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Abstract 

The compression ring-bore conjunction accounts for significant frictional parasitic losses relative to 

its size. The prerequisite to improving the tribological performance of this contact is a fundamental 

understanding of ring dynamics within the prevailing transient nature of regime of lubrication. 

Studies reported thus far take into account ring-bore conformance, based on static fitment of the 

ring within an out-of-round bore, whose out-of-circularity is affected by manufacturing processes, 

surface treatment and assembly. The static fitment analyses presume quasi-static equilibrium 

between ring tension and gas pressure loading with generated conjunctional pressures. This is an 

implicit assumption of ring rigidity whilst in situ. The current analysis considers the global modal 

behaviour of the ring as an eigenvalue problem, thus including its dynamic in-plane behaviour in the 

tribological study of a mixed-hydrodynamic regime of lubrication. The results show that the contact 

transit time is shorter than that required for the ring to reach steady state condition. Hence, the 

conjunction is not only subject to transience on account of changing contact kinematics and varied 

combustion loading, but also subject to perpetual ring transient dynamics. This renders the ring-bore 

friction a more complex problem than usually assumed in idealised ring fitment analyses. An 

interesting finding of the analysis is increased ring-bore clearance at and in the vicinity of top dead 

centre, which reduces the ring sealing effect and suggests a possible increase in blow-by. The current 

analysis, integrating ring in-plane modal dynamics and mixed regime of lubrication includes salient 

features which are closer representation of practice, an approach which has not hitherto been 

reported in literature.  
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Nomenclature

A – Cross-sectional area of ring 

Aa – Asperity contact area of the ring surface 

Ac – Contact area of ring surface 

An1-An6 – Modal function constants 

b – Ring facewidth 

Cn1, Cn2 – Time response constants 

d – Ring thickness 

dn – Modal function constant 

en – Modal function constant 

E – Young’s modulus 

fa – Asperity friction force 

Fe – Ring tension  

Fg – Applied Gas force  

Fgroove – Groove friction force 

Fh – Viscous friction 

FR – Net (residual) radial force 

FT – Tangential force 

fn – Modal function constant 

h – Film thickness 

I – Second area moment of inertia 

i – Mode number (orthogonality condition) 

j – Mode number (orthogonality condition) 

m – Ring mass per unit length 

p - Pressure 

Qn – General forcing function 

Rg – Reaction force of piston groove 

R – Ring nominal radius 

s – Ring axial profile 

t – Time 

V - Tangential modal response 

v – Tangential displacement 

W – Radial modal response 

Wa – Asperity load 

Wh – Lubricant reaction 

x – Direction of entraining motion  

w – Radial displacement 

α– Incomplete Ring subtended angle 

∆ - Global deformation of ring 

δn – Modal function constant 

 - Asperity distribution per unit area  

η – Lubricant viscosity 

 - Average asperity tip radius 

λn – Frequency parameter 

λs – Stribeck oil film parameter 

μn – Modal function constant 

ξn - Time response of ring deflection 

ρ – Lubricant density 

ς – Roots of the eigenvalue problem 

ςRMS – Composite roughness of counterfaces 

τ – Viscous shear stress 

τ0 – Eyring shear stress of the lubricant 

τ’ – Time segment 

φ – Direction along ring periphery 

ωf – Excitation frequency 

ωn – Natural frequency 

Subscripts 

n – mode shape index 



 

1. Introduction 

Between 50-60% of the input fuel energy in an internal combustion engine is lost through thermal 

and mechanical losses. With ever increasing costs and scarcity of fossil fuels, in addition to the 

untoward effects of ensuing emissions, reduction of these losses have become the driving force in a 

quest for alternative means of propulsion. However, there are significant infrastructural obstacles in 

the rapid development and implementation of alternatives. As a consequence, it is envisaged that 

the internal combustion engine would remain an important integral part of any transport solution 

for the foreseeable future, at least up to 2030 (King, 2007). The causes of engine losses can be 

categorised as thermodynamic and parasitic. Thermodynamic losses are those which are the result 

of heat losses in combustion, by conduction through engine surfaces and by lubricant through 

convection, as well as heat expulsion from the exhaust. Parasitic losses encapsulate the inefficiencies 

due to moving parts, such as pumping losses, mechanical out-of-balances, noise and vibration, and 

chiefly friction. These losses account for approximately 20% of all the engine losses, a significant 

portion of which (nearly 45%) occurs in piston-cylinder system. The compression ring alone can 

account for 5% of the total engine losses (Andersson, 1991). This suggests that optimisation of 

tribological performance of the compression ring conjunction warrants more attention; as such a 

relatively small component is responsible for a disproportionate level of inefficiency. In particular, 

due to the prevailing transient conditions the compression ring is subject to significant variable 

loading and thus undergoes fairly complex motions.  

In the assessment of ring-bore tribology, the current literature often does not take into account any 

ring modal behaviour, instead treating the ring as a rigid body (Priest and Taylor, 2000). This 

assumption is often used when solving Reynolds equation to predict conjunctional pressures and the 

corresponding lubricant film thickness. However, global deformation is bound to occur when the 

thin ring structure is subjected to the forces encountered in a piston cylinder-ring conjunction, 

particularly at the point of firing (Tian, 2002). The resulting vibratory motions take place in the radial 

plane of the ring as well as in the out-of-plane direction. The current work investigates the in-plane 

compression ring dynamics. 

Studies on ring dynamics have their roots in the theory for elastic beam and the analysis of curved 

arches. Lamb (1888) studied the in-plane deformation of a bar of uniform cross-section. Though 

limited to beams with relatively small curvature, equations of motion for a free bar were derived and 

solved. Den Hartog (1928) extended this approach, using the Rayleigh-Ritz energy method to derive 

formulae for the first two natural frequencies of an incomplete circular arc, for both hinged and 



clamped boundary conditions. Lord Rayleigh’s method was modified by Brown (1934) in order to 

find an approximate solution for the in-plane radial vibrations. The numerical results conformed 

reasonably well to the experimental observations. The Rayleigh-Ritz method was used later to 

determine the lowest natural frequencies of elastic arcs with and without hinges by Volterra and 

Morell (1961). The method was applied to both in and out-of-plane motions. 

The classical equations of motion for a variety of beams and structures were presented by Love 

(1944). These included an incomplete ring of slender cross-section, assuming an inextensional ring 

central radial axis. Morley (1957) investigated the first ten modes of an incomplete thin ring using an 

exact analytical method. However, no mode shapes were presented for comparative purposes. Later 

the in-plane inextensional vibration of an incomplete ring was also evaluated by Archer (1960), who 

focused on rings with relatively slender cross-sections. His study was confined to in-plane excitations 

and made use of the classical equations of motion presented earlier by Love (1944). Archer’s results 

showed good agreement with those found earlier by Den Hartog (1928), with similar mode shapes.  

Ojalvo (1962) stated that treating the in-plane and out-of-plane ring motions as separate problems is 

a valid assumption, since the two motions are considered as uncoupled. He also neglected the effect 

of shearing deformation, based on the explanation expounded by Timoshenko (1951) that such an 

assumption is valid for thin rings. Lang (1962) presented dynamic response solutions for both 

extensional and inextensional thin circular rings. Antman and Warner (1965) developed an iteration 

scheme to analyse the coupling effects between ring axial excitation and its in-plane curvature. This 

method is valid for an extensible neutral axis, with inextensibility resulting in the decoupling of the in 

and out-of-plane motions, as was initially stated by Ojalvo (1962). Chen (1973) developed an 

analytical technique for calculating natural frequencies for beams with non-uniform cross-section, as 

well as varying boundary conditions. 

More recently, Gardner and Bert (1984) presented comparison of a numerical method to calculate 

ring in-plane natural frequencies and mode shapes with experimental data. Auciello and De Rosa 

(1993) used the assumptions of negligible rotary inertia, inextensible neutral axis and a small cross-

section-to-ring radius ratio in order to develop a method for calculating natural frequencies of 

circular arcs. This method can be extended to the case of rings of varying cross-sections. Kang et al 

(1995) applied the differential quadrature method (DQM) to calculate the eigenvalues for ring in-

plane vibration, considering both extensional and inextensional cases. They also applied the same 

method to out-of-plane ring oscillations. 



Earlier tribological analyses of the piston ring-cylinder liner conjunction invariably assumed 

isothermal, hydrodynamic conditions before any elastohydrodynamic or mixed regimes of 

lubrication were taken into account. Dowson et al (1983) stated that hydrodynamic lubrication is 

usually expected throughout most of the engine cycle. However, around piston reversal points (top 

and bottom dead centres), EHL or mixed regime of lubrication may be expected (Johnson, 1970). Ma 

et al (1997) presented an isothermal solution for ring-bore conjunction taking into account mixed 

and elastohydrodynamic regimes of lubrication and compared their predictions with the 

experimental data obtained by Hamilton and Moore (1974). There have been other mixed 

hydrodynamic/elastohydrodynamic solutions, for example by Akalin and Newaz (2001), Bolander et 

al (2005), D’Agostino and Senatore (2010), Mishra et al (2008, 2009) and Spencer et al (2011).  These 

works among others have included various salient features such as bore out-of-roundness, ring-bore 

conformability, ring and liner topography, as well as the effect of cavitation (Chong et al, 2010). 

Some authors (Akalin and Newaz, 2001 and Mishra et al, 2009) have shown good agreement with 

measured friction data, often obtained through use of floating liners under engine motored 

condition (Furuhama and Sasaki, 1983). However, Ghosh and Gupta (1998) observed significant 

differences in load-carrying capacity, film thickness and rolling traction at high sliding speeds, when 

taking into account heat generated in the contact. For a thermal-elastohydrodynamic (TEHD) 

analysis, combined solution of Reynolds and energy equations is required. Such an approach has 

been reported by Almqvist and Larsson (2002), but with a ring subject to local deformation only. 

Knoll et al (1996) developed a computer simulation program in an attempt to find optimum design 

parameters for the piston, piston rings and cylinder. All three of these components were modelled. 

However, there was no comparison with the work of others for verification purposes. Piston ring 

dynamics in a radial direction were also investigated by Piao and Gulwadi (2003). They investigated 

the effects of an axially distorted bore on the ring dynamics, using the simulation tool RINGPAK. This 

study assumed a quasi-static force balance, and showed good qualitative comparisons with 

experimental results. Tian et al (1998) presented a ring dynamics and gas flow model which 

accounted for a ring pack comprising 3 rings. It focused on the effect of ring flutter and out-of-plane 

twist. 

An analytical solution for in-plane dynamics of compression rings is presented in this paper. An 

analytical solution has the advantage of being computationally less intensive than a numerical 

approach and easily integrated within a ring-bore tribological study. Of particular interest is to 

ascertain the modal behaviour of the ring under transient conditions, experienced through its sliding 

motion. The analysis shows that contact transit time is shorter than the settling time of the ring 

dynamic response. This means that a steady state ring modal shape may not be assumed at any 



instantaneous contact time. However, ring in-plane dynamics affects the lubricant film thickness 

profile and thus the generated friction. There is, therefore, a clear distinction between the ring’s 

steady state forced response and its transient oscillatory response during its sliding motion. Rapidly 

changing gas pressure and ring sliding velocity promote incessant ring transient behaviour. This is a 

new finding, indicating that elastic ring behaviour prohibits the assumption of steady state response 

or quasi-static ring-bore conformability, which is often an underlying assumption in tribological 

studies.   

The structure of paper follows an initial description of ring-bore conjunction, ring in-plane 

eigenvalue problem and ring modal forced response, the validity of which is ascertained against an 

FEA model. The interplay between the ring in-plane modal dynamics and the ring-bore transience is 

investigated. It is shown that the ring response remains in an incessant state of transience. The 

corresponding lubricant film thickness profiles along the ring perimeter are presented, as well as the 

generated friction under mixed regime of lubrication.  

2. Methodology 

2.1- Forces acting on the compression ring 

Piston compression rings are subjected to a number of forces, all of which vary during the engine 

cycle. These are shown in Figure 1. They include the ring tension (elastic) force,   , which is 

generated as the result of the fitment of an incomplete circular ring of larger radius than that of the 

bore. This force strives to return the ring to its original shape, thus exerting a force onto the bore 

surface. Ring tension is assumed to remain constant for an idealised circular cylindrical bore. Then, 

there is the gas pressure loading   , which acts behind the ring inner rim, outwards in the same 

sense as the    . This force varies as the result of varying combustion chamber pressure. The net 

force acting on the ring-bore contact is therefore the combination of these two forces at any instant 

of time. In a quasi-static analysis with an assumed rigid ring (as in many reported analyses), this net 

force is equilibrated by the generated conjunctional pressures. These pressures are as the result of 

instantaneous tribological condition, which is determined according to the gap between the ring and 

the bore surface. In general, a mixed elastohydrodynamic analysis is carried out, culminating in 

contact reactions due to lubricant viscous action,    and asperity interactions,   . Thus:  

 

                 (1) 

 



 

Figure 1: Cross-sectional free body diagram of the compression ring-cylinder liner conjunction 

 

2.2- Ring-bore conjunction 

The viscous reaction is obtained as:            , where the pressures p are obtained through 

simultaneous solution of Reynolds and film thickness equations in the usual manner (Mishra et al, 

2008, Baker et al, 2011). The current analysis assumes no side-leakage flow in the direction of ring 

periphery. Thus:   
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and 

                                     (3) 

 

A parabolic ring face-width profile      
  

   
 is assumed. Furthermore, as shown by Ma et al (1997), 

Mishra et al (2008) and D’Agostino and Senatore (2010) the generated pressures are insufficient to 

cause either localised deflection of the ring or piezo-viscous action of the lubricant 

(elastohydrodynamics). When the film thickness is insufficient to guard against boundary interaction 

of surfaces (i.e.    
 

    
   , where      is the combined root mean square roughness of the ring 

and bore counterfaces), then some of the load is carried by the contact of opposing asperity pairs. 

Asperity pressure is obtained as (Greenwood and Tripp, 1971):  
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         is a statistical function assuming a Gaussian distribution of asperities on the contiguous 

contacting surfaces (Teodorescu et al, 2005), and the boundary reaction for an assumed conforming 

ring-bore contact becomes: 
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2.3- Ring elastic response  

Equation (1) can now be used as a constraint function in the form of a convergence criterion for a 

rigid ring, where        in equation (3): 

 

        
                 

       
           (6) 

 

However, for an elastic ring, its global deformation,      at any instance of time is as the result of 

the residual balance of forces (net force) acting upon it. Hence, quasi-static balance (equation (6)) 

may not be assumed. Thus, at any instant of time during the engine cycle: 

 

                         (7) 

 

In practice, this residual radial force causes in-plane ring inertial dynamics as well as inducing ring 

modal behaviour. Assuming the former to be negligible due to good ring-bore conformance, the 

effect of the net force translates to global modal deformation of the in situ ring      as an 

eigenvalue problem. Once this global shape of the ring is obtained, the film thickness in equation (3) 

is adjusted and new hydrodynamic pressures are calculated through Reynolds equation, and thus 

the new values for     and    at any crank-angle position of the ring.  

Solutions for a ring-bore conjunction under mixed regime of lubrication, in accord with equation (1) 

have been reported by Ma et al (1997), Bolander et al (2005) and Mishra et al (2008). Hitherto, no 

solution of ring-bore tribology, taking into account the transient ring modal dynamics has been 

reported.     

Since the gas pressure acting on the ring varies with crank angle, the net excitation force,    is 

variable. Therefore, the elastic behaviour of the ring is transient. In the current analysis, the 

compression ring is assumed to be an incomplete circular arc of rectangular cross-section. Figure 



2(a) shows the radial, w and tangential, v degrees of freedom, whilst figure 2(b) shows the forces 

and moments acting upon a small cross-sectional segment of the ring: 

(a) 

 

(b) 

Figure 2: a) In-plane degrees of freedom of an incomplete ring and  

b) Ring segment free body diagram 

 

2.4 Natural modal frequencies of the ring 

The geometric and material properties of the ring under investigation are listed in Table 1. The ring 

has a large central radius-to-thickness ratio (≈12.3) and the variable 
 

                , in 

accord with the assumption that it is a thin structure (Lang, 1962). The neutral axis is also assumed 

to be inextensible (
 

 
           ), which is a valid assumption for analysing the ring’s forced 

response when modes lower than the fifth harmonic are only considered as important (Lang, 1962). 

Therefore, the following relationship couples the tangential and radial displacements:  
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Elastic Modulus, E 210GPa 

Lubricant density, ρ 7800kg/m3 

Ring Thickness, d 3.5mm 

Axial Face-width, b 1.198mm 

Nominal Ring Radius, R 43mm 

Ring cross-section second area 

moment of area, I 

2.25X10-12m4 

Incomplete ring subtended 

angle, α 

359o  

Table 1: Compression ring and lubricant properties 

 

The free body diagram of a ring segment can be found in Figure 2(b), where Q( ) is the transverse 

force, N( ) is the circumferential normal force and, M( ) is the bending moment. Rotary inertia is 

neglected in this analysis. The remaining force terms FR and FT correspond to the external 

excitations in the radial and tangential directions, respectively. Therefore, the equations of motion in 

both the tangential and radial directions are as follows (Lang, 1962): 
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It is worth noting that the term    is the residual radial force obtained from equation (7). The 

homogeneous parts of equations (9) and (10) have been solved in the past by several authors 

including Love (1944), Archer (1960) and Ojalvo (1962). The solution forms (known as modal 

functions) are the same for both v and w degrees of freedom and are dependent on the value of the 

frequency parameter λn: 

If λn < λL, then: 
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and: 
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If λL < λn < λU, then: 
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and: 
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If λn > λU, then: 
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and: 
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The condition, where: λn < λL, does not arise when considering an incomplete ring, and can only 

occur when α > 2π. Limits λU and λL are independent of the ring geometry, and have values of λL = 

0.1134 and λU = 17.637. The value of λn is determined by solving the following characteristic 

equation: 
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The constants dn, en, fn, δn and μn depend on the roots of equation (17), which is a cubic equation in 

ς2. The expressions for    and    are substituted into the ring boundary conditions (free-free in this 

case). Therefore, three equations are implemented at the ring ends (for     and    ): 
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The above process gives a 6x6 matrix with respect to the constants An1 – An6. The λn values are found 

when the determinant of this matrix vanishes. The natural frequency (in rad/s) is then given as: 

 

    
   

          (21) 

 

2.5 Orthogonality Condition and Mode Shapes 

The particular solution of equation (9) takes the following form (the solution of equation (10) is 

determined using the inextensibility condition (8)). Thus: 

   

                
 
    

        (22) 

 

In order to determine the An coefficients, the orthogonality condition of the ring modal functions 

must be imposed, thus: 
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where i and j represent different mode numbers. The boundary conditions are used to obtain 

expressions for An1 – An5 with respect to An6. These are substituted into equation (24), which is solved 

for An6. Hence, the remaining constants can be calculated, allowing the determination of the 

corresponding mode shape at each natural frequency. 

 

2.6 Forced Response 

The time varying term of equation (22),  
 
   , is determined through solution of (Lang, 1962): 
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where: 
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Equation (25) is derived from equation (9) after substitution of the particular solution (22), 

rearranging the result and applying the orthogonality condition (Lang, 1962). Neglecting any 

damping effects, the solution of equation (25) is obtained analytically as: 
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The coefficients Cn1 and Cn2 are determined from the initial conditions. The radial force in equation 

(26) must be differentiable in  , which is a necessary condition for not exciting the extensional 

modes as stated by Lang (1962). Equations (20) and (8) are used to give the tangential and radial 

deflection at each ring location. This is repeated for each time step (ring position, i.e. crank angle), 

until the desired time period is completed. The solution process comprises the following steps:  

1. Initial conditions and ring properties are defined. 

2. The first solution form, valid for (λL < λn < λU) as described by equations (9) and (10), is used 

to find the eigenvalues within this range. The case (λn < λL) only occurs when α > 2π (Archer, 

1960), and so is not applicable to this problem. 

3. Expressions for the normal force, shear force and bending moment at each end of the ring 

are formed using equations 18-20. These represent the boundary conditions, giving 6 

equations expressed in terms of constants An1-An6. A 6x6 matrix can, therefore, be formed. 

The determinant of this matrix is set to zero and λn is calculated, leading to the natural 

frequency. 

4. The orthogonality conditions of the ring modal functions (Vn and Wn) are applied to calculate 

constants An1-An6. Using the boundary conditions, expressions for An1-An5 in terms of An6 are 

formed. Substitution into equation (24) and solving for An6 leads to calculation of the modal 

constants, giving the mode shape at natural frequency n. 

5. For the first time step, equations (26) and (27) are solved, where FR and FT are external 

forcing terms. The response at each point circumferentially around the ring is then 

calculated. 

6. The time step is advanced and step 5 is repeated. 

7. After the entire time interval has elapsed, the response for the next mode is required. Steps 

4-8 are repeated until there are no more valid solutions for the case (λL < λn < λU). When this 



is the case, the next solution form (λn > λU) is used, and the whole solution process is 

repeated. 

8. Once the response for each mode has been calculated, these are all added together, giving 

the total response for the given number of modes. 

 

3. Results 

3.1 Validation Method  

The predictions of the analytical eigenvalue problem for the ring in-plane dynamics are compared 

with those of a finite element model developed in the commercial code PATRAN/NASTRAN. The FEA 

model comprises 810 quadrilateral elements with 1024 nodes, each with 6 degrees of freedom and 

assuming free-free boundary conditions. First, the natural frequencies and mode shapes are 

compared (Table 2). Very good agreement is noted, with only deviations exceeding 1% for the higher 

ring modes. Figure 3 shows a comparison between the corresponding mode shapes. Again, good 

agreement is found.  

 

Mode 

Number 

Analytical Method 

Natural Frequency (Hz) 

FEA model 

Natural Frequency (Hz) 
% Difference 

1 198.44 198.31 0.066 

2 432.8 432.35 0.104 

3 972.06 969.76 0.237 

4 1803.24 1795.40 0.437 

5 2892.18 2871.90 0.706 

6 4224.74 4181.70 1.029 

7 5793.44 5712.80 1.412 

Table 2: Natural frequencies obtained analytically and using FEA 

 

Then, a harmonic excitation         was applied radially to the ring. This force varies both spatially, 

as well as temporally:  

 

                                (28) 

 

For simplicity no tangential excitation         is considered. 

 



 

Figure 3: Mode shape comparison (a) Analytical (f = 972.06Hz) and (b) FEA (f=969.76Hz) 

 

Figure 4 shows the response time history of the radial displacement, w at a location opposite to the 

incomplete ring’s end. The excitation frequency of 300 Hz was chosen in order to remain away from 

any of the ring’s natural frequencies and avoid resonance. FRmax is calculated by applying a 1kPa 

pressure to the ring. There is good agreement between the analytical and FEA predictions (Figure 4), 

as ascertained through the maximum amplitudes obtained. 

 

 

Figure 4: Radial displacement time histories for both methods 

 

Frequency analysis was performed on the dynamic response data of Figure 4. The comparison 

between the Fast Fourier Transform (FFT) results of the analytical method and that of the FEA is 

shown in Figure 5. Again, the agreement is very good. 
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Figure 5: Spectra of the radial dynamic response a) FEA method and b) Analytical method  

 

3.2 Effect of ring dynamics on tribological performance  

The validated analytical ring dynamic model is used within the ring-bore tribological study. Ring 

conformability to the bore is assumed, as well as isothermal contact condition. The region of 

particular interest is in transition from compression to the power stroke in the 4-stroke process. This 

is because at the reversal, cessation of lubricant entrainment into the contact results in greater 

contribution of boundary friction (increased direct surface interactions) (Ma et al, 1997, Akalin and 

Newaz, 2001, Balakrishnan and Rahnejat, 2004, Mishra et al, 2009). At maximum pressure (firing 

point) there is a significant contact force. This corresponds to the highest net applied force, causing 

ring’s dynamic behaviour.  Figure 6 shows the force profile at the crank angle corresponding to 3o 

past the Top Dead Centre (TDC), with an engine speed of 2000rpm. The shape of the force profile is 

considered to be constant for every crank angle interval investigated. 
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Figure 6: Force Profile at 3o past TDC (engine speed of 2000rpm) 

 

The force profile data is expressed in a Fourier series as: 

 

                                
      (29) 

 

Representing the applied radial force in this manner is compatible with the analytical method for the 

evaluation of forced response. The integration time corresponds to 1° crank angle advance, for a 

known engine speed (2000 rpm in this case):      
        

  
  . The integration time is sub-divided 

into 50 steps for the ring dynamic analysis, with the resulting response time history of the ring 

evaluated. The gas pressure profile for the 2000rpm engine speed is shown in figure 7(a). The inset 

to the figure indicated by (b) shows the crank angle range of interest in the current study (transition 

from the compression to the power stroke, extending just beyond the firing point).  



 

Figure 7: (a) Gas pressure profile throughout the four-stroke engine cycle and (b) area of particular 
interest (engine speed = 2000rpm) 

 

Figures 8(a)-(f) show the film thickness variation around the ring-bore periphery (elastic film shape) 

at various crank angle intervals. These show deviations from a gap between a rigid ring and the bore 

surface (rigid film shape). The figure also shows the deformed unwrapped shape of the ring (global 

deformation). Two important observations are made. Firstly, an elastic ring does not conform to the 

bore surface, an idealised assumption which is often made to warrant one dimensional analysis of 

the ring-bore conjunction (along the ring face-width). Secondly, it also shows that static 

conformability analysis, often used to determine the ring-bore gap in two-dimensional tribological 

studies (e.g. Hill and Newman, 1985 and Tomanik, 1996), is idealised and does not include the 

transient behaviour of the ring. The results shown in figures 8(a)-(f) indicate an increase in the gap 

between the ring and the bore at most points around the ring periphery, except for a small segment 

where the film thickness occurs. As the forces applied in this study were acting radially inwards on 

the compression ring, this increase in gap is to be expected. This result can be interpreted as a loss 

of conformability between the ring and bore, which may result in blow-by and loss of power. 



 

  (a): 3o before TDC        (b): TDC 

 

 (c): 3o past TDC (d): 10o past TDC 

 

     (e): 20o past TDC, firing point     (f): 22o past TDC 

Figure 8: Film profile and ring deflection at various crank angle intervals around the TDC and firing 

point (engine speed = 2000rpm).  rigid film shape, ring deflection, 

  elastic film shape 

 

Minimum film thickness occurs during the reversal; in the region         ,   being the crank 

angle. Film thickness of order of 0.5-1 m is predicted, giving rise to a mixed regime of lubrication 

with the Stribeck’s oil film parameter;  s<3.  



The globally deformed shapes of the ring in figures 8(a)-(f) are transitory, because there is 

insufficient time for the ring to reach its steady state response. Figure 9(b) is an unwrapped 

representation of the steady state ring shape at   past the TDC. This corresponds to the usual static 

conformability analysis (Hill and Newman, 1985, Mishra et al, 2008). It can be seen that the resulting 

deformation is largely dominated by the first ring mode shape (f = 198.4Hz) (figure 9(c)). The 

difference between this steady state shape and the actual transient elastic film shape in transit 

(figure 9(a)) is not only a function of the net applied force RF , but also the engine speed. Therefore, 

a given ring would behave quite differently, not only through the engine cycle, but also at different 

engine speeds. This means that friction and oil consumption are functions of ring elasticity as much 

as ring-bore conjunctional geometry, topography and kinematics, a fact that is often ignored in most 

analyses.  

 

 

(a) 

 

(b) 



 

(c) 

Figure 9: (a) Deformed transient profile 3o past TDC, b) Steady state response at 3 o past TDC and  

(c) First in-plane ring mode shape 

 

The power spectral density of the transient response of figure 9(a) is shown in figure 10(a). The 

power spectrum shows the dominance of the first modal response of the ring with small 

contributions from its second and third modes. In fact, only the first three modal responses are 

noted throughout the engine cycle as shown, for example in figure 10(b). An analysis including the 

first 7 ring modes does not alter the results.    

 

 

 

(a)- Spectral content of the transient response of figure 9(a) 
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(b)- The insignificant contribution of higher order modes in the ring dynamics 

Figure 10: Features of the ring transient response 

 

With the incorporation of ring modal behaviour within a tribological model of ring-bore conjunction, 

it is important to ascertain the influence of ring behaviour upon friction. Significant contribution to 

friction occurs at the top dead centre reversal in transition from compression to power stroke, 

extending just beyond the firing point (at     crank angle position for the engine under 

consideration). This is generally the case for most engines as reported by Furuhama and Sasaki 

(1983), Ma et al (1997), Akalin and Newaz (2001), Bolander et al (2005) and Mishra et al (2009). To 

make a realistic assessment of friction an analysis under mixed regime of lubrication is required. 

Such a model was presented by Greenwood and Tripp (1971) and has been used in a number of 

studies, including some of those noted above. Thus: 

 

                 (30) 

 

where the viscous friction is obtained as       , if      (fluid film lubrication). Also, the viscous 

shear stress is:    
 

 

  

  
 

   

 
.  If, on the other hand,     , then the regime of lubrication is 

mixed and the viscous and boundary contributions are obtained as: 

 

                  (31) 

 

where the asperity interaction area is calculated as: 

 

             
  

    

 
            (32) 

 

where,        is another Gaussian statistical function similar to          , this time representative 

of the boundary friction area of the opposing asperity tips. These functions are provided with 

polynomial fits by Teodorescu et al (2005). AC is the apparent contact area of the ring outer 

periphery, in contact with the bore surface. The contact of wetted asperity tips is considered to be in 

non-Newtonian shear at the Eyring shear stress of the lubricant, thus the boundary friction is:       

 

                (33) 

 



where:   is the boundary shear strength of the contacting surfaces;        for ferrous-based 

materials (Teodorescu et al, 2005).  

 

Figure 11 shows the variation of friction for both a rigid and an elastic ring during the piston reversal 

at the top dead centre (i.e.   crank angle position) and beyond the point of cylinder firing at     

crank angle position. This is the transition from the compression to the power stroke, where it has 

already been noted that the main contribution to friction by the compression ring occurs. For sake of 

clarity the variation in the region (a):          corresponding to the reversal and that through 

the high pressure region (b):           are shown separately. The loss of conformability 

predicted in figures 8(a)-(f) results in a reduction in total friction calculated in the investigated 

regions. The compression ring has deformed, meaning a larger ring-bore gap exists for the majority 

of the ring’s circumference. 

 

(a)- Transition in reversal at the top dead centre 

 

(b)- Transition through maximum combustion pressure 

Figure 1: Prediction of friction for a rigid and an elastic compression ring  
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4- Conclusions 

The elastic ring modal behaviour is more in line with practice as one of the functions of the designed 

ring is to guard against the transport of combustion gasses into the lower part of the engine. This 

requirement is essential, but has clearly the disadvantage of increased boundary interactions. A 

significant finding of the current analysis is that whilst the ring modal behaviour caters for this 

requirement, its longer settling time guards against complete conformance to an idealised right 

circular cylinder which would otherwise result in excessive friction. Of course in reality the bore is 

not an ideal right circular cylinder and a more detailed analysis including the effect of bore out-of-

roundness would also be required. The non-conformance of the ring to the bore surface also results 

in emerging clearances which can contribute to blow-by gasses and thus emission levels. However, 

modern engines recirculate any blow-by gasses back into the intake system. Nevertheless, blowby 

gasses can cause oil dilution and contamination. The predictions in this study show that ring modal 

behaviour may increase the chance of blow-by due to internal forces deforming the compression 

ring from its idealised circular shape. However, the minimum film thickness is also reduced, which 

may increase friction and wear in a localised manner. Whilst friction is a source of parasitic losses, a 

certain degree of ring friction is essential in order to guard against the axial inertial motion of the 

ring known as ring flutter. An excessive amount of friction can also promote ring twist. Hence, there 

is potentially a link between the ring in-plane modal behaviour and its out-of-plane motions through 

friction. This means that a more comprehensive analysis would be necessary with all forces and 

moments included, such as those shown in figure 1. Coupled with a tribological study of the contact, 

such an analysis would be very computationally intensive and thus the analytical ring dynamic model 

as opposed to a numerical solution (for example based on FEA) would reduce the complexity of the 

computations.                 

 

5- Acknowledgements 

The authors wish to express their gratitude to Engineering and Physical Sciences Research Council 

(EPSRC) for the funding extended to the Encyclopaedic Program Grant (www.Encyclopaedic.org), 

under which this research is carried out in collaboration with a consortium of industry and academic 

institutions. In particular, the authors acknowledge the financial and technical support of Aston 

Martin Lagonda. 

 

http://www.encyclopaedic.org/


6- References 

Akalin, O. and Newaz, G. M.,  “Piston ring cylinder bore friction modelling in mixed lubrication 

regime. Part I: analytical results”, Trans. ASME, J. Trib., 123, pp.211–218, 2001 

Almqvist, T. and Larsson, R.,  “The Navier-Stokes approach for thermal EHL line contact solutions”, 

Trib. Int., 35,  pp. 163-170, 2002 

Andersson, B.S., “Company’s perspective in vehicle tribology”, Proc. 18th Leeds-Lyon Sympos., 

Dowson, D., Taylor, C.M. and Godet, M. (Eds.), Elsevier, pp. 503-506, 1991 

Antman, S. and Warner, W. H., “Dynamic Stability of Circular Rods”, J. Soc. Indust. Appl. Math., 13,  

pp. 1007-1018, 1965 

Archer, R. R, “Small Vibrations of Thin Incomplete Circular Rings”, Int. J. Mech. Sci., 1, pp. 45-56, 1960 

Auciello, N. M., De Rosa, M. A., "Free Vibrations of Circular Arches: A Review", J. Sound and 

Vibration, 176, pp. 433-458, 1994 

Balakrishnan, S. and Rahnejat, H. “Isothermal transient analysis of piston skirt-to-cylinder wall 

contacts under combined axial, lateral and tilting motion”, J. Phys. D: Appl. Phys. 38, 787, 2005  

Baker, C. E., Rahmani, R., Theodossiades, S., Rahnejat, H. and Fitzsimons, B., “Thermo-

elastohydrodynamics of a rough piston compression ring-to-cylinder bore conjunction”, Proc. STLE 

66th Annual Conf., Atlanta, USA, 2011 

Bolander, N. W., Steenwyk, B. D., Sadeghi, F., and Gerber, G. R.,  “Lubrication regime transitions at 

the piston ring-cylinder liner interface”, Proc. Instn. Mech. Engrs., Part J: J. Engng. Trib., 129, pp. 19–

31, 2005 

Brown, F. H, “Lateral Vibration of Ring Shaped Frames”, J. Franklin Inst., 217, pp. 41-48, 1934 

Chen, S., “In-plane Vibration of Continuous Curved Beams”, Nuclear Eng. & Des., 25, pp. 413-431, 

1973 

Chong, W.W.F., Teodorescu, M. and Vaughan, N.D., “Cavitation induced starvation for piston-

ring/liner tribological conjunction”, Trib. Int., 44, pp. 483-497, 2010  

D'Agostino, V. and Senatore, A., “Fundamentals of lubrication and friction of piston ring contact” in 

Rahnejat, H. (Ed.) Tribology and dynamics of engine and powertrain, Woodhead Publications, 

Cambridge, UK, 2010  

Den Hartog, J.P, “The Lowest Natural Frequency of Circular Arcs”, Phil. Mag.,  5,  pp. 400-408, 1928 

Dowson, D., Ruddy, B.L., Economou, P.N. “The Elastohydrodynamic Lubrication of Piston Rings”, 

Proc. Roy. Soc. Lond. A, 386, pp. 409-430, 1983 

Furuhama, S. and Sasaki, S., “New device for the measurement of piston frictional forces in small 

engines”, SAE  Tech. Pap. 831284, 1983 



Gardner, T. G., Bert, C. W., "Vibration of Shear Deformable Rings: Theory and Experiment", J. Sound 

and Vibration, 103, pp. 549-565, 1985 

Ghosh, M.K. and Gupta, K., “Thermal Effect in Hydrodynamic Lubrication of Line Contacts – 

Piezoviscous Effect Neglected”, Int. J. Mech. Sci., 40,  pp. 603-616, 1998 

Greenwood, J. A. and Tripp, J. H., “The contact of two nominally at rough surfaces”, Proc. Instn 

Mech. Engrs,Part C: J. Mech. Engng. Sci., 185, pp. 625-633, 1971 

Hamilton, G. M., Moore, S. L., “Measurement of the Oil-Film Thickness Between the Piston Rings and 

Liner of a Small Diesel Engine”, Proc. Instn. Mech. Engrs, Part C: J. Mech. Engng. Sci., 188, pp. 253-

261, 1974 

Hill, S.H. and Newman, B.A.,  “Piston ring designs for reduced friction”, SAE Paper No. 841222, 1985 

Johnson, K. L., “Regimes of Elastohydrodynamic Lubrication”, Proc. Instn. Mech. Engrs., Part C: J. 

Mech. Engng. Sci., 184, pp. 9-16, 1970 

Kang, K. J., Bert, C. W. and Striz, A. G., "Vibration and Buckling Analysis of Circular Arches Using 

DQM" Computers & Structures, 60, pp. 49-57, 1996 

King, J., ‘The King Review of low carbon cars Part I: the potential for CO2 reduction’, HMSO, October 

2007 

Knoll, G., Peekan, H., Lechtape-Grüter, R. and Lang, J.,  “Computer-Aided Simulation of Piston and 

Piston Ring Dynamics”, Trans. ASME, J. Eng Gas Turbines & Power, 118, pp. 880-886, 1996 

Lamb, H, “On the Flexure and Vibrations of a Curved Bar”, Proc. Lond. Math. Soc., 19, pp 365-376, 

1888 

Lang, T. E, “Vibration of Thin Circular Rings, Part 1”, Jet Propulsion Laboratory Technical Report No. 

32-261, 1962 

Love, A. E. H., “A Treatise on Mathematical Theory of Elasticity”, Dover Publications, New York, 1944 

Ma, M.T., Sherrington, I., Smith, E.H., “Analysis of Lubrication and Friction for a Complete Piston-Ring 

Pack with an Improved Oil Availability Model Part 1: Circumferentially Uniform Film”, Proc. Instn. 

Mech. Engrs., Part J: J. Engng. Trib.,  211, pp. 1-15, 1997 

Mishra, P.C., Balakrishnan, S. and Rahnejat, H., “Tribology of compression ring-to-cylinder contact at 

reversal”, Proc. Instn. Mech. Engrs., Part J: J. Engng. Trib., 222, pp. 815-826, 2008 

Mishra, P.C., Rahnejat, H. and King, P.D, “Tribology of the Ring-Bore Conjunction Subject to a Mixed 

Regime of Lubrication”, Proc. Instn. Mech. Engrs., Part C: J. Mech. Engng. Sci., 223, pp. 987-998, 2009 

Morley, L. S. D., "The Flexural Vibrations of a Cut Thin Ring", Quart. J. Mech. And App. Maths, 11, pp. 

491-497, 1958 

Ojalvo, I.U., “Coupled Twist-Bending Vibrations of Incomplete Elastic Rings”, Int. J. Mech. Sci., 4, 

1962, pp. 53-72  



Piao, Y. and Gulwadi, S. D., “Numerical Investigation of the Effects of Axial Cylinder Bore Profiles on 

Piston Ring Radial Dynamics”, Trans. ASME, J. Eng Gas Turbines & Power, 125, pp. 1081-1089, 2003 

Priest, M. and Taylor, C. M., “Automobile engine tribology - approaching the surface”, Wear, 241, pp. 

193–203, 2000 

Spencer, A., Almqvist, A. and Larsson, R., “A semi-deterministic texture-roughness model of the 

piston ring–cylinder liner contact”, Proc. Instn. Mech. Engrs., Part J: J. Eng. Trib., DOI 

10.1177/1350650110396279, 2011 

Teodorescu, M., Balakrishnan, S. and Rahnejat, H., “Integrated tribological analysis within a multi- 

physics approach to system dynamics”, Tribology and Interface Engineering Series (Elsevier), 48, 

pp.725-737, 2005    

Tian, T., “Dynamic Behaviour of Piston Rings and their Practical Impact Part 2: Oil Transport, Friction 

and Wear of Ring/Liner Interface and the Effects of Piston and Ring Dynamics”, Proc. Instn. Mech. 

Engrs., Part J: . Engng. Trib., 216, pp 229-247, 2002 

Tian, T., Noordzij, L. B., Wong, V. W. and Heywood, J. B., “Modelling Piston-Ring Dynamics, Blowby, 

and Ring-Twist Effects”, Trans. ASME, J. Eng Gas Turbines & Power, 120, pp. 843-854, 1998 

Timoshenko, S. and Goodier, J.N., Theory of Elasticity, 2nd Ed., McGraw-Hill, Inc., USA, 1951 

Tomanik, E., “Piston ring conformability in a distorted bore”, SAE Paper No. 960356, 1996 

Volterra, E. and Morell, J. D, “Lowest Natural Frequency of Elastic Arc for Vibrations outside the 

Plane of Initial Curvature”, Trans. ASME, J. App. Mech., 28, pp. 624-627, 1961 

http://www.sciencedirect.com/science/bookseries/15723364

