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Abstract: Experimental optimization with hardware in the loop is a common procedure in
engineering and has been the subject of intense development, particularly when it is applied to
relatively complex combinatorial systems that are not completely understood, or where
accurate modelling is not possible owing to the dimensions of the search space. A common
source of difficulty arises because of the level of noise associated with experimental
measurements, a combination of limited instrument precision, and extraneous factors. When
a series of experiments is conducted to search for a combination of input parameters that
results in a minimum or maximum response, under the imposition of noise, the underlying
shape of the function being optimized can become very difficult to discern or even lost. A
common methodology to support experimental search for optimal or suboptimal values is to
use one of the many gradient descent methods. However, even sophisticated and proven
methodologies, such as simulated annealing, can be significantly challenged in the presence
of noise, since approximating the gradient at any point becomes highly unreliable. Often,
experiments are accepted as a result of random noise which should be rejected, and vice versa.
This is also true for other sampling techniques, including tabu and evolutionary algorithms.

After the general introduction, this paper is divided into two main sections (sections 2 and 3),
which are followed by the conclusion. Section 2 introduces a decision support methodology
based upon response surfaces, which supplements experimental management based on a
variable neighbourhood search and is shown to be highly effective in directing experiments in
the presence of a significant signal-to-noise ratio and complex combinatorial functions. The
methodology is developed on a three-dimensional surface with multiple local minima, a large
basin of attraction, and a high signal-to-noise ratio.

In section 2, the methodology is applied to an automotive combinatorial search in the
laboratory, on a real-time engine-in-the-loop application. In this application, it is desired to
find the maximum power output of an experimental single-cylinder spark ignition engine
operating under a quasi-constant-volume operating regime. Under this regime, the piston is
slowed at top dead centre to achieve combustion in close to constant volume conditions.

As part of the further development of the engine to incorporate a linear generator to
investigate free-piston operation, it is necessary to perform a series of experiments with
combinatorial parameters. The objective is to identify the maximum power point in the least
number of experiments in order to minimize costs. This test programme provides peak power
data in order to achieve optimal electrical machine design.

The decision support methodology is combined with standard optimization and search
methods – namely gradient descent and simulated annealing – in order to study the reductions
possible in experimental iterations. It is shown that the decision support methodology
significantly reduces the number of experiments necessary to find the maximum power
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solution and thus offers a potentially significant cost saving to hardware-in-the-loop experi-
mentation.

Keywords: experimental decision support, variable neighbourhood search, gradient descent,
simulated annealing, hardware in the loop

1 INTRODUCTION

An experimental search with hardware or process in

the loop is a common procedure in, for example, the

engineering and pharmaceutical industries. These

procedures are often applied to combinatorial pro-

blems during (in the engineering case, for example)

the development of new hardware systems or con-

trol [1, 2]. The systems under test can be described

as a set of dependent variables that vary according

to some functions of independent variables. In this

case, there does not exist a complete specification

of the function relating the variables. This implies

that there is no accurate a priori knowledge of the

fundamental cause and effect present in the system.

Thus, for an example linear function, the values in

the coefficients matrix would be unknown.

Commonly, it is required to identify the sets of

independent variables that maximize or minimize

the dependent variables [3]. To obtain the necessary

information to have a confident estimate of the

parameters, it is possible to vary the independent

parameters over successive trials (designed experi-

ments) and to measure the corresponding depen-

dent variables. In order to examine this relationship

fully, a large number of trials is often required to

identify the location of the desired response. How-

ever, real-world problems are difficult to solve by

this methodology for a number of reasons [4].

1. The number of possible solutions in the experi-

mental space is so large as to preclude an exhau-

stive search for the best (or acceptable) answer.

2. The evaluation function that describes the solu-

tions is extremely noisy and/or complex.

3. The cost of conducting an experiment at many

points in the search space may be prohibitive in

terms of time taken and/or resources used.

These constraints motivate the use of gradient

descent (GD) methods in order to provide the

decision support to direct the search and to mini-

mize the number of experiments conducted. Other

metaheuristics, such as genetic algorithms [5], are

applicable to this class of problem, but are relatively

difficult to implement and tune because of the

number of parameters associated with this techni-

que in comparison with GD methods. These meth-

ods are based upon the statistics of the neighbour-

hood around a given point, thus relying on local

information at each step. However, basic GD meth-

ods provide only locally optimum solutions whose

values depend on selection of the starting point [6].

There have been many metaheuristic methods

developed to increase the efficiency of the experi-

mental search, such as simulated annealing (SA)

[7], tabu search [8], genetic algorithms [2], and vari-

able neighbourhood search (VNS) [9].

As the nature of the experimental surface is an

unknown, it is important to utilize methodologies

that require the minimum number of parameters to

be ‘tuned’ in order to conduct an effective search.

With this caveat in mind, simple GD, SA, and VNS

will be considered in this paper since, in most of

their varieties, implementation is simple and basic

tuning rules are readily available, making them

commonly used heuristics in the experimental

community.

It has been noted in the literature that the per-

formance of metaheuristics such as SA are to some

extent compromised when directing search over

significantly noisy surfaces [4]. This paper describes

the implementation of a weighted stochastic deci-

sion support (WSDS) operator based on response

surfaces (RSs) which supports the heuristic and

guides the experimental process to predicted areas

of interest in the search space. Basic GD, SA, and

VNS are supplemented by this methodology, and

performance is compared with the basic form of the

metaheuristics. The supplemented metaheuristics

are shown to have significantly improved perfor-

mance when searching noisy environments.

1.1 Scope of this paper

This paper is primarily concerned with the develop-

ment and assessment of a novel problem-solving

methodology for practical engineering applications,

and hence it is helpful to define the scope of re-

search presented here. This paper is primarily con-

cerned with the following:

(a) experimentation on real engineering problems;
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(b) problems that contain inherently noisy data and

processes;

(c) decision support to reduce experimentation

time;

(d) applying a decision support operator to com-

mon search methodologies.

It is important to note that the emphasis here is on

the reduction of experimentation time by decision

support and hence does not consider the following:

(a) performance comparison of heuristics and meta-

heuristics;

(b) metaheuristic tuning methodologies;

(c) ‘toy’ problems and surfaces.

Thus, the paper is concerned with the problem of

finding a result in an unseen noisy search space,

where every individual evaluation of a point in the

search space is expensive in terms of time and/or

resources.

2 ALGORITHM DEVELOPMENT STUDY

2.1 Search methodologies

A comprehensive description of GD-based methods

can be found in reference [4]. In this section, the

implementations of the algorithms are described.

The class of problems addressed in this paper are in

general of a minimization type [10, 11]; i.e. it is

desired to minimize a function f(x) over choices of x

that lie in the feasible set S such that

f �~ min
x [ s

f xð Þ ð1Þ

Thus, ’x* [ S, such that f * 5 f(x*) and x [ S) f(x*) (

f(x). Set S is the constraint set, f * is the minimum of

the problem, while x* is the minimizer. Minimiza-

tion problems are considered in this paper; however,

conversion of the method to maximization is a trivial

task.

2.1.1 Gradient descent

A sequence of intermediate values are successively

generated by the algorithm. First, an initial random

guess is made and then it is successively improved.

In general, none of the iterates exactly solves the

problem; therefore, a termination criterion is in-

cluded that, when satisfied, will cause the algorithm

to terminate with a suitable approximation to the

exact solution. This is particularly applicable to real-

world noisy surfaces. Iterative hill descent can be

described with the general form of recursion

xnz1~xnzan Dxn, n~0, 1, 2, . . . ð2Þ

where

x0 5 initial guess

n 5 iteration counter

xn 5 value of the iterate at the nth iteration

an [R+ 5 step size

Dxn [Rn 5 step direction

an Dxn 5 update to add to the current iterate xn to

obtain new iterate xn + 1

In the case of minimization, the step direction is

chosen so as to reduce the objective f *. If x̂ [R, then

the vector Dx [R is called a descent direction for f at

x̂ if ’āR++ such that

0va¡�aa[f x̂xza Dxð Þvf x̂xð Þ ð3Þ

and Dx is a descent direction for f at x̂ if the objective

is smaller than f(x̂) at points along the line segment

x̂ + a Dx for a . 0 and a ( ā. There are some caveats

associated with GD methods.

1. The methods usually terminate at solutions which

are only locally optimal.

2. No information is apparent as to how the dis-

covered local optima deviates from the global

minima or other local minima.

3. The optimum obtained depends on the original

configuration.

4. In general it is not possible to calculate an upper

bound for computation time.

GD thus exploits the best opportunities for impro-

vements, but neglects to explore a large search space.

In contrast, random search where points are sam-

pled from S with equal probability explores thorou-

ghly, but forgoes local exploitation. Thus, most GD

methods execute a random ‘jump’ at local minima,

to balance exploration with exploitation.

2.1.2 Variable neighbourhood search

The VNS algorithm implemented in this paper

systematically exploits the idea of neighbourhood

change in the descent to minima [17], and attempts

to balance local exploitation with global exploration.

It is simply an implementation of the basic GD

method described in the previous section; however,

in this case the step length an is variable rather than

fixed. A number of variations have been reported,

with both lengthening step length [6] and reducing

step length [9]. In this case, reducing the step length
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is implemented by a static schedule [13] using a step

decrementation function given by

Ckz1~ack, k~0, 1, 2, . . . ð4Þ

The initial step length is usually chosen to be sig-

nificant with respect to the search variable ranges,

where a is chosen to be a positive constant greater

than 1. The final value is fixed, generally related to

the smallest feasible measurement or control incre-

ment of the variables. As with GD, a random ‘jump’

is implemented to escape local minima.

2.1.3 Simulated annealing

The implementation of SA used in this paper is

based again on GD, accepting improvements in cost

in traversing the search space; however, depending

on a control parameter c, it will accept deteriorations

to a limited extent to escape local minima. Initially,

at large values of c, large deteriorations will be

accepted; as c decreases, smaller deteriorations are

accepted; finally, as the value of c approaches 0,

no deteriorations are accepted. The probability of

accepting deteriorations is achieved by comparing

the value of exp {[f(i) 2 f(j)]/c} with a random num-

ber generated from a uniform distribution in the

interval [0, 1]. In this case, the rate in decrease in the

parameter c is achieved by implementing the VNS

decrementation function.

2.2 Weighted stochastic decision support
operator

Local search methods, such as GD, execute a random

jump at local optima or other predefined termina-

tion metric based upon the implementation. SA-type

methodologies typically execute a random jump at

the termination of the cooling schedule if the global

minimum or some upper bound of acceptable per-

formance has not been reached. Obviously, with

unknown experimental functions, the exact value of

the global maximum will not be known; however, it

is common for the designer or experimenter to have

an ‘acceptable’ performance metric in mind when

starting the experimental procedure that will act as

a termination criterion.

Tabu search has been shown to be a particularly

effective metaheuristic by directing the experimen-

tal search ‘jumps’ away from areas that have been

found to be unproductive. However, this does not

take advantage of the previously gathered data with

respect to the possibility of ‘predicting’ promis-

ing areas of search. The RS methodology has been

shown to be an effective tool in approximating com-

plex and noisy functions for real-time control [1, 14]

and thus would appear to be a useful tool for direct

experimentation based upon past results.

The RS methodology is a technique that was

initially developed to optimize process control and

experimentation by the application of designed ex-

periments in order to characterize the relationship

between the system variables and outputs [3]. The

relationship between the response variable of inter-

est, y, and the predictor variables (j1, j2, …, jk)

provides a description of the system of the form

y~g j1, j2, . . . , jkð Þze ð5Þ

where e represents the model error and includes

measurement error and other variables such as back-

ground noise. The error will be assumed to have

a normal distribution with zero mean and variance

s2. In general, the experimenter approximates the

system function g with an empirical model of the

form

y~f j1, j2, . . . , jkð Þze ð6Þ

where f is a polynomial of arbitrary order (generally,

first or second order in the process control industry).

This is the empirical or RS model. The variables are

known as natural variables since they are expressed

in physical units of measurement. The natural

variables are transformed into coded variables x1,

x2, …, xk, which are dimensionless, zero mean, and

the same standard deviation, in order to minimize

the effects of outliers, sparse, or unevenly distributed

data, which are all likely in practical experimental

applications. This approach is standard practice in

the literature and in industry [3]. The response

function now becomes

g~f x1, x2, . . . , xkð Þ ð7Þ

The successful application of RSs relies on the

identification of a suitable approximation for f. This

will often be a first-order model of the form

g~b0zb1x1zb2x2z � � �zbkxk ð8Þ

or a second-order model of the form

g~b0z
Xk

j~1

bjxjz
Xk

j~1

bjjx
2
j z

X
ivj

X
bijxixj ð9Þ

It may also be necessary to employ an approximat-
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ing function greater than an order of two, based on

the standard Taylor series expansion. The set of

parameters can be estimated by regression analysis

based upon the experimental data. The method of

least squares is typically used to estimate the

regression coefficients. With n , k on the response

variable available, giving y1, y2, … yn, each observed

response will have an observation on each regression

variable, with xij denoting the ith observation of

variable xj. Assuming that the error term e has

E(e) 5 0 and Var(e) 5 s2 and that the ei are uncorre-

lated random variables, the model can now be

expressed in terms of the observations

yi~b0zb1xi1zb2xi2z � � �zbkxikzei, i~1, 2, . . . , n

ð10Þ

The coefficients b in equation (10) are chosen such
that the sum of the squares of the errors ei are
minimized via the least-squares function

L~
Xn

i~1

e2
i ~

Xn

i~1

yi{b0{
Xn

j~1

bjxij

 !2

ð11Þ

The model can be more usefully expressed in matrix
form as

y~Xbze ð12Þ

where

y~

y1

y2

:

:

:

yn

2
666666666664

3
777777777775

, X~

1 x11 x12 . . . x1k

1 x21 x22 . . . x1k

: : : : :

: : : : :

: : : : :

1 xn1 xn2 . . . xnk

2
666666666664

3
777777777775

,

b~

b0

b1

:

:

:

bn

2
666666666664

3
777777777775

, e~

e1

e2

:

:

:

en

2
666666666664

3
777777777775

ð13Þ

It is now necessary to find a vector b of least-squares

estimators which minimizes the expression

L~
Xn

i~1

e2
i ~e’e~ y{Xbð Þ’ y{Xbð Þ ð14Þ

and yields the least-squares estimator of b which is

b~ X’Xð Þ{1X’y ð15Þ

and, finally, the fitted regression model is

ŷy~Xb, e~y{ŷy ð16Þ

where e is the vector of residual errors of the model.

The RS method can thus be implemented upon

either simulated or actual experimental results to

derive a polynomial expression describing the rela-

tionship between the causal inputs and resulting

outputs of the dynamic systems under considera-

tion.

As data from the experimental results are gathered

under the direction of the metaheuristics, it is pos-

sible to generate a surface approximation for the system

under consideration.

2.2.1 WSDS method

The WSDS method in its basic form is encapsulated

in the following pseudo-code:

1. WHILE

2. run meta-heuristic to global minimum (or accep-

table value)

3. END

4. ELSE

5. add new path data to old path data

6. fit normalized RS to old path data

7. generate WSDS surface

8. perform weighted jump

9. END

The response surface can take any arbitrary order;

for descriptive purposes, a second-order support sur-

face in two variables is described.

If the metaheuristic finds a global or acceptable

minimum, then the procedure terminates. Other-

wise, a random jump is made to escape the local

minima. In this case, the most recent search data

(traveldata) is added to a data history file (e1, e2,

yresp), where e1 and e2 are the natural variables, and

yresp is the response. Thus

e1~ e1; traveldata :, 1ð Þ½ �

e2~ e2; traveldata :, 2ð Þ½ �

yresp~ yresp; traveldata :, 3ð Þ½ �
ð17Þ

The natural variables e1 and e2 are transformed into
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dimensionless zero-mean coded variables x1 and x2.

As the surface is unknown, a priori knowledge of the

minimum and maximum of the natural variables is

not possible. Hence, they vary dynamically as new

data arrives according to

x1~e1{
max e1ð Þzmin e1ð Þ½ �=2

max e1ð Þ{min e1ð Þ½ �=2

x2~e2{
max e2ð Þzmin e2ð Þ½ �=2

max e2ð Þ{min e2ð Þ½ �=2

ð18Þ

For a representative second-order support surface,

the variable matrix X is thus

X~
x0 x1 x2 x2

1 x2
2 x1x2

. . . . . . . . . . . . . . . . . .

� �
ð19Þ

The variable matrix shown in equation (19) has a

cross-coupling term x1x2 which is optional and is

dependent on the surface being fitted. The coded

estimated coefficients of the RS are calculated accor-

ding to equation (15), which are converted to natural

coefficients by inverting the process in equation (18).

For the second-order cross-coupled approximation

under examination, the estimated natural coeffi-

cients are calculated from

The natural coefficients are now recombined into the

RS polynomial

y~b0zb1e1zb2e2zb3e2
1zb4e2

2zb5e1e2 ð21Þ

where [e1 e2] is a matrix of coordinate values for the

search space, and y is the corresponding predicted

response value array. Since the ‘true’ system re-

sponse surface is unknown, this predicted array

represents the current view of the likely response. It

is this polynomial that forms the basis for the

weighted jump from local minima. The y values are

normalized according to

ynorm~1{ y{
max yð Þzmin yð Þ½ �=2

max yð Þ{min yð Þ½ �=2
z1

� ��
2 ð22Þ

which yields an RS over the search space bounded

from zero to one, where increasing value represents

increasing interest inferred from previous searches.

These monotonically increasing values correspond

to coordinates in a probability space from which

the next jump coordinates are chosen according to

a random number generation, with probability of

being chosen based on relative value in the support

space. Thus, the probability of selection of the next

jump point is based statistically on the results of

previous searches.

b̂b0~b0zb1
{ max e1ð Þzmin e1ð Þ½ �=2

max e1ð Þ{min e1ð Þ½ �=2
zb2

{ max e2ð Þzmin e2ð Þ½ �=2

max e2ð Þ{min e2ð Þ½ �=2
zb3

max e1ð Þzmin e1ð Þ½ �=2

max e1ð Þ{min e1ð Þ½ �=2

� �2

zb4
max e2ð Þzmin e2ð Þ½ �=2

max e2ð Þ{min e2ð Þ½ �=2

� �2

zb5
max e1ð Þzmin e1ð Þ½ �=2f g max e2ð Þzmin e2ð Þ½ �=2f g
max e1ð Þ{min e1ð Þ½ �=2f g max e2ð Þ{min e2ð Þ½ �=2f g

b̂b1~
b1

max e1ð Þ{min e1ð Þ½ �=2
{2b3

max e1ð Þzmin e1ð Þ½ �=2

max e1ð Þ{min e1ð Þ½ �=2f g2

{b5
max e2ð Þzmin e2ð Þ½ �=2

max e1ð Þ{min e1ð Þ½ �=2f g max e2ð Þ{min e2ð Þ½ �=2f g

b̂b2~
b2

max e2ð Þ{min e2ð Þ½ �=2
{2b4

max e2ð Þzmin e2ð Þ½ �=2

max e2ð Þ{min e2ð Þ½ �=2f g2

{b5
max e1ð Þzmin e1ð Þð Þ=2

max e1ð Þ{min e1ð Þ½ �=2f g max e2ð Þ{min e2ð Þ½ �=2f g

b̂b3~
b3

max e1ð Þ{min e1ð Þ½ �=2f g2

b̂b4~
b4

max e2ð Þ{min e2ð Þ½ �=2f g2

b̂b5~
b5

max e1ð Þ{min e1ð Þ½ �=2f g max e2ð Þ{min e2ð Þ½ �=2f g

ð20Þ

206 D Gladwin, P Stewart, J Stewart, R Chen, and E Winward

Proc. IMechE Vol. 224 Part D: J. Automobile Engineering JAUTO1213



2.2.2 Development surfaces

For the development of this methodology, a realistic

noisy surface with multiple local minima, plateaux,

and one global minimum was considered for algo-

rithm development. The standard MATLAB ‘peaks’

surface (Fig. 1) describes a combinatorial process in

two variables as

y~3 1{x1ð Þ2 exp {x2
1{x2

2

� �
{10

x1

5
{x3

1{x5
2

� 	
exp {x2

1{x2
2

� �
{

1

3
exp { x1z1ð Þ2{x2

2

h i
ð23Þ

In order to investigate the effects of noise, progres-

sively larger amounts of Gaussian noise are added to

the smooth surface (peaks 0) to give peaks 1 (Fig. 2),

peaks 2 (Fig. 3), and peaks 3 (Fig. 4).

For the search heuristics presented here, perfor-

mance is degraded by the number of local optima in

the search space. Local optima are formed by two

mechanisms. The first mechanism is the underlying

‘shape’ of the search space. Basically, higher order

functions tend to create more complex shapes with

more local minima. Measurement or process noise

adds numerous local minima to the underlying sur-

face. Hence, in the paper, the noise added to the

fundamental search space peaks 0 is defined by a

statistical mean and variance in the text. As ex-

pected, performance degrades with increasing noise.

An example of a custom-designed surface, namely

‘bumps’, is also considered. This surface is standard

in the literature and presents complexity in terms of

the number of local minima and the proportion of

the area of local minima to global minima.

The magnitude of the noise is given as a fraction of

the range of values of this input array. The addition

of the noise is achieved by utilizing the R function

Fig. 1 Noise-free algorithm development fitness land-
scape: peaks 0

Fig. 2 Noisy algorithm development fitness landscape:
peaks 1

Fig. 3 Noisy algorithm development fitness landscape:
peaks 2

Fig. 4 Noisy algorithm development fitness landscape:
peaks 3
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‘jitter’ written by Werner Stahel and Martin Maech-

ler (Eidgenössische Technische Hochschule Zurich,

Zurich, Switzerland).

The development surfaces are designated peaks 0

to peaks 3 with increasing levels of noise imposed on

the clean peaks 0 surface according to the following:

(a) peaks 1: mean, 0.1189; variance, 0.0836;

(b) peaks 2: mean, 0.2842; variance, 0.3705;

(c) peaks 3: mean, 1.7277; variance, 0.7648.

This paper does not set out to compare the

performance of search methodologies, but to in-

vestigate the benefits that can be obtained by inte-

grating elements of decision support into the pro-

cess. The parameters associated with each method

were tuned in order to obtain a reasonably rapid

convergence to an acceptable solution. Based upon

the range of noise levels between peaks 0 and peaks

3 surfaces, a stop criterion of 0.5 was found to be an

acceptable trade-off between performance and con-

vergence time. This stop criterion was applied to all

the heuristics. Step sizes and, where appropriate,

cooling schedules were also tuned to give acceptable

performance. This was particularly important, in

order to give results with reasonable statistical signi-

ficance; each method–surface combination was run

100 times to achieve the mean values. This approach

was adopted because a significant feature of these

heuristics is the stochastic nature of aspects of the

search.

The GD method was run with a fixed step size of

0.2, the VNS method had an initial step size of 0.1,

dividing by 2 at each step to a final step size of 0.01,

and finally the SA method had a step size of 0.1, with

a cooling schedule of 0.5 per step from an initial

temperature of 10 to a final temperature of 0.001.

The parameters for the search methods are given in

Table 1.

In order to examine the method’s effectiveness,

another search space was introduced, namely the

‘bump’ problem [15, 16], which is a smooth surface

consisting of many peaks, all of similar sizes. Also,

the optimal value is defined adjacent to a constraint

boundary. It has been noted that these features

render it relatively difficult for most optimizers to

deal with.

The bump problem is defined as

max
abs

Pn
i~1 cos4 xið Þ{2Pn

i~1 cos2 xið Þ

 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 ix2
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>; ð24Þ

for

0vxiv10, i~1, . . . , n

subject to

P
n

i~1
xiw0:75,

Xn

i~1

xiv
15n

2

starting from

xi~5, i~1, . . . , n

where xi are the variables (in radians) in the range

from 0 to 10, subject to two constraints, and n is the

number of dimensions. The highly contoured sur-

face that this function produces is shown in Fig. 5.

In this case, a two-dimensional surface has been

chosen. The global optimum is defined by the pro-

duct constraint.

The surface of the function in two variables is

shown in Fig. 6. The parameters of the heuristics

Table 1 Search parameters: peaks

Method Stop criterion Step size Schedule

GD Minimum + 0.5 0.2 0
VNS Minimum + 0.5 4 R 0.01 0.5
SA Minimum + 0.5 0.1 10 R 0.001(0.5)

Fig. 5 Contour map for a two-variable bump function
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were tuned slightly to reflect this new surface and

are given in Table 2.

2.3 Results

Each of the peaks surfaces was searched by each of

the heuristics both with and without stochastic

support. In addition, a variety of support surfaces

of different orders were examined.

Each instance of surface type–with support–with-

out support–order–cross-coupling was run 100 times

producing mean results to negate the effects of the

inherently stochastic methods. In the search meth-

ods presented here, each step is associated by a

number of computations, evaluating the surround-

ing points (with positions specified by step size). In

the comparisons of search performance, the total

number of computations to the stop criterion are

presented, together with the maximum number of

steps that occurred in the worst-case search.

2.3.1 Gradient descent

The GD methodology was applied to the five surf-

aces initially without any stochastic support, result-

ing in the performance presented in Table 3.

In the case of the methodologies presented in this

paper, a trade-off in performance was made during

the initial tuning of the search parameters. In the

case of GD, the main parameter is step size, which

was adjusted to give an acceptable computation to

convergence on the ‘worst’ surfaces, i.e. peaks 3 and

bump. This was done to make the problem compu-

tationally tractable as each run was carried out

multiple times. The effect of this tuning is to give a

relatively poor performance on the smooth peaks 0

surface which could have been improved consider-

ably; however, as tuning and performance compar-

ison between methods is not at the core of this

paper, this pragmatic approach was deemed accep-

table. As would be expected, mean and worst-case

computations deteriorate as the level of complexity

or noise increases, and the heuristic reaches more

and more local minima above the level of the stop

criterion.

A typical unsupported GD search on the peaks 2

surface is shown in Fig. 7 and illustrates a typical

operation, with local terminations, stochastic jumps,

and stop criterion at approximately (3, 1).

The GD heuristic was then run on the same sur-

faces, with stochastic decision support ranging from

first- to fifth-order surfaces. The results of the experi-

ments are given in Table 4.

An example of a stochastic third-order support

surface for the bump function is shown in Fig. 8,

with the contour lines denoting the probability of the

next jump. This particular support map is shown

after three jumps. The structure and value of the

Fig. 6 Two-variable bump function surface

Table 2 Search parameters: bump

Method Stop criterion Step size Schedule

GD Minimum + 0.05 0.1 0
VNS Minimum + 0.5 4 R 0.001 0.5
SA Minimum + 0.05 0.1 10 R 0.001(0.5)

Table 3 GD performance: no support

Surface Mean computations Worst-case computations

Peaks 0 327 565
Peaks 1 450 679
Peaks 2 1087 7614
Peaks 3 2750 16 698
Bump 6561 29 268

Fig. 7 Peaks 2: GD; no support; search example (com-
putations, 953; steps, 101; stochastic jumps, 19)
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probability contours change on the basis of new

information available after every search.

Figure 9 shows the corresponding bump function

contour map with the searches that have been

directed by the stochastic support operator. The

stop criterion is satisfied after the final search

reaches a point near (1.25, 0.5).

2.3.2 Variable neighbourhood search

The VNS was applied to the surfaces without any

stochastic support, resulting in the performance

presented in Table 5.

The heuristic was then run on the same surfaces,

with stochastic decision support ranging from first-

to fifth-order surfaces. The results of the experi-

ments are given in Table 6.

2.3.3 Simulated annealing

Finally, SA was applied to the surfaces without any

stochastic support, resulting in the performance

presented in Table 7.

The heuristic was then run on the same surfaces,

with stochastic decision support ranging from first-

to fifth-order surfaces. The results of the experi-

ments are given in Table 8.

2.4 Discussion

Figures 10 and 11 present a comparison of the three

search methodologies for the five surfaces. In all the

figures presented in this section, the x axis repre-

sents increasingly noisy surfaces from peaks 0 to

peaks 3, followed by the complex surface G2-inv. For

both mean and worst-case computations, simple

Table 4 GD performance: with support (upper value, mean; lower value, worst case)

Surface

Value for the following

First order Second order Third order Fourth order Fifth order

Peaks 0 244 234 176 136 168
1597 1361 646 599 633

Peaks 1 217 237 254 269 376
985 1080 1278 1416 2298

Peaks 2 573 896 1009 669 1679
6883 4947 10 397 5379 30 367

Peaks 3 1649 2435 2395 1204 2611
6171 4287 32 402 6669 12 203

Bump 1668 1682 2014 2063 3051
10 023 7237 6688 11 109 13 097

Fig. 8 Bump surface: GD; third-order stochastic sup-
port surface after three jumps

Fig. 9 Bump surface: GD; search example with third-
order support (computations, 479; steps, 54;
stochastic jumps, 6; start point, blue; finishing
point, green). The search order is numbered

Table 5 VNS performance: no support

Surface Mean computations Worst-case computations

Peaks 0 723 2701
Peaks 1 936 2896
Peaks 2 1479 12 919
Peaks 3 3087 63 587
Bump 2502 98 784
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GD outperforms the other methodologies on the

peaks surface. As predicted, SA performs increasing-

ly poorly with increasing noise but shows a better

performance than VNS on the complex G2_inv sur-

face. No conclusions will be drawn concerning the

relative methods used here, as the prime motiva-

tion of this research is to develop a generic decision

support to increase the performance of generalized

search methods.

Next, the performance of the search methods with

stochastic decision support will be considered.

Figures 12 to 14 present a performance compar-

ison for each method supported by a range of

support surfaces from first to fifth order. The first

observation of note is that the effectiveness of the

decision support is dependent on its order, and

hence its level of fit to the data surface being esti-

mated. This will be investigated in future research, to

incorporate an ‘adaptive ordered’ fit that optimizes

the benefit of the support method. In the case of GD

(Fig. 12), excluding fifth-order support, the suppor-

ted searches deliver increasing comparative levels

of performance with increasing noise and comple-

xity.

In the case of the VNS (Fig. 13), all the supported

searches outperform unsupported searches in the

presence of increasing noise; however, this does not

hold true for the complex G2_inv surface. Finally, in

the case of SA (Fig. 14), supported searches outper-

form unsupported searches only in the cases of high

Table 6 VNS: with support (upper value, mean; lower value, worst case)

Surface

Value for the following

First order Second order Third order Fourth order Fifth order

Peaks 0 660 334 507 453 454
2201 1505 1793 1785 2683

Peaks 1 545 421 482 694 632
3770 2226 1869 2681 2505

Peaks 2 730 880 974 699 788
6883 4947 10 397 5379 30 367

Peaks 3 2448 1959 1913 1313 1487
35 661 16 450 13 682 8965 11 941

Bump 4125 4358 4961 8550 6619
18 903 15 572 18 423 54 847 39 062

Table 7 SA search performance: no support

Surface Mean computations Worst-case computations

Peaks 0 402 1937
Peaks 1 597 2386
Peaks 2 1542 10 184
Peaks 3 8134 40 868
Bump 9922 40 610

Table 8 SA: with support (upper value, mean; lower value, worst case)

Surface

Value for the following

First order Second order Third order Fourth order Fifth order

Peaks 0 474 545 293 328 494
2564 3669 1129 1667 2307

Peaks 1 644 822 853 716 644
2614 4384 3981 4573 3002

Peaks 2 1515 2214 1530 2179 2747
6151 21 859 12 312 22 382 49 213

Peaks 3 3838 4558 5014 3899 7804
18 250 35 506 44 304 40 157 62 188

Bump 3042 5235 4522 4977 4834
10 557 31 227 17 355 20 882 18 181

Fig. 10 Mean computations comparison of unsup-
ported search methods on the five surfaces
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levels of noise or high levels of complexity. At this

point in the development of the methodology, it can

be concluded that the WSDS component makes a

significant improvement to search efficiency, parti-

cularly with noisy real-world data. As with every-

thing associated with search heuristics, there is no

universal methodology, evidenced by the fact that

unsupported SA outperforms the supported instan-

ces on the bump surface.

3 ENGINE-IN-THE-LOOP EXPERIMENTAL
APPLICATION

In this section, a decision support system for hard-

ware-in-the-loop optimization is investigated. The

method, which has previously been developed on

test surfaces in simulation, is applied to an auto-

motive combinatorial search in the laboratory, on

a real-time engine in the loop application. It is

desired to find the maximum power output of an ex-

perimental single-cylinder spark ignition (SI) engine

operating under a quasi-constant-volume (QCV)

operating regime. Under this regime, the piston is

slowed at top dead centre (TDC) to achieve combus-

tion in close to constant-volume conditions.

As part of the further development of the engine to

incorporate a linear generator to investigate free

Fig. 12 Comparison of GD method with no support
with first- to fifth-order supported searches

Fig. 13 Comparison of VNS method with no support
with first- to fifth-order supported searches

Fig. 11 Worst-case computations comparison of un-
supported search methods on the five surfaces

Fig. 14 Comparison of SA method with no support
with first- to fifth-order supported searches
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piston operation, it is necessary to perform a series

of experiments with combinatorial parameters. The

objective is to identify the maximum power point in

the least number of experiments in order to mini-

mize costs. This test programme provides peak

power data in order to achieve optimal electrical

machine design.

The decision support methodology is combined

with standard optimization and search methods,

namely GD and SA, in order to study the reductions

possible in experimental iterations. It is shown that

the decision support methodology significantly re-

duces the number of experiments necessary to find

the maximum power solution and thus offers a

potentially significant cost saving to hardware-in-

the-loop experimentation.

In this section, GD and SA are supplemented by

the decision support methodology and applied to

the real-life task of identifying the peak power

operating point of a novel internal combustion

engine experimental rig and control methodology.

The supplemented methods are compared with the

basic methodologies and offer considerable savings

in experimental effort.

3.1 Engine-in-the-loop operation

The engine employed in this research, as shown in

Fig. 15, is a purposely converted single-cylinder re-

search engine. Its combustion chamber, the head

and the piston, are based on the GM Family One 1.8-l

engine architecture, of four-valve type with a bore of

80.5 mm and a stroke of 88.2 mm. The bottom part

of the engine is converted from a standard four-

cylinder engine block. The combustion chamber

has been lifted significantly from the bottom. The

extension in between is reserved for further future

work on free-piston engines. The purpose of the

work described in this paper is to identify the peak

power of the engine under a QCV regime [17], in

order to design optimally a linear motor–generator

that will replace the extension tube.

During operation of conventional internal com-

bustion (IC) engines, the piston can only reciprocate

continuously between TDC and bottom dead centre

(BDC) at a frequency proportional to the engine

speed. The chemical reaction process associated

with combustion events, however, essentially takes a

fixed time to complete, which is relatively indepen-

dent of the engine speed. In order to maximize the

work obtained from the heat energy released by

combustion, the air–fuel mixture has to be ignited

prior to the piston reaching TDC, and the ignition

timing should be adjusted according to the engine

speed and the quality of the air–fuel mixture.

Clearly, the early stage of the heat release before

the piston reaches TDC results in negative work.

During the combustion event, the piston movement

is defined by the crank rotation, so that truly

constant-volume heat release is not achievable.

Further, to scavenge the burned gas efficiently, the

exhaust valve has to be opened well before BDC,

while the pressure of the burned gas is still high.

Thus, a large portion of the thermal energy is ex-

pelled into the exhaust, which further reduces the

engine efficiency. The ideal scenario is to initiate

and complete the combustion event while the piston

remains at or close to the TDC position in order to

achieve the maximum thermal potential and elimin-

ate the negative work which results with early ignition,

and to extend the expansion stroke further in order

to use the thermal energy fully as well as to pro-

vide sufficient time for post-combustion reactions,

thereby reducing partial burned emissions. One

practical method of achieving such an optimization

without changing the engine design and sacrificing

engine performance in series-hybrid applications is

to reduce the engine crank rotation velocity signi-

ficantly at the TDC position to provide sufficient

time for combustion to be completed and then to

accelerate the engine during the compression and

Fig. 15 The QCV experimental engine
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expansion phases to maintain the high average

crank speed to deliver the high power output. This

will then generate a new combustion cycle which is

between the combustion cycle of a conventional IC

engine and the ideal Otto constant-volume com-

bustion cycle. This can be therefore be called a

QCV combustion cycle, as illustrated in Fig. 16.

Theoretically, the series-hybrid power train en-

ables a higher efficiency and power output from IC

engine configurations [18], while the QCV concept

offers an even greater potential for higher combus-

tion efficiency. In order to investigate the QCV com-

bustion concept, a proof-of-principle engine system

has been developed, as shown in Fig. 17. The sys-

tem consists of a high torque-to-inertia ratio, high-

bandwidth permanent-magnet brushless a.c. electric

machine, a single-cylinder research SI engine, and a

control system.

3.1.1 Piston trajectory

For a proof-of-principle system, control was im-

plemented on the electrical machine that could

deliver a sinusoidal crank velocity with defined

average and magnitude quantities. An example of a

simple variable-crank-velocity profile was selected; a

sinusoidal wave velocity form at an average speed of

600 r/min with a wave magnitude of ¡200 r/min

has been employed in the study. Figure 18 shows the

theoretical variable crank rotation velocity at various

crank positions in comparison with equivalent

conventional constant-speed data. The piston TDC

position is 0u and 360u.
The residual time at TDC has been extended, while

the residual time at BDC is reduced, as shown by the

solid curve. This offers longer time for the combus-

tion event to complete at the TDC region which

delivers higher combustion efficiency than in the

conventional case. Figure 19 shows the fired cylinder

pressure of the conventional cycle at 600 r/min and

the QCV cycle at a sinusoidal speed of 600 r/min

average with ¡200 r/min amplitude at a normalized

cycle time. The engine was 5.75 per cent throttled in

the conventional cycle and 5.3 per cent for the

QCV cycle. The fuel-injection pulse width for both

scenarios were the same with a length of 5.65 ms.

The SI timing of the conventional cycle was opti-

mized at 10.2u crank angle (CA) before top dead

centre (BTDC). For the QCV cycle, it was optimized

at 9.8 uCA BTDC. Clearly, the QCV cycle uses a later

optimized ignition timing, but produces a later but

higher peak cylinder pressure, which further leads to

an overall higher in-cylinder pressure during the

expansion stroke.

The work produced by a combustion engine is an

integration of the pressure over an engine cycle.

Clearly, the higher expansion pressure of the QCV

cycle can produce higher work than its conventionalFig. 16 Typical pressure–volume diagram

Fig. 17 Schematic diagram of the QCV electrical power system
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counterpart. Overall, the pressure integral of the

QCV cycle is 11 per cent higher than that of the

conventional cycle.

3.2 Decision support and search methods

For the next stage of the development of this

experimental rig, and the main exposition of the

application of the decision support methodology,

it is necessary to find the combinations of mean

crankshaft velocity and sinusoidal amplitude at each

throttle setting and injection timing that deliver

the highest peak cylinder pressure (and hence

power). These data are required for the design of a

linear generator that will be built into the rig to

investigate free-piston operation. As an example, the

application of the experimental decision support

operator will be examined to find the maximum

power operating point of the engine at the throttle

and injection settings given earlier in the section. In

order to evaluate the relative performance of the

decision support method, the engine was character-

ized by an exhaustive search, which is shown in

Fig. 20.

GD-based methods will be used to find the com-

bination of mean crankshaft velocity versus crank-

shaft sinusoidal perturbation that produces the

highest peak cylinder pressure.

Figure 21 shows a typical hardware-in-the-loop

search using a simple GD method. The method uses

a total of 41 stochastic jumps, and a total of 311 steps

to find a solution within 0.02 bar of the maximum

identified by exhaustive search. Under the same

experimental parameters, a simple GD search with

WSDS is performed.

Fig. 19 Peak cylinder pressure at firing; QCV versus
conventional operation

Fig. 21 Example of a simple GD search with no WSDS
(terminating coordinates (516, 280); x, average
crankshaft speed (r/min); y, sinusoidal pertur-
bation (r/min))

Fig. 20 Engine experimental map for peak cylinder
pressure under QCV operation

Fig. 18 Conventional constant and variable sinusoidal
crank velocity (CAD, crank angle (deg))
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In Fig. 22, the decision support surface based

upon previous searches is shown. This particular

surface is stopped at fulfilment of the termination

criterion. The associated searches are shown in

Fig. 23.

In this case, the termination criterion was achi-

eved in 24 jumps and 126 steps. Apart from the im-

provement in search efficiency, the effect of the

weighted surface on the stochastic jumps can be

observed. Search activity increases around areas of

higher interest based upon previous searches.

3.3 Discussion

For simplicity of analysis here, the decision support

RSs applied to the experimental data were fixed

second order, although further research will inves-

tigate the efficacy of adaptive schemes. GD and SA

were run both with and without support. Since the

terminal value had been identified by exhaustive

search, the relaxation of termination value was also

varied to investigate its influence (Fig. 24).

Irrespective of the search algorithm, WSDS sup-

port reduces the mean number of searches by a

significant amount and, in the case of the tightest

stop criterion, by approximately 75 per cent.

It is important to remember that this is not a

comparative study of search heuristics, but an ob-

servation of the advantages that can be gained by

extending simple search heuristics with a simple

RS-based decision support operator. It can be seen

that, in all cases, the WSDS extension significantly

improves the performance of the search methodol-

ogies. The improvement in performance of all the

searches as the stop criterion is relaxed reflects one

of the basic effects of experimental noise. As noise

or the ‘tightness’ of the stop criterion to the global

minimum increases, then these methodologies be-

come increasingly sensitive to the step size and

starting point. In other words, the noise dominates

the search.

As can be seen from the typical support surface in

Fig. 22, there is an overall correlation between the

‘area of interest’ and the actual experimental surface;

however, this would be improved by higher-order

RSs (section 2). Future work will include the develop-

ment of an adaptive WSDS, which will choose the

best RS method representation based on the fit to

the received data. Of future interest will also be the

integration of certain aspects of tabu search [8]. After

a certain number of searches, it might be advanta-
Fig. 22 WSDS support for experimental search

Fig. 23 Example of a simple GD search with WSDS
(terminating coordinates (515, 279))

Fig. 24 Mean experimental steps to termination ver-
sus relaxation of stop criterion
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geous to weaken areas with low confidence, and

to strengthen the areas with high confidence. This

would have the effect of higher concentration of

jumps away from low-confidence areas, a corollary

with tabu search. This will also be researched at a

later date.

4 CONCLUSION

A method has been presented to add decision

support to the previously random jumps of GD

methods commonly used in combinatorial experi-

mentation. Significant promise has been shown in

the performance improvements of even the simplest

GD method. However, as with all search method-

ologies, there is no universal solution. The basic

heuristics themselves have been shown to perform

better on some surfaces than others, which is to be

expected. In a similar way, the support method has

been shown to be more effective in certain surface–

method–support order combinations.

In section 3 of this paper, the support method-

ologies were applied to a real-life combinatorial

experiment conducted in an engine laboratory, to

assess their performance in a realistic environment.

Significant improvements in search efficiency was

exhibited by the WSDS methodology, even under a

relatively tight stop criterion.

Future work will address implementing an adap-

tive order support surface, and an adaptive search

hybrid (effectively a hyperheuristic) to maximize the

effectiveness of this method. In particular, an ada-

ptive heuristic search parameter will be investigated.

A decision support methodology has been pre-

sented to support hardware-in-the-loop experimen-

tation. Since the majority of this type of experimen-

tation is performed on plant with an unknown

response, it is general practice to utilize simple

heuristics such as GD or SA. Genetic algorithms have

also been shown to be effective, and these will be

the subject of future study in terms of decision sup-

port. The methodology as presented in this paper

has shown itself to be effective in dealing with ‘un-

known’ search spaces and relatively ‘untuned’ search

heuristics.

A decision support operator has been presented,

which uses the past history of searches to construct

a ‘confidence map’ based upon the RS methodol-

ogy. This confidence map influences the stochastic

jumps of the heuristics towards areas of increased

interest. In line with the philosophy of the heuristics,

the decision support operator is extremely simple to

implement.

In section 2, the performance of the decision

support operator was investigated on a series of test

surfaces with various levels of noise present. The

operator was shown to be highly effective in re-

ducing the number of steps to termination of the

chosen heuristics.

In section 3, the methodology has been applied

to the task of finding the maximum power point of

a single-cylinder engine under a novel operating

regime at a defined operating point. The two chosen

heuristics were GD and SA. In both cases, the search

performance was significantly improved by decision

support. With respect to the experimental applica-

tion under consideration in this paper, the identified

peak pressures with predicted peak power profiles

allowed the design of a linear motor–generator for

the project, under reduced experimental time to

extract the necessary data and, as such, the meth-

odology is shown to be advantageous.
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