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Abstract—In recent decades, driving assistance systems have
been evolving towards personalization for adapting to different
drivers. With the consideration of driving preferences and
driver characteristics, these systems become more acceptable
and trustworthy. This paper presents a survey on recent ad-
vances in implicit personalized driving assistance. We classify
the collection of work into three main categories: 1) personalized
Safe Driving Systems (SDS), 2) personalized Driver Monitoring
Systems (DMS), and 3) personalized In-vehicle Information
Systems (IVIS). For each category, we provide a comprehensive
review of current applications and related techniques along with
the discussion of industry status, benefits of personalization,
application prospects, and future focal points. Both relevant
driving datasets and open issues about personalized driving
assistance are discussed to facilitate future research. By creating
an organized categorization of the field, we hope that this survey
could not only support future research and the development
of new technologies for personalized driving assistance but also
facilitate the application of these techniques within the driving
automation community.

Index Terms—Intelligent vehicles; driver behavior analy-
sis; personalization; Advanced Driver Assistance Systems;

I. INTRODUCTION

Safety, efficiency, and convenience are three key concerns
raised in recent studies on intelligent vehicles [1H8]]. According
to a World Health Organization report, up to 50 million people
are injured or disabled in road accidents worldwide every year
with 90% of deaths occurred in developing nations [9]. As
reported by the U.S. National Highway Traffic Safety Admin-
istration, 32,719 fatalities and 2.3 million injuries occurred in
the US in 2013 [10]]. In addition, according to the 2015 Urban
Mobility Scorecard report, traffic congestion costs $160 billion
per year and causes the waste of three billion gallons of fuel.
Moreover, the environment is polluted by vehicles’ tailpipe
emissions. To this end, a number of in-vehicle advanced
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functions have been developed and implemented. In this paper,
the baseline we used to classify driving assistance systems
is the application domains of these systems. Typically, three
application domains are considered: (i) the vehicle; (ii) the
driver; (iii) the service that the vehicle provides for the driver.
Corresponding to the three domains respectively, three kinds
of categories are summarized for driving assistance systems
as follows: (i) Safe Driving Systems (SDS), which work on
the vehicle, especially on vehicle dynamics and control, are
designed to reduce potential risks of accidents and even avoid
collisions [11H13]. Typical functions of SDS include adaptive
cruise control, collision avoidance, lane-keeping assistance,
lane change assistance, and intersection assistance; (ii) Driver
Monitoring Systems (DMS) are designed to monitor the status
of drivers so that they can be warned about abnormal driv-
ing behaviors and cognitive states [14]. Typical functions of
DMS include fatigue and distraction detection, driving style
recognition (range prediction), and affective state recognition;
(iii) In-Vehicle Information Systems (IVIS) provide in-time
information and services for the driver [15]. Typical functions
of IVIS include route recommendations, entertainment ser-
vices recommendations, notification services, and interactive
assistance.
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Fig. 1. Process of generic driving assistance, where V2X means vehicle-

to-everything (e.g. vehicle, infrastructure) communication [16} [17]. Internal
data sources denote data collected by vehicle embedded sensors. External
data sources denote data collected by broadcasts, communicating with others
vehicles and road infrastructures. “all drivers’ data” imply that no driver ID
is recorded in data collection.

Human factors [18] or individual driver’s preferences are
involved in all these systems. The common design approach
for SDS, DMS, and IVIS is to develop a generic system that
can work for all drivers. We show a schematic of the overall
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framework in Fig. [I] In a generic system, measurements from
internal data sources (the sensors embedded in a vehicle,
e.g. GPS, camera, IMU, Lidar and radar) and external data
sources (the data obtained from communication networks
and traffic radios, e.g. traffic management centers and V2X
communication) are treated indiscriminately even though these
measurements may be collected from different drivers. Next,
the principal features are chosen by using feature selection
techniques so as to conspicuously link the driving features
to the corresponding driving behaviors. After obtaining the
principal driving features and labels of the corresponding
driving behaviors, driving behaviors can be recognized by
three different approaches including: model based approaches,
rule based approaches, and machine learning approaches. The
predictors of model based approaches are derived from driver
models (e.g. intelligent driver model and car-following model)
as in [19H21]. The predictors using rule based approaches
are often used to recognize driver behaviors based on a
predetermined threshold [22H24]. The predictors of machine
learning approaches are obtained by training a classifier or
regressor (e.g. Bayesian network, decision tree, and support
vector machine) as in [5) 25| 26]]. Then, the predictor can be
deployed in a generic system. When the new measurements are
received by sensors, the corresponding driving behaviors (e.g.
fatigue, distraction) are recognized by the generic predictor
so that corresponding services (e.g. guiding drivers to rest
stops, alerting drivers) can be provided. It is noticeable that
the generic approach trains or designs a model by using the
driving data of all drivers indiscriminately, and, as a result, per-
sonalized driving characteristics and preferences of individual
drivers may be neglected [27]]. In practice, different drivers
may have distinct driving characteristics and preferences even
in a similar driving scenario [3]]. Therefore, it is not surprising
that a conventional generic approach may provide limited per-
formance and satisfaction for individual drivers. This motivates
the introduction of personalized driving assistance, implicitly
embedding personalized styles, preferences, and characteris-
tics. Here, the driving styles refer to drivers’ personal feelings
about whether their driving is normal, moderate or aggressive.
The procedure of collecting normal and aggressive driving data
for individual drivers is outlined in [28|]. Driving preference
and characteristic refer to personal driving behaviors such as
preferred distance to the car in-front [20, 26]] and adaptive lane
change assistance [29].

This paper presents a comprehensive review of personalized
driving assistance. Personalization of driving assistance is
discussed from three different aspects, where the taxonomy
and related techniques of driving assistance are presented in
Fig. 2] To the best of the authors’ knowledge, this is the
first attempt to conduct a comprehensive review of implicit
personalized driving assistance. The main contributions are
summarized as follows:

e In review of different application domains, driving assis-
tance systems are divided into SDS, DMS, and IVIS with
the corresponding functions.

e The motivations and key components of personalized driv-
ing assistance systems are discussed.
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Fig. 2. The Categories of Personalized Driving Assistance.

e State-of-the-art implicit personalized driving assistance
techniques in SDS, DMS, and IVIS are elaborated along
with dataset types, inputs, algorithms, pros, and cons.

e Detailed discussions are conducted on SDS, DMS, and
IVIS in terms of industry status, benefits of personalization,
application prospects, and future focal points. The literature
of SDS, DMS, and IVIS covers from 1999 to 2019, from
2009 to 2019, and from 2001 to 2019 respectively.

e Open issues on implicit personalized driving assistance are
highlighted to inspire future research.

II. PERSONALIZATION IN DRIVING ASSISTANCE

According to [3} 22} |26} 30H34]], driving assistance systems
should be safe, effective, and comfortable. To meet these
criteria, personalization is introduced to understand the status
of a specific driver [35], and take individual driving styles
[29], requirements, and preferences [36] into account.

Personalized systems are often realized in implicit ways
using data-driven approaches. This is because implicit per-
sonalization allows a system to adapt to the user through
interactions and historical usage data with little direct input
from the driver [37, [38]. For instance, the parameters of an
intelligent driver model [39]] can be tuned from individual his-
torical driving data. The key components of the personalization
process include observing the driving behaviors, modelling
human driving behaviors and validating the models as shown
in Fig. These components are explained as follows. 1)
Observing the driving behaviors: Individual driving behaviors
can be observed from his/her historical driving data. The task
in this step focuses on personal driving data collection. 2)
Human driving behaviors and preferences modelling: The data
of a specific driver is used to train a driver model, which is
then used in either driving state recognition or vehicle dynamic
control [20, |40, 41]]. 3) Validation of a personalized model:
Evaluation of a personalized model can be classified into four
levels: a) Offline playback; b) Simulation in a traffic simulator;
¢) Human in the loop simulation; d) Field test [42]. Among
them, the field test is most convincing. However, it is also the
most challenging due to a relatively large cost and issues with
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safety. To this end, human in the loop simulation [32| 43] is
a promising, efficient and meaningful alternative.
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Fig. 3. Personalized process, where the blocks within black dashed lines are
for observing the driving behaviors, the blocks within dark green dashed lines
are for human driving behaviors and preferences modelling, and the blocks
within dark blue dashed lines are for the validation of a personalized model.

III. PERSONALIZED SAFE DRIVING SYSTEMS (SDS)

SDS have evolved substantially in the past decades and
have become a significant component of intelligent vehicles.
SDS are focused on external environment (e.g. road types,
traffic conditions, and other road users) rather than in-vehicle
environment (e.g. drivers, passengers). Therefore, “out-vehicle
assistance” links more closely to vehicle dynamic control. This
section reviews the related studies in five different aspects:
adaptive cruise control, collision avoidance, lane keeping
assistance, lane change assistance and intersection assistance.
The related literature of personalized SDS, presented in this
paper, is summarized in Table [I] and Table [[] along with the
description of dataset types, inputs, used algorithms, pros, and
cons.

A. Adaptive Cruise Control

Adaptive cruise control focuses on the longitudinal control
of a vehicle, which drives a vehicle at a pre-defined speed
whilst maintaining a desired gap with the vehicle in-front.
However, conventional adaptive cruise control systems only
provide a limited number of pre-defined gaps. Such design
makes these systems difficult to satisfy the requirements of
different drivers. To overcome this weakness, a large number
of personalized adaptive cruise control systems have been de-
veloped over recent decades. In [23} 147} 51} |66, personalized
adaptive cruise control systems adapt to drivers in real-time
based on the observation of the drivers’ style and preferences.
Here, artificial neural networks, linear models or a combina-
tion of the two are used to generate time gaps of a specific
driver according to the driver’s historical driving data. In [44],
authors design a fuzzy controller based on evolutionary strate-
gies, which can generate fuzzy rules by using the driving data
of a specific driver such that a variety of behaviors can imitated
with improved accuracy. Different from the aforementioned
approaches, learning-based approaches that use Model Pre-
dictive Control are used in [21} |53 [57, 58]]. This allows them

to imitate each driver’s style and preferences so as to achieve
personalized adaptive cruise control of a vehicle. In addition,
[20] predicts a driver’s throttle and braking pedal operations
according to time headway and inverse time to collision. In
contrast to previous research that mainly focuses on imitating
a specific driver’s behaviors, [18| [19] 65] reduce the errors of
longitudinal control by building a personalized driving model.
Driver’s behaviors are modeled using a Gaussian Mixture
Model approach. In general, most of the personalized adaptive
cruise control functions can provide reasonable performance.
One big challenge is how to define principal features for
different drivers, because different drivers have different driv-
ing characteristics and therefore useful features for different
drivers may be entirely different. Inspired by [73) [74], the
principal individual driving characteristics can be extracted by
using model selection techniques (e.g. Wald statistics) [73] or
feature selection algorithms (e.g. sequential forward floating
selection) [74].

B. Collision Avoidance

Collision avoidance systems enhance driving safety by
alerting drivers to an impending collision or automatic braking
for avoiding potential collisions. However, different drivers
have different driving styles, preferences, and characteristics.
A generic model based collision avoidance approach cannot
perform well for all drivers. To reduce the false alarms and
extend the reaction time, personalized driving characteristics
can be considered for these systems [23] 167, 168, |70} [75]. Rule
based collision avoidance algorithms are intuitive approaches
to predict a crash event, where a threshold for autonomous
braking is learned from personalized historical driving data
[23]. In [67], a statistical behavior modeling approach is
proposed to estimate the danger level probability distribution
of a particular driver such that an activation threshold can be
determined to warn them of the potential of an emerging crash.
However, the warning threshold of different driving situations
should be different. Therefore, authors in [68] develop an
online learning forward collision warning algorithm which
adjusts the warning threshold automatically by considering the
current driving situation. In contrast to the aforementioned
studies, [/0] implements personalized steering assistance by
introducing a personalized potential field. In the proposed
system, a personalized potential map is built up to represent
hazard awareness of each driver. In brief, online learning
algorithms can be promising solutions which can adjust the
threshold of a specific driver over time. Additionally, return-
ing uncertainty is significant for decision making on vehicle
dynamics control, where systems can provide the probability
of potential collision [76]. However, the approaches used here
are “offline”, which means they cannot tune the threshold over
time as in [23].

C. Lane-Keeping Assistance

Lane-keeping assistance aims to alert drivers to a forth-
coming lane departure. However, a failure to understand the
driver’s correct behavior may cause a significant number of
false warnings. This could make drivers mistrust or even
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TABLE I
SUMMARY OF THE PRESENTED RESEARCH IN PERSONALIZED SDS (PART A)
Type Ref Dataset Inputs Algorithms Pros Cons
Adaptive | [44] Real-world | -Space headway, speed of | Evolutionary -Direct for real valued parame- | -Fuzzy control is not easy to
Cruise the leading vehicle, speed | strategies, Fuzzy | ter optimization; Rule structure | conduct stability analysis; [46]
Control of the following vehicle, | logic and membership functions are
relative speed evolved simultaneously; [45]
[47] Real-world | -Space headway, speed of | Artificial Neural | -Flexible nonlinear capability; | -Hard to design layers and neu-
the leading vehicle, speed | Network, Linear | data-driven method; [48] [49] rons; large volume of iterations
of the following vehicle model to converge [49. 150];
[23L151] | Real-world | -Space headway, relative | Linear model -Simple implementation; ro- | -Limited accuracy;
speed, speed of the lead- bustness;
ing vehicle
[21] Simulation | -Velocity Gaussian -Low computation load [52]; | -Hard to tune parameters; hard
Mixture Model easy to implement; arbitrary | to extend in high dimensional
feature distribution; applications;
53] Simulation&| -Longitudinal position, | Hidden Markov | -Time-sequential learning [54]; | -High model complexity [56];
Real-world | longitudinal velocity of | Model + Gaus- | arbitrary feature distribution; | underperform in high dimen-
the ego vehicle, relative | sian Mixture Re- | utilization of prior knowledge | sional problems;
distance to the preceding | gression 155];
vehicle
1571 Real-world | -Relative distance to the | Hidden Markov | -Time-sequential learning [54]; | -High model complexity [56];
preceding vehicle, relative | Model + Gaus- | arbitrary feature distribution; | underperform in high dimen-
velocity to the preceding | sian Mixture Re- | utilization of prior knowledge | sional problems;
vehicle, velocity of the | gression 155];
ego vehicle
[S8] Simulation | -Position, velocity Random Forest | -Always converge and | -“black box” approach [61]; lo-
Regression overfitting-free; robustness | cal optima; large model size
to residual features;[S9] little | [62];
pre-defined parameters [60]];
[20] Real-world | -Headway, speed of the | Recursive Least | -Robustness; online adaptation; | -Roundoff error sensitivity
host  vehicle, relative | Square [63] 64,
speed to the leading
vehicle
[18L165] | Real-world | -Speed of the following | Gaussian -Low computation load [52]; | -Hard to tune parameters; un-
vehicle, relative distance, | Mixture Model easy to implement; arbitrary | derperform in high dimensional
relative speed, change rate feature distribution; problems;
of relative speed, follow-
ing vehicle acceleration
[19] Simulation | -Following distance (F3), | Gaussian -Low computation load [52]; | -Hard to tune parameters; un-
Velocity (V), AFy, AV, | Mixture Model easy to implement; arbitrary | derperform in high dimensional
A2F, A%V, Gas pedal feature distribution; problems;
pattern (G'¢), Brake pedal
pattern (B), AGt¢,AB¢
[66] Simulation | -Maximum acceleration, | Multi-model -More precise modeling, flexi- | -Hard to tune parameters; un-
maximum  deceleration, | based artificial | ble nonlinear capability; [48] derperform in high dimensional
mean of time headway | neural network problems;
(THW), standard
deviation of mean THW,
standard  deviation of
THW, maximum inverse
time to collision (TTC),
minimum inverse TTC;
Collision | [67]] Simulation | -Wheelbase, distance of | Neural Network -Flexible nonlinear capability; | -Hard to design layers and neu-
Avoid- the center of gravity to data-driven method; [48] |49] rons; large volume of iterations
ance the front axle, distance to converge; [49} 50]
of the center of gravity
to the rear axle, vehicle
mass, moment of inertia
to the yaw axis, relative
front cornering stiffness,
rear cornering stiffness
[68] Real-world | -Speed of host vehicle, | Recursive least | -Online adaptation and compu- | -Explicit relation between in-
weighted following dis- | square tational efficiency [69]]; well in- | puts and outputs;
tance, weighted relative terpretation; robustness;
speed
[70] Simulation | -Distance to left boundary, | Potential field -Unrestraint with shapes of ob- | -Unstable motion [[72];
distance to right boundary jects; [71]
[23] Real-world | -Relative velocity Rule-based -Simplicity; robustness; -Hard to determine threshold;
model limited performance; high re-

quirement of feature selections;
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TABLE II
SUMMARY OF THE PRESENTED RESEARCH IN PERSONALIZED SDS (PART B)
Type Ref | Dataset Inputs Algorithms Pros Cons
Lane- [57] | Real-world | -Longitudinal  velocity, | Hidden Markov | -Time-sequential learning [54]; | -High model complexity [56];
Keeping distance to the lane | Models + Gaus- | arbitrary feature distribution; | underperform in high dimen-
Assistance center (y), orientation | sian Mixture Re- | utilization of prior knowledge | sional problems;
with respect to the lane | gression 1551;
center (0), derivative of
y, derivative of 6, road
curvature
[77] | Real-world | -Vehicle speed, relative | Gaussian -Time-sequential learning [54]; | -High model complexity [56];
yaw angle, relative yaw | Mixture Models | arbitrary feature distribution; | underperform in high dimen-
rate, road curvature, lat- | + Hidden | utilization of prior knowledge | sional problems;
eral displacement Markov Models [155];
Lane [29] | Real-world | -Distance of gap, relative | Gaussian -Low computation load [52]; | -Hard to tune parameters; un-
Change speed of interest Mixture Models easy to implement; arbitrary | derperform in high dimensional
Assistance feature distribution; problems;
[27] | Simulation | -Steering wheel angle, the | Lateral  driver | -Intuitive interpretation; easy | -Hard to guarantee accuracy;
error between desired path | model realization;
and current path
[78] | Simulation | -Distance of ego-car (E) | Decision entropy | -Low computation load [52]; | -Neglect the personality and
and merging-car (M); rel- | +Randomized easy to implement; take human | preferences of drivers;
ative velocity between E | Model Predictive | drivers’ preferences and uncer-
and M; relative accelera- | Control+logistic tainty into account;
tion between E and lead- | regression model
ing car; relative distance
to the end of acceleration
lane; length of recogniz-
able area;
[79] | Simulation | -Distance of gap and ve- | Logistic regres- | -Easy to implement; Fast run- | -The diversity of the partici-
hicle position sion model time [S2]; pants is not enough (it had bet-
ter include drivers from differ-
ent age groups and genders);
[80] | Simulation | -Longitudinal Vehicle | Human- -Feedback-free [81]; -Slow response; unstable; [81]
Speed, yaw angle, lateral | Centered Feed-
Deviations, steering wheel | forward Control
angle
[82] | Simulation | -Electroencephalography Extend queuing | -High accuracy with low cost; | -Low anti-interference ability
network well structure model; [83] (single source) [84];
[85] | Simulation | —Speed, proximities to in- | Inverse optimal | -Constructive; stability; [86] -Model-dependent; priori-
ner/outer road boundary control dependent; [87]]
[88] | Real-world | -Velocity, relative velocity | fuzzy  c-mean | -Labeling-free and model-free; | -Hard to choose distance crite-
and distance clustering + | easy to implement; arbitrary | ria in feature space and tune the
fuzzy knn + | feature distribution; threshold for convergence; high
intelligent driver computation load;
model
Intersection | [89] | Simulation | -Traffic lights location and | Sequential -High flexibility; nonlinear | -High computation load [90];
Assistance timing data for each one | Quadratic models; multiple objectives;
of them on the route, | Programming [90]
traffic flow speed (V2I
needed), fuel consump-
tion, time of arrival
[91] | Simulation | -Historical gap size Maximum Like- | -Consistent parameter estima- | -Biased for small samples; lo-
lihood tion; solid theoretical basis; cal optima;
[23] | Real-world | -Relative velocity Rule based | -Simplicity; robustness; -Thresholds and features selec-
model tion; limited performance;

abandon lane-keeping assistance systems [26} (92]]. To reduce
false positive rate, Hidden Markov Models, Gaussian Mixture
Models, and their combination are used in personalized lane-
keeping assistance systems [57, [77]. These systems can learn
a driver’s preferences when a human-driver keeps driving in a
lane. Subsequently, these systems accommodate to each driver
by considering his/her driving preferences and characteristics.
In general, the Gaussian Mixture Models is robust to the
feature distribution and is able to deal with nonlinear prob-
lems. Hidden Markov Models can process sequential data (or
streaming data). It is not surprising that their combination,
which inherits the advantages of Gaussian Mixture Models
and Hidden Markov Models, outperforms both of them.

D. Lane Change Assistance

Lane changing is one of the most challenging tasks during
driving. This is because it not only requires drivers to have
a clear perception and projection of the surrounding envi-
ronment, but also involves changes in the longitudinal and
lateral speed of the vehicle. To make lane change assistance
more acceptable and effective, the driving characteristics of
a specific driver need to be accommodated, as suggested by
[27, 29, [78H80, 182, 85, 188l 93]]. In [29], Gaussian Mixture
Models are used to adjust the kinematic model parameters
so as to adapt to individual driving styles. Moreover, authors
in [88] achieve better gap prediction by considering the
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characteristics of drivers. Here, the fuzzy c-mean clustering
algorithm is combined with a Kalman filter to estimate the
distance from the following vehicle to the heading vehicle
more accurately. Another approach implements personalized
lane changing by proposing a compensatory transfer function
based on a driver model in combination with a feedforward an-
ticipatory subsystem [27]. Furthermore, [85] learns a driver’s
steering characteristics by using inverse optimal control. In
this research, inverse optimal control is used to identify the
parameters of a driver, where the cost function is designed by
considering speed, steering, and the inner/outter road bound-
ary. In addition, lane change assistance plays a significant
role in merging tasks. In [78} [79], logistic regression models
are used to determine the acceptability of merging tasks.
Compared to [79]], [78] also takes preferences of drivers on
the main lane into account, which is achieved by minimizing
decision entropy. Such design makes driving assistance more
acceptable and efficient. Lane change assistance is also a
sharing control task, where a human driver and the vehicle
controller are able to collaborate with each other. To this
end, [80} 93] develop a Human-Centered Feed-forward Control
system, where a driver’s steering characteristics and the human
driver’s steering inputs are both taken into account for vehicle
steering control. More interesting research in personalized
lane change assistance is to predict steering angle by the
electroencephalography signal[82]]. This study shows that a
human driver’s intention can be reflected by his/her electroen-
cephalography signal.

E. Intersection Assistance

Intersection crossing is one of the most frequent driving
maneuvers in urban and metropolitan areas. To make inter-
section assistance more desired, several intersection assistant
systems are proposed with the consideration of personal driv-
ing preferences [23| |89, 91]. The distance of braking or the
distance required to release the accelerator can be expressed
by a polynomial regression model, where the coefficients of
the model are calibrated by personal driving data in order to
adapt to different drivers [23]. In [89], the authors propose
a personalized pace optimization algorithm to help drivers
approach and cross through a signalized interaction. The
proposed algorithm optimizes pace on a route by considering
driver characteristics so that fuel use and waiting time are
minimized. Different from conventional methods (e.g., Trout-
beck [94], Raff [95]), authors in [91] estimate a critical gap
by using Maximum Likelihood Estimation. The critical gap
is the smallest acceptable gap for a specific driver. According
to experimental results, the false alarm rate can be reduced
from 11.8% to 9.8% by introducing the critical gap. Overall,
the polynomial regression model is a feasible approach to
predict braking and accelerator release behaviors. However,
are there any better models to describe these behaviors? For
instance, the Gaussian Process may provide a better model
for these behaviors, which has the additional advantages of
providing confidence intervals and not requiring the order of
the regression model to be defined a priori [96]. Furthermore,
Maximum Likelihood Estimation is numerically stable and
straightforward to implement.

F. Discussion

Industry status: Adaptive cruise control functions are pro-
vided by many models of cars (e.g. Audi A8, Volkswagen
Touareg, BMW 5 and 6 series) [97]. Similarly, collision avoid-
ance systems have also been successfully used in many brands
and models such as Audi (A8, A7, A3), Dodge Durango,
Honda (Accord, Inspire), Lexus (LS, GS, IS, RX), Skoda
Octavia, Tesla Model S [97]. However, these functions are
often implemented using rule-based approaches, which cannot
adapt to individual drivers in an online manner. Although
lots of studies have been conducted on personalized SDS,
automotive manufacturers have not rushed to promote per-
sonalized functions of SDS. This may be because integrating
the personalized learning algorithms into existing SDS needs
careful testing to guarantee compatibility and security.

Benefits of personalization: Safe driving systems can obtain
several benefits by introducing personalization. The primary
benefit is the enhanced acceptability [26] 68]]. In [26], the
false-warning rate of a lane departure warning system can
be reduced to 3.13%. In [68], the false positive rate of a
forward collision warning system is decreased below 10%.
The secondary benefit is safety. When the false alarm is too
high, the systems can become annoying to drivers and may be
abandoned [18| 29]. Therefore, the enhanced acceptability can
encourage drivers to keep SDS, which leads to an improvement
in driving safety.

Application prospects: In adaptive cruise control, recursive
least square and Gaussian mixture models are two promising
approaches and have been used in real-time vehicle tests
[L8} 20, |65)]. Other approaches in [44} 47, 53] have potential,
but so far have only been validated using offline playback.
In collision avoidance, recursive least squares is feasible to
be commercialized by automotive companies. Different from
[23]], recursive least squares algorithm does not only overcome
the online adaptation issue but also can be run in real-time
on a test vehicle [68]. In lane-keeping assistance, not many
studies have used real-time vehicle testing. According to the
real-world data playback validation results, the combination
of hidden Markov models and Gaussian mixture models (or
regressions) [26,|57]] are promising approaches. In lane change
assistance, Gaussian mixture models [29] are a suitable ap-
proach. Compared to the data-driven intelligent driver model
which is an offline approach and requires a large volume
data to form clusters in initial phase as mentioned in [88]],
Gaussian mixture models do not need a large volume of data
at the beginning and can adapt to individual drivers online.
In intersection assistance, for now, maximum likelihood esti-
mation and linear approximation are two feasible approaches
[23L191]]. Compared to the maximum likelihood method which
is only validated in simulations [91]], linear approximation is
more practical since it can be validated by real-world data
playback [23]. When the vehicular communication devices and
road communication facilities are more sound and ubiquitous,
sequential quadratic programming may become practical and
effective. However, for the time being, the performance of
sequential quadratic programming is only assessed in a simu-
lation environment.
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Future focal points: Firstly, safe interaction amongst users
(human drivers or even autonomous vehicles) on the road
needs to be prioritized [98]. The implementation of safe
interaction is challenging because human actions and be-
haviors are often unpredictable [99]. Fortunately, studies in
[98. [100] provide some promising ideas (such as developing
robust informative models or regenerative stochastic models).
Secondly, intersection assistance may become a focal point
with the development of vehicle embedded devices (e.g.
communication modules, high-performance CPU/GPUs) and
road infrastructures (e.g. roadside units), which can not only
make approaching an intersection safer and more smooth
(for example, by reducing unnecessary braking and providing
collision warnings), but also provide clearer communication
amongst drivers to improve the fluency of their interactions.

IV. PERSONALIZED DRIVER MONITORING SYSTEMS
(DMS)

In recent years, in-vehicle monitoring systems have been de-
veloped rapidly and pervasively applied in healthcare and cog-
nitive workload recognition [LO1]. Driver monitoring systems
can detect abnormal driving behaviors (drowsiness, fatigue,
distraction) or driving styles (normal, moderate, aggressive)
via vehicle dynamic measurements or vision measurements.
Moreover, driver monitoring systems are one of the most sig-
nificant components of vehicular safety applications detecting
fatigue, distractions and the driving style/cognitive state of
a driver [102]. However, several challenges, such as trust,
acceptance, and unpredictability [98| [103| [104], may slow
down the development of these systems. To overcome these
issues, personalized driver monitoring may be a promising
solution, which makes driving assistance more trustworthy
and acceptable. Moreover, driving performances of different
drivers are quite different even in the same driving scenarios.
The limited feedback of personalized driving behaviors make it
difficult to evaluate the performance of plug-in hybrid electric
vehicles [[105]. Personalized driver monitoring systems are to
detect abnormal behaviors and driving styles based on indi-
vidual drivers. For instance, the heart rate and blood pressure
are two popular measurements to assess abnormal driving
behaviors (drowsiness, fatigue, distraction) [24} {106} [107].
However, classifying based on average statistics of these two
measurements easily leads to a higher false positive rate,
especially for drivers with cardiovascular diseases. Because of
this, personalized driver monitoring systems urgently need to
be developed. Compared to SDS, the personalization in driver
monitoring systems has not attracted significant attention in
the past decade. Table [[II| summarizes the relevant techniques
in personalized driver monitoring systems along with the
description of dataset types, inputs, used algorithms, pros, and
cons.

A. Fatigue and Distraction Detection

Driver inattention monitoring can be classified into distrac-
tion and fatigue [[123]. Some studies attempt to detect fatigue
and distraction via video [40, 41} [109]]. Vision measurements
contain eye blink duration, nodding frequency, and head poses.

These measurements have been proved useful to detect abnor-
mal driving behaviors [[123]. However, vision measurements
are often obtained using computer vision techniques which
are sensitive to light condition. Moreover, the privacy issue
involved in vision also needs to be addressed. Compared to
vision measurements, vehicle dynamic measurements are more
robust against light condition [3]]. Vehicle dynamic measure-
ments include steering angle, lateral acceleration, longitudinal
acceleration, vehicle velocity amongst others. Moreover, more
features can be generated by using vehicle dynamic measure-
ments such as steering entropy, steering reversal rate, and
speed prediction error. In [108], speed prediction error and
steering entropy are used as features to train a support vector
machine, which can achieve high overall accuracy of 95% and
a false positive rate about 78.3% based on a specific driver’s
data. It is found that a personalized drowsiness detection
system outperforms the generic system when sufficient person-
alized data is available for training the classifier. Personalized
data collection is always challenging in a personalized applica-
tion. In [1O1], a personalized monitoring system is proposed,
where captive electrocardiogram and ballistocardiogram data
can be obtained in real-time and recognize fatigue. In contrast
to [101]], eye blink activities are also considered in [24] and
therefore the false alarms of fatigue detection can be reduced.

B. Driving Style Recognition

Range prediction and fuel management are closely related to
driving styles. Moreover, driving style recognition also plays
a significant role in driving safety and vehicle security. Due
to the diversity of driving preferences among different drivers,
the accurate evaluation of fuel consumption is a challenging
task for intelligent vehicles, especially with plug-in hybrid
electric vehicles [22]]. To predict fuel use more precisely,
various personalized vehicle energy consumption prediction
approaches are proposed [32, 143} [105, [112} 114} [118]. Authors
in [105]] develop a personalized multi-modality sensing and
analysis system, which can efficiently extract information of
user-specific driving behaviors and a hybrid electric vehicle
operation profile. User-specific driving behavior messages
(e.g., speed, acceleration, road and traffic conditions) are
fused by wavelet-based disorientation compensation to obtain
accurate vehicle movement information. Hybrid electric vehi-
cle operation profile messages (e.g. fuel use, battery system
information) are used to identify the driver operation mode via
classification and regression tree. The proposed approach can
predict fuel use accurately (0.88-0.996 correlation and 87.8%-
89.9% classification accuracy) which is evaluated with real-
world experiments. In [[112, [118]], the personalized Distance-
To-Empty prediction is achieved by using participatory sensing
data. Various approaches are implemented and compared in-
cluding a speed profile similarity matching approach, a driving
habit similarity matching approach and a collaborative filtering
approach. According to the experimental results, the driving
habit similarity matching approach outperforms the others.
Unnecessary braking and sharp acceleration cause unwanted
fuel consumption, especially in approaching a traffic signal. To
avoid this unnecessary fuel consumption, a scenario tree based
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TABLE III
SUMMARY OF THE PRESENTED RESEARCH IN PERSONALIZED DRIVER MONITORING SYSTEMS
Type Ref Dataset Inputs Algorithms Pros Cons
Fatigue and | [L1O8] Real-world | -Steering entropy; mean absolute | Nonlinear -Fast runtime; flexi- | -Not easy to select an
Distraction speed prediction error; Autoregressive ble nonlinear capabil- | appropriate kernel;
Detection Exogenous model | ity; [48]
+Support Vector
Machines
[LO9] Real-world | -Labelled images Neural Network -Flexible nonlinear | -Hard to design lay-
capability; data-driven | ers and neurons; large
method; [48 149] volume of iterations to
converge; [49] 150]

[101] Real-world | -Capacitive  Electrocardiogram, | Rule based approach | -Simplicity; -Hard to determine

Ballistocardiogram robustness; threshold; limited
performance; high
requirement of feature
selection;

[24] Simulation | -Capacitive  Electrocardiogram, | Rule based approach | -Simplicity; -Hard to determine
Ballistocardiogram, Eye blink robustness; threshold; limited
activity performance; high

requirement of feature
selection;
Driving [1OS] Real-world | -Speed, acceleration, road type, | Classification and | -Easy to implement; | -Local optima; may
Style road condition Regression Tree, | well interpretation; | give misleading
Recognition wavelet-based [110] results; [110, [111]]
filtering

[112] Real-world | -Continuous average speed, decel- | Energy consumption | -Intuitive -Hard to guarantee ac-
eration tuple, acceleration tuple, | model interpretation; easy | curacy;
gyroscope tuple, auxiliary load of to implement;
idling, vehicle weight, total idle
duration

[L13] Real-world | -Biometric measures, vehicle dy- | Gaussian Mixture | -Low computation load | -Hard to tune param-
namic measures Model [52]; easy to imple- | eters; underperform in

ment; arbitrary feature | high dimensional prob-
distribution; lems;

[114] Simulation | -Distance between vehicle and | Scenario tree based | -Solve constratined | -Low robustness (high
traffic signal, durations of red | stochastic model stochastic optimal | sensitivity for parame-
and green light, traffic light cycle problem [L1S]; | ters) [117];
number context aware; feasible

computation load
(L16];

[32,143] | Simulation | -Vehicle acceleration, Adjusted | Probability weighted | -Time-varying -Poor at long-term pre-
headway time, relative distance, | autoregressive exoge- | processes; distribution- | diction; sensitive with
Relative velocity nous model free; consideration of | outliers;

uncertainty;

[L18] Real-world | -Average speed, deceleration tu- | Similiarty matching + | -Low complexity; well | -Static model [120];
ple, acceleration tuple, total idle | driving habit match- | interpretation; [[119] slow response time
duration, mean absolute of gyro- | ing [121];
scope, Auxiliary load of idling

[122] Real-world | -Throttle position, brake pressure, | Neural network -Flexible nonlinear | -Hard to design lay-
vehicle speed capability; data-driven | ers and neurons; large

method; [48. 49] volume of iterations to
converge; [49} 50]
Affective [103] Simulation | -kinematic (relative distance, ve- | k-nearest neighbors, | -High accuracy, easy | -Cost of thermal cam-
State locity, and acceleration at the lead | random forests to implement and used | era is higher than an
Recognition vehicle’s brake start time), elec- by industry (k-nearest | infrared camera or a
troencephalography (mean and neighbors);  arbitrary | RGB camera;
standard deviation of each chan- feature distribution;
nel’s absolute intensity, relative well interpretation
levels for each band power, spec- (random forests have
trum analysis features) and ther- tree-based  structure);
mal facial analysis (forehead, left [110]
eye, right eye, and nose)
[3] Real-world | -Speed, three dimensional accel- | Fuzzy c-means clus- | -Easy to implement; | -Hard to define an ap-

erations

tering, Gaussian Mix-
ture Model, Support
Vector Machine

arbitrary feature dis-
tribution; unsupervised
approach;

propriate distance met-
ric of clustering; Hard
to select kernel func-
tion and tune parame-
ters;
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stochastic model is introduced to adapt to a specific driver so
that vehicle acceleration and braking can be reduced [114].
In [32, 43], probability weighted autoregressive exogenous
models are used to learn individual driving behaviors for
a specific driver so that fuel consumption can be estimated
more precisely. Driving style and state are also important in
driving safety and vehicle security. In [122], a neural network
is trained to build a customized driver model for recognizing
abnormal driving such as drunk driving detection. In [113]],
Gaussian Mixture Models are utilized to extract features which
can effectively infer the driver’s identification via vehicle-
related measures.

C. Affective State Recognition

Affective state recognition is another significant direction
for human-in-the-loop systems, especially in personalized
ADAS. In [103], features related to predicting the brake
reaction time of the driver are generated by analyzing kine-
matic, electroencephalography, and thermal facial data. Taking
affective sensing into account, the precision can be enhanced
from 10 % to 40-50 %. Moreover, in order to adapt to different
drivers, the fuzzy c-means clustering algorithm is adopted
in [3] to achieve personalization and then Gaussian mixture
models and support vector machines are compared to find out
the best combination to recognize driver workload.

D. Discussion

Industry status: In recent years, automobile manufacturers
have tended to pay more attention to DMS. Honda proposes a
project called Honda’s automated assistant (HANA) to adjust
control performance based on driver state, where driver state
is measured by features such as facial expressions, voice,
and heart rate [103]. Likewise, the “Sixth Sense” project
of Jaguar Land Rover also intends to detect driver’s stress
and alertness by measuring the driver’s heart rate, respiration
rate, and brain activity [103]. In addition, other automobile
manufacturers also develop their own DMS, including Audi
(Rest Recommendation System), BMW (Active Driving As-
sistant), Bosch (Driver Drowsiness Detection), Ford (Driver
Alert), Volkswagen (Fatigue Detection System), and Volvo
(e.g. Driver Alert Control) [97]]. However, all of them attempt
to build a generic system rather than a personalized system.

Benefits of personalization: DMS can obtain several ben-
efits by introducing personalization. The primary benefit is
the improved safety [108]]. In [108], the driver’s state (i.e.
distracted or attentive) can reach a high overall accuracy of
95% when the classifier is trained on individual driver data. A
secondary benefit is efficiency, especially in the distance-to-
empty prediction. By introducing personalization, the predic-
tion error of distance-to-empty can be reduced to 5% [118]].

Application prospects: In fatigue and distraction detection,
the combination of nonlinear autoregressive exogenous models
and support vector machines is a practical approach. The
required features of such approaches are easy to access and
its performance is validated by a test vehicle in real-time
[108]. It may be insufficient to detect drowsiness purely by
eye blinking. For instance, Carsafe can only achieve 60%

detection rate for drowsy driving events. To achieve a high
sensitivity in monitoring driver state, the measurements of
electrocardiography and electroencephalography are combined
with eye blinking detection. However, it is only proved by
using a driving simulator and the cost of electroencephalogra-
phy sensors are also a concern for automobile manufacturers.
In driving style recognition, compared to biometrics-based
signals [[113], participatory sensing signals (e.g. mobile mea-
surements, geographic penetrations) are easy to access using
existing navigation systems (e.g. Google Maps and Waze).
In [118], a similarity matching approach based on driving
habits from participatory sensing data proves to be a practical
solution of range prediction for electric vehicles, which is vali-
dated by off-line playback. In state recognition (e.g. workload
levels, emotions), random forests [103l], k-nearest neighbors
[LO3]], and support vector machines [3]] are promising methods.
Among them, random forests and support vector machines
may be more practical because the computation load of k-
nearest neighbour increases rapidly with the increase of data
dimensions and size. The recognition accuracy of random
forests can achieve 86.7% by considering vehicle kinematics,
thermal facial analysis, and electroencephalography together.

Future focal points: Firstly, affective state recognition
should be a research emphasis due to its significance for
developing provably safe human-in-the-loop systems, espe-
cially for ADAS [104]. Secondly, online unsupervised learning
systems should be developed for personalized DMS. There
are two main reasons: (1) manually labeling a large volume
of personal data is painful and inefficient so unsupervised
methods are required to achieve auto-tagging; (2) the personal
driving characteristics may change with accumulation of more
driving experience which needs to adapt to individual drivers
in an online way.

V. PERSONALIZED IN-VEHICLE INFORMATION SYSTEMS
(IVIS)

IVIS not only can provide navigation services, but also offer
valuable information to drivers (e.g. traffic conditions, time
delays, and alternative routes), entertainments services (e.g.
music recommendation). Moreover, it can determine when,
how and which services should be provided based on the
current situation, which makes services more acceptable and
efficient. In contrast to SDS and DMS, IVIS concentrate on
in-vehicle services including route and entertainment services
recommendations, notification services, and interactive assis-
tance. Table V] summarizes categories of the relevant research
literature in personalized IVIS with dataset types, inputs, used
algorithms, pros, and cons.

A. Route Recommendations

Route recommendations are the most common applications
in IVIS. However, previous studies only care about traveling
time and hardly consider business hours and the visit duration
of each Point Of Interest in the route selection process,
such as its attractiveness, operation hours, and order of visit
[33]. Therefore, personalized interactive and traffic-aware trip
planning services have attracted interest in both the academic
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TABLE IV
SUMMARY OF THE PRESENTED RESEARCH IN PERSONALIZED IVIS
Type Ref Dataset Inputs Algorithms Pros Cons
Route [33] Real-world | -Taxi GPS digital | Location-based -Learn popularity, travel | -Large volume data required;
Recommendations footprints Social Network history from users
[124] Real-world | -Taxi GPS traces Variance-Entropy- | - Time-variant distribu- | -Hard to obtain precise labels;
Based Clustering tions
[125] Simulation | -Start and goal lo- | Collaborative -No knowledge elicita- | -Local optimization; large storing
cation Case-based tion to create rules or | space; long time to processing;
Reasoning methods; easy to im- | create cases manually
plement and maintain;
share solutions among
agents
[126] Real-world | -Links of traffic | Autoregressive -Time-varying -Poor at long-term prediction;
flow, parking loca- | model processes; distribution- | sensitive to outliers;
tion, time index free;
[127] Simulation | -Occupancy of | Artificial neural | -Decentralized structure | -Poor at explicit interpretability;
predictor link, | networks + | (lower running load); | insufficient performance in long-
desired  velocity, | stochastic routing | good scalability; term prediction;
occupancy of | policy
downstream links
Entertainment [25] Real-world | -Weather and | Bayesian Network | -Tackle incomplete | -High cost of computation; poor
Services temperature, datasets; build casual | at high dimensional data; compli-
Recommendations season, time of relationship; utilize | cate interpretation;

day, periods, user prior knowledge; avoid

location over-fitting;

[128] Simulation | -Usage records of | Statistical analysis | -Easy to implement; ro- | -Adapt to limited scenarios; of-
services in certain bustness; fline training;
situations

[129] Simulation | -Voice Filtered-X Least | -Simple implementation; | -Slow convergence; [130]

Mean Squares low computation cost;
robustness; [130]
Notification (131 Simulation | -Steering  wheel | Iterative design -Early detection of de- | -Occupy more resources; high re-
Services angle, speed, fects; adjusting model | quirement of risk analysis; rigid
road-center via feedbacks; cost effi- | successive phase;
distance ciency;

[132] Real-world | -Context factors, | Incremental naive | -Low computational | -Strong feature independence as-
event factors Bayes complexity; online | sumptions;

learning;
[133] Simulation | -Maximum eyes- | Random -Varied parameters | -Neglect correlation among re-
off-road time, Pro- | coefficient model of models; estimate | gressors;
portion of eyes- shrunken residuals;
off-road time [134]
Interactive [135] Real-world | -Voice (Speaker | Incremental -Self-adaption; arbitrary | -Hard to tune parameters; difficult
Assistance Classification); Gaussian Mixture | feature distribution; to determine kernal function;

eye gaze (eye | Model + Support

tracker); Vector Machine

[136} [137] | Simulation | -Questionnaire or | ANOVA F-values -Robustness; low com- | -Assumptions need to be fulfilled;
manually  input putation load;
personal data

community and in industry. TRIPPLANNER achieves person-
alized, interactive and traffic-aware trip planning by combining
location-based social network and taxi GPS digital footprints
[33]. In [124], driving behaviors of taxi drivers and end-
users are learned by Variance-Entropy-Based Clustering to
adapt to individual requirements, such that personalized route
recommendations service can be provided to customers. Ad-
ditionally, it is extremely challenging to provide personalized
routes in unfamiliar territory. To mitigate this problem, [125]]
shares problem-solving experiences amongst multiple agents
using a collaborative case-based reasoning framework to help
adapt parking guiding to an individual driver’s personal pref-
erences. In [126], personalized routing instructions of parking
guidance are generated by using an autoregressive model
which is able to reduce, amongst other things, driving stress,
as well as saving fuel. With the development of the vehicle
network, road users can share their in-vehicle information such

as intended destination (e.g. location) and vehicle state (e.g.
speed). To this end, [127] meets individual requirements by
using other vehicles’ information, where an artificial neural
network is combined with stochastic routing policy to generate
personalized routing recommendations.

B. Entertainment Services Recommendations

It is significantly important to provide a driver with a proper
service at the right location and time, however a driver’s
preferences should also be taken into account, especially in
mobile applications [25]. In [131]], a multi-modal proactive
recommendation system is proposed that provides drivers with
personalized content, termed “Volvo Intelligent News”. “Volvo
Intelligent News” system presents driver information based on
the driver state and driving situation. The driver state and
driving situation are obtained using driver sensors, vehicle
sensors, and environmental sensors. The authors of [128]]
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develop an intelligent In-Car-Information Systems, which is
able to automatically execute an in-car-information function
according to driver preferences in certain situations. It is
achieved by integrating a contextual personalized shortcut
method and a contextual personalized automation method. To
provide media choice for a specific user, a Personalized Audio
Zone system is designed that prevents cacophony by using
Filter-X Least Mean Squares [129].

C. Notification Services

Notification services (e.g., calendar reminders, message and
email alerts, callback reminders and news feeds) for the in-
vehicle environment should be user-adaptive and context-
aware to different drivers so as to guarantee safety and effi-
ciency. In [132], an intelligent notification system is developed
to provide an Intelligent Callback Reminder service, where
incremental naive Bayes is utilized to understand the driver’s
situation for providing callback reminder at a right time. It is
found that text entry tasks tend to increase glance duration
whereas text reading tasks do not, and random coefficient
models can reliably estimate individual performance when
significant differences exist among different drivers [133]].
These two findings are able to guide the design of personalized
in-vehicle technologies.

D. Interactive Assistance

To cooperate with driver seamlessly and naturally, digital
driving assistants should be able to recognize emotions or
states of a specific driver by using speech and video as
indicated by [135H137)]. In [136} [137]], an in-car assistant
robot is developed to interact with a driver socially. Therefore,
the robot can understand a driver’s requirements better so
as to provide proper assistance. It does not only improve
the individual driving experience but is able to explore deep
personalization for a specific driver over time.

E. Discussion

Industry status: IVIS do not just provide radio or en-
tertainment or navigation, but also combinations of all of
these. VOLOV develops a proactive recommendation system
called “Volov Intelligent News” to present information at the
appropriate time [[131]]. Moreover, other automotive companies
have developed lots of speech recognizers (such as BMW
Voice Control System, Nissan Pivo, Audi AIDA, Ford Model
U) to enhance interaction between driver and IVIS [138]].
In addition, internet companies (e.g. Google, Apple) develop
IVIS related APPs (Apple CarPlay, Android Auto) to enhance
human-machine interaction [138]]. However, the performance
of recommender systems (e,g. entertainment services, notifi-
cation services) requires further improvement. Online learning
mechanisms need to be integrated into IVIS so that a driver’s
requirement can be adapted continuously.

Benefits of personalization: TVIS can obtain several benefits
by introducing personalization. The primary benefit is the
improved efficiency [124)]. In [124], on average, 50% of
routes can be achieved at least 20% faster than the com-
peting approaches by taking personalization into account.

The secondary benefit is the enjoyment, where entertainment
services (e.g. music, radios) and recommendation services (e.g.
restaurants, scenic spots) can be provided at the right time and
in the appropriate place [25) [129]. More precisely, personal-
ized recommender system can achieve a 19% deviation from
baseline driving, which outperforms the generic systems.
Application prospects: In route recommendations, TRIP-
PLANNER [33]] is a promising solution and its efficiency and
effectiveness is quantitatively evaluated in terms of computa-
tion time cost and route score using a large real-world dataset
(more than 391900 passenger delivery trips in six months).
In entertainment service recommendations, Bayesian networks
[25] and filtered-X least mean squares [[129] are two practical
solutions, which are fast, well-understood, easy to implement,
and tested on a real-world dataset. For entertainment ser-
vice recommendations, playback is a common and effective
method to evaluate performance [[128]]. In notification services,
iterative design is applied in the “Volvo Intelligent News”
system, but the system is only tested by a simulator [131]].
Compared to [131], the incremental naive Bayes approach
is better. This learns a driver’s preferences incrementally
and is embedded into an Android App, named smartNoti.
In interactive assistance, compared to explicit personalization
[136} [137] which relies on manual setting, implicit methods
(e.g. the combination of incremental Gaussian mixture models
and support vector machines [135]]) are more convenient and
efficient which is demonstrated in real-time vehicle tests.
Future focal points: Firstly, social interactive assistance
may attract more attentions. Nowadays, the interaction be-
tween driver and IVIS is achieved by speech recognition
and eye tracking [135], which is only partially capable of
understanding the driver’s intentions and behaviors. Social
interaction needs IVIS to have a cognitive understanding of
drivers. For example, the moods (e.g. anger, frustration, and
sadness) of drivers should be further explored to provide the
appropriate interaction (such as pacifying drivers). Second,
personalized on-demand notification and recommendation ser-
vices should be more advanced, which can not only provide
services based on personal preferences but also determine
when and how to present service by accommodating context
information (e.g. location, time, priority, and driver’s mood).

VI. OPEN ISSUES

On the basis of the literature review on state-of-the-art
technologies for implicit personalized driving assistance, this
section further highlights some open issues in personalized
driving assistance so as to facilitate its future research.

A. Utilization of Existing Driving Dataset and Personal Data
Collection

Data-driven approaches not only play a significant role in
driving assistance but also for the entire Intelligent Transporta-
tion Systems [139]. Thanks to the great work in [36 [140], lots
of important driving datasets are summarized and described in
detail. In this paper, we attempt to supplement more driving
datasets along with detailed descriptions and their open access
status. Therefore, several existing datasets and their scale,
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TABLE V

DATASETS AND POTENTIAL APPLICATIONS

Dataset Period Scope Source Type Applications Open Assess
AMUSE N. A 24.4 km driving, 7 trips, 1,169 GB; | Omnidirectional multi-camera, | Environment perception, local- | Yes
height sensors, IMU, velocity, | ization and mapping;
GPS;
UAH- N. A 6 drivers and 500 minutes driving; Camera, accelerometer, gyros, | Driving state recognition, | Yes
DriveSet GPS; drowsy detection, object
recognition;
HCILab N. A 10 drivers, 10 trips, approximate 30 | Camera, GPS, SCR, ECG, Tem- | Driver workload estimation; Yes
minutes for per trip; perature sensor, brightness sensor,
accelerometer;
1VSSG N. A 3 drivers and 10 passes in each of | GNSS, IMU; Driver intention prediction, | Yes
the 6 possible manoeuvres at a T- analysis of driver behaviors at
intersection; T-intersection;
UDRIVE 2.5 years 120 car drivers from France, Ger- | Cameras, IMU sensors, Mobil Eye | Driver behavior analysis; Eco- | No
many, Netherlands, Poland, UK; 40 | smart camera, CAN data, sound | driving;
drivers of powered two-wheelers; level;
Naturalistic 18 months | 42 teenage drivers, 446,040 km | Kinematic data, GPS, video | Prevent crash and near-crash, | No
Teen driving; recorder; kinematic risky driving recog-
Driving nition, distraction detection;
Study
SHRP2 3 years 5.4 million trips, 3147 drivers, | Cameras, eyes forward monitor, | Safety on curves; Rear-end | No
NDS nearly 50 million miles of driving | lane tracker, accelerometer, rate | crashes; Driver inattention;
from Indiana, Central Pennsylva- | sensors, GPS, forward radar, cell | Offset left-turn lanes;
nia, Florida, New York, North Car- | phone, illuminance sensor, passive
olina, Washington in U.S. alcohol sensor, incident push button
(audio), turn signal, vehicle net-
work data;
Oxford 20 months | 20 million images, 1000 km driving | Cameras, LIDAR, GPS, INS; Multiple object recognition, lo- | Yes
RobotCar in central oxford; calization and mapping;
Dataset
Naturalistic | N. A 100 participants, approximately | Camera, forward radar, accelerom- | Identifying safety  critical | No
Truck 735,000 vehicles miles and 14,500 | eters, gyro, GPS, CAN data; event;
Driving hours of driving data;
Study

source types, and potential applications are elaborated in this
section and summarized in Table [V] In particular, AMUSE
Dataset consists of inertial and other complementary sensor
data combined with monocular, omnidirectional, high frame
rate visual data taken in real traffic scenes during multiple
test drives [141l]. UAH-DriveSet is a publicly available dataset
which was collected in 2016 by using a smartphone app
DriveSafe for in-depth analysis of driving behaviors [28].
HCILab Dataset is collected to assess driver workload and
includes a variety of physiological data, video data, GPS,
accelerometer data are measured [142]]. /VSSG is collected
from a vehicle driving in urban streets around the Australian
Centre for Field Robotics in Sydney and includes data from
a GPS, gyroscopes, and odometers [143]. UDRIVE is the
first large-scale European Naturalistic Driving Study on cars,
trucks and powered two-wheelers. The acronym stands for
“European naturalistic Driving and Riding for Infrastructure
& Vehicle safety and Environment”. The purpose of the
study is to gain a better understanding of what happens on
the road in everyday traffic situations [144]. SHRP2 NDS
is a very large-scale follow-up study which is the second
Strategic Highway Research Program (SHRP2) [145]. This
study involved more than 3000 participants in six sites of
U.S. Naturalistic Truck Driving Study fits nine trucks with
a suite of sensors. This study recruited 100 drivers from four
different trucking fleets across seven terminals for exploring
commercial motor vehicle risk by identifying safety-critical

events [146l]. Oxford RobotCar Dataset is collected by the
Oxford Robotics Institute. The driving data was recorded from
May 2014 to December 2015. As a result, 1000 km driving
data were collected including image, LIDAR, GPS and INS
data [147]. Naturalistic Teenage Driving Study is focused on
teenage drivers to explore their risks in driving. The study
lasted for 18 months and involved 42 teenage drivers [145].

However, most of the aforementioned datasets do not pro-
vide unique IDs to indicate different drivers, which causes
difficulties to test personalized driving assistance services. It
should be noted that personal data collection is the basis of per-
sonalized services. The personalized systems can outperform
the generic systems when sufficient personal data is available.
Until now, most data acquisition systems collect driving data
indiscriminately. As a result, personalized driving characteris-
tics and preferences of individual drivers are overlooked when
several drivers share a vehicle. Therefore, how to implement
personal data collection is an important outstanding problem
for personalized driving assistance.

B. Cold-start Problems

Cold-start problems occur when insufficient personalized
data are available for a new user and consist of two categories:
cold-start items and cold-start users [148]]. In driving assistance
applications, the cold-start item problems relate to service
recommendations such as route and music recommendations.
Cold-start users refer to a fast adaptation of an individual
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driver to provide a better driving experience. Cold-start prob-
lems are significant for driving assistance applications because
drivers may abandon the applications if false positive rate is
too high during its initial phase.

C. Personalization in Driver Monitoring Systems

It is outlined in Section that several human factor
challenges, such as trust, acceptance, and unpredictability [98
103} [104], may slow down the development of DMS. For now,
not many studies have been conducted on personalized DMS.
Most studies in DMS are to build generic models, find more
relevant indicators or improve performance by developing or
using more advanced algorithms. To fill this research gap,
more research about personalized driver monitoring systems
needs to be done for trustworthy collaboration between human
drivers and vehicles.

D. Personalization for Surrounding Vehicles

Driving is a cooperative task, where ego-vehicle needs to
interact with surrounding vehicles [149]. This requires the
ability to make decisions in dynamic and potentially uncertain
environments [[150]. The uncertainty does not only come from
noisy sensor data, but also is due to the fact that human actions
and behaviors are very difficult to predict [9§]]. In order to
enhance prediction accuracy, the surrounding vehicles should
be personalized (e.g. aggressive driver, conservative driver) so
that the intentions of surrounding vehicles can be made more
predictable. The problem can be summarized as: (/) what
is the most useful indicators? (2) how to predict a driver’s
intention by only observing her/his driving behaviors for a
short period (minutes, even seconds)?

E. Online Unsupervised Personalized Learning Problems

Personalization is often viewed as a static process. Once a
personalized model is constructed, its parameters and construc-
tion cannot be tuned or changed any more until the personal-
ized model is completely retrained. In real-life applications,
a personalized system needs to be updated and improved
continuously by using cues from driver interaction, i.e. online
personalized learning systems. This is due to the fact that
driving preferences and characteristics may change with time
even for the same driver. For instance, driving preferences and
characteristics may change from a cautious style to a normal
style when drivers accumulate more driving experience. This
issue is also highlighted in [42]]. However, only achieving
online learning is not enough for personalized application.
This is due to the fact that manually labeling personal data is
laborious and inefficient. To this end, realizing personalization
in the online and unsupervised way is a big challenge for
personalized driving assistance systems.

F. Social Interactive Assistance

Another poorly explored aspect is the social interactive
assistance between a personalized smart vehicle and a driver.
Compared to a conventional human-machine interface design,

social interactive assistance is more advanced and more chal-
lenging which needs to provide humanized services at the cor-
rect context (e.g. time and place) and in the appropriate manner
(e.g. mood, audio, and vision). The interaction between vehi-
cles and drivers affects the quality of personalization. A user
may make a trade-off between side effects (e.g., high false
alarm rate, complex operation) and benefits of personalized
systems. This issue is discussed comprehensively in [[151].

VII. CONCLUSIONS

This paper provides an overview of state-of-the-art de-
velopments in implicit personalized driving assistance and
discusses open issues that still need to be addressed. The
previous achievements of personalized driving assistance are
investigated in SDS, DMS, and IVIS. Based on this review,
some open issues are discovered such as utilization of ex-
isting driving dataset and personal data collection, cold-start
problems, limited work in personalized DMS, online unsuper-
vised personalized learning, personalization for surrounding
vehicles, and personalized social interactive assistance. Addi-
tionally, implicit personalized driving assistance is generally
implemented by using data-driven approaches which are data-
intensive applications. Therefore, we also summarize relevant
driving datasets and explore their potential applications. It is
anticipated that this survey paper would be particularly useful
for researchers who are about to enter this exciting area.

To aid drivers with appropriate assistance at the right time,
driving assistance systems require a deeper understanding
of drivers’ behaviors. Data-driven approaches are promising
solutions which can process large-scale data and adapt to indi-
vidual drivers. With more personalized data, future work shall
concentrate on mining of big data. More advanced machine
learning algorithms, such as deep reinforcement learning and
transfer learning, should be applied in formulating personal-
ized preferences and characteristics. Another trend shall focus
on seamlessly integrating personalized learning algorithms into
vehicle control systems. A barrier of popularizing driverless
cars is about how to make drivers trust and enjoy driverless
cars so as to enhance the riding experience. Personalized
driving assistance could give a promising answer to this
question. Personalized driving assistance is not only important
to support manual driving but also making fully autonomous
driving better for individual needs.

Moreover, this paper mainly focuses on categorizing driving
assistance systems according to their application domains,
which are SDS (vehicle dynamics and control related func-
tions), DMS (human driver surveillance and forewarning),
and IVIS (information provision and interaction). However,
driving assistance systems can also be categorized based on
automation levels and/or human-vehicle shared control types.
These taxonomies are not covered due to length limitation,
which are treated as future work for interested researchers.
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