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 ABSTRACT  
 
Individual tyre models are traditionally derived from component tests, with their 
parameters matched to force and slip measurements.  They are imported into vehicle 
models which should, but do not always properly provide suspension geometry interaction.  
Recent advances in GPS / inertia vehicle instrumentation now make full state measurement 
viable in test vehicles, so tyre slip behaviour is directly measurable.  This paper uses an 
Extended Kalman Filter for system identification, to derive individual load-dependent tyre 
models directly from these test vehicle state measurements.  The resulting model therefore 
implicitly compensates for suspension geometry and compliance.  The paper looks at two 
variants of the tyre model, and also considers real-time adaptation of the model to road 
surface friction variations.  Test vehicle results are used exclusively, and the results show 
successful tyre model identification, improved vehicle model state prediction – particularly 
in lateral velocity reproduction – and an effective real-time solution for road friction 
estimation. 
  
 Keywords :  Tyre Modelling, System Identification, Kalman Filter, Road Friction 
Estimation 
 
1. INTRODUCTION  
 

Sophisticated and detailed tyre models have been in development for many years, 
based on both rubber/steel mechanics theories and empirical results from tyre tests.  The 
latter class, introduced by Radt and Pacejka in [1] and developed significantly since – 
eg Pacejka [2] – have become the automatic choice in most vehicle handling models for 
the full range of model applications, from parametric simulation studies to control 
reference models, to the core of observers. 

These tyre models are a very sensible option, as they have proven accuracy based on 
rigorously matching measured tyre responses; however the models have become 
complex, with well over 100 parameters in the Pacejka Delft ’97 model [2], and the 
testing is done on the wheel and tyre in isolation from the vehicle.  In applications, the 
whole Pacejka model is usually transferred into a vehicle model, which may itself vary 
in complexity from a simple bicycle framework to a full suspension component model.  
The value of the tyre model may therefore be diminished, since it depends on the 
accuracy and degree of complexity of the suspension model.  Suspension compliance is 
a particular issue, required for the tyre model, but often not present in the vehicle 
model. 

For a significant subset of model applications – those associated with controller and 
observer design in particular – it is equally, or more valuable to quantify the tyre 
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properly in concert with the vehicle.  The tyre model itself will inevitably be simpler, 
but the interactions between suspension and tyre are implicit.  Thus the aim of this 
paper is to identify an empirical tyre model via whole vehicle test data.   

Direct identification of tyre behaviour has been considered in the literature before, 
but most papers look only at road friction identification – eg Canudas-de-Wit et al [3].  
Some models have quantified the tyre force more generally, as a function of slip, eg 
Bolzern et al [4] and Best et al [5], but in those papers it is the aggregated force on front 
/ rear axle which is identified, so comparability with most single tyre models is lost.  
Here we seek an individual tyre model, applied equally at each of the four 
wheelstations, which explains the forces as a function of vertical load as well as sideslip 
angle.  This model will clearly also absorb the suspension compliance effects, and 
although some compensation must be introduced to differentiate rear from front 
suspension configuration, it turns out this can be achieved through the addition of a 
single compliance parameter.   

The algorithm for identification employs another familiar tool within vehicle 
dynamics, the Kalman filter.  This is widely recognised as an effective tool for 
observing the dynamic states of a system, with several publications describing filters for 
vehicle ride and handling control.  It was also the technique employed in [4] and in Best 
et al [6].  In those papers however, the model parameters were adapted simultaneously 
with propagation of a state estimator, so the available sensors drive high and low 
frequency correction processes simultaneously, and there are problems associated with 
estimating some of the matrices required in the filter design. 

The technique used here is the Identifying Extended Kalman Filter (IEKF), which 
identifies the model alone, by the use of an estimated ‘state’ set comprised entirely of 
the parameters to be identified. The advantage of this approach is a simplification of the 
design parameters for the filter.  The disadvantage is in the cost of the sensors which are 
required, since the full state set must be measurable; for the considered vehicle 
dynamics application, this presents the problem of measuring lateral velocity. 

Recently developed GPS / inertia combination instrumentation sets are now 
claiming 0.1 m/s accuracy in lateral velocity measurement however, and although these 
sets are expensive (costing at the time of writing around US$30,000) they rely on 
combining two sensor technologies which will in future years certainly become 
standard in vehicles.  Ironically, the signals provided by these sets are also delivered via 
Kalman filter algorithms, though vehicle models are not used within them. 

The paper uses a 3dof yaw-roll-sideslip model as the platform for identification of 
the tyre model.  This is the simplest platform which allows good state reproduction 
whilst also providing physically realistic load transfer.  Although the paper does not 
document the process, a subset of the geometry parameters for this model is also 
identified using the IEKF, in advance of the tyre identification.  This ensures best 
possible accuracy of the final model, and continues the theme of using system 
identification to maximise the performance available from simple model structures.  
This said, it would be possible to use a more complex alternative base for the 
identification model. 

The tyre model is identified from test vehicle data, in terms of the principal Pacejka 
coefficients.  This is done using a fixed load dependency model, and the results are 
compared with a version including two identified load dependence parameters.  Thus 
the marginal performance benefit of the added degrees of freedom in the model is 
quantified.  The IEKF is then employed with its own adaptation speed parameters 
altered, to establish a real-time road friction estimate to complement the batch-
identified model.  
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2. THE IDENTIFYING EXTENDED KALMAN FILTER (IEKF)  
  
The standard Extended Kalman Filter (EKF) operates on nonlinear system and 

sensor models f and h, which relate the true state vector x , measured sensor set y, 
known inputs u and model parameters  at any instant k according to 

 

  , ,kk k k k x f x u θ ω  (1) 

  , ,kk k k k y h x u θ υ  (2) 

 
 ω  thus describes the state propagation modelling error, and  gives the sensor error. 
υ  is often misleadingly referred to as the measurement error, when in reality it 
aggregates measurement noise within y, and sensor modelling errors in h. 
 An optimal filter can be derived if the error sequences obey the following 
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where the error covariance matrices kQ , kR  and kS  are assumed known.  In practice 

these are difficult to estimate and they are often assumed to be time-invariant, and are 
also approximated, or even set nominally, with S often neglected as approximately zero.     

The EKF also requires model Jacobians to be evaluated at each time step, defined 
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where ˆ kx  refers to the estimates of the state vector, and the full set of equations for the 

standard, real-time state estimation application are 
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where the filter sample time T is used to provide a simple Euler integration of the state 
derivatives. 

Now the premise adopted in [4] and [6] is that an EKF can have its state vector 
augmented to include a subset of unknown model parameters, θ .  This vector might 
generally be inertia, CG geometry and/or (as in this case) tyre model parameters.  The 
resulting filter assumes no known model for the parameter variation, and simply ensures 
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slow adaptation by adjusting the expectation of errors related to the parameter changes; 
so eqn (1) becomes 
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and the covariance  ( ) ( )T
k kE θ θω ω  is then set as a tuning parameter, to adjust the rate of 

adaptation, ensuring this is ‘slow’ compared to the state propagation dynamics.  This 
method of combining state and parameter identification is attractive, and has been 
shown to be effective, but it relies on and is constrained by suitable estimation of the 
remaining error covariances. 

The new identifying Kalman filter IEKF was first introduced using a simulation 
study in Best [7] and then validated using vehicle test data in Best et al [5].  It takes the 
parameter role one step further, for circumstances where all of the state variables are 
measurable.  Provided k kx y  the state vector can be formed entirely as the set of 

parameters, such that eqns (1) and (2) become 

 k kθ ω  (13) 

  1 1 1, ,k k k k k   y h y u θ υ  (14) 

 
 The sensor equation is simply modified to include an Euler integrated propagation 
of each variable over a time step, to avoid identity equations.  This reduces the system 
such that the entire model is represented within h alone.  More importantly, it also 
reduces the system to a form where the error covariance matrices can be estimated 
directly from the noise sequences kω  and kυ , which are now directly calculable.   

Applying eqns (13) and (14) to the EKF formulae of eqns (7) – (11), and noting that 
now f = 0 and F = 0, we have 
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and the IEKF can propagate its own error covariances, so kQ , kR  and kS  are now time 

varying, with the error covariances developed from initial estimates Q0, R0 and S0 and 
an ARMA process of the known errors kω  and kυ , 
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Two tuning parameters are now required,  and .   is a forgetting factor, which 

determines the influence each individual error vector kω , kυ  has on the error 

covariances.  kQ , kR  and kS  thus absorb this error information at the rate of a first 

order lag of time constant  where  
 

/1 Te     (25) 


 performs a similar function to the design covariance  ( ) ( )T

k kE θ θω ω , in [6].  Set in 

the range 0 <  < 1, it diminishes the expectation of error in the change in parameters, 
stabilising the identification.  Put simply, the filter causes parameter adaptation which 
induces (a desirable) non-zero kθ .  However, these changes are errors according to the 

zero model of eqn (13), and if their total magnitude is interpreted as error, Qk becomes 
relatively large compared with Rk, which results in an increase in the feedback gain Kk 
to provide greater correction to the .  Subsequent parameter corrections are then larger, 
and this induces instability.   provides a means of balancing the filter such that 
changes in Qk are, correctly, not interpreted entirely as error. 

Initialisation of the filter requires P0, Q0, R0 and S0 to be chosen. A very important 
primary issue is that the mathematical foundation of the Kalman filter uses trace (Pk) as 
the cost.  In the IEKF, Pk is the expectation of parameter error, 
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so it is sensible to normalise the parameter set, if equal value is to be placed on each  

parameter’s optimality.  This also ensures good conditioning within the filter 
propagation and makes the filter easier to initialise, since P0 and Q0 can be set as 
multiples of the identity matrix.  It turns out that the setting of P0 is very insensitive and 
can safely be arbitrarily set.  Assuming a nominal 1% parameter error expectation, 
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The initial estimate of R0 can be directly estimated by evaluating a time history for 

kυ  over a suitable section of measurement data y using the first estimate for the 

parameter set, 0θ̂ . From eqn (5), R0 is then the covariance of the sequence kυ .  It is also 

reasonable to assume, at least initially, that parameter variations will not correlate with 
sensor errors, so 0S 0 . Any correlation which does exist will develop naturally within 

the propagation of Sk as the filter runs. 
Q0 is less obviously chosen; over long filter run times its influence diminishes, but 

Q0 does have a more significant role than might be immediately apparent, since its 
magnitude relative to R0 determines the initial magnitude of parameter variation, the 
value of kω  and hence the propagation of Qk.  Instability is easily avoided through 

1  , but Q0 and  together provide the principal means of controlling the speed of 

adaptation of the algorithm.  As with P0, Q0 can safely be set proportionally to 0̂ , and 

from eqns (13), (20) and (5), 
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where  is the expected proportional rate of change of the parameters – or the desired 
proportional change of parameters in the first second of running the filter. 

The filter can be run in two distinct modes.  If relatively high values are chosen for 
 and , with < 1, the parameters vary in real-time and can track variable conditions 
such as road surface friction.  Alternatively, with low valued  and , and with  set to 
the duration of the test data or longer, the parameter change is slow, and the filter can be 
iteratively passed over the test data to gradually drive the parameters to an identified 
optimal set. 
 Performance and stability studies on the setting of all the parameters are given in [5] 
and [7], so further elaboration is not given here.  Settings for ,  and  to achieve both 
functions of the filter in the current application, are provided in Sections 4 and 5. 

 
 

3. THE IDENTIFIED MODEL  
 
A 3dof yaw-roll-sideslip model structure is adopted for identification, with fixed roll 

centres and with the roll axis parallel to the SAE x axis; known model parameters are 
listed in Table 1.  The principle equations of motion are, for lateral velocity, v, 
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for yaw angular velocity, r, 
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and for roll angular velocity and angle, p and , 
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where u is the vehicle’s longitudinal speed.  

The influence of lateral load transfer is included by calculating vertical loads on the 
tyres using a moment analysis about the roll centre, 

 

 
 

 

 
 

1,2

1,2

3,4

3,4

2

2

y f f

z
f

y r r

z
r

F h K BpcMg
F

b c t

F h K BpbMg
F

b c t





 
 



 
 



 (32) 

 
and the tyre slip angles are assumed equal on each axle, with a steering compliance 
compensation (Sc, scaled in degrees/g) at the front : 
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Each of the four load varying lateral tyre forces Fyi are then given by an adaptation 

of the Pacejka magic formula seen in Milliken and Milliken [8], using slip 
normalisation such that : 
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 This employs four parameters, G,P,C,E which are equivalent to the traditional 
B,C,D,E quoted in [8]. The reason for the rearrangement is to separate the tyre curve 
shape parameters, C, E in the new formulae from cornering stiffness gain (G) and peak 
force (P) coefficients.  Both G and P are nondimensional scalar multipliers of the 
cornering stiffness and peak force functions of vertical load. 
 Two forms are considered for the tyre model identification.  In the basic 
configuration, G,P,C,E and Sc are identified, and vertical load dependence is fixed, 
based on formulae which have been derived to match previously published (Gordon and 
Best [9]) variation models :  
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 In the extended model, the five principal tyre parameters are augmented with two 
further parameters, G and P which allow adaptation of the curvature of the cornering 
stiffness and peak load functions with vertical load.  To achieve this, the original 
models, eqn (37) are fitted with simple quadratics, 
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with parameters aG = 24.9 and aP = 0.965, chosen to match the original models exactly 
at a reference, approximately neutral load for each tyre, Fzref = 4000N. 
 In the basic identification, eqns (38) are used, with G = 2.5 and P = 0.5 fixed to 
best reproduce the curvature of eqns (37).  In the extended identification  G and P are 
allowed to vary.  The original load model, quadratic fit, and adapted quadratic for C  

and PF  are illustrated within the results section, in Figure 5. 

 Since the tyre model is load dependent and the load depends directly on lateral tyre 
force, a lag function is required, which nominally accounts for slip transients in the tyre, 
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 For ease of coding, the model is executed by explicitly declaring the value of all 
non-identified parameters, establishing symbolic (MatlabTM Symbolic Math) 
descriptions of the state derivatives in terms of the inputs  ,k k ku u , and setting  
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 The resulting symbolic expressions are then imported into Matlab code to propagate 
the IEKF eqns (15) – (24).  To avoid excessively long expressions in the Jacobian an 
intermediate symbolic variable for the lateral tyre forces, F is employed (eqn (36)), and 
the Jacobian components are calculated using chain rule differentiation; 
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Table 1 summarises the model’s fixed parameter values, which were set where 

possible using manufacturer’s data.  
 

Table 1  Model parameters 
M Mass (1840 kg) 
Izz Yaw moment of inertia (4140 kgm2) 
Ixx Roll moment of inertia (735 kgm2) 

b, c CG to front / rear axle distance (1.69 m, 1.34 m) 
h CG height above roll axis (0.41 m) 

hf/ r Height of front / rear roll centre (0.1 m) 
tf/r Front / rear track  (1.56 m) 
Kf/r Front / rear roll stiffness  (59 / 36 kNm/rad) 
B Roll damping (front / rear equal)  (1225 Nms/rad) 
y Nominal tyre lag factor (as eqn (25) with = 0.1) 

 
 

4. TYRE MODEL IDENTIFICATION 
 

 The test vehicle is a 2002my X350 3.5l Jaguar XJ8 with identical tyres front and 
rear.  An Oxford Technical Solutions RT3200 combined GPS / inertial measurement 
system was used to provide all the required data apart from the handwheel steer angle, 
which was sourced from the vehicle CAN.  All data was collected and re-sampled 
where necessary at 100Hz to match the IEKF set with T = 0.01s. 
 Identification and validation drives were conducted on a flat, dry proving ground.  
The identification data comprises a sequence of 10 step steer events in each direction, 
carried out at cruise controlled constant speed, with each event achieving a steady-state 
lateral acceleration for a few seconds before returning and again settling to zero steer.  
Steps with progressively higher magnitude, from 0.2g to 0.8g were conducted, taking 
the vehicle slightly beyond the terminal understeer condition (though the combination 
of rear-wheel drive and cruise control caused nearer neutral / oversteer limit behaviour 
on occasion, that was suitably controlled by the driver).  The sequence was repeated at 
four fixed speeds, 13, 16, 21 and 24 m/s, in order to map the tyre behaviour throughout 
the slip range, but also by including low speeds, through a range of the geometry of the 
suspension.  By including the full slip and geometry operating ranges of the tyre, the 
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resulting system identification can provide a suitably averaged tyre model.  To confirm 
this and to test the model on a different type of test input, validation data comprised a 
‘free drive’ around the proving ground with low frequency speed variations and a 
combination of low and high frequency steer manoeuvres. 
 The lateral velocity – which is clearly critical to successful identification and is also 
the most difficult signal to accurately track – changes its sign with respect to steer angle 
as the vehicle passes from lower to higher speeds; the two signals are positively 
correlated below, and negatively correlated above 18m/s in this test vehicle.  This is an 
expected result which is seen clearly in the vehicle data, and which can be readily 
verified with the model by considering slip and yaw moment balance at the rear axle.  
Identification with data collected at around 18m/s is therefore omitted to avoid 
conditioning problems associated with very low amplitude lateral velocity signals 
around this speed. 
 The IEKF adaptation speed parameters are set at  = 350,  = 0.01 and  = 0.1, to 
encourage slow, repeatable model parameter identification, and the 350 second vehicle 
test data is applied iteratively, with Kalman gain and error matrices continuously 
adapting across iteration boundaries.  The initial and final model parameters for both 
basic and extended tyre models are given in Table 2, and Figures 1-5 illustrate the 
convergence, performance and tyre models which are generated. 
 

 Table 2  Initial and converged parameter values (400 iterations) 
 P G C E Sc G P 

  Initial condns 1.10 1.00 1.40 -0.20 2.00 2.50 0.50 
opt  Basic model 1.02 1.28 1.24 -1.57 4.38 (2.50) (0.50) 
opt Extended model 1.26 1.09 1.25 -0.20 3.93 -1.75 1.09 
 
 First it is important to recognise that the initial parameters for the tyre and (more 
critically) for the model (Table 1) have not been set arbitrarily.  They are chosen to 
match the test vehicle as closely as possible, and in addition, the centre of gravity 
geometry variables (b and h) have been optimised by a prior IEKF experiment, 
described in [10].  It would be trivial to present a poorly matched initial parameter set 
and hence achieve apparently remarkable performance improvements here; instead the 
objective is to see the marginal benefits of the optimised tyre model. 
 
[Figure 1] 
 
 Figure 1 shows cost and parameter convergence, with a subset of parameters chosen 
to illustrate typical behaviour.   A single iteration takes approximately 1 minute on the 
mid-range PC used here, so we can see from the figure that an effective, low cost tyre 
model is available within around 10 minutes, whereas several hours are needed to find 
the definitive identification result.  If used within a real-time vehicle controller, the 
slow adaptation would not present a problem provided environmental parameters are 
adapted more rapidly – as we will see in Section 5. 
 There is a distinct difference between convergence rates in the parameters, with the 
most cost-sensitive, such as P converging quickly.  Other parameter combinations, such 
as C (not shown) and E vary slowly but achieve very little additional cost reduction – 
seen in trace (R).  The  parameters also illustrate this, with P converging much more 
rapidly than G.  Separate, six parameter extended model optimisations have been 
conducted with G fixed, and these confirm that most of the cost benefit of including the 
 terms arises from the identification of the peak force model. 
 The extension of the model does bring about a considerable variation in the final 
values of common parameters though – eg in E and in the alternated choice of higher P 
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or G (table 1); this illustrates their known interdependence.  Note also that Figure 1 
shows E varying away from its 0 setting in the first few iterations, before converging to 
its original value, so this parameter has not been neglected in the identification. 
 With the possible exception of Sc, all of the parameters converge to values within 
the expected range.  The initial setting, Sc0 = 2 fits with an assumption, supported by the 
manufacturer, that the front suspension might reasonably see compliance in the region 
of 1°/g (see also eqn (33)).  The higher converged setting is not outside reasonable 
bounds of variability, but we should also add the caveat that this value corrects any 
calibration inaccuracies in the measured steer angle, and more significantly, will be 
affected by body torsional compliance as well as the assumption that front left and right 
slip and steer angles are equal.  Critically, the inclusion of the compliance term is 
extremely important to the high levels of accuracy in state predictions seen in this 
paper; the term is not included in most published handling models, yet it plays an 
important role in differentiating front / rear tyre force, suspension and vehicle behaviour 
here. 
 
[Figures 2 & 3] 
 

 Table 3  Open-loop Model performance %, RMS(error) / RMS(source data) 
Identification data yaw rate, r lat. vel, v roll rate, p lat. accel, ay 
  Initial conditions 16.3 148.0 72.0 25.1 
opt Basic model 5.2 41.4 61.1 8.5 
opt Extended model 5.4 35.9 62.5 8.2 
     
Validation data yaw rate, r lat. vel, v roll rate, p lat. accel, ay 
  Initial conditions 22.7 116.9 71.1 24.3 
opt Basic model 8.7 70.7 64.0 11.2 
opt Extended model 8.8 70.2 67.3 10.7 
 
 Figures 2 and 3 show a representative section of ‘open-loop’ model performance on 
the identification and validation data sets respectively, and Table 3 quantifies the RMS 
errors between source and simulated data.  Note that these are a worst case illustration 
of the value of the model, since the variables are simulated in isolation from the source 
data, based on the measured inputs  ,k k ku u  alone.  For both identified models, 

performance is improved on all of the model states, but the improvement is clearest in 
lateral velocity.   
 The identified tyre seems equally effective in basic and extended forms, with just a 
small further improvement noticeable for the extended tyre variant for lateral velocity.  
It is however, relatively easy to tune parameters for the yaw-roll-sideslip model to 
achieve excellent yaw rate and lateral acceleration tracking; it is the often very sensitive 
lateral velocity measure which is critical to full state feedback chassis control systems, 
so the improved prediction from the tyre model here might provide significant value. 
 Normalised lateral force vs slip curves for both identified tyre models are given in 
Figure 4, and the load dependency models are shown in Figure 5.  In Figure 4, given the 
measurement of yaw and lateral accelerations along with all of the constituent variables 
required to formulate tyre slip angles, it is possible to construct a scatter plot of the 
normalised tyre behaviour directly from the measurements.  This is not independent of 
an assumed tyre and vehicle model, but it does provide a useful measure of the 
consistency of the tyre behaviour and hence the suitability of a single tyre model for all 
wheelstations. 
 To generate the scatter plot, cumulative axle force is deduced from measured lateral 
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and yaw accelerations ya  and r  : 
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is then applied to eqn (32) to estimate the tyre vertical loads.  (Measured roll angle 
suffers from low frequency errors since it is an absolute measure and small road camber 
angles are not insignificant and unknown.) 
 Measured , u, v and r are then applied to eqns (33) – (36) and (38), using the 

identified tyre parameters, to find   and F; F is used to attribute an appropriate left / 
right split to the ‘measured’ data Fyf and Fyr, and hence find an equivalent ‘measured’ R 
by inversion of eqn (36) : 
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 The four measurement based Ri and i , plotted as the scatter in Figure 4 therefore 
show how the measurements on the identification drive emulate eqn (35).  Alterations 
to parameter choices will obviously influence both the model curve and scatter data in 
the plot, but it is clear both that the expected shape exists, and that the four corners 
provide consistent behaviour, validating the single tyre assumption. Note however that 
direct optimisation of parameters from this plot cannot be achieved, since (eg) P   
or 0G   tend to a zero slip null solution.  
 It is interesting that although peak forces, P are consistent, Figure 4 shows a 
mismatch in the cornering stiffness, G seen in the model and scatter data; the model 
shows higher stiffness.  Given that both of these data sources are generated using the 
parameters G and P, we might expect a better match.  Note however that the tyre model 
is optimised in combination with the vehicle model in order to achieve minimum error 
in the vehicle states; this is not a tyre force optimisation in isolation, and the objective 
function is not lateral force and slip.  The higher G is compensated in the model by 
suspension compliance Sc, and it also counteracts the vehicle model simplicity and its 
fixed parameter choices to provide the excellent state tracking of Figures 2 and 3.  
Figure 4 thus provides a useful resource for future tuning and / or extension of the 
vehicle model structure, to achieve a more accurate tyre model independently from the 
vehicle and its suspension. 
 Extension of the identification has the effect of spreading the range of normalised 
slip values – an effect caused principally by the alternative to the Fyp model.  In Figure 
5 (a) the cornering stiffness model has become nearly linear – in effect cancelling out 
the influence of this parameter on the axle’s aggregated tyre force.  Conversely the peak 
force model is identified with the expected shape, but with more exaggerated saturation 
at high vertical load.  Noting the marginal performance improvements in Table 3 and 
the fact that the extended cornering stiffness model now varies considerably from 
expectations, we should exercise some caution about the applicability of the extended 
model.  It could be argued that the improvements are due more to the increased 
parameter freedom than improved accuracy of the tyre model itself. 
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[Figures 4 & 5] 
 
 
5. RAPID ADAPTATION TO ROAD SURFACE FRICTION 

 
 Having successfully identified the tyre model in consistent, dry proving ground 
conditions, it is convenient that the IEKF also has the ability to adapt rapidly, so can 
also be used to track road surface friction in real-time.  With most of its parameters 
fixed, either of the identified tyre models can be used, with either P or G rapidly 
adapting. 
 Variation of P will vertically scale the tyre force curve, whereas G will alter the 
linear range, cornering stiffness behaviour.  Tests have been conducted predominantly 
in the low lateral acceleration range, and consequently G variation is the most 
successful option.  For prior warning of low surface friction, estimators which operate 
at low lateral accelerations are preferable in any case. 
 Conversion of the IEKF is straightforward;  = G, and the three adaptation 
parameters are reset to  = 0.01,  = 0.1 and  = 0.003.  Particularly critical settings 
here are  and ; with  set so short, the error covariance matrices will not settle, and 
with   ten times higher than for the identification experiments, the parameter will vary 
rapidly. 
 Two test scenarios are considered; the first is a drive on a wet handling proving 
ground circuit equipped with a large circular section with three tracks on separate radii, 
each with a different road surface, with friction ranging from   0.3 to   0.75.  
Approach sections of track were kept dry, giving   1.  This track was driven without 
cruise control, at speeds ranging from 10 to 20 m/s and with accelerations up to 5 m/s2.  
GPS tracking allowed subsequent reconstruction of the expected friction level at each 
part of the time history.   
 The second scenario is a control case, whereby a section of normal driving on a dry, 
twisting country road was analysed; this driving saw a similar range of vehicle speed 
and lateral accelerations. 
 
[Figures 6 and 7] 
 
 The results are presented in Figures 6 and 7 respectively, with plots (a) showing the 
real-time estimation of road friction.  The variation in G tracks  reasonably closely on 
the wet handling circuit, and remains consistently very close to the expected  = 1 on 
the control road.  One disadvantage, though inevitable for any handling dynamics based 
estimator, is that the IEKF responds only to transients, so correction may be delayed 
when there is zero or near zero steer input.  This is true for the intervals 95-105 seconds 
and 220-230 seconds on Figure 6(a) where we can see delays in the change in .  
However, when dynamic activity coincides with changes – eg at 125 seconds, the  
estimation changes quickly – here within 5 seconds.  Figure 6(b) shows a 100 second 
section of the test over which friction variations occur, and we see a clear improvement 
in lateral velocity tracking in the adaptive case.  In Figure 7(b) and (c) the tracking 
difference is not detectable due to the small  variation, and these plots also serve to 
illustrate the difference between the model capacity in the different states; the 
performance in v is good, but as with all the model variants in the paper, tracking of ay 
is exceptional. 
 
6. CONCLUSION  
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 The results confirm that it is possible to identify a single tyre model which operates 
consistently for all four wheelstations, provided some compensation is made for the 
compliance variation expected from front to rear differences in suspension design. 
 The tyre model is identified within the context of a simple vehicle handling model, 
and the state prediction performance of this model improves for all states when the tyre 
parameters are optimised.  Significantly, the lateral velocity state prediction is most 
improved, making the combined model particularly applicable for control design 
applications.  Expansion of the tyre model to include variation of load dependence 
parameters provides a small further improvement in lateral velocity prediction 
performance, though with some degradation to expected cornering stiffness vs load 
behaviour 
 In general, the algorithms employed here can be used to generate vehicle handling 
models for control applications.  They can also be used to identify the holistic behaviour 
of a given tyre choice on vehicle response, and to see the interaction effects of the tyre 
with the suspension. 
 Identified tyre models can further be complemented by the IEKF operating in real-
time to rapidly adapt the cornering stiffness term, and hence almost instantaneously 
compensate for changes in road friction. 
 In summary, in both off-line and real-time applications, the IEKF represents a 
valuable tool in the identification and adaptation of vehicle handling models, and 
although model complexity must remain reasonably low, it also provides an excellent 
means of identifying tyre and road friction behaviour directly from vehicle test data. 
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Figure 1 : Cost and parameter convergence 
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Figure 6 : Real-time road friction estimation and state tracking; wet handling test track 
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Figure 7 : Real-time road friction estimation and state tracking; dry tarmac road 
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