile amplitudes are adjusted between 

successive trials, so that ultimately, each joint sweeps the majority of its positional range 

during the trajectory. 

Therefore, the training trajectory employed with the PUMA 560s consists of sinusoidal 

applied torques with amplitudes of [ 25 13 14 8 10 60] Nm, initial phases of~ 
2 

rads, and periods of [ 4.1 2.7 1.7 1.1 7 5 ] s, with the addition of the abbreviated 

gravity compensation model proposed by [Armstrong et al. 1986]. The initial joint 

positions are [ 0.4 -1.2 0.3 0 0 0 ] rads. Due to the coupled dynamics of the 

manipulator, and the inaccuracies of the gravity compensation, the motion of the 

manipulator's joints will become non-sinusoidal with time. Therefore, as a safety 

measure, a further term is added to each joint's applied torque which is vanishingly small 

throughout the majority of a given joint's workspace, but increases sharply to repulse a 

joint as it approaches either a limit of its positional range or a position which could 

potentially cause the end-effector to strike either the ground or the manipulator itself. The 

theoretical span of unique configurations from this trajectory is over eight days in length, 

in practice, the number of measurements that can be taken is constrained by the rapidity 
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with which the sinusoidal motion breaks down and the size of the recording buffer's 

memory. In this case, a total of 3300 patterns were taken, all from the approximately 

sinusoidal section of the trajectory. Recalling that the lower bound for the number of 

patterns required to achieve good network training is equal to the network order (Section 

4.2), it can be seen that this training set has I I 7 times the theoretical minimum number 

of patterns. This high degree of redundancy is desirable, as it reduces the likelihood that 

uncorrelated noise and linearly related patterns will adversely affect the network training 

process. 

7 .4.2 Comparison Trajectory 

To test the accuracy with which the CSLC network has learnt the PUMA 560s' 

coefficients of motion in a conscientious manner, one needs to employ a comparison 

trajectory which is quite different in nature to that used to train the network, so as to be 

able to gauge whether the trained network has achieved a problem-space-wide solution 

to the inverse dynamics. For this task it would seem appropriate to use a the most 

common type of movement requested of a manipulator, the simple go to/from trajectory, 

where the manipulator starts and finishes the trajectory at rest, and a control algorithm 

causes the links to smoothly move the end-effector from a starting position to the final 

position. However, due to the large degree of redundancy in a PUMA 560' s workspace, 

in terms of the potential configurations capable of obtaining a given end-effector position, 

such trajectory's often cause only minimal movement in some joints. So instead, a similar 

trajectory is used, where all of the joints are simultaneously moved through a full I 80° 

under the control of a PID algorithm with gravity compensation. 

In detail, the comparison trajectory employed for both PUMA 560s consists of moving 

the joints from [ 0 - ~ ~ 0 0 0 ] to [ - ~ 0 0 ~ ~ ~ ] rads under the influence 
2 2 2 2 2 2 

of a PID controller with positional gains of [ 4000 10000 2000 500 310 300 ], 

integral gains of [ 5 5 5 5 5 5] and velocity gains of [ 80 II4 25 25 12 17 ], and 

the abbreviated model gravity compensation from [Arrnstrong et al. 1986]. This trajectory 

takes approximately two and half seconds to complete, and calls for applied torques of 

up to [ 13.6 42.8 8.59 1.44 1.77 1.76] Nm in magnitude. The control algorithm and 

its gains were not selected specially, they were simply the default setup for these 

manipulators at the time the tests were performed. 

By disregarding data from the very beginning and end of the trajectory, any contributions 

from static friction effects can be removed. Furthermore, the manipulators do not 

experience backlash during the comparison trajectory. Therefore, all of the comparison 

data represent examples of the manipulators' dynamics that theoretically can be modelled 

by the CSLC network, thus providing a fair measure of the degree identification achieved. 
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7.5 NETWORK TRAINING 

The details of the training process performed on the PUMA 560 CSLC network are 

discussed in this section. Fundamental to the principle of supervised learning is the 

definition of a network error cost for each pattern processed. This is the quantity that the 

application of training should reduce. The error cost must be derived from the network 

output errors (the differences between the desired target values and the network's output), 

which are applied torques values (measured in Newton metres). Thus, the error cost can 

not be expressed in terms of some combination of the induced accelerations, as the 

calculation of these values from the output errors would require the manipulator dynamics 

to be known. Using the current network estimate of the manipulator dynamics during 

training to approximate the acceleration error would introduce an undesirable nonlinear 

relationship into the identification of the optimal network solution. Therefore, as a 

quantative measure of error is desired, which takes all six joints into account, the logical 

choice of error cost is some combination of the six output error values. Arguably, the 

output errors for the lower numbered joints should be given proportionally larger 

weightings, as positional errors in these joints have a disproportionately large effect upon 

the position of the end-effector (relative to the base frame). Conversely, it could be 

argued that the higher numbered joints should receive the larger weightings, as an output 

(torque) error of a given size will have a greater effect upon the motion of the lighter 

links within the manipulator. It is clear that a chosen application for the manipulator 

could have considerable bearing upon the most suitable method of weighting the output 

errors. However, in the absence of a chosen application, and for the sake of simplicity, 

the network error cost in this case is chosen to be half the root mean square of the output 

errors, denoted E (as described in Eqn 3.4-2). Thus the forms of Backpropagation and 

PERAL learning described in Subsection 3.4.2 and Section 6.2 are appropriate without 

modification. 

Before training can begin, an initial set of network weight values must be specified. 

Commonly, in other types of network, these values are generated randomly. This is 

because the optimal network solution may not be obtainable through learning from all 

possible initial network states, and multiple training attempts often necessary. This is not 

the case for the CSLC network. As has been discussed previously, training could 

potentially be abbreviated by using initial weight values derived from other studies of the 

PUMA 560, however, to demonstrate the general applicability of the CSLC network 

approach to coefficients identification this is not done. Furthermore, even in the absence 

of a priori knowledge, it is still possible to calculate the sign of many of the dynamics 

coefficients due to many of them representing combinations of masses and inertias, and/or 

containing squared terms. Although this feature is used to assess the results of training, 

the initial weight values for the CSLC network are chosen to be set to zero. In 

combination with a small learning rate, such that the high errors at the start of the 
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training process do not cause large changes in the weight values in any single epoch of 

learning, this is expected to cause only the significant network weights (in terms of 

reducing the network error cost) to evolve away from zero. 

Two separate training sessions were performed, one for each manipulator, which it is now 

useful to differentiate between by denoting them as PUMA A and PUMA B. In both 

cases the Backpropagation learning algorithm was initially applied. Once the error cost 

had fallen below that obtained from processing the training trajectories with the 

coefficients identified by [Armstrong et al. 1986] and [Leahy & Saridis 1989], (2.63 Nm 

for PUMA A, 2.44 Nm for PUMA B), training was instead performed with a combination 

of PERAL and Backpropagation. This was done because it was observed that, unlike the 

examples in Section 6.3, acceptable error cost reduction rates were best maintained by 

performing bouts of training with alternating learning algorithms. Training was terminated 

when the maximum possible reduction between epochs of the network's error cost (by 

either method) fell below 0.001 Nm. 

Patterns which may contain information on the motion of joints that were experiencing 

backlash were identified by Eqn. 2.5-7. These particular pattern and joint combinations 

are ignored for the purposes of training, so as not to cause the network to incorporate 

aspects of backlash behaviour in its identification of the (nonbacklash) inverse dynamics 

coefficients (see Subsections 2.5.3 and 7.2.4). The velocity thresholds (used to prevent 

the velocity subnetworks from being corrupted by the effects of static friction, see 

Subsection 7.2-2) were initially arbitrarily set to one hundredth of the maximum 

magnitude of each joint's training trajectory velocity. Once the network had learnt enough 

for the regions of significant static friction to be identifiable (see Fig. 7.6-4) the 

thresholds were updated to values obtained from observation of the velocities at the brink 

of these regions. These values are similar both manipulators, and are listed in the 

appendices in Section B.4. 

The results of the described training are illustrated and discussed in the following section. 

7.6 RESULTS 

To examine the results of the CSLC network's coefficients identification, and in particular 

to check the problem-space-wide generalisation of the network solution, the comparison 

trajectory discussed in Subsection 7 .4.2 is employed. Since the purpose of coefficient 

identification is to enable the accurate modelling of a manipulator's dynamics, the 

accuracy of a given identification technique can be assessed by comparing the predicted 

torque that the identified coefficients give rise to, in response to a set of real input data, 

against the corresponding real measured torque. 
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To make a comparison with identification through direct measurement, the model 

produced by utilising the mass/velocity and gravity coefficients reported by [Armstrong 

et al. 1986] and the friction coefficients reported by [Leahy & Saridis 1989] is also 

assessed. This set of coefficients will, from now on, be simply referred to by the 

designator "Ar+LS". Although the PUMA 560s that these researchers performed their 

identification experiments upon can be assumed to have similar mass/velocity and gravity 

coefficients to those at the Robotics Institute, the friction coefficients could easily be very 

different, especially as a large proportion of the effective frictional forces are due to the 

drive mechanisms and are affected by factors such as overmeshing. Demonstrating the 

superiority of the CSLC network identified coefficients over the Ar+LS model would 

therefore not provide a convincing argument for the superiority of the CSLC 

identification technique. Instead, the decoupled nature of the CSLC friction model is 

exploited to produce a set of friction coefficients for each of the manipulators, which is 

optimal in terms of error cost, given the adoption of the Armstrong et al. coefficients. 

This is achieved by calculating the network output error for the two training sets when 

using the Armstrong et al. coefficient values and zero friction coefficient values, and then 

regressing this against the friction subnetwork inputs for each joint. That is, if the column 

vector of errors (target torques minus predicted torques) for the whole of a training set 

and a given joint i, is denoted e1, then the optimal friction coefficients for that particular 

training set and the chosen mass/velocity and gravity coefficients is given by 

(7.6-1) 

where q
1 

is the column vector of joint velocities over the whole training set, and the 

backslash denotes matrix division (as described for Eqn. 4.1-2). In addition, patterns 

likely to be experiencing backlash or with near zero velocities for joint i are disregarded 

in the same fashion as described for training the CSLC network. Note that this direct 

(non-iterative) solution for the friction coefficients could be incorporated into the CSLC 

network. This was not done in this study, so as not to obscure discussion and analysis of 

the CSLC network's functionality. The dynamics model identified by the combination of 

the Armstrong et al. coefficients and regression shall be designated by "Ar+Rg". Note 

that the friction coefficients obtained from Eqn. 7.6.1 differ between PUMA A and B. 

The six graphs in Fig. 7.6-1 show the torques predicted by the inverse dynamics model 

when employing the coefficients produced by each of the three identification techniques, 

as well as the actual experimental profile, for the comparison trajectory of PUMA A. Fig. 

7.6-2 similarly compares the identification techniques performance for PUMA B. Note 

that the comparison trajectory data has not been used in the adaption of either the CSLC 

network or the friction regression equation (Eqn. 7.6- I). Thus the results obtained from 

this comparison of the modelled and actual torques are assumed to be indicative of the 

identified coefficients' ability to model the manipulator dynamics throughout the whole 

of the problem space. 
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From consideration of Figs. 7.6-1 & 7.6-2 it can be seen that the overall modelling 

performance of the dynamics coefficients identified by the CSLC network is significantly 

superior to those identified by either of the direct measurement based techniques, for both 

PUMA 560s. These coefficient values are listed in Appendix B. The accuracy achieved 

by the different identification techniques in providing a model of the PUMA 560s' 

inverse dynamics is summarised in Figs. 7.6-3 & 7.6-4. 

Ar+LS Ar+Rg CSLC 

mean(l e1 1} 5.345 1. 891 0.5408 

mean(l e2 1} 6.523 2.435 0.8877 

mean(l e3 1) 1.115 0.5177 0.2774 

mean(l e4 1} 0.2314 0.1665 0.08062 

mean(le,l) 0.09853 0.2154 0.04401 

mean(l e6 1) 0.2921 0.4733 0.09072 

mean(E) 1.8155 0.698 0.2498 

Figure 7.6-3: Comparison trajectory mean error moduli and error cost for PUMA A. 

(all values given in Newton metres) 

Ar+LS Ar+Rg CSLC 

mean(l e1 1) 1.905 0.7166 0.6032 

mean(l e2 1) 4.458 4. 476 1. 093 

mean(l e3 1) 1.781 1. 079 0.5394 

mean(l e4 1} 0.1831 0.1169 0.02830 

mean(l e, I} 0.4743 0.1614 0.05301 

mean(l e6 1) 0.1629 0.2494 0.08132 

mean( E) 1.105 0.979 0.3085 

Figure 7.6·4: Comparison trajectory mean error moduli and error cost for PUMA B. 

(all values given in Newton metres) 
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As previously stated, there is little reason to suspect that mass/velocity or gravity 

coefficients would vary greatly between different manipulators of the same design. From 

consideration of the values presented in Figs. B.l-1, B.1-2, B.3-1 & B.3-2 it can be seen 

that the CSLC network identified broadly similar values for both PUMA A and B, for 

each mass/velocity and gravity coefficient. The fact that approximately the same solution 

was identified from two different sets of data implies that the training of the networks 

was not significantly affected by noise in the training data, and that the network solutions 

were not dominated by training set specific features that do not appear in the problem­

space-wide dynamics. However, it is important to determine just how significant the 

differences in identified coefficient values are; to do this the sensitivity of the calculated 

torque to the value of each coefficient is determined. As the torque is linearly related to 

the dynamics coefficients, these sensitivities are constant for a given data set. Thus, the 

torque sensitivity for a given coefficient can be defined as the difference in the CSLC's 

output caused by a unit change in the coefficient's value, averaged across all joints and 

all patterns in the training set. This can be simply determined by setting the value of the 

particular coefficient in question equal to unity, all other coefficients to zero, and 

calculating the predicted torque's mean magnitude. These sensitivities are also listed in 

Figs. B.l-1, B.l-2, B.3-1 & B.3-2. By examining these values it can be seen that there 

does appear to be a correlation between the variation in identified coefficient values for 

the two manipulators and the coefficients' sensitivities, such that the largest differences 

occur for coefficients with some of the lowest sensitivities. It can be shown that all 

products of coefficient variations and sensitivities yield values of less than 0.001 Nm for 

the mass/velocity coefficients, and less than 0.3 Nm for the gravity coefficients. 

As discussed in Subsection 5.2.3, a further check upon the validity of the coefficient 

values identified can be made by comparison with their algebraic representation. In the 

cases of k;', k:!, ~ and k~, their true values must all be positive, due to the nature 

of the physical parameters of which they are comprised. By consideration of Figs. B.1-1 

and B.l-2, it can be seen that the CSLC network identified values of the correct sign for 

all four of these coefficients, for both PUMA 560s. 

Also worthy of analysis are those periods when a given joint's velocity traverses zero. 

Fig. 7.6-4 shows a typical such region (part of the training trajectory for joint one of 

PUMA A), where error is the difference between the smooth target (demand) torque and 

the predicted torque. The steep ramps in the level of error are believed to be due to 

unmodelled static friction, as they occur either side of the line denoting when the joint's 

velocity passed through zero, according to the smoothed spline estimate given by Eqn. 

7.6-4. As it seems reasonable to assume that these error ramps are indeed due to static 

friction, they can be used to indicate where the true joint velocity passed through zero. 

In the case shown in Fig. 7 .6-4, and in fact all such cases identified (for both of the 

manipulators and all joints), the velocity zero-point estimated from the spline smoothing 
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of the recorded motion data lies within exactly the same measurement interval as that 

indicated by the characteristic static friction error ramps. 
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(Continuous line shows actual demand torque, dots are predicted torques, 

the vertical line denotes the zero-point of the estimated joint velocity) 

7.7 SUMMARY 

This chapter detailed the practical implementation of coefficients identification with a 

CSLC network, for two PUMA 560 manipulators. Having described the equipment 

involved, a review of the possible sources of system disturbance was conducted. These 

included the errors introduced into the algebraic representation of the manipulators' 

inverse dynamics by making the principal inertia substitution, the lack of a static friction 

model, operating above the drive motors' limits of linearity, backlash, compliance, 

quantisation and estimation of system inputs such as the joint velocities and accelerations, 

for which there are no direct measurements. 

The related problems of quantisation and input estimation were tackled by developing a 

novel use of spline fitting, such that the quantised joint positions could be approximated 

by a smooth cubic spline curve which did not necessarily pass through any of the data 
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points. As the spline derived for any position profile is algebraically differentiable, good 

estimates of the joint velocities and accelerations are also achieved through the spline 

smoothing process. The potential limitations of spline smoothing were also discussed, in 

particular, the effect of the discontinuities within the manipulators' inverse dynamics were 

examined, and a means of dealing with them explained. 

The issues involved in gathering data of the PUMA 560s' motion were then discussed, 

and a clear distinction made between the requirements of a network training set and a 

comparison set. A scheme for obtaining a training trajectory with a high degree of 

excitation was developed, where the data collected is as disparate as possible and no 

configuration of the manipulator's links is repeated. A comparison trajectory was 

designed which would represent the common start-here/go-there class of motion, as well 

as producing a data set unaffected by static friction or backlash. 

The process of training the CSLC network on the gathered data was then detailed. An 

initially low training rate was used, in an attempt not to cause large changes in the 

weights matrices that might excite insignificant coefficient. This caused the training 

process to take several thousand epochs, but appeared to achieve its goal. The dynamics 

coefficients identified by training the CSLC network were then evaluated by comparing 

their ability to model the comparison trajectory to that of the coefficients identified 

through direct measurement. In order to allow for differences in the values of the friction 

coefficients that can easily occur between different manipulators, advantage was taken of 

the decoupled nature of the friction model, and a regression method for deriving optimal 

friction coefficients explained. This is done by finding the difference between the target 

torque and that predicted by a given set of mass/velocity and gravity coefficients, for 

multiple patterns, and then regressing this error matrix against the joint velocities, which 

produces a set of friction coefficients that cause the minimum network error for the data 

set used. 

Illustrating the modelling performance of the variously identified coefficients both 

graphically and in tabular form, the overall superiority of those identified by the CSLC 

network was demonstrated. The successful modelling of a comparison trajectory of 

entirely different design to that of the training trajectory, and the agreement in the 

mass/velocity and gravity coefficient values identified for the two manipulators, imply 

that the inverse dynamics model obtained from these coefficients is generally accurate for 

the whole of the problem space. These results, therefore, affirm the concept that greater 

degrees of accuracy can be achieved through the processing of motion data by an 

adaptive network than through direct measurement of a manipulator's physical 

components. 
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8. CONCLUSION 

The contributions made by this thesis to the fields of robotics and artificial intelligence 

are discussed in this chapter. The novel aspects of the research carried out in order to 

provide a method of accurate dynamics coefficients identification are listed, and their 

significance evaluated. The promising avenues of further investigation are also discussed. 

8.1 ACHIEVEMENTS 

The advancements in the state of robotics and artificial intelligence theory contributed by 

this work can be summarised as follows 

• A technique for accurately identifying the dynamics coefficients of any given 

robotic manipulator from motion data alone. 

• The identification of reasons why conventional adaptive networks do not 

achieve problem-space-wide solutions to high order analogue systems. 

• The development of the novel context sensitive linear combiner network 

architecture. 

• The development of the novel proportional error allocation network learning 

algorithm 

• The derivation of network order as a means for comparing network 

complexity and obtaining relative measures of the size of training sets 

required. 

Each of these items is discussed in detail below. 

8.1.1 Dynamics Coefficients Identification 

The dynamics of the case study PUMA 560 manipulator were identified from motion data 

alone, without the need for direct measurement of the manipulator's physical parameters. 

The results of Chapter 7 demonstrated the superior dynamics modelling performance 
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obtained from these coefficients compared to that obtained from coefficients derived from 

direct measurement. The technique, as described in this thesis, is generally applicable to 

all robotic manipulators whose motion can be described by the rigid bodied inverse 

dynamics relationship known as the Euler-Lagrange equation (Eqn. 2.5-2). A technical 

summary of the identification methodology is provided in Appendix C for those who may 

wish to attempt similar coefficient identification studies. 

8.1.2 Unsuitability of Conventional Network Architectures 

The analysis of the learning process in networks which model analogue systems, via the 

use of the curve-fitting analogy, led to the identification of the reasons for conventional 

network architectures yielding either poor modelling performance or non-problem-space­

wide solutions. The former occurs in networks with less flexibility in their algebraic 

forms than that possessed by the system they are attempting to model, whilst the latter 

occurs in networks with more flexibility than the modelled system when trained with a 

data set that is not representative of the whole problem space. Given the impossibility, 

for many high order systems, of collecting enough disparate training patterns to achieve 

such problem-space-wide representation, the unsuitability of network architectures that 

do not exactly match the algebraic form of the modelled system is made apparent. 

The inverse dynamics of many robotic manipulators constitute such high order systems, 

given that the number of input variables for a n degree of freedom manipulator is, in 

general 3n. This explains why studies on coefficient identification have previously only 

reported success for manipulators of 2 or 3 degrees of freedom. 

8.1.3 The Context Sensitive Linear Combiner Network 

The CSLC network was developed in order to provide a generally applicable method for 

representing the algebraic form of systems such as the Euler-Lagrange equation as an 

adaptive network exactly. This exact match in algebraic forms enables the training 

process to achieve an accurate problem-space-wide solution from a non-problem-space­

wide representative set of training data. Furthermore, the output of a CSLC network is 

a linear function of its adaptive weights, therefore ensuring that there is just one minima 

in the network's error hypersurface, which can be reliably identified by error gradient 

descent learning algorithms. 

8.1.4 Proportional Error Allocation 

In order to avoid tediously lengthy training sessions, as can be caused by the inevitable 

131 



decline in learning rate achieved by purely gradient descent learning algorithms as they 

approach the network optimal solution, the PERAL fine-tuning algorithm was developed. 

This algorithm does not rely upon the error gradient, and has been shown to be capable 

of significantly reducing training times, once an approximate network solution has been 

identified. 

8.1.5 Network Order 

The definition of network order has provided a lower bound on the number of patterns 

required to prevent a given network from being underdetermined by its training set. Thus, 

networks trained with fewer patterns than the value of their order, are, in the presence of 

noise, guaranteed to produce network solutions local to that training set. 

Given the effects of noise and the difficulty in determining the independence of training 

patterns, the ratio of the number of training patterns to the network order can be used as 

a measure of the likelihood that the optimal solution obtained from the training set is 

unique, and thus potentially equal to the desired problem-space-wide solution. 

8.2 FURTHER WORK 

As with any productive study, this work points to many more potential avenues of 

research. The most promising and significant of these are discussed below. 

8.2.1 Improved CSLC Network Modelling Accuracy 

The accuracy of a dynamics modeVcontroller which employs the dynamics coefficients 

identified by the CSLC network could be improved by improving the network's 

representation of the inverse dynamics. As stated in Subsection 7 .2.1 , the algebraic 

representation of a given manipulator's dynamics would be more accurate if it did not 

employ the principal inertia substitution (Eqn. 2.3-20). Also, minor simplifications could 

be made to the lists of dynamics coefficients by employing numeric values for link 

lengths and offsets (a & d). These are the easiest physical parameters to measure directly, 

and the measurement error margins can be expected to be low. Some coefficients would· 

then not need to be identified separately, for instance, for the PUMA 560, the unknown 

mass coefficients k1M, le, M and k,M could be replaced by three known multiples of a single 

unknown coefficient. 

Another known inaccuracy of the CSLC representation described in Chapter 5 is the lack 
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of a static friction term. As stated in Subsection 7 .2.2, a model of the static friction was 

not incorporated into the CSLC network due to the expected difficulty in correctly 

identifying the sign of q at low joint speeds. If one considers Fig. 7.6-4, it can be seen 

that the use of spline smoothing in the calculation of the estimated joint velocities has in 

fact provided an excellent identification of the direction of joint motion at low speeds. 

Thus, a static friction subnetwork could be incorporated into the CSLC network, such as 

that shown in Fig. 8.2-1 for a single joint, which would calculate the static friction term, 

denoted -c;, as described in Eqn. 2.5-4. 

Figure 8.2-1: A static friction CSLC subnetwork for a given single joint 

The static friction model shown in Fig. 8.2-1 uses the joint velocity magnitude and sign 

as two separate inputs, and makes us of context sensitivity to combine these two sources 

of information. However, it also requires a nonlinear activation function, in particular, the 

exponential function. The inclusion of a nonlinear function would mean forgoing the 

CSLC network's attribute of having its outputs strictly linearly related to its adaptive 

coefficients, along with the advantageous properties this bestows. In order to keep this 

linearity during training, the static friction slope coefficients (y) could be kept constant, 

and only the static friction magnitude coefficients learnt. If desired, both sections of the 

static friction subnetwork could then be trained in isolation after all the other subnetworks 

have been fully trained. 

Many friction models exist in the literature, of which the model developed in Subsection 

2.5.1 is one of the most common, however, there is evidence to suggest that the friction 

forces acting upon the joints of a PUMA 560 have differing magnitudes depending upon 

the direct of motion [Corke & Armstrong-Helouvry 1994]. This implies that the CSLC 

friction subnetworks could achieve greater accuracy by possessing two sets of inputs for 

each joint, where each input is set to zero for motion in a particular direction. For 

instance, the viscous friction model for a given joint could be as shown in Fig. 8.2-2. 
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Figure 8.2-2: Asymmetric viscous friction subnetwork for a given joint 

8.2.2 Proportional Error Allocation 

The PERAL learning algorithm has been demonstrated in Chapter 6 to be of potential 

benefit in the hastening of network training. However, further work is required to identify 

the classes of network to which it can be successfully applied, and comparisons made 

with a larger number of alternative learning algorithms. It may also be possible to derive 

some general indicator of how soon in a network's training the switch to PERAL learning 

would be of benefit. 

8.2.3 Error Hypersurfaces and Analytical Solutions 

It is clear from the review of adaptive network theory carried out in Chapter 3 that a 

better understanding of the manner in which a network's error hypersurface affects 

training would help advance the state of the field. Furthermore, as discussed in Section 

4.1 and Subsection 3.3.2, greater use of linear algebra techniques is expected to yield 

significant advances in the speed, accuracy, and understanding of the training process. In 

particular, given the linear relationship of a CSLC network's output to its coefficients, 

there may well exist a method for obtaining a direct (non-iterative) optimal solution for 

such networks, however, the derivation of such a method is not trivial due to the 

nonlinear coupling between pattern dependent inputs. The technique presently considered 

to be the most promising in this respect involves solving the error hypersurface equation 

for the point where its derivative is equal to zero, which for a CSLC network would 

uniquely identify the optimal network state for a given training set. 
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Though clearly not always a simple matter, in the opinion of the author, many aspects 

of adaptive network theory would benefit from a more analytical based understanding 

being developed, to replace the present, often empirical based, perceptions. 

8.2.4 Payload Identification 

Given the success in identifying the dynamics coefficients for a whole manipulator, it is 

envisaged that a logical extension of the identification technique could allow for the 

dynamics effects of a payload of initially unknown characteristics to be compensated for 

during its transport. The payload could be modelled as an additional link of the 

manipulator, and its characteristics learnt on-line as the manipulator picks up and moves 

the payload. Assuming the unladen manipulator's dynamics had been accurately identified 

previously, only the extra dynamics components due to the payload need to be learnt on­

line. Thus, assuming rapid learning, the payload could be placed with accuracy at the end 

of its transportation. 

8.2.5 The CSLC Network 

Although the CSLC network was developed in this thesis in order to solve the problem 

of manipulator dynamics coefficients identification, it is suitable for many different 

applications. Given the major benefits a CSLC network provides over conventional 

network architectures, as discussed in Section 5.2 but in particular those of generalisation 

and sole error hypersurface minima, there are expected to be many systems and problems 

to which the application of a CSLC network would provide a significant positive 

contribution. An overview of the identification methodology for non-manipulator systems 

is given in Appendix C. 

There are expected to be still further problems for which a strictly linear combiner based 

network may not be appropriate, due to the modelled system not being linearisable in its 

coefficients, but for which the concept of designing a network with exactly matching 

algebraic form will be of significant benefit. 
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APPENDIX A 
TABLE OF UNIQUE TERMS 

The algebraic expressions which have a unique meaning within this thesis are listed 

below. A concise definition of each term is provide, as well as a reference to the section 

or subsection in which that term was first introduced and the full definition stated. 

Expression Definition Stated 

a Link twist vector 2.6.1 

E Error cost: half root mean square of output errors 3.4-2 

T] Learning rate 3.4.1 

a Joint angle vector 2.6.1 

()' Network order 5.2 

~ Generalised applied force/torque vector 2.3 

a Link length vector 2.6.1 

b Degree of backlash vector 2.5.3 

c Velocity Matrix 6.1.2 

cuk Christoffel symbol (of the first kind) 2.4 

d Link offset vector 2.6.1 

e, Output error vector for joint i 7.6-1 

F Friction term vector 2.5.1 

Ji.) Activation function for nodes in layer A 3.4.2 

G Gravity term vector 2.4 

g Local downward acceleration due to gravity 2.3.3 

Kvec Acceleration due to gravity vector (with respect to base frame) 2.3.3 

I, Pseudo-inertia matrix for link i 2.3.2 

m[ Effective motor inertia vector (acting about joint axis) 2.5.2 

'I 
"' 

Mass moment of inertia of link i about the x-axis of frame i 2.3.2 

pi[ 

"' 
Principal mass moment of inertia of link i at its c.o.g. 2.3.2 

'I 
XJ' 

Mass cross-product of inertia of link i between axes of frame i 2.3.2 
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K Kinetic energy vector 2.3 

"' Dry friction coefficients vector 2.5.1 

kG Gravity term coefficients vector 6.1.3 

k!" Mass term coefficients vector 6.1.1 

/C Static friction magnitude coefficient vector 2.5.1 

k' Viscous friction coefficients vector 2.5.1 

L Lagrangian vector (K - P) 2.3 

M Mass matrix of entire manipulator 2.3.2 

m, Mass of link i 2.3.3 

0 Number of output nodes 3.4.1 

p Potential energy vector 2.3 

p Number of patterns in training set 4.1 

q Generalised joint position vector 2.32 

q Generalised joint velocity vector 2.3 

ij Generalised joint acceleration vector 2.3 

'r A given point expressed in coordinate frame i 2.3.1 

'r 
' 

Coordinate vector in frame i of the centre of gravity of link i 2.3.3 

'r X X-coordinate in frame i of the centre of gravity of link i 2.3.2 

s Sum of weighted inputs to the node in question 3.3.1 

s• Summed weighted inputs vector for layer A 3.4.2 

t Network target vector 3.4.1 

T, Homogenous transform of frame i relative to the base frame 2.3.1 

iT 
I Homogenous transform of frame i relative to frame j 2.3.1 

V Velocity term vector 2.4 

w Weights matrix 3.3.2 

W" Gravity term weights matrix for CSLC network 6.1.3 

W" Mass term trainable weights matrix for CSLC network 6.1.1 

W" Velocity term trainable weights matrix for CSLC network 6.1.2 
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APPENDIX B 
TERMS AND VALUES FOR THE 
PUMA 560 CSLC NETWORK 

This appendix details all of the components of the PUMA 560 CSLC network, including 

the identified values for the dynamics coefficients. Each of the subnetworks is described 

in turn. Note that, in every case, multiplying a subnetwork input vector by the appropriate 

weights matrix produces exactly the same algebraic expressions for the mass matrix, 

Christoffel symbols and gravity effect vector as described in [Armstrong et al. 1986]. 

Also, the algebraic form used for describing the inputs to each subnetwork holds in both 

the single pattern (algebraic or sequential processing) case and the multi-pattern (parallel 

computation) case. For the single input pattern case, a subnetwork's input is a row vector, 

whilst for the parallel computation case the algebraic input vector is evaluated for each 

pattern, producing an input matrix with one row per pattern. 

In tables throughout this appendix, "Armstrong et al." refers to [Armstrong at al. 1986], 

and "Leahy & Saridis" refers to [Leahy & Saridis 1989]. 

B. I MASS TERM SUBNETWORK 

The mass subnetwork possesses 59 preprocessed inputs, which are described in 

Subsection B.l.l. The weights matrix connecting the inputs to the 21 nodes representing 

the unique mass matrix elements possesses 114 finite elements and 1125 null elements 

(these symbolise non-existent links, for the purposes of matrix algebra however, they can 

be represented by zero valued weights which are not trained). 
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8.1.1 Mass Subnetwork Inputs 

Denoting the row vector of preprocessed mass subnetwork inputs as XM, its elements are 

defined as follows. 

XM 
I I x2M = c, xM 

3 = CzJ szJ c4 Cs 8s 

x:' XM 2 XM 
CzJ 8 zJ Cs = CzJ CS = Cz 823 CS ' 6 

XM 2 2 XM 2 2 2 
x.M 

2 2 c, c, = CzJ c4 Cs = c23 Cs 7 8 

M M M XIO = CzJ 8zJ XII CzJ 8zJ c4 Ss X" Cz CzJ c4 ss 

M M 2 M 2 2 
Xn = Cz c23 x,. c, X" = CzJ c4 

M 2 M 2 M x,. = CzJ c4 ss x,7 = c, X" = Cz 8zJ 

M M 2 M x,. = s4 8s X2o = c2 X" = Cz sz 

M M M x, CzJ 84 Cs 8s X2, = CzJ s4 8s x24 = 8z 84 ss 

M M M x, 8zJ 84 8s x26 = 8zJ c4 8s x27 = szJ c4 84 

M 2 M M x,. = SzJ c4 s4 Cs x29 c, X,o CzJ CS 

M M M 
x" = s2 x, s, x,, = c2 

M M M x,. = 8zJ c4 cs ss x, Cz c4 ss x,. = CzJ c4 ss 

M 2 M M x,7 = CzJ Cs x,. = Cz S4 CS x,. = 823 S4 CS 

M M M X,o Cz3S4CS x., = CzJ c4 Cs x.2 szJ s4 

M M 2 M 
x,, = 8 23 ss x,. c, x., = 82 C23 CS 

XM M M 
46 8z 823 x,7 sz szJ c4 8 s x., = Sz CzJ 

M M M 
X., = c4 ss X,o = Cz 823 84 8 s X" = $4 CS 8s 

M M M x,2 8z CzJ S4 8s x, c, x,. = C4 CS 

M M M x, 8z CzJ c4 cs x,. Cz $23 C4 CS x,7 = 8z SzJ 8s 

M M x,. Cz CzJ 8 s x,. s, 

where 

c, = cos(q,) 

s, = sin(q1) 

elf = cos(q
1
+ q1 ) 

SI} = sin(q
1
+ q) 
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8.1.2 Mass Subnetwork Weights Matrix 

The 21 unique elements of the mass matrix can be found from XM WM, where the 

weights matrix elements are simply integer multiples of one of the 26 mass/velocity 

coefficients, as described below. 

M 
wl,l = k2~ M M 

W 1•7 = k, M kM 
wl,8 = 22 W 17t2 = k;i 

M kM M M M k;,' M M 
w1.16 = 16 wl,l9 = k, wl,21 = w2,1 = -2kl 

M -2k:' M 
-2kiM 

M -2k:' M kM 
w2,7 w2,8 = w2,12 = w2,18 = 4 

M M M 2kM M 2kM M 2kM w3,1 = 2k, w.,l = w,,l = w6.1 = 2 I 3 

M 2kM M kM M kt; M -kt; w6,7 w6.a w1.1 w1.1 = 3 3 

M -kt; M -kt; w,7t -kt; M -kt; w1.• w1.12 = w,,l 

M k{'i M -2k:' M 2k3M M 2kM WIO,I w,,l = w,,l w,,7 3 

M kM M 2k~ wl~7 2k~ M kt{, w,,, wl3,1 = wl3.s 3 

M 
k:! 

M M M 2k~ M -k~ wl4,1 w,,l = k, wl6,1 = w11.1 = 
M k:t, 

M M M M M M 
w11.1 = w11.a = k, w11.12 = k, w,,l = -2kl4 

M M M -k~ M M M kM 
w,,7 = -2kl4 w,,, = w,,l = 2k7 w,,, = I 

M kM w,,, = 4 
M M 

w,,13 = k 1 
M M 

w,.,, = k4 
M 

W20,1 k:! 

M kM M M M M M kM w,,l w,,2 = -k, w22,3 = -k, w23,2 = ' I 

M kM M kM M kM M kM 
w23,3 = w23,4 w24,2 w,,2 I 7 3 2 

M kM M kM M kM M -kM w,,3 w26,2 = w26,3 = w26,4 = 2 7 7 I 

M -k:' 
M M M k:t, M -kt; w26,6 = w21.2 k, w27,3 w,.,2 

M M M k;{, M k;{, M 
k:: w,.,3 -k, w,.,2 = w,.,3 = w29,4 = 

M -k;' M -kM M kM M k~ W3o,2 = W3o,3 = W3o.6 = w31,2 7 4 

M M M M M kM M M 
w32.2 = kn w32,3 = kl7 w33,2 = w,.,4 = kls 8 

M kM M kM M M M kM w,,4 w36.• = w37,4 = -k, w38,5 = 3 2 3 

M -kM M kM w::,, -k;' M kM w39,5 = w.o.s w42,5 = I 2 9 

M kM M kt; M kt; M M 
w43,5 = w ... 7 = w .... = w 44,12 = k, 7 

M kM M -2kM M -kM M 2k~ w44.16 = - 1s w4,,7 3 w45,8 3 w46,7 

M M M 2kM M kM M 2k~ w.6.8 = kw w47,7 = w47,s = w4,,7 3 3 
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M 
k:! 

M 2kM M M M M 
w.,,, w ••. , = W 49,8 = 2k2 w49,12 = 2k2 2 

M -k,M M M M M M M 
w,o.• w"·• = -kl5 w51,13 = -kl5 w,2,9 = k, 

M kM M kM M -kM M -kM w,,,1o = w,3,14 w, •. w = Ws4,14 = 9 9 I I 

M -kM M kM M kM M kM 
w,,1o = w56,l0 w,,,1o = W58,10 = 3 3 3 3 

M kM M k;' Ws9,IO Ws9,l4 = 2 

(all other elements are zero/null) 

B. 1.3 Mass/Velocity Coefficients 

The vector of mass/velocity coefficients is composed so as produce a list of expressions 

with a monotonically increasing number of terms. Its elements are defmed as follows. 

kM 
I = d 6 . 

- 4 rzm6 

kM = 6 
2 a3 rr.m6 

k;' 6 
az rzm6 

kM 
4 = "I 

" 
k;' -2 2r 2r m 

X y 2 

kM = m/ + pf>J 6 6 " 

kM 
7 = d2 6rz m6 + d3 6rz m6 

kM = d 2r m + 2r 2r m 8 2y2 yz2 

k: 6r2m + P5J +"I z 6 u .u 

kti, = a2 a3 
m4 + a2 a3 

m5 + a2 a3 
m6 

M m/ + •r2 m + P'J + "I ku s z 6 u .u 

k;1 2 a 3 d4 m4 + 2 a 3 d4 m5 + 2 a 3 d4 m6 + 2 a 3 
4r, m4 

M p41 + P5J + 6r
2 m + "I kn U XX Z 6 .u 

M 
kl4 -a2d4m4- a2d4ms- a2d4m6 +a2 3rym3- az 4rzm4 

M -P5J -"I + P5J + 6r 2m +p<I kl5 = 
yy U XX Z 6 XX 
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= m/ + p4/ + pSJ + 6r2 m + p6/ 
4 U :U Z 6 XX 

k :i = a 3 d2 m4 + a3 d2 m, + a 3 d2 m6 + a 3 d3 m4 + a3 d3 m, + a3 d3 m6 

k M = -P'J +~''J + •r2m +Plf +p6/ - PlJ - p6J 
18 ..U yy Z 6 U XX yy zz: 

k;[ a
2 

d
2
m

3 
+ a2 d2 m4 + a2 d2 m, + a2 d2 m6 + a2 d

3 
m3 + a2 d3 m4 + a2 d3 m, 

+a2d3m6 +a2 3rzm3 +d2 2rxm2 + 2rx 2rzm2 
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8.1.4 MassNelocity Coefficient Values 

The identified values and sensitivities of the mass/velocity coefficients are given below. 

Coeff. Value Identified by Value Reported by Output Sensitivity 
Name CSLC Network Armstrong et al. (Training Data) 

k:' -0.002847 -0.001247 13.18 

kM 
2 

0.0003905 -0.00005846 12.76 

kM 
3 

0.005619 0.001244 7.201 

kM 
4 

0.00003692 0.00004000 20.34 

kM 
' 

-0.4562 -0.01420 0.2150 

kM 
6 

0.2042 0.1930 6.622 

kM 
7 

0.007266 0.0004323 5.330 

kM 
8 

-0.2149 0.02375 0.201 

kM 
9 

0.0006139 0.0006422 11.12 

M kw 0.1387 -0.01096 1.042 

M ku 0.1616 0.1796 4.903 

M k,, -0.2533 -0.02135 0.4104 

k,~ 0.03398 0.001842 3.376 

k,~ -0.1557 -0.3721 1.194 

k:i 0.001942 0.0002022 9.115 

kt{, 0.2002 0.2018 2.858 

M k, -0.07031 -0.003809 0.8882 

M 
k" 0.01923 0.0003022 2.334 

M 
k,. 0.9278 1. 602 0.2055 

M k,o -0.1710 -0.1341 1. 379 

M k, 0.3631 0.6903 0.3905 

M k, 0.2676 0.3335 0.8969 

k;i 1. 036 1.163 0.8186 

M k,. 0.4285 -0.2984 0.5072 

M k, 3.757 6. 792 0.07830 

M k,. 2.230 2.992 0.3628 

Figure B.J.J: Identified values and sensitivities for the mass/velocity coefficients 

of PUMA A. 
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Coeff. Value Identified by Value Reported by Sensitivity using 
Name CSLC Network Armstrong et al. Training Data 

k:' -0.001617 -0.001247 11.65 

kM 
2 

0.006519 -0.00005846 10.82 

kM 
3 

0.009809 0.001244 7.386 

k4M 0.0001137 0.00004000 18.94 

kM 
' 

-0.3535 -0.01420 0.2102 

k:' 0.1921 0.1930 6.145 

k!;' -0.007015 0.0004323 4.887 

kM 
8 

-0.2205 0.02375 0.2855 

kM 
9 

0.0004397 0.0006422 9.830 

M kw 0.1211 -0.01096 1. 075 

k:i 0.1613 0.1796 4.335 

k:i -0.2431 -0.02135 0.4555 

k,~ 0.02788 0.001842 3.535 

M k14 -0.2372 -0.3721 1. 344 

M kts 0.006201 0.0002022 9.008 

M 
k16 0.2020 0.2018 2.892 

M k11 -0.2670 -0.003809 0.6968 

M k18 0.04889 0.0003022 2.044 

M 
k,. 1. 275 1.602 0.3235 

M 
kzo -0.1673 -0.1341 1. 393 

M k21 0.4887 0.6903 0.3494 

M 
kzz 0.2673 0.3335 0.9260 

kz~ 1. 026 1.163 0.8128 

k:! 0.2860 -0.2984 0.5643 

k:; 4.485 6. 792 0.1132 

k:!, 2.466 2.992 0.3521 

Figure B.J-2: Jdentified values and sensitivities for the mass/velocity coefficients 

of PUMA B. 

By consideration of their algebraic representations (Subsection B.1.3), it can be seen that 

the true values of k:;', k:', k: and k:[ must all be positive. 
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B.2 VELOCITY TERM SUBNETWORK 

8.2.1 

The velocity subnetwork has 86 preprocessed inputs, which are described in Subsection 

B.2.1. The adaptive weights matrix connecting these inputs to the first hidden layer has 

408 finite elements, sharing simple multiples of 17 of the 26 mass/velocity coefficients 

(see Subsection B.1.3). 

Velocity Subnetwork Inputs 

Denoting the row vector of preprocessed velocity subnetwork inputs as xv, its elements 

can be described as follows. 

x,v 1 x; = XV 2 x: = 2 
= C4SS 3 c23 c4 s5 c23 c4 c5 s5 

x: CzJ 5zJ c4 8s x: = Sz CzJ c4 s, x: = c4 c5 s5 x: = Cz 5zJ c4 8s 

x: 2 2 V 2 V 2 V 
= CzJ szJ c4 Cs Xw = CzJ 5zJ c4 XII CzJ 5zJ Cs x,2 = c, 

V V V V 2 xl3 = 5z 823 c, x,. = CzJ 5zJ c, XIS Cz Cz3 Cs x,. CzJ CS 

V 2 V V V xl7 = C23 X" CzJ 5zJ x,. = 52 CzJ X2o Cz CzJ 

V V V V 2 X2, 5z 523 X22 Cz 5 23 x2J = c2 82 x2• = c2 
V 2 2 V 2 V V 2 x2, = CzJ c4 s4 Cs x26 = CzJ c4 s4 x27 c4 54 x28 c4 54 Cs 

V V V V 2 x29 CzJ 5zJ 54 Cs 5s X3o CzJ 5zJ 54 5s X3, = Cz CzJ 54 5 s X32 = CzJ s4 ss 

V 2 V 2 2 V 2 V 2 x3J CzJ 521 c4 Cs x3. CzJ C4 CS SS x, = CzJ c4 Cs x3. = CzJ CS Ss 

V V V 2 x:, x3, = Cz c23 c4 cs x3, CzJ 8zJ c4 cs x3. = C4 CS SS 54 CS 

V V 2 V V x., = CzJ 8 23 c4 x.2 CzJ ss x.3 = CzJ 523 5s x •• = s, 

V V V V x., = Cz 523 8s x •• = 5zJ 84 5s x., 5zJ 54 Cs 5s x., CzJ 84 5s 

V V V V 2 x •• = Cz 54 8s x,. = CzJ c4 Ss XSI = CzJ c4 54 x,2 = CzJ c4 54 Cs 

V V V V 

x" = 823 x,. 521 Cs x, = c23 x,. = c2 
V V 2 V 2 2 XV 2 x, = s2 x,. = 8z1 C4 x,. SzJ c4 Cs 5zJ Cs 60 

V V 2 V x:. x., = CzJ 84 x.2 CzJ 84 Cs x.3 = 5zJ c4 54 Cs 5s c23 5s 

V V V 2 V x., 8 23 C4 CS x •• = 521 c4 x., SzJ c4 cs x., Cz C4 CS 

V V V V x •• CzJ c4 Cs x,. C23 S4 CS Xn = CzJ Cs 5s Xn = CzJ c4 cs 5s 

V V V V x,3 = sz c4 ss x,. = 5 21 c4 5s x, SzJ s4 Cs x,. = s2 s4 cs 
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V V V V Xn S4SS x,. Sz SzJ s4 ss X,, = Sz sz3 c4 Cs x,. C4 CS 

V V V V 
X" CS SS x., Sz CzJ ss X" = Cz SzJ s4 Cs x,4 s4 

V 2 V x., = s4 Cs x,, sz c23 s4 cs 

8.2.2 Velocity Subnetwork Weights Matrix 

The I 05 unique Christoffel Symbols can be determined from xv wv, where the 408 finite 

elements of the weights matrix are simple multiples of 17 of the 26 mass/velocity 

coefficients, as described below. 

V lkM lkM V I kM V = I kM+ I kM V I kM w •.• = w,,2 = -- 12 wl,21 w .... = - 12 -2 5 -2 12 2 2 5 2 12 2 

V kM V kM V = k,M V kM w2,1 I W2,2 = I w2,3 w2,21 - 1 

V kM V I kM V kM V -kM w2,34 = w,,,. = w2,37 = w2,40 = I 2 4 I 1 

V k~ V I kM V kM V -~ w2,S2 = w,,,. = w2,SS w2,S8 = 2 4 I 

V _I kM V -'kM V I kM V = lkM w,, •• = w,,,. = w,,,, w,,w, 2 4 2 4 2 4 2 4 

V -2k~ V -2k~ V 2k~ V 2kf w,,, = w3,2 = w3,21 = w3,40 = 

V 2k~ V M 
w4,1 = w4~ = 2kl5 V w.,,. M -2kl5 V 

w4,40 
M -2kl5 

V 
w,,, -21cf V w,,, -21cf V w,,,. 2kf 

V w, ... 2kf 

V -k,M V 
~ V kM V k,M w,,, w,,,. w,," 3 w6,30 

V M V kM V -kM V 
= -k:; w6,34 = k, w,," = w •.• , w,,, 3 3 

V 
= -k~ V k~ V -k~ V k~ w,,, w,,,. = w7,34 = w,, .. 

V M V 
= -k:' V = -k,M V 

k:' w,,, = -klS w,,, w,,, w,,,. = 

V -kM V -k,M V 
= -k:' V -k: w,,,. = w8,30 w8,34 w,," = 3 

V kM V k,M V M V M w,, .. = w8,45 = w,,, = klS w,,, = klS 3 

V -k:; V M V -k~ V -k:i w,,,. = w .... = -klS w ••.• Ww,2 
V M V M V M V k:; Ww,,. k .. w ..... k .. w"·' = klS w"·' = 

V -k~ V -k~ w"·" wll,4o = V 
w.,,, -k,M V w.,,, -kf 

V kf V 
~ 

V kf V k,M w.,,,. w"·" wl2,40 = W12,SS = 

V 
= -k:' V kM V k,M V kM w.,,, w.,,,. = w"·" wl3,30 = 3 3 
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V k,M V -kM V -2k~ V -2kM 
w"·" = w"·•' = wl •. l wl •. 2 = 3 I 

V 2kM V 2kM V kM V kM w1•.21 = wl •. 40 WIS,I = WIS,2 I I 3 3 

V -kM V kM V k,M V kM WIS,21 = WIS,26 WIS,30 = wls,37 = 3 3 3 

V -~ V -~ V 214' V 2k,M wl,,40 WIS,4S wl.,l = w1•.2 

V -214' V -214' V M V M 
w1•.21 wl •. 40 wl1,1 = kl2 w11.2 kl2 

V M V M V -~ V -~ wl7,21 -kl2 wl,,40 -kl2 wl,,l = wl,,2 

V ~ 
V 

"'~ 
V M V M 

w1s.21 wl,,40 wl,,l = -kw wl,,21 = kw 

V M V k~ V M V -k:! wl,,2. = kw wl,,3o = wl, .• , -kw W20,1 = 
V -k:! 

V 
k:! 

V M V -k:! w,o,, = w,o,21 w20.2• = -kl4 w,o,3o 

V 
k:! 

V M V M V M 
w,o,40 w2o.4s = kl4 w21.1 = kl4 w,1,21 = -kl4 

V -k:! V -k:! V M V = -k~ w,1,2• w,l,3o W21,4S = kl4 w,,,l 

V -k~ V k~ V M V -k~ w,,,, = w,,,,1 w22.2• -kw w,,,3o 

V k~ V M V -k~ V M 
w,,,40 = w,,,., kiD w23.1 = w23,21 kl, 

V kM V -kM V M V M 
w, •. l w, •. 21 w,,3 = kiS w,,,. -kls ' ' 

V M V M V k~ V -k~ w,6,3 = -kl8 w,.,,. = kl8 w,7,3 = w,,,,, = 

V -k~ V -k~ V M V M 
w,,,31 w,,, •• w,,,., = -kl, w,,,,. -kl8 

V k~ V M V k~ V M 
w,7,63 w,,, .. = kl8 w,,,., w28,3 = -kl, 

V M V M V M V k~ w,.,,, = k1s w,.,31 = k1s w,., •• k1s w,.,., 

V k~ V M V M V M 
w,.,,. w28,63 -kls w,., .. = -kl, w,. .• , = -kl, 

V M V M V kM V -k~ w,,3 -kls w,,,. = k1s W3o,3 = w3o.ss I 

V -~ V -~ V -~ V kM 
w31,3 = w31,21 w31,31 = w31.ss = 3 

V kM V -14' V 14' V 2k~ w31,63 w32,3 = w32,ss w33,4 = 3 

V M V k~ V M V 14' w"·" = -2kls w34,4 = w34,7S = -kl, w,,. 

V -14' V k~ V M V kM w,,, w36,4 w36,1S = -kl, w37,4 = 3 

V ~ 
V kM V -k,M V -k,M w3,,2s w37.32 = w37,75 w3,,so 3 

V M V kM V M V M 
w,.,. = -kl w,.,, w,,. = -kls w,,2, = kiS I 

V 
w39,32 k~ V 

w,,., 
M 

k1s 
V 

W39,SO k~ 
V 

w,,, k~ 

V M V -k~ V M V k,M 
w, .• o -kls w,,,1 = w,,,. = -kl, w.o.• = 
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V kM V I kM V kM V 'kM w40,3S I w40,38 2 4 w40.s3 I W4D,S6 2 4 

V -~ V -2JcM V _I kM V I kM W40.1s = w40,s3 = w40.s6 = w40.•• = 
2 4 2 4 2 4 

V - 'kM V -k~ V M V -kM 
w40,102 - 2 4 w41,4 = w.,,1s = k,s w42,4 = I 

V k~ w4~.4 -k,M w4~,1s k,M V kM 
w42,7s = = w44,4 = I 

V kM V k~ V kM V kM 
w44.2s w ... 32 = w ... 41 = W44,SO I I I 

V -'kM V -kM V kM V -kM w ... 13 = w ... 1s = w .... o = - I w44,81 = 2 4 I I 

V -kM V I kM V -'kM V -~M w44,84 w ... ss = w .. ,,04 = w4s,4 = I 2 4 2 4 

V -~ V -k:' V ~M V 
k:' W4s,2s = w4,,32 = W45,1S = W4s,so = 

V -k~ V M V 
= -~ V -k~ w46,6 = w46,1 = -k,' w46,8 w46,11 

V -k,M V k~ V !kM V kM 
w46,12 = w46.•s = w46,17 = w4 •• 18 = 2 4 I 

V _I kM V 'kM V k~ V k~ w46,62 2 4 w46.94 2 4 w41,6 w47,7 

V 
w41,, 

M 
k,s 

V 
W41,1s -k~ V 

w .... ~ 
V 

w.,,1 ~ 
V k,M V -~ V -~ V k-;M w.,,, = w.,," w.,," = w49,6 

V -~ V -kM V 
~ 

V k,M w4.,1S = w49,18 Wso,6 = Wso,? = 3 

V _I kM V 14' V _tkM V k,M 
WsO,IO Wso,ll = Wso,l4 = WsO,IS 2 4 2 4 

V 14' V kM V 'kM V kM Wso,ts w,o,23 Wso,2s WS0,42 = I 2 4 I 

V !kM V -kM V kM V _I kM Wso,44 = WsO,S9 = Wso,60 = - I w,o.•2 2 4 I 2 4 

V _I kM V M V M V M 
Wso,9J = WSI,6 = k" Ws,,? = k" WSI,II = k,. 2 4 

V M V M V M V -14'o w,2,6 = -kiS w,2,1 = -k,s w,2,, -k,s w,3,6 = 
V -~ V I M I M V k,M V I kM I kM w,3,1 w,3,s --kl) --k18 w,3,, - 0 w,3,12 = -- 13 -- 18 2 2 2 2 

V I kM I M V 'kM lkM V I kM I kM 
Ws3.23 = - 13 --kl8 Ws3,42 = - 13-- 18 w,3,, = -- 13 +- 18 2 2 2 2 2 2 

V I kM I kM V k,M V 
k;' 

V -'kM w,3,60 = -- 13 +- 18 w,. .• = w,.,1 = w,.,,o = 
2 2 2 4 

V 14' V _!kM V k,M V 'kM Ws4,11 Ws4,14 = w,.," = w,.,2, = 2 4 2 4 

V - !kM V _!kM V -'kM V M 
w,., .. Ws4,92 = w,,,.3 = Wss,6 = k,1 - 2 4 2 4 2 4 

V k~ V M V kz': V -kM Wss,? = Wss,ll = kl1 w, •.• = w,1.6 = 8 

V M V M V M V M 
w,.,, k,. Wss.12 k,. Wss,23 = k,. Wss,42 = k,s 
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V M V -k~ V M V -k~ w,,,. = -k" w,,60 = w,.,, = -k, w, •. 12 

V M V -k~ V M V k~ w, •. 23 = -k, w,,,2 w,.,,. = k, w, •. 60 

V k~ 
V M V I~+ tkM V I~+ tkM w60.s = w60,12 k, w ••.• = w.,." = 2 2 IS 2 2 IS 

V I M tkM V -'~+ tkM V ~~-tkM w.,.2, --k:; +- " w.,,., = w.,,,. = 2 2 2 2 I! 2 2 IS 

V I kgM _I kM V 
= -k~ V M V -k~ w.,,, = w.2.• w.2.13 = -k, w.2.2• = 2 2 IS 

V -k~ V M V M V M w.2.43 = w.2.,. k, w.2., = k, w63,9 = k, 

V k~ V M V k~ V M w.3.13 w.3.24 k, w.3.43 = w63,76 = -k, 

V -k~ V 14' V k,M V _I kM w63,77 w ••.• = w ... " = w ••.•• = 2 4 
V tkM V _I kM V 14' V kM w ... ,. w .... , = w., .• = w.,." = 2 4 2 4 ' 
V -kM V _I kM V tkM V _I kM w., .•• = w., .•• = w.,,,. = w., .• , = I 2 4 2 4 2 4 

V ~~-tkM V _I~_ I kM V t~cgM tkM w ••.•• w ••.• , = w ••. ,. = - +_ IS 2 2 IS 2 T IS 2 2 
V M V M V M V kM w., .•• k, w., .• , = k, w.,,,. = -k, w ••.•• = 3 
V ,; V 14' V kM V kM w ••.•• = W,o,t6 = w,o.24 w'"·" = I I 

V -kM V -kM V M V k~ w,o,,. = w,o,, = w,.,,. k, Wn•t I I 

V M V M V M V M w,.,,. = -k, w72.23 -k, Wn.42 = -k, Wn.s• k,, 
V k~ V 

~ 
V -~ V 

~ Wn.60 w,~3 w,,,. w,.,23 = 

V ,; V -kf V -kr V 
k!/ w,.,42 = w,.,,. = w,.,60 w,,24 

V k,M V -kf V -~ V kM w,,43 = w,,,. w,,, = w,.,,. = 3 
V kM V -~ V -~ V -~ w,.,,. - 3 w,,,2, = w,," w,,. 

V -kf V 
~ V ,; V 

k!/ Wn,49 w,.3 = w, .. w,., 

V -k;' V -kM V k,M V k;' w,.,2, w"·" = w78,63 w, •. 2, 3 
V k,M V -kM V 

~ 
V "'M w, •. 32 w,,,o = w,o.2s = w,o,32 = 3 

V 
~ 

V 
~ 

V -~ V -~ w,o,., = Wso.so Wso.so Wso.st = 

V -~ V M V M V M 
w,"·" w"~' = -k, wst.32 -k, w"·" -k, 

V M V k~ V M V M 
Wst,SO = -k, w"·'o = WSI,SO = k, w"·" = k, 

V M V -k~ V k,M V kM Wst.s4 = k, w"·" w,2,2s w,2,32 = 3 
V -k,M V -k,M V I~ I M V = -.!_kgM + .!..k~ w,2,so w,,, = w,,,, = -- + _k, w,.,, 2 2 2 2 
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V 1 M 1 M V lkM lkM V _I le;'_ I kM Ws4,6s -k; + -kiS w ..... = - 9 +- IS w, •.• 2 = 
2 2 2 2 2 2 15 

V -'k;'-'kM V 
= -k~ V M V M 

w,.,., = 2 2 IS W,s,3s W8S,S3 -k,s WsS,6S -k,s 

V -k~ V M V M V kM w,s.•• w,s,sz = k,s Wss.ss = k,s w, •. 3s = 3 

(all other elements are zero/null) 

B.3 GRAVITY TERM SUBNETWORK 

The gravity term subnetwork has nine preprocessed inputs (Subsection B.2.1) and 

contains only five unique coefficients (Subsection B.2.3). 

B.3.1 Gravity Subnetwork Inputs 

Denoting the row vector of gravity subnetwork preprocessed inputs as x_G, its elements 

are defined as follows. 

XG 
I = c2 

XG 
2 s2 

XG 
3 5 23 

x.a = S23 CS 
XG s = c23 x.a = c23 c4 ss 

XG 
7 = s23 s4 ss XG 

8 s23 c4 cs XG 
9 = c23 ss 
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8.3.2 Gravity Subnetwork Weights Matrix 

The gravity term can be found directly from 

G = XGWG 

where the gravity term weights matrix is defined as 

0 k,G 0 0 0 0 

0 k~ 0 0 0 0 

0 kG 
' 

kG 
' 0 0 0 

0 kG 
2 

kG 
2 0 0 0 

WG = 0 kG 
3 

k,G 0 0 0 

0 kG 
2 k2G 0 0 0 

0 0 0 -k2G 0 0 

0 0 0 0 kG 
2 0 

0 0 0 0 kG 
2 0 

8.3.3 Gravity Term Coefficients 

The elements of the gravity term coefficients vector (kG) are as follows. 

k7 = 2r,m2g 

k2G = -'r, m
6 

g 
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8.3.4 Gravity Term Coefficient Values 

The identified values and sensitivities for the gravity term coefficients are presented in 

Figs. B.3-l & B.3-2. 

Coefficient Value Identified by Value Reported by Output Sensitivity 

Name 

k~ 

kG 
2 

kG 
3 

k: 

kG 
' 

the CSLC Network Armstrong et al. (Training Set) 

-2.021 1. 0246 0.1459 

-0.004226 -0.028264 0.2554 

-0.08723 0.24903 0.2816 

-45.71 -37.250 0.07851 

-11. 66 -8.4577 0.1484 

Figure B.J-1: The identified values and sensitivities for the 

gravity coefficients of PUMA A 

Coefficient Value Identified by Value Reported by Output Sensitivity 

Name 

kG 
I 

kG 
2 

kG 
3 

k: 

kG 
' 

the CSLC Network Armstrong et al. (Training Set) 

-1.470 1. 0246 0.1198 

-0.01724 -0.028264 0.2337 

0.9353 0.24903 0.2906 

-46.85 -37.250 0.1070 

-11.98 -8.4577 0.1300 

Figure B.J-2: The identified values and sensitivities of the 

gravity coefficients of PUMA B. 
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8.4 VISCOUS FRICTION SUBNETWORK 

The viscous friction torque contribution (1:' ), for a given joint, is simply equal to tj
1 
k~. 

The values identified fork', and their sensitivities, are presented in Figs. B.4-1 & B.4-2. 

Coeff. Identified by Reported by Value Obtained Sensitivity 

Name CSLC Network Leahy & Saridis via Regression (Training Set) 

k' I 
3.352 4.0 2.954 0.1840 

k' 2 
6.660 3.5 7.875 0.01764 

k' 3 1. 858 3.5 1. 631 0.2295 

k: 0.3012 0.48 0.3398 0.5667 

k' 
' 

0.2174 0.55 0.2462 0.6007 

k' 6 
0.3018 0.65 0.1360 0.6313 

Figure B.4-1: Viscous friction coefficient values for PUMA A. 

Coeff. Identified by Reported by Value Obtained Sensitivity 

Name CSLC Network Leahy & Saridis via Regression (Training Set) 

k' I 
6.097 4.0 5.631 0.2186 

k' 2 7.182 3.5 6.554 0.03708 

k' 3 3.006 3.5 3.013 0.2082 

k' 4 0.3536 0.48 0.3469 0.5551 

k' 
' 

0.3239 0.55 0.2315 0.5521 

k; 0.4020 0.65 0.2813 0.6141 

Figure B.4-2: Viscous friction coefficient values for PUMA B. 

Note that the coefficient values identified through regression are the optimal values (in 

terms of minimising the network error cost) for the corresponding training set, given the 

mass/velocity and gravity coefficients reported by [Armstrong et al. 1986). 
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8.5 DRY FRICTION SUBNETORK 

The dry friction torque contribution ('t"), for a given joint, is simply equal to sgn(q
1

) k~. 

The values identified fork' are presented in Figs. B.5-1 & B.5-2. 

Coefficient Value Identified by Value Reported by Value Obtained 

Name CSLC Network Leaby & Saridis via Regression 

k~ 9.169 5.355 9.756 

kd 
2 9.778 6.138 9.374 

kd 
3 5.392 3.519 5.750 

kd 
4 1.047 0.963 0.9934 

kd 
' 

1. 007 0.801 1.280 

k' 6 
1. 001 0.846 0.4987 

Figure B.S-1: identified dry friction coefficient values for PUMA A. 

Coefficient Value Identified by Value Reported by Value Obtained 

Name CSLC Network Leaby & Saridis via Regression 

kd 
I 

4.539 5.355 7.474 

kd 
2 

7.737 6.138 8.010 

kd 
3 

4.786 3.519 5.485 

k~ 0.8837 0.963 0.9885 

kd 
' 

1.104 0.801 2.241 

k' 0.9971 
6 

0.846 1.135 

Figure B.S-2: Dry friction coefficient values for PUMA B. 

All dry friction coefficients have an output sensitivity of one sixth, for any given training 

set with non-zero joint velocities. 
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8.6 STATIC FRICTION VELOCITY THRESHOLDS 

The joint velocity threshold magnitudes (which delimit the region in which static friction 

is considered significant) are presented in Figs. B.6-l & B.6-2. 

Joint 1 2 3 4 5 6 

Threshold 0.16 0.083 0.12 0.78 0.82 1.6 

Figure B.6·1: Static friction velocity threshold magnitudes for PUMA A. 

Joint I 2 3 4 5 6 

Threshold 0.16 0.05 0.26 0.72 0.78 1.7 

Figure B.6-2: Static friction velocity threshold magnitudes for PUMA B. 
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APPENDIX C 
TECHNICAL SUMMARY 

This appendix comprises a technical summary of the methodology employed in the 

identification of unknown coefficient values for a system of known algebraic form. As 

such, it is intended as a concise guide for those wishing to perform similar identification 

studies. 

The specific application covered in this thesis, namely the identification of manipulator 

dynamics coefficients, is discussed first. Each step of the identification process is detailed 

in turn, complete with references to the pertinent equations and further information given 

in the main body of this thesis. The second section of this appendix discusses the 

application of the methodology developed in this thesis to the general class of problems 

which possess a known algebraic structure but unknown coefficients. 

C.l MANIPULATOR INVERSE DYNAMICS 

The process of identifying a manipulator's dynamics coefficients can be broken down into 

seven principal stages. Most of these stages involve the manipulation of potentially huge 

algebraic constructs, which is best performed automatically through the use of computer 

software. The identification experiment detailed in this thesis made use of over 30 

routines, written by the author for use with the MA TLAB"' technical computing language 

(version 4) and employing the additional Symbolic Math Toolbox (an implementation of 

MAPLE® V). This software was written for the general case, that is, it is applicable to 

the problem of identifying the dynamics coefficients of any given manipulator, and can 

be made available to interested parties upon request. 

The seven principal stages for the identification of manipulator inverse dynamics 

coefficients are as follows; 

• Allocation of coordinate frames 

• Formation of Pseudo-Inertia Matrices and Homogeneous Transforms 

• Determination of Inertia Matrix, Christoffel Symbols and Gravity Term 
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• Separation of Variable Inputs from Constant Coefficients 

• Construction of CSLC Network 

• Collection of Empirical Training Data 

• Identification of Coefficients via Training of the CSLC Network 

Each of these operations is described in detail in the following subsections. 

C.l.l Allocation of Coordinate frames 

Choose a system of coordinate frames. One frame is required per degree of freedom 

possessed by the manipulator. A judicious choice of frames can result in a significant 

reduction in the algebraic complexity of the base homogeneous transforms, a 

recommended allocation method is that of the modified Denavit-Hartenberg convention 

(see Subsection 2.6.1). 

Regardless of the allocation convention used, the resultant set of n coordinate frames can 

be uniquely summarised by 4n Denavit-Hartenberg parameters. If accurate data is 

available, measured values for some or all of the 3n constant D-H parameters may be 

used instead of undefined algebraic terms. 

C.l.2 Formation of Pseudo-Inertia Matrices and Homogeneous Transforms 

Form the pseudo-inertia matrices (/1) using Eqn. 2.3-17. Alternatively, if the correspond­

ing frames are known to be principal axes, the simplified form given in Eqn. 2.3-20 may 

be used. If accurate a priori knowledge of the link masses and/or centre of gravity 

coordinates is available, these values can be used in the pseudo-inertia matrices instead 

of the corresponding undefined algebraic representations. (It is not possible to accurately 

measure the inertia terms that appear in 11) 

Form the base homogeneous transforms (T1) from the D-H parameters, using Eqns. 2.6-1 

and 2.6-2. 

C.l.3 Determination of Inertia Matrix, Christoffel Symbols and Gravity Term 

Form the algebraic representations of the elements of the mass matrix (Mu) from the 

pseudo-inertia matrices and base homogeneous transforms, using Eqns. 2.3-24 and 2.5-6. 

Form the algebraic representations of the Christoffel symbols (c,j,) from the elements of 
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the mass matrix, using Eqn. 2.4-5. 

Form the algebraic representations of the elements of the gravity effect vector ( G1) from 

the pseudo-inertia matrices and base homogeneous transforms, using Eqns. 2.3-28 and 

2.4-7. 

C.l.4 Separation of Variable Inputs from Constant Coefficients 

Factorise each element of the quantities determined in the previous step for each unique 

product of position dependent (variable) quantities they contain (see Section 5.1). This 

produces a summation of terms where each term consists of a product of position 

dependent quantities, or unity, factored by a group of constant parameters. For each of 

the mass, velocity and gravity terms, find the list of unique position dependent products 

that appear within the factorised elements of the mass matrix, Christoffel symbols and 

gravity effect vector respectively. Similarly, find the minimum set of coefficients which 

includes known multiples of all the groupings of constant parameters identified in the 

same quantities. To simplify identification, express the velocity term coefficients in terms 

of the mass term coefficients (see Subsection 5.1.2). 

C.l.S Construction of CSLC Network 

The CSLC network for manipulator inverse dynamics comprises several distinct 

subnetworks (see Section 5.1). 

Form the mass, velocity and gravity subnetworks' preprocessed input vectors from the 

corresponding list of unique position dependent products. For each of these subnetworks, 

the first computational layer comprises the unique elements of either the mass matrix, 

Christoffel symbols or gravity effect vector. Thus, for a given subnetwork, each element 

of the weights matrix connecting the preprocessed input layer to the first computational 

layer is defined as being equal to that coefficient (or multiple thereof) which factorises 

the associated input in order to produce a term within the corresponding unique element 

of the mass matrix, Christoffel tensor or gravity effect vector. 

The algebraic form of the friction term is potentially the same for any given manipulator 

(see Subsection 2.5.1). Incorporate the viscous, dry and, if desired, static friction 

subnetworks into the CSLC using the simple subnetworks shown in Subsections 5.1.4 

and/or 8.2.1 . 
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C.1.6 Collection of Empirical Training Data 

Devise a training trajectory with a high degree of excitation and low redundancy (such 

as that discussed in Subsection 7.4.1). Allow the manipulator to perform the training 

trajectory whilst recording the instantaneous joint positions, velocities and accelerations 

as well as the applied force/torques. If direct measurement of the applied torques is not 

possible, the relationship between demand torque and applied torque must be identified 

(see Subsection 7.2.3). If measurement of the joint velocities and/or accelerations is not 

possible, the positional (or velocity) data must be smoothed and differentiated. The 

recommended method for this is averaged spline smoothing (see Section 7.3). 

Data which describes the inverse dynamics of a joint whilst it is experiencing backlash 

should be identified so as not to adversely affect identification of the non-backlash 

dynamics coefficients (see Subsection 7.2.4). 

For the purpose of assessing network performance, it is useful to produce a comparison 

data set, in the same fashion as the training set, from a distinct trajectory. 

C.1.7 Identification of Coefficients via Training of the CSLC Network 

Train the CSLC network constructed for the given manipulator. Estimates of dynamics 

coefficients' values (if available) can be used for the initial network weights values in 

order to hasten training. Gradient descent learning algorithms (such as Backpropagation, 

see Subsection 3.4.2) will benefit from the CSLC network's sole error hypersurface 

minima and provide a rapid means of identifying approximate values for the dynamics 

coefficients. Fine tuning algorithms that do not rely on the error surface gradient (such 

as PERAL, see Section 6.2) are then recommended for the accurate identification of the 

coefficients. 

The results of training can be assessed by comparing the recorded applied force/torques 

for a set of data not used in the network training process (the comparison trajectory data) 

against the force/torques predicted by the CSLC network. 

C.2 OTHER SYSTEMS 

The methodology used in this work to obtain accurate estimates of a manipulator's 

inverse dynamics coefficients is applicable to many other engineering systems. In all such 

159 



cases the overall process is identical and can be summarised as follows; 

• Derivation of the symbolic form of the system equation. 

• Simplification of the system equation via replacement of algebraic terms with 

numeric values, if reliable a priori knowledge is available. 

• Separation of unknown constants and known variables. 

• Generation of an adaptive network with inputs comprising the known variables 

and weights comprising the minimised set of unknown constants. 

• Training of the formulated network with empirical data. 

The results from such a network will generalise well if the symbolic system equation 

used is a good model of the system's true behaviour. Training will benefit from an error 

hypersurface with only one minima if the network outputs are linearly related to the 

network weights, which is achieved through the exclusive use of linear network activation 

functions. 
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