

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Improved Algorithms for TCP Congestion Control

by

Talal A.Edwan

A Doctoral Thesis

Submitted in partial fulfilment

of the requirements for the award of

Doctor of Philosophy

of

Loughborough University

16th August 2010

Copyright 2010 Talal A.Edwan

Research Student Office, Academic Registry

Loughborough University, Leicestershire, LE11 3TU, UK

Switchboard: +44 (0)1509 263171 Fax: +44 (0)1509 223938

Certificate of Originality

This is to certify that I am responsible for the work submitted in this thesis,

that the original work is my own except as specified in acknowledgements or in

footnotes, and that neither the thesis nor the original work contained therein has

been submitted to this or any other institution for a higher degree.

. .

Talal A.Edwan

16th August 2010

Abstract

Reliable and efficient data transfer on the Internet is an important issue. Since late

70’s the protocol responsible for that has been the de facto standard TCP, which

has proven to be successful through out the years, its self-managed congestion

control algorithms have retained the stability of the Internet for decades. However,

the variety of existing new technologies such as high-speed networks (e.g. fibre

optics) with high-speed long-delay set-up (e.g. cross-Atlantic links) and wireless

technologies have posed lots of challenges to TCP congestion control algorithms.

The congestion control research community proposed solutions to most of these

challenges. This dissertation adds to the existing work by: firstly tackling the high-

speed long-delay problem of TCP, we propose enhancements to one of the existing

TCP variants (part of Linux kernel stack). We then propose our own variant:

TCP-Gentle. Secondly, tackling the challenge of differentiating the wireless loss

from congestive loss in a passive way and we propose a novel loss differentiation

algorithm which quantifies the noise in packet inter arrival times and use this

information together with the span (ratio of maximum to minimum packet inter

arrival times) to adapt the multiplicative decrease factor according to a predefined

logical formula. Finally, extending the well-known drift model of TCP to account

for wireless loss and some hypothetical cases (e.g. variable multiplicative decrease),

we have undertaken stability analysis for the new version of the model.

Keywords: Congestion Control, Congestion Avoidance, TCP Algorithms, End-

to-End Flow Control, High-Speed Networks, Packet Loss Differentiation.

iv

Acknowledgements

I would like to thank so many people who have supported me during my PhD

studies at Loughborough University, particularly; I’m in deep gratitude to my

supervisors: Dr Iain Phillips and Dr Lin Guan. I have to say that Dr Phillips was

not just a supervisor, he is a friend and a mentor; who I personally benefited a lot

academically and technically from his experience during my three years of study;

starting from the first meeting (where he made me a cup of tea by himself!) to the

last days before submitting this dissertation; where he reviewed my work. During

my three years of study, he provided me with invaluable feedback on my research.

I would like to thank Dr Guan, for supporting me by buying the books that

I needed for my research, for her feedback on my research and reviewing the

research papers that I have contributed to. I would also like to thank Dr George

Oikonomou for his technical support and assistance in LAB experiments and also

in rereading some of the research papers that I have contributed to.

I have to thank Loughborough University staff for their support, particularly

the efficient library system/staff that respond to queries and requests in a re-

ally quick time, I would like to thank them for making a number of proceedings

available to me in a short time.

I would also like to thank Loughborough University in general and the Depart-

ment of Computer Science in particular for funding my PhD studies, without this

support, this work could not have been done.

This work is dedicated to my parents who have made the impossible for me

from the day that I was born up to this moment and for all the loyal people in

this world.

Talal A.Edwan

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Structure of the Thesis . 4

2 Background 5

2.1 Congestion Phenomenon . 5

2.2 Linear Algorithms . 9

2.3 Non-Linear Algorithms . 10

2.4 Equation-Based Algorithms . 11

2.5 TCP Protocol . 12

2.6 TCP Congestion Control . 14

2.7 Multipath TCP Congestion Control 15

2.8 TCP & Wireless Networks . 16

2.9 TCP & High-Speed Networks . 22

2.9.1 Long Delay . 22

2.9.2 Short Delay . 22

2.10 TCP-PEP Approach . 24

2.11 Explicit Feedback Issues . 25

2.12 Summary . 27

3 TCP Congestion Control Variants 28

3.1 TCP for High-Speed Long-Delay Networks 28

3.1.1 TCP-BIC . 31

3.1.2 TCP-CUBIC . 32

3.1.3 TCP-Illinois . 33

vi

CONTENTS vii

3.1.4 TCP-HS . 33

3.1.5 STCP . 34

3.1.6 TCP-Hamilton . 34

3.1.7 TCP-FAST . 34

3.1.8 TCP-YeAH . 35

3.1.9 TCP-Compound . 36

3.2 Other TCP Variants . 37

3.3 Summary . 38

4 Optimisation & Congestion Control 39

4.1 Congestion Phenomenon & Resource Allocation 39

4.1.1 Resource Allocation . 40

4.2 Congestion Control Algorithms . 45

4.2.1 Primal & Exact Primal Algorithms 46

4.2.2 Dual Algorithm . 47

4.2.3 Primal-Dual Algorithm . 49

4.2.4 Simplified Model for TCP Congestion Control Algorithm . . 49

4.3 TCP-Model Revisited: Non-Linear Case 51

4.4 Linearisation & Stability Analysis 52

4.4.1 TCP - Constant Multiplicative Decrease 52

4.4.2 Modified TCP - Variable Multiplicative Decrease 56

4.5 Summary . 58

5 Congestion Control Metrics 60

5.1 Throughput . 61

5.2 Delay . 62

5.3 Packet Loss Rates . 62

5.4 Convergence . 63

5.5 Fairness . 63

5.5.1 General Fairness Between Flows 64

5.5.2 Flows with Different Resource Requirements 67

5.5.3 Fairness in Optimisation Framework 71

5.6 Backward Compatibility . 71

5.7 Response to Change . 72

5.7.1 Transient Response . 72

5.7.2 Response to Packet Loss . 73

5.8 Oscillations . 73

5.9 Robustness . 73

5.10 Other Issues & Trade-Offs . 74

CONTENTS viii

5.11 Summary . 75

6 Proposed Changes to TCP Illinois 77

6.1 Higher Order Delay Functions . 77

6.2 Formal Definitions . 80

6.2.1 Relative Aggressiveness . 80

6.2.2 Relative Responsiveness . 81

6.2.3 Three TCP-Illinois Variants 82

6.3 Simulation Experiments & Results 83

6.3.1 Intra-Protocol Fairness & RTT-Unfairness 84

6.3.2 Aggressiveness & Smoothness 86

6.3.3 Transient Response . 86

6.3.4 Response to Packet Loss . 90

6.4 Summary . 92

7 TCP-Gentle 94

7.1 TCP-Gentle Algorithm . 95

7.1.1 Gentle Mode: Thrust Phase 97

7.1.2 Gentle Mode: Damping Phase 98

7.1.3 Reno Mode . 99

7.1.4 Complete Version . 99

7.2 Throughput Expression . 102

7.2.1 Steady-state average throughput: 103

7.2.2 Initial average throughput: 106

7.3 Simulation Experiments & Results 109

7.3.1 High BDP Operation . 109

7.3.2 Friendliness to TCP-NewReno 111

7.3.3 Effect of Web Traffic . 113

7.4 Real Test-Bed Experiments & Results 115

7.4.1 High BDP Operation . 116

7.4.2 Response Function . 119

7.4.3 Intra-Protocol Fairness & RTT-Unfairness 120

7.4.4 Friendliness to TCP-NewReno 121

7.5 Summary . 123

8 A Loss Differentiation Algorithm 124

8.1 Assumptions for a New Algorithm 125

8.1.1 Single Flow without Cross Traffic 127

8.1.2 Single Flow with Cross Traffic 128

8.2 PITs Distributions . 129

CONTENTS ix

8.2.1 Single Flow without Cross Traffic 129

8.2.2 Single Flow with Cross Traffic 129

8.3 Analysis with Packet Drop . 132

8.3.1 Single Flow without Cross Traffic 133

8.3.2 Single Flow with Cross Traffic 133

8.4 A Modified Multiplicative Decrease Factor 141

8.5 Simulation Experiments & Results 142

8.5.1 Total Values of Variables . 145

8.5.2 Congestion Window Evolution 147

8.6 Summary . 149

9 Conclusions & Future Work 151

A History Time Line for TCP-Related Issues 163

B High-Speed TCP Equations 186

B.1 My Derivation of TCP-BIC Equations 186

B.2 TCP-HS RTT Fairness . 192

C Philosophical Thoughts 194

D TCP-Gentle Experiments 195

List of Figures

2.1 Bird-eye view of congestion control loop. 7

2.2 Basic definitions of congestion avoidance and congestion control as

appeared in Chui-Jain paper in 1989. 8

2.3 Vector diagram: two AIMD sources with different initial rates . . . 9

2.4 Convergence properties of linear algorithms, initial rates: x1=0.1,

x2=0.7 . 10

2.5 Convergence properties of binomial algorithms, initial rates: x1=0.1,

x2=0.7 . 10

2.6 Standard TCP congestion window evolution 14

3.1 A number of TCP congestion control stacks 29

3.2 Response functions . 31

3.3 Congestion windows: two TCP-BIC flows competing for bandwidth [102] 32

4.1 Graphical illustration of the Lagrange multiplier method. 40

4.2 Optimal objectives: (a) Primal method (b) Dual method. 41

4.3 Example to illustrate the basic idea 43

4.4 TCP with constant β, after linearisation. 55

4.5 Nyquist Plot for h(ω), as ω → −∞ (upper plot) ω → ∞ (lower

plot), K = 1, α = 2. 55

4.6 TCP with variable β ′, after linearisation. 57

5.1 Convergence Times . 64

5.2 Epsilon fairness . 66

5.3 AIMD operational space . 75

6.1 Adaptive AI and MD . 79

6.2 AI functions . 80

6.3 MD functions . 83

6.4 Topology . 84

6.5 Algorithm fairness & RTT-Unfairness 84

x

LIST OF FIGURES xi

6.6 Congestion window for two flows running the same algorithm,x =

16ms,y = z = 30ms . 85

6.7 20%-fair convergence, s-factor=0.005 86

6.8 20%-fair convergence, s-factor=0.0001 87

6.9 Bottleneck = 300Mbps, buffer size = 5%BDP 87

6.10 First flow throughput for different second flow starting times 89

6.11 Theoretical response function . 90

6.12 Bottleneck capacity = 300Mbps, buffer size = 5%BDP. Thermal

bars represent average queueing delay in seconds. 91

6.13 x = 46ms,y = z = 0ms . 92

7.1 Theoretical Values . 98

7.2 Congestion window curve . 103

7.3 Congestion window curve for thrust phase 106

7.4 Topology . 109

7.5 Bottleneck = 300 Mbps, RTT = 92 ms, Buffer = 5%, BDP = 172

pkts . 110

7.6 Friendliness to TCP-NewReno . 112

7.7 Bottleneck = 100 Mbps, RTT = 40 ms, Buffer = 50%BDP = 250

pkts . 113

7.8 Effect of Web Traffic . 114

7.9 Topology . 115

7.10 Bottleneck = 100 Mbps , RTT = 100 ms, large buffer 116

7.11 Bottleneck = 100 Mbps , RTT = 100 ms, large buffer, Qmax=100

pkts, TPQ= 25 pkts . 117

7.12 Response functions: bottleneck capacity = 100 Mbps, RTT = 100

ms, large buffer size . 119

7.13 Algorithm fairness & RTT-Unfairness 120

7.14 Bottleneck = 100 Mbps, RTT = 14ms, large buffer size 122

8.1 Single flow without cross traffic . 127

8.2 Single flow with cross traffic . 130

8.3 Hypothetical PIT distributions for scenarios 1-6. 132

8.4 scenario 2, bottom: cross traffic and packet drop, top: after cross

traffic leaves the path. 134

8.5 Difference Canceller . 135

8.6 Scenario 2 example, PIT of five packets. 140

8.7 Accumulated values for 10 experiments: new multiplicative de-

crease factor . 145

8.8 Accumulated values for 10 experiments: noise 146

LIST OF FIGURES xii

8.9 Accumulated values for 10 experiments: span 146

8.10 congestive loss case . 147

8.11 wireless loss case . 148

8.12 with noise sensitivity, a = 10, wireless loss case – Loss = 1.04483 % 148

8.13 with noise sensitivity, a = 0.1, wireless loss case – Loss = 1.04483 % 149

B.1 . 187

B.2 Congestion window growth in binary search increase 187

B.3 . 188

B.4 Congestion window growth in additive increase 188

List of Tables

2.1 TCP Throughput over LAN and WAN connections [51] 21

2.2 TCP Throughput over IEEE 802.11 connections [51] 21

4.1 Ca = 10 and Cb = 2 . 44

4.2 Ca = 15 and Cb = 5 . 44

5.1 Max-Min Fairness Test . 68

5.2 Link utilisation, U: under-utilised, B: bottleneck 68

7.1 Breakdown of TCP-Gentle ideas . 96

7.2 Initial state average throughput when TPQ = 25 pkts, Qmax = 100 118

8.1 Relation between Noise level [Ns], Samples Span [Sp] and Output [µ]142

8.2 Loss probabilities used in Group 2 and Group 3 experiments 143

xiii

Listings

7.1 TCP-Gentle AI rule . 111

7.2 Reno AI rule used in TCP-YeAH 111

xiv

List of Algorithms

1 YeAH . 100

2 Gentle-1: No loss . 101

3 Gentle-2, Without slow start: No loss 101

4 Gentle-1: Loss . 102

5 Gentle-2: Loss . 102

xv

List of Abbreviations

AIAD Additive Increase Additive Decrease

AIMD Additive Increase Multiplicative Decrease

AQM Active Queue Management

ARQ Automated Repeat Request

ATM Asynchronous Transfer Mode

BDP Bandwidth Delay Product

CA Congestion Avoidance

CC Congestion Control

DCCP Datagram Congestion Control Protocol

ECN Explicit Congestion Notification

ELN Explicit Loss Notification

FEC Forward Error Correction

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IIAD Inverse Increase Additive Decrease

IP Internet Protocol

ISDN Integrated Service Digital Network

ITU International Communication Union

LDA Loss Differentiation Algorithms

MIAD Multiplicative Increase Additive Decrease

xvi

LIST OF ALGORITHMS xvii

MIMD Multiplicative Increase Multiplicative Decrease

PIT Packet Inter arrival Times

QCN Quantised Congestion Notification

RFC Request For Comment

SACK Selective ACK

SCTP Stream Control Transmission Protocol

TCP Transmission Control Protocol

TFRC TCP Friendly Rate Control

VSAT Very Small Aperture Terminal

XCP Explicit Control Protocol

Chapter 1

Introduction

1.1 Motivation

TCP/IP is the name given to a protocol suite which provides the mechanism for

implementing the Internet. It consists of dozens of different protocols but only a

few protocols define the core operation of the suite. Of these key protocols, two are

usually considered important: The Internet Protocol (IP) a primary OSI network

layer protocol which provides addressing, datagram routing and other functions in

an internetwork. The Transmission Control Protocol (TCP) a primary transport

layer protocol which is responsible for connection establishment, management and

reliable data transport between various software processes.

The protocol suite has over the years continued to evolve to meet the needs of

the Internet and other smaller networks that uses the protocol suite. As part of

this, testing and development of TCP has been a continuing process since 1973.

For example, in October 1986 the Internet had the first of what became a series

of congestion collapses. The data rate from Lawrence Berkeley Laboratories to

400 yards away UC Berkeley, dropped from 32Kbps to 40bps. The problem was

solved at that time (1988) by adding two algorithms (slow start and congestion

avoidance) to control the transmission when a congestion is detected. Now, the

heavily patched old protocol is facing more and more challenges imposed by new

technologies such as those in wireless, mobile and high-speed long-delay networks.

Recently, some of these algorithms have shown problems when working over some

underlying technologies, one example is the problem of congestion avoidance al-

gorithm not being able to efficiently utilise the capacity of long-delay high-speed

pipe. Another example is packet1 loss caused by link errors which disturb the

operation of congestion avoidance that relies on this information to detect conges-

tion.

1Packets and segments are used interchangeably in this thesis

1

CHAPTER 1. INTRODUCTION 2

Since the TCP protocol is still in use, all these problems, and others have

formed a motivation for the networking research community and for me as part

of this community. From the beginning of 90’s until now, we have witnessed a

series of algorithms/changes/ideas which address the aforementioned problems,

despite that, there is no one panacea for all problems, in fact this has turned the

problem one of a compromise and trade-offs. For example, it is challenging to

have an algorithm that can efficiently utilise a high-speed long-delay pipe, have a

high responsiveness to network changes, fast convergence and at the same time be

fair to other flows and immune to link errors. This by itself has posed a challenge

and formed another motivation for me to study the subject and contribute to it.

1.2 Objectives

1. Suggest Improvements to TCP Congestion Control (CC) Algorithms: the

fruit of the work in this thesis is to contribute to existing TCP congestion

control algorithms through a cycle of study, solutions suggestions and sys-

tematic evaluation.

2. Suggest a solution(s) to increase TCP CC algorithm’s immunity against er-

ror prone links: develop a sender side passive technique to increase the im-

munity of TCP CC algorithms against packet losses that are not caused by

congestion; and extend TCP model(s) to account for such losses wherever

possible.

1.3 Contributions

This dissertation has the following contributions:

1. We approached the end-to-end Internet congestion control from a theoretical

perspective, represented by the optimisation framework, and from practical

perspective, represented by the implementation of congestion control in the

Internet via the well known transport layer protocol: TCP. We provided a

detailed discussion from the two perspectives.

2. A key element in the performance evaluation of TCP congestion control is

to have clear and well defined metrics. There have been many definitions of

metrics in the literature. We classified congestion control metrics, provided

a detailed definitions.

3. We proposed an improvement to one of TCP congestion control variants,

TCP-Illinois [69], which we call TCP Illinoisn. A conference paper written

CHAPTER 1. INTRODUCTION 3

by the author and a number of colleagues in the Computer Science Depart-

ment at Loughborough University gives detailed description of this research

work. The author has been the main contributor to the paper. The au-

thor conducted all comparative analysis experiments using ns2 based on the

congestion control metrics mentioned in this dissertation. The author also

implemented the new modifications in the relevant TCP/Linux module for

ns2. The new modifications in the form of patches (for both ns2 and the

Linux kernel) along with an extensive list of post simulation scripts written

by the author to manipulate metrics computation are publicly available.

4. We proposed a new TCP congestion control algorithm 2, which we call TCP

Gentle, the proposal is an incremental development based on the latest pro-

posal [9] in Linux kernel up to the date of writing this dissertation. The

author is the inventor of the new ideas of this TCP congestion control algo-

rithm, the author implemented the algorithm both in ns2 and Linux kernel,

the source code is publicly available. The author also conducted all sim-

ulation experiments and real test bed experiments at the laboratories of

Loughborough University. The author is the main contributor of a ready to

submit research paper 3 which gives details of this research work.

5. One of the challenges for TCP congestion control has been non-congestive

loss, which has great impact on the throughput. We proposed an idea to

discriminate congestive loss from non-congestive loss, in what is known in

literature as: Loss Differentiation Algorithms (LDAs), the idea is a novel

algorithm which tries to differentiate between the two different types of loss,

mainly based on the noise in packet inter-arrival times. A conference paper

written by the author and a number of colleagues in the Computer Science

Department at Loughborough University gives detailed description of this

research work. The author has been the main contributor to the paper.

6. We extended the TCP mathematical model [88] by including non-congestive

packet loss and variable multiplicative decrease parameters. We linearised

the model, applied Laplace Transforms and analysed the stability. We have

classified non-congestive loss as disturbance in the context of control theory,

contrary to congestive loss, which is within TCP’s control. We have shown

in the same context that the stability range for a variable multiplicative

decrease is larger than traditional fixed value for TCP. A workshop paper

written by the author and a number of colleagues in the Department of

2A history time line is available in the Appendix.
3TCP-Gentle: An “Accordion-Bellows” Congestion Window for YeAH-TCP

CHAPTER 1. INTRODUCTION 4

Computer Science at Loughborough University gives details of the analysis.

The author has been the main contributor to the paper. An extended version

of the work will appear in a Journal paper.

1.4 Structure of the Thesis

The structure of the dissertation is as follows: chapter 2 gives a background of

the congestion problem in computer networks and different source behaviours that

act on this problem. This is followed by background of TCP protocol and two

broad areas of challenges: Wireless networks and High-Speed networks, followed

by an examples of existing approaches to alleviate some of the challenges. Chap-

ter 3 elaborates on current proposals for solving specific problems in these two

broad areas, mainly the High-Speed Long-Delay problem. Chapter 4 describes the

congestion problem in computer networks from an optimisation perspective, and

highlights our modification/analysis of the TCP drift model. Chapter 5 classifies

and defines the metrics used in performance evaluation of congestion control algo-

rithms. Chapter 6 describes one of our proposals to enhance one of the high-speed

long-delay TCP variants. Chapter 7 describes our new algorithm: TCP-Gentle

which is another high-speed long-delay TCP variant. Chapter 8 describes an al-

gorithm which we have developed to differentiate the wireless packet loss from

congestive loss. Chapter 6 - 8, show our contribution in the two broad areas men-

tioned at the beginning of the section. Finally, chapter 9 concludes our work and

gives potential research directions for future.

Chapter 2

Background

This chapter gives the reader a background of Internet congestion problem, end-

to-end solutions to it, currently most deployed standard end-to-end protocols and

some of their challenges. The chapter has a historical flavour to provide a “bottom-

up” development of the subject and is divided as follows: in section 2.1 we discuss

congestion control definitions and terminologies, in sections 2.2 - 2.4 we focus

on source behaviour in end-to-end congestion control. We then look at TCP

protocol in section 2.5 and its congestion control in section 2.6 and section 2.7. We

discuss some challenges to TCP congestion control in section 2.8 and section 2.9.

In section 2.10 we discuss a general approach that can be used to solve TCP

performance problems followed by network assistance for TCP in section 2.11.

Finally, we summarise the main ideas in section 2.12.

2.1 Congestion Phenomenon

The Internet is a best effort service, this implies that packets1 send across the

network might reach the other end quickly, slowly or never make it. There are

several reasons for this: unavailable links and packets re-routing, environmental

issues like the effect of wireless links and network congestion.

Network congestion degrades the quality of this best effort service and the

treatment of this problem should start by understanding the root cause of it and

the result of it. Congestion occurs when resource demands exceed the capac-

ity [100]. Another simplified definition from a user perspective [62]: “A network

is said to be congested from the perspective of a user if the service quality noticed

by the user decreases because of an increase in network load”. It is a phenomenon

that is tightly related to the pattern of users usage of the network.” It is also

1The term packet was first coined in 1967 by Donald Watts Davies at (NPL) National Physical
Laboratory in Middlesex, England. Another fancy name for it is (PDU) Protocol Data Unit [90,
p.362]

5

CHAPTER 2. BACKGROUND 6

related to link capacities and topological issues, for example congestion can occur

when traffic arrives on a high capacity link and gets sent out on a low capacity

link, or when multiple input flows arrive at a node whose output capacity is less

than the sum of the inputs [90]. The result in this case is an excess packets or

traffic spikes. The node has two choices to deal with these packets: either drop

them or buffer them. Which one to choose is not really an easy task . Typically

routers are designed to buffer such spikes, based on the assumption that they last

for short time and thus the router acts as an ample device that absorbs these

spikes, however the choice of the optimal buffer size is puzzling: big buffers can

handle traffic spikes, reduce packet loss; but at the same time increase the delay,

cause TCP time-outs, and might rise a feasibility issue, however; some see that

in general, queues should be kept short [100], and short queues lead to short de-

lay and high throughput [45] for an ACK-based protocol (in the sense that large

queues lead to large round trip time which increse the delay of returned ACKs and

in in turn reduce the growth of the congestion window i.e. forward path rate.)

Now, this is the cause and result of congestion. There are three ways to treat

it: congestion avoidance , congestion control, and/or over provision the resources.

Before discussing the three ways, let us define some terms: solutions to congestion

can be grouped into two classes [94]: open-loop and closed-loop. An open-loop

solution is a preventive solution, prevention policies can be used in data link,

network and transport layers to prevent congestion from happening, examples of

such policies are: retransmission, out-of-order caching, acknowledgement, packet

queueing and service, packet discard, packet lifetime, routing algorithm, time-out

determination, etc. Resource reservation in some connection-oriented protocols

is an example of open-loop solution, however, one problem that might arise is

bandwidth under-utilisation. A closed-loop solution, treats congestion after it

happens or just before it happens, therefore it is more difficult to tackle.

Figure 2.1, shows the big picture of a closed-loop solution:2

1. This is the congestion control loop.

(a) If the detector is proactive, this means it prevents congestion before it

happens and the process is referred to as congestion avoidance. If the

source behaviour is conservative the process is also called congestion

avoidance.

(b) By network we mean multiple nodes between sender and receiver and

the following applies :

* Fairness issues, since the path is likely to be used by other sources.

2This is based on my conclusions

CHAPTER 2. BACKGROUND 7

NETWORK OR
DESTINATION
NODE.

FEEDBACK SIGNAL:
IMPLICIT,
EXPLICIT.

DETECTOR:
REACTIVE,
PROACTIVE.

SOURCE BHAVIOUR:
AIMD, AIAD, MIAD,
MIMD, IIAD etc.

Figure 2.1: Bird-eye view of congestion control loop.

* Intermediate nodes and end node can generate feedback signals.

(c) If there are no nodes between sender and receiver the following applies :

* Destination node can generate feedback signals.

* The process is called flow control.

2. Congestion Control: Note the word “control”: it is not only prevention, but

also utilising the capacity of the network fairly and efficiently. (not exceeding

and not underutilising the capacity). These days, networks are often over

provisioned, and the underlying question has shifted from “How to eliminate

congestion” to “How to efficiently use all the available capacity”. Efficiently

using the network means answering both of these questions at the same time;

this is what good congestion control mechanisms do.

3. Congestion Avoidance & Congestion Control: Parallel to the above discus-

sion, a graphical illustration in figure 2.2 aims to help in distinguishing

between congestion control (sometimes referred to as recovery [45]) and con-

gestion avoidance. Congestion control’s goal is to stay left of Cliff3 while

congestion avoidance’s goal is to stay left of Knee.

4. Resource Over provision: This is basically increasing the capacity of the

network. In these days, congestion has, in general, moved into the access

links (at the edges of the network, not at the core). The reasons for this are

of a purely financial nature [100]:

(a) Cheap Bandwidth. It pays off to over provision a network if the excess

bandwidth costs significantly less money than that an Internet Service

Provider (ISP) could expect to lose in case a customer complains.

3The name is inspired from the fact that after exceeding a cliff there is collapse

CHAPTER 2. BACKGROUND 8

Congestion
control

Congestion
avoidance

T
hr

ou
gh

pu
t

Load

CliffKnee

Figure 2.2: Basic definitions of congestion avoidance and congestion control as
appeared in Chui-Jain paper in 1989.

(b) It is more difficult to control a network that has just enough band-

width than an over provisioned one, the former needs skilled network

administrators which demands additional costs for training.

(c) There is an increased risk of network failures, which once again leads

to customer complaints.

(d) Scalability for future.

As a historical note, access speeds were higher than the core capacity in the

late 1970s, but changed in the 1980s, when ISDN (56 kbps) technology came

about and the core was often based upon a 2 Mbps Frame Relay network. Where

in the 1990s ATM , with 622 Mbps along with 100 Mbps Ethernet connections

were dominant. And nowadays high-speed networks (Gigbit, optical fibber, some

wireless technologies) are widely deployed. So the development of new technologies

can be considered as another encouraging factor for the over provisioning choice.

Having said that, we focus our attention on the source behaviour in the conges-

tion control loop (upper left block in figure 2.1) for two reasons: i) We believe that

a source-based solution can be easily deployed compared to a network-based (or

hybrid-based) solution e.g. a patch as part of an upgrade to an operating system

can be easily distributed among the hosts running a protocol that has a conges-

tion control algorithm. This can be easier than providing a solution that requires

changes in Internet routers. ii) A source-based solution treats the network as a

black-box, . If the solution is a rigorously defined congestion control algorithm,

changing the network equipment e.g. wired router to wireless router, or a router

with high speed capabilities or even using a completely congestion-unaware router

will not prevent control of congestion.

CHAPTER 2. BACKGROUND 9

2.2 Linear Algorithms

As it can be seen from figure 2.1, whether targeting CA or CC; a source can

take an action (this is basically increase or decrease rate) based on feedback from

network/destination. Nowadays, since the capacity of links has significantly in-

creased; efficient use of links has become a critical issue i.e. working between the

“Knee” and “Cliff”, therefore targeting CC. Having said that, there are many

issues to consider in addition to the efficient use of capacity, like fairness among

flows, response to changes, convergence, magnitude of rate oscillation etc. Such

issues influence the increase/decrease laws of a CC algorithms.

Considering source behaviour, one famous class of CC algorithms is linear al-

gorithms. They are given this name because they have one algebraic term involved

in the increase/decrease rule. To further illustrate this point we list the rules of

four types of this class, the source rate at time t is denoted by x(t):

AIMD : x(t + 1) = x(t) + αI≤c − x(t)βI>c

AIAD : x(t + 1) = x(t) + αI≤c − βI>c

MIMD : x(t + 1) = x(t) + x(t)αI≤c − x(t)βI>c

MIAD : x(t + 1) = x(t) + x(t)αI≤c − βI>c

I≤c is an indicator of whether or not the source rate has increased beyond capacity,

in other words, I≤c = 1 when link capacity is not exceeded, I≤c = 0 otherwise. And

I>c = 1 when link is exceeded, I>c = 0 otherwise. Here if α and β are constants

then x(t) is the only algebraic term. Despite its ‘classic’ [31] content; Chui-Jain’s

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

x 2

x1

(a) x1=0.9, x2=0.1

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

x 2

x1

(b) x1=0.2, x2=0.1

Figure 2.3: Vector diagram: two AIMD sources with different initial rates

work [24] highlights the dynamics of linear algorithms. To review these dynamics

we ran a test for discrete forms of linear algorithms. Figure 2.3 and figure 2.4

show a vector diagram plot of two sources. It has been shown [24] that an AIMD

converges to fair point in an environment with synchronised congestion events

(i.e. all losses happen at the same time for different flows), this can be seen from

CHAPTER 2. BACKGROUND 10

figure 2.3. A well-known but interesting point is that, MIMD and AIAD do not

show same properties: both converges to a non-fair points and MIAD oscillates of

from the optimal share point i.e. one source will take all the capacity and deprive

the other source from bandwidth: this is clearly illustrated in figure 2.4.

However, others argued that these results do not apply to asynchronous envi-

ronments (i.e. losses happen at different frequencies for different flows), like the

Internet for example [31]. Their argument can be supported by the fact that

MIMD converges to fairness in a model with proportional instead of synchronous

packet loss [50]. Nevertheless, the AIMD characteristic of convergence has made

it a favourable choice among other types. Next, we briefly discuss a super-class of

CC algorithms, of who linear algorithms are a sub-class.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

x 2

x1

AIMD
AIAD
MIAD
MIMD

Figure 2.4: Convergence properties of linear algorithms, initial rates: x1=0.1,
x2=0.7

2.3 Non-Linear Algorithms

Typek l

MIAD

AIMD

MIMD

AIAD

−1

−1

0

0 0

0

1

1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

x_
2

x_1

Binomial, k=0, l=1 −−> AIMD
Binomial, k=0.5, l=0.5 −−> SQRT

Binomial, k=0.7, l=0.3
Binomial, k=1, l=0 −−> IIAD

Figure 2.5: Convergence properties of binomial algorithms, initial rates: x1=0.1,
x2=0.7

Because of it’s convergence and fairness merits; the AIMD principle has been

adopted for developing safe and stable CC algorithms for the Internet (since 1987).

However the fixed increase and decrease parameters of an AIMD used by a CC

CHAPTER 2. BACKGROUND 11

algorithm have reduced its flexibility. For example, considering a total deployment

of CC in the Internet. Streaming audio and video applications do not react well to

abrupt rate reductions because of the degradation of user-perceived quality. This

has formed a motivation to find (let me call it) a super-principle that extends the

features of AIMD.

Binomial CC algorithms [11] was first introduced in 2001 as a non-linear gen-

eralisation of linear CC algorithms and subsequently a generalisation of AIMD.

The general rule for increase and decrease is:

x(t + 1) = x(t) + α
xk(t)

I≤c − xl(t)βI>c

Where, α > 0, 0 < β < 1. They are called binomial because they have two

algebraic terms involved in their increase/decrease rule, x and xk in the increase

rule. And x and xl in the decrease rule.

Obviously, linear algorithms rules are special cases of this rule. Also, smaller

k results in large aggressiveness4 and smaller l results in smaller reductions in the

rate when congestion is experienced. There is a trade-off between k and l, for

example; a choice of large l result in higher reduction which necessitate a small k

to substantially increase the rate after this large reduction. There is also a rule

that restricts the choices in order to maintain friendliness to existing standard

protocols. However, the key point here is the advantage of this general rule; which

is the many choices (flexibility). For example; for k = 1, l = 0 we obtain a rule

that is less aggressive than AIMD and has fixed MD, and a choice of k = 0.5, 0.5

lies between the two. Figure 2.5 shows a vector diagram plot of two sources for a

set of choices of k and l obtained by discrete version of the algorithm5. We note

that all choices converge to a fair point.

2.4 Equation-Based Algorithms

A different approach for adapting the source rate is by the adherence to a reference

equation. An equation giving the average throughput as a function of packet loss

rate and round trip time could be used calculate the rate which the source rate can

be adapted to. By adapt we mean: if actual rate is above the calculated rate; the

actual rate is reduced and if the actual rate is below the calculated rate; the actual

rate is increased. The advantage of such an approach is that the algorithm using

this equation will be fair to any other algorithm using or working according to it. A

well known example of this approach is the equation-based TFRC mechanism [37]

4This is defined in chapter 5.
5Written by the author

CHAPTER 2. BACKGROUND 12

which uses TCP’s equation [78].

Since the values used in the equation are typical average values, it is unlikely

to have abrupt increase/decrease in the rate i.e. low level of oscillation. In fact this

merit makes this approach an alternative to binomial approach when considering

streaming audio/video applications, however as we will see in chapter 5; there is

always a trade-off for each advantage. The penalty for the smoothness in rate is

slow responsiveness to change in available bandwidth.

Theoretical formulation and analysis are important when studying CC, how-

ever the practical side has the final word, especially when considering a complex

environment like the Internet. Practically speaking the aforementioned ideas can

be embedded in any protocol that needs to have a CC functionality, however; since

the Internet is controlled by standards shepherd by bodies like IETF , IEEE , ITU

, it is more interesting to see what algorithms are implemented and where they

are implemented in standard protocols. This leads us to the topic of the following

section.

2.5 TCP Protocol

Regardless of telecommunication infrastructure, most traffic in the Internet is

controlled by the transport layer protocol, TCP. It is the de facto standard for

reliable protocols and the most dominant control protocol in the Internet. A

relatively recent study conducted during 1998-2003 on one of the few sources

publicly available: the NLANR PMA (National Laboratory for Applied Network

Research - Passive Measurement and Analysis Project)6 showed that TCP traffic

percentages of total bytes, packets and flows respectively were: 72%-94%, 63%-

87% and 41%-71% [43]. It is worth to mention that although TCP is the dominant

control protocol; it is not the only standard protocol that uses CC. Other protocols

such as SCTP borrows TCP CC. Another example is DCCP which provides a

modular CC mechanisms [65]. Two mechanisms are available: TCP-like CC [40]

and TFRC [41].

TCP and other Internet protocols are specified in RFCs. There are currently

5841 RFCs since 19697. The protocol specification was documented in RFC-

793 [80] in 1981 based on the original paper of TCP written in 1974 (where TCP

stands for Transmission Control Program at that time) by two scientists (Prof.

Vint Cerf and Prof. Robert Kahn). However there are a number of TCP-related

6The Passive Measurement and Analysis (PMA) Project is one of two research projects that
form the core of the NLANR Measurement and Network Analysis Group’s Network Analysis
Infrastructure (NAI). The other is the Active Measurement Project (AMP)

7RFC-5841: TCP Option to Denote Packet Mood. R. Hay, W. Turkal. April 1 2010

CHAPTER 2. BACKGROUND 13

RFCs [18, 71, 5, 42, 81, 38].

TCP is a connection-oriented protocol, i.e. initially any two communicating

hosts should establish a connection in what is generally known as three-way hand-

shaking. The protocol was designed to provide a reliable service to higher ap-

plications when they connect over a network, this entails; application layer data

being broken to best size segments, each segment has sequence number by which

the receiving host can resequence any out of order segments. Received segments

are acknowledged by sending ACK segments back to sender. A window based

mechanism was adopted to aid flow and congestion control.

For each sent segment; TCP maintains a timer waiting for an ACK for the re-

ceived segment. If an ACK is not received (timeout) the segment is retransmitted,

this is timer-driven recovery mechanism. There is another data-driven mechanism

called Fast Retransmit [89], in this mechanism a three duplicate ACKS trigger the

retransmission of what is believed to be a lost segment, it was assumed that one

or two duplicate ACKs are usually caused by out of order (or duplicate) received

segments so TCP waits for a third one to make the decision. Another relatively

recent loss recovery mechanism is SACK [71]: it can efficiently recover from mul-

tiple losses per window in one round trip time. The idea is that the receiver can

inform the sender about all segments that have arrived successfully, so the sender

need retransmit only the segments that have actually been lost. For this to take

place, two options need to be enabled in the TCP header: SACK-permitted (in the

SYN segments) and SACK option. In case of segments loss; the receiver specify

non-contiguous blocks (usually three) of data in the SACK options and send it

back to the sender in the ACK segments.

In the context of SACK discussion, it is worthwhile to mention an extension to

SACK called D-SACK [42] which aims to help the sender to distinguish whether

the duplicate ACKS were generated due to a lost segment or a duplicate segments.

The problem addressed here is when the threshold of three segments are not

enough to determine lost segments (it has been highlighted [85, p.21] that this

is not uncommon), the D-SACK can be used to resolve this ambiguity. It does

so as follows: when duplicate segments are received, the first block of the SACK

option field is used to report the sequence numbers of the segment that triggered

the ACK and thus the sender can determine if the cause of duplicate ACK is

duplicate segments (same sequence number) or not.

In the scope of this thesis, these are the protocol ideas needed to familiarise the

reader with TCP, however the protocol is complex and there are lots of literature

covering its details.

CHAPTER 2. BACKGROUND 14

2.6 TCP Congestion Control

Since 1988, the use of congestion avoidance algorithm in TCP is mandated [18]:

“Recent work by Jacobson [TCP:7] on Internet congestion and TCP

retransmission stability has produced a transmission algorithm com-

bining slow start with congestion avoidance. A TCP MUST implement

this algorithm.”

We also came across the same point during implementation of CC modules in

GNU/Linux kernel, where the use of two functions: ssthresh() and cong_avoid()

was mandated for standard purposes.

The window based mechanism of TCP can be summarised as follows: maintain

two windows, a congestion window which represents flow control imposed by the

sender, based on the sender’s assessment of perceived network congestion and an

advertised window which is flow control imposed by the receiver, related to the

amount of available buffer space at the receiver for the connection, then TCP

sends the minimum of both windows. The way the congestion window is adapted

critically affects both the connection and the network. The standard TCP CC uses

a slow start mechanism at the beginning of a connection (or after time-out) and

an AIMD mechanism with α = 1 and β = 0.5 in congestion avoidance (after slow

start threshold is reached) and keeps using this mechanism after packet loss (not

time-out), these algorithms are sometimes referred to as Jacobson’s algorithms [96]

figure 2.6 illustrates the congestion window evolution of standard TCP CC.

C
on

ge
st

io
n

w
in

do
w

Time

cwnd <−− 2 * cwnd

cwnd <−− 1
every timeout

slow start
threshold

Linear growth cwnd <−− cwnd + α every RTT

every congestion event
to cwnd <−− (1−β) *cwnd
Exponential Decrease

every RTT

Slow start (exponential growth)

Figure 2.6: Standard TCP congestion window evolution

Ack : cwnd← cwnd + α
cwnd

Loss : cwnd← cwnd− β × cwnd

CHAPTER 2. BACKGROUND 15

Where, α = 1 β = 0.5. This approach was sufficient to solve the congestion prob-

lem at that time, but this did not prevent the research community from questioning

some issues, for example, whether the oscillatory behaviour can be reduced while

maintaining the fairness merits of AIMD. One such interesting attempt appeared

in 1991 [98] trying to minimise the oscillation of Jacopson’s algorithms through

the use of the so-called Normalised Throughput Gradient (NTG), the basic idea is

to adapt the congestion window based on the change in throughput. In the initial

mode, the algorithm increases exponentially, after a time-out it enters a decrease

mode and starts from one packet (i.e. the unit of adjustment), but this time for

each received ACK it checks the NTG, if a threshold is exceeded it increases ex-

ponentially otherwise it enters an increase mode where it increases linearly and

checks the NTG each round trip time, if NTG is below another threshold it re-

duces by one packet (i.e. the unit of adjustment) otherwise it keeps the window

unchanged.

The algorithm [98] fits the network speeds of that time, however in today’s

networks (e.g. large bandwidth delay product pipes) the trade-off between respon-

siveness and smoothness becomes more critical, for example the additive decrease

may not be sufficient to decrease quickly when a sudden increase in traffic occurs.

Another issue is that the thresholds need to be selected carefully, for example one

choice may underestimate the link capacity, while another may delay the action

of exponential increase when traffic load decreases, i.e. the change in NTG has

to exceed the threshold. There are other issues like for example when competing

with other greedy (Jacobson’s algorithms) flows this approach gives the rate to

the competing flows. Finally, reverse path bottlenecks can also force this approach

to stop increasing its rate, thus underutilise its uncongested forward path. As we

will see in chapter 7, one of our proposals overcome the responsiveness issue by

reacting almost immediately (in one round trip time) once an empty queue is

detected.

2.7 Multipath TCP Congestion Control

The basic idea of multipath congestion control is to let a multipath-capable flow

shift its traffic from a congested path to an uncongested path, by doing so the

packet drop rates due to congestion on the congestion path is reduced while that

on the uncongested path is increased,this attempts to balance the load on the

network by making the network perform as if its resources are grouped and shared

among the flows. This last idea is referred to as Resource Pooling [26].

Considering multipath TCP congestion control, algorithms [25] have been pro-

posed in order to achieve this form of load balancing. The basic idea of AIMD

CHAPTER 2. BACKGROUND 16

was used, however for the case when the AI and MD parameters of flow are se-

lected based on the sum of all congestion windows on different paths, a flappiness

between paths were reported i.e. the flow spends more time on one path than the

other, then it flips to the other path when packet drop rates on the current path

increases. On the other hand when selecting the AI and MD separately based on

the individual congestion window. The flappiness disappear but the main objec-

tive of load balancing (or resource pooling) is not achieved. Obviously, a trade off

appears between the two mechanisms. A compromise solution is to select the AI

parameter based on the sum and the MD based on the individual. However the

choice of AI parameter has to be carefully selected.

2.8 TCP & Wireless Networks

Wireless networks impose several challenges on TCP performance, in this section

we summarise some of the common challenges.

One challenge is link errors in wireless networks, this is usually blamed for

unnecessary throughput reduction. Other problems are: packet reordering, effect

of asymmetric paths (bandwidth, loss-rate, latency, etc) and low congestion win-

dow due to low link speeds in some wireless systems [10] (like cellular systems

for example). It has been shown that wireless loss and packet re-ordering are

not uncommon [56], and they are caused by inherited properties in the wireless

technology, e.g. signal fading, hand-off and mobility.

The Internet approach usually deals with error control at higher end-to-end

layers [51], [83]. Applications have different degrees of reliability, some could be

error intolerant (cannot rely on link layer error recovery, they need more reliability)

others could be error tolerant. The end-to-end approach gives more flexibility to

applications to accept or refuse the error recovery overhead. However this does

not eliminate the need for link layer error recovery in case of high error rate links.

Here, lower layers error recovery can be fast and more adaptable. But we should

note that they are not perfect solutions, they usually recover from error using

FEC, or ARQ mechanisms. FEC may be unable to correct too many bits if the

frame error rate is high, and with ARQ some of the protocols at link layer trades

off reliability for delay variance, frames not received after few retransmissions are

dropped, higher layer protocols can provide additional recovery, if needed.

One point to note here is that, applications and Internet protocols which im-

plement there own error recovery schemes may interact adversely with link layer

mechanisms [51]. The question that rise here is, where and how to mitigate the

problems of high error rates? This is part of the system design problem, and

depends on system’s usage requirements, for instance, in cellular systems consid-

CHAPTER 2. BACKGROUND 17

erable processing is required in order to reduce the high error rate of the link,

leading to significant processing delays which in turn needs to be considered as

part of the design. On the other hand, in WLAN systems, where the error rate is

lower, error recovery is usually left to higher protocol layers [51], e.g. TCP-SACK,

this reduces the dependency on lower layers, this also should be considered in the

design.

Many attempts were made to solve the problem at higher layers, mainly the

transport layer (we refer the reader to the history time line in the Appendix)

it is beyond the scope of this thesis to provide a complete discussion of TCP

performance in wireless networks, but rather to summarise the main challenges

and to focus on certain problems and provide a solution for them. For more details

the reader can refer to [12], [51].

To see how these problems affect TCP performance, we complied a list of

different wireless technologies and their potential problems to TCP. Below is a

list of the most common standards in wireless technologies, followed by a list of

the most common problems caused to TCP when it works over wireless networks:

CHAPTER 2. BACKGROUND 18

Types of Wireless Networks Standards

=========================== ===========

PAN System interconnection ----->|-IEEE 802.15

|

Wireless LANs |-IEEE 802.11

[Infrastructure and Ad-Hoc]

Wireless WANs ----->|-IEEE 802.16

[Infrastructure] |

[High speed and Low speed] |-Cellular Systems

[Satellite Communications] 2.5G, EDGE+GPRS

3G, ITU IMT

W-CDMA+UMTS

- Standards:

- IEEE 802.11 Wireless LAN & Mesh (Wi-Fi certification), (Wireless

Local area network-WLAN)

- IEEE 802.15 Wireless PAN, (Wireless Personal area network-WPAN)

- IEEE 802.15.1 (Bluetooth certification)

- IEEE 802.15.4 (ZigBee and Mi-Wi certification)

- IEEE 802.16 Broadband Wireless Access, (WiMAX certification),

(Wireless Metropolitan area network-WMAN),

IEEE 802.16e (Mobile) Broadband Wireless Access,

(M-WiMAX).

- IEEE 802.18 Radio Regulatory TAG

- IEEE 802.19 Coexistence TAG

- IEEE 802.20 Mobile Broadband Wireless Access, (Wireless Mobility)

- IEEE 802.21 Media Independent Hand off (Hand-off/Interoperability

Between Networks)

- IEEE 802.22 Wireless Regional Area Network

CHAPTER 2. BACKGROUND 19

Wireless PAN, LAN Characteristics Problems caused to TCP

================================= =======================

Channel Contention -----|--------------------> Random Loss

and Interference |

|

Signal Fading ----------|

Mobility ----------------|--------------------> Burst Loss

|

Hand off process --------|--|-----------------> Packet Reordering

|

Topological change ---------|

|

Link Layer RT --------------|

Media Access Protocol -----------------------> Causes latency variations

Interaction with TCP

Limited Power

Wireless MAN, WAN Characteristics Problems caused to TCP

================================= ========================

Channel Contention -----|--------------------> Random Loss

and Interference |

|

Signal Fading ----------|

Mobility(for C.S.) -----|--------------------> Burst Loss

|

Hand off process -------|--|-----------------> Packet Reordering

(for C.S.) |

|

Link Layer RT -------------|

Low speeds (for C.S.) -----------------------> Small Congestion Window

Affect Data-driven loss

recovery + Increase time-outs.

Media Access Protocol -----------------------> Causes latency variations

CHAPTER 2. BACKGROUND 20

Interaction with TCP

Asymmetric paths ----------------------------> Affects Reverse Path ACK

(bandwidth, loss-rate,latency) feedback Affects Forward

performance.

Limited Power (for C.S. and Satellites)

- Link Layer behaviour can also increase number of TCP time-outs and

retransmissions.

- 802.16 family of standards is also called Wireless MAN, Broadband

Wireless and WiMAX.

- Satellites can also be considered as mobile devices because they

move relative to earth.

and the whole system is designed to give full coverage, this

reduces the effect of hand off.

- It is worth to note that FEC (Forward Error Correction) techniques

like Hamming codes are used in the physical layer in addition to

check sums in upper layers in the case of broadband wireless,

because so many transmission errors are expected in this case,

this can add to latency variations.

- Hand off process can increase latency.

- Too many retransmissions affects the limited power.

CHAPTER 2. BACKGROUND 21

Table 2.1: TCP Throughput over LAN and WAN connections [51]

Network Type Nominal Bandwidth Actual TCP Throughput Achieved (%)

LAN 1.5 Mbps 0.70 Mbps 46.66
WAN 1.35 Mbps 0.31 Mbps 22.96

Table 2.2: TCP Throughput over IEEE 802.11 connections [51]

Standard Nominal Bandwidth Actual TCP Throughput Achieved (%)

802.11 2 Mbps 0.98 Mbps 49
802.11b 11 Mbps 4.3 Mbps 39.1

We focus our attention on the loss problem (which is due to high transmission

error rates) and how it affects TCP performance. Having mentioned that lower

layer error recovery cannot recover from all errors, this may lead to packets being

corrupted and thus discarded and not handed to TCP. TCP in turn makes a tacit

assumption that the lost packets are due to congestion and thus reacts by reducing

its congestion window drastically (multiplicative decrease). This results in an

unnecessary throughput reduction. We adopt some figures mainly for WLANs [51]

to show how severe the problem could be. Table 2.1 depicts TCP throughput over

a WLAN path and a WAN path consisting of a single WLAN plus 15 wired links.

The nominal bandwidth is the bandwidth in the absence of any losses, the actual

throughput is the throughput when the WLAN suffers from a frame error rate of

2.3% for a frame size of 1400 bytes. Table 2.2 shows the results for IEEE 802.11.

Note that high speed links are affected more since TCP drastically reduces its

throughput after each loss event (multiplicative decrease) and thus it takes longer

to reach the peak throughput supported by higher speeds [51]. Unnecessary TCP

throughput loss also occurs in cellular systems. In their voice mode the residual

frame error rate is 1-2% after low level error recovery. Another point to mention

here is that TCP works in the forward and reverse directions (data and ACKs), in

wireless links this could lead to undetected collisions which in turn increases the

frame error rate.

The SACK mechanism in TCP helps in recovering from multiple packet loss

quickly (i.e. in one round trip time), however, non-congestive packet loss is prob-

lematic for standard TCP CC because fast recovery is invoked and the congestion

window is halved.

CHAPTER 2. BACKGROUND 22

2.9 TCP & High-Speed Networks

2.9.1 Long Delay

The evolution of high-speed networks has facilitated the transfer of huge amounts

of scientific data like that gathered in Astronomy, Bioinformatics, Earth Sciences,

Physics etc. Nowadays, cross Atlantic data transfer between research institutes

is not uncommon. Such transfers need a reliable and efficient protocol that can

handle multiple simultaneous transfers and TCP is the most used reliable protocol.

TCP CC armed with its fixed AIMD mechanism may have a problem utilising

the full bandwidth of a high-speed long-delay pipe (this is usually referred to

as: high BDP). To see how TCP substantially underutilises network bandwidth

over high BDP connections; let us consider this case: suppose we have TCP flow

running over a 10 Gbps with RTT = 100ms, packet size = 1500 bytes = 12000

bits. This gives a BDP = 1010 × 0.1 = 109 bits, = 83, 333.33 packets. If TCP is

running in congestion avoidance phase, which means that the congestion window is

increasing by 1 packet each RTT, upon a packet loss event the window is halved.

So: ∆cwnd = (1/RTT)∆t, ∆t = ∆cwnd × RTT = 416666.67RTT = 4166.67

seconds = 1.16 hours to reach the peak i.e. full utilisation again. If packet size is

10000 bits, it takes ≈ 1.5 hours. In other words TCP needs a low packet loss rate

to achieve full utilisation and such low loss rates are not realistic especially with

the spread of new technologies like fibre optics and wireless networks, and even at

these low loss rates, it takes too long to fully utilise the link after a back off.

It has been shown [88, p.72], that TCP is not stable for large RTT. Another

way to look at this nonstability is by comparing the growth of the congestion

window for two flows, one with large RTT and another with small RTT. Recall

that the slope of a congestion window growth function over time is: α/RTT where

α = 1 for TCP. In fact, the flow with the large RTT (low slope) spends most of its

time increasing from the point at which packet loss happened to the peak, during

the same period; the flow with the small RTT (high slope) must have reached the

peak several times (reached steady state faster).8

2.9.2 Short Delay

The high-speed long-delay pipes are not the only potential problem for TCP. A

pathological behaviour of TCP in some high-speed low-delay environments has

been also identified. The problem can be seen when TCP works in a certain

communication pattern which is known as Incast. In this pattern a receiver issues

a request to multiple senders, the senders upon receiving the request concurrently

8This is my understanding.

CHAPTER 2. BACKGROUND 23

respond to the receiver. The sender traffic traverses a bottleneck link in a many-

to-one fashion and a potential for a congestion problem arise. In fact, a worst

case of congestion collapse can occur and the problem is usually referred to as

TCP-Incast.

Such communication pattern is not uncommon, it arises in typical data centre

applications: cluster-storage when data is stripped on multiple servers (for reli-

ability and better use of bandwidth) and servers need to respond to a request,

web-search when many workers respond to a search query. In these set-ups, the

data usually traverse an Ethernet switches which typically have small buffers of the

range 32KB-256KB; thus a high chance that they overflow in case of congestion.

Large companies (e.g. Google, Microsoft, Amazon, etc) use data centres for web

search, storage, e-commerce and large-scale computations. Thinking business; the

use of existing technologies is more cost effective, therefore the vast majority of

data centres use TCP for communication [23].

Technically (and historically) speaking, some of TCP parameters were tuned

for typical WAN environments, for example in Linux the intial retransmission

time-out timer is set (to a reasonable value for WAN) of 200ms, i.e. the sender

can make a decision of a time-out (lost packet) after 200ms. However, in an data

centre environment with low latency (or round trip time) this is considered long

and result in throughput degradation. To illustrate this point, suppose the sender

sends a number of packets (say a window) and they are all lost, then it will take

200ms to realise that they are lost and starts retransmitting. During this period

no packets are sent. Suppose that the retransmission time-out timer is close to the

round trip time i.e. a smaller value, then the sender will realise that the packets are

lost in nearly one round trip time and respond by retransmitting the lost packets,

thus we have more packets sent in the same period of time. It has been found that

using TCP with its current set-up and increasing the number of servers beyond

a certain number result in a huge drop in the receiver’s goodput9, this is due to

TCP large retransmission time-out value, window halving and time-outs.

One quick solution is to use large switch buffers. While this can delay the onset

of Incast, it comes at the price of substantial increase in the cost, e.g. switches

with 1MB packet buffering per port may cost $500,0000, TCP improvements e.g.

NewReno, SACK, RED, ECN, Limited Transmit and modification to slow start,

mitigate the problem but do not solve it. Ethernet flow control (when the sender

is sending too much traffic, the overwhelmed node can send a PAUSE frame to

throttle the sender) is effective when all nodes are on the same switch and less

effective when nodes are on different switches, this is due to inter-trunk head-of-

9Application-level throughput, we define this in chapter 5

CHAPTER 2. BACKGROUND 24

line blocking10

It has been shown that an effective solution is to reduce TCP’s retransmission

time-out to microsecond granularity, specifically; a value of 200µs achieves full

goodput for as many as 47 servers in real world cluster environment [7]. Deviating

from this point, their are other attempts to solve the problem at lower layers,

particularly the use of the so-called Quantised Congestion Notification(QCN) [82]

in Ethernet (see for example [4] for a modified QCN to alleviate the problem).

However we are not intending to elaborate on that in this thesis, our concern is

to focus on TCP solutions.

2.10 TCP-PEP Approach

One approach used to compensate for TCP performance degradation when work-

ing in different environments is the approach of TCP-Performance Enhancing

Proxies (TCP-PEP) [17, p.5]. In general, PEP can be integrated i.e. implemented

on a single node, or distributed i.e. implemented on multiple nodes. However, a

common mechanism used in TCP-PEP is to split11 a TCP connection into three

parts, where the first and last run standard TCP and another compensating proto-

col runs in the middle, this could be a different protocol e.g. XCP or an optimised

TCP algorithm e.g. high-speed long-delay TCP algorithm.

Three years ago12 an ISP used to have an asymmetric path (a shared E1 for

upload traffic and a higher bandwidth satellite link for download traffic) which

likely to make TCP perform badly! One such problem that may arise is ACK

compression at the upload link which results in undesirable bursts which in turn

are reflected as a bursts in the forward direction. Such bursts are not good for

the network. A TCP-PEP may be used to alter the ACK spacing to mitigate the

effect of bursts and thus smoothing TCP throughput.

Another example is the use of TCP-PEP to alter the behaviour of TCP con-

nection in a high BDP environment by generating local ACKs which make the

congestion window evolve faster (affects forward performance) and thus enhance

throughput. As said in the first paragraph of this section, this can be accompa-

nied by another protocol/algorithm which takes the responsibility of sending the

data over a high BDP pipe. There are other examples, like the use in VSAT and

10In a cross-bar switch fabric, when two ports have packets in their input queues destined to
same output port, a contention may appear; which blocks the rest of packets in a FIFO input
queue.

11Some may argue if this breaks the end-to-end argument [83] i.e. functionality is restricted at
end-hosts. There is no functionality replacement at end hosts, PEPs adds performance optimi-
sation to a subpath of the end-to-end path and that agrees with the end-to-end argument [17].

12This is based on the author’s experience.

CHAPTER 2. BACKGROUND 25

WLAN environments. A typical example of the use of TCP-PEP in WLAN is

TCP-Snoop [10], this is briefly discussed in chapter 3.

We end this section with a science fiction note. In 1781 Sir William Herschel

announced the discovery of Uranus (the seventh planet from the Sun). Later on,

in 1986 the spacecraft Voyager-2 (unmanned interplanetary space probe) reached

Uranus, four days before that scientists noticed jittered sent images caused by a

software bug. The software bug was resolved and a piece of code was sent over

3.2 × 109km to Voyager-2 at the speed of light (300 × 103km/s) in three hours.

The problem was solved and clear images were received.

Indeed there is no need to use a protocol with congestion control for the case

in the previous paragraph, but we build an imaginary case based on it, it might

appear in one of science fiction movies and may become true one day. The case

is: having a multiple nodes (probes) in space, where these nodes are supposed to

capture some scientific data and send it back to the Earth. Depending on the size

of data and the number of nodes and the capacity of links and the hardware used

in future, a congestion control problem may appear. If TCP is still used by that

time, TCP-PEP may be considered as a solution. Since for example based on the

previous paragraph, a round trip time of six hours may not fit a congestion control

algorithm, for instance, one choice is to split a connection (multiple connections)

and run a space version (e.g. aggressive rate increase) of TCP in the middle.

Alternatively, in literature we found three ways (at network layer) for packet

networks to deal with congestion [94]: i) Warning bit (ECN is an example), ii)

Choke packets, iii) Hop-by-hop choke packets. The hop-by-hop choke packets can

also be considered as another choice to mitigate the previous problem.

2.11 Explicit Feedback Issues

TCP follows an end-to-end approach and treats the network as a black box, how-

ever the network can play an explicit role in mitigating the congestion problem.

In this section we look at two examples13 which we believe are related in the con-

text14 of TCP CC. The first one is Explicit Congestion Notification (ECN) [81]

appeared in 2001 and the second one is Quick-Start mechanism [35] appeared in

2007.

ECN assumes that the network has some sort of Active Queue Management

13A third example is ICMP source Quench message sent back to the sender to reduce the rate
in case of congestion. This technique is rarely used in the Internet: consumes bandwidth, due
to being ineffective and unfair [45]

14There are network assisted protocols which need special routers, these are believed to be
alternatives to TCP CC, an example is Explicit Control Protocol XCP [57] , these are not
discussed in this thesis.

CHAPTER 2. BACKGROUND 26

(AQM) which usually detects congestion proactively through (for example) aver-

age queueing delay, and reports this as a binary (congestion,no congestion) feed-

back information in the packets. There is no point in reporting this if the senders

are not cooperating by changing their rates, thus ECN requires support from trans-

port layer protocol(s). Information about ECN-Capability and binary feedback

information can be conveyed via four code points i.e. two bits in the IP header

of a packet, where two code points indicate if the transport protocol is capable of

using the ECN information e.g. has headers to send congestion information to the

other end, these two code points are called: ECN-Capable Transport (ECT). The

other two code points are: non-ECT and Congestion Experienced (CE).

TCP cooperates with ECN by dedicating two flags in its header: ECN-Echo

(ECE) by which the receiver can inform the sender when a CE packet has been

received and a Congestion Window Reduced (CWR) by which the sender can

inform the receiver that it responded by reducing the rate. Typically the ECN-

Capability of TCP is negotiated during the connection set-up and the ECT is

set.

A typical sequence of events is that a queue threshold is exceeded, congestion

experienced bit(s) in the IP header field are set. In response to that when an

ECN-Capable TCP receiver receives this information it echos it back by setting

ECE in an ACK packet, the sender then backoffs exactly as it does when a packet

drop happens and inform the reviver about this by setting the CWR in a forward

packet. The approach reduces delay by preventing buffer overflow and reduces

packet drop rates (if marking is used).

Another example of network cooperation, is Quick-Start which tries to find

the appropriate initial congestion window size (and thus the available bandwidth)

quickly i.e. in one round trip time. Opposed to Slow-Start available bandwidth

probing mechanism, Quick-Start suggests an explicit feedback from all the routers

along the path, for instance; the TCP sender would set its desired rate in bytes per

seconds in a Quick-Start option in the IP header of a packet. Each router along

the path can the either: i) Approve the requested rate, ii) Reduce the requested

rate, iii) Unapprove the requested rate. The TCP receiver communicates this

information back the the sender in an answering packet and the rate (congestion

window) is adjusted accordingly. Subsequent transmissions are then governed

by the congestion control algorithm. However if the request is not approved the

default congestion control algorithm is used. An interesting point is that the range

of the requested rate is: 80 Kbps - 1.3 Gbps. Which means that TCP CC can

significantly benefit from this technique when working in a high speed long delay

environments.

CHAPTER 2. BACKGROUND 27

2.12 Summary

In this chapter we discussed a number of definitions of congestion control problem.

We discussed the difference between terms like “congestion avoidance” and “con-

gestion control” and how the goal of congestion control changes in time. First it

was to prevent congestion, and nowadays to efficiently utilise high capacity links.

We focused on end-to-end solutions and because these solutions rely on adapting

the source rate, we discussed a number of approaches used to adapt the source

rate, we classified these into three classes: i) Linear algorithms, i) Non-linear al-

gorithms, iii) Equation-based algorithms. Then we looked at the practical side of

some of these solutions, mainly the most deployed protocol, TCP, then Multipath

TCP. We steered the discussion towards some challenges to TCP in high-speed

low-latency networks (e.g. TCP Incast), high-speed long-delay networks and wire-

less networks, this is followed by a general approach (TCP-PEP) that can be used

to mitigate some of these problems. Finally, we mentioned that TCP can coop-

erate with other approaches which gather information from network, we provided

two examples: i) ECN as an explicit congestion notification, ii) Quick-Start mech-

anism to determine the initial window size. However, solutions for the challenges

that we left open are discussed in the next chapter with more elaboration.

Chapter 3

TCP Congestion Control Variants

This chapter sheds the light on a number of TCP congestion control algorithms

aimed at optimising the performance of TCP in high-speed long-delay networks,

it also mentions other variants designed to enhance the performance of TCP in

different set-ups e.g. wireless networks. The chapter is divided as follows: in

section 3.1 we briefly discuss a number of high-speed long-delay TCP variants, we

used the notation: TCP-X, (where X is the name of that variant) to refer to the

variant under discussion in each subsection. We elaborate more on TCP-Illinois

and TCP-YeAH variants in chapter 6 and chapter 7 respectively. In section 3.2

we mention a number of other TCP variants. Finally we summarise in section 3.3

the ideas in this chapter.

3.1 TCP for High-Speed Long-Delay Networks

In the last decade, the research community responded with a number of congestion

control algorithms aimed to moderate the problem of bandwidth under-utilisation

of high BDP pipes [69, 102, 47, 32, 61, 64, 27, 93, 9], we visualise some of these

in figure 3.1 and provide a briefing of some of them in this section.

We have noticed that a common thing between all these algorithms is that

their designs are influenced by the following points:

• Scalability or utilisation, efficient use of bottleneck link.

• RTT fairness

• TCP friendliness, backward compatibility with TCP when deployed in low-

speed short-distance networks.

• Fairness, equal number of packets in flight at each congestion event.

28

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 29

FAST
TCP−

Westwood
TCP−

Compound
TCP−

TCP− ?

TCP− ?

Westwood+Hamilton

STCP

TCP−Reno

TCP−Africa

TCP−Illinois

TCP−BICTCP−CUBIC

TCP−HS TCP−

TCP−Vegas

TCP−TCP−Hybla

TCP−Veno

TCP−YeAH

Figure 3.1: A number of TCP congestion control stacks

• Responsiveness in terms of convergence, respond quickly to changes in avail-

able bandwidth.

We also found that a simple way to characterise an algorithm and reveal many

of these points is by using the so-called Response Function, this is basically the

average throughput as a function of the back off probability (just to link ideas, this

is the same equation that we mentioned in chapter 2, when we discussed equation-

based algorithms, some refer to it as throughput equation). Some information can

be directly revealed from a response function:

• Scalability

• RTT fairness

• TCP friendliness

The well-known expression of TCP-Reno in steady state average rate for small

packet loss rates was found to be:

X ∝ 1

RTT

√
1

βp

A closed form was derived [78], we mention the simplified result here:

XTCP ≈
1

RTT

√
3

2bp

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 30

And for a deterministic AIMD decrease model [36]:

XAIMD ≈
1

RTT

√

α(2− β)

2βp

For a stochastic model [103] and also mentioned in other literature [47]:

XAIMD ≈
1

RTT

√

α(1 + β)

2b(1− β)p

Where, α and β are constants, b is the number of packets acknowledged by

each ACK (in normal operation b = 1, for delayed acknowledgement b = 2). Note

that β = 1/2 here.

The deterministic AIMD model assumes that a packet is dropped each time

the congestion window reaches a certain fixed number of packets. In contrast, an

AIMD stochastic model assumes that packet is dropped randomly [36]. In fact this

is the AIMD model mentioned in [103]. The advantage of the deterministic model

is its simplicity and usefulness for focusing on the role of the α and β in AIMD

congestion control, however the stochastic model gives more accurate model under

certain assumptions.

If the response function has the form: c/pd where, c and d are constants then

by taking a log scale (i.e. the slope becomes the absolute value of d), the following

properties can be deduced:

• As d increases the slope of the function increases and the scalability of the

algorithm increases (i.e. large windows at low loss rates).

• RTT unfairness is roughly proportional to (RTT2/RTT1)
d/(1−d), so if d in-

creases the slope of the function increases and the RTT unfairness increases [102].

• TCP friendliness can be seen from the point where the response function of

an algorithm crosses that of standard TCP. If it crosses TCP at lower loss

rates then its more TCP friendly. The reasoning behind that ([102]) is since

TCP does not consume too much bandwidth at low loss rates (remember,

this is the problem with the TCP algorithm) other algorithms could apply

their scalable techniques and consume what is left from TCP, so here we

say, they are not working like TCP in this region. After this point (i.e. the

crossing point) they start working like TCP. In other words it becomes more

TCP friendly if an algorithm function crosses TCP’s function as low as loss

rate as possible.

We recreated a response function plot of a number of TCP variants. Figure 3.2

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 31

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

R
at

e
[p

ac
ke

ts
/R

T
T

]

Packet loss rate

TCP
HTCP
AIMD
STCP

BI-TCP [smin=0.01, smax=32]
BI-TCP [smin=0.001, smax=32]

BI-TCP [smin=0.01, smax=64]

Figure 3.2: Response functions

depicts a log scale of this plot. The value of d for TCP, AIMD,TCP-HS and STCP

are 0.5,0.5,0.82 and 1 respectively. An interesting feature of TCP-BIC is that this

value is variable, it takes values 0.5 < d < 1, as the window size increases d

decreases from 1 to 0.5, this makes the algorithm RTT fair (with low d) for large

windows and TCP friendly (high d, high slope thus shifting the crossing point to

the left) for small windows.

What we are trying to emphasise here is that response functions can be used

to understand the behaviour of congestion control algorithms and thus helps in

the design process. In the following sections, we provide a discussion of a number

of TCP variants and see how they considered the aforementioned issues in their

design.

3.1.1 TCP-BIC

The basic idea behind this loss-based algorithm1 [102] is that it uses a com-

bination of additive increase, binary search, multiplicative decrease and slow

start (the former two are collectively referred to as binary increase) to find the

right size of congestion window that matches the pipe capacity. Two windows

are maintained, one holds the value of congestion window when loss happens

max window and the other holds the value after multiplicative decrease takes

action min window. The mid point between the two is called the target win-

dow and is held in another variable wtarget. After that for each received ac-

knowledgement, if wtarget − cwnd < Smax increase directly to wtarget (binary

1Default in Linux kernel

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 32

search) otherwise increase by Smax (additive increase2), update the following:

min window = cwnd,wtarget = max window+min window
2

. Perform slow start any

time the current window grows past max window (since the maximum window is

unknown the above sequence is effective-less, so probing for max window stars). To

aid convergence, the algorithm use a Fast Convergence technique that exploits the

down trend of congestion window when another flow starts competing for band-

width. The previous max window is memorized in prev window and when loss

happens, if prev window > max window the algorithm computes the mid value

but this time it sets the max window to this value then computes a mid value

again (based on the new maximum window) and sets the wtarget to this value. To

achieve TCP friendliness, the algorithm operates like standard TCP if the conges-

tion window is below certain threshold. Figure 3.3 depicts the congestion window

evolution of the two flows using the algorithm and competing for bottleneck link

using a Drop-Tail queue.

Figure 3.3: Congestion windows: two TCP-BIC flows competing for band-
width [102]

3.1.2 TCP-CUBIC

This algorithm [47] is an improvement over TCP-BIC, it tries to achieve the same

congestion window evolution of TCP-BIC while making it less dependent on round

trip time in an attempt to achieve RTT-fairness between flows. The idea is to

adapt the congestion window in real time according to a function. The function

is shown below, t is the elapsed time since last back off

cwnd =

{

cwndtcp = cwndmaxβ + 31−β
1+β

t
RTT

if cwndtcp > cwndcubic

cwndcubic = C(t−K)3 + cwndmax otherwise

2Binary search and additive increase are collectively referred to as: binary increase

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 33

If cwndtcp is larger than the cwndcubic this means that the the algorithm is likely

to be working in a short round trip time network, therefore the TCP window is

selected, however if cwndcubic is larger, then the algorithm likely to be working

in a long round trip time network and the CUBIC window is selected. Recent

studies [91] have shown that the algorithm causes collateral damage to real-time

traffic on broadband networks.

3.1.3 TCP-Illinois

As it can be seen from figure 3.3, the concavity feature of congestion window is

desirable, this actually leads to larger area under the curve which translates to

more packets being transmitted. Another loss-delay based algorithm with this fea-

ture is TCP-Illinois [69]. The algorithm uses additive increase and multiplicative

decrease (upon loss):

Ack : cwnd ← cwnd + fα(da)
cwnd

Loss : cwnd ← (1− fβ(da))× cwnd

But it adapts the AI and MD parameters according to estimated average queueing

delay, fα(da) ∝ 1
da

and fβ(da) ∝ da. The basic idea is to estimate the maximum

average queueing delay as the difference between the maximum and minimum

average round trip times seen so far by the flow during a connection. Then to

estimate the current average queueing delay (estimation is done each round trip

time i.e. each time a window is sent). If the estimated average queueing delay is

close to the estimated maximum delay then it sets small AI and large MD, if the

it is far it sets large AI and small MD. The algorithm falls back to standard TCP

operation if the congestion window is below a threshold. One advantage of this

algorithm is that, adapting the MD parameter in this way increases the immunity

against non-congestive packet loss, a disadvantage; however, is that a receiver can

cheat by increasing the round trip time, thus the sender thinks that there is a large

queue and overestimates the maximum round trip time, subsequently the current

average delay is likely to be far from the maximum delay and the AI is large. We

address other issues of this algorithm and propose solutions in chapter 6.

3.1.4 TCP-HS

Another algorithm that uses AIMD is TCP-HS [32], the algorithm adapts AI and

MD as a functions of the congestion window size.

Ack : cwnd ← cwnd + fα(cwnd)
cwnd

Loss : cwnd ← fβ(cwnd)× cwnd

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 34

Where, fα(.) ↑ and fβ(.) ↓ as cwnd ↑. Again, the algorithm engages after a window

threshold. The idea is to adjust α and β so that the response function gives certain

W/RTT at certain high p(W) (low window), and higher W1/RTT at certain low

p(W1) (high window).

3.1.5 STCP

Scalable TCP [61] algorithm adopts a multiplicative increase and multiplicative

decrease approach, while this is very scalable it has fairness and RTT unfairness

issues, however the rule is simple simple to implement and scalable for high-speed

long-delay networks,

Ack : cwnd ← cwnd + α

Loss : cwnd ← β × cwnd

Where, α = 0.01, β = 0.875 and the algorithm engages after a window threshold.

3.1.6 TCP-Hamilton

This algorithm updates the congestion window as a function of elapsed time since

last congestion event, the function was chosen to achieve a response function

similar to that of TCP-HS.

Ack : cwnd ← cwnd + 2(1−β)fα(∆)
cwnd

Loss : cwnd ← fβ(B)× cwnd

fα(∆) =

{

1 if ∆ ≤ ∆L

max(f̄α(∆) ∗ Tmin, 1) if ∆ > ∆L

fβ(B) =

{

0.5 if |B(k+1)−B(k)
B(k)

| > ∆B

min(Tmin

Tmax
, 0.8) otherwise

Where, ∆ is the elapsed time since the last congestion event, ∆B = 0.2, B(k+1) is

the maximum achieved throughput during the last congestion epoch and: f̄α(∆) =

1 + 10(∆−∆L) + (∆−∆L

2
)2

3.1.7 TCP-FAST

This algorithm [54] is a delay-based algorithm, it adapt the AI parameter according

to a predefined function based on the congestion window and average queueing

delay. The congestion window is updated as a smooth average:

Every RTT : cwnd ← (1− γ)(cwnd) + γ
(

Tmin

T̄
cwnd + fα(cwnd, da)

)

Loss : cwnd ← β × cwnd

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 35

Where, β = 0.5, Tmin and T̄ are minimum and average observed round trip times

respectively, da is the average queueing delay. The algorithm also reacts to loss

by multiplicatively decreasing the congestion window. Note that the congestion

window update rule has a component that is inversely proportional to the average

round trip time i.e. it decreases every round trip time (gradually) as the queue

builds up (congestion), rather than waiting for packet loss to happen, in other

words this is a CA rather than a CC approach (to link ideas, please see figure 2.2).

3.1.8 TCP-YeAH

Yet Another High speed algorithm [9], tries to exploit the network bandwidth

efficiently while putting less stress on the network compared to standard TCP.

The basic idea is to have two different modes of operation: Fast and Slow modes.

In the fast mode the congestion window is incremented according to an aggressive

rule (STCP rule was used for ease of implementation but any other rule can be

used). In the slow mode the congestion window is incremented like standard TCP

and a precautionary decongestion algorithm is implemented.

Switching between slow and fast modes is decided according to the estimated

number of packets in the bottleneck queue. This number is estimated as follows [9]:

Let RTTbase be the minimum RTT measured by the sender (estimate of propaga-

tion delay) and RTTmin the minimum RTT estimate in the current data window

of cwnd packets and thus is updated once per window of data (i.e. each RTT). The

current queuing delay can be estimated as RTTqueue = RTTmin − RTTbase. This

RTTqueue is then used to infer the number of packets enqueued at the bottleneck

as:

Q = RTTqueue.G = RTTqueue.

(
cwnd

RTTmin

)

Where, G is the goodput. The ratio3 between the queuing delay and the propa-

gation delay L = RTTqueue/RTTbase is used to indicate network congestion level.

If Q < Qmax and L < 1/ϕ, the algorithm is in the fast mode, otherwise it is in

the slow mode. Qmax and ϕ are tunable parameters; Qmax is the maximum number

of packets a single flow is allowed to keep into the buffers. 1/ϕ is the maximum

level of buffer congestion with respect to BDP. The precautionary decongestion

algorithm is to diminish the congestion window by Q whenever Q > Qmax and the

to set the slow start threshold to half the congestion window.

The fact that the queue estimate keeps exceeding Qmax even after applying

the decongestion algorithm is logically coupled with the fact that there is a greedy

competing source and this is the rational for falling back to slow mode. In other

3This can be thought of as the ratio between the number of packets enqueued and the pipe’s
BDP

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 36

words if TCP-YeAH spends more time in the slow mode that it does in the fast

mode then it is more likely that it is competing with a greedy source. However

TCP-YeAH does not continue this polite behaviour of diminishing its congestion

window by Q when competing with greedy sources. It maintains count (this count

in fact represents an estimate of the competing standard TCP congestion window,

since it increase by one packet each RTT), the count is incremented each time

the algorithm finds itself in the slow mode. If the congestion window reaches

this count or less, it stops decreasing for not to let the window drop below the

estimated standard TCP window, then it starts increasing increasing like standard

TCP. When packet loss happens the count is halved.

One point to note here is that the queue estimate (Q) is done each RTT, i.e.

this is the granularity of decongestion, thus considering flows with different RTTs,

each flow reaches Qmax at different time and thus diminish its excess packets in

the queue at different time without affecting link utilisation. Therefore, in theory

the algorithm achieves RTT fairness. In chapter 7 we proposed an increase rule

for this algorithm which automatically assigns small increase for flows with small

RTT and large increase for flows with large RTT, thus improving RTT fairness.

3.1.9 TCP-Compound

This algorithm [93]4 is a loss-delay based algorithm, it maintains a compound con-

gestion window: loss-based congestion window and delay-based congestion win-

dow, so TCP’s window becomes: min{cwnd + dwnd, awnd}. The basic idea is

to use an aggressive binomial rule (to link ideas please see figure 2.5, IIAD as an

example) in the delay-based congestion window, after reaching a certain number

of packets determined by a threshold γ, the delay-based congestion window dimin-

ishes by ζdiff 5. The loss-based congestion window increases normally according

to standard TCP rule. However note that even after reaching the threshold and

the delay-based congestion window decreases, there are still packets in the queue

due to the loss-based congestion window, as a result the delay-based congestion

window keeps decreasing until it disappears, effectively leaving only the loss-based

congestion window. The overall congestion window evolves according to the fol-

lowing rules [93]:

Ack : cwnd ← cwnd + α
cwnd+dwnd

Loss : cwnd ← (1− β) ∗ (cwnd + dwnd)

4Default in Windows XP and Vista SP1. Discontinued in Linux kernel code base since 2.6.17
5Note how this component is similar to what was mentioned about TCP-YeAH

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 37

dwnd← dwnd + α((cwnd + dwnd)k − 1)+ if diff < γ

dwnd← dwnd− ζdiff if diff ≥ γ

dwnd← ((cwnd + dwnd)(1− β)− cwnd
2

)+ if Loss/ECN

diff is the estimated number of backlogged packets:

Expected = cwnd+dwnd
baseRTT

Actual = cwnd+dwnd
RTT

diff = (Expected − Actual) ∗ baseRTT

The parameters were selected so that the algorithms gives a response function

similar to that of TCP-HS (i.e. by comparing both response functions). They are

found to be: k = 0.8, α = 0.125, β = 0.5, for implementation purposes k was set

to 0.75. (easier through the use of fast integer algorithm of square-root). An auto-

tuning algorithm (gamma auto-tuning) was proposed for empirically adjusting the

γ value.

3.2 Other TCP Variants

There are so many TCP variants customised to achieve different goals, in this

section we only mention some which are related in the context of this thesis.

One of the earliest proposals was TCP-Vegas [19] which is totally a delay-based

algorithm, the idea is very similar to that of the algorithm ([98]) mentioned in

chapter 2. TCP-Vegas algorithm calculates the difference between actual rate

and expected rate and if this is less than a threshold (α) it increases linearly, if

the difference is larger that another threshold(β) it decreases linearly and if the

difference is larger than α and less than β then the congestion window remains

unchanged. The algorithm achieves better throughput compared to standard TCP,

however, the additive decrease nature makes it less responsive and rise fairness

issues.

A hybrid algorithm which combines features from standard TCP (Reno) and

TCP-Vegas is TCP Veno [44], the algorithm estimates the number of backlogged

packets at the bottleneck using TCP-Vegas parameters(N = Actual ∗ (RTT −
baseRTT)), if this number is less than a threshold (β) a non-congestion state is

assumed and the increase rule of standard TCP is adopted but the multiplicative

decrease parameter is set to a high value (4/5). However, if the number is greater

than or equal the threshold, a congestion state is assumed and the congestion

window is increased by one packet every other round trip time instead of one

packet every round trip time (i.e. less aggressive and more concave window) and

the multiplicative decrease parameter is set to 1/2.

CHAPTER 3. TCP CONGESTION CONTROL VARIANTS 38

TCP-Westwood [20] alters the congestion window upon congestion i.e. when

receiving duplicate ACK or time-out. The idea is measure the flow rate by mon-

itoring and filtering the rate of ACK at the source. By doing so, the congestion

window can be deduced by multiplying the rate by the minimum round trip time

RTTmin, the slow start threshold and the congestion window are then set to this

values (instead of halving the window). In case of time out, only the slow start

threshold is set to this value and the congestion window is to 1 packet. All other

increase rules of standard TCP are maintained. An advantage of this approach

is that it is immune against non-congestive packet loss, particularly; due to the

increase rules of the algorithm, it fits wireless environments.

Finally, TCP-Snoop [10] tries to confine packet retransmissions over the wire-

less link of the path only by snooping inside TCP connections and transparently

transmit corrupted packets. The basic idea is to run a snoop agent at wireless gate-

way, the agent maintains a state for each flow traversing the gateway and packets

sent from the wired host (sender) to the wireless host (receiver) are cached lo-

cally. If duplicate ACKS are received the agent perform local retransmission and

suppress the duplicate ACKS, thus prevents the sender from doing retransmission

and invoking congestion control algorithm(s). It has been mentioned that if the

direction of flow is reversed i.e. the sender on the wireless side, acknowledgements

may take long time and this may have impact on performance [51]

3.3 Summary

In this chapter we discussed a number of TCP congestion control proposals that

are mainly optimised to overcome the high-speed long-delay problem. Their are

a number of important factors in the design of such proposals: efficiency, RTT

fairness, TCP friendliness, fairness and responsiveness. We also showed that lots

of these factors can be inferred directly from a response function plot.

We found that the proposals are either loss-based (reactive approach, CC)

or delay-based (proactive approach, CA), or hybrid approach (CC,CA). They are

trying to achieve similar goals but in different ways, however they are experimental

and operating systems have different default algorithms. In fact some default

proposal in certain operating systems are discontinued in other operating systems.

Recent studies showed that some of these algorithms have adverse effects on real

time traffic.

We showed examples of other TCP congestion control proposals that try to

solve other problems, for example flatten and increase the throughput, increase

the immunity against non-congestive packet loss and thus increase the throughput.

Chapter 4

Optimisation & Congestion

Control

It is valuable to understand the formulation of congestion control problem as a

resource allocation problem, before actually tackling any of the problems men-

tioned in the previous chapters. For this reason we provide a discussion of this

formulation and some stability issues related to TCP congestion control.

This chapter is structured as follows: in section 4.1 we discuss the formulation

of congestion control problem as a resource allocation problem. Section 4.2 high-

lights a three different types of algorithms that can be used to solve the resource

allocation problem, we finalise this section by relating this to TCP congestion

control. In section 4.3 we contribute and extend the current work by analysing a

non-linear case with non-congestive packet loss and a version of TCP with a vari-

able MD. We further explore the dynamics of TCP in section 4.4 by linearising

the model around an equilibrium point. Finally we conclude in section 4.5.

4.1 Congestion Phenomenon & Resource

Allocation

In this section we discuss the formulation of congestion control problem as a

resource allocation problem, the intention is to give the reader a general idea

about how the problem is formulated and how stability techniques can be applied,

without going into details. A simple case of single link single source was used

in all cases. However the extension to multiple sources and multiple links can

be done using algebraic techniques (e.g. matrices etc). In fact a comprehensive

analysis has been done on that in literature [88]. In spite of that we analysed some

special/hypothetical cases which up to our knowledge have not been analysed in

the same context.

39

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 40

4.1.1 Resource Allocation

The resource allocation problem is that of fairly assigning rates to users who share

a common link. In this case the resource is the capacity of the link. Note that this

semantic also agrees with the congestion control (using the network efficiently).

However this problem can be viewed as an optimisation problem [88] this is ba-

sically to maximise or minimise a function subject to fixed outside conditions or

constraints. The method of Lagrange multipliers is usually used for solving this

class of problems. An example of this type of problems is: How can we minimise

the aluminium used to make a “can” while making sure it can hold 100 ml of

liquid?

In general, if f(x) is a differentiable concave function, and H is a matrix of

appropriate dimension (could be constant), then the problem can be formulated

as:

max
x

f(x), (4.1)

Subject to:

Hx ≤ c

f(x)optimal point

gradient vector

Figure 4.1: Graphical illustration of the Lagrange multiplier method.

Where c is the constraint. Figure 4.1 illustrates the graphical inspiration of the

problem. Note that at the optimal point the gradient vectors (normal to the curve

/ surface / . . .) are in the same direction but could have different magnitudes. We

could equate both gradient to find the optimal point. However a more formal way

is to define a function then differentiate it and equate it to zero. This function is

usually referred to as the Lagrangian function. The Lagrangian function L can be

written as:

L(x, λ) = f(x)− λT (Hx− c),
∂L
∂x = 0, =⇒ ▽f(x)−HTλ = 0.

(4.2)

And,

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 41

λT (Hx− c) = 0. (4.3)

Where λ ≥ 0 is the Lagrange multiplier. And▽f(x) = (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xn)

is the gradient vector. If x satisfies 4.2 and 4.3, then it solves 4.1.

Another formal way to look at the problem is through the so-called duality [88].

This is basically putting the function of our interest in another way. This can be

done by fixing the the Lagrangian function at a certain point of x and varying the

multiplier λ to reach the optimal value (instead of fixing ~λ and varying x in first

method, which is also called the primal method). Obviously λ should be tuned to

find the minimum of the new function (which is now a function of the multiplier

only). To illustrate this point we will write the new function which is called the

dual function [88], as:

D(~λ) = max
x∈C

L(x, ~λ) (4.4)

Where C is the set of all x. We can also write:

f(x) ≤ f(x)−~λT (Hx− c)
︸ ︷︷ ︸

≥0

maxx∈C f(x) ≤ maxx∈C{f(x)− ~λT (Hx− c)} = D(~λ)

f(x̂) ≤ min~λ≥0 D(~λ).

For concave objective function and linear constraints, the equality of the above

equation holds, which means that the primal and dual objectives are the same.

Figure 4.2, depicts a graphical interpretation of the primal and dual methods.

Both solves 4.1 but from different perspectives.

L(x, λ)

max{L(x,)}λD (λ) =

f(x)

x x

λ

λ
x

x

f(x)

{ x }

(b)(a)

Figure 4.2: Optimal objectives: (a) Primal method (b) Dual method.

To relate this to the resource allocation problem, we will adopt the approach

mentioned in [88] and assume we have r users sharing a route from a source to

a destination. Each user has a rate xr bps, and drives a utility function Ur(xr).

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 42

Then the optimisation problem is:

max
{xr}∈S

∑

r

Ur(xr) (4.5)

With the constraints of:
∑

r:ℓ∈r

xr ≤ cℓ, ℓ ∈ L, (4.6)

xr ≥ 0, r ∈ S,

Where:

cℓ: is the capacity of the link;

L: is the set of all links in the route;

S: is the set of all sources in the network;

Ur(xr): for each r, is a contiguously differentiable, non-decreasing, strictly concave

function, and for all r, Ur(xr)→ −∞ as xr → 01.

Depending on the type of the utility function, we define the following types of

fairness:

1. Weighted proportional fairness: when Ur(xr) = wr log xr, and because of the

property of convex functions the following holds:
∑

r∈S U ′r(x̂r)(xr− x̂r) ≤ 0,

thus
∑

r∈S wr
xr−x̂r

x̂r
≤ 0. Were x̂r is the optimal user rate. To illustrate this

property of convex functions we do the following: if we take the first order

Taylor series expansion of a convex function f(y) at point x, this gives

f(x) + (y− x)f ′(x), where f ′(.) is first derivative. This is an approximation

of the function around the point x and the equation is a line equation. If the

function is convex, any point on this line is less or equal than any point on

the actual function, i.e. f(x) + (y − x)f ′(x) ≤ f(y). A special case appears

when y = x̂, since f(x̂) ≤ f(x) we get: (x̂− x)f ′(x) ≤ f(x̂)− f(x) ≤ 02

2. Minimum potential delay fairness: when user with rate xr attempts to trans-

fer a file of size wr, the requires transfer time is wr/xr, let Ur(xr) = −wr/xr,

note that the minus sign is to make the function concave, in this context

we say that the problem is to maximise the sum of the utility functions and

we take the absolute value of the final result. This is equivalent of taking a

convex function Ur(xr) = wr/xr and minimising the sum of utility functions.

Both cases have the same meaning of minimising the total file transfer time.

3. Max-Min fairness: Here the capacity of the link is divide among the users in

such a way that the only way to increase a user rate is to decrease the rate

1We will see later that this does not hold for TCP congestion control algorithm
2We add this illustration for sake of clarity.

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 43

allocated to some other source. It can also be shown that the users rates

allocation is max-min fair if and only if every user has a bottleneck [88]. In

the case of single bottleneck in the network, this implies an equal share of

the resource among the user flows through it [60]. An approximate utility

function for this case could be: Ur(xr) ≈ 1/(αxr
α) for large values of α

A general class of utility function mentioned in [88] is:

Ur(xr) =

{

−wr
x1−αr

1−αr
, αr > 0, αr 6= 1

wr log xr, αr = 1
(4.7)

Where:

Proportional fairness −→ αr = 1, ∀r
Minimum potential delay fairness −→ αr = 2, ∀r
Minimum- Maximum fairness −→ wr = 1, αr = α, ∀r, α→∞

We will give a simple example to illustrate the basic idea, a similar example

can be found in [88]. Consider the network in figure 4.3, there are three sources,

sources 0 and 1 share link A’s capacity, Ca, sources 0 and 2 share link B’s capacity,

Cb. Substituting in the above equations we get:

Source 1

Source 2

A B

Source 3

Figure 4.3: Example to illustrate the basic idea

max
{xr}

(
x1−α

1

1− α
+

x1−α
2

1− α
+

x1−α
3

1− α

)

subject to:

x1 + x2 ≤ Ca,

x1 + x3 ≤ Cb,

x1, x2, x3 ≥ 0,

Using the general class utility function, the Lagrangian function is:

L(x1, x2, x3, λa, λb) =
x1−α

1

1− α
+

x1−α
2

1− α
+

x1−α
3

1− α
−λa(x1 +x2−Ca)−λb(x1 +x3−Cb).

Then:

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 44

∂L
∂x1

= 0→ 1
xα
1

= λa + λb,
∂L
∂x2

= 0→ 1
xα
2

= λa,
∂L
∂x3

= 0→ 1
xα
3

= λb.

Since Ca, Cb and α are known, we only have five unknowns and five equations:

x1 + x2 − Ca = 0,

x1 + x3 − Cb = 0,

xα
1 (λa + λb)− 1 = 0,

xα
2 λa − 1 = 0,

xα
3 λb − 1 = 0.

Tables 4.1 and 4.2 show the solution of the equations using a computer pro-

gram3. Note that for high values of α the solution exhibits max-min fairness.

Table 4.1: Ca = 10 and Cb = 2

α x1 x2 x3 λa λb

1 0.94495 9.05505 1.05505 0.11044 0.94782
2 0.996916 9.003084 1.003084 0.012337 0.993860
10 1.0000e-00 9.0000e+00 1.0000e+00 2.8680e-10 1.0000e-00

Table 4.2: Ca = 15 and Cb = 5

α x1 x2 x3 λa λb

1 4.226497 15.773503 5.773503 0.063397 0.173205
2 2.4751e+00 1.2525e+01 2.5249e+00 6.3746e-03 1.5686e-01
10 2.5000e+00 1.2500e+01 2.5000e+00 1.0737e-11 1.0486e-04

If each link could compute the Lagrange multipliers corresponding to its ca-

pacity constraint, and the information can be conveyed to the sources, then each

source can make use of the sum of the Lagrange multipliers on its route to compute

its optimal rate, since the optimal rate equations are known, the sources can adjust

their rates in a fast and dynamic way according to an algorithm which makes use

of the features of the utility function (concave) to converge to a unique optimal

point and stays there. Based on this idea and on the following assumptions, the

resource allocation problem can be solved precisely if [88], [60]:

3We used GNU Octave, version 2.9.9

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 45

1. Each user knows its own utility function.

2. Each router knows the total arrival rate (resource usage) on its links.

3. There is a protocol that conveys the required information about the resource

usage on a user’s route to the user, this could be done by having a field in

the packet header accessible by the routers to put the required information

in it, each router can adds its resource usage information to this field then

when the packet reaches the destination, the receiver can send back this

information in the acknowledgement packets. One disadvantage in this ap-

proach according to [88], is that the field would have to be large to convey

the information accurately.

4.2 Congestion Control Algorithms

From an optimisation point of view, there are two main classes of congestion

control algorithms: The primal algorithm, and the dual algorithm [60]4, as we will

see later it is also possible to have primal-dual algorithm which uses the features

of both algorithms. These algorithms are non-linear time variant feedback control

systems and they need special treatment in the analysis phase. The proof of

convergence and global asymptotic stability using Lyapanov stability theory for

the algorithms in this section are mentioned in [88], [60].

The basic idea is nearly the same, solving the optimisation problem. However

the primal algorithm tries to solve it by adapting the sources rates (source side),

while the dual algorithm tries to solve it by adapting the prices at each link

(network or router side). In this section we will have a look at both, then see how

TCP’s congestion control algorithm fits in this context. We start by defining some

useful terms: R is the routing matrix and is defined as a matrix of size |L| × |S|
where the (ℓ, r)th entry is 1 if the source rate passes through link ℓ and 0 otherwise.

yℓ denotes the total arrival rate of traffic at link ℓ, and the following holds:







1 1 0 · · ·
1

. . .
...







|L|×|S|
︸ ︷︷ ︸

×







x1

x2

...







|S|×1
︸ ︷︷ ︸

=







y1

y2

...







|L|×1
︸ ︷︷ ︸

R × x = y

4The names for each of them came from the theory of optimisation, see [13] or [88, p.17]

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 46

4.2.1 Primal & Exact Primal Algorithms

Instead of solving the optimisation problem directly, an approximate solution

could be obtained by defining a function that has similar characteristics to the

Lagrangian function, suppose we put it as:

V (x) =
∑

r∈S

Ur(xr)−
∑

ℓ∈L

∫ P

s:ℓ∈S xs

0

fℓ(y)dy, (4.8)

Where fℓ(.) is interpreted as the price of sending traffic at rate
∑

s:ℓ∈S xs on link

ℓ [88] or the penalty function [13] in [88]. The penalty function is assumed to be a

non-decreasing contiguous function i.e.
∫ y

0
fl(x)dx→∞, as y →∞, which means

as the load on the link increase the price does not decrease. Furthermore V (x) is

assumed to be strictly concave function, the proof is mentioned in [88], this should

be expected since as we mentioned before, the utility function is contiguously

differentiable, non-decreasing, strictly concave. Also V (x) → −∞ as ‖x‖ → 0

and V (x)→∞ as ‖x‖ → ∞. Now the problem reduces to:

∂V

∂xr
= 0, r ∈ S.

U ′r(xr)−
∑

ℓ:ℓ∈r

fℓ

(
∑

s:ℓ∈S

xs

)

= 0, r ∈ S. (4.9)

If the router is able to compute its resource usage at each link, i.e yℓ, then the

price can be computed according to the following formula:

pℓ = fℓ(yℓ(t)).

and the route price:

qr =
∑

ℓ:ℓ∈r

pℓ, (4.10)

In matrix format:










1 1 · · ·
1

. . .

0
...










|S|×|L|
︸ ︷︷ ︸

×









pℓ1

pℓ2

pℓ3

...









|L|×1
︸ ︷︷ ︸

=









q1

q2

q3

...









|S|×1
︸ ︷︷ ︸

RT × p = q

Now equation 4.9 can be rewritten as:

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 47

U ′r(xr)− qr = 0, r ∈ S.

And the candidate congestion control algorithm to solve this problem is:

dxr

dt
= kr(xr)(U

′
r(xr)− qr(t)), r ∈ S. (4.11)

kr(x) is an arbitrary non-decreasing contiguous function such that kr(x) > 0

for any xr > 0. The algorithm is globally asymptotically stable. The proof of

convergence is provided in the appendix.

In order to have an exact solution to the optimisation problem, fℓ(.) should be

chosen such that equation 4.8 can reflect the resource allocation problem exactly.

In fact we shall find a way to tune fℓ(.) to the desired value. One solution inspired

from the Queueing theory, uses the steady-state blocking probability with yℓ < c̃ℓ

a buffer threshold Bℓ in an M/M/1 queue is:

pℓ = fℓ(yℓ, c̃) =
(yℓ

c̃

)Bℓ

. (4.12)

In other words another parameter was added, c̃. It can be shown this parameter

can be adaptively chosen such that the price solves the resource allocation problem

exactly. Particularly, it can be adapted according to the following equation:

dc̃

dt
= αℓ(cℓ − yℓ)

+
c̃ℓ

(4.13)

(g(x))+
x =

{

g(x), x > 0,

max(g(x), 0), x = 0,

Where αℓ > 0. Because the solution is inspired from the Queueing theory c̃ is

usually referred to as the virtual capacity, for not to be confused with the original

capacity of the link cℓ. One way to understand it is through its proportionality

to the available bandwidth, for example if the arrival rate is greater than the

link capacity (no available bandwidth) the virtual capacity should be decreased

to increase the price and thus signal the source to reduce its rate. In contrast, if

the arrival rate is less than the link capacity (there is an available bandwidth) the

virtual capacity should be increased to signal the source to increase its rate.5

4.2.2 Dual Algorithm

Now we will discuss an algorithm that solves the optimisation problem directly

and exactly, the dual algorithm views the problem from the network side, i.e.

5This is usually called adaptive virtual queue AVQ [88]

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 48

it dynamically adapt the prices at each router. Here we let the V (x, ~λ) be the

Lagrangian function, so we can write:

L(x, ~λ) =
∑

r∈R Ur(xr)−
∑

ℓ∈L λℓ

(∑

r:ℓ∈r xr − cℓ

)
,

∂L
∂xr

= 0,
∂L
∂xr

= U ′r(xr)−
∑

ℓ∈L λℓ = 0.

(4.14)

Since the Lagrange multiplier is equivalent to the price i.e. λℓ = pℓ ≥ 0, and

using 4.10, we can also write:

∂L
∂xr

= U ′r(xr)−
∑

ℓ∈L pℓ = 0,

U ′r(xr) =
∑

ℓ∈L pℓ = qr,

U ′r(xr)− qr = 0,

xr = U ′−1
r (qr).

(4.15)

And using 4.3 per link (not matrix),

pℓ(
∑

s:ℓ∈s

xs − cℓ) = 0.

pℓ(yℓ − cℓ) = 0. (4.16)

The candidate algorithm to solve for the price pℓ (or the Lagrange multiplier) and

for the rate xr, i.e. solving 4.15 and 4.16 is:

dpℓ

dt
= hℓ(pℓ)(yℓ − cℓ)

+
pℓ

. (4.17)

Where hℓ(pℓ) > 0 is a non-decreasing contiguous function. Note that when yℓ =

cℓ → dpℓ

dt
= 0 i.e when the sum of all user rates going through link ℓ is equal to

its capacity, the price adaptation stops and the optimal point is reached6. Since

this algorithm adapts the price (or the Lagrange multiplier), it adopts the duality

approach discussed in section 4.1.1 hence the name “dual algorithm”. In fact the

problem now is to minimise the duality function, which can be written as:

D(p) = maxxr

∑

r Ur(xr)−
∑

ℓ pℓ

(∑

s:ℓ∈s xs − cℓ

)

= maxxr

∑

r (Ur(xr)− xr

∑

ℓ pℓ:ℓ∈rpℓ) +
∑

ℓ pℓcℓ.

∴ minp≥0 D(p)

6From stability point of view, we could ask whether the algorithm converges if it started from
any initial condition? And how long would it take to reach the optimal point?

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 49

4.2.3 Primal-Dual Algorithm

As the name states, this is an algorithm that combines the features of both primal

and dual algorithms, i.e. solving the problem from the network side and the source

side at the same time:
dxr

dt
= kr(xr)(U

′
r(xr)− qr), (4.18)

And,

dpℓ

dt
= hℓ(pℓ)(yℓ − cℓ)

+
pℓ

. (4.19)

It is worth to mention that various attempts were made to analyse different

flavours of the above algorithms, for example, the behaviour of wireless links in

a mobile environment has been represented as a a time varying capacities, i.e. by

making cℓ function of time cℓ(t), in a dual algorithm [105], stability analysis has

also been provided for the algorithm with a logarithmic utility function. We have

not touched discrete-time versions, however it has been mentioned [88, p.28] that

others have proven stability for a discrete-time versions of the dual algorithm with

logarithmic utility functions.

4.2.4 Simplified Model for TCP Congestion Control

Algorithm

Several models were mentioned in literature to mathematically approximate and

formulate the behaviour of TCP, a summary of the most common approaches in

TCP modelling is mentioned in [51]. The common thing between these models is

that they try to capture the dynamics of TCP and to certain extent the statistics

of the environment, the former point needs good understanding of the operations

of TCP (the reader can refer to [90] for details of the operation of TCP protocol),

the later point usually requires assumptions of stochastic events, such as the type

of loss process. One of the most common models, is the detailed packet loss

model [78], the periodic model [72]. Others are the stochastic model [6], network

system model [60], control system model with stochastic differential equations [74].

Markov chain models [101] in [51].

A detailed control system models is provided by [74], it takes into account both

phases of TCP operation: slow start and congestion avoidance, the effect of time-

out back off taken by TCP and the limitation of maximum window size (advertised

by the receiver). In this section we will mention a simplified model that describes

the operation of the TCP in steady state congestion avoidance phase and later

on in this chapter we will build on that by modifying the model and using it to

analyse the stability of TCP in the presence of non-congestive loss. We use the

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 50

following equation to describe the original TCP-Reno congestion control:

dWr

dt
=

additive−increase
︷ ︸︸ ︷

xr(t− RTTr)

Wr
(1− qr(t))−

multiplicative−decrease
︷ ︸︸ ︷

βWr(t)xr(t−RTTr)qr(t) (4.20)

Where, qr is the probability of packet loss at a function of time, Wr,xr,RTTr are

the congestion window, rate and round trip time of flow r respectively. Note the

time shift in the quantities by RTTr, this is due to packet loss being detected

after one RTT from the time when it actually happened. Equation 4.20 can be

re-written in terms of the rate using the fact that xr = Wr/RTTr:

dxr

dt
=

(
xr(t− RTTr)

RTT 2
r xr(t)

+ βxr(t− RTTr)xr(t)

)(
1

βRTT 2
r x2

r(t) + 1
− qr(t)

)

(4.21)

At equilibrium there is no change in the average rate, i.e. dxr/dt = 0, thus

equation 4.21 reduces to:

x̂r =
1

RTTr

√

1− q̂r

βq̂
. (4.22)

For small values of qr:

x̂r ≈
1

RTTr

√
1

βq̂
.

This is the well known expression of TCP-Reno average throughput (or user rate),

which is approached by different methods and assumptions in literature.

It is easy to see that equation 4.21 is similar to equation 4.11, this result is

mentioned in literature [88], we note that the first derivative of the utility function

with respect to the source rate is:

U ′r(xr) =
1

βRTT 2
r x2

r(t) + 1
. (4.23)

Using the fact that:
∫

1
x2+a2 dx = 1

a
tan−1 x

a
, we get:

Ur(xr) =
tan−1

(
xr(t)RTTr

√
β
)

√
βRTTr

. (4.24)

In the next section we show our contribution of using this model to represent a

modified TCP-Reno which we also analyse its stability in the presence of non-

congestive loss.

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 51

4.3 TCP-Model Revisited: Non-Linear Case

We start by investigating the effect of general variable MD on the stability of a

modified version of the original TCP model. It has been shown that the conver-

gence attribute of TCP congestion control algorithms is inherited from the stability

of the primal algorithm [88]. The same work ([88]) proves the convergence of the

primal algorithm using the Lyapunov stability theory.

Consider a user’s TCP flow r, which has a round trip time7 of RTTr, a prob-

ability of window reduction incident due to congestion of qrc(t), and rate of xr(t).

In this work, we add a probability of window reduction incident due to link error

qre(t). Note that qre(t) = 0 for a congestion control algorithm that does not reduce

its rate in response to non-congestive packet loss. This, however, is not the case

for TCP therefore in our context qre(t) 6= 0.

The equation which describes TCP’s dynamics in the steady-state congestion

avoidance phase has two parts: i) linear AI of one segment each round trip time

(1/RTT) and ii) MD by the new factor β ′ (in case of packet loss). Taking into

consideration the new factor for link errors (qre(t)), this expression can be rewritten

as:
dxr

dt
= xr(t−RTTr)(1−(qrc(t)+qre(t)))

RTT 2
r xr(t)

−

xr(t−RTTr)(qrc(t) + qre(t))β
′xr(t)

(4.25)

And β ′ takes values 0 < β ′ ≤ 0.5. The primal algorithm is:

dxr

dt
= kr (U ′r − qr(t)) (4.26)

Where, kr(.) and Ur(.) (the utility function) are functions of xr. Rewriting equa-

tion 4.25 to make it similar to the equation of the primal algorithm:

dxr

dt
=

(
xr(t−RTTr)
RTT 2

r xr(t)
+ xr(t−RTTr)β

′xr(t)
)

(
1

RTT 2
r xr(t)∗β′xr(t)+1

− (qrc(t) + qre(t))
)

(4.27)

From equation 4.27, the first derivative of the utility function with respect to the

source rate is:

U ′r(xr) =
1

RTT 2
r xr(t) ∗ β ′xr(t) + 1

(4.28)

It is trivial to show that, if β ′ is constant, equation 4.23 is reduced to the result

7A constant RTT was assumed

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 52

mentioned in [88] and [70].

Following the proof of the primal algorithm, at steady-state the algorithm

converges to a unique, non-zero solution. We note that the existence of the term

qre in the equations disturbs the algorithm’s convergence; equilibrium is reached

at lower rates. Assuming that loss is due to congestion, the algorithm keeps

decreasing transmission rate in an attempt to converge to an equilibrium point.

We believe that equation 4.27 reveals little information about the dynamics of

the algorithm in the presence of non-congestive packet loss. For this reason, we

linearise the model around an equilibrium point to take the analysis further.

4.4 Linearisation & Stability Analysis

We considered a simple, single link - single source scenario. We linearised the

TCP congestion avoidance model in the presence of i) delay, ii) window reduction

incidents due to link errors, iii) window reduction incidents due to congestion. We

then repeated the analysis for a general variable MD version of the model. For a

more general case, we included a constant κ that takes into account the AI factor

as well. For standard TCP, κ = 1/RTT 2. In this context of analysis, RTT is

assumed to be constant. The reason behind this assumption is that for proper

operation of TCP, packet loss must occur. In other words, the queue is nearly

full most of the time and thus the RTT is nearly constant [88]. One obstacle in

linearisation is that it is usually assumed that TCP operates in the vicinity of an

equilibrium point i.e. near a certain congestion event probability. While this is

true when considering error-free links, it is less accurate for wireless environment.

To overcome this, we assumed that TCP also operates in the vicinity of certain

non-congestion event probability.

4.4.1 TCP - Constant Multiplicative Decrease

We used the following equation to describe the source rate evolution of TCP during

the congestion avoidance phase:

dx
dt

= κx(t− T)
(

1−p(t−T)
x(t)

− β
κ
x(t)p(t− T)

)

(4.29)

Where T is the RTT. Because we have window reduction incidents due to link

errors as well as due to congestion, we denoted two different probabilities. Thus

p = pc + pe, where pc is the probability of a window reduction incident due to

congestion and pe is the probability of window reduction due to a link error. There

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 53

is a relationship between the source rate and pc, we represent this by pc = f(x)

(this depends on the queueing process). Substituting for p in the above equation:

dx
dt

= κx(t− T)(1−pc(t−T)−pe(t−T)
x(t)

−β
κ
x(t)pc(t− T)− β

κ
x(t)pe(t− T))

(4.30)

When dx
dt

= 0→ β
κ

= 1−(p̂c+p̄e)
x̂2(p̂c+p̄e)

→ p̂c + p̄e = 1

1+x̂2 β
κ

.

Where, p̂c and p̄e are equilibrium probabilities for a window reduction incident

due to a congestion and link error respectively. x̂ is the steady-state rate.

If TCP operates near a steady-state point, we can define:

x(t− T) = x(t) = x = x̂ + δx,

x2 = x̂ + 2x̂ +
�

�
��*

0

(δx)2,

pc(t− T) = p̂c + δpc(t− T),

pe(t− T) = p̄e + δpe(t− T).

Substituting in equation 4.30 and neglecting higher-order terms:

dx
dt

= κ
(
−δx

x̂
(1− (p̂c + p̄e))− δpc(t− T)− β

κ
x̂2

δpc(t− T)− δpe(t− T)− β
κ
x̂2δpe(t− T)

) (4.31)

We linearise the relationship pc = f(x) using the chain rule δpc = f ′(x̂)δx, where

f ′(.) is the first derivative of f(.) with respect to x. Then, taking the Laplace

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 54

Transform, L {.} yields: pc(s) = p̂′cX(s). And for equation 4.31:

sX(s)− x0 = −2κ
x̂

(1− (p̂c + p̄e))X(s)− κe−Tspc(s)− κe−Tspe(s)

−e−Tsβx̂2pc(s)− e−Tsβx̂2pe(s)

= −κ
x̂

(1− (p̂c + p̄e))X(s)− κ
x̂
(1− (p̂c + p̄e))X(s)

−κe−Tspc(s)− κe−Tspe(s)− e−Tsβx̂2pc(s)

−e−Tsβx̂2pe(s)

= −κ
x̂

(1− (p̂c + p̄e))X(s)− (p̂c + p̄e))x̂βX(s)

−κe−Tspc(s)− κe−Tspe(s)− e−Tsβx̂2pc(s)

−e−Tsβx̂2pe(s)

x0 = (s + κ
x̂
(1− (p̂c + p̄e)) + (p̂c + p̄e)x̂β)X(s)

+κe−Ts(1 + β
κ
x̂2) pc(s)

︸ ︷︷ ︸

controlled

+κe−Ts(1 + β
κ
x̂2) pe(s)

︸ ︷︷ ︸

disturbance

Rearranging terms and using pc(s) = p̂′cX(s), we end up with a system with a

characteristic equation:

1 + G(s)H(s) = 0

Where,

G(s) = 1
s+ κ

x̂
(1−(p̂c+p̄e))+(p̂c+p̄e)x̂β

H(s) = κe−Tsp̂′c
p̂c+p̄e

G(s)H(s) = κe−Tsp̂′c
(p̂c+p̄e)(s+

κ
x̂
(1−(p̂c+p̄e))+(p̂c+p̄e)x̂β)

Figure 4.4 shows the arrangement of G(s) and H(s) in a block diagram. Note

that only window reduction incidents due to congestion are part of the feedback

and within TCP’s control, while window reduction incidents due to link errors are

considered external or disturbance. Concerning stability, we can apply the Nyquist

Criterion to G(jω)H(jω). In other words G(jω)H(jω) should not encircle the

point −1. We can rely on the following lemma [88]:

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 55

+
−
− X(s)

Pe(s)

x0 1
s+ κ

x̂
(1−(p̂c+p̄e))+(p̂c+p̄e)x̂β

κe−T s(1 +
β
κ

x̂)

p̂′

c
p̂c+p̄e

.κe−T s

Figure 4.4: TCP with constant β, after linearisation.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Im

Re

Nyquist plot

Figure 4.5: Nyquist Plot for h(ω), as ω → −∞ (upper plot) ω → ∞ (lower
plot), K = 1, α = 2.

LEMMA 1. As ω is varied from −∞ to ∞, h(ω) := e−jωT

α+jωT
does not encircle the

point −2/π.

Figure 4.5 is a visualisation of this condition. Let:

K = κp̂′c
(p̂c+p̄e)

α = κ
x̂
(1− (p̂c + p̄e)) + (p̂c + p̄e)x̂β

Substituting s = jω, the stability criterion becomes:

ℜ{G(jω)H(jω)} > −K 2
π

−K 2
π

< 1 (Nyquist− condition)

Tκ p̂′c
p̂c+p̄e

< π
2

Tκ(1 + x̂2 β
κ
)p̂′c < π

2

(1 + x̂2 β
κ
) < π

2κp̂′cT

T < 1/(2κp̂′c
π

(β
κ
x̂2 + 1))

(4.32)

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 56

In other words, the system is stable if the RTT (T) is lower than the right term

of inequality 4.32. The importance of this result becomes clearer in the next

subsection.

4.4.2 Modified TCP - Variable Multiplicative Decrease

Let b = β ′x(t). Equation 4.30 can then be rewritten as:

dx
dt

= κx(t− T)(1−pc(t−T)−pe(t−T)
x(t)

− b
κ
pc(t− T)

− b
κ
pe(t− T))

(4.33)

When dx
dt

= 0→ b̄
κ

= 1−(p̂c+p̄e)
x̂(p̂c+p̄e)

→ p̂c + p̄e = 1

1+x̂ b̄
κ

.

Recall that TCP operates near a steady-state point, thus we can define:

x(t− T) = x(t) = x = x̂ + δx

pc(t− T) = p̂c + δpc(t− T)

pe(t− T) = p̄e + δpe(t− T)

b(t− T) = b̄ + δb(t− T)

Substituting in equation 4.33 and neglecting higher order terms:

dx
dt

= κ
(

− δpc(t− T)− δpe(t− T)− (x̂ b̄
κ
δp̂c

δpc(t− T) + x̂p̂cδb(t− T) + b̄
κ
p̂cδx+

x̂ b̄
κ
δpe(t− T) + x̂p̄eδb(t− T) + b̄

κ
p̄eδx)

)

(4.34)

Taking the Laplace Transform of both sides, L {.} yields: sX(s)− x0 =

κ
(

− (1 + x̂ b̄
κ
)p̂′ce

−TsX(s)− (1 + x̂ b̄
κ
)e−Tspe(s)−

(p̂c+p̄e)
κ

x̂e−Tsb(s)
)

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 57

Disturbance

Input

+
−
−

Output

Feedback

x0

b(s)

Pe(s)

x̂e−T s(p̂c + p̄e)

κe−T s(1 + b̄
κ

x̂)

X(s)
1

s+b̄(p̂c+p̄e)

p̂′

c
p̂c+p̄e

.κe−T s

Figure 4.6: TCP with variable β ′, after linearisation.

x0 =
(

s + κ(1 + x̂ b̄
κ
)p̂′ce

−Ts + (p̂c + p̄e)b̄
)

X(s)+

κ(1 + x̂ b̄
κ
)e−Tspe(s) + (p̂c + p̄e)x̂e−Tsb(s)

Rearranging terms and using pc(s) = p̂′cX(s), we end up with a system with a

characteristic equation:

1 + G(s)H(s) = 0

Where,

G(s) = κ(1 + x̂ b̄
κ
)p̂′ce

−Ts

H(s) = 1
s+(p̂c+p̄e)b̄

G(s)H(s) =
κ(1+x̂ b̄

κ
)p̂′ce−Ts

s+(p̂c+p̄e)b̄

Figure 4.6 depicts a block diagram of G(s) and H(s). We note the existence

of the additional term b(s), which is not considered as disturbance because it is

part of the input. Regarding stability, we again apply the Nyquist Criterion to

G(jω)H(jω),

Let:
K = κ(1 + x̂ b̄

κ
)p̂′c

α = (p̂c + p̄e)b̄

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 58

Substituting s = jω, the stability criterion becomes:

ℜ{G(jω)H(jω)} > −K 2
π

−K 2
π

< 1 (Nyquist− condition)

Tκ p̂′c
p̂c+p̄e

< π
2

Tκ p̂′c
p̂c+p̄e

< π
2

Tκ(1 + x̂ b̄
κ
)p̂′c < π

2

(1 + x̂ b̄
κ
) < π

2κp̂′cT

T < 1/(2κp̂′c
π

(b̄
κ
x̂ + 1))

(4.35)

The expected value of MD factor (b̄) in inequality 4.35 is lower than the original

fixed value (β) used in inequality 4.32 (i.e. b̄ ≤ β). Therefore, the right-hand term

of inequality 4.35 is greater than the right-hand term of inequality 4.32. Thus, the

system will be stable for a wider range of RTT (T) values compared to the system

discussed in subsection 4.4.1. We view this as a relax in the stability condition,

which leads to the conclusion that TCP can achieve better link utilisation if the

MD factor is adjusted according to the type of loss (congestion or wireless link

errors).

4.5 Summary

In this chapter we provided a discussion of the congestion control problem formu-

lated as a resource allocation problem, we briefly mentioned the types of algorithms

used to solve this resource allocation problem and how this is related to TCP con-

gestion control. Our contribution in this chapter is the stability analysis of two

versions of TCP-Reno in the presence of non-congestive packet loss, such losses

can be caused by error-prone links e.g. optical fibre or wireless links. The first

version is the original algorithm, the other version takes variable MD into account.

We modified the TCP-Reno model and analytically investigated the stability of

the TCP congestion control mechanism. Our analysis extends existing work using

control-theoretic techniques and taking into account two additional factors: i) link

errors and ii) general MD. We showed that, in the context of control theory, link

errors are considered disturbance. Afterwards, by examining the Nyquist Stability

CHAPTER 4. OPTIMISATION & CONGESTION CONTROL 59

Criterion we showed that adapting the MD factor according to the type of loss

(congestion or wireless link errors) makes the system (single-flow single-link case)

more stable at higher delays. To be more specific, the right-hand term of the

inequality of the final result in subsection 4.4.1 is lower than the right-hand term

of the final result in subsection 4.4.2. This relaxes the stability condition for an

algorithm that uses a variable MD. In other words, one such algorithm is expected

to be more stable at higher delay values than an algorithm using a fixed MD.

However, this result is general and theoretical, because of the assumptions

made in section 4.4. The analysis also assumes the existence of an ideal algorithm,

capable of differentiating between loss due to congestion and loss due to other

reasons and then adjusting lower MD in the former case and higher MD in the

later case. However, under those two commonly encountered assumptions, our

work provides better understanding of TCP’s congestion control.

Chapter 5

Congestion Control Metrics

Performance evaluation of congestion control algorithms is an important issue,

especially in judgement of new proposals which are to be integrated into existing

protocols e.g. TCP; before being actually put into action in real environments. In

order to achieve this, researchers have used a number of metrics. It is important

to mention that there is not necessarily a consensus with the research community

about the metrics that a congestion control algorithm should be designed to opti-

mise [34]. However, according to the same source, there is a clear consensus that

congestion control algorithms should be evaluated in terms of ‘trade-offs’ between

certain metrics rather than in terms of optimising for a single metric. In light of

that, this chapter provides a discussion of metrics relevant to evaluation of con-

gestion control algorithms. Some of the metrics mentioned in this chapter were

used in our experiments.

The rest of the chapter is divided as follows: in sections 5.1 - 5.3 we present

definitions of some elementary metrics. In section 5.4 we discuss a number of

convergence metrics, followed by a discussion of fairness metrics in section 5.5. We

discuss metrics used to measure backward compatibility with standard protocols

with focus on TCP in section 5.6. In section 5.7 we divide the metrics used to

measure response to change into: i) Transient response metrics, ii) Response to

packet loss metrics and discuss both sets separately. We briefly discuss metrics

related to oscillation and robustness in section 5.8 and section 5.9 because they

received little attention in our experiments. Finally, we sum-up by discussing

trade-offs between a number of desired characteristics in section 5.10 followed by

a summary in section 5.11.

60

CHAPTER 5. CONGESTION CONTROL METRICS 61

5.1 Throughput

Throughput can be measured as the rate in bytes per second, it can be a network-

based metric e.g. aggregate rate of flows, or flow-based metric, e.g. per-flow rate.

It can also be measured at different time scales or as an average. A good example

of measuring the throughput as a running average also called weighted moving

average (i.e. low pass filtering) or short-term average, is mentioned in [68, p.3], we

used the same formula in our experiments. Equation 5.1 shows a similar expres-

sion, where α is a smoothing factor. As we have seen in chapter 4, maximising

the throughput subject to network constraints is of concern in computer and com-

munication networks. Another way at looking at this, is by minimising the file

transfer time per connection.

(Smoothed Thr .)new = α× Number of bytes sent

Period of time
+ (1−α)× (Smoothed Thr .)old

(5.1)

A related metric, which is usually thought of as the effective throughput and

used in performance studies of error-prone environments, is the goodput. Goodput

is a subset of throughput, it excludes dropped and duplicate packets, etc,[34].

It is also referred to as application layer throughput [10]. Thus goodput is a

measure of useful (for the application) bytes per second. Equations 5.2 - 5.4, are

expressions for long-term average values. If an accurate measure of goodput is

to be considered, packet headers should be excluded, since they are part of lower

layers communication overhead. However, in our experiments we did not take this

accurate measure. It is also possible to combine the two metrics as a goodput to

throughput ratio which may give a good indication of efficiency. For example, in

wireless networks this may indicate the efficient use of radio spectrum.

Throughput =
Total number of sent bytes

Total transfer time
(5.2)

Goodput =
Total number of useful (to application) bytes

Total transfer time
(5.3)

Goodput ratio =
Total number of useful (to application) bytes

Total number of bytes transmitted by the sender
≤ 1 (5.4)

CHAPTER 5. CONGESTION CONTROL METRICS 62

5.2 Delay

Delay in communication networks can be caused by several reasons: propagation

time, processing time, etc. However, this could be a flow-based metric measured as

of per-packet transfer time, or network-based metric measured as queueing delay

over time. The former can of significant concern in both, bulk-transfer (affects the

throughput) and streaming media [34]. Similar to throughput, the delay can be

measured at different time scales or as an average. Besides that, as we have seen

in chapter 3, maximum delay or worst-case delay could be a useful metric.

In our experiments, we considered the network-based delay metric, we used

the round trip time to estimate the queueing delay from the receiver side, in an

approach similar to the approaches mentioned in [69, 9]. Note that in the absence

of any congestion i.e. queueing, the round trip time forms the base round trip time,

on the other hand larger round trip times, can carry information about queueing

delay and the difference between the two can be used to estimate the queueing

delay. In some of our ns2 simulation experiments, we probed the bottleneck queue

directly.

5.3 Packet Loss Rates

Packet loss rates are usually measured as:

p =
Total number of lost packets

Total number of sent packets
(5.5)

And can be network-based or flow-based metrics [34].

Packet loss rate gains its importance as a metric from the following two points:

firstly, it can be used as a direct metric which indicates the efficiency of the envi-

ronment e.g. efficient use of the medium, or for example the number of retransmis-

sions and its effect on the sender’s energy in a wireless environment. Just to link

ideas, we mention that the goodput ratio ideally should be equal to 1− p, where

p is the loss rate [10]. Packet loss rate is usually expressed as a fraction of sent

packets (equation 5.5), Note that in this case, both metrics indicates the efficiency

of environment as mentioned before when the goodput ratio was discussed.

Secondly, packet loss rates can affect per-connection transfer times, in the

sense that congestion control algorithms usually use packet loss/mark information

as an indication of congestion and react by reducing their rates, and thus reducing

their throughput. Although different algorithms react differently upon packet

loss/mark and after that when they increase their rates, packet loss rates can be

used indirectly to indicate per-connection transfer times or throughput, especially

CHAPTER 5. CONGESTION CONTROL METRICS 63

when comparing flows running the same algorithm. In chapter 8, differentiating

packet loss type was considered, our simulation scripts calculate two different types

of packet loss rates.

5.4 Convergence

An important type of congestion control metric is that of convergence times. This

metric is of special concern for flows in large bandwidth delay product pipes, it

concerns the time for convergence to fairness between an existing flow and a newly

starting one; or the convergence to fairness after a sudden change, e.g. network

path, competing cross traffic, wireless-link characteristics [34]. Convergence times

could be measured between flows running the same congestion control algorithm

or between flows running different algorithms [34].

From literature, we focused on two ways to measure convergence times: Delta-

Fair convergence [34] and epsilon convergence times [68].

1. Delta-Fair convergence: is defined as the time taken for two flows with the

same round trip time to go from shares of 100/101 -th and 1/101-th of the

link bandwidth, to having close to fair sharing with shares of (1 + δ)/2 and

(1−δ)/2 of the link bandwidth. Figure 5.1a illustrates this definition, where

B is the link bandwidth, flow rates can be measured as short-term aver-

age throughputs. The choice of δ is an arbitrary small number, we choose

the values between 0.1 and 0.2, this maps to 80%-90% of the fair share,

these numbers were concluded from Epsilon-Fairness (discussed below) ex-

periments [68].

2. Epsilon convergence: following the start up of a new flow, is defined as the

time before a short-term average throughput of the new flow is within a

factor ǫ of its long-term average throughput value. A value of ǫ between

0.8 and 0.9 yields 80%-90% convergence times. Figure 5.1b illustrates this

definition.

5.5 Fairness

It is important to consider the case of multiple flows when developing congestion

control algorithms, whether running the same algorithm (Intra-protocol fairness)

or different algorithms (Inter-protocol fairness), the question here is: how a flow

affects other flows and how other flows affect a flow in terms of throughput? The

CHAPTER 5. CONGESTION CONTROL METRICS 64

((1−δ)/2)Β

((1+δ)/2)Β

(100/101)B

(1/101)B

Time

B
an

dw
id

th

flow−2’s rate

flow−1’s rate

convergence time

(a) Definition of delta convergence time

Time

B
an

dw
id

th

convergence time

long−term average throughput

short−term average throughput

ε

(b) Definition of epsilon convergence time

Figure 5.1: Convergence Times

fairness metric is usually used as an index of how fair a resource (bandwidth) is

used among a number of flows.

Depending on the resource requirements, fairness measures can be classified

into two categories [34](discussed below)

5.5.1 General Fairness Between Flows

Fairness measures here do not take path characteristics into account, e.g. the

number of links in a path, or different round trip times. But this does not mean

that they cannot be used to measure the effect of different path characteristics

on fairness between flows. For example, if an experiment was conducted using

flows running the same congestion control algorithm, all path characteristics are

the same and the fairness measure indicates unfairness, then one possible inter-

pretation is that the algorithm is not sharing the resource efficiently. However, if

for example the flows have different round trip times, then the fairness measure

will indicate unfairness, but the interpretation will not be clear i.e. whether the

unfairness is completely caused by the difference in round trip times or both dif-

ference in round trip times and the algorithm. The same applies if an experiment

of flows running different algorithms were run, in fact the situation may be worse

in this case, since there are three possible choices for the cause of unfairness.

On the other hand, if a congestion control algorithm is known to share resources

equally between flows having similar path characteristics, then changing one path

characteristic measures the fairness/unfairness with respect to that parameter e.g.

if RTT is changed this measures RTT-unfairness.

We mention three measures. In the discussion the jth throughput is denoted

by xj .

CHAPTER 5. CONGESTION CONTROL METRICS 65

1. Jain fairness index:

f(x1, x2, . . . , xn) =

(
∑n

j=1 xj

)2

n
∑n

j=1(xj)2
0 ≤ f ≤ 1 (5.6)

Where,

n : number of simultaneous connections.

xj : jth connection throughput.

f : fairness index

From equation 5.6, it can be seen that, when k users equally share a resource

and the other n− k receive nothing of the resource, the index is k/n, thus,

when all flows receive the same share, Jain’s index is at maximum with a

value of 1.

2. Network power: is defined as the product measure, however because xj is

sometimes referred to as the power of the jth flow, the measure can be

referred to as the network power and expressed as:

np =
n∏

j=1

xj (5.7)

We note that if one flow has zero throughput the metric drops to zero, on the

other hand the measure is maximum when all flows have the same through-

put [34]. We can stop here and take this as a fact, however; although this

may seem to be trivial, we find this a good situation to test our understand-

ing of Lagrange multiplier method mentioned previously in chapter 4. To

see how the product measure is maximum when all flows are the same, we

formulate the problem as an optimisation problem as follows: assume we

have three flows with rates of, x1, x2, x3 competing for bandwidth of a link

with a capacity C then we can write,

max(x1 × x2 × x3)

subject to:

x1 + x2 + x3 ≤ C

And:

CHAPTER 5. CONGESTION CONTROL METRICS 66

L(x1, x2, x3, λ) = x1 × x2 × x3 − λ× (x1 + x2 + x3 − C).

Then:

∂L
∂x1

= 0→ x2 × x3 − λ = 0,
∂L
∂x2

= 0→ x1 × x3 − λ = 0,
∂L
∂x3

= 0→ x1 × x2 − λ = 0.

Thus it follows that x1 = x2 = x3 = C/3. This can be extended to n flows

as: max
∏n

j=1 xj , subject to
∑n

j=1 xj ≤ C and xj ≥ 0. The solution is then

xj = C/n.

3. Epsilon Fairness: is measured as the ratio between minimum and maximum

throughputs, a rate allocation among a set of flows is considered ǫ-fair if:

minj xj

maxj xj

≥ (1− ǫ) (5.8)

This could be thought of as measuring the worst-case ratio. Figure 5.2

illustrates the idea graphically.

11−ε

fairunfair ε−ε−

Figure 5.2: Epsilon fairness

4. Asymmetry index: this measure gives more information about the competing

flows than the aforementioned measures, particularly, it gives information

about which flow larger share of bandwidth, it is formulated for two flows

and originally defined by [49], and has been used in performance studies

(e.g. [99]):

A =
x̂1 − x̂2

x̂1 + x̂2

(5.9)

Where, x̂ is the average throughput. Note that when A = 0 both flows have

the same share, A = 1 first flow has larger share, A = −1 second flow has

larger share

This could be thought of as measuring the worst-case ratio. Figure 5.2 illus-

trates the idea graphically.

CHAPTER 5. CONGESTION CONTROL METRICS 67

5.5.2 Flows with Different Resource Requirements

There are a number of fairness measures that account for flows with different path

characteristics, like for example the number of links in a path or different round

trip times

1. Max-Min fairness: informally, this can be defined as each user’s throughput

is at least as large as that of all other users which have the same bottle-

neck [45]. Max-min fairness1 could be explained by the progressive filling

algorithm, where all flows start at zero and all the rates grow at the same

pace, each flow rate stops growing only when one or more links on the path

reach its capacity [34]. From literature [45, p.18] we found a good way to

understand this is to examine this fairness macroscopically along the path

(global view), or on per-link basis (local view) and to translate from locally

fair allocation to globally fair one, each flow should limit its resource usage

to the smallest locally fair allocation along its path; this result in a globally

fair allocation.

To have a closer look at max-min fairness we implemented the algorithm and

run a simple test: 48 sources using 9 links as defined in table 5.1. The output

is shown in table 5.2, where U indicates that the link is underutilised and B

indicates bottleneck for the listed sources. We note from table 5.2 that each

source has a bottleneck link, this agrees with the Lemma mentioned in [88,

p.11], which states that a set of rates is max-min fair if and only if every

source has a bottleneck link.

2. Proportional fairness: A feasible allocation, x̂, is defined as proportional fair

if, for any other feasible allocation x the aggregate of proportional changes

is less than or equal to zero:

n∑

j=1

xj − x̂j

x̂j
≤ 0

What does this mean from an an optimisation2 point of view? If we have

a convex utility function say: Ur(xr), then from the property of convex

functions [88, p.9]:
∑

r∈S

U ′r(x̂r)(xr − x̂r) ≤ 0

1A generalization of is weighted max-min fairness where the weight reflects the right for
relative resource share for each user

2chapter 4 notations apply.

C
H

A
P

T
E

R
5
.

C
O

N
G

E
S
T

IO
N

C
O

N
T

R
O

L
M

E
T

R
IC

S
68

Table 5.1: Max-Min Fairness Test

Link C0 C1 C2 C3 C4 C5 C6 C7 C8

Capacity 3 4 8 10 6 7 8 11 6
1 1,3-4, 1,3-4, 1,3-4, 1,3,5-6,8, 1,3,5-7,11 1-3,5-7, 2-3,6, 2,11,14-23,

Sources 8-10 6,8-10 6,8-10, 6,8,10 11,13,18, 13-14,18, 11,13-14, 11,14, 32-43,46-48
Used 26 12,44 25,27,30, 27,31,34, 16,18-19, 16-21,24,

44-45,48 44-45,48 28,33-34, 28-29,32-36,
36,42, 42-44,46-48

44-45,48

Table 5.2: Link utilisation, U: under-utilised, B: bottleneck

Link C0 C1 C2 C3 C4 C5 C6 C7 C8

Status U B B B B B B B B
Share – 0.69 4.00 6.20 0.48 1.01 1.16 2.08 0.22

– 4,9-10 26 12 1,3,5-6,8, 7,31 28 24,29 2,11,
Sources 13,25-27, 14-23,

30,44,45 32-43,
46-48

CHAPTER 5. CONGESTION CONTROL METRICS 69

{x̂r}: set of optimal rates (optimal solution), {xr}: any other set of feasible

rates (feasible solution). If we choose a logarithmic function with arbitrary

weight say: wr the inequality becomes:

∑

r∈S

wr
xr − x̂r

x̂r

≤ 0

The corresponding resource allocation is weighted proportional fair or just

proportional fair in case wr = 1.

As we have seen in chapter 4, when solving problems related to proportional

fairness, the resultant rate allocation is different from max-min fairness. It

is reasonably easy to feel the fairness in max-min fairness, but why propor-

tional fairness is considered fair? To answer this question, we take a simple

example of three sources using two links link A, CA = 2 and link B, CB = 1

as follows: source 0 uses link A and link B, source 1 uses link A, source

2 uses link B. Assume the optimal rate allocation is: {0.485, 1.515, 0.515}.
We choose a feasible solution i.e. a solution that satisfies the capacity con-

strains condition, say: {0.5, 1.5, 0.5}. Since: (0.5 − 0.485)/0.485 + (1.5 −
1.515)/1.515 + (0.5− 0.515)/0.515 = −0.02, the optimal solution is propor-

tional fair. This set could be considered fair if for example source 2 needs at

least 0.515 for its application while the added benefit of getting more than

0.485 is negligible for source 0. In fact, this is another way of looking at

fairness concept, even in general terms, I do not want to distract the reader

or lead him/her outside the context, but this simple example shows that

equally dividing a resource among users who share this resource may not

be fair, but rather giving each user its requirement of the resource could be

more fair.

3. Minimum potential delay fairness: this can be thought of as minimising

the average download time of a set of flows downloading an equal-sized file.

Formally, a rate allocation x̂ is minimum potential delay fair if (subject to

the capacity constrains and positiveness of rate) it satisfies:

max
j

n∑

j=1

−wj

xj

Where, wj is the jth file size. That is the average download time is smaller

than any other feasible allocation.

4. Round Trip Time fairness: RTT fairness between two flows running the

same congestion control algorithm, is often defined in terms of throughput

CHAPTER 5. CONGESTION CONTROL METRICS 70

ratio. The flow with small RTT will usually get higher throughput than

the flow with the large RTT, this will starve the flow with large RTT from

bandwidth [39, 102]. In other words, TCP has a bias against long flows

(traverse large number of links)3 and this problem is sometimes referred to

as RTT-unfairness.

Since all algorithms suffer from this problem, researchers tend to compare

RTT-unfairness of congestion control algorithms with that of AIMD (as a

reference), the reason behind that is that AIMD exhibit a quadratic increase

in throughput ratio as RTT ratio increases which is interpreted as linear

RTT-unfairness4 i.e. like standard TCP. Hence the goal has been to make the

RTT-unfairness of a congestion control algorithm as close as possible to that

of AIMD, although their were attempts (e.g. TCP-Hamilton, TCP-CUBIC)

to make it better by making the congestion window function independent

from RTT and instead; adapting it in real time, we restrict our discussion

to the algorithms that adapt as standard TCP5. It can be shown6 that for a

response function of the form: c/pd, where c is constant and p is the steady

state packet loss probability, the throughput ratio is:Th1

Th2
= (RTT2

RTT1
)

1
1−d . We

concluded from the discussion in [31, 102] that 0.5 ≤ d ≤ 1, where d = 0.5

for AIMD. When d = 1 this gives a linear response function with fixed

congestion epoch (period between losses) regardless of the packet loss rate.

When d > 1 the congestion epoch is inversely proportional with the average

window, for example we conclude from [31] that for d = 2 it should be:

1/
√

wc (where w is the average window). Between 0.5 and 1; as d gets smaller

the congestion control algorithm operation gets closer to AIMD. The same

result can be achieved by studying a log-log plot of the response function,

where d is the slope. Small ds give an operation similar to AIMD, large ds

give more scalability (could be a good choice for high-speed networks).

It is worth mentioning that there is no clear consensus in the networking

community about the desirability of this goal in general [34]. In addition

to that, the desire that flow with large RTT share equally resources on its

end-to-end path (even though it uses more network resources along its end-

to-end path) with small RTT flow may not always be considered a pragmatic

approach [73], in fact this is one argument against this goal [34]

3There is a subtle conclusion here that TCP is proportionality fair based on our previous
proportional fair example which has a bias against source 0. This is not necessary [45].

4The reader is to refer to appendix for the derivation of the expression.
5It is easy to forget a benefit of making the congestion window function of RTT: throughput

decrease when congestion increases, since RTT increases and its in denominator
6The result has been mentioned in [31, 102], the reader is to refer to appendix for our workout

of the equations.

CHAPTER 5. CONGESTION CONTROL METRICS 71

5.5.3 Fairness in Optimisation Framework

Recently, there has been extensive work in analysing fairness in optimisation

framework, [70, 8, 97] are just examples. The aim of this subsection is to link

fairness metrics discussed in this chapter with the definitions mentioned in chap-

ter 4, we are not targeting an in-depth discussion of current literature in this

direction but rather an understanding of the concepts and how they are measured

in the context of performance evaluation. We mentioned several fairness concepts

in chapter 4, and we already mentioned some optimisation terms in our discussion

of fairness in this chapter, in fact optimisation framework is one way to analyse

and understand fairness concepts [34, 88]. For sake of relevance to context and in

order to link ideas, we will summarise some of these results here.

The main resource allocation problem can be described by equation 4.5; using

different utility functions result in different optimal solution i.e. different set of

optimal rates. In other words, the choice of utility function determines what set

of rates is optimal – proportional fair, minimum potential delay fair, max-min fair.

A choice of logarithmic utility function, Ur(xr) = wr log xr, where xr denotes the

rate of user r and w is an arbitrary weight for user r, gives a weighted proportional

fair set of rates. Another choice is Ur(xr) = −wr/xr, where wr can be interpreted

as the file size for user r, and the problem degenerates to minimising the average

download time i.e. rates are allocated as minimum potential delay fair. A choice

of Ur(xr) ≈ 1/(cxr
c) for large values of the positive constant c, shows a max-min

fair behaviour.

5.6 Backward Compatibility

Compatibility with existing protocols is another vital issue that needs attention,

mainly existing predominant protocols such as TCP. Particularly; researchers are

usually concerned about fairness between a flow running a congestion control algo-

rithm with a flow running standard TCP algorithm in the so-called ‘well-behaving’

range of TCP, i.e loss rates of 10−2−10−4. This is sometimes referred to as ‘TCP-

friendliness’ [102]. In other words, we do not expect standard TCP to work well

(scale) at small loss rates (large windows), but we are concerned about how the a

new algorithm will affect standard TCP at high loss rates (small windows). This

is one primary concern when developing scalable congestion control algorithms for

high-speed networks.

The term ‘TCP-fairness’ has been described as a new definition [34, p.11], in

this definition a set of TCP fair flows do not cause more congestion than a set of

TCP flows would cause, where congestion is defined in terms of queueing delay,

CHAPTER 5. CONGESTION CONTROL METRICS 72

queueing delay variation, congestion event rate and packet loss rate.

5.7 Response to Change

We divide this into two parts: transient response and response to packet loss.

5.7.1 Transient Response

Sudden congestion in a network can occur due to bandwidth or routing changes

or from a burst of competing traffic. Sudden bandwidth delay product changes

are also possible, in fact, sudden changes (sometimes by several orders of mag-

nitude [34]) in bandwidth and RTT are becoming more frequent and inevitable

with the spread of mobile and heterogeneous wireless networks (WiFi, WiMAX,

WCDMA, Bluetooth,. . .) along with the use of some techniques like vertical han-

dover for example in mobile networks, a question that rises here is: how fast should

a congestion control algorithm respond to all these changes?

A congestion control algorithm is expected to respond quickly (low response

times) to sudden congestion, while at the same time avoid severe response to

changes that last less than the connection RTT (e.g. sudden increase in delay) [34].

Some of the key metrics in evaluating the response to sudden or transient changes

are: smoothness, responsiveness and aggressiveness. For an individual connection7

these can be defined as:

1. Smoothness: in a deterministic environment, is defined as the largest reduc-

tion in the sending rate in one round trip time. The sending rate here can

be measured each RTT or as short-term average throughput.

2. Responsiveness: is defined as the number of round trip times of sustained

congestion required for the sender to halve the sending rate. Another pos-

sible measure of responsiveness is through convergence times following a

sudden congestion caused by change in bandwidth. For example, epsilon

convergence time of a flow following the start up of second flow could mea-

sure responsiveness. In both cases we measure the sending rate as short-term

average throughput.

3. Aggressiveness: is defined as the maximum increase in the sending rate in one

round trip time in packets per second, in the absence of congestion. Sending

rate here can be measured each RTT or as short-term average throughput.

7Responsiveness and smoothness can be measured as network-based metrics.

CHAPTER 5. CONGESTION CONTROL METRICS 73

The asymmetry index [49] (please see 5.9) can be used to measure aggres-

siveness, when A = 0 both flows have the same aggressiveness, A = 1 first

flow is more aggressive, A = −1 first flow is more gentle.

5.7.2 Response to Packet Loss

Another measure for response to change is Response function. Response function

describes the response of congestion control algorithm to packet loss, particularly;

it is the average throughput as a function of packet loss. The function could

be derived analytically, there are several examples mentioned in literature: for

standard TCP with random packet loss [78], for deterministic analysis [36], for

deterministic analysis of one of TCP high speed variants [102]. The function can

also be obtained experimentally by measuring the average throughput for a span

of random packet loss rates, some use this approach to measure the response to

packet loss [68, p.3].

5.8 Oscillations

Two major signs of instability are: under-utilisation of link capacity and synchro-

nised loss (as we will see later in this chapter, synchronised loss is blamed for

a set of problems). These two reasons are the result of queue overflow which is

caused by fluctuations in queue size due to rate fluctuations. Thus throughput or

queueing delay fluctuation (or oscillation), measures stability [34].

Throughput and queueing delay fluctuations (throughput fluctuation can be

measured as flow-based metric or network-based metric), can be measured by:

coefficient of variation and standard deviation, both can be used at different time

scales. For throughput fluctuations the smoothness metric can be used to indicate

the level of oscillation. Concerning minimising oscillation in throughput or queue-

ing delay (thus enhancing stability), relevant flow-based metrics of minimising

jitter in round trip time and loss rates can be considered [34].

5.9 Robustness

Robustness of congestion control algorithm when working in different environ-

ments can be important, for example; robustness has gained more importance in

the Internet architecture compared to efficiency [34]. We quote from the same

source two important metrics, one of which was discussed before:

1. In mobile environment: energy consumption metric, this metric is affected

by the transport protocol.

CHAPTER 5. CONGESTION CONTROL METRICS 74

2. In wireless environment: goodput ratio metric, high values indicate efficient

use of radio spectrum.

5.10 Other Issues & Trade-Offs

We first look at the impact of synchronised loss on congestion control metrics. Syn-

chronised loss happens when packet loss occurs across multiple competing flows si-

multaneously [102] and it is a sign of instability [34]. Synchronised loss encourages

RTT unfairness [102, 39], prolong convergence times (slower convergence) [102, 34],

hurts fairness [102], cause long-term oscillation of data rates [102, 34], affects de-

lay [34] and causes under-utilisation [102].

The problem can get even worse when considering congestion control algo-

rithms designed for high-speed networks, for example, concerning window size, as

the window gets larger, the probability it loses at least one packet grows exponen-

tially, this is fairly simple to observe, let p be the packet loss probability, then the

probability that a window gets delivered without errors is: (1 − p)(1 − p)(1− p)

. . . end of window or (1− p)w, where w is the window size. Then the probability

that a window is not delivered (i.e. has at least one packet loss) is: 1− (1−p)w. In

other words, synchronised loss can occur more frequently at large windows. It is

well-known that queue management policy plays a role in mitigating synchronised

loss, it has been shown that Drop Tail policy exhibits substantial synchronised

loss, while for example RED policy exhibits less [102]. As a result, all problems

associated with synchronised loss are mitigated when using RED policy.

On the other end of the spectrum, implementation issues also need to be con-

sidered. Practical wise, deploy-ability metrics such as: protocol overhead, ease of

diagnosis and the added complexity at nodes are to be considered when develop-

ing a new congestion control algorithm. Two main aspects have been mentioned

in [34] related to implementation, first the range of deployment needed i.e. sender

side implementation; receiver side implementation; or both, router involvement,

etc. Second is the complexity of code.

As mentioned in the first paragraph of the chapter, understanding trade-offs

between congestion control metrics is important in the evaluation of congestion

control metrics, in some situations the relation between metrics is not clear and

depends on many factors e.g. throughput is proportional to fairness in certain

topologies while inversely proportional in others [34]. Our interest however is in

the effect of source behaviour on these metrics, a simple way to have a broad

view of the effect of AIMD mechanism on these metrics is to look at the relation

between AI (α) and MD (β) on one side and the affected metrics on the other

side. Figure 5.3, illustrates this broad view. A high AI and low MD provide better

CHAPTER 5. CONGESTION CONTROL METRICS 75

CONSERVATIVE

SMOOTH AGGRESSIVE

0

1

β 0.5

operation point

1

α

RESOPONSIVE &

OSCILLATION

TCP−NewReno

Figure 5.3: AIMD operational space

aggressiveness, this is a trade-off with conservativeness which can be achieved by

low AI and high MD. On the other hand, a low AI and low MD achieve a smooth

rate, this is a trade-off with high responsiveness which can be achieved by high

AI and high MD. Also note that there is a trade-off within the upper right block:

we achieve high responsiveness at the price of high oscillation.

We conclude from this discussion that a CC algorithm with fixed AI and MD

has limitations in adapting to different working environments. A CC algorithm

that varies AI and MD according to a fixed relation or function is more flexible

yet the flexibility depends on this used function, thus some limitation can occur.

A CC algorithm that uses multiple AI and MD that can be adapted according

to different network conditions is indeed more flexible, this can be thought of as

having multiple points in the four blocks in figure 5.3.

5.11 Summary

The meaning of congestion control metrics is important in performance evaluation

and comparison between different congestion control algorithms. For this reason

we took the time to understand the metrics mentioned in literature. We started

with what we called ‘elementary’ metrics: throughput, delay and packet-loss rates.

We show different ways to measure these metrics. We called these elementary

because other metrics can be derived from them, for instance the convergence

and fairness metrics which we discussed after that; depends on the throughput

metric. It is quite hard to define ‘fairness’, however we divided the discussion

into: i) General fairness metrics which are used to indicate whether the flows are

CHAPTER 5. CONGESTION CONTROL METRICS 76

equally sharing the resources or not, ii) A definition of a number of fairness types

when flows differ in resource requirements, e.g. traversing different links. Common

fairness types in this case are: max-min fairness, proportional fairness, minimum

potential delay fairness and RTT-fairness. iii) We view the definitions of ‘ii’ from

an optimisation perspective, mainly a briefing of related issues from chapter 4.

We discussed issues related to backward compatibility with standard TCP, and

metrics for transient response: smoothness, responsiveness and aggressiveness and

how to capture response to packet loss. We briefly mentioned oscillations and

robustness metrics and finalise by a discussion of some problematic issues that

might hurt the performance e.g. synchronised packet loss, followed by various

trade-offs for AIMD algorithms.

Chapter 6

Proposed Changes to TCP Illinois

This chapter highlights our contributions to high-speed TCP Congestion Control;

we suggest an idea to improve some shortcomings in TCP-Illinois [69]. We show

that higher order versions of the delay functions employed to adjust AI and MD

used in [69] can provide better scalability and responsiveness.

The chapter is divided as follows: in section 6.1 we discuss our proposal for the

new delay functions. In section 6.2 we define the notion of relative aggressiveness

and relative responsiveness which we use to understand the improvement of the

new proposal. In section 6.3 we discuss our simulation methodology which we

use to validate our work, then in light of that we discuss our simulation results.

Finally, we summarise in 6.4 the ideas discussed in this chapter

6.1 Higher Order Delay Functions

It has been observed that both TCP-Illinois [69](part of Linux kernel stack) and

TCP-Compound [93](Default in Windows Vista SP1) can exhibit poor scaling

behaviour as path BDP increases [29]. For TCP-Illinois, the reason behind that

is believed to be related to linear increase which limits its scalability, and to its

relatively long congestion epochs. It is well known that convergence times are

proportional to congestion epochs duration, since long congestion epochs cause

long convergence times which translates into prolonged unfairness. In addition to

that long congestion epochs lead to sluggish responsiveness [29].

In this section we propose an alternative mechanism for varying AI and MD

parameters for TCP-Illinois [69]. Particularly we consider higher order versions

of the delay functions used to adjust AI and MD. The motivation behind that

is to see whether or not this choice of functions provide better aggressiveness,

responsiveness, Inter/Intra protocol fairness and convergence and if yes, by what

magnitude.

77

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 78

The original algorithm [69] addresses the low throughput performance problem

of TCP when working in high-speed long-delay networks. It has an adaptive AI

and MD parameters that engage after a window threshold, cwnd ≥ cwndthresh,

and falls back to TCP NewReno operation (i.e. fixed AI and MD) if the window

is below this threshold. The algorithm keeps tracking RTT for each ACK and

average the measurements over the last window ACK to compute the average

RTT, average queueing delay, maximum average queueing delay, and finally α

according to the following function:

α = f(da) =

{

αmax if da ≤ d1

κ1

κ2+da
otherwise

(6.1)

And β according to:

β = f(da) =







βmin if da ≤ d2

κ3 + κ4 ∗ da if d2 < da < d3

βmax otherwise

(6.2)

Where, Ta: average RTT for one window,

Tmin: minimum average RTT seen so far,

Tmax: maximum average RTT seen so far,

dm: maximum average queueing delay,

da: average queueing delay,

dm = Tmax − Tmin,

da = Ta − Tmin,

di = ηidm (i = 2, 3) and 0 ≤ η2 ≤ η3 ≤ 0.5,

0 < βmin ≤ βmax ≤ 0.5,

κi, i = {1, 2, 3, 4},
κ1 = (dm−d1)∗αmin∗αmax

αmax−αmin
,

κ2 = (dm−d1)∗αmin

αmax−αmin
− d1,

κ3 = (βmin ∗ d3 − βmax ∗ d2)/(d3 − d2),

κ4 = (βmax − βmin)/(d3 − d2).

We note here that, for each window there should be a computed value of

β and α; regardless of any window reduction incident. However, multiplicative

decease takes action when the algorithm decides a window reduction incident

(i.e. congestion event). Because the function uses average delay, the algorithm is

believed to be immune to non-congestive packet loss.

As a step towards studying different functions, we changed the original func-

tions mentioned in [69] and used higher order versions. The functions are expressed

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 79

as:

α = fn(da) =

{

αmax if da ≤ d1

κ1(n)
κ2(n)+dn

a
otherwise

(6.3)

Where,

n > 1,

κ1(n) =
(dn

m−dn
1)∗αmin∗αmax

αmax−αmin
,

κ2(n) =
(dn

m−dn
1)∗αmin

αmax−αmin
− dn

1 .

β = fn(da) =







βmin if da ≤ d2

κ3(n) + κ4(n) ∗ dn
a if d2 < da < d3

βmax otherwise

(6.4)

Where,

n > 1,

κ3(n) = (βmin ∗ dn
3 − βmax ∗ dn

2)/(dn
3 − dn

2),

κ4(n) = (βmax − βmin)/(dn
3 − dn

2).

We now use a graph argument to illustrate the responsiveness1 characteristic

TCP−NewReno operation point

TCP−Illinois operation point

α

β

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

"TCP−Illinois"

(a) Original, (n=1, TCP-Illinois)

 1

 0 2 4 6 8 10

"TCP−Q"
"TCP−C"

 0.5

"TCP−Illinois"

"TCP−HS"

TCP−NewReno operation point

 1

α

β

(b) Higher orders, (n=2,TCP-Q, n=3, TCP-C)

Figure 6.1: Adaptive AI and MD

of higher order functions. Figure 6.1 shows the relationship between α and β for

TCP-NewReno, TCP-Illinois, TCP-Q (power of 2), TCP-C (power of 3) and TCP-

HS [32]. Considering TCP-NewReno as a neutral fixed point; TCP-Illinois point

“slides” according to the curve in figure 6.1a, from the aggressive domain to the

smooth domain. Referring to figure 6.1b, a point on the dashed or solid (the one

below the dashed) curves slides faster (where “faster” translates to responsiveness

in this context) from right to left compared to a point sliding on the semi-dashed

(bottom) curve. Note also that the difference between the first order and second

order is less that between the third and second order which makes the second

order function a good representative of higher order functions2.

1Where responsiveness is defined in terms of response to changes in network.
2End of graph argument

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 80

 1 3 5 7 9 11 13 15 17 19

 0.125
 0.225

 0.325
 0.425

 0.3
 2.3
 4.3
 6.3
 8.3

n

 1 3 5 7 9 11 13 15 17 19

 0.3
 2.3

 4.3
 6.3

 8.3

 0.125

 0.225

 0.325

 0.425

n

α

β α

β

Figure 6.2: AI functions

6.2 Formal Definitions

In this section we layout our definitions of relative aggressiveness and relative

responsiveness, we also aid our proofs with a visualisation of the new functions.

Figure 6.2 illustrate the AI and MD as functions of normalised delay and n. It can

be seen that the functions are non-decreasing, it can also be seen that all functions

are upper and lower bounded by the original values of the algorithm.

6.2.1 Relative Aggressiveness

For an AIMD with variable AI and MD; both the AI parameter and the MD

parameters affect aggressiveness (increase when AI is high and MD is low), how-

ever the AI parameter is updated more often especially in loss-based AIMD, thus

aggressiveness is tightly linked to the AI parameter, this also agrees with the def-

inition of aggressiveness [34]. Based on that, we state the following definition of

relative aggressiveness:

DEFINITION 1. A loss-based AIMD CC algorithm with a variable αi and βi

compared to another loss-based AIMD CC algorithm with a variable αj and βj:

• has more aggressiveness, if for βi = βj, αi > αj;

• has equal aggressiveness, if for βi = βj, αi = αj.

It follows from equations 6.1, 6.3 and figure 6.1 that:

COROLLARY 1. Adapting the AI parameter according to equations 6.1, 6.3

achieves variable aggressiveness.

OBSERVATION 1. The maximum aggressiveness achieved by higher order de-

lay functions of TCP-Illinois’s algorithm is upper bounded by the maximum ag-

gressiveness of TCP-Illinois’s algorithm, αmax. In this case both have the same

aggressiveness (i.e. βill = βn = βmax and αill = αn = αmax).

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 81

OBSERVATION 2. The minimum aggressiveness achieved by higher order de-

lay functions of TCP-Illinois’s algorithm is lower bounded by the minimum ag-

gressiveness of TCP-Illinois’s algorithm, αmin. In this case both have the same

aggressiveness (i.e. βill = βn = βmin and αill = αn = αmin).

LEMMA 2. Compared to TCP-Illinois, higher orders of power n ∈ N
∗ of the

delay functions, achieve higher aggressiveness for α ∈ (αmin, αmax) and equal ag-

gressiveness for α ∈ {αmin, αmax}.

Proof. Let κi(n), i = 1, 2, 3, 4, be the algorithm constants and n ∈ N
∗. If α(n) is

a non-decreasing function in n, then α(n2) > α(n1) for all n2 > n1.

α(n, β) =
κ1(n)κ4(n)

β − κ3(n) + κ2(n)κ4(n)

It can be shown that ∂α
∂n

> 0. Therefore, the function is indeed non-decreasing

between the following two values:

α(1, β) = κ1(1)κ4(1)
β−κ3(1)+κ2(1)κ4(1)

limn→∞ α(n, β) = αmax

∴ α(n2, β) > α(n1, β)

From Observations 1, 2:

α(n2, β) ≥ α(n1, β)

∴ higher orders of power n ∈ N
∗ achieves better aggressiveness.

6.2.2 Relative Responsiveness

The responsiveness characteristic of higher order functions can also be approached

from a different angle. Formally speaking we state the following definition of

relative responsiveness:

DEFINITION 2. An AIMD CC algorithm ‘A’ with a variable αa and βa com-

pared to another AIMD CC algorithm ‘B’ with a variable αb and βb:

has better responsiveness if βa ≥ βb and αa ≥ αb except when, βa = βb and αa = αb

where it has equal responsiveness.

LEMMA 3. Compared to TCP-Illinois, higher orders of power n ∈ N
∗ of the de-

lay functions achieve better responsiveness for β ∈ (βmin, βmax), α ∈ (αmin, αmax)

and equal responsiveness for β ∈ {βmin, βmax}, α ∈ {αmin, αmax}.

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 82

Proof. Using similar argument as in lemma 2, it can be shown that β(n2, α) >

β(n1, α). From Observations 1, 2:

β(n2, α) ≥ β(n1, α)

From this and lemma 2, higher orders of power n ∈ N
∗ achieves better responsive-

ness.

6.2.3 Three TCP-Illinois Variants

Based on the conclusions of our previous formal analysis, we experimented with

three specific TCP-Illinois variants. The first variant (TCP-Q) employs a second

order (power two - quadratic) AIMD function. Additionally, we experimented

with two more variants by modifying the MD function only, while leaving the AI

function unaltered: TCP-Fs uses a sub-linear MD function and TCP-Fq uses a

quadratic MD function. In total we have three different modified versions of the

algorithm: TCP-Q (quadratic MD and AI), TCP-Fs (sub-linear MD), TCP-Fq

(quadratic MD). Figures 6.3a and 6.3 plot the AI (α) and MD (β) factors as a

function of delay. It is important to note that TCP-Fs and TCP-Q have two

different aims, the former aims to be more robust to non-congestive loss compared

to TCP-Illinois by selecting a lower MD below mid range of average delay and

keeping the same MD above mid range, i.e. this value of mid range separates

the congestive from non-congestive loss actions. On the other hand TCP-Q has

different aims: increase aggressiveness and responsiveness, for this reason the MD

has different function for all the delay range, this function is more sensitive to

delay in the sense that a small change in delay will result in a large change in MD

compared to TCP-Illinois. In addition to that TCP-Q varies also varies AI in a

similar sense to achieve these aims. We conducted the experiment of TCP-Fq just

for curiosity i.e. to compare it with TCP-Fs, we have no aims for this version.

We observe that these variants have a rapid increase and small β for low delay

values. Since the algorithm uses cwnd ← (1 − β) × cwnd for back off, our new

functions yield higher window values. With regards to the sub-linear function, the

slope gets steeper below midway between d2 and d3. Equation 6.5 shows our new

definition of this function:

β = fs(da) =







βmin if da ≤ d4

κ′3 + κ′4 ∗ da if d4 < da ≤ d5

κ3 + κ4 ∗ da if d5 < da < d3

βmax otherwise

(6.5)

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 83

da

α

i

i

di dmd1

max

min

α

α

α

α ’

TCP−Q

TCP−Illinois

(a) AI functions

d2 d3 dm
da

5

d4 d5

max

min
β

β

β

β
TCP−Fs

TCP−Illinois

(b) Sub-linear

d2 d3 dm
da

i

’i

max

min

β

β

β

β

β

di

TCP−Illinois

TCP−Fq

(c) Quadratic (n=2)

Figure 6.3: MD functions

Where,

d5 = (d2 + d3)/2: the arithmetic mean of d2 and d3,

d4 = (d2 + d5)/2: the arithmetic mean of d2 and d5,

βmid = (βmax + βmin)/2: the arithmetic mean of βmax and βmin,

κ′3 = (βmin ∗ d5 − βmid ∗ d4)/(d5 − d4),

κ′4 = (βmid − βmin)/(d5 − d4).

The conclusion of the previous discussion is that, compared to TCP-Illinois,

we expect TCP-Q to have better aggressiveness and better responsiveness (and

thus convergence times and inter-fairness).

6.3 Simulation Experiments & Results

By modifying the TCP-Illinois code in the Linux kernel, we obtained a module for

each of our variants and used them for our simulations using the TCP/Linux patch

for ns2. Based on the definitions of congestion control metrics [34], we conducted

a comparative analysis between our variants and a number of relevant high speed

TCP algorithms.

The simulation topology is a simple dumb-bell (figure 6.4) with only two TCP

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 84

msx

0 ms
1 Gbps1 Gbps

msy

Error

Model

1 Gbps
msz

TCP

Sink−2

TCP

Sink−1

TCP

Source−1

TCP

Source−2

300 Mbps 0 ms
1 Gbps

Figure 6.4: Topology

flows and one bottleneck with a fixed capacity of 300 Mbps. We used fixed MSS

of 1000 bytes and drop-tail queue policy. The buffer size is fixed to 5% of BDP

(when the total propagation delay is 46ms, roughly a round trip time of 100ms),

the reason for using this buffer size was to limit the amount of data generated

by the simulator for high-speed setup. We found that 300s of simulation time is

sufficient for TCP to reach equilibrium under our setup.

We studied responsiveness in terms of transient response (response to change)

and in terms of response functions (response to loss). For the later, we used

an error model generating uniformly distributed random loss. The remaining

variables in figure 6.4 had values set on a per experiment basis.

6.3.1 Intra-Protocol Fairness & RTT-Unfairness

0.50

0.60

0.70

0.80

0.90
1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ja
in

 in
de

x

RTT [seconds]

TCP-HS
TCP-YeAH

TCP-Q

0.50

0.60

0.70

0.80

0.90
1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ja
in

 in
de

x

RTT [seconds]

TCP-Cubic
TCP-Comp

TCP-Q

0.50

0.60

0.70

0.80

0.90
1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ja
in

 in
de

x

RTT [seconds]

TCP-Illinois
TCP-Fq
TCP-Fs
TCP-Q

0.50

0.60

0.70

0.80

0.90
1.00

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Ja
in

 in
de

x

RTT [seconds]

TCP-Illinois
TCP-Q

Figure 6.5: Algorithm fairness & RTT-Unfairness

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 85

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200

Flow[1]−−TCP−Illinois
Flow[2]−−TCP−Illinois

(a) TCP-Illinois

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200

Flow[1]−−TCP−Q
Flow[2]−−TCP−Q

(b) TCP-Q

Figure 6.6: Congestion window for two flows running the same algorithm,x =
16ms,y = z = 30ms

To evaluate RTT-Unfairness we used Jain index3. Referring to figure 6.4; two

flows have the same starting time, bottleneck link propagation delay is fixed at

x = 16ms, first flow propagation delay is fixed at z = 30ms and second flow

propagation delay is varied as y = 5ms, 16ms, 30ms, 60ms, 160ms, 300ms, when

y = z we measure fairness, otherwise we measure RTT-Unfairness. For each run,

two flows use the same TCP congestion control algorithm. We used the following

relevant algorithms: TCP-YeAH, TCP-HS, TCP-Compound, TCP-Cubic, TCP-

Illinois and our modified versions: TCP-Fs, TCP-Fq, TCP-Q.

Figure 6.5 shows Jain’s fairness index versus second flow RTT for a set of

TCP congestion control algorithms. Each trace, shows the result of two flows

operating the same algorithm, where in all experiments x = 16ms and first flow

propagation delay is fixed at z = 30ms, second flow propagation delay is varied

as y = 5ms, 16ms, 30ms, 60ms, 160ms, 300ms. Note that when y = z with a RTT

≈ 100ms for both flows, fairness index and throughput ratio are maximum for all

except for TCP-Illinois and TCP-Fs. We believe that the reason TCP-Fs operates

like TCP-Illinois is because average delay must have taken values above midway

between maximum and minimum values (please see figure 6.3b). On the other

hand, both TCP-Fq and TCP-Q have better fairness.

For RTT values above 200ms and below 100ms, RTT-unfairness is clear for

all algorithms, this is indicated by drop in the fairness index. Note that the drop

is severe for large RTTs for all algorithms except for TCP-Cubic and some values

of TCP-Q.

3f(x1, x2, . . . , xn) =
(

Pn
j=1 xj)

2

n
P

n
j=1(xj)2

0 ≤ f ≤ 1

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 86

6.3.2 Aggressiveness & Smoothness

The aggressiveness and smoothness characteristics of our new proposals compared

to TCP-Illinois can be seen from AI and MD rules of the algorithms: for instance; if

we consider smoothness in a deterministic environments to be the largest reduction

in sending rate in one RTT. Then this means that losses happen at certain times,

because this usually happens around maximum average delay, and since AI is

the same for TCP-Fs, TCP-Fq, TCP-Q and TCP-Illinois, they all have the same

reduction, βmax. In parallel, if we consider aggressiveness as the maximum increase

in the sending rate in one RTT, then this is held constant for TCP-Fs,TCP-

Fq,TCP-Q and TCP-Illinois. This can be seen from figure 6.3a to be αmax. In

other words these characteristics are upper bounded by the original values of

TCP-Illinois.

6.3.3 Transient Response

101

102

103

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13A
vg

.C
on

v.
 T

im
e

[s
]

Avg. RTT [s]

TCP-YeAH
TCP-HS

TCP-Q

101

102

0.04 0.05 0.06 0.07 0.08 0.09 0.10

A
vg

.C
on

v.
 T

im
e

[s
]

TCP-Illinois
TCP-Fs

102

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

Avg. RTT [s]

TCP-Illinois
TCP-Fq

102

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

TCP-Illinois
TCP-Q

10-2

10-1

100

101

102

103

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

A
vg

.C
on

v.
 T

im
e

[s
]

Avg. RTT [s]

TCP-Cubic
TCP-Comp

TCP-Q

Figure 6.7: 20%-fair convergence, s-factor=0.005

We studied transient by investigating responsiveness, where responsiveness is

defined in terms of convergence. In particular we used Delta-Fair convergence,

where we define this as the time taken for two flows with same RTT to go from

shares of 100/101-th and 1/101-th of the bottleneck bandwidth, to having close

share of (1± δ)/2 of it.

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 87

101

102

0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13

A
vg

.C
on

v.
 T

im
e

[s
]

Avg. RTT [s]

TCP-Illinois
TCP-Q

Figure 6.8: 20%-fair convergence, s-factor=0.0001

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300

C
w

nd
 [p

ac
ke

ts
]

Time [seconds]

75 110

130 150 TCP-Illinois
TCP-Q

(a) x = 35ms,y = z = 0ms

 0

 1000

 2000

 3000

 4000

 5000

 0 50 100 150 200 250 300

C
w

nd
 [p

ac
ke

ts
]

Time [seconds]

75 110

130 150 TCP-Illinois
TCP-Q

(b) x = 46ms,y = z = 0ms

Figure 6.9: Bottleneck = 300Mbps, buffer size = 5%BDP

Referring to figure 6.4, we let z = y = 0ms and varied the bottleneck propa-

gation delay as x = 20ms, 35ms, 46ms, 50ms, 60ms, 90ms, 190ms, 330ms, thus for

each run the RTT is the same for both flows. In addition to that, for each RTT

run we used four different starting times for the second flow: 75s, 110s, 130s, 150s.

and calculated the throughput for each flow at a granularity of 0.2s; then we

short-term averaged with a smoothing factor of 0.005 and with a δ = 0.2 which

gives 20%-fair convergence.

Figure 6.7 shows average convergence times versus RTT (same for both flows)

for a set of TCP congestion control algorithms. The bars above and below each

point are the minimum and maximum values (not confidence intervals), and miss-

ing points indicate no convergence in the duration of simulation (300s). Figure 6.8

shows the result for TCP-Illinois and TCP-Q when we used smaller smoothing fac-

tor i.e. increased the low pass filtering.

Note that TCP-Fq has slightly higher average convergence times compared to

TCP-Illinois at all RTTs, while TCP-Fs has almost identical values. For TCP-

Illinois and TCP-Q; also note that when x = 20ms (RTT ≈ 40ms), both have

nearly same average convergence times. If we look at the other two points in more

detail, when x = 35ms (RTT ≈ 70ms); TCP-Q has less convergence time, to

understand this we refer to figure 6.9a, the figure shows the congestion window

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 88

evolution of a single flow in the absence of any other competing flows, the two

traces are from two different experiments. Vertical lines with arrows show the

entry point in time of the second flow. We observed from the experiments that

if the second flow enters at the beginning of congestion epoch (just after a loss)

better convergence time is achieved, and if it enters at the end of it; convergence

times are longer. We refer to this as good entry and not good entry respectively,

we also consider any value below the middle as good entry and not good entry

otherwise. The reason for that is that if the second flow enters at lower window

values the reduction in window after a short period of that will result in significant

drop in rate which will in turn enhance convergence times.

Referring to figure 6.9a, 75s and 110s are good entries for TCP-Illinois and

not good entries for TCP-Q, 130s and 150s are good entries for TCP-Q and not

good entries for TCP-Illinois. Thus having the same number of good and not

good entries for both algorithms which makes the experiment unbiased to certain

algorithm. We note that the entry point at 75s for TCP-Q is similar to entry

point at 130s for TCP-Illinois. It would be more meaningful if we compare these

two points.

Now, figures 6.10a - 6.10d show the throughput versus time for x = 35ms,

by comparing the dashed trace of figure 6.10a with the solid trace of figure 6.10c

we see that TCP-Q has less convergence time. Similarly, entry point at 110s for

TCP-Q is similar to entry point at 150s for TCP-Illinois, and by comparing the

dashed trace of figure 6.10b with the solid trace of figure 6.10d we see that TCP-Q

has also lower convergence times.

In a parallel argument, when x = 46ms (RTT ≈ 92ms) and by referring to

figure 6.9b, we see that 75s and 110s are good entries for TCP-Illinois and not

good entries for TCP-Q, 130s is the same for both and not a good entry, while

150s is a good entry for TCP-Q and not good entry for TCP-Illinois. In other

words, TCP-Illinois has two good entries and two bad entries and TCP-Q has

one good entry and three bad entries which makes the experiment biased towards

TCP-Illinois. From figure 6.10h, it can be seen that TCP-Q converged to 20% fair

share better that other entry points. In addition to that, we note that entry point

at 150s for TCP-Q is similar to entry point at 110 for TCP-Illinois.

Figures 6.10e - 6.10h show the throughput versus time for x = 46ms, by

comparing the dashed trace in figure 6.10h with the solid trace of figure 6.10f, we

see that TCP-Q has less convergence time. However, because of the bias in this

experiment the total average convergence time was larger for TCP-Q (please see

figure 5.1).

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 89

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Instantaneous gran 0.100

TCP-Illinois
TCP-Q

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Short-term s-factor 0.005

TCP-Illinois
TCP-Q

(a) Starting time: 75 seconds, x=35ms

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Instantaneous gran 0.100

TCP-Illinois
TCP-Q

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Short-term s-factor 0.005

TCP-Illinois
TCP-Q

(b) Starting time: 110 seconds, x=35ms

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Instantaneous gran 0.100

TCP-Illinois
TCP-Q

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Short-term s-factor 0.005

TCP-Illinois
TCP-Q

(c) Starting time: 130 seconds, x=35ms

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Instantaneous gran 0.100

TCP-Illinois
TCP-Q

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Short-term s-factor 0.005

TCP-Illinois
TCP-Q

(d) Starting time: 150 seconds, x=35ms

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Instantaneous gran 0.100

TCP-Illinois
TCP-Q

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Short-term s-factor 0.005

TCP-Illinois
TCP-Q

(e) Starting time: 75 seconds, x=46ms

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Instantaneous gran 0.100

TCP-Illinois
TCP-Q

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Short-term s-factor 0.005

TCP-Illinois
TCP-Q

(f) Starting time: 110 seconds, x=46ms

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Instantaneous gran 0.100

TCP-Illinois
TCP-Q

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Short-term s-factor 0.005

TCP-Illinois
TCP-Q

(g) Starting time: 130 seconds, x=46ms

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Instantaneous gran 0.100

TCP-Illinois
TCP-Q

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 0 50 100 150 200 250 300

T
hr

ou
gh

pu
t [

by
te

s/
s]

Time [s]

Short-term s-factor 0.005

TCP-Illinois
TCP-Q

(h) Starting time: 150 seconds, x=46ms

Figure 6.10: First flow throughput for different second flow starting times

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 90

(a) First view (b) Second view

Figure 6.11: Theoretical response function

6.3.4 Response to Packet Loss

We first considered the theoretical Response function shown in figure 6.11. It can

be seen that TCP-Q has higher goodput compared to TCP-Illinois at low loss

rates and low delay values i.e. more scalable.

Experimentally we used only one flow with propagation delays z = 0ms, x =

46ms, and set an error model to produce a uniformly distributed packet loss on the

final link with a set of packet loss probabilities 10−5 − 10−1. We used bottleneck

link capacities of 100Mbps, 300Mbps with buffer sizes of 5,16% BDP respectively

and computed the average throughput for each packet loss probability.

Figure 6.12 shows the empirical response functions for a set of TCP congestion

control algorithms, the y-axis is the average throughput of one flow trying to

utilise a bottleneck link of 300Mbps with a buffer size of 5%BDP and having a

propagation delays z = 0ms, x = 46ms under the influence of an error model

which produces a uniformly distributed packet loss on the final link. The x-axis

represents the measured loss probability, we tried many packet loss probabilities in

the range of 10−5−10−1; however in some experiments I were not able to produce

the exact loss probabilities as other experiments, but they are all in the same

range, this explains the different points for each trace. For low loss probabilities

(< 10−4) loss happens nearly at fixed interval when the delay is ≈ maximum

(i.e. deterministic environment) and in steady state all achieve the same average

throughput, this is expected for TCP-Fs and TCP-Fq, since they have the same

AI as TCP-Illinois and will have the same MD if the delay is maximum. However,

for TCP-Q at very low loss probabilities where the algorithm nearly utilises the

capacity of the pipe, the congestion window evolution is different, this can be seen

from figure 6.13a, the dark shaded areas represent the difference in the number of

packets sent when TCP-Illinois is sending more than TCP-Q, and the light shaded

areas represents the difference when TCP-Q is sending more than TCP-Illinois.

If both areas are approximately equal (through same period of time) both have

approximately the same average throughput.

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 91

A
vg

. T
hr

. [
by

te
s/

s] TCP-Q
TCP-Cubic
TCP-Comp

 1e-05 0.0001 0.001 0.01 0.1 1
104

105

106

107

108

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

A
vg

. T
hr

. [
by

te
s/

s] TCP-HS
TCP-YeAH

TCP-Q

 1e-05 0.0001 0.001 0.01 0.1 1
104

105

106

107

108

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

A
vg

. T
hr

. [
by

te
s/

s] TCP-Cubic
TCP-Comp

TCP-HS
TCP-YeAH

 1e-05 0.0001 0.001 0.01 0.1 1
104

105

106

107

108

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

A
vg

. T
hr

. [
by

te
s/

s] TCP-Illinois
TCP-Fq
TCP-Fs
TCP-Q

 1e-05 0.0001 0.001 0.01 0.1 1
104

105

106

107

108

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

Figure 6.12: Bottleneck capacity = 300Mbps, buffer size = 5%BDP. Thermal
bars represent average queueing delay in seconds.

For loss probabilities in the range of 10−4−10−3 we note that TCP-Q achieves

better average throughput compared to TCP-Illinois, while TCP-Fs and TCP-Fq

are nearly identical to TCP-Illinois. We view this as a minor advantage due to

short range of loss probabilities, we also believe the reason for this is the fast

additive increase of TCP-Q compared to TCP-Fs, TCP-Fq and TCP-Illinois; this

result in larger light shaded total area and thus larger average throughput in the

duration of simulation.

For loss probabilities (> 10−3), TCP-Illinois, TCP-Q, TCP-Fs and TCP-Fq

work much like standard TCP, since they all fall-back to standard TCP when the

window is below cwndthresh. We note that the average delay at high loss probability

of 10% is due to loss happening in the slow start phase, this is basically a reset; as

TCP starts again from one segment. We blame slow-start’s aggressive bandwidth

probing for this increase in average delay.

Finally, for illustrative purposes we show in figure 6.13 the congestion window

evolution for TCP-Illinois and TCP-Q in absence of any competing flows, each

trace is from different experiment. Figure 6.13a illustrates the difference in sent

packets (area under the curve) at different times. Figure 6.13b shows the result

when we used different bottleneck capacity. Note that the congestion epoch for

TCP-Q is less than that for TCP-Illinois, and shorter congestion epochs usually

translates to better convergence/responsiveness.

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 92

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 50 100 150 200 250 300

C
w

nd
 [p

ac
ke

ts
]

Time [s]

TCP-Illinois
TCP-Q

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

C
w

nd
 [p

ac
ke

ts
]

TCP-Illinois
TCP-Q

(a) Bottleneck capacity = 300Mbps, buffer size = 5%BDP

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

C
w

nd
 [p

ac
ke

ts
]

Time [seconds]

TCP-Illinois
TCP-Q

(b) Bottleneck capacity = 100Mbps, buffer size = 16%BDP

Figure 6.13: x = 46ms,y = z = 0ms

6.4 Summary

In this chapter we proposed a new idea for improving the sluggish responsive-

ness of TCP-Illinois, the idea is simple to implement and is based on generalising

the delay functions used to adjust the additive increase and multiplicative de-

crease. We have shown that this can yield improvements, while operating within

the same range of values for both MD and AI. More specifically, the higher order

functions that we use enhance the algorithm’s responsiveness (in terms of conver-

gence). Experiments on special case quadratic variant show that the delay-loss

based algorithm (TCP-Q) exhibits better fairness and convergence compared to

the original algorithm (TCP-Illinois). Additionally, our new proposal is very easy

to deploy since it only requires modifications on the sender side, which can poten-

tially lead to a performance leap. According to our preliminary investigation, we

believe that TCP-Fs and TCP-Fq (where only MD is changed) will exhibit better

immunity in the case of error-prone links. This is mainly because of their lower

MD values compared to TCP-Illinois. As part of our future work, we aim to run

experiments in order to validate this assumption. Additionally, we will examine

all three variants in more realistic, larger-scale environments.

The next chapter sheds the light on a new TCP congestion control algorithm,

the algorithm is believed to combine the good merits of a number of existing

CHAPTER 6. PROPOSED CHANGES TO TCP ILLINOIS 93

ones, especially targeting the feature of efficient utilisation of high bandwidth

delay product pipes and contrast to TCP-Illinois, keeping the network load to

minimum. We believe this is one of the challenges in the TCP congestion control

field of research.

Chapter 7

TCP-Gentle

Our view of an ideal CC algorithm is to have an easy-deployable algorithm that

has a perfect link utilisation, responsiveness, convergence to a fair share in zero

time, robust (to environmental effects, e.g. link errors) has no additional load on

the network. This formed the basis for the second contribution on this track. The

approach that we adopted was to use a number of principles rather than to adhere

to one to solve all problems. Each principle targets a problem without affecting

other principles. In fact this lead us to the idea of modes which appeared in

1991 [98] and has been recently used in some relatively recent proposals [64], [9].

Having said that, we propose TCP-Gentle, a high speed TCP CC based on TCP-

YeAH [9] (the latest in GNU/Linux kernel stack at the time of writing this thesis).

Unlike loss-based algorithms, TCP-YeAH algorithm focuses on high link utilisa-

tion, high responsiveness while maintaining low network load, it achieves this by

dividing the problem and adopting the idea of modes. However, we argue that

better results can be achieved by dividing the problem differently. Our argument

is supported by the fact that TCP-Gentle (our new proposal) is able to break some

of the trade-offs, mainly, being smooth and having high responsiveness while be-

ing gentle to network and potentially more safe. Our interest in smoothness is to

keep high link utilisation; since low smoothness (high oscillation) has undesirable

effects on link utilisation (many large backoffs throughout the connection).

The rest of the chapter is divided as follows: in section 7.1 we discuss TCP-

Gentle algorithm, its operational modes/phases and provide a a full pseudo-code

for TCP-Gentle and TCP-YeAH. We also derive an expression for the average

throughput which acts as a deterministic model for the algorithm. In section 7.3

we validate the new algorithm through simulation experiments, we validate the

basic concepts for operation in high-speed long-delay network, study friendliness

to TCP-NewReno and also study the effect of web traffic. In section 7.4 we present

some of our real test-bed experiments, mainly congestion window evolution and

link utilisation in high-speed long-delay network and compare this to TCP-YeAH.

94

CHAPTER 7. TCP-GENTLE 95

We also study response to different random packet loss probabilities, intra-protocol

fairness and RTT-unfairness and compare this to TCP-YeAH and TCP-CUBIC

and examine friendliness to TCP-NewReno. Finally, we summarise in 7.5 the ideas

discussed in this chapter.

7.1 TCP-Gentle Algorithm

We described the operation of TCP-YeAH in chapter 3, in this section we describe

TCP-Gentle: a new proposal based on TCP-YeAH. The objective of this new

algorithm is to get as close as possible to our view of ideal CC behaviour. This

translates to the following aims:

1. Intra-protocol fairness: Address the potentially unsafe MI rule of TCP-YeAH

in fast mode where an MIMD is used. As mentioned in chapter 2 this type

of operation may not converge to a fair share, and when considering RTT-

unfairness it is completely unfair. Instead, TCP-Gentle uses an adaptive

AIMD rule (a safe rule from fairness perspective) which adapts according to

different network circumstances.

2. Smoothness & Responsiveness: Break the trade-off between smoothness and

responsiveness while being gentle to the network. Thus have higher smooth-

ness and high responsiveness. By gentle to network we mean when TCP-

Gentle is competing with other traffic, e.g. web traffic (many sources) it

leaves a proportion of the queue rather than occupying additional propor-

tion.

3. TCP-Friendly: Maintain friendliness to standard TCP-NewReno.

4. Link utilisation: Keeps high link utilisation and minimum queue size.

5. Network load: Keeps network load as minimum as possible, i.e. keep queue

size as minimum as possible.

Each of of these aims maps to a principle, and principles are then grouped in

modes. Instead of operating TCP-YeAH fast and slow modes, TCP-Gentle uses

two different modes:gentle mode and reno mode.

The reno mode maintains TCP-YeAH slow mode idea of switching to NewReno

operation when competing with a NewReno flow, and also has the same decon-

gestion mechanism i.e. back off when a queue threshold is exceeded. This means,

when a queue threshold is exceeded, the algorithm backs off by reducing the con-

gestion window by the estimated queue size, and increment a counter. If in the

next round trip time it finds that its queue estimate is still above threshold, it

CHAPTER 7. TCP-GENTLE 96

Table 7.1: Breakdown of TCP-Gentle ideas

Aim Principle Mode of Occurrence Phase
Intra-protocol fairness AIMD Gentle T/D

Increase responsiveness: Gentle D
fast detection of change
Increase responsiveness: Gentle T
fast response to change

Smoothness Damping AI rule Gentle D
Decongestion Beginning of Reno -

TCP-Friendliness Reno AI rule Reno -
Link utilisation Damping AI rule Gentle D

Decongestion Beginning of Reno -
Network load Damping AI rule Gentle D

Decongestion Beginning of Reno -

reduces the congestion window by the queue estimate again, and also increment

the counter, and so on. When the counter exceeds a predefined number, the al-

gorithm gives up and stops its non-greedy behaviour and assumes that the other

competing source is greedy (NewReno-like) and switches to reno mode i.e. using

AI specified by αreno = 1 and MD upon loss or ECN by half. TCP-Gentle adds

to this by setting two different AI variables after each back off (upon exceeding

queue threshold), these are: αgh and αgh/NP v. This is explained later on in this

chapter, for now we treat these as two parameters. These two parameters are

used when the algorithm backs off after exceeding the queue threshold and in the

next round trip time it finds that the queue threshold is not exceeded, i.e. the net-

work responded to the decongestion mechanism, in this case TCP Gentle enters

its gentle mode, use these two parameters and keeps its non-greedy behaviour.

The gentle mode is described in details in following paragraphs.

While not in reno mode, TCP-Gentle is in gentle mode, this mode of operation

consists of two phases: thrust phase and damping phase. The thrust phase is

enabled only when the queue is empty. In this phase the AI is adapted according

to an aggressive mechanism which we use to replace slow start and limited slow

start [33], this mechanism is explained in detail in the following subsection. On

the other hand the damping phase is enabled if the queue is not empty and below

a threshold, in this phase the two AI variables set after decongestion back off (in

reno mode) are used as boundaries i.e. maximum and minimum, and the AI is

adjusted according to a formula each RTT; starting from the maximum value αgh

until the minimum value αgh/NP v is reached at end of decongestion epoch (when

a back off is needed again). Table 7.1 summarises the relationship between the

aims, principles, modes and phases.

CHAPTER 7. TCP-GENTLE 97

7.1.1 Gentle Mode: Thrust Phase

In the thrust phase of gentle mode we use an aggressive rule which we call rocket

mechanism. This mechanism is a realisation of our principle for fast response to

change, it replaces slow start and limited slow start. The basic idea is illustrated

below:

Slow Start, every RTT:

cwnd← 2× cwnd

Rocket Mechanism, every RTT:

if Q = 0 then

α← fuel × αrocket

cwnd← cwnd + α

fuel← fuel + 1

else

fuel← 0

. . .

The mechanism is enabled only when the the queue size estimate 1 is zero.

The increase starts by a specified AI denoted by αrocket instead of one segment.

The AI keeps increasing until it reaches an upper bound αmax, after that the

increase is linear. The name of the mechanism was inspired from the shape of

congestion window evolution being similar to that of a real rocket path. The

rational behind using this mechanism is three folds: i) We are more concerned in

increasing responsiveness than probing the network like slow start, ii) Since the

queue is empty we can be less conservative and increase by more than one segment

from the beginning, iii) After certain number of RTT the growth is linear, while in

an MI approach e.g. slow start, the window can grow to large values and put load

on the network just before it reaches the full capacity (when it is not needed). We

are aware of new techniques like limited slow start which can mitigate the large

congestion window growth problem, however our technique treats the congestion

window evolution at the beginning of the phase (more increase) and at the end of

it (limited linear increase) and maintains consistency of using AI mechanism in the

whole algorithm. While limited slow start limit the growth after a threshold and

indeed keeps the traditional slow start before that in order to probe the network

for available bandwidth.

1Queue size estimate is done each RTT

CHAPTER 7. TCP-GENTLE 98

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 6 8 10 12
RTT

Theoretical values of SS and RM

Slow Start
Rocket M, agh=2,amax=20
Rocket M, agh=3,amax=20
Rocket M, agh=5,amax=20

Rocket M, agh=10,amax=20
α

(a) SS RM

C
on

ge
st

io
n

w
in

do
w

Time

scalable rule i.e. like slow start

rocket mechanism

(b) Congestion window evolution

Figure 7.1: Theoretical Values

Figure 7.1a shows the theoretical values of both slow start and rocket mecha-

nism with different values of αrocket, for simplicity we used αrocket = αgh. It can be

seen from the figure that instantly the rocket mechanism inflates the congestion

window more than slow start; thus allowing more packets to be transmitted, after

a number of RTT, the upper bound is reached and the increase is fixed, while

slow start keeps increasing the congestion window. The evolution of congestion

window is shown in figure 7.1b.

7.1.2 Gentle Mode: Damping Phase

In the damping phase of gentle mode we make the algorithm adapt the AI ac-

cording to a formula, the formula has been chosen to realise a set of principles

(the relevant set of principles are mentioned in table 7.1). The damping phase

is enabled only when the queue estimate is larger than zero and less or equal a

threshold Qmax, during which the AI is adapted according to the following formula:

α =
αgh

NP v
× (

Qmax

Q
)

Upper bounded by αgh

α = min{α, αgh}

Lower bounded by αgl

α = max{α, αgl}

Where, αgh is the initial value of AI and is set to same value in the thrust phase,

NP is a counter which is incremented each decongestion epoch. The purpose

of this counter is to damp the target minimum AI in a decongestion epoch as

time progress since the phase is entered. The parameter v is used to control the

speed of damping. The AI is inversely proportional to the queue estimate and in

each decongestion epoch the AI is adapted between the maximum AI, αgh (from

CHAPTER 7. TCP-GENTLE 99

αgh/NP v when NP = 1) and the target minimum AI in that decongestion epoch

αgh/NP v. The maximum value of NP is αgh/αgl, where αgl is the minimum AI

in the algorithm.

To further control the damping of AI, we used a parameter which allows us

to use the same target minimum AI for a number of decongestion epoch before

actually incrementing NP , we named this parameter alpha age, AG.

7.1.3 Reno Mode

The Reno mode has no phases, this mode is a realisation of the principle mentioned

in the third row of table 7.1, the mode is enabled only when2 Q > Qmax we are in

Reno mode and we use this rule.

α = αreno

7.1.4 Complete Version

In this subsection we put all the ideas together to summarise TCP-Gentle algo-

rithm. The final expression of AI is as follows:

Each RTT:







cwnd← cwnd + α

αreno if Q > Qmax OR L > 1
φ

max{min{ αgh

NP v × Q
Qmax

, αgh}, αgl} if 0 < Q ≤ Qmax

min{fuel × αrocket, αmax} if Q = 0

The final expression of MD is the same as TCP-YeAH and is as follows:

Back off







cwnd← cwnd−Q if Q > Qmax

cwnd← cwnd−Q if loss or ECN

cwnd← max{min{cwnd, cwnd
8
}, cwnd

2
}

In the following we show a pseudo code of both TCP-YeAH and TCP-Gentle for

more clarification of the differences between the two algorithms. We also show

the code for a version of TCP-Gentle that allows the thrust phase to take one

period (the first period) of the damping phase, we believe that this gives better

performance, in terms of convergence/responsiveness during transient state (when

traffic enters/exits) instead of sensing for zero queue to stop the thrust phase

and start the damping phase. This may result in a conservative behaviour of

the algorithm, since any time the queue is not empty the thrust phase is stopped,

2There is another condition adopted from YeAH: L > 1/φ, where L is an estimate of the
ratio of packets in flight to the BDP

CHAPTER 7. TCP-GENTLE 100

alternatively we let the algorithm stops after one period of the damping phase. We

call this version TCP-Gentle-2 compared to the original version, TCP-Gentle-1.

Algorithm 1: YeAH
Initialisation:

lastQ← 0

reno count← 2 // end of initialisation

no loss: if packet loss is FALSE then

per ack: foreach ACK do

if cwnd < ssthresh then

SlowStart

end

if doing reno now is FALSE then

scalable: cwnd← cwnd + a // Scalable Rule

else

reno: cwnd← cwnd + 1
cwnd

// Reno Rule

end

end

per rtt: foreach RTT do

slow mode: if (Q > Qmax) ∨ (L > 1
φ
) then

if (Q > Qmax) ∧ (cwnd > reno count) then

reduction← min{Q
γ

, cwnd
2ǫ }

cwnd← cwnd− reduction

cwnd← max{cwnd, reno count}
ssthresh← cwnd

end

if reno count ≤ 2 then

reno count← max{ cwnd
2

, 2}
else

reno count← reno count + 1

end

doing reno now ← doing reno now + 1

else

fast mode: fast count← fast count + 1

if (fast count > ζ) then
reno count← 2

fast count← 0

end

doing reno now ← 0

end

lastQ← Q

end

else

loss: if (doing reno now < ρ) then

reduction← lastQ

reduction← min{reduction,max{ cwnd
2

, 2}}
reduction← max{reduction, cwnd

2δ }
else

reduction← max{ cwnd
2

, 2}
end

fast count← 0

reno count← max{ reno count
2

, 2}
cwnd← cwnd− reduction

end

CHAPTER 7. TCP-GENTLE 101

Algorithm 2: Gentle-1: No loss
init: Initialisation:

lastQ← 0

virtual reno← 2

α← αgh // reset gentle mode --> start

NP ← NPmin

AG ← AGmin // reset gentle mode --> end

fuel← 0

gmode reset count← 0

do reno← 0 // end of initialisation

per ack: foreach ACK do

if cwnd < ssthresh then

SlowStart

else

cwnd← cwnd + α
cwnd

// AI Rule

end

end

per rtt: foreach RTT do

currentQ← Q // To distinguish from Q used in

YeAH

lasQ← Q // Same as YeAH, for loss reduction

reno mode: if (Q > Qmax) ∨ (L > 1
φ

) then

if (Q > Qmax) ∧ (cwnd > virtual reno)

then

reduction← min{
Q
γ

, cwnd
2ǫ }

cwnd ← cwnd − reduction

cwnd ← max{cwnd, virtual reno}

ssthresh← cwnd

gmode reset count←

gmode reset count + 1

if (gmode reset count >

RESET THRESHOLD) then

α← αgh // reset gentle mode

--> start

NP ← NPmin

AG← AGmin // reset gentle

mode --> end

end

if (AG < AGmax) then

AG← AG + 1 // this is

decongestion start counting

else

if (NP < NPmax) then

NP ← NP + 1

else

AG← AGmin

end

end

end

if virtual reno ≤ 2 then

virtual reno← max{ cwnd
2

, 2}

else

virtual reno← virtual reno + 1

end

do reno← do reno + 1

else

gentle mode: gmode reset count← 0

gmode count← gmode count + 1

if (gmode count > ζ) then

virtual reno← 2

gmode count← 0

end

do reno← 0
end

if do reno is FALSE then

thrust phase: if (currentQ = 0) // Gentle mode -->

Thrust phase

then

fuel← fuel + 1

α← min{fuel ∗ αrocket, αmax}

else

fuel← 0

end

damping phase: if (currentQ > 0) ∧ (currentQ ≤ Qmax)

// Gentle mode --> Damping phase

then

α← min{
αgh
NPν ∗

Qmax
currentQ

, αgh}

end

else
α← αreno

end

end

Algorithm 3: Gentle-2, Without

slow start: No loss
: Initialisation:

lastQ← 0

virtual reno← 2

α← αrocket // reset gentle mode --> start

NP ← NPmin

AG← AGmin

fuel← 0

max cwnd ← 2 // reset gentle mode --> end

do reno ← 0 // end of initialisation

: foreach ACK do

cwnd ← cwnd + α
cwnd

// AI Rule

end

: foreach RTT do

currentQ← Q // To distinguish from Q used in

YeAH

lasQ← Q // Same as YeAH, for loss reduction

max cwnd← max(max cwnd, cwnd)

: if (Q > Qmax) ∨ (L > 1
φ

) then

if (Q > Qmax) ∧ (cwnd > virtual reno)

then

reduction← min{Q
γ

, cwnd
2ǫ }

cwnd ← cwnd − reduction

cwnd ← max{cwnd, virtual reno}

ssthresh← cwnd

fuel← 0

if (cwnd < max cwnd − max cwnd
2r)

// instead of RESET THRESHOLD

then

α← αrocket // reset gentle

mode --> start

NP ← NPmin, AG← AGmin

fuel← 0, max cwnd ← 2

// reset gentle mode --> end

end

if (AG < AGmax) then

AG← AG + 1 // this is

decongestion start counting

else

if (NP < NPmax) then

NP ← NP + 1

else

AG ← AGmin

end

end

end

if virtual reno ≤ 2 then

virtual reno← max{ cwnd
2

, 2}

else

virtual reno← virtual reno + 1

end

if cwnd ≤ virtual reno then

do reno ← do reno + 1

end

else

: gmode count← gmode count + 1

if (gmode count > ζ) then

virtual reno← 2

gmode count← 0

end

do reno← 0
end

if do reno is FALSE then

: fuel← fuel + 1 // Gentle mode --> Thrust

phase

α← min{fuel ∗ αrocket, αmax}

: if (currentQ > 0) ∧ (currentQ ≤

Qmax) ∧ (NP ≥ (NPmin + 1))

// Gentle mode --> Damping phase

then

α← min{
αgh
NPν ∗

Qmax
currentQ

, αgh}

fuel← 0

end

else
α← αreno

end

end

CHAPTER 7. TCP-GENTLE 102

Algorithm 4: Gentle-1: Loss

if (do reno < ρ) then

reduction← lastQ

reduction←
min{reduction,max{ cwnd

2
, 2}}

reduction← max{reduction, cwnd
2δ }

else

reduction← max{ cwnd
2

, 2}
end

gmode count← 0

virtual reno← max{ virtual reno
2

, 2}
α← αgh // reset gentle mode-->start

NP ← NPmin

AG← AGmin // reset gentle mode-->end

cwnd← cwnd− reduction

Algorithm 5: Gentle-2: Loss

if (do reno < ρ) then

reduction← lastQ

reduction←
min{reduction, max{ cwnd

2
, 2}}

reduction← max{reduction, cwnd
2δ }

else

reduction← max{ cwnd
2

, 2}
end

gmode count← 0

virtual reno← max{ virtual reno
2

, 2}
α← αrocket // reset gentle mode-->start

NP ← NPmin

AG← AGmin

fuel← 0

max cwnd← 2 // reset gentle mode-->end

cwnd← cwnd− reduction

One advantage of TCP-Gentle, is the ability to adapt its congestion window

by controlling the parameters. For example, if the alpha age parameter AG is set

to a large value →∞, the congestion window evolves according to fixed additive

increase rule, αgh. Another example is to consider a negative power of v, in

this case the algorithm increase rule gains a multiplicative increase component in

steady-state. Next, we derive the throughput expression for TCP-Gentle.

7.2 Throughput Expression

We are interested in the theoretical average throughput expression of the new

algorithm. We focus on: i) Steady-state for gentle mode / damping phase, ii)

Rocket mechanism. We follow an approach similar to some approaches mentioned

in literature [11], the steps are as follows: i) Obtain an expression for the congestion

window as a function of time, ii) Determine the the length of decongestion epoch

in time, iii) Determine the number of packets sent i.e. the area under the curve,

iv) Divide the total number of packets sent by the length of congestion epoch to

obtain the average throughput, v) Write this in terms of probability of back off

(loss for loss-based algorithms). We show later in this chapter, that the theoretical

values calculated herein agrees with experimental results values, we consider this

a good validation of the expression.

CHAPTER 7. TCP-GENTLE 103

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

��������
��������
��������
������������

����
����
����

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
������������������������������������

���������������
���������������

���������������
���������������
���������������

C
on

ge
st

io
n

w
in

do
w

steady−state

Cp

Wmax

Time t0=0 t1=TD

TD

transient−state

Thrust phase Damping phase

RTT

α

dt

dw

ND

Linear interpolation
Fluid approximation &

Figure 7.2: Congestion window curve

7.2.1 Steady-state average throughput:

The increase rule of TCP-Gentle can be expresses as:

w(t + 1)← w(t) + α

Which can be written as:

∆w = α

We know from TCP congestion control, that this change in congestion window

takes place each RTT, thus we can write the slope of the congestion window

function as:
∆w

∆t
=

α

RTT

Using fluid approximation and linear interpolation, we can generalise this to any

infinitesimal sample on the curve (see figure 7.2), thus

dw

dt
=

α

RTT
(7.1)

In steady-state, NP = NPmax. Let Cp be the pipe capacity in packets, then the

queue size can be written as

Q = w − Cp, Q ≥ 0

Thus the increase parameter in the steady-state is:

α =
αgh

NP v
max

.
Qmax

Q

CHAPTER 7. TCP-GENTLE 104

Substituting for Q:

α =
αgh

NP v
max

.
Wmax − Cp

w − Cp

Thus, equation 7.1 becomes:

dw

dt
=

αgh

NP v
max

.
Wmax − Cp

w − Cp

.
1

RTT

Separating variables and integrating both sides:

∫
(w − Cp).dw =

∫ αgh

NP v
max

.WmaxCp

RTT
.dt

w2

2
− Cpw =

αgh

NP v
max

.WmaxCp

RTT
.t + C

Where, C is the integration constant and can be found from the initial condition.

At t0, w = Cp, thus C = −C2
p/2. Rearranging terms of the last result:

w2

2
− Cpw − (

αgh

NP v
max

.
WmaxCp

RTT
.t−

C2
p

2
) = 0

Solving for w:

w = Cp ±
√

2αgh(Wmax−Cp)

NP v
maxRTT

.t

= Cp +
√

2αgh(Wmax−Cp)

NP v
maxRTT

.t

(7.2)

The negative sign solution was rejected because the window in steady-state is

always larger or equal to the capacity of the pipe. Note that the congestion

window is a square-root function of time.

To find TD, we note that the congestion window reaches Wmax after a period

TD, thus using equation 7.2:

Wmax = Cp +
√

2αgh(Wmax−Cp)

NP v
maxRTT

.TD

TD = NP v
maxRTT (Wmax−Cp)

2αgh

(7.3)

To find ND, we find the area under the curve during TD:

ND = 1
RTT

∫ TD

0
Cp +

√
2αgh(Wmax−Cp)

NP v
maxRTT

.
√

t.dt

= 1
RTT

(

CpTD +
√

2αgh(Wmax−Cp)

NP v
maxRTT

.TD3/2.2
3

)
(7.4)

CHAPTER 7. TCP-GENTLE 105

To find the average throughput X, we divide the ND by TD, thus:

X =
ND

TD
=

1

3RTT
(2Wmax + Cp) (7.5)

Finally, to write the average throughput in terms of the probability of back off

pb, we need to do the following steps: i) Use equation 7.3 to substitute for TD in

equation 7.4:

ND =
NP v

max(Wmax − Cp)(Cp + 2
3
(Wmax − Cp))

2αgh
(7.6)

ii) Use the relationship, ND = 1/pb:

pb =
2αgh

NP v
max(Wmax − Cp)(Cp + 2

3
(Wmax − Cp))

(7.7)

iii) Solve equation 7.7 for Wmax:

Wmax =
Cp + 3

(√

C2
p +

16αgh

3NP v
maxpb

)

4
(7.8)

iv) Substitute for Wmax in equation 7.5:

X =
ND

TD
=

1

2RTT

(√

C2
p +

16αgh

3NP v
maxpb

+ Cp

)

(7.9)

This final result shows that the average throughput in steady-state is ∝ 1√
pb

.

However, it is very important to note that for large pb the average throughput

does not reduce below the link capacity. In other words the average throughput

is nearly flat. This can be seen from equation 7.17 and also is understood from

the algorithm operation since it only reduces by the amount of excess packets in

the network. As we will see later in this chapter, the limitation of this expression

is that it does not take time-outs into account.

To illustrate the use of equation 7.9, we give a numerical example. Given

the algorithm parameters: αgh = 2, NPmax = 4, v = 2, Qmax = 50 pkts, and

link bandwidth of 300 Mbps, with large buffer and a RTT = 100ms. Let the

packet size be 1000 bytes. We calculate probability of back off and the average

throughput. First note that, the capacity of the pipe without the buffer is: 3750

pkts (300×106×0.1/8000) and with 50 pkts in the buffer, the capacity is 3800 pkts,

i.e. the maximum throughput in the steady-state is 304 Mbps (3800× 8000/0.1).

Using equation 7.7 we find that the probability of back off is pb = 1.32× 10−6,

using this information and equation 7.9 we find that the average throughput is

CHAPTER 7. TCP-GENTLE 106

302.67 Mbps (X = 37833.7 pkts/s). The algorithm values used in this example

are the same values used in our experiments.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

α
gh

N1 N2

N3

Timet2=TRt0=0

C
on

ge
st

io
n

w
in

do
w

Cp

α max

2

2

t1=Tmax

Figure 7.3: Congestion window curve for thrust phase

7.2.2 Initial average throughput:

Now we derive and expression for the average throughput in the thrust phase. In

this phase the rocket mechanism is enabled and the increase rule of TCP-Gentle

can be expresses as:

w(t + 1)← w(t) + α

Using the same fluid approximation and interpolation:

dw

dt
=

α

RTT

But:

α(t + 1)← α(t) + αgh

Similarly:

dα

dt
=

αgh

RTT

We solve for α by separating variables and integrating both sides:

α =
αgh

RTT
.t + C1

CHAPTER 7. TCP-GENTLE 107

Where C1 is an integration constant and can be found from the initial condition

at t0. At t0 α = 0, thus, C1 = 0. The the window equation becomes:

dw

dt
=

αgh

RTT 2
.t (7.10)

We solve for w by separating variables and integrating both sides:

w =
αgh

RTT 2

∫

t.dt =
αgh

RTT 2
.
t2

2
+ C2 (7.11)

Where C2 is an integration constant and can be found from the initial condition

at t0. At t0 w = 0, thus, C2 = 0. Note that the window is a quadratic function of

time at the beginning of this phase. However, after reaching αmax at time Tmax,

the window growth is linear and the increase is fixed and determined by αmax.

Tmax can be found from equation 7.10:

Tmax =
RTTαmax

αgh
(7.12)

We can find the window at Tmax by substituting for Tmax in equation 7.11:

wm =
α2

max

2αgh

Using the same approach, we need to find the window function after Tmax:

dw

dt
=

αmax

RTT

solving again for w by separating variables and integrating both sides:

w =
αmax

RTT
.t + C3

Where C3 is an integration constant and can be found from the initial condition at

t1. At t1, w = wm, thus, C3 = −α2
max/(2αgh). The the window equation becomes:

w =
αmax

RTT
.t− α2

max

2αgh
(7.13)

From equation 7.11 and equation 7.13 we can write a full form for the window

function in this phase:

w =

(
αgh

RTT 2
.
t2

2

)

u(Tmax − t) +

(
αmax

RTT
.t− α2

max

2αgh

)

u(t− Tmax) (7.14)

CHAPTER 7. TCP-GENTLE 108

Where, u(.) is the unit step function. Note that the window growth function is

first quadratic, then linear, then square-root (in the damping phase), which we

believe that this strongly supports a congestion avoidance approach and thus safe

to deploy in the Internet.

To find the average throughput we need to find each of the sub-areas shown in

figure 7.3, N1, N2, N3, find their sum and divide it by TR. First we find TR, by

substituting w = Cp in equation 7.13 and rearranging terms:

TR =

(

Cp +
α2

max

2αgh

)
RTT

αmax
(7.15)

The we find the sub-areas:

N1 =
1

RTT

∫ Tmax

0

αgh

RTT 2

t2

2
.dt =

αghT
3
max

6RTT 3

N2 =
α2

max

2RTTαgh

(TR − Tmax)

N3 =
1

2RTT
(TR − Tmax)

(

Cp −
α2

max

2αgh

)

The average throughput can be expressed as:

X =
N1 + N2 + N3

TR

=
αghT 3

max

6RTT 3TR

+
1

RTT

(

1− Tmax

TR

)(
Cp

2
+

α2
max

4αgh

)

(7.16)

We can write the average throughput in terms of the algorithm parameters and

the capacity Cp by substituting for Tmax and TR in equation 7.16:

X =
1

RTT

(

α2
max

6αgh

(

α2
max

αghCp − α2
max

2

)

+

(

1− α2
max

αghCp − α2
max

2

)(
Cp

2
+

α2
max

4αgh

))

(7.17)

As a numerical example, we consider the the same values mentioned when

discussing the steady-state, however in this case substituting the values in equa-

tion 7.17 we get 146.9 Mbps (X = 18367.05 pkts/s). This means that on average

approximately 50% of the pipe capacity (in bits/s) can be achieved in the thrust

phase.

In the following sections, we show through simulation and real experiments

that for a set of algorithm parameters, the desired aims can be achieved.

CHAPTER 7. TCP-GENTLE 109

7.3 Simulation Experiments & Results

0 ms
1 Gbps

TCP

Source−2

TCP

Source−1

TCP

Sink−2

TCP

Sink−1

WWW

Sources

WWW

Sinks

x Mbps 0 ms
1 Gbps

ms

1 Gbps
ms0

1 Gbps
ms0

y

Figure 7.4: Topology

In this section we discuss our simulation experiments used to evaluate TCP-

Gentle. We implemented TCP-Gentle based on TCP-YeAH module and used

TCP/Linux patch3 for ns2. We have found that the following choice for the set of

TCP-Gentle parameters achieve our aims: αgh = 2, αgl = 0.1, αrocket = 2, αmax =

20, NP = 7, AG = 8, v = 2. We used the same queue size threshold in TCP-YeAH

(80 packets), to be able to compare TCP-Gentle and TCP-YeAH under the same

conditions. The choice of 80 packets gives reasonable performance of TCP-YeAH

for high-speed long-delay environment [9]. A simple dumbbell topology (please

see figure 7.4) with only two TCP flows and one bottleneck with a Drop-Tail

queue policy and a capacity of 300 Mbps and 100Mbps was used in most of the

experiments. The MSS was fixed to 1000 bytes, buffer size was fixed to 5% of

BDP4 (when the total propagation delay is 46ms, roughly a round trip time of

100ms), the reason for using this buffer size was to limit the amount of data

generated by the simulator for high-speed setup. The WWW sources, are used

only when studying the effect of web traffic. We found that in most cases; 300s

of simulation time is sufficient for TCP to reach equilibrium under this setup.

However, a large buffer size (100 % of BDP) and longer simulation time, 1200s

were used in a number of cases when studying steady-state behaviour.

7.3.1 High BDP Operation

In order to evaluate TCP-Gentle basic concepts, we used two flows running TCP-

Gentle. In the absence of any other competing traffic, the flows try to utilise the

bottleneck link in figure 7.4.

First, we let the second flow start at → ∞, and studied the operation of a

single flow. Figure 7.5 shows the congestion window evolution of TCP-Gentle flow

3TCP/Linux is now part of ns2 code.
4Unless otherwise mentioned, these values of bottleneck link capacity and buffer size are

default values in this section

CHAPTER 7. TCP-GENTLE 110

C
w

nd
 [p

kt
s]

Time [s]

Flow[1]−−>TCP−Gentle
Flow[2]−−>TCP−Gentle

Queue size

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200

(a) TCP-Gentle-1: Single flow

Damping Phase

Rocket

Mechanism

Zero QueueMechanism
Rocket

Thrust
Phase

+

convergence
Fast

Time [s]

C
w

nd
 [p

kt
s]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 200 400 600 800 1000 1200

Flow[1]−−>TCP−Gentle
Flow[2]−−>TCP−Gentle

Queue size

(b) TCP-Gentle-1: Double impulse

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800

Flow[1]−−>TCP−Gentle
Flow[2]−−>TCP−Gentle

Queue size

(c) TCP-Gentle-2: Single flow

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600 700 800

Flow[1]−−>TCP−Gentle
Flow[2]−−>TCP−Gentle

Queue size

(d) TCP-Gentle-2: Double impulse

Figure 7.5: Bottleneck = 300 Mbps, RTT = 92 ms, Buffer = 5%, BDP = 172 pkts

and the queue size of the bottleneck link. As can be seen from figure 7.5(top),

when the connection starts, the algorithm is in the gentle mode. Since the queue

is empty, the thrust phase is enabled and the congestion window evolves according

to the rocket mechanism rule until it senses a non-empty queue. In the RTT where

a non-empty queue is sensed, the algorithm de-couple the rocket mechanism and

enters the damping phase with an initial increase of αgh per RTT. After that,

the congestion window keeps increasing until it senses that the queue threshold

is exceeded. In the RTT where the sender estimate of the bottleneck queue ex-

ceeds this queue threshold, the algorithm reduces the congestion window by the

queue estimate (this is decongestion) and switches reno mode, however because

the network responds to this reduction, the next RTT, the sender sees a queue less

than the threshold and exits reno mode and goes back to gentle mode / damping

phase. Note that the reno mode is entered only once per decongestion epoch and

the algorithm exits in the next RTT i.e. the algorithm spends most of its time in

gentle mode / damping phase, which is the steady-state mode in this case.

Second, we study a double impulse response. We let the second flow start

at t = 200s and exit at t = 400s, then start again at t = 600s and finally

exit at t = 900s. The congestion window evolution of this case is illustrated in

figure 7.5(bottom). One point to note is the fast convergence when the second

CHAPTER 7. TCP-GENTLE 111

flow enters, this is because the first flow reset its gentle mode after a number of

subsequent reductions (RESET THRESHOLD), and thus two flows start with

the high αgh which facilitates the fast convergence according to the concept of

AIMD (chapter 2). Another point is the automatic enabling/disabling of rocket

mechanism. For example, when the second flow exits at t = 400s and t = 900s, the

queue size estimate in the next RTT becomes zero and the first flow relieves that

the second flow exits and thus enables the rocket mechanism. Note that even if the

queue was not completely empty when the second flow exits, the algorithm still

respond aggressively due to its damping phase rule being inversely proportional to

the queue estimate (∝ 1/Q. The square-wave-like shape of the first flow congestion

window is desirable, since on one side it indicates the trade-off break of high

responsiveness and smoothness, from another side it increases the area under the

curve, i.e. number of packets sent during time interval. Historically, increasing this

area was indeed a desirable thing, and was achieved by means of using a concave

congestion window growth, see for example [102], [69].

7.3.2 Friendliness to TCP-NewReno

Considering TCP-NewReno friendliness, TCP-Gentle differs from TCP-YeAH in

two points: firstly, TCP-Gentle has different implementation of TCP-NewReno

increase rule, a stanza from both codes is shown in Listing 7.1 and Listing 7.2.

When competing with a TCP-NewReno flow, both increment by one packet each

RTT, however this implementation of of TCP-Gentle rule fits our needs, since α

is variable and can take different values (in reno mode, α = αreno = 1) while in

TCP-YeAH the increment is always by one.

Listing 7.1: TCP-Gentle AI rule� �
u32 de l t a ;

tp−>snd cwnd cnt+=gent le−>pkts acked ;

d e l t a = (tp−>snd cwnd cnt ∗ gent le−>alpha) >> ALPHA SHIFT;

if (d e l t a >= tp−>snd cwnd) {
tp−>snd cwnd = min (tp−>snd cwnd + de l t a /tp−>snd cwnd ,

(u32) tp−>snd cwnd clamp) ;

tp−>snd cwnd cnt = 0 ;

}

� �

Listing 7.2: Reno AI rule used in TCP-YeAH� �
if (tp−>snd cwnd cnt >= w) {
if (tp−>snd cwnd < tp−>snd cwnd clamp)

tp−>snd cwnd++;

tp−>snd cwnd cnt = 0 ;

CHAPTER 7. TCP-GENTLE 112

}
else

{
tp−>snd cwnd cnt++;

}

� �

Secondly, in steady-state TCP-Gentle and TCP-YeAH have totally different

modes of operation; TCP-Gentle steady-state operation is in gentle mode, while

TCP-YeAH steady-state operation is fast mode. When a competing TCP-NewReno

enters both exist from different modes and after a the competing TCP-NewReno

exits, TCP-Gentle enters gentle mode, while TCP-YeAH enters fast mode. In

order to study the impact of these two points on TCP-NewReno, we used two

flows that have the same starting time, bottleneck link propagation delay var-

ied as x = 10ms, 15ms, 20ms, 25ms, 30ms, 35ms, 40ms, 45ms, 50ms, 55ms, 60ms,

z = y = 0ms. For each run, one flow use TCP-Gentle or TCP-YeAH and other

flow is is TCP-NewReno. Then we used the Asymmetry index [49] to get an

indication about which flow is having more/less share than the other flow.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200 250 300

C
w

nd
 [p

ac
ke

ts
]

Flow[1]−−>TCP−YeAH
Flow[2]−−>TCP−NewReno

Queue

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 50 100 150 200 250 300

C
w

nd
 [p

ac
ke

ts
]

Time [s]

Flow[1]−−>TCP−Gentle
Flow[2]−−>TCP−NewReno

Queue

(a) Bottleneck = 100 Mbps , RTT = 40 ms, Buffer
= 50%, BDP = 250 pkts

−1.5

−1

−0.5

 0

 0.5

 1

 1.5

 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

A

RTT [seconds]

TCP−YeAH vs TCP−NewReno
TCP−Gentle vs TCP−NewReno

100% TCP−NewReno

100% TCP−Gentle or TCP−YeAH

50% TCP−NewReno

50% TCP−Gentle or TCP−YeAH

(b) Asymmetry index

Figure 7.6: Friendliness to TCP-NewReno

Figure 7.6 shows the result of the experiments. It can be seen from figure 7.6b

that over this range of RTTs, TCP-Gentle AI rule is more friendly to TCP-

NewReno, this can be seen from the close-to-zero values of asymmetry index, which

indicates better fair share of bandwidth when competing with TCP-NewReno.

Figure 7.6a shows the congestion window evolution for one of the RTT ex-

periments, but instead of starting at the same time, the TCP-NewReno flow was

started at t = 100s and stopped at t = 200s. We note that at t = 200s TCP-

Gentle responds better than TCP-YeAH case, this is due to the rocket mechanism.

Interestingly, the use of initial value of αrocket = αgh in the rocket mechanism ex-

hibits an s-shape congestion window evolution in the thrust phase, this is because

at the end of this phase the algorithm enters to the damping phase with an initial

CHAPTER 7. TCP-GENTLE 113

value of αgh. Again this concave behaviour is desirable for the reasons mentioned

in the previous subsection. We also run longer experiments, e.g. TCP-Gentle 20

minutes flow interrupted by a TCP-NewReno. The congestion window evolution

is shown in figure 7.7.

 0

 100

 200

 300

 400

 500

 600

 700

 0 500 1000 1500 2000

C
w

nd
 [p

ac
ke

ts
]

Time [seconds]

TCP-Gentle vs NewReno impulse

Flow[1]-->TCP-Gentle
Flow[2]-->TCP-NewReno
Queue size

Figure 7.7: Bottleneck = 100 Mbps, RTT = 40 ms, Buffer = 50%BDP = 250 pkts

7.3.3 Effect of Web Traffic

In order to study the effect of web traffic on TCP-Gentle long-lived flows and queue

size, we used an HTTP/1.0 background traffic generator code [52] for ns2. The

generator’s WWW Model implements a client and server sources to emulate the

request and response traffic processes from typical web browsers and servers. The

client object initiates a variable length request; after a random processing time, the

server responds with a random number of connections of varying length. After a

random viewing time (called ”think time”), the client issues another request. The

same empirical distributions were used to dictate the various random quantities.

However, we modified the code to use GNU/Linux agents, this allowed us to have

a typical traffic from a GNU/Linux sources, we used 340 sources giving roughly

4Mbps of web traffic load. We added this traffic to a long-lives TCP-Gentle flow

and used a bottleneck capacity of 300 Mbps, RTT of 92ms and buffer size of 5%

BDP (172 pkts). Note that the web traffic shares about 1.3% of the bottleneck

capacity and the rest 98.67% is used by the bulk transfer of TCP-Gentle flow.

Figure 7.8 depicts the queue size for a single flow TCP-Gentle, with and with-

out the web traffic load, left upper plot. The left bottom plot, shows the case

when the algorithm is replaced by TCP-YeAH. The right vertical plot shows av-

erage values over 50 seconds. We note that, when web traffic load is added the

CHAPTER 7. TCP-GENTLE 114

average queue size reduces in the case of TCP-Gentle and increases in the case of

TCP-YeAH. The reason for the increase is indeed TCP-YeAH aggressive rule. On

the other hand the reason for the decrease is because the added traffic increase

the number of backoffs of TCP-Gentle and because TCP-Gentle additive rule in

the damping phase, it takes longer time to reach the threshold after a back off,

this results in less number of TCP-Gentle packets in the buffer.

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350

Q
ue

ue
 S

iz
e

[p
ac

ke
ts

]

Time [seconds]

TCP-Gentle
TCP-Gentle with http

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350

Q
ue

ue
 S

iz
e

[p
ac

ke
ts

]

Time [seconds]

TCP-YeAH
TCP-YeAH with http

 0 50 100 150 200 250 300 350
 0

 20

 40

 60

 80

 100

 120

Average Queue [packets]

TCP-YeAH
TCP-Gentle

TCP-YeAH with http
TCP-Gentle with http

Figure 7.8: Effect of Web Traffic

One interesting observation is the drop in the average queue in the case of

TCP-Gentle at 250s. The reason behind that is because the α value is damping

and the lowest appears in the last decongestion epoch (200s−300s), so we expect

a drop in the queue size in this epoch. In addition to that, it is more likely to be

in the first half of the epoch (200s− 250s) just after the back off of the previous

epoch which would have probably emptied the queue, and unlikely to be in the

second half of the epoch (250s − 300s) where the queue is most probably about

to reach the threshold.

CHAPTER 7. TCP-GENTLE 115

7.4 Real Test-Bed Experiments & Results

Dell

Dummynet
TCP−receiver

TCP−sender−2

TCP−sender−1

Figure 7.9: Topology

Parallel to our simulation experiments, we run experiments5 on a real test

bed. The aim was to test TCP-Gentle in high-speed long-delay environment,

particularly the objectives of our experiments are:

Single flow testing:

1. Examine basic concepts of single TCP-Gentle flow in a high-speed long-

delay environment;

2. Measure TCP-Gentle response function.

Double flow testing:

1. Measure Intra-protocol fairness/RTT-unfairness;

2. Measure Inter-protocol fairness (TCP-NewReno).

Figure 7.12 depicts the arrangement of the test bed. The experimental test bed

consists of four Linux boxes, one of which is used as a router running dummynet, the

other three PCs running Iperf (two TCP senders and a receiver). All PCs have

two processors each is Intel(R) Pentium(R) 4 CPU clock frequency 3.20GHz. 1GB

RAM. The network interface cards used are all 1 Gigabit Ethernet. All PCs have

Linux-2.6.33.3 installed on them with TCP-Gentle enabled on the TCP senders.

We used tcpprobe module to probe the congestion window and the slow start

threshold values, we also modified the code to probe the sender size queue estimate

and the do_reno flag (to identify the mode of operation). We used a bottleneck

capacity of 100 Mbps and a packet size of 1500 bytes in all experiments in this

section, we also changed the queue size threshold (i.e. Qmax) to 50 packets instead

of 80 packets, we did that to study the effect of reducing the queue threshold,

since we already studied a value of 80 packets in the previous section. In addition

5A step by step procedure is mentioned in the appendix

CHAPTER 7. TCP-GENTLE 116

to changing the queue size threshold, we disabled slow start algorithm for TCP-

YeAH and TCP-Gentle in all experiments in this section, we did that to study

the operation of newly introduced ideas without the effect of any other congestion

control algorithms operating inside our algorithm. In the following subsections we

elaborate on findings related to each of the aforementioned objectives.

7.4.1 High BDP Operation

50

500

1200

1300

2000

 50 100 150 200 250 300

Time [s]

C
w

nd
 [p

kt
s]

833.33
Pc

883.33
Cp+Qm

Qm

TCP-Gentle
Queue size

Operation Mode
ssthresh value

(a) TCP-Gentle

50

500

1200

1300

2000

 50 100 150 200 250 300

Time [s]

C
w

nd
 [p

kt
s]

833.33
Pc

883.33
Cp+Qm

Qm

TCP-YeAH
Queue size

Operation Mode
ssthresh value

(b) TCP-YeAH

Figure 7.10: Bottleneck = 100 Mbps , RTT = 100 ms, large buffer

In the first experiment, we used a single flow running TCP-Gentle, then re-

peated the experiment for TCP-YeAH. We emulated a high BDP environment by

setting the bottleneck capacity to 100 Mbps and the propagation delay to 50ms

i.e. RTT of 100ms, this gives a BDP of 833.33 packets6(100 × 106/(8 × 1500)).

This is the pipe capacity and we denote it by Cp. The algorithm is allowed to keep

Qm in the buffer, where Qm = 50 packets, thus we have a margin of 50 packets

after reaching the pipe capacity, in other words, in gentle mode the congestion

window can grow to a maximum value of Cp + Qm before a decongestion back off

takes place.

In figure 7.10 we show a plot of the congestion window evolution for both

experiments,the status of the do_reno flag is indicated as pulses (the top line), if

do_reno == 0 the algorithm is in the gentle mode, otherwise its in the reno mode.

To plot this information on the same plot of congestion window, we scaled the flag

value, i.e. if do_reno == 0, the operation mode7 is set to 1200 and the algorithm

is in gentle mode, otherwise the operation mode is 1300 and the algorithm is in

reno mode. The resultant pulse train gives information about the frequency of

6BDP is usually expressed in bits, but we express it in terms of packets for convenience, since
we use packets in the context of the discussion

7This is the value is represented by top line and it is unit less

CHAPTER 7. TCP-GENTLE 117

switching between the two modes and when it happens. Obviously, TCP-Gentle

has less number of pulses due to its gentle rule of increase, while TCP-YeAH has

more pulses due to its more aggressive rule in the fast mode. In other words the

queue size threshold is exceeded less number of times in TCP-Gentle compared

to TCP-YeAH, this supports our argument about TCP-Gentle rule being less

aggressive than TCP-YeAH.

Considering link utilisation, both algorithms efficiently utilise the pipe capac-

ity, this can be seen from figure 7.10. We also run longer experiments of 20 minutes

for TCP-Gentle, TCP-CUBIC and reported the average throughput from Iperf.

TCP-Gentle transmitted 13.0 Gbytes in 1200.0 seconds; which maps to 93.2 Mbps,

while TCP-CUBIC transmitted 13.1 Gbytes in 1200.2 seconds; which maps to 93.9

Mbps.

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300

C
w

nd
 [p

kt
s]

Time [s]

TCP−Gentle
Queue size

Operation Mode
ssthresh value

(a) Congestion window

Packets that cause early
stop of thrust phase

TRTmax

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

A
lp

ha
 a

nd
 Q

 [p
kt

s]

Alpha value
Queue size

Time [s]

(b) Alpha & Queue size

Figure 7.11: Bottleneck = 100 Mbps , RTT = 100 ms, large buffer, Qmax=100
pkts, TPQ= 25 pkts

To study the initial average throughput, we used a single TCP-Gentle flow

and stopped the flow at the end of the thrust phase, we repeated the process

for ten times and reported the average value of the throughput, we compared

the theoretical results calculated using equation 7.15 and equation 7.17 with the

experimental results. We found that if thrust phase stops when Q ≥ 0 (the

current algorithm setup), the rocket mechanism stops early i.e. before reaching

the capacity of the pipe. We found that when this happens the congestion window

is ≈ Cp

2
. According to equation 7.17, this achieves 25% of the pipe capacity (in

pkts/s) The reason behind that is the existence of some packets in the queue even

when the link is not fully utilised, these packets are not persistent, they appear

to be random, persistent packets only appear when the link is fully utilised.

To overcome this problem, we let the thrust phase stop after a higher threshold

Q ≥ TPQ and set TPQ = 25 pkts, and set Qmax = 100 instead of 50 pkts,

this prevents early stop of the rocket mechanism, in fact it stops only when the

threshold (TPQ) is exceeded, when this happens the congestion window is = Cp

CHAPTER 7. TCP-GENTLE 118

Table 7.2: Initial state average throughput when TPQ = 25 pkts, Qmax = 100

Experiment TR = 5s TR = 6s TR = 7s
Throughput [Mbps] Throughput [Mbps] Throughput [Mbps]

1 32.7 41.2 48.9
2 33.9 41.1 48.3
3 32.5 42.3 47.8
4 32.9 42.3 48.9
5 32.5 42.2 45.8
6 32.6 42.4 49.0
7 33.9 40.0 45.3
8 32.6 42.3 48.4
9 33.9 42.1 49.5
10 32.6 41.2 48.3

and 50% of the pipe capacity is achieved. However we note that there is no problem

of stopping the rocket mechanism early, the only issue is that the algorithm will

be more conservative. at the end of the thrust phase, which agrees with the gentle

behaviour of the algorithm..

Figure 7.11 shows the congestion window evolution and the AI increase value

of one of our experiments, it can be seen from the congestion window evolution

plot, that the thrust phase stops when the capacity of the pipe is reached, unlike

the original case, for example figure 7.10a. Theoretical values of Tmax and TR are

calculated using equation 7.12 and equation 7.15, and they are: Tmax = 1 second,

TR = 4.67 seconds. Experimentally we found that the values are: Tmax = 1 second,

TR = 5.68. The average throughput calculated using equation 7.17 is 41.8 Mbps,

table 7.2 summarises the average throughput of the of the initial state for ten runs

for durations of TR and near it.

Over all, TCP-Gentle has the advantage of putting less load on the network

while achieving the high performance of its sibling TCP-YeAH and other algo-

rithms like TCP-CUBIC. We finish this subsection by two remarks, the first is

that TCP-CUBIC is a loss-based algorithm i.e. it follows a reactive approach, while

TCP-YeAH and TCP-Gentle follow a proactive approach (they react before loss).

The second is that in the original case for TCP NewReno the slow start threshold

sshthresh is changed upon back off (loss or time out) and considering TCP conges-

tion control algorithms, algorithms adjust this value differently. However, Linux

TCP code adaptively change this value even for the original case of TCP-NewReno

, it sets an infinite initial value (0x7fffffff) and if cwnd > ssthresh, Linux may

rise the sshthresh to half-way to cwnd, the exception is rate halving phase, when

cwnd is decreased towards ssthresh (practically this happens exponentially, al-

though it is theoretically referred to as MD). Details of this implementation is

CHAPTER 7. TCP-GENTLE 119

mentioned in the Linux source code tree: /include/net/tcp.h.

7.4.2 Response Function

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1

T
hr

ou
gh

pu
t [

M
bp

s]

Packet Loss Prb.

TCP-Gentle:αgh=2,αrocket=2,αmax=20
TCP-Gentle:αgh=10,αrocket=10,αmax=100

TCP-YeAH
TCP-Cubic

Figure 7.12: Response functions: bottleneck capacity = 100 Mbps, RTT = 100
ms, large buffer size

In this subsection we study the response of TCP-CUBIC, TCP-YeAH and

TCP-Gentle to range of random packet loss probabilities.In our experiments we

considered empirical Response function. In the setup in figure 7.9 we used a single

flow running one of the algorithms, a bottleneck capacity of 100 Mbps, a RTT of

100ms and used the uniform packet loss functionality provided by dummynet, we

used a range of packet loss probabilities [10−08,10−01] and run a 5 minutes exper-

iment for each probability in this range then reported the average throughput.

Figure 7.12 shows a plot of average throughput versus packet loss probability

for the algorithms. We note that the response of TCP-Gentle is very close to

that of TCP-YeAH, when we tried different values for TCP-Gentle parameters,

we noticed a better response, this is indicated by increase in throughput at higher

loss rates, however the price for that is indeed more aggressiveness. Since our aim

is to reduce network load as much as possible, we would trade a tolerable decrease

in responsiveness (response to packet loss) for reducing network load. We would

like to mention that upon packet loss all algorithms use the SACK mechanism

for retransmitting the lost packets, Linux implementation of SACK usually spend

time to locate the missing segment, and this time is sufficient to cause time-outs

which will result in less average throughput. We have experienced this in our

experiments, we also found that this has been reported as a problematic issue for

CHAPTER 7. TCP-GENTLE 120

Linux when working in high-speed long-delay networks. We did not disable SACK

in our experiments and the reason was that we wanted to take into account all

implementation aspects from a worst case point of view.

7.4.3 Intra-Protocol Fairness & RTT-Unfairness

 0

 20

 40

 60

 80

 100

 120

 140

20 20 20 <-> 25 25 25 <-> 50 50 50 <-> 100 100 100 <-> 150 150 150 <-> 200 200 200

T
hr

ou
gh

pu
t [

M
bp

s]

Second flow RTT [ms]

Gen
tle

YeA
H
Cub

ic

Gen
tle

YeA
H
Cub

ic

Gen
tle

YeA
H
Cub

ic

Gen
tle

YeA
H
Cub

ic

Gen
tle

YeA
H
Cub

ic

Gen
tle

YeA
H
Cub

ic

Flow[1]
Flow[2]

Remaining

Figure 7.13: Algorithm fairness & RTT-Unfairness

We study the intra-protocol fairness of TCP-Gentle compared to TCP-YeAH

and TCP-CUBIC, by intra-protocol fairness we mean fairness between flows run-

ning the same algorithm. Referring to figure 7.9, we used two flows running

the same algorithm and one bottleneck with a capacity of 100 Mbps. The RTT

for the first flow is fixed at 100ms. The RTT for the second flow is varied as:

20ms, 25ms, 50ms, 100ms, 150ms, 200ms. The reason for that is to study the im-

pact of RTT-unfairness. At 100ms both flows have the same RTT. Each experi-

ments is repeated three times and the average value of the throughput is reported.

We summarise our results in figure 7.13.

As can be seen from figure 7.13, all algorithms under test underutilise the pipe

capacity, this is indicated by the upper shaded areas. The reason for that is each

flow tries to get half the the pipe capacity which is in this case 50 Mbps. We

found that trying to utilise this bandwidth using the RTTs in this experiment

result in excessive time-outs. In addition to that we found that, when SACK is

enabled, after a time-out the congestion window is halved instead of going back

to one packet and when SACK is disabled the congestion window goes back to

one packet after each time-out (original case). In other words the upper shaded

CHAPTER 7. TCP-GENTLE 121

areas in the figure would have been larger if the SACK is disabled. We also note

that this underutilisation gets worse as the RTT increases i.e. the network gets

sluggish and time-outs increase. However using, larger bottleneck capacity e.g.

300 Mbps makes each flow struggle for 150 Mbps which would indeed show less

time-outs and thus better link utilisation i.e. less upper shaded areas.In parallel, it

is easy to forget that dummynet is also queueing packets in the network (this is way

the emulator works), this can create increased delay and eventually time-outs, we

also found that such cases are also reported in literature for high-speed long-delay

networks.

TCP-YeAH and TCP-Gentle exhibit clear RTT-unfairness as the RTT of the

second flow is varied and it is worse as the the RTT increase difference increase,

however TCP-Gentle perform better than TCP-YeAH, and the reason behind that

is believed to be the MI rule of TCP-YeAH. TCP-CUBIC is very immune against

RTT-unfairness and the reason behind that is that increase rule is not a function

of RTT and it is updated as a function of real time, in fact the algorithm was

optimised to achieve this goal, although the desirability of this goal is arguable in

literature we quote [34, p.11]:

“We note that there is not a consensus in the networking commu-

nity about the desirability of this goal, or about the implications and

interactions between this goal and other metrics [FJ92] (Section 3.3).

One common argument against the goal of fairness between flows with

different round-trip times has been that flows with long round-trip

times consume more resources; this aspect is covered by the previous

paragraph. Researchers have also noted the difference between the

RTT-unfairness of standard TCP, and the greater RTT-unfairness of

some proposed modifications to TCP [LLS05].”

When both flows have the same RTT, we note that TCP-Gentle performs better

than TCP-YeAH and its performance is similar to that of TCP-CUBIC. We

note that TCP-YeAH substantially underutilise the pipe capacity compared to

the other two algorithms. As a result, TCP-Gentle unique AI rule provides better

fairness and RTT-unfairness compared to TCP-YeAH and thus has the potential

to be an improvement from this perspective.

7.4.4 Friendliness to TCP-NewReno

In order to study the interaction of TCP-Gentle with standard TCP-NewReno, we

used a bottleneck capacity of 100 Mbps and a RTT of 14ms in the setup shown in

figure 7.9. This setup is a typical setup for TCP-NewReno normal operation and

CHAPTER 7. TCP-GENTLE 122

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200

C
w

nd
 [p

kt
s]

Time [s]

TCP-Gentle
Queue size

Operation Mode
ssthresh value

Figure 7.14: Bottleneck = 100 Mbps, RTT = 14ms, large buffer size

it is not a high speed long delay setup. We used a single long-lived TCP-Gentle

running for 20 minutes, during this period we let another TCP-NewReno flow

start at a random time (≈ 40 seconds) and last for 1 minute, then we repeated

the process again at random time (≈ 815 seconds) but this time we let the flow

last for 2 minutes. We also reported the do_reno flag, but this time we scaled it

between 500 and 600 to be able to plot it on the congestion window plot.

The result of the experiment is shown in figure 7.14. The figure shows the

double impulse response of the algorithm, only the congestion window of TCP-

Gentle is plotted, we note the dark areas on of the congestion window at the

beginning of the connection and when TCP-NewReno exits, these are resets of the

gentle mode and thus the algorithm starts with the thrust phase then enters the

damping phase (with αgh) after the queue size threshold is reached, following that

it quickly reaches steady-state. Considering the do_reno flag, if the value is 600

this means that the algorithm is in reno mode and if the value is 500 this means

that the algorithm is in the gentle mode, thus the upper plot shows the frequency

of switching between the two modes of operation. We note that the algorithm

spends more time in the reno mode when it is competing the NewReno 8 flow.

The reason for the large values of congestion window when competing with a

NewReno flow is the large buffer size. And since NewReno and TCP-Gentle in

reno mode are loss-based algorithms, the buffer is highly occupied, this can also

be seen from the sender size queue size (the bottom plot).

8This mechanism of switching is borrowed from TCP-YeAH

CHAPTER 7. TCP-GENTLE 123

7.5 Summary

In this chapter we discussed in details our new TCP congestion control algo-

rithm: TCP-Gentle. The new algorithm is an incremental development over

TCP-YeAH, which is an algorithm optimised for high link utilisation while main-

taining minimum network load and at the same time being friendly to standard

TCP-NewReno. Our algorithm uses different increase rules depending on network

conditions. It uses an adaptive additive increase rule instead of multiplicative

increase. It is believed to be more gentle to the network and has better fairness

properties than YeAH-TCP, has a nearly flat rate in steady-state while at the

same time maintains high responsiveness, high link utilisation and friendliness to

TCP-NewReno.

We derived a deterministic model for the new algorithm, this is basically a

theoretical expression for the initial and steady-state average throughputs. We

implemented the new algorithm as a Linux kernel module and showed through

theoretical analysis and simulation/real experiments that the algorithm is even

more gentle to the network and shares bandwidth more fairly and thus is a com-

petitive algorithm to existing algorithms. We discussed some of our experience

dealing with the Linux TCP code wherever it was needed. This finalise the contri-

butions of this dissertation on this track. In the next chapter we move to another

TCP problem related to non-congestive packet loss which is another challenge to

TCP protocol.

Chapter 8

A Loss Differentiation Algorithm

In this final chapter, we address another TCP congestion control problem, the

problem arises from the fact that TCP makes a tacit assumption that each packet

loss is caused due to congestion and based on that TCP reduces the congestion

window. Due to the existence of new technologies such as optical fibre, wireless

networks, etc, coupling the packet loss with congestion is no more accurate. To

elaborate on this point, some studies have shown that such non-congestive loss are

not uncommon in WLANs and can have tragic impact on TCP throughput, for

example; a test on a single WLAN with 15 wired links showed that the throughput

in the absence of loss was 1.5 Mbps, while with independent frame loss of 2.3%,

frame size of 1400 bytes the actual throughput was 0.7 Mbps and for a WAN case

the actual throughput was 0.3 Mbps, a test for IEEE 802.11 in the absence of

loss showed that the throughput was 2 Mbps which dropped to 0.98 Mbps when

the same percentage of loss was introduced [51]. Applying these figures to IEEE

802.11g bandwidths (up to 54 Mbps) which are extensively used nowadays, the

46.66% and 22.96% and 49% drop in throughput can be significant. In addition to

that the problem can get even worse with the existence of clustered errors where

multiple errors in a congestion window usually result in a time-out forcing TCP

to effectively reset its congestion window. Another complication, is the way TCP

operates, in a shared WLAN medium forward TCP traffic contends with reverse

ACKS leading to undetectable collisions which significantly increase the Frame

Error Rate (FER) visible to higher layers [51]. Considering wireless networks in

general, there are other TCP congestion control problems associated with cellular

communication systems (e.g. GSM, satellite system) and even the heterogeneity

of wireless systems, but these are out of the scope of this thesis.

Techniques such as ECN can help in mitigating the problem, however they do

not provide a complete solution [81, p.10]:

“. . . if a CE packet is dropped later in the network due to corruption

124

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 125

(bit errors), the end nodes should still invoke congestion control, just

as TCP would today in response to a dropped data packet. This

issue of corrupted CE packets would have to be considered in any

proposal for the network to distinguish between packets dropped due to

corruption, and packets dropped due to congestion or buffer overflow.

In particular, the ubiquitous deployment of ECN would not, in and

of itself, be a sufficient development to allow end-nodes to interpret

packet drops as indications of corruption rather than congestion.”

There have been many attempts to solve the non-congestive loss problem and the

proposed algorithms are usually referred to as Loss Differentiation Algorithms

(LDAs), some do not use this term but rather integrate the solution as part

of the algorithm/protocol design, like for example the explicit loss notification

(ELN) [10], which relies on the queue length at the wireless link gateway to differ-

entiate between the type of losses. Some of the High-Speed TCP algorithms [69]

use the queueing delay.

In this chapter, we present a novel heuristic which is based on sensing and

quantifying what we call noise and span in packet inter arrival times (PITs) of

duplicate ACKs in the Fast Recovery phase. After that the multiplicative decrease

factor is adapted according to a logical formula.

The rest of the chapter is organised as follows: in section 8.1 we provide a

discussion of the assumptions used to build this heuristic for loss differentiation.

Then we provide a prolonged theoretical discussion of our thoughts about the

behaviour of PITs under different network scenarios, first we look at different

PITs distributions in section 8.2 then we look at the PITs in presence of packet

drops in 8.3. In section 8.4 we present our logical formula which we use to adapt

the multiplicative decrease based on the noise and span in PITs. In 8.5 we discuss

our simulation results and finally we summarise in section 8.6.

8.1 Assumptions for a New Algorithm

In [14] and [2], a heuristic was developed for discriminating congestive loss from

wireless loss based on PITs. The heuristic works under several assumptions: the

sender is on a wired network and the receiver is connected via a wireless link,

the wireless link is the bottleneck link for the connection (often valid in cellular

environments), processing time at the receiver is negligible, only the last link in

the path is wireless, and finally the sender performs a bulk data transfer.

In [59], PITs were analysed in a totally different context and were used in

detecting bottleneck in a passive way. We look at the problem of discriminating

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 126

congestive loss from wireless loss from a different angle, combine some of the

previous work and add a new technique that attempts to discriminate loss even

if the bottleneck link is not the last link in the connection (implies other wireless

environments not just cellular).

We analyse a sequence of packets only when they arrive out of order, in the

following manner: let SQ0, SQ1, SQ2 be the first, second and third packet sequence

number of the first three captured packets and all belong to the same flow (TCP

connection). If SQ1 6= SQ0+1 and SQ2 6= SQ0+1 then capturing continues to np+

1 of packets with SQnp being the last packet. On the sender side this is equivalent

to capturing the first three duplicate acknowledgements, with the exception that

if three duplicate acknowledgements are received capturing continues for the rest

of the duplicate acknowledgements until receiving the acknowledgement of the

retransmitted packet. In other words, np is determined by the number of duplicate

acknowledgements. This means that the captured samples contain at least one

out of order sample which implies at least one packet loss event. From sender side

implementation point of view this can help us implementing the new technique in

TCP Fast Recovery algorithm [89] and adjusting the congestion window according

to type of loss.

We maintain all the assumptions mentioned in [14], except that the wireless

link is not necessarily the bottleneck link. Now, depending on the path traversed,

we assume that the above PITs, have the following cases:

A) Congestive loss case: PITs for out of order packets have no pattern compared

to wireless loss case and the difference between the maximum PIT and the

minimum PIT in our samples is less than the difference in wireless loss case.

B) Wireless loss case: PITs for out of order packets have a pattern compared to

congestive loss case and the difference between the maximum PIT and the

minimum PIT in our samples is greater than the difference in the congestive

loss case.

By “pattern” we mean that PITs take certain finite values. Our discrimination

approach can be informally stated as follows: if the difference between maximum

and minimum PITs is small then make the assumption that this is a congestive

loss, if the difference is large then an ambiguity arise (could be non-congestive or

congestive plus large cross traffic interference causing this large difference), in this

case; use the randomness in PITs as another signal, if randomness is high then

make the assumption that this is a congestive loss, if randomness is small then

make the assumption that this is non-congestive loss.

To see how these assumptions can be valid, let us consider the following two

cases in a multi hop network, a typical arrangement for a multi hop network is a

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 127

hybrid network (wired-wireless), obviously this is not the only arrangement, there

could be a complete wireless, but hybrid networks are common infrastructure

networks.

8.1.1 Single Flow without Cross Traffic

���
���
���

���
���
���

Ct, τ
(a) Typical single flow scenario with path capacity Ct and transmission time τ

t

SnSoS2 S1

SQoSQ1SQ2....SQnp

....

(b) Out of order packets at the receiver

Figure 8.1: Single flow without cross traffic

It is possible for a congestion to occur without having any cross packets between

our single flow packets, this could happen for example if the sender rate overloads

the capacity of the bottleneck link. In this case packets spacing are still relatively

close, because the spacing is approximately the transmission time of the bottleneck

link. Figure 8.1a depicts a typical arrangement for this scenario. We denote by

Ct the capacity of the path and by τ the transmission time. Solid lines means a

wired link and dashed lines means a wireless link. Each circle represents a node

(typically a router), the shaded circle represents the node that has the minimum

capacity link attached to it from the right, we call this node the bottleneck node.

In this case if a packet drop happens due to congestion (drop from the queue1) the

difference between the maximum PIT and the minimum PIT in our samples can

be relatively close because packets that survive from loss need to be transmitted

by the bottleneck link, so the spacing should be ≈ τ . On the other hand, if a

packet drop happens due to wireless link the difference between the maximum

PIT and the minimum PIT in our samples, can be much greater because out of

order packets will not traverse any link after the last link. In addition to that,

bursty loss is not uncommon in wireless links. Figure 8.1b shows our single flow

out of order packets, SQ0 is the sequence of the first packet and SQnp is the last

one, np+1 is number of captured packets. Packets inter arrival times are denoted

1Can have active or passive management policy

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 128

by S, where S0 ≤ S1 ≤ S2 . . . ≤ Sn and the number of samples is n+1. In this case

S ≈ τ , if we plot the distribution of the PITs we get a single major spike at the

transmission time of the bottleneck capacity, τ . In our discussion a “major spike”

is synonym to a “pattern”. So in this situation we have small difference between

the maximum and minimum PITs and a pattern. The discriminator decision based

on the difference between the maximum and minimum PITs appears to be valid

in this case.

8.1.2 Single Flow with Cross Traffic

It is possible to have cross traffic joining our single flow packets during their

travel from source to destination across the multi hop path and exit the path

at some point later, cross traffic interference during congestion (queue build-up)

adds randomness to our single flow PIT, this is due to queue build-up and queue

empty processes, because each cross traffic packet that interferes with the single

flow packets represent a time gap in future time (when the cross traffic packet

exits the path) these time gaps are subject to variations along the path, starting

from the random arrival of cross traffic then bottleneck node processing time, any

other future queue build-up, or other cross traffic, etc. In addition to that cross

traffic packets can have different sizes (e.g. ACK packets which have smaller size).

If packet loss happens in this situation (likely due to congestion), an ambiguity

appears: is the difference between the maximum and minimum PITs due to cross

traffic interference or is it the large difference that appears in a non-congestive

loss (when there is at least one large gap in PITs and the rest are small i.e.

back-to-back)?

To help resolving this, we use another signal which we believe it is coupled with

the existence of cross traffic, we expect the single flow PITs in our captured sample

to have significant randomness due to cross traffic interference during congestion.

In contrast, if there is no congestion (queue build-up) and a packet drop happens

(likely due to wireless link transmission error), the single flow PITs in our captured

sample are expected to have less randomness, since the packets are dropped at the

last link, the time gaps have less chance to change and the PITs are approximately

multiples of the bottleneck link transmission time (depending on how many packet

drops happened at the last link). Therefore, this randomness in PITs can help our

discriminator to make the discussion about the type of packet loss in this case.

Two points to note here: Firstly, lower layer wireless protocols adds random-

ness to both situations. Secondly, an intuitive question that stems from the above

discussion is: What if a packet drop due to wireless link transmission error happens

during congestion? Since the overall pattern is random in a congestion situation

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 129

the packet drop will be assumed to be due to congestion. In fact it is better to

be conservative in our assumptions, it has been shown [15] that it is much more

costly to mistakenly identify a congestive loss as a non-congestive one than the

other way round.

Another point to mention is that it is possible to have a cross traffic interference

without having a congestion, this means that either there is no queue build-up or

the queue build-up and empty between two single flow packets (before the second

packet arrive at the node), both situations have limited effect on the pattern.

Any packet drop in this case will be recognised as wireless link transmission error

based on case B. Note that the network is not congested here, this can be viewed

as temporary or transient congestion that disappears after a short time.

8.2 PITs Distributions

In this section we examine different PITs distributions in existence and absence

of cross traffic. Where spikes are considered patterns, the areas between these

spikes, in fact; constitute the randomness2 that we were talking about. Hence, the

wider the spectrum, the more likely to have randomness in PITs. Our aim in this

section is to show that cross traffic interference can have this wide spectrum.

8.2.1 Single Flow without Cross Traffic

Referring to figure 8.1, in normal operation; our single flow packets arrive back-to-

back at the receiver separated by the bottleneck transmission time, maintaining

the assumption that the sender performs bulk data transfer, the PIT distribution

is expected to have single spike at the bottleneck transmission time, in this case

τ .

8.2.2 Single Flow with Cross Traffic

There are many scenarios where this could happen, we break these into six sce-

narios (other scenarios can be combinations of these six scenarios). In figure 8.2

all the conventions in figure 8.1a apply. It is possible to have a queue build-up at

Ct, but we are not showing this queue to avoid confusion with the queue build-

up due to cross traffic. The bottleneck transmission time is denoted by Tc, the

transmission time of the link attached to right to the node which has significant

queueing due to cross traffic is denoted by τ , in case there are more than one, they

2In reality, there are minor i.e. very small spikes between the major spikes, we refer to these
as “areas” without drawing them, so the term “spike” can retain the meaning of a pattern. Plots
from real experiments are available in literature [59]

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 130

��
��
��
��

��
��
��
��

cross tra
ffic

τ

Ct

(a) Scenario 1

���
���
���
���

���
���
���
���

cross tra
ffic

Ct,τ

(b) Scenario 2

���
���
���
���

���
���
���
���

cross tra
ffic

τ
Ct

(c) Scenario 3

���
���
���

���
���
���

cross tra
ffic

Ct
τ1 τ2

cross tra
ffic

(d) Scenario 4

��
��
��
��

��
��
��
��

cr
os

s
tra

ffi
c

τ2

cr
os

s
tra

ffi
c

Ct,τ1

(e) Scenario 5

���
���
���
���

���
���
���
���

cr
os

s
tra

ffi
c

cr
os

s
tra

ffi
c

Ct,τ1 τ2

(f) Scenario 6

Figure 8.2: Single flow with cross traffic

are denoted by τ1, τ2, The flow of packets is from the left to the right, with

our single flow packets arriving with an initial time spacing denoted by Ti at the

first node from the left and determined by the minimum transmission time in the

path traversed so far (not shown in the figure) and packet size, however if the first

node from the left is the sender, then Ti is determined only by sender rate and

packet size. In scenarios 1-6, Tc ≥ Ti, Tc ≥ τ

In the analysis of these scenarios we are concerned in a three major points:

• The location of the bottleneck node;

• The location of the queue due to cross traffic;

• The packet drop event (discussed in the next section).

We leave the last point to the next section. Let us start by looking at scenario 1,

our single flow packets get re-spaced from Ti to Tc at the bottleneck node (first

from left in figure 8.2a), then they are queued at the third node where cross traffic

starts joining our packets in their journey to the destination. Due to cross traffic

interference and queue build-up, PITs get expanded or squeezed3 by multiples

of τ depending on the degree of congestion. Some practical cases that illustrate

this behaviour are shown in [59]. As a result, the distribution of PIT is expected

to have a major spike at Tc (because queueing is transient and most packets will

arrive spaced approximately by the bottleneck transmission time Tc in the absence

of the queue at node three) and minor spikes at the multiples of τ . Please see

figure 8.3a, scenario 1. It is not necessary for the spikes to be symmetrical, this

could depend on the severity of cross traffic interference but several symmetrical

cases were reported in practical measurements made in [59].

Scenario 2 can be analysed similarly, but now cross traffic joins our single flow

packets at the the bottleneck node, thus Tc = τ , PITs get expanded but cannot get

3Note that squeezing could happen if single flow packets queue behind cross traffic packets
and is possible because τ is less than Tc

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 131

squeezed (less than Tc), the distribution of PIT is expected to have a major spike

at Tc and minor spikes at the multiples of it only from the right. See figure 8.3a,

scenario 2.

In scenario 3, the cross traffic joins our single flow packets before the bottleneck

node, so the queueing at the second node disturbs the initial PIT, Ti by expanding

and squeezing at multiples of τ . However, after passing the bottleneck link things

change depending on the amount of of expansion in Ti. If Tc > Ti + nτ , where n

is the number of cross traffic in between, the bottleneck link re-spaces the packets

to Tc. If Tc < Ti + nτ , then packets can escape from the bottleneck link without

being re-spaced. The distribution of PIT is expected to have only one major spike

at Tc when Tc > Ti + nτ and a major spike at Tc followed by one minor spike on

the right at a random time determined by n in Ti +nτ , we denote this by X. After

that, minor spikes at multiples of τ could appear on the right. See figure 8.3a,

scenario 3.

Scenario 4 can be seen as a combination of scenario 1 and scenario 3, in this

case we have two queues due to cross traffic, one at node one and the other at

node four, each followed by two links with transmission times of τ1, τ2 respectively,

and the bottleneck is in between. We analyse the case where τ1 > τ2. Before the

bottleneck node, the initial packets spacing Ti gets expanded and squeezed by τ1

at node one, again squeezing is possible because τ1 is less than Ti. If no packets

escape from the bottleneck link re-spacing (as in scenario 3) then all packets leave

the bottleneck link re-spaced by Tc. After the bottleneck node our single flow

packets still have one queue barrier at node four where again their spacing gets

expanded and squeezed by τ2, squeezing is possible because τ2 is less than Tc.

However if some packets escaped with a spacing of Tc > Ti + nτ1 each can get

further expanded or squeezed by τ2, squeezing is possible because τ2 is less than

their spacing. See figure 8.3b, scenario 4. figure 8.3c scenario 4, depicts the case

when τ1 < τ2.

Scenario 5 can be seen as a combination of scenario 1 and scenario 2, in this

case we have two queues due to cross traffic, one at the bottleneck node (node

two) and the other at node four, each followed by two links with transmission

times of τ1 = Tc, τ2 respectively. We analyse the case where τ1 > τ2. Before the

second queue, the single flow packets are spaced by τ1 or expanded by multiples

of it (similar to scenario 2), each of these spacings can get squeezed or expanded

by multiples of τ2 (note that they might remain unchanged in the absence of the

second queue, but here we are considering a queue build-up). See figure 8.3b,

scenario 5. figure 8.3c scenario 5, depicts the case when τ1 < τ2.

Finally, scenario 6 can be seen as a combination of scenario 2 and scenario 3,

since Tc = τ2 > τ1, the second queue is expected to dominate the packet spacing

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 132

ττ
TcTc

= Tc

Ti
τ

Tc Tc
χ τ

Tc < Ti + nτ

Ti + nτ

Tc > Ti + nτ

[2][1]

Before Ct :

After Ct :

[3]

(a) Scenarios 1-3.

Ti

Tc

τ1

τ1

τ2

Ti + nτ1

Tc < Ti + nτ1

τ2

Tc > Ti + nτ1

Tc
τ2

χ

τ2

Before Ct :

After Ct :

τ1 τ1

τ2 τ2 τ2

[5]

[4]

(b) Scenarios 4-6, τ1 > τ2.

Ti

Tc

τ1
Ti + nτ1

Tc < Ti + nτ1

τ2

Tc > Ti + nτ1

Tc

χ

Before Ct :

After Ct :

Tc = τ2

τ1 τ2

τ2

τ1 τ1

τ2 τ2 τ2

[6]
[5]

[4]

(c) Scenarios 4-6, τ1 < τ2.

Figure 8.3: Hypothetical PIT distributions for scenarios 1-6.

in this scenario, most packets are expected to arrive spaced by the bottleneck

transmission time Tc along with other expanded (but not squeezed) in time at

multiples of τ2. figure 8.3c scenario 6, depicts the PITs distribution.

As mentioned before, there are other scenarios, for example having two or more

queues (due to cross traffic) before the bottleneck, or after it. This adds more time

spacing variations and the analysis of such cases will not add to the discussion;

since we have already seen similar time spacing variations in the six scenarios.

Most of these scenarios have a wide spectrum of PITs and the areas between their

distribution spikes are potential values for PIT, i.e. PIT can take values between

these spikes in reality, see for example [59]. We believe that this supports our

assumption about randomness in PITs during cross traffic interference.

8.3 Analysis with Packet Drop

In this section we analyse the case of single flow without cross traffic and scenario 2

of the other case, we also explain a new technique which we use for extracting the

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 133

noise from the samples in order to quantify it.

8.3.1 Single Flow without Cross Traffic

The cases mentioned before are ideal cases, they are mentioned for pedagogical

purposes to illustrate the concept. In reality PITs are not separated exactly by

fixed time spaces, this is due to variations in the delay along the path: propaga-

tion delay, queueing delay, packet re-spacing, node processing times, in addition

to packet re-spacing that can take place along the path, lower layer protocols

behaviour (e.g. frame retransmission, not significant in wired links compared to

wireless links), in addition to cross traffic interference during congestion, where a

packet could arrive while the another is being served4. To take this into account,

we assign a noise factor ±δ to each sample. We looked at single flow out of order

packets in figure 8.1b, we refer the same figure in our discussion. There are np+1

packets and their sequence numbers are denoted by: SQ0 . . . SQnp and captured

upon a packet loss trigger. Samples are denoted by: S0 ≤ S1 ≤ S2 . . . ≤ Sn. Each

sample is represented as: xT ± δ, where:

T : Packet transmission time of the minimum capacity link in the path (all packets

arrive back to back spaced by this time in normal operation);

x: Number of multiples of T , ∈ Z+;

x0 ≤ x1 ≤ x2 . . . ≤ xn, xi ≤ xi+l, 0 < x0 ≤ xi ≤ xn, 0 ≤ i ≤ n;

Smin = x0T ± δ0 and Smax = xnT ± δn;

δ: Noise factor, δ ≪ T ;

np: Maximum number of packets. ∈ Z+;

nℓi: Number of lost packets in each sample (between two out of order packets),∈
Z+, 0 ≤ i ≤ n;

n: Maximum number of PITs (samples) to be analysed. n ∈ Z+;

n = np− 1;

xi = nℓi + 1.

Because out of order packets arrive spaced by ≈ T in case of congestion, and ≈ xT ,

x > 1 in case of wireless loss, we rely on the span 1− Smin/Smax (we explain this

formula later on in this chapter) to discriminate the type of loss in this case. A

large span indicates a wireless loss and a small one indicates congestive loss.

8.3.2 Single Flow with Cross Traffic

This section includes the analysis of scenario 2 in the presence of packet drop.

Scenario 2 was chosen for its simplicity, since most of the events happen at the

4This affects the time spacing between packets [59], which we will rely upon in discriminating
the type of packet loss.

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 134

........

SQoSQ2 SQ1....SQnp

SnS2SoS1

t

t

........

TT T T

Figure 8.4: scenario 2, bottom: cross traffic and packet drop, top: after cross
traffic leaves the path.

same location (the bottleneck node).

Each sample is represented as xT ± δ, where T = Tc = τ . Figure 8.4 depicts

a hypothetical PIT pattern for this scenario. Single flow packets have the green

colour, and cross traffic have the yellow colour. Lost packets from both have a red

contour. The samples are:

S0 = x0T ± δ0

S1 = x1T ± δ1

S2 = x2T ± δ2

...

Sn = xnT ± δn

(8.1)

If the packet drop happens due to congestion, the noise factor is expected to have

large values compared to the case where it happens due to wireless link errors. In

subsection 8.3.1 we used a quantified measure (the span) we shall find a way to

quantify the noise factor in order to make a decision. Our first goal is to extract

the noise factor (δs) from our samples, then as a second goal, to find a way to

quantify the collected δs.

In order to extract the noise factor from the samples, we propose a recursive

technique and call it a “Difference Canceller”, the basic idea is to subtract all

possible different combinations of the samples from each other, because xT takes

finite values, after repeating the process for a certain number of iterations, the term

xT diminishes at the same time the technique dumps residual terms (those less

than T) each iteration. The block diagram in figure 8.5 depicts the operation of the

recursive technique. The process continues until sufficient T terms are cancelled;

leaving the residual noise factor terms. It can be shown that the maximum sample

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 135

S1

S2

S3

Si

SnSn−1

Sj

S2

S1

S0 |S1−S0|

|S2−S0|, |S2−S1|

|S3−S0|, |S3−S1|, |S3−S2|

|Si−S0|, |Si−S1|, ..., |Sj−Si|

Figure 8.5: Difference Canceller

of the next iteration is always less than the maximum sample of the previous

iteration, which means that the technique converges towards T . Now, we apply the

technique to scenario 2, let k be the number of iterations, recall that T = Tc = τ ,

we define di,j to be the absolute difference between two samples, by taking all

different possible combinations of samples we obtain a set ∆k for each iteration,

where:

di,j = |Si − Sj| , when k = 1, 0 ≤ j ≤ n− 1. (8.2)

∆k = {di,j}i>j , when k = 1, j < i ≤ n. (8.3)

We need the number of samples in each iteration to calculate all possible dif-

ferent combinations, for example; for the first iteration:

(
n + 1

2

)

=
(n + 1)!

2!(n− 1)!
=

(n + 1)n

2

All output samples in ∆k are considered inputs for the next iteration. The number

of the new samples is n′ + 1, where n′ + 1 = (n + 1)n/2, therefore there are

S ′0, S
′
1, S

′
1 . . . S ′n′

The samples for the next iteration are:

S ′0 = |(x1 − x0)T ± δ1 ∓ δ0|
S ′1 = |(x2 − x0)T ± δ2 ∓ δ0|

...

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 136

S ′n−1 = |(xn − x0)T ± δn ∓ δ0|
S ′n = |(x2 − x1)T ± δ2 ∓ δ1|

...

S ′n′−1 = |(xn − xn−2)T ± δn ∓ δn−2|
S ′n′ = |(xn − xn−1)T ± δn ∓ δn−1|

(8.4)

Below is the first and second iterations, the number to the right is the number of

samples of the jth set. One point to note here is that some noise factors can get

cancelled in a sample due to the subtraction process but this doesn’t mean that

they are lost, because they appear in other samples, thus the information of this

noise factor is reserved by the additive term in other samples, this can be seen for

example in the second iteration when j′ = 0, δ0 is cancelled in some terms, but it

sill appear in other samples, like the last one. In other words there is a redundancy

and the noise factor information is conveyed throughout the iterations, unlike the

the xT terms which diminish throughout the iterations:

k=1

j = 0







d1,0 = |(x1 − x0)T ± δ1 ∓ δ0|
d2,0 = |(x2 − x0)T ± δ2 ∓ δ0|
d3,0 = |(x3 − x0)T ± δ3 ∓ δ0|
...

di,0

...

dn,0 = |(xn − x0)T ± δn ∓ δ0|

n

j = 1







d2,1 = |(x2 − x1)T ± δ2 ∓ δ1|
d3,1 = |(x3 − x1)T ± δ3 ∓ δ1|
d4,1 = |(x4 − x1)T ± δ4 ∓ δ1|
...

di,1

...

dn,1 = |(xn − x1)T ± δn ∓ δ1|

n− 1

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 137







...

di,j = |(xi − xj)T ± δi ∓ δj |
...

n− j

j = n− 2

{

dn−1,n−2 = |(xn−1 − xn−2)T ± δn−1 ∓ δn−2|
dn,n−2 = |(xn − xn−2)T ± δn ∓ δn−2|

2

j = n− 1
{

dn,n−1 = |(xn − xn−1)T ± δn ∓ δn−1| 1

k=2

j′ = 0







d1,0 = |(x2 − x1)T ± δ2 ∓ δ0 ∓ δ1 ± δ0|
d2,0 = |(x3 − x1)T ± δ3 ∓ δ0 ∓ δ1 ± δ0|
d3,0 = |(x4 − x1)T ± δ4 ∓ δ0 ∓ δ1 ± δ0|
...

di′,0

...

dn′,0 = |(xn − xn−1 − x1 + x0)T ± δn ∓ δn−1 ∓ δ1 ± δ0|

n′

j′ = 1







d2,1 = |(x3 − x2)T ± δ3 ∓ δ0 ∓ δ2 ± δ0|
d3,1 = |(x4 − x2)T ± δ4 ∓ δ0 ∓ δ2 ± δ0|
d4,1 = |(x5 − x2)T ± δ5 ∓ δ0 ∓ δ2 ± δ0|
...

di′,1

...

dn′,1 = |(xn − xn−1 − x2 + x0)T ± δn ∓ δn−1 ∓ δ2 ± δ0|

n′ − 1

j′ = n−1







dn,n−1 = |Sn − Sn−1| = |(xn − x0 − x2 + x1)T ± δn ∓ δ0 ∓ δ2 ± δ1|
...

dn′,n−1 = |Sn′ − Sn−1| = |(xn − x0 − xn + xn−1)T ± δn ∓ δ0 ∓ δn ± δn−1|
= |(xn−1 − x0)T ± δn ∓ δ0 ∓ δn ± δn−1|

n′ − n + 1







...

di′,j′ = |(xi′ − xj′)T ± δi′ ∓ δj′|
...

n′ − j′

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 138

j′ = n′−2







dn′−1,n′−2 = |(xn − xn−2 − xn−1 + xn−2)T ± δn ∓ δn−2 ∓ δn−1 ± δn−2|
= |(xn − xn−1)T ± δn ∓ δn−2 ∓ δn−1 ± δn−2|

dn′,n′−2 = |(xn − xn−1 − xn−1 + xn−2)T ± δn ∓ δn−1 ∓ δn−1 ± δn−2|
= |(xn − 2xn−1 + xn−2)T ± δn ∓ δn−1 ∓ δn−1 ± δn−2|

2

j′ = n′−1

{

dn′,n′−1 = |(xn − xn−1 − xn + xn−2)T ± δn ∓ δn−1 ∓ δn ± δn−2|
= |(xn−1 − xn−2)T ± δn ∓ δn−1 ∓ δn ± δn−2|

1

It can be shown using simple algebra that the finite term xT in our samples

cancel as the number of iterations increase. We refer to this as “convergence of

the algorithm”. We state the proof of convergence as follows:

Proof. Let Smax be the initial maximum sample and S ′max, S
′′
max, . . . be the maxi-

mum samples of the first, second, . . . iterations respectively. Similarly, Smin be the

initial minimum sample and S ′min, S ′′min, . . . be the minimum samples of the first,

second, . . . iterations respectively. We already know that:

Smax = xnT ± δn

Smin = x0T ± δ0

(8.5)

And using equation 8.2:

S ′max = |Smax − Smin|
S ′′max = |S ′max − S ′min|

...

(8.6)

Given that T ≫ δ and 0 < x0 < xn, then:

x0 > 0

−x0 < 0

xn − x0 < xn

|(xn − x0)T | < |xnT |, T > 0

|(xn − x0)T ± δn ∓ δ0| < |xnT ± δn|, T ≫ δ

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 139

∴ S ′max < Smax

(8.7)

Following a similar semantic for the next iteration, here S ′min is not precisely

known, only its range is known:

S ′max = |(xn − x0)T ± δn ∓ δ0|
S ′min = |(yp − yq)T ± δp ∓ δq|

(8.8)

Where, 0 < x0 ≤ yq ≤ yp ≤ xn. Now using equation 8.2 and equation 8.6 we get:

|yp − yq| > 0

−|yp − yq| < 0

|xn − x0| − |yp − yq| < |xn − x0|
(|xn − x0| − |yp − yq|)T < (|xn − x0|)T, T > 0

|(|xn − x0| − |yp − yq|)T ±δn ∓ δ0 ∓ δyp ± δyq
︸ ︷︷ ︸

≪ T

| < |(|xn − x0|)T ± δn ∓ δ0|, T ≫ δ

∴ S ′′max < S ′max

(8.9)

And:

. . . < S(k+3)
max < S(k+2)

max < S(k+1)
max < S(k)

max < Smax (8.10)

Note, that for this proof to hold, the condition: T ≫
∑

δ in each iteration is

necessary.

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 140

Example (scenario 2):

S3S2SoS1

t

SQ4 SQ1 SQoSQ2SQ3

Figure 8.6: Scenario 2 example, PIT of five packets.

In this example, {SQ1, SQ2} 6= SQ0 + 1, and we captured five packets, thus

np + 1 = 5, np = 4 and n = np − 1 = 4− 1 = 3. The samples to be analysed in

the first iteration (k = 1) are:

S0 = T ± δ0

S1 = 2T ± δ1

S2 = 3T ± δ2

S3 = 4T ± δ3

Calculating the differences using equation- 8.2 and equation- 8.3:

di,j = |Si − Sj| , when k = 1, 0 ≤ j ≤ 2.

∆1 = {di,j}i>j , when k = 1, j < i ≤ 3.

d1,0 = |S1 − S0| = |2T ± δ1 − T ∓ δ0| = |T ± δ1 ∓ δ0|
d2,0 = |S2 − S0| = |3T ± δ2 − T ∓ δ0| = |2T ± δ2 ∓ δ0|
d3,0 = |S3 − S0| = |4T ± δ3 − T ∓ δ0| = |3T ± δ3 ∓ δ0|
d2,1 = |S2 − S1| = |3T ± δ2 − 2T ∓ δ1| = |T ± δ2 ∓ δ1|
d3,1 = |S3 − S1| = |4T ± δ3 − 2T ∓ δ1| = |2T ± δ3 ∓ δ1|
d3,2 = |S3 − S2| = |4T ± δ3 − 3T ∓ δ2| = |T ± δ3 ∓ δ2|

Now, the number of input samples for the next iteration (k = 2) is: n′ + 1 =

n(n + 1)/2 = 3× 4/2 = 6, n′ = 5.

S ′0 = T ± δ1 ∓ δ0

S ′1 = T ± δ2 ∓ δ1

S ′2 = T ± δ3 ∓ δ2

S ′3 = 2T ± δ2 ∓ δ0

S ′4 = 2T ± δ3 ∓ δ1

S ′5 = 3T ± δ3 ∓ δ0

Calculating the differences for the new iteration using equation 8.2 and equa-

tion 8.3:

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 141

d′1,0 = |S ′1 − S ′0| = |T ± δ2 ∓ δ1 − T ∓ δ1 ± δ0| = | ± δ2 ∓ δ1 ∓ δ1 ± δ0|
d′2,0 = |S ′2 − S ′0| = |T ± δ3 ∓ δ2 − T ∓ δ1 ± δ0| = | ± δ3 ∓ δ2 ∓ δ1 ± δ0|
d′3,0 = |S ′3 − S ′0| = |2T ± δ2 ∓ δ0 − T ∓ δ1 ± δ0| = |T ± δ2 ∓ δ0 ∓ δ1 ± δ0|
d′4,0 = |S ′4 − S ′0| = |2T ± δ3 ∓ δ1 − T ∓ δ1 ± δ0| = |T ± δ3 ∓ δ1 ∓ δ1 ± δ0|
d′5,0 = |S ′5 − S ′0| = |3T ± δ3 ∓ δ0 − T ∓ δ1 ± δ0| = |2T ± δ3 ∓ δ0 ∓ δ1 ± δ0|
d′2,1 = |S ′2 − S ′1| = |T ± δ3 ∓ δ2 − T ∓ δ2 ± δ1| = | ± δ3 ∓ δ2 ∓ δ2 ± δ1|
d′3,1 = |S ′3 − S ′1| = |2T ± δ2 ∓ δ0 − T ∓ δ2 ± δ1| = |T ± δ2 ∓ δ0 ∓ δ2 ± δ1|
d′4,1 = |S ′4 − S ′1| = |2T ± δ3 ∓ δ1 − T ∓ δ2 ± δ1| = |T ± δ3 ∓ δ1 ∓ δ2 ± δ1|
d′5,1 = |S ′5 − S ′1| = |3T ± δ3 ∓ δ0 − T ∓ δ2 ± δ1| = |2T ± δ3 ∓ δ0 ∓ δ2 ± δ1|
d′3,2 = |S ′3 − S ′2| = |2T ± δ2 ∓ δ0 − T ∓ δ3 ± δ2| = |T ± δ2 ∓ δ0 ∓ δ3 ± δ2|
d′4,2 = |S ′4 − S ′2| = |2T ± δ3 ∓ δ1 − T ∓ δ3 ± δ2| = |T ± δ3 ∓ δ1 ∓ δ3 ± δ2|
d′5,2 = |S ′5 − S ′2| = |3T ± δ3 ∓ δ0 − T ∓ δ3 ± δ2| = |2T ± δ3 ∓ δ0 ∓ δ3 ± δ2|
d′4,3 = |S ′4 − S ′3| = |2T ± δ3 ∓ δ1 − 2T ∓ δ2 ± δ0| = | ± δ3 ∓ δ1 ∓ δ2 ± δ0|
d′5,3 = |S ′5 − S ′3| = |3T ± δ3 ∓ δ0 − 2T ∓ δ2 ± δ0| = |T ± δ3 ∓ δ0 ∓ δ2 ± δ0|
d′5,4 = |S ′5 − S ′4| = |3T ± δ3 ∓ δ0 − 2T ∓ δ3 ± δ1| = |T ± δ3 ∓ δ0 ∓ δ3 ± δ1|

8.4 A Modified Multiplicative Decrease Factor

In this section we present a brief discussion of our noise quantification technique

and where it fits in the TCP congestion control algorithm. We define a new TCP

multiplicative decrease as follows:

β ′ = µβ 0 ≤ µ ≤ 1 (8.11)

And upon a packet loss: W ← W − β ′W . Let µ be function of the noise and

span according to a predefined logic,we denote by ρ the residual noise, which is

the number of noise factors at the end of the difference canceller last iteration.

And we define the residual noise level as Ns:

Ns(ρ) = sgm(ρ), 0 ≤ Ns ≤ 1, ρ ≥ 0,

Ns(ρ) = 2
1+e−aρ − 1.

(8.12)

where: sgm(.) is a sigmoid function and a is the residual noise level sensitivity, or

noise sensitivity for short. In addition we define the sample span Sp as:

Sp = 1−
(

Smin

Smax

)

0 ≤ Ns ≤ 1. (8.13)

The reasons behind this choice of functions are: i) We try to avoid an abrupt

decision of either 0 or 1, thus we need weighted values between 0 and 1. ii) We

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 142

need a a tunable function for the noise factor since the amount of noise that is

needed to make a decision is still vague and a tunable function is desirable for

experimental purposes, an attractive choice of functions is the sigmoid, where we

can change the value between 0 and 1 and tune it using a. iii) On the other hand

the amount of span needed to make a decision depends on the ratio of minimum

to maximum values of a sample thus it is logical to use a simple linear function of

the ratio, also note that taking the ratio (not the difference) makes the function’s

output unit less (i.e. not in seconds).

Let µ(Ns, Sp). We now find the relation between µ and Ns, Sp using the logic

in table 8.1. This logic is in fact a translation of our assumptions.

Table 8.1: Relation between Noise level [Ns], Samples Span [Sp] and Output [µ]

Sp Ns Output [µ] Type of Loss

↓ ↓ ↑ congestive loss
↓ ↑ ↑ congestive loss
↑ ↓ ↓ wireless loss
↑ ↑ ↑ congestive loss

µ = ¬Sp + Ns,

= 1− Sp + Ns,
(8.14)

Substituting for Ns Sp using equations 8.12, 8.13: µ(ρ, Smin, Smax) =

=
Smin(1 + e−aρ)− Smax(1 + e−aρ) + 2

Smax(1 + e−aρ)
(8.15)

8.5 Simulation Experiments & Results

In this section we present some of our simulation results. Nodes were arranged

as in scenario 2 (please see figure 8.2b), with link capacities from left to right:

4 Mbps, 5 Mbps, 3 Mbps, 4 Mbps and 5 Mbps. Each having 10ms propagation

delay. We used single TCP flow, where the source performs a bulk transfer for

one minute of simulation time. A group of: 10, 50 and 100 UDP cross traffic

sources enter the network route randomly and interfere with the TCP flow during

the one minute. Each cross traffic source sends data at rate of 0.3 Mbps and each

cross traffic link has a capacity of 1 Mbps with randomly assigned propagation

delays. We used an error model at the last link to simulate the behaviour of a

lossy wireless link. At the bottleneck link we used ordinary Drop-Tail queue with

buffer size of 5 packets. We did not take the effect of variable packets size of cross

traffic into account in our experiments and used a fixed packet size of 1000 bytes

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 143

for both TCP flow and UDP cross traffic.

Table 8.2: Loss probabilities used in Group 2 and Group 3 experiments

Experiment Congestive loss (%) Wireless loss (%)

1 0.465371 0.634537
2 0.826583 0.942725
3 0.911279 1.00585
4 0.79264 0.942725
5 0.80507 0.942725
6 0.379205 0.535438
7 1.05028 1.32505
8 0.541859 0.743615
9 0.827519 0.942725
10 1.04483 1.32505

The aim is to validate our assumptions and the logical formula that we have

used, in order to do that, we run three groups of simulation experiments, 10

experiments for each group, Group 1: no cross traffic, no wireless loss, Group 2:

cross traffic without wireless loss, Group 3: wireless loss without cross traffic. By

examining the resultant values of the new multiplicative decrease factor β ′, noise

and span, we can achieve our aim as follows: the TCP flow in Group 2 suffers only

from congestive loss and thus its β ′ values are expected to have large values. In

contrast, the TCP flow in Group 3 suffers mainly from wireless loss and thus its β ′

values are expected to have small values. The arguments for noise and span and

their assumptions are mutatis mutandis to that of the new multiplicative decrease

factor β ′.

In the absence of any cross traffic and wireless loss (Group 1) we noticed that

the network suffered from a packet loss probability = 0.00950841% (caused by

standard TCP CC operation). Table 8.2 shows the packet loss probabilities used

in the 10 experiments of Group 2 (second column) and the 10 experiments of

Group 3 (third column). These probabilities were obtained as follows: we first

run Group 2 experiments, we select a number of cross traffic sources, run the first

experiment, calculate the packet loss probability, then run the second experiment

and do the same, and so on until the tenth experiment. Second, we run Group 3

experiments, but in this group we need to set the random loss model, we used

the values obtained from Group 2 experiments in this model. We set the loss

probability to the value obtained from the first experiment from Group 2 and

run the first experiment then calculate the loss probability, then we set the loss

probability to the value obtained from the second experiment from Group 2 and

run the second experiment then calculate the loss probability and so on until the

tenth experiment.

Steps in bullet points are:

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 144

• Nodes were arranged as in scenario 2

• Link capacities from left to right: 4 Mbps, 5 Mbps, 3 Mbps, 4 Mbps and 5

Mbps

• Each having 10ms propagation delay

• Single TCP flow, one minute bulk transfer

• A group of: 10, 50 and 100 UDP randomly interfere with the TCP flow

• Cross traffic rates are 0.3 Mbps and each link has a capacity of 1 Mbps with

randomly assigned propagation delays

• We used an error model at the last link to simulate the behaviour of a lossy

wireless link

• At the bottleneck link we used drop tail queue discipline with buffer size of

5 packets

• Fixed packet size of 1000 bytes for both TCP flow and UDP cross traffic

• We did not take the effect of variable packets size and lower layers into

account in our experiments

• We run three groups of simulation experiments, 10 experiments for each

group

• Group 1: no cross traffic, no wireless loss

• Group 2: cross traffic without wireless loss

• Group 3: wireless loss without cross traffic

After that we run a non-implemented version of the modified TCP-Reno which is

part of our TCP post-simulation analysis tool that we developed to test our work.

The tool does packet drop statistics, TCP parameters calculations, runs the new

technique and generates 15 graphs representing the results. We set the Difference

Canceller to work for one iteration i.e. k = 1 and the noise sensitivity a = 1. Steps

in bullet points:

• Non-implemented version of the modified TCP-Reno as part of our TCP

post-simulation analysis tool

• We set the Difference Canceller to work for one iteration i.e. k = 1 and the

noise sensitivity a = 1

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 145

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100

β’

Loss detected by duplicate ACKs

Total Variable M.D. -- congestive loss case
Total Variable M.D. -- wireless loss case

Figure 8.7: Accumulated values for 10 experiments: new multiplicative decrease
factor

• The tool does packet drop statistics, TCP parameters calculations, runs the

new technique

• Generates 15 graphs representing the results

8.5.1 Total Values of Variables

Figures 8.7, 8.8 and 8.9 depict the accumulated values over the 10 experiments for

the new multiplicative decrease factor β ′, noise and span respectively for Group-

2(congestive loss case) and Group-3(wireless loss case). The figures where gener-

ated as follows: we select a group, say Group-2, we run an experiment, we find

the total number of congestion window cuts (only these detected by duplicate

ACKs), then we ask: what are the calculated values of β ′, noise and span for

each congestion window cut? For example suppose we have 5 congestion win-

dow cuts and the values of β ′ are: 0.5, 0.3, 0.1, 0.5, 0.2. We plot this as:

(5,0.5),(5,0.3),(5,0.1),(5,0.5),(5,0.2). Then we run another experiment, say this

time we have 15 congestion window cuts, we do the same and plot that on top of

the previous plot, then we run another experiment and so on. Say we have two

experiments with the same number of congestion window cuts but with different

values of β ′, we also plot these on the same plot. When we finish 10 experiments,

we move to another group, say Group-3 and we do the same and plot all on the

same plot. Generating the plots in this way, makes it easier for us to figure out

whether our assumptions were right or wrong, for example, when we run 10 ex-

periments for Group-2, there are no wireless loss and all loss detected by duplicate

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 146

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1 10 100

N
s

Loss detected by duplicate ACKs

Total Residual Noise -- congestive loss case
Total Residual Noise -- wireless loss case

Figure 8.8: Accumulated values for 10 experiments: noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 10 100 1000

S
pa

n

Loss detected by duplicate ACKs

Total Span. -- congestive loss case
Total Span. -- wireless loss case

Figure 8.9: Accumulated values for 10 experiments: span

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 147

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 40 45 50 55 60

C
w

nd
 [p

ac
ke

ts
]

Time [seconds]

cwnd
new-cwnd

Figure 8.10: congestive loss case

ACK are due to congestion, so if our assumption was right; the figure should show

high values of β ′ for all cuts in all experiments in this group.

As it can be seen from figure 8.7, in case of congestive loss the decrease factor

tends to move to the original value of 0.5 and the operation falls back to TCP-

Reno operation. However, in case of wireless loss most values are less than the

original factor, with some values around 0.5. Similarly residual noise levels tend

to be larger and more variable in a congestive loss case compared to a wireless

loss case. On the other hand most span values take higher values in the case of

wireless loss.

Figures 8.10 and 8.11 show the congestion window evolution of the modified

version of TCP-Reno compared to the original TCP-Reno for experiment num-

ber one from Group 2 and Group 3 respectively (space requirements limit us to

displaying results from only one experiment).

8.5.2 Congestion Window Evolution

One point to note here is the drop of the congestion window to one segment which

in fact acts as a reset for both. This is due to segments time-outs, another point

is the variable drop of the new version which is more significant when the wireless

loss is more dominant.

Figure 8.12 and 8.13 show the effect of the noise sensitivity parameter on

the evolution of congestion window. We noticed that large values of a make the

algorithm more sensitive to noise and thus to interpreting the loss as congestive

loss, while small values let the algorithm feel that it is working in a non-congested

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 148

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 40 45 50 55 60

C
w

nd
 [p

ac
ke

ts
]

Time [seconds]

cwnd
new-cwnd

Figure 8.11: wireless loss case

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

C
w

nd
 [p

ac
ke

ts
]

Time [seconds]

cwnd
new-cwnd

Figure 8.12: with noise sensitivity, a = 10, wireless loss case – Loss = 1.04483 %

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 149

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

C
w

nd
 [p

ac
ke

ts
]

Time [seconds]

cwnd
new-cwnd

Figure 8.13: with noise sensitivity, a = 0.1, wireless loss case – Loss = 1.04483 %

lossy environment.

8.6 Summary

We presented a new technique for discriminating congestive packet drop from

non-congestive packet drop based on the noise level and span in out of order

PITs. The importance of this technique is that it is passive and can help TCP

congestion control algorithms in the judgement of congestion window reduction

when a packet drop happens. The technique can run along side other techniques

working to resolve the same problem and can help in taking the decision whenever

an ambiguity about the source of packet drop appears, for example; not all network

routers cooperate by setting the ECN bit(s). Also reverse traffic may affect delay-

based approaches. When such ambiguity appears, our technique can be consulted

especially if the network setup is similar to that mentioned in this chapter.

The approach that we proposed in this chapter is orthogonal to other ap-

proaches mentioned in literature, whether those which rely on queueing delay or

queue size or even network assisted techniques like ECN5. However; although it

has intersection with some of PIT-based techniques, we believe that the approach

is new and for this reason we provide a prolonged theoretical discussion of the

ideas and assumptions.

We suggested six general scenarios for evaluation of the new technique and

focused on one scenario where we mathematically formulated and proved the tech-

5Also uses average queue size.

CHAPTER 8. A LOSS DIFFERENTIATION ALGORITHM 150

nique. Finally we validated a non-implemented version in a controlled simulated

environment and showed that this technique can augment other available tech-

niques in helping TCP to differentiate between the two different types of packet

drop.

Chapter 9

Conclusions & Future Work

Most of the Internet protocols designs were influenced by the technologies which

existed at the time when the Internet was born. It was difficult at that time to

predict the evolution of technologies for the next decades. Since the birth of the In-

ternet, TCP, the most important Internet protocol that aims at providing reliable

data transfer, flow and congestion control has performed well. Its self-managed

congestion control algorithms preserve the stability of the Internet and the proto-

col has become the most used protocol for data transfer on the Internet. However,

the spread of new technologies such as fibre optics and wireless networks poses

many challenges to TCP in general and to TCP’s congestion control algorithms

in particular.

This dissertation focused on two main challenges to TCP congestion control.

The first challenge is link underutilisation when working in a high-speed long-delay

networks. Such networks are characterised by high bandwidth-delay product,

standard TCP congestion control algorithms have a problem utilising these pipes,

this is due to its fixed and small amount of congestion window increase per round

trip time, which is one packet per round trip time. The research community,

however; responded quickly in the last decade with a number of proposals in

the form of modular congestion control algorithms. Most of these proposals are

experimental and some of them have disadvantages and shortcomings. Therefore

this thesis makes two contributions which we believe that the congestion control

research community would benefit from: i) Improvements to one of the existing

algorithms (part of Linux kernel stack), show us through simulation that our

suggestions improves the responsiveness and aggressiveness shortcomings of this

algorithm. ii) TCP-Gentle, an incremental development over the latest proposed

algorithm (also part of Linux kernel stack) addressing this problem. Unlike all

other proposals, TCP-Gentle uses different increase rules depending on network

conditions. The thesis presents a throughput expression for the new algorithm

based on a deterministic model and shows through simulation and real test bed

151

CHAPTER 9. CONCLUSIONS & FUTURE WORK 152

experiments that the new algorithm is gentle to networks in the sense that it keeps

a small number of a TCP-Gentle flow packets in the queue compared to all other

TCP congestion control algorithms, it also has good fairness properties, nearly flat

rate in steady-state while at the same time maintains high responsiveness, high

link utilisation and friendliness to standard TCP. Therefore it is competitive to

existing algorithms.

The second challenge is the ability to differentiate between congestive loss and

non-congestive loss (e.g. wireless loss), this has been a problem for standard TCP

congestion control algorithms, since TCP makes a tacit assumption that each

packet loss is due to congestion and reduces its congestion window drastically.

The thesis proposes a novel loss differentiation algorithm which quantifies the

noise in packet inter arrival times and use this information together with the span

(ratio of maximum to minimum packet inter arrival times) to adapt the multiplica-

tive decrease factor according to a predefined logical formula. We show through

simulation experiments that in certain topologies the randomness in packet inter

arrival times and the span can be exploited to differentiate between the two types

of packet loss, to the best of our knowledge, this is a unique approach in packet

loss differentiation which is orthogonal to approaches mentioned in literature. The

thesis also suggestes that this algorithm can work cooperatively with other exist-

ing loss differentiation algorithms (especially in topologies were the algorithm is

efficient) and resolve any ambiguities that may arise in other algorithms.

On the modelling side of TCP congestion control, the thesis extends the well-

known drift model of TCP to account for wireless loss and some hypothetical

cases (e.g. variable multiplicative decrease). It shows us a stability analysis for

the new version of the model after linearising it around an equilibrium point. The

thesis mathematically shows how the wireless loss is considered disturbance and it

is beyond the control of standard TCP congestion control algorithms. Following

that, it analytically shows that this can be controlled via a variable multiplicative

decrease.

Because TCP protocol is still in use and technologies are evolving, there is a

potential for other problems to arise in future. There is also an interest to improve

the performance of networks (e.g. Multipath TCP). One part of our future work

is to investigate the performance of TCP algorithms in different network set-ups

including the Internet.

The thesis treated the end-to-end TCP congestion control approach. Despite

the advantages of this approach like scalability, ease of deployment, etc, there are

limitations for improvements, most work is done by end-hosts which try to infer

things about the network. One such limitation is the reverse path traffic which

affects ACK-based protocols that use estimates like delay and queue size based

CHAPTER 9. CONCLUSIONS & FUTURE WORK 153

on round trip time measurements as part of their congestion control algorithms.

TCP-Gentle is subject to this problem, however our argument against this is that

if the reverse traffic is persistent the algorithm is tricked and assumes a case of

congestion then takes a sequence of events which eventually leads to a fall back

to standard TCP congestion control algorithm operation, i.e. the worst case is to

work like the standard TCP congestion control algorithms (increase until a packet

loss happens then decrease).

Having said that, another part of our future work will focus more on network

assisted approaches hoping to investigate the limitations of totally depending on

end-hosts, interesting examples are: XCP protocol, lower layer QCN approach.

Performance evaluation and analysis of these are a of research interest.

References

[1] NS-2 TCP-Linux: an NS-2 TCP implementation with congestion control

algorithms from Linux (New York, NY, USA, 2006), ACM Press.

[2] A statistical method of packet loss type discrimination in wired-wireless net-

works (Jan. 2006), Consumer Communications and Networking Conference,

2006. CCNC 2006. 2006 3rd IEEE.

[3] Linux Foundation Website. http://www.linuxfoundation.org/

collaborate/workgroups/networking/tcp_testing#Congestion_

Control, May 2010.

[4] Performance of Quantized Congestion Notification in TCP Incast Scenarios

of Data Centers (Aug. 2010), The 18th Annual Meeting of the IEEE In-

ternational Symposium on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems, MASCOTS.

[5] Allman, M., Paxson, V., and Stevens, W. TCP Congestion Con-

trol. RFC 2581 (Proposed Standard), Apr. 1999. Obsoleted by RFC 5681,

updated by RFC 3390.

[6] Altman, E., Avrachenkov, K., and Barakat, C. A stochastic model

of TCP/IP with stationary random losses. IEEE/ACM Trans. Netw. 13, 2

(2005), 356–369.

[7] Andersen, D. Carnegie Mellon University, Parallel Data Lab’s Current

Projects. http://www.pdl.cmu.edu/Incast/, Aug. 2010.

[8] Andrew, L. L. H., Low, S. H., and Wydrowski, B. P. Understanding

XCP: equilibrium and fairness. IEEE/ACM Trans. Netw. 17, 6 (2009), 1697–

1710.

[9] Baiocchi, A., Castellani, A., and Vacirca, F. YeAH-TCP: yet An-

other Highspeed TCP. In Fifth International Workshop on Protocols for

FAST Long-Distance Networks (PFLDnet-07) (February 2007), pp. 37–42.

154

http://www.linuxfoundation.org/collaborate/workgroups/networking/tcp_testing#Congestion_Control
http://www.linuxfoundation.org/collaborate/workgroups/networking/tcp_testing#Congestion_Control
http://www.linuxfoundation.org/collaborate/workgroups/networking/tcp_testing#Congestion_Control
http://www.pdl.cmu.edu/Incast/

REFERENCES 155

[10] Balakrishnan, H. Challenges to Reliable Data Transport over Heteroge-

neous Wireless Networks. PhD thesis, Computer Science Division University

of California, Berkeley, 1998.

[11] Bansal, D., and Balakrishnan, H. Binomial Congestion Control Al-

gorithms. In IEEE Infocom 2001 (Anchorage, AK, April 2001).

[12] Barakat, C., Altman, E., and Dabbous, W. On TCP performance

in an heterogeneous network: A survey. Tech. rep.

[13] Bertsekas, D. P. Nonlinear Programming, 1st ed. Athena Scientific, 1995.

[14] Biaz, S., and Vaidya, N. H. Discriminating congestion losses from wire-

less losses using inter-arrival times at the receiver. IEEE Symposium AS-

SET’99 (Mar. 1999), 10–17.

[15] Biaz, S., and Vaidya, N. H. “de-randomizing” congestion losses to im-

prove TCP performance over wired-wireless networks. IEEE/ACM Trans.

Netw. 13, 3 (2005), 596–608.

[16] Blanton, E., Allman, M., Fall, K., and Wang, L. A Conserva-

tive Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for

TCP. RFC 3517 (Proposed Standard), Apr. 2003.

[17] Border, J., Kojo, M., Griner, J., Montenegro, G., and Shelby,

Z. Performance Enhancing Proxies Intended to Mitigate Link-Related

Degradations. RFC 3135 (Informational), June 2001.

[18] Braden, R. Requirements for internet hosts – communication layers. RFC

1122, Oct. 1989.

[19] Brakmo, L. S., O’Malley, S. W., and Peterson, L. L. TCP Vegas:

new techniques for congestion detection and avoidance. SIGCOMM Comput.

Commun. Rev. 24, 4 (1994), 24–35.

[20] Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., and Wang,

R. TCP Westwood: end-to-end congestion control for wired/wireless net-

works. Wirel. Netw. 8, 5 (2002), 467–479.

[21] Cavendish, D., Gerla, M., and Mascolo, S. A control theoretical

approach to congestion control in packet networks. IEEE/ACM Trans. Netw.

12, 5 (2004), 893–906.

REFERENCES 156

[22] Cen, S., Cosman, P. C., and Voelker, G. M. End-to-end differen-

tiation of congestion and wireless losses. IEEE/ACM Trans. Netw. 11, 5

(2003), 703–717.

[23] Chen, Y., Griffith, R., Liu, J., Katz, R. H., and Joseph, A. D.

Understanding tcp incast throughput collapse in datacenter networks. In

WREN ’09: Proceedings of the 1st ACM workshop on Research on enterprise

networking (New York, NY, USA, 2009), ACM, pp. 73–82.

[24] Chiu, D., and Jain, R. Analysis of the increase and decrease algorithms

for congestion avoidance in computer networks. Comput. Netw. ISDN Syst.

17, 1 (June 1989), 1–14.

[25] Costin Raiciu, Damon Wischik, M. H. Practical congestion control

for multipath transport protocols. Tech. rep.

[26] Damon Wischik, M. H., and Braun, M. B. The resource pooling

principle. Online, July 2010.

[27] David X. Wei, Jin Cheng; Low, S. H., and Sanjay, H. FAST TCP:

motivation, architecture, algorithms, performance. IEEE/ACM Trans.

Netw. 14, 6 (2006), 1246–1259.

[28] de Oliveira, R., and Braun, T. A delay-based approach using fuzzy

logic to improve TCP error detection in ad hoc networks.

[29] Douglas Leith, Lachlan Andrew, T. Q., Shorten, R., and Lavi,

K. Experimental evaluation of delay/loss-based tcp congestion control al-

gorithms. In PFLDnet (2008).

[30] Floyd, S. Congestion Control Principles. RFC 2914 (Best Current Prac-

tice), Sept. 2000.

[31] Floyd, S. HighSpeed TCP for Large Congestion Windows. RFC 3649,

Dec. 2003.

[32] Floyd, S. HighSpeed TCP for Large Congestion Windows, Dec. 2003.

[33] Floyd, S. Limited Slow-Start for TCP with Large Congestion Windows.

RFC 3742 (Experimental), Mar. 2004.

[34] Floyd, S. Metrics for the evaluation of congestion control mechanisms.

RFC 5166, Mar. 2008.

REFERENCES 157

[35] Floyd, S., Allman, M., ICIR, Jain, A., Networks, F., Sarolahti,

P., and Center, N. R. Quick-start for tcp and ip. RFC 4782, Jan. 2007.

[36] Floyd, S., Handley, M., and Padhye, J. A comparison of equation-

based and aimd congestion control. Tech. rep., 2000.

[37] Floyd, S., Handley, M., Padhye, J., and Widmer, J. TCP Friendly

Rate Control (TFRC): Protocol Specification. RFC 5348 (Proposed Stan-

dard), Sept. 2008.

[38] Floyd, S., Henderson, T., and Gurtov, A. The NewReno Modifica-

tion to TCP’s Fast Recovery Algorithm. RFC 3782 (Proposed Standard),

Apr. 2004.

[39] Floyd, S., and Jacobson, V. Traffic phase effects in packet-switched

gateways. SIGCOMM Comput. Commun. Rev. 21, 2 (1991), 26–42.

[40] Floyd, S., and Kohler, E. Profile for Datagram Congestion Control

Protocol (DCCP) Congestion Control ID 2: TCP-like Congestion Control.

RFC 4341 (Proposed Standard), Mar. 2006.

[41] Floyd, S., Kohler, E., and Padhye, J. Profile for Datagram Conges-

tion Control Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate

Control (TFRC). RFC 4342 (Proposed Standard), Mar. 2006. Updated by

RFC 5348.

[42] Floyd, S., Mahdavi, J., Mathis, M., and Podolsky, M. An Exten-

sion to the Selective Acknowledgement (SACK) Option for TCP. RFC 2883

(Proposed Standard), July 2000.

[43] Fomenkov, M., Keys, K., Moore, D., and Claffy, K. Longitu-

dinal study of internet traffic in 1998-2003. In WISICT ’04: Proceedings

of the winter international synposium on Information and communication

technologies (2004), Trinity College Dublin, pp. 1–6.

[44] Fu, C., and Liew, S. TCP Veno: TCP enhancement for transmission

over wireless access, 2003.

[45] Gevros, P., Crowcroft, J., Kirstein, P., and Bhatti, S. Conges-

tion control mechanisms and the best effort service model. IEEE Network

15 (2001), 16–26.

[46] H. Shimonishi, T. Hama, T. M. Tcp-adaptive reno: Improving efficiency-

friendliness tradeoffs of tcp congestion control algorithm. In PFLDnet

(2006).

REFERENCES 158

[47] Ha, S., Rhee, I., and Xu, L. Cubic: a new tcp-friendly high-speed tcp

variant. SIGOPS Oper. Syst. Rev. 42, 5 (2008), 64–74.

[48] Hacker, T. J., Noble, B. D., and Athey, B. D. Improving throughput

and maintaining fairness using parallel TCP. In IEEE InfoCom (2004).

[49] Hadrien Bullot, R. L. C., and Hughes-Jones, R. Evaluation of

advanced tcp stacks on fast long-distance production networks. Journal of

Grid Computing Volume 1, 4 (Dec. 2003), 345–359.

[50] Harrick, S. G. Extended analysis of binary adjustment algorithms. Tech.

rep., 2002.

[51] Hassan, M., and Jain, R. High Performance TCP/IP Networking, Con-

cepts, Issues, and Solutions. Pearson Education, Inc, 2004.

[52] Henderson, T. Http/1.0 traffic generator for ns-2. Online, 1998.

[53] Jain, R. The Art of Computer Systems Performance Analysis. John Wiley

& Sons, Inc., 1991.

[54] Jin, C., Wei, D. X., and Low, S. H. Fast tcp: Motivation, architecture,

algorithms, performance, 2004.

[55] Jin, S., Guo, L., Matta, I., and Bestavros, A. Tcp-friendly simd

congestion control and its convergence behavior. In in Proceedings of ICNP

(2001).

[56] Ka-Cheong Leung Li, V. Transmission control protocol TCP in wireless

networks: issues, approaches, and challenges. Communications Surveys &

Tutorials, IEEE 8, 4 (Fourth Quarter 2006), 64–79.

[57] Katabi, D. Decoupling Congestion Control and Bandwidth Allocation Poli-

cyWith Application to High Bandwidth-Delay Product Networks. PhD thesis,

Department of Electrical Engineering and Computer Science, M.I.T., Mar.

2003.

[58] Katabi, D., Handley, M., and Rohrs, C. Congestion control for high

bandwidth-delay product networks. SIGCOMM Comput. Commun. Rev.

32, 4 (October 2002), 89–102.

[59] Katti, S., Katabi, D., Blake, C., Kohler, E., and Strauss, J.

Multiq: automated detection of multiple bottleneck capacities along a path.

In IMC ’04: Proceedings of the 4th ACM SIGCOMM conference on Internet

measurement (New York, NY, USA, 2004), ACM, pp. 245–250.

REFERENCES 159

[60] Kelly, F., Maulloo, A., and Tan, D. Rate control for communication

networks: shadow prices, proportional fairness and stability. Journal of the

Operational Research Society 49, 3 (March 1998), 237–252.

[61] Kelly, T. Scalable TCP: Improving Performance in Highspeed Wide Area

Networks, Apr. 2003.

[62] Keshav, S. Congestion Control in Computer Networks. PhD thesis, UC

Berkeley, Sept. 1991.

[63] Kesselman, A., and Mansour, Y. Adaptive aimd congestion control.

Algorithmica Volume 43, 1-2 (Sept. 2005), 97–111.

[64] King, R., Baraniuk, R. G., and Riedi, R. H. TCP-Africa: an adaptive

and fair rapid increase rule for scalable TCP. In INFOCOM (2005), IEEE,

pp. 1838–1848.

[65] Kohler, E., Handley, M., and Floyd, S. Datagram Congestion Con-

trol Protocol (DCCP). RFC 4340 (Proposed Standard), Mar. 2006. Updated

by RFCs 5595, 5596.

[66] Lathi, B. Modern Digital and Analog Communication Systems, 3rd ed.

Oxford University Press, 1998.

[67] Leith, D., and Shorten, R. H-tcp: Tcp for high-speed and long-distance

networks. In in Proc. PFLDnet, Argonne (2004).

[68] Li, Y.-T., Leith, D., and Shorten, R. N. Experimental evaluation

of tcp protocols for high-speed networks. IEEE/ACM Trans. Netw. 15, 5

(2007), 1109–1122.

[69] Liu, S., Başar, T., and Srikant, R. TCP-Illinois: a loss and delay-

based congestion control algorithm for high-speed networks. In valuetools

’06: Proceedings of the 1st international conference on Performance evalua-

tion methodolgies and tools (New York, NY, USA, 2006), ACM, p. 55.

[70] Low, S. H. A duality model of tcp and queue management algorithms.

IEEE/ACM Trans. Netw. 11, 4 (2003), 525–536.

[71] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A. TCP Selec-

tive Acknowledgment Options. RFC 2018 (Proposed Standard), Oct. 1996.

[72] Mathis, M., Semke, J., and Mahdavi, J. The macroscopic behavior

of the TCP congestion avoidance algorithm. Computer Communications

Review 27, 3 (1997).

REFERENCES 160

[73] Miras, D., Bateman, M., and Bhatti, S. Fairness of High-Speed TCP

Stacks. Advanced Information Networking and Applications, International

Conference on 0 (2008), 84–92.

[74] Misra, V., Gong, W., and Towsley, D. Stochastic differential equation

modeling and analysis of TCP-windowsize behavior, 1999.

[75] Misra, V., Gong, W.-B., and Towsley, D. Fluid-based analysis of a

network of aqm routers supporting TCP flows with an application to red.

SIGCOMM Comput. Commun. Rev. 30, 4 (2000), 151–160.

[76] Nguyen, G. T., Noble, B., Katz, R. H., and Satyanarayanan,

M. A trace-based approach for modeling wireless channel behavior. In In

Proceedings of the Winter Simulation Conference (1996), pp. 597–604.

[77] Ogata, K. Modern Control Engineering, 3rd ed. Prentice Hall, Inc, 1997.

[78] Padhye, J., Firoiu, V., Towsley, D., and Krusoe, J. Modeling

TCP throughput:A simple model and its empirical validation. Proceedings

of the ACM SIGCOMM ’98 conference on Applications, technologies, archi-

tectures, and protocols for computer communication (1998), 303–314.

[79] Paxson, V. Measurements and Analysis of End-to-End Internet Dynamics.

PhD thesis, Computer Science Division University of California, Berkeley,

Apr. 1997.

[80] Postel, J. Transmission Control Protocol. RFC 793 (Standard), Sept.

1981. Updated by RFCs 1122, 3168.

[81] Ramakrishnan, K., Floyd, S., and Black, D. The Addition of Ex-

plicit Congestion Notification (ECN) to IP. RFC 3168 (Proposed Standard),

Sept. 2001.

[82] Ron Pan, Balaji Prabhakar, A. L. QCN:Quantized Con-

gestion Notification. www.stanford.edu/~balaji/presentations/

au-prabhakar-qcn-description.pdf, Aug. 2010.

[83] Saltzer, J. H., Reed, D. P., and Clark, D. D. End-To-End argu-

ments in system design. ACM Transactions on Computer Systems 2, 4 (Nov.

1984), 277–288.

[84] Samios, C. B., and Vernon, M. K. Modeling the throughput of TCP

Vegas. SIGMETRICS Perform. Eval. Rev. 31, 1 (2003), 71–81.

www.stanford.edu/~balaji/presentations/au-prabhakar-qcn-description.pdf
www.stanford.edu/~balaji/presentations/au-prabhakar-qcn-description.pdf

REFERENCES 161

[85] Sarolahti, P. TCP Performance in Heterogeneous Wireless Networks.

PhD thesis, Department of Computer Science, University of Helsinki, Fin-

land, 2007.

[86] Siekkinen, M. Measuring the internet, part 2 - digging in. University of

Oslo, Feb. 2007.

[87] Source, O. The network simulator - ns-2, Jan 2008.

http://www.isi.edu/nsnam/ns/.

[88] Srikant, R. The Mathematics of Internet Congestion Control. Birkhauser,

2004.

[89] Stevens, W. TCP Slow Start, Congestion Avoidance, Fast Retransmit,

and Fast Recovery Algorithms. RFC 2001 (Proposed Standard), Jan. 1997.

Obsoleted by RFC 2581.

[90] Stevens, W. R. TCP/IP illustrated (vol. 1): The Protocols. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1994.

[91] Stewart, L., Armitage, G., and Huebner, A. Collateral damage: The

impact of optimised TCP variants on real-time traffic latency in consumer

broadband environments. In NETWORKING ’09: Proceedings of the 8th

International IFIP-TC 6 Networking Conference (Berlin, Heidelberg, 2009),

Springer-Verlag, pp. 392–403.

[92] Swan, T. GNU C++ FOR LINUX. Que Corporation, 1999.

[93] Tan, K., Song, J., Zhang, Q., and Sridharan, M. A compound TCP

approach for high-speed and long distance networks. Tech. Rep. MSR-TR-

2005-86, Microsoft Research, July 2005.

[94] Tanenbaum, A. S. Computer Networks, 4th ed. Pearson Education, Inc,

2003.

[95] Tobe, Y., Tamura, Y., Molano, A., Ghosh, S., and Tokuda, H.

Achieving moderate fairness for udp flows by path-status classification. In

LCN ’00: Proceedings of the 25th Annual IEEE Conference on Local Com-

puter Networks (Washington, DC, USA, 2000), IEEE Computer Society,

p. 252.

[96] V.Jacobson. Congestion avoidance and control. SIGCOMM’88 (Aug.

1988), 314–329.

REFERENCES 162

[97] Vojnovic, M., Le Boudec, J.-Y., and Boutremans, C. Global

fairness of additive-increase and multiplicative-decrease with heterogeneous

round-trip times. In IEEE INFOCOM‘2000 (2000), pp. 1303–1312.

[98] Wang, Z., and Crowcroft, J. A new congestion control scheme: slow

start and search (tri-s). SIGCOMM Comput. Commun. Rev. 21, 1 (1991),

32–43.

[99] Weigle, M. C., Sharma, P., and Iv, J. R. F. Iv. “performance of

competing high-speed tcp flows. In In the Proceedings of NETWORKING

(2006).

[100] Welzl, M. Network Congestion Control: Managing Internet Traffic (Wiley

Series on Communications Networking & Distributed Systems). John Wiley

& Sons, 2005.

[101] Wierman, A., Osogami, T., and Olsén, J. A unified framework for

modeling TCP-vegas, TCP-sack, and TCP-reno. In International Sympo-

sium on Modeling, Analysis, and Simulation of Computer and Telecommu-

nication Systems (Oct. 2003).

[102] Xu, L., Harfoush, K., and Rhee, I. Binary Increase Congestion Control

(BIC) for Fast Long-Distance Networks. In IEEE INFOCOM (March 2004),

vol. 4, pp. 2514–2524.

[103] Yang, Y. R., and Lam, S. S. General aimd congestion control. In ICNP

’00: Proceedings of the 2000 International Conference on Network Protocols

(Washington, DC, USA, 2000), IEEE Computer Society, p. 187.

[104] Ye, L., Wang, Z., Che, H., Chan, H. B. C., and Lagoa, C. M.

Utility function of tcp. Comput. Commun. 32, 5 (2009), 800–805.

[105] Zhang, G., Wu, Y., and Liu, Y. Stability and sensitivity for congestion

control in wireless networks with time varying link capacities. In ICNP

’05: Proceedings of the 13TH IEEE International Conference on Network

Protocols (Washington, DC, USA, 2005), IEEE Computer Society, pp. 401–

412.

Appendix A

History Time Line for

TCP-Related Issues

History Notes: TCP/IP and Transport Layer Protocols

Compiled by: Talal A.Edwan.

Date: 04-March-2008. Update date: 23-July-2010.

TCP/IP Overview and History1

The best place to start looking at TCP/IP is probably the name itself. TCP/IP

in fact consists of dozens of different protocols, but only a few are the main pro-

tocols that define the core operation of the suite. Of these key protocols, two are

usually considered the most important. The Internet Protocol (IP) is the primary

OSI network layer (layer three) protocol that provides addressing, datagram rout-

ing and other functions in an internetwork. The Transmission Control Protocol

(TCP) is the primary transport layer (layer four) protocol, and is responsible for

connection establishment and management and reliable data transport between

software processes on devices.

Due to the importance of these two protocols, their abbreviations have come to

represent the entire suite: TCP/IP. (In a moment we’ll discover exactly the

history of that name.) IP and TCP are important because many of TCP/IP’s

most critical functions are implemented at layers three and four. However, there

is much more to TCP/IP than just TCP and IP. The protocol suite as a whole

requires the work of many different protocols and technologies to make a functional

1This text is quoted from {source:http://www.tcpipguide.com/free/t TCPIPOverviewandHistory.htm}

163

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 164

network that can properly provide users with the applications they need.

TCP/IP uses its own four-layer architecture that corresponds roughly to the OSI

Reference Model and provides a framework for the various protocols that comprise

the suite. It also includes numerous high-level applications, some of which are well-

known by Internet users who may not realise they are part of TCP/IP, such as

HTTP (which runs the World Wide Web) and FTP. In the topics on TCP/IP

architecture and protocols I provide an overview of most of the important TCP/IP

protocols and how they fit together. Early TCP/IP History

As I said earlier, the Internet is a primary reason why TCP/IP is what it is today.

In fact, the Internet and TCP/IP are so closely related in their history that it is

difficult to discuss one without also talking about the other. They were developed

together, with TCP/IP providing the mechanism for implementing the Internet.

TCP/IP has over the years continued to evolve to meet the needs of the Internet

and also smaller, private networks that use the technology. I will provide a brief

summary of the history of TCP/IP here; of course, whole books have been written

on TCP/IP and Internet history, and this is a technical Guide and not a history

book, so remember that this is just a quick look for sake of interest.

The TCP/IP protocols were initially developed as part of the research network

developed by the United States Defence Advanced Research Projects Agency

(DARPA or ARPA). Initially, this fledgling network, called the ARPAnet, was

designed to use a number of protocols that had been adapted from existing tech-

nologies. However, they all had flaws or limitations, either in concept or in prac-

tical matters such as capacity, when used on the ARPAnet. The developers of the

new network recognised that trying to use these existing protocols might eventu-

ally lead to problems as the ARPAnet scaled to a larger size and was adapted for

newer uses and applications.

In 1973, development of a full-fledged system of inter networking protocols for the

ARPAnet began. What many people don’t realise is that in early versions of this

technology, there was only one core protocol: TCP. And in fact, these letters

didn’t even stand for what they do today; they were for the Transmission Control

Program. The first version of this predecessor of modern TCP was written in

1973, then revised and formally documented in RFC 675, Specification of Internet

Transmission Control Program, December 1974.

Modern TCP/IP Development and the Creation of TCP/IP Architecture:

Testing and development of TCP continued for several years. In March 1977,

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 165

version 2 of TCP was documented. In August 1977, a significant turning point

came in TCP/IPs development. Jon Postel, one of the most important pioneers

of the Internet and TCP/IP, published a set of comments on the state of TCP.

In that document (known as Internet Engineering Note number 2, or IEN 2), he

provided what I consider superb evidence that reference models and layers aren’t

just for textbooks, and really are important to understand:

“We are screwing up in our design of internet protocols by violating the principle

of layering. Specifically we are trying to use TCP to do two things: serve as a

host level end to end protocol, and to serve as an internet packaging and routing

protocol. These two things should be provided in a layered and modular way. I

suggest that a new distinct internetwork protocol is needed, and that TCP be used

strictly as a host level end to end protocol.”

– Jon Postel, IEN 2, 1977

What Postel was essentially saying was that the version of TCP created in the

mid-1970s was trying to do too much. Specifically, it was encompassing both layer

three and layer four activities (in terms of OSI Reference Model layer numbers).

His vision was prophetic, because we now know that having TCP handle all of

these activities would have indeed led to problems down the road.

Postel’s observation led to the creation of TCP/IP architecture, and the splitting

of TCP into TCP at the transport layer and IP at the network layer; thus the

name TCP/IP. (As an aside, it’s interesting, given this history, that sometimes

the entire TCP/IP suite is called just IP, even though TCP came first.) The

process of dividing TCP into two portions began in version 3 of TCP, written in

1978. The first formal standard for the versions of IP and TCP used in modern

networks (version 4) were created in 1980. This is why the first real version of IP is

version 4 and not version 1. TCP/IP quickly became the standard protocol set for

running the ARPAnet. In the 1980s, more and more machines and networks were

connected to the evolving ARPAnet using TCP/IP protocols, and the TCP/IP

Internet was born.

Key Concept: TCP/IP was initially developed in the 1970s as part of an effort to

define a set of technologies to operate the fledgling Internet. The name TCP/IP

came about when the original Transmission Control Program (TCP) was split

into the Transmission Control Protocol (TCP) and Internet Protocol (IP). The

first modern versions of these two key protocols were documented in 1980 as TCP

version 4 and IP version 4.

Important Factors in the Success of TCP/IP:

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 166

TCP/IP was at one time just one of many different sets of protocols that could

be used to provide network-layer and transport-layer functionality. Today there

are still other options for inter networking protocol suites, but TCP/IP is the

universally-accepted world-wide standard. Its growth in popularity has been due

to a number of important factors. Some of these are historical, such as the fact

that it is tied to the Internet as described above, while others are related to the

characteristics of the protocol suite itself. Chief among these are the following:

- Integrated Addressing System: TCP/IP includes within it (as part of the Internet

Protocol, primarily) a system for identifying and addressing devices on both small

and large networks. The addressing system is designed to allow devices to be

addressed regardless of the lower-level details of how each constituent network is

constructed. Over time, the mechanisms for addressing in TCP/IP have improved,

to meet the needs of growing networks, especially the Internet. The addressing

system also includes a centralised administration capability for the Internet, to

ensure that each device has a unique address.

- Design For Routing: Unlike some network-layer protocols, TCP/IP is specifi-

cally designed to facilitate the routing of information over a network of arbitrary

complexity. In fact, TCP/IP is conceptually concerned more with the connection

of networks, than with the connection of devices. TCP/IP routers enable data to

be delivered between devices on different networks by moving it one step at a time

from one network to the next. A number of support protocols are also included in

TCP/IP to allow routers to exchange critical information and manage the efficient

flow of information from one network to another.

- Underlying Network Independence: TCP/IP operates primarily at layers three

and above, and includes provisions to allow it to function on almost any lower-

layer technology, including LANs, wireless LANs and WANs of various sorts. This

flexibility means that one can mix and match a variety of different underlying

networks and connect them all using TCP/IP.

- Scalability: One of the most amazing characteristics of TCP/IP is how scal-

able its protocols have proven to be. Over the decades it has proven its mettle

as the Internet has grown from a small network with just a few machines to a

huge internetwork with millions of hosts. While some changes have been required

periodically to support this growth, these changes have taken place as part of the

TCP/IP development process, and the core of TCP/IP is basically the same as it

was 25 years ago.

- Open Standards and Development Process: The TCP/IP standards are not

proprietary, but open standards freely available to the public. Furthermore, the

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 167

process used to develop TCP/IP standards is also completely open. TCP/IP

standards and protocols are developed and modified using the unique, democratic

RFC process, with all interested parties invited to participate. This ensures that

anyone with an interest in the TCP/IP protocols is given a chance to provide

input into their development, and also ensures the world-wide acceptance of the

protocol suite.

- Universality: Everyone uses TCP/IP because everyone uses it!

This last point is, perhaps ironically, arguably the most important. Not only is

TCP/IP the underlying language of the Internet, it is also used in most private

networks today. Even former competitors to TCP/IP such as NetWare now use

TCP/IP to carry traffic. The Internet continues to grow, and so do the capabilities

and functions of TCP/IP. Preparation for the future continues, with the move

to the new IP version 6 protocol in its early stages. It is likely that TCP/IP will

remain a big part of inter networking for the foreseeable future.

Key Concept: While TCP/IP is not the only inter networking protocol suite, it

is definitely the most important one. Its unparalleled success is due to a wide

variety of factors. These include its technical features, such as its routing-friendly

design and scalability, its historical role as the protocol suite of the Internet, and

its open standards and development process, which reduce barriers to acceptance

of TCP/IP protocols.

For Brief History of Wireless Technologies see: Wireless Data Technologies. Vern

A. Dubendorf 2003 John Wiley & Sons, Ltd ISBN: 0-470-84949-5. Notice that in

802.11(b) are popular in 2000.

Note: the aim of the following history time line is to:

• See the effect of various telecommunication technologies (e.g. wireless, long

fat pipes,. . .) on the evolution of transport layer reliable protocols. (trend

of research).

• Show the need for reliable protocols (the topic is still evolving).

• Help in tracking the changes and learning from previous algorithms.

• Provide short reading list for certain topics. (organised research or pointers

for research papers).

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 168

1957: USSR launches Sputnik, first artificial earth satellite. The start of global

telecommunications. Satellites play an important role in transmitting all sorts

of data today. In response, US forms the Advanced Research Projects Agency

(ARPA) within the Department of Defence (DOD) to establish US lead in science

and technology applicable to the military. {source: Gromov’s Timeline, inthistory

file}

1967: ARPANET design discussions held by Larry Roberts at ARPA IPTO PI

meeting in Ann Arbor, Michigan (April)

ACM Symposium on Operating Systems Principles in Gatlinburg, Tennessee (Oc-

tober).

- First design paper on ARPANET published by Larry Roberts: ”Multiple Com-

puter Networks and Inter computer Communication.

- First meeting of the three independent packet network teams (RAND, NPL,

ARPA).

National Physical Laboratory (NPL) in Middlesex, England develops NPL Data

Network under Donald Watts Davies who coins the term packet. The NPL net-

work, an experiment in packet-switching, used 768kbps lines.

1969: Birth of Internet. ARPANET commissioned by DOD (US Dept. of Defence)

for research into networking. First node at UCLA (Los Angeles) closely followed

by nodes at Stanford Research Institute, UCSB (Santa Barbara) and U of Utah

(4 Nodes) {source: Gromov’s Timeline, inthistory file}

1970: ALOHANET developed at the University of Hawaii. {source: Gromov’s

Timeline, inthistory file}

1971: People communicate over a network. 15 nodes (23 hosts) on ARPANET.

E-mail invented.

{source: Gromov’s Timeline, inthistory file}

1970-1973: The ARPANET was a success from the very beginning.

1973: Need of development of fully fledged system for ARPAnet.

1974: TCP v.1, Vint Cerf and Bob Kahn publish ”A Protocol for Packet Network

Interconnection” which specified in detail the design of a Transmission Control

Program (TCP). {IEEE Trans Comm} BBN opens Telenet, the first public packet

data service (a commercial version of ARPANET).

Formally documented in RFC 675 December 1974.

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 169

1976: Elizabeth II, Queen of the United Kingdom sends out an email on 26 March

from the Royal Signals and Radar Establishment (RSRE) in Malvern.

UUCP (Unix-to-Unix CoPy) developed at AT&T Bell Labs and distributed with

UNIX one year later.

1977: March, TCP v.2 was documented.

August, TCP v.2 should be split into two protocols. According to Jon Postel, IEN

2

1978: TCP v.3, The process of dividing TCP into two portions began in version

3 of TCP and it was written.

1980: User Datagram Protocol (UDP) created by David P. Reed.

1980: TCP v.4, first formal standard for the versions of IP and TCP used in mod-

ern networks.

January, RFC 760 761 outline new specifications for the two protocols IP and

TCP. {source: www.cs.utexas.edu}
February, RFC TCP/IP becomes the preferred military protocol. {source: www.cs.utexas.edu}
TCP/IP Internet was born.

1981: September, IETF RFC 793 (TCP), RFC 791 (IP). RFC-791 replaced RFC-

760.

1981: Jerome H. Saltzer, David P. Reed, and David D. Clark, s.l. End-to-End

Arguments in System Design. IEEE Computer Society, 1981, Proceedings of the

2nd International Conference on Distributed Computing Systems, Paris, 1981, pp.

509-512.

Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in

system design. ACM Transactions on Computer Systems 2, 4 (November 1984)

pages 277-288. An earlier version appeared in the Second International Conference

on Distributed Computing Systems (April, 1981) pages 509-512.

{source: wikipedia, End-to-end principle}

1982: The term ‘Internet’ was used for the first time. {source: Gromov’s Timeline,

inthistory file}

1983: 4.2BSD, Many of the implementations of TCP/IP at the time (1973-1980)

were pulled together to create the first widely available (and used) version of

TCP/IP. {source: node8 file}.

1984: Domain Name System (DNS) introduced.

-Number of hosts breaks 1,000.

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 170

-JUNET (Japan Unix Network) established using UUCP.

-JANET (Joint Academic Network) established in the UK using the Coloured

Book protocols; previously SERCnet.

1986: In October of ’86, the Internet had the first of what became a series of ‘con-

gestion collapses’. During this period, the data throughput from LBL (Lawrence

Berkeley Laboratories) to UC Berkeley (sites separated by 400 yards and two

IMP (Infrastructure Message Processor, i.e router) hops) dropped from 32 Kbps

to 40bps. This sudden factor-of-thousand drop in bandwidth embarked on an in-

vestigation of why things had gotten so bad. In particular, we wondered if the

4.3bsd (Berkeley UNIX) TCP was mis-behaving or if it could be tuned to work

better under abysmal network conditions. The answer to both of these questions

was “yes”.

1987: Karn’s Algorithm: P. Karn and C. Partridge. Improving Round-Trip Time

Estimates in Reliable Transport Protocols. Computer Communication Review,

17(5), August 1987.

1988: 4.3BSD TAHOE TCP

The Tahoe implementation of TCP (1988) introduced significant improvements

for working over a shared network (leading in 1989 to the Net/1 release). An al-

gorithm (Slow Start (congestion control) and multiplicative decrease (congestion

avoidance)) was introduce to control transmission following any detected conges-

tion. Under this algorithm, a TCP transmitter is allowed to transmit a number

of bytes determined by the smallest value of the window advertised by the re-

ceiver and a congestion window (cwnd). The cwnd is initially assigned a value of

1 segment, and is doubled following receipt of each ACK, normally resulting in

exponential window growth.

The algorithm also uses a variable to keep the threshold value of the send window

(ssthresh), which is initialised to the receiver’s advertised window size. Following

a retransmission time out, the algorithm assigns half of the current window to

ssthresh (this is the multiplicative decrease part of the algorithm), the cwnd is set

to one packet and the slow start phase begins. The cwnd is increased by one seg-

ment whenever an acknowledgement is received, until it reaches the ssthresh. At

this point, the algorithm switches to the congestion avoidance phase and the win-

dow size is only increased by a fraction of the segment (equivalent to an increment

of one segment per round trip delay).

The Fast Retransmission {RFC 2001} algorithm was also implemented into avoid

waiting for the retransmission timer to expire following every packet loss. In this

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 171

algorithm, a receiver sends a duplicate ACK immediately on reception of each

out of sequence packet. The transmitter interprets reception of 3 duplicate ACKs

(sufficient to avoid spurious retransmissions due to reordering of segments) as a

congestion packet loss and triggers the Slow Start algorithm.

1989: NET/1 TCP

1989: XTP

Xpress Transport Protocol (XTP) is a transport layer protocol for high-speed

networks promoted by the XTP Forum developed to replace TCP. XTP pro-

vides protocol options for error control, flow control, and rate control. Instead

of separate protocols for each type of communication, XTP controls packet ex-

change patterns to produce different models, e.g. reliable datagrams, transactions,

unreliable streams, and reliable multicast connections. XTP does not employ con-

gestion avoidance algorithms. XTP is a real-time option at Layer 4 for the US

Navy SAFENET LAN Profile.

”XTP Protocol Definition Revision 3.4”, Protocol Engines, Incorporated, 1900

State Street, Suite D, Santa Barbara, California 93101, 1989.

{source:http://en.wikipedia.org/wiki/Xpress Transport Protocol +

http://www.cs.virginia.edu/papers/p67-sanders.pdf}

1990: 4.4BSD RENO TCP

Reno TCP (1990, followed by Net/2 in 1991) introduced a further optimisation

(Fast Recovery) to improve performance following retransmission. When the third

duplicate ACK is received, the Reno TCP transmitter sets ssthresh to one half of

the current congestion window (cwnd) and retransmits the missing segment. The

cwnd is then set to ssthresh plus three segments (one segment per each duplicate

ACK that has already received). cwnd is then increased by one segment on re-

ception of each duplicate ACK which continues to arrive after fast-retransmission.

This allows the transmitter to send new data when cwnd is increased beyond the

value of the cwnd before the fast-retransmission. When an ACK arrives which

acknowledges all outstanding data sent before the duplicate ACKs were received,

the cwnd is set to ssthresh so that the transmitter slows down the transmission

rate and enters the linear increase phase.

Much had also been learned through research into alternative protocols to TCP

(e.g. XTP, NetBLT). This experience was transferred to TCP through the addi-

tion of ”header prediction”, providing a very significant performance improvement.

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 172

1991: Tri-S, a congestion control algorithm.

1992: T/TCP

TCP for Transactions,

RFC 1379: Braden, R. T., Extending TCP for Transactions-Concepts, 38 pages,

Nov. 1992.

RFC 1644: Braden, R. T., T/TCP-TCP Extensions for Transactions, Functional

Specification, 38 pages, July 1994.

{source: http://www.kohala.com/start/ttcp.html}.

1993: 4.4BSD NET/3 TCP

The 4.4 BSD release (1993) lead to Net/3 TCP, which continues to be one of the

reference implementations used by developers. This added capability for multi-

cast, long fat network extensions and various other refinements.

1993: Floyd, S., and Jacobson, V., Random Early Detection gateways for Con-

gestion Avoidance V.1 N.4, August 1993, p. 397-413. This is the basic paper that

describes RED queue management.

1994: VEGAS TCP

An experimental modification to TCP was proposed by Lawrence Brakmo at Uni-

versity of Arizona. This primarily added rate control to avoid congestion (rather

than react after detection of congestion) it emphasises packet delay, rather than

packet loss, as a signal to help determine the rate at which to send packets. Vegas

has not been widely implemented and is not universally accepted by the Internet

community and is still a subject of much controversy.

{source: wikipedia + see SIGCOMM94 paper}.

1994: T-TCP

T/TCP (Transactional TCP) is a variant of the TCP protocol. It is an experimen-

tal TCP extension for efficient transaction-oriented (request/response) service. It

was developed to fill the gap between TCP and UDP, by Bob Braden in 1994. Its

definition can be found in RFC 1644.

This protocol is faster than TCP and delivery reliability is comparable to that of

TCP. Unfortunately, T/TCP suffers from a major spoofing problem pointed out

by Vasim Valejev in 1998 in a posting to Bugtraq, and has not gained widespread

popularity.

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 173

{source: http://en.wikipedia.org/wiki/Category:Transport layer protocols}

1995: I-TCP

I-TCP: indirect TCP for mobile hosts

Abstract: IP based solutions to accommodate mobile hosts within existing in-

ternetworks do not address the distinctive features of wireless mobile computing.

IP-based transport protocols thus suffer from poor performance when a mobile

host communicates with a host on the fixed network. This is caused by frequent

disruptions in network layer connectivity due to - i) mobility and ii) unreliable

nature of the wireless link. We describe I-TCP, which is an indirect transport

layer protocol for mobile hosts. I-TCP utilizes the resources of Mobility Support

Routers (MSRs) to provide transport layer communication between mobile hosts

and hosts on the fixed network. With I-TCP, the problems related to mobility

and unreliability of wireless link are handled entirely within the wireless link; the

TCP/IP software on the fixed hosts is not modified. Using I-TCP on our testbed,

the throughput between a fixed host and a mobile host improved substantially in

comparison to regular TCP.

{source: http://citeseer.ist.psu.edu/bakre95itcp.html}

1995-1996: NEW-RENO TCP

Janey Hoe (of MIT) proposed a modification to Reno TCP usually called New-

Reno, which addressed two problems in TCP, these ideas are gradually finding

acceptance within the IETF. Hoe noted that a smaller value for ssthresh causes

premature termination of the slow start phase and subsequent slow increase of the

cwnd (i.e. the linear increase phase). A larger value causes the sender to over-feed

packets to the network (i.e. transmit too long a burst of data packets) causing

congestion. Since most TCP sessions last only for a short period of time, the

initial slow start period is significant for the over all performance.

Hoe proposed a method to estimate an optimum ssthresh value by calculating the

byte equivalent of bandwidth delay product of the network, when a new connection

is made. The bandwidth is calculated using the Packet-Pair algorithm (measuring

the arrival time of closely spaced ACKs at the sender).

If two or more segments have been lost from the transmitted data (window), the

Fast Retransmission and Fast Recovery algorithms will not be able to recover

the losses without waiting for retransmission time out. New-Reno overcomes this

problem by introducing the concept of a Fast Retransmission Phase, which starts

on detection of a packet loss (receiving 3 duplicate ACKs) and ends when the

receiver acknowledges reception of all data transmitted at the start of the Fast

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 174

Retransmission phase. If more than one packet is missing within the same window,

a retransmission only recovers the first lost packet from the window. The receiver

then ACKs reception of the retransmitted segment and all following segments up

to the next lost segment. This ACK is called a ”partial ACK”, because it has not

ACKed all the packets which were transmitted prior to the start of the current

Fast Retransmission Phase.

The transmitter assumes reception of a partial ACK during the Fast Retransmis-

sion phase as an indication that another packet has been lost within the window

and retransmits that packet immediately to prevent expiry of the retransmission

timer. New Reno sets the cwnd to one segment on reception of 3 duplicate ACKs

(i.e. when entering the Fast Retransmission Phase) and unacknowledged data are

retransmitted using the Slow Start algorithm. The transmitter is also allowed to

transmit a new data packet on receiving 2 duplicate ACKs. While the transmitter

is in the Fast Retransmission Phase, it continues to retransmit packets using Slow

Start until all packets have been recovered (without starting a new retransmis-

sion phase for partial ACKs). Although this modification may cause unnecessary

retransmissions, it reduces transmitter time outs and efficiently recovers multiple

packet loss using partial ACKs.

{source: tcp-evol file + RFC 2582}

1995-1996: Snoop TCP

The Snoop protocol is a TCP-aware link layer protocol designed to improve the

performance of TCP over networks of wired and single-hop wireless links. (Note:

The TCP split approach was before this work - mid 1990s-, see the background

part of [10], section 2.5.3 Split connection protocols).

{source: http://nms.lcs.mit.edu/ hari/papers/snoop.html}

1996: RTP

The Real-time Transport Protocol (or RTP) defines a standardised packet format

for delivering audio and video over the Internet. It was developed by the Audio-

Video Transport Working Group of the IETF and first published in 1996 as RFC

1889 which was made obsolete in 2003 by RFC 3550. {source: wikipedia}

Note: Call setup and tear-down for VoIP applications is usually performed by

either SIP (Session Initiation Protocol an application-layer control) or H.323 (an

ITU Telecommunication Standardisation Sector (ITU-T) standard) protocols,

SIP is designed to be independent of the underlying transport layer; it can run on

TCP, UDP, or SCTP.

1996-1998: SELECTIVE ACKNOWLEDGEMENT OPTION (SACK)

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 175

The probability of multiple packet loss in a window is much greater for a long

fast network, where more packets are in flight. Although TCP is able to recover-

ing multiple packet losses without waiting for expiry of the retransmission timer,

frequent packet loss may still not be efficiently recovered. The SACK extension

(1996-98) improves TCP performance over such a network, and has been included

in some recent TCP implementations.

The SACK option is triggered when the receiver buffer holds in-sequence data

segments following a packet loss. The receiver then sends duplicate ACKs bearing

the SACK option to inform the transmitter which segments have been correctly

received. When the third duplicate ACKis received, a SACK TCP transmitter

retransmits only the missing packets starting with the sequence number acknowl-

edged by the duplicate ACKs, and followed by any subsequent unacknowledged

segments. The Fast Retransmission and Recovery algorithms are also modified

to avoid retransmitting already SACKed segments. The explicit information car-

ried by SACKs enables the transmitter to also accurately estimate the number of

transmitted data packets that have left the network (this procedure is known as

Forward Acknowledgement (FACK)), allowing transmission of new data to con-

tinue during retransmission. The SACK option is able to sustain high throughput

over a network subject to high packet loss and is therefore desirable for bulk trans-

fers over a DVB network. Optimisation of the algorithms which govern use of the

SACK information are still the subject of research, however the basic algorithms

are now widely implemented.

N Samaweera & G Fairhurst have proposed a refinement to SACK to solve the re-

liance of SACK on protocol timers when a retransmission is unsuccessful. {source:

tcp-evol file}

1997: RSVP

The Resource ReSerVation Protocol (RSVP), version 1 is described in RFC 2205,

is a Transport layer protocol designed to reserve resources across a network for

an integrated services Internet. ”RSVP does not transport application data but

is rather an Internet control protocol, like ICMP, IGMP, or routing protocols” -

RFC 2205.

{source wikipedia + http://www.isi.edu/div7/rsvp/rsvp.html}

1997: M-TCP

http://web.cecs.pdx.edu/ singh/mtcp.html

http://www.cs.pdx.edu/ singh/ftp/mtcp.ps.gz

Kevin Brown and Suresh Singh, M-TCP: TCP for Mobile Cellular Networks, ACM

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 176

CCR Vol. 27(5), 1997

1998: IPv6 RFC 2460.

1999: WTCP

WTCP (Wireless Transmission Control Protocol) is a proxy based modification of

TCP that preserves the end-to-end semantics of TCP. As its name suggests, it is

used in wireless networks to improve the performance of TCP.

{source: http://en.wikipedia.org/wiki/WTCP +

http://timely.crhc.uiuc.edu/Projects/wtcp/wtcp.html}

2000: SCTP

Stream Control Transmission Protocol standard draft document (RFC2960) in

October 2000 (This RFC Updated by RFC 3309 and obsoleted by RFC 4960).

{source: wikipedia + http://tdrwww.exp-math.uni-essen.de/inhalt/

forschung/sctp fb/sctp intro.html}

2000: RFC 2914 Congestion Control Principles.

2000: TCP Westwood

TCP Westwood: Handling Dynamic Large Leaky Pipes

TCP Westwood (TCPW), is a sender-side-only modification to TCP NewReno

that is intended to better handle large bandwidth-delay product paths (large

pipes), with potential packet loss due to transmission or other errors (leaky pipes),

and with dynamic load (dynamic pipes).

TCPW relies on mining the ACK stream for information to help it better set the

congestion control parameters: Slow Start Threshold (ssthresh), and Congestion

Window (cwin). In TCPW, an ”Eligible Rate” is estimated and used by the

sender to update ssthresh and cwin upon loss indication, or during its ”Agile

Probing” phase, a proposed modification to the well-known Slow Start phase. In

addition, a scheme called Persistent Non Congestion Detection (PNCD) has been

devised to detect persistent lack of congestion and induce an Agile Probing phase

to expeditiously utilise large dynamic bandwidth.

The resultant performance gains in efficiency, without undue sacrifice of fairness,

friendliness, and stability have been reported in numerous papers that can be

found on this web site. Significant efficiency gains can be obtained for large leaky

dynamic pipes, while maintaining fairness. Under a more appropriate criterion for

friendliness, i.e. ”opportunistic friendliness”, TCPW is shown to have good, and

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 177

controllable, friendliness.

{source: Westwood Homepage, http://www.cs.ucla.edu/NRL/hpi/tcpw/ TCP }

2001: TCP Westwood+2

TCP Westwood+ is a sender-side only modification of the TCP Reno/NewReno

classic congestion control protocol stack that optimises the performance of TCP

congestion control especially over wireless networks. TCPW is based on end-to-

end bandwidth estimation to set congestion window and slow start threshold after

a congestion episode, that is, after three duplicate acknowledgements or a timeout.

The bandwidth is estimated by properly low-pass filtering the rate of returning

acknowledgement packets. The rationale of this strategy is simple: in contrast

with TCP Reno, which blindly halves the congestion window after three duplicate

ACKs, TCP Westwood+ adaptively sets a slow start threshold and a congestion

window which takes into account the bandwidth used at the time congestion is

experienced. TCP Westwood significantly increases fairness with respect to TCP

(New) Reno in wired networks and throughput over wireless links.

{source: Westwood Homepage, http://www.cs.ucla.edu/NRL/hpi/tcpw/ TCP }

2001: ATCP

ATCP: TCP for mobile ad hoc networks Liu, J.; Singh, S. Selected Areas in Com-

munications, IEEE Journal on Volume 19, Issue 7, Jul 2001 Page(s):1300 - 1315

Digital Object Identifier 10.1109/49.932698 Summary:Transport connections set

up in wireless ad hoc networks are plagued by problems such as high bit error

rates, frequent route changes, and partitions. If we run the transmission control

protocol (TCP) over such connections, the throughput of the connection is ob-

served to be extremely poor because TCP treats lost or delayed acknowledgments

as congestion. We present an approach where we implement a thin layer between

Internet protocol and standard TCP that corrects these problems and maintains

high end-to-end TCP throughput. We have implemented our protocol in FreeBSD,

and we present results from extensive experimentation done in an ad hoc network.

We show that our solution improves the TCP’s throughput by a factor of 2-3

2001: TCP HACK

R.K.Balan, B.P.Lee and K.R.R.Kumar ” TCP HACK: TCP Header checksum

option to Improve performance over Lossy Links ”, in proc. INFOCOM ’2001,

Anchorage, AK, pp.309-318.

2Also begining of Veno

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 178

2001: TCP-Real

TCP-real: improving real-time capabilities of TCP over heterogeneous networks.

Source:International Workshop on Network and Operating System Support for

Digital Audio and Video archive Proceedings of the 11th international workshop

on Network and operating systems support for digital audio and video table of

contents Port Jefferson, New York, United States Pages: 189 - 198 Year of Publi-

cation: 2001 ISBN:1-58113-370-7

Authors: C. Zhang College of Computer Science, Northeastern University, Boston,

MA V. Tsaoussidis College of Computer Science, Northeastern University, Boston,

MA

Abstract

We present a TCP-compatible and -friendly protocol which abolishes three major

shortfalls of TCP for reliable multimedia applications over heterogeneous net-

works: (i) ineffective bandwidth utilisation, (ii) unnecessary congestion-oriented

responses to wireless link errors (e.g., fading channels) and operations (e.g. hand-

offs), and (iii) wasteful window adjustments over asymmetric, low-bandwidth re-

verse paths. We propose TCP-Real, a high-throughput transport protocol that

minimises transmission-rate gaps, thereby enabling better performance and rea-

sonable playback timers. In TCP-Real, the receiver decides with better accuracy

about the appropriate size of the congestion window. Slow Start and timeout ad-

justments are used whenever congestion avoidance fails; however, rate and timeout

adjustments are cancelled whenever the receiving rate indicates sufficient avail-

ability of bandwidth. We detail the protocol design and we report significant

improvement on the performance of the protocol with time-constrained traffic,

wireless link errors and asymmetric paths.

{source: http://portal.acm.org/citation.cfm?id=378371}

2001-2002: HighSpeed TCP (HSTCP) is a new congestion control algorithm pro-

tocol defined in RFC 3649 for TCP (Sally Floyd).

{source: wikipedia + http://www.icir.org/floyd/hstcp.html}

2002: XCP The eXplicit Control Protocol

SIGCOMM02: http://www.acm.org/sigcomm/sigcomm2002/papers/xcp.pdf

{source: http://www.isi.edu/isi-xcp/}

2002: TCP Nice

TCP Nice, Arun Venkataramani, Ravi Kokku, and Mike Dahlin, 2002.

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 179

“makes good use of the spare bandwidth without affecting the traffic already

present.”

{source: http://www.cs.utexas.edu/users/arun/nice/ and link (2) at the end }

2003: TCP Veno

TCP Veno is a novel end-to-end congestion control scheme which can improve

TCP performance quite significantly over heterogeneous networks, particularly

when wireless links form part of such networks. The key innovation in Veno is the

enhancement of Reno congestion control algorithm by using the estimated state of

a connection based on Vegas. This scheme significantly reduces ”blind” reduction

of TCP window regardless of the cause of packet loss. The salient feature of TCP

Veno is that it only needs simple modification at sender side of Reno protocol

stack. Considering practical issues deployability and compatibility (conformance

with legacy connections), Veno TCP may be quickly deployed in ”hot” Mobile

Internet industry.

{source: www.ntu.edu.sg/home/ascpfu/veno/index.html}

2003: TCP Hybla

TCP Hybla is a experimental TCP enhancement conceived with the primary aim

of counteracting the performance deterioration caused by the long RTTs typical

of satellite connections. It consists of a set of procedures which includes, among

others:

- an enhancement of the standard congestion control algorithm (to grant long RTT

connections the same instantaneous segment transmission rate of a comparatively

fast reference connection).

- the mandatory adoption of the SACK policy.

- the use of timestamps.

- the adoption of Hoes channel bandwidth estimate.

- the implementation of packet spacing techniques (also known as ”pacing”).

TCP Hybla involves only sender-side modification of TCP. As that, it is fully

compatible with standard receivers.

{source: TCP Hybla Homepage, http://hybla.deis.unibo.it/}

2003: TCP-LP TCP Low Priority

Service prioritisation among different traffic classes is an important goal for the

future Internet. Conventional approaches to solving this problem consider the

existing best-effort class as the low-priority class, and attempt to develop mech-

anisms that provide “better-than-best-effort” service. We explore the opposite

approach, and devise a new distributed algorithm to realise a low-priority service

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 180

(as compared to the existing best effort) from the network endpoints. To this end,

we develop TCP Low Priority (TCP-LP), a distributed algorithm whose goal is

to utilise only the excess network bandwidth as compared to the “fair share” of

bandwidth as targeted by TCP. The key mechanisms unique to TCP-LP conges-

tion control are the use of one-way packet delays for congestion indications and

a TCP-transparent congestion avoidance policy. On the other hand, HSTCP-LP

(High-Speed TCP Low Priority) is an advanced TCP version targeted towards

fast long-distance networks (i.e., networks operating at 622 Mb/s, 2.5 Gb/s, or

10 Gb/s and spanning several countries or states). HSTCP-LP is a TCP-LP ver-

sion with aggressive window increase policy. More details on HSTCP-LP could be

found below. {source: http://www.ece.rice.edu/networks/TCP-LP/}

2003: FAST TCP

FAST TCP is a new TCP congestion avoidance algorithm especially targeted at

high-speed, long-distance links, developed at the Netlab, California Institute of

Technology and now being commercialised by Fastsoft. It is compatible with

existing TCP algorithms, requiring modification only to the computer which is

sending data.

{source: wikipedia + http://netlab.caltech.edu/FAST/}

2003: Scalable TCP improved performance in highspeed networks

Scalable TCP is a simple change to the traditional TCP congestion control al-

gorithm (RFC2581) which dramatically improves TCP performance in highspeed

wide area networks. This page provides information on various aspects of Scalable

TCP. {source: http://www.deneholme.net/tom/scalable/}

2003: TFRC

TFRC is a TCP-Friendly, rate-based congestion control protocol, which intends

to compete fairly for bandwidth with TCP flows.

RFC 3448: TCP Friendly Rate Control (TFRC): Protocol Specification.

Handley, M., Floyd, S., Pahdye, J., and Widmer, J.

RFC 3448, Proposed Standard, January 2003.

{source: http://www.icir.org/tfrc/}

2003: TCP-DCR

Delayed Congestion Response TCP protocol (TCP-DCR).

TCP-DCR delays responding to a packet loss indication by a small period of

time (one RTT) to allow channel errors to be recovered by link level retransmis-

sion. . . An interested by-product of using TCP-DCR is the inherent robustness it

provides against. . . degradation due to packet re-ordering in the network.

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 181

{source: http://dropzone.tamu.edu/techpubs/2003/TAMU-ECE-2003-01.pdf and

link (2) at the end }

2003: TCP-PR

TCP-PR: TCP for Persistent Packet Reordering

The key feature of TCP-PR is that duplicate ACKs are not used as an indication of

packet loss. Rather, TCP-PR relies exclusively on timeout.{source: http://www-

rcf.usc.edu/ junsool/tcp-pr/tcp-pr.html and link (2) at the end }

2004: H-TCP

H-TCP is another implementation of TCP with an optimised congestion control

algorithm for high speed networks with high latency (LFN: Long Fat Networks).

It was created by researchers at the Hamilton Institute in Ireland.

H-TCP is an optional module in recent Linux 2.6 kernels.

{source: wikipedia + http://www.hamilton.ie/net/htcp/}

2004: TCP-Jersey

TCP-Jersey is a new TCP scheme that focuses on the capability of the transport

mechanism to distinguish the wireless from congestion packet losses.

TCP-Jersey for wireless IP communications Kai Xu Ye Tian Ansari, N. Dept. of

Electr. & Comput. Eng., New Jersey Inst. of Technol., Newark, NJ, USA;

This paper appears in: Selected Areas in Communications, IEEE Journal on Publi-

cation Date: May 2004 Volume: 22, Issue: 4 On page(s): 747- 756 ISSN: 0733-8716

INSPEC Accession Number: 7956371 Digital Object Identifier: 10.1109/JSAC.2004.825989

Posted online: 2004-05-04 13:48:11.0

Abstract

Improving the performance of the transmission control protocol (TCP) in wire-

less Internet protocol (IP) communications has been an active research area. The

performance degradation of TCP in wireless and wired-wireless hybrid networks

is mainly due to its lack of the ability to differentiate the packet losses caused

by network congestions from the losses caused by wireless link errors. In this

paper, we propose a new TCP scheme, called TCP-Jersey, which is capable of

distinguishing the wireless packet losses from the congestion packet losses, and

reacting accordingly. TCP-Jersey consists of two key components, the available

bandwidth estimation (ABE) algorithm and the congestion warning (CW) router

configuration. ABE is a TCP sender side addition that continuously estimates the

bandwidth available to the connection and guides the sender to adjust its transmis-

sion rate when the network becomes congested. CW is a configuration of network

routers such that routers alert end stations by marking all packets when there is

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 182

a sign of an incipient congestion. The marking of packets by the CW configured

routers helps the sender of the TCP connection to effectively differentiate packet

losses caused by network congestion from those caused by wireless link errors.

This paper describes the design of TCP-Jersey, and presents results from experi-

ments using the NS-2 network simulator. Results from simulations show that in a

congestion free network with 1% of random wireless packet loss rate, TCP-Jersey

achieves 17% and 85% improvements in goodput over TCP-Westwood and TCP-

Reno, respectively; in a congested network where TCP flow competes with VoIP

flows, with 1% of random wireless packet loss rate, TCP-Jersey achieves 9% and

76% improvements in goodput over TCP-Westwood and TCP-Reno, respectively.

Our experiments of multiple TCP flows show that TCP-Jersey maintains the fair

and friendly behavior with respect to other TCP flows.

2004: UDP Lite RFC 3828 , July 2004.

UDP Lite is a connectionless protocol, very similar to UDP. Unlike UDP, where

either all or none of a packet is protected by a checksum, UDP Lite allows for

partial checksums that only cover part of a datagram, and will therefore deliver

packets that have been partially corrupted. It is particularly useful for multimedia

protocols, such as voice over IP, in which receiving a packet with a partly damaged

payload is better than receiving no packet at all.

{source: http://en.wikipedia.org/wiki/UDP Lite}

2004: A TCP congestion control algorithm for wireless Internet connections Yay-

che, H. Pierre, S. Quintero, A.Ecole Polytech. de Montreal, Que., Canada;

This paper appears in: Electrical and Computer Engineering, 2004. Canadian

Conference on Publication Date: 2-5 May 2004 Volume: 3, On page(s): 1797- 1800

Vol.3 ISSN: 0840-7789 ISBN: 0-7803-8253-6 INSPEC Accession Number: 8088655

Posted online: 2004-11-01 11:50:34.0

Abstract This letter proposes a new congestion control algorithm for TCP in a

wireless Internet. TCP performs poorly in such an environment because of the

high frame error rate and the assumption that packet loss is always a sign of

congestion. Our TCP congestion control algorithm is distributed and is based

on a numerical algorithm that solves this optimization problem using a gradient-

based method. Simulation results show that, according to the proposed algorithm,

TCP converges to the proportional fair allocation if some precautions are taken to

limit the delays experienced by packets and the corresponding acknowledgements.

2004: BIC (Binary Increase Congestion control) TCP

2005: and CUBIC (cubic function) TCP

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 183

The demands for fast transfer of large volumes of data, and the deployment of the

network infrastructures to support the demand are ever increasing. However, the

dominant network transport protocol of today, TCP, does not meet this demand.

The slow response of TCP in fast long distance networks leaves sizeable unused

bandwidth in such networks. BIC TCP and CUBIC are congestion control proto-

cols designed to remedy this problem. Our goal is to design a protocol that can

scale its performance up to several tens of gigabits per second over high-speed long

distance networks while maintaining strong fairness, stability and TCP friendli-

ness.

{source: http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC}

BIC is the abbreviation for Binary Increase Congestion control. BIC uses a unique

window growth function. In case of packet loss, the window is reduced by a mul-

tiplicative factor. The window size just before and after the reduction is then

used as parameters for a binary search for the new window size. BIC was used

as standard algorithm in the Linux kernel. CUBIC is a less aggressive variant of

BIC (meaning, it doesn’t steal as much throughput from competing TCP flows as

does BIC).

BIC TCP is implemented and used by default in Linux kernels 2.6.8 and above.

The default implementation was again changed to CUBIC TCP in the 2.6.19

version.

{source: wikipedia}

2005: Compound-TCP

Compound TCP (CTCP) is a Microsoft algorithm that is part of the Windows

Vista and Window Server 2008 TCP stack. It is designed to aggressively ad-

just the sender’s congestion window to optimise TCP for connections with large

bandwidth-delay products while trying not to harm fairness (as can occur with

HSTCP).

{source: wikipedia + http://research.microsoft.com/research/pubs/

view.aspx?type=Technical%20Report&id=940}

2005: TCP Africa

R. King, R. Baraniuk, R. Riedi, TCP Africa: An Adaptive and Fair Rapid In-

crease Rule for Scalable TCP, in proc. of IEEE INFOCOM 2005, Miami, USA,

Mar.

2005: TCP-Casablanca

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 184

”De-Randomizing” congestion losses to improve TCP performance over wired-

wireless networks Biaz, S.; Vaidya, N.H. Networking, IEEE/ACM Transactions

on Volume 13, Issue 3, June 2005 Page(s): 596 - 608 Digital Object Identifier

10.1109/TNET.2005.850205 Summary: Currently, a TCP sender considers all

losses as congestion signals and reacts to them by throttling its sending rate.

With Internet becoming more heterogeneous with more and more wireless error-

prone links, a TCP connection may unduly throttle its sending rate and experience

poor performance over paths experiencing random losses unrelated to congestion.

The problem of distinguishing congestion losses from random losses is particularly

hard when congestion is light: congestion losses themselves appear to be random.

The key idea is to ”de-randomize” congestion losses. This paper proposes a simple

biased queue management scheme that ”de-randomizes” congestion losses and en-

ables a TCP receiver to diagnose accurately the cause of a loss and inform the TCP

sender to react appropriately. Bounds on the accuracy of distinguishing wireless

losses and congestion losses are analytically established and validated through sim-

ulations. Congestion losses are identified with an accuracy higher than 95% while

wireless losses are identified with an accuracy higher than 75%. A closed form

is derived for the achievable improvement by TCP endowed with a discriminator

with a given accuracy. Simulations confirm this closed form. TCP-Casablanca,

a TCP-Newreno endowed with the proposed discriminator at the receiver, yields

through simulations an improvement of more than 100% on paths with low levels

of congestion and about 1% random wireless packet loss rates. TCP-Ifrane, a

sender-based TCP-Casablanca yields encouraging performance improvement.

2006: DCCP

Created on: 2006/04/03 RFC4340 March 2006. The Datagram Congestion Con-

trol Protocol (DCCP) is a transport protocol that provides bidirectional unicast

connections of congestion-controlled unreliable datagrams. DCCP is suitable for

applications that transfer fairly large amounts of data and that can benefit from

control over the tradeoff between timeliness and reliability.

{source: http://www.read.cs.ucla.edu/dccp/}

2006: TCP-Illinois

TCP-Illinois is a congestion control algorithm for high speed networks. It inherits

the good features of TCP and modifies the features of TCP which are not suitable

for high speed networks. It satisfies all the requirements for a high speed variants

and has great performance. TCP-Illinois is invented by Shao Liu, under the di-

rection of his co-advisors, Professor Tamer Basar and Professor R. Srikant. This

APPENDIX A. HISTORY TIME LINE FOR TCP-RELATED ISSUES 185

work is done in University of Illinois, and this new protocol is named after this

university.

{source: http://www.ews.uiuc.edu/%7Eshaoliu/tcpillinois/}

2007: YeAH-TCP

YeAH-TCP is a sender-side high-speed enabled TCP congestion control algorithm,

which uses a mixed loss/delay approach to compute the congestion window. It’s

design goals target high efficiency, internal, RTT and Reno fairness, resilience to

link loss while keeping network elements load as low as possible.

For further details look here:

http://wil.cs.caltech.edu/pfldnet2007/paper/YeAH TCP.pdf

This is the YeAH-TCP implementation of the algorithm presented to PFLD-

net2007 (http://wil.cs.caltech.edu/pfldnet2007/).

{source: Internet}

Freeze-TCP, TCP-Door, JTCP, TCP ADA, TCP Peach Peach+, TCP Probing.

2010: TCP-Gentle

TCP-Gentle is variant of YeAH-TCP developed by Talal A.Edwan at Loughbor-

ough University. The algorithm uses different increase rules depending on network

conditions. It uses an adaptive additive increase rule instead of multiplicative in-

crease. It is belived to be more gentle to the network and has better fairness

properties than YeAH-TCP, it has a nearly flat rate in steady-state while at the

same time maintains high responsiveness, high link utilisation and friendliness to

TCP-NewReno.

For further details, see the paper or contact: <t.edwan@lboro.ac.uk>.

Note: For a Taxonomy of congestion control see:

{source: http://en.wikipedia.org/wiki/Taxonomy of congestion control}

More Information:

1-http://www.icir.org/floyd/

2-http://www.icir.org/floyd/tcp small.html

Appendix B

High-Speed TCP Equations

B.1 My Derivation of TCP-BIC Equations

In this I show the work out of derivation of the equations mentioned in [102],

mainly a closed form for the response function and RTT faireness. This is a bit

pedantic, but I would like to document it for the benifit for people interested in

the subject.

Binary search increase

BI-TCP switches from additive increase to binary search increase when the dis-

tance from the current window size to the target window size is less than Smax.

During binary search increase, the algorithm treats the problem as a search prob-

lem, the target window size is initially computed as the midway between a large

window (maximum window) and the current window (minimum window at which

the flow does not see any packet loss). Upon a packet loss event, the target win-

dow is computed as the half way between the window size before loss and that

after loss (after multiplicative decrease), if the target is reached with no loss, the

current window becomes the new minimum and a new target is calculated and

so on, until the difference between the maximum and the minimum falls below a

preset threshold Smin. Figure B.2 shows a hypothetical window growth for binary

search increase. A = βWmax −N1Smax, where, Wmax is the maximum window, β

is the multiplicative decrease factor, Smax is the maximum increment and N1 is

the number of RTT in additive increase period. The number of RTT in binary

search period N2 can be found from Smin expression:

Smin =
1

2N2
(βWmax −N1Smax)

186

APPENDIX B. HIGH-SPEED TCP EQUATIONS 187

Thus,

N2 = log2

(
Wmaxβ −N1Smax

Smin

)

+ 2

And the total number of packets Y2 (the area under the curve Figure B.2) is:

(1−β)Wmax

Wmax

(N1)Smax

(N1)−(β)

(β)Wmax

SmaxWmax

Figure B.1

Y2 = Total Area − Top Area

= WmaxN2 − (βWmax −N1Smax)
∑N2−2

k=0 (1
2
)k

Substituting for N2 − 2:

Top Area = (βWmax −N1Smax)
(

1−(1/2)N2−1

1−(1/2)

)

= (βWmax −N1Smax)
(

2(Wmaxβ−N1Smax)−Smin

Wmaxβ−N1Smax

)

Y2 = WmaxN2 − 2(Wmax −N1Smax) + Smin

A

A/2

A/4

A/8

N2

Cwnd

RTT

Wmax

Smin

Figure B.2: Congestion window growth in binary search increase

Additive Increase:

In order to maintain faster converngence time and RTT fairness the BI-TCP al-

gorithm uses additive increase. Additive increase works if the distance from the

current window to the target is larger than Smax, which implies that the distance

from the minimum window to the maximum window is larger than 2Smax. The

number of RTT N1 can be found from: N1Smax + 2Smax − βWmax = 0, then:

N1 = max(
⌈βWmax

Smax

− 2
⌉

, 0)

APPENDIX B. HIGH-SPEED TCP EQUATIONS 188

Wmax

(N1)Smax

(β)Wmax

Wmin

Wmin limit

(2)Smax

Figure B.3

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
��

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

N1

Cwnd

RTT

D

C

B

1

Figure B.4: Congestion window growth in additive increase

Now N2 can be rewritten as:

N2 = log2

(
Wmaxβ −Wmaxβ + 2Smax

Smin

)

+ 2 = log2(
Smax

Smin

) + 3

Similarly, Figure B.4 shows a hypothetical window growth for the additive increase

period. B = Wmax(1− β) + (N1 − 1)Smax, C = (1− β)Wmax, D = (N1 − 1)Smax,

N1 is the number of RTT during the additive increase period. The area under the

curve is:

Y1 =
1

2
(N1 − 1)SmaxN1 + Wmax(1− β)N1

Average sending rate for Binary Increase:

The total number of packets can be expressed as: Y = Y1 + Y2 and Y = 1/p,

Y = Wmax(1− β)(Wmaxβ
Smax

− 2) + 1
2
Smax(

Wmaxβ
Smax

− 3)(Wmaxβ
Smax

− 2)+

Wmax log2(Smax/Smin) + 3Wmax − 2Wmaxβ + 2Smax(
Wmaxβ
Smax

− 2) + Smin

= β(1−β)
Smax

W 2
max − 2(1− β)Wmax + β2

2Smax
W 2

max − βWmax − 3
2
Wmaxβ + 3Smax+

Wmax log2(Smax/Smin) + 3Wmax − 2Wmaxβ + 2Wmaxβ − 4Smax + Smin

=
(

β(1−β)
Smax

+ β2

2Smax

)

W 2
max +

(
1− β

2
+ log2(Smax/Smin)

)
Wmax + Smin − Smax

APPENDIX B. HIGH-SPEED TCP EQUATIONS 189

Y = aW 2
max + bWmax − C

0 = aW 2
max + bWmax − (C + Y)

Wmax =
−b+
√

b2+4a(1/p)

2a

Where, a = β(2−β)/(2Smax), b = log2(Smax/Smin)+ (2−β)/2, c = Smax−Smin.

The average sending rate is expressed as, X = Y/N :

N = N1 +N2 =
Wmaxβ

Smax
−2+log2(Smax/Smin)+3 =

Wmaxβ

Smax
+log2(Smax/Smin)+1

X = Y/N = 1/p
Wmaxβ
Smax

+log2(Smax/Smin)+1

= (2−β)/p

Wmax
β(2−β)
Smax

+(2−β) log2(Smax/Smin)+(2−β)

= (2−β)/p

−b+
√

b2+4a(1/p)+2 log2(Smax/Smin)+(2−β)−β log2(Smax/Smin)

= (2−β)/p

−b+
√

b2+4a(1/p)+2(log2(Smax/Smin)+ (2−β)
2

)−β log2(Smax/Smin)

= (2−β)/p

−b+
√

b2+4a(1/p)+2b−β log2(Smax/Smin)

= (2−β)/p√
b2+4a(1/p)+b−β(b− 2−β

2
)

= (2−β)/p√
b2+4a(1/p)+b−βb+β(2−β

2)

= (2−β)/p√
b2+4a(1/p)+(1−β)b+β(2−β

2)

Average rate for Additive Increase:

Wmax ≫ 2Smax,N1 ≫ N2, fixed Smin and small values of p

X ≈ (2−β)/p
q

(2−β
2)

2
+

4β(2−β)
2Smax

(1/p)

= (2−β)/p
q

(2−β
2)

2
+

2β(2−β)
Smax

(1/p)

=
√

(2−β)2/p

(2−β
2)

2
+

2β(2−β)
Smax

=

√
(2−β)/p

2−β
2

+ 2β
Smax

=
√

Smax(2−β)
2βp

Note that Smin is not appearing in the final result.

Average rate for Binary Search Increase:

Wmax ≤ 2Smax,N1 = 0 and (1/p)≫ Smin

APPENDIX B. HIGH-SPEED TCP EQUATIONS 190

In this case:

N2 = log2

(
Wmaxβ
Smin

)

+ 2

Y1 = 0

Y2 = WmaxN2 − 2(Wmaxβ) + Smin

Y = Y1 + Y2 = WmaxN2 − 2(Wmaxβ) + Smin

Y = Wmax log2(Wmaxβ/Smin)− 2Wmax − 2Wmaxβ − Smin

= Wmax [log2(Wmaxβ/Smin) + 2(1− β)] + Smin

Wmax = (1/p)−Smin

log2(Wmaxβ/Smin)+2(1−β)

≈ 1/p
log2(Wmaxβ/Smin)+2(1−β)

log2(Wmaxβ/Smin) = (1/pWmax)− 2(1− β)

ln(Wmaxβ/Smin) = (ln(2)/pWmax)− 2a ln(2)(1− β)
eln(2)/pWmax

Wmax
= βe2 ln(2).e−2 ln(2)β

Smin

ln(2)eln(2)/pWmax

pWmax
=

ln(2)βe2 ln(2).e−2 ln(2)β

pSmin

And, using:

y = ex → x = ln y

y = xex → x = LambertW (y)

ln(2)

pWmax
= LambertW

(
4 ln(2)β

pSmin
e−2 ln(2)β

)

Wmax =
ln(2)

p.LambertW
(

4 ln(2)β
pSmin

e−2 ln(2)β
)

X = Y/N =
1/p

log2

(
Wmaxβ
Smin

)

+ 2
≈Wmax



1− 2β

log2

(
Wmaxβ
Smin

)

+ 2





Note that Smax is not appearing the final result, and for 2β ≪ log2(Wmaxβ/Smin)+

2, R ≈Wmax.

APPENDIX B. HIGH-SPEED TCP EQUATIONS 191

RTT fairness of Binary Increase1:

Let RTTi be the RTT of flow i(i = 1, 2) and Wi denote Wmax of flow i, ni denote

the number of RTT in a congetsion epoch of flow i, t denote the length of an epoch

during steady state. We already expect that the additive increase will exhibit a

linear RTT unfairness, in fact this is one of the reasons for including additive

increase in the algorithm. However the situation for binary search increase is

different. As can be seen below:

Additive Increase: For Wmaxβ > 2Smax we have: N1 = (Wmaxβ/Smax)−2,N2 =

log2(Smax/Smin) + 3,N = N1 + N2. Now we will find the window ratio:

n = N =
Wmax

Smax
+ log2(Smax/Smin) + 1

n = t/RTT,
t

RTT
=

Wmaxβ

Smax
+ log2(Smax/Smin) + 1

Wmax =
(

t
RTT
− log2(Smax/Smin)− 1

)
Smax

β

=
(

1
RTT
− 1

t
log2(Smax/Smin)− 1

t

)
Smax.t

β

The window ratio is:

W1

W2
=

(
1

RTT1
− 1

t
log2(Smax/Smin)− 1

t

)
Smax.t

β
(

1
RTT2

− 1
t
log2(Smax/Smin)− 1

t

)
Smax.t

β

≈ RTT2

RTT1
, for large t

Binary Search Increase: For Wmaxβ ≤ 2Smax we have: N1 = 0, N2 =

log2(βWmax/Smin) + 2,n = N2 = t/RTT .

ln(2)(N2 − 2) = ln(
βWmax

Smin
)

Smin

β
eN2 ln(2).e−2 ln(2) = Wmax

Wmax =
Smin

β
e−2 ln(2).eln(2) t

RTT

The window ratio is:

APPENDIX B. HIGH-SPEED TCP EQUATIONS 192

W1

W2

=

Smin

β
e−2 ln(2).e

ln(2) t
RTT1

Smin

β
e−2 ln(2).e

ln(2) t
RTT2

= e
(1

RTT1
− 1

RTT2
)t ln(2)

B.2 TCP-HS RTT Fairness

Here I also provide the work out of RTT faireness the final result is mentioned

in [102]. Consider two flows

{

w1 = w1(1− β1) + α1
t

RTT1

w2 = w2(1− β2) + α2
t

RTT2

Where: β1 = β(w1) and α1 = α(w1). The additive incease is given by: α(w) =
2w2βp
2−β

, where the window is: w = 0.15
p0.82 , p = p(w)

w = w(1− β) + 2w2βp
2−β

t
RTT

1 = (1− β) + 2wβp
2−β

t
RTT

β = 2wβp
2−β

t
RTT

w = (2−β)RTT
2pt

The RTT faireness is often defined in terms of throughput ratio which can written

as two muliplied ratios: the window ratio and the round trip time ratio. So:
Th2

Th1
= w2

w1

RTT1

RTT2

Let us have look at the window ratio:

w1

w2
=

(2−β1)RTT1

p1

(2−β2)RTT2

p2

= 2−β1

2−β2

RTT1

RTT2

p2

p1

= 2−β1

2−β2

RTT1

RTT2

0.82√0.15
0.82
√

w2

0.82
√

w1
0.82√0.15

w1

w2

0.82

√
w1

w2

=
2− β1

2− β2

RTT1

RTT2

APPENDIX B. HIGH-SPEED TCP EQUATIONS 193

(
w1

w2

)(1− 1
0.82

)

=
2− β1

2− β2

RTT1

RTT2

w1

w2
=

(
2−β1

2−β2

RTT1

RTT2

)−4.56

=
(

2−β2

2−β1

RTT2

RTT1

)4.56

since: Th1

Th2
∝ RTT2

RTT1
to keep a linear RTT unfairness, the term

(
RTT2

RTT1

) d
1−d

where

d = 0.82 in this case, should be kept minimum. In other words as d increases, the

RTT unfaireness increases

Appendix C

Philosophical Thoughts

Philosophical Point of View:

Is noise always a bad signal?
In order to illustrate the idea, let us take two analogous cases, one from
electrical engineering field and the other from real life:
If things are expected to arrive in a stream in normal operation, then any
disturbance to this stream indicates a problem. An excellent example can be
seen in the principle of water leak detector, the stream of water flow in a pipe
is the normal operation (packets arriving at the bottleneck speed), any leak
problem in the pipe disturbs this flow and produces a “noise”, special high
sensitivity microphones are then used to locate the faulty part.
Electromagnetic signals are detected using special equipment (antennas, then
low noise amplifiers, etc), obviously the whole system tries to eliminate any
noise picked up by the main signal, the interest is in the original transmitted
signal which contains the information, anything else is noise. If we switch
our interest to noise, certainly customers have nothing to do with this infor-
mation they just want to have a clear voice and/or video, but for analytical
purposes, the amount of noise (signal to noise ratio), can give information
about the environment and the path traversed by the signal (the nature of
the environment good or bad for transmission, the amount of interference,
security threats signal jamming etc).
Another example inspired from real life is the difference between two horses
(signals), one coming from a far distance and the other just walked from a
near place. Each have different characteristics (noise) The first one could
be breathing fast, sweating,. . . (more noise) the second one might look more
relaxed.

194

Appendix D

TCP-Gentle Experiments

Testing TCP In High-Speed Long-Delay Environment

Objectives

Single flow testing:

1. Plot the congestion window evolution of single TCP-Gentle flow in a high-speed
long-delay environment;

2. Measure TCP-Gentle response function.

Double flow testing:

1. Measure Intra-protocol fairness/RTT-unfairness;

2. Measure Inter-protocol fairness (NewReno).

Experimental Set-up

Dell

Dummynet
TCP−receiver

TCP−sender−2

TCP−sender−1

Step-1: 4 Linux boxes and 1 FreeBSD box as a router running dummynet. This should
be configured to give two pipes with different RTT i.e. different propagation
delay. Switch ports should be operating in full-duplex mode. There should be a
third pipe (outgoing link) configured as the bottleneck with fixed BW=C, buffer
size is set to BDP which can be caclulated as: RTT× C and a fixed propagation
delay. Minimum of both RTTs can be used in the calculation of buffer size.

195

APPENDIX D. TCP-GENTLE EXPERIMENTS 196

Step-2: 3 PCs running Iperf (TCP sender and receiver) or using other tool like wget
to download a file, the first option is usually used. The PCs should also have
GNU/Linux-2.6.33.3 with TCP-Gentle enabled.

Step-3: Check that 2 PCs (TCP sender) have tcpprobe enabled in kernel.

Step-4: When running TCP experiments over high BDP we need to change the max-
imum availalbe TCP window size, this is done via sysctl variables documented
in:
/linux-2.6.33.3/Documentation/networking/ip-sysctl.txt , at mini-
mum we should increase tcp_rmem for the receiver and tcp_wmem for the sender
to 2× BDP [3]. Thus we check that the buffer sizes (the aformentioned vari-
ables) are big enough to allow the window to grow. The following lines should
be added in /etc/sysctl.conf for the sender and receiver:

increase Linux TCP buffer limits

net.core.rmem_max = 33554432

net.core.wmem_max = 33554432

net.core.default = 65536

net.core.default = 65536

net.ipso.tcp_rmem = 4096 87380 33554432

net.ipso.tcp_wmem = 4096 65536 33554432

net.ipso.tcp_mem = 33554432 33554432 33554432

Other alternative values:

increase TCP max buffer size set-able using setsockopt()

net.core.rmem_max = 16777216

net.core.wmem_max = 16777216

increase Linux auto-tuning TCP buffer limits

min, default, and max number of bytes to use

set max to at least 4MB, or higher if you use very high BDP paths

net.ipv4.tcp_rmem = 4096 87380 16777216

net.ipv4.tcp_wmem = 4096 65536 16777216

Step-5: Verify that the following are all set to the default value of 1:

sysctl net.ipv4.tcp_window_scaling

sysctl net.ipv4.tcp_timestamps

sysctl net.ipv4.tcp_sack

Step-6: Flush old route information, the following lines should be added in /etc/sysctl.conf

for the sender and receiver:

APPENDIX D. TCP-GENTLE EXPERIMENTS 197

flush old route information

net.ipv4.route.flush = 1

If the test involves repeated connections, you should also turn off the route met-
rics:

sysctl -w net.ipv4.tcp_no_metrics_save=1

Because GNU/Linux remember the last ssthresh, this causes errors in second
tests, [3], ssthresh for the route should not be remembered.

APPENDIX D. TCP-GENTLE EXPERIMENTS 198

Procedure-1: congestion window evolution

Dummynet configuration

Step-1: Configure the path bottleneck BW = 100 Mbps, propagation delay Td = 50
ms (RTT ≈ 100 ms), queue size of BDP where, BDP = (BW × RTT) / (8 ×
pkt-size) in pkts.

ipfw add 100 pipe 1 out src-ip <tcp-tx> // IP address or subnet.

ipfw pipe 1 config bw 100Mbit/s delay 50ms queue 1000

for bw values are expressed as Mbit/s Kbit/s,

it has been reported that fractions cause errors

#e.g. dummynet fail to transmit data.

Other nodes configuration

Step-1: To plot the congestion window evolution for 20 minutes we use Iperf and
only one TCP sender, first we start Iperf server at the receiver:

iperf -s -w <window_size_in_bytes> -p<port_no>

#or for default values just

iperf -s

Step-2: Load TCP-Gentle as the congestion control algorithm on the sender and re-
ceiver:

echo "gentle" > /proc/sys/net/ipv4/tcp_congestion_control

#or

sysctl -w net.ipv4.tcp_congestion_control=gentle

#and check

cat /proc/sys/net/ipv4/tcp_congestion_control

#or

sysctl net.ipv4.tcp_congestion_control=gentle

Step-3: Run tcpprobe on the sender and place it in background:

cat /proc/net/tcpprobe | awk ’{print $1 " " $7}’ > /tmp/cwnd.dat &

TCPCAP=$!

The field description for tcpprobe is shown below, we modified the code to
probe the values of: AI, estimated queue size and the do_reno flag so we can
have a microscopic look.

Step-4: Run Iperf on the sender for 20 minutes

APPENDIX D. TCP-GENTLE EXPERIMENTS 199

iperf -c <server_ip_addr> -w <window_size_in_bytes> -p <port_no>

-t <time_in_seconds> -i <interval_in_seconds> -M <mss> -m -r

#or

iperf -i 2 -t 1200 -c <server_ip_addr>

Step-5: Kill tcpprobe process:

kill $TCPCAP

Step-6: Use gnuplot or any other plotting tool to plot the captured data in cwnd.dat.

Procedure-2: Response function

Dummynet configuration

Step-1: Configure the path bottleneck BW = 100 Mbps, propagation delay Td = 50
ms (RTT ≈ 100 ms), queue size of BDP where, BDP = (BW × RTT) / (8 ×
pkt-size) in pkts.

ipfw add 100 pipe 1 out src-ip <tcp-tx> // IP address or subnet.

ipfw pipe 1 config bw 100Mbit/s delay 50ms queue 1000

Step-2: Use the uniform packet drop distribution and set dropping probabilities, Pr,
in the range from 10−8 to 10−1, first start with 10−8.

ipfw add 101 prob Pr deny src-ip <tcp-tx> // IP address or subnet.

#or use it in the bottleneck pipe, so in the above use the following

#line for pipe 1

ipfw pipe 1 config bw 100Mbit/s delay 50ms queue 1000 plr Pr

Other nodes configuration

Step-1: Load TCP-Gentle in the same way in Procedure-1.

Step-2: Run Iperf in the same way in Procedure-1.

Step-3: Report the average throughput measured by Iperf.

Step-4: Go to Step-2 of Dummynet configuration in Procedure-2 and change Pr.

Step-5: Repeat Step-2 to Step-4.

APPENDIX D. TCP-GENTLE EXPERIMENTS 200

Step-6: Use gnuplot or any other plotting tool to plot average throughput versus
Pr.

Procedure-3: Intra-protocol fairness

Dummynet configuration

Step-1: Use 2 pipes (for TCP-senders), the delay for the second pipe is variable z
(used for RTT-unfairness) and is set to: 1ms, 50ms, 100ms, 150ms, 200ms,
250ms. First start with 1ms.

ipfw add 100 pipe 1 in src-ip <tcp-tx> //IP address for first TCP-sender.

ipfw add 101 pipe 2 in src-ip <tcp-tx> //IP address for second TCP-sender.

ipfw pipe 1 config bw 1000Mbit/s delay 1ms

ipfw pipe 2 config bw 1000Mbit/s delay zms

Step-2: Configure the path bottleneck BW = 100 Mbps, propagation delay Td = 50
ms (RTT ≈ 100 ms), queue size of BDP where, BDP = (BW × RTT) / (8 ×
pkt-size) in pkts.

ipfw add 102 pipe 3 out dst-ip <tcp-rx> // IP address or subnet.

ipfw pipe 3 config bw 100Mbit/s delay 50ms queue 1000

Other nodes configuration

Step-1: Load TCP-Gentle in the same way in Procedure-1 for the two TCP senders.

Step-2: Run Iperf in the same way in Procedure-1 for the two TCP senders.

Step-3: Report the average throughput measured by Iperf at each sender side.

Step-4: Calculate Jain’s fairness index.

Step-5: Go to Step-1 of Dummynet configuration in Procedure-3 and change z.

Step-6: Repeat Step-2 to Step-5.

Step-7: Use gnuplot or any other plotting tool to plot Jain’s index versus RTT.

Procedure-4: Inter-protocol fairness (NewReno)

Dummeynet configuration

Step-1: Configure the path bottleneck BW = 100 Mbps, propagation delay Td = 10
ms, 20 ms, 30 ms, 40 ms, 50 ms. Queue size of BDP where, BDPTd=10ms = (BW
× RTTTd=10ms) / (8 × pkt-size) in pkts.

APPENDIX D. TCP-GENTLE EXPERIMENTS 201

ipfw add 102 pipe 3 out dst-ip <tcp-rx> // IP address or subnet.

ipfw pipe 3 config bw 100Mbit/s delay 10ms queue 200

Other nodes configuration

Step-1: Load TCP-Gentle in the same way in Procedure-1 for the first TCP-sender.

Step-2: Load TCP-NewReno in the same way in Procedure-1 for the second TCP-
sender. The following command can be used to see the available congestion
control modules.

sysctl net.ipv4.tcp_available_congestion_control

#or if they are loaded

ls /lib/modules/‘uname -r‘/build/net/ipv4

Step-3: Run Iperf in the same way in Procedure-1 for the two TCP senders.

Step-4: Report the average throughput measured by Iperf at each sender side.

Step-5: Calculate the asymmetry index.

Step-6: Repeat Step-3 to Step-5.

Step-7: Use gnuplot or any other plotting tool to plot asymmetry index versus RTT.

Repeat Procedure-3 and Procedure-4 for TCP-YeAH1 instead of TCP-Gentle.

c© Talal Edwan

1The name is YeAH TCP, but we reversed it for consistency since we used TCP-X to refer
to TCP variants.

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the Thesis

	Background
	Congestion Phenomenon
	Linear Algorithms
	Non-Linear Algorithms
	Equation-Based Algorithms
	TCP Protocol
	TCP Congestion Control
	Multipath TCP Congestion Control
	TCP & Wireless Networks
	TCP & High-Speed Networks
	Long Delay
	Short Delay

	TCP-PEP Approach
	Explicit Feedback Issues
	Summary

	TCP Congestion Control Variants
	TCP for High-Speed Long-Delay Networks
	TCP-BIC
	TCP-CUBIC
	TCP-Illinois
	TCP-HS
	STCP
	TCP-Hamilton
	TCP-FAST
	TCP-YeAH
	TCP-Compound

	Other TCP Variants
	Summary

	Optimisation & Congestion Control
	Congestion Phenomenon & Resource Allocation
	Resource Allocation

	Congestion Control Algorithms
	Primal & Exact Primal Algorithms
	Dual Algorithm
	Primal-Dual Algorithm
	Simplified Model for TCP Congestion Control Algorithm

	TCP-Model Revisited: Non-Linear Case
	Linearisation & Stability Analysis
	TCP - Constant Multiplicative Decrease
	Modified TCP - Variable Multiplicative Decrease

	Summary

	Congestion Control Metrics
	Throughput
	Delay
	Packet Loss Rates
	Convergence
	Fairness
	General Fairness Between Flows
	Flows with Different Resource Requirements
	Fairness in Optimisation Framework

	Backward Compatibility
	Response to Change
	Transient Response
	Response to Packet Loss

	Oscillations
	Robustness
	Other Issues & Trade-Offs
	Summary

	Proposed Changes to TCP Illinois
	Higher Order Delay Functions
	Formal Definitions
	Relative Aggressiveness
	Relative Responsiveness
	Three TCP-Illinois Variants

	Simulation Experiments & Results
	Intra-Protocol Fairness & RTT-Unfairness
	Aggressiveness & Smoothness
	Transient Response
	Response to Packet Loss

	Summary

	TCP-Gentle
	TCP-Gentle Algorithm
	Gentle Mode: Thrust Phase
	Gentle Mode: Damping Phase
	Reno Mode
	Complete Version

	Throughput Expression
	Steady-state average throughput:
	Initial average throughput:

	Simulation Experiments & Results
	High BDP Operation
	Friendliness to TCP-NewReno
	Effect of Web Traffic

	Real Test-Bed Experiments & Results
	High BDP Operation
	Response Function
	Intra-Protocol Fairness & RTT-Unfairness
	Friendliness to TCP-NewReno

	Summary

	A Loss Differentiation Algorithm
	Assumptions for a New Algorithm
	Single Flow without Cross Traffic
	Single Flow with Cross Traffic

	PITs Distributions
	Single Flow without Cross Traffic
	Single Flow with Cross Traffic

	Analysis with Packet Drop
	Single Flow without Cross Traffic
	Single Flow with Cross Traffic

	A Modified Multiplicative Decrease Factor
	Simulation Experiments & Results
	Total Values of Variables
	Congestion Window Evolution

	Summary

	Conclusions & Future Work
	History Time Line for TCP-Related Issues
	High-Speed TCP Equations
	My Derivation of TCP-BIC Equations
	TCP-HS RTT Fairness

	Philosophical Thoughts
	TCP-Gentle Experiments

