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For a film of liquid on a solid surface, the binding potential g(h) gives the free energy as a function
of the film thickness h and also the closely related (structural) disjoining pressure Π = −∂g/∂h. The
wetting behaviour of the liquid is encoded in the binding potential and the equilibrium film thickness
corresponds to the value at the minimum of g(h). Here, the method we developed in the work of
Hughes et al. [J. Chem. Phys. 142, 074702 (2015)], and applied with a simple discrete lattice-gas
model, is used with continuum density functional theory (DFT) to calculate the binding potential
for a Lennard-Jones fluid and other simple liquids. The DFT used is based on fundamental measure
theory and so incorporates the influence of the layered packing of molecules at the surface and
the corresponding oscillatory density profile. The binding potential is frequently input in mesoscale
models from which liquid drop shapes and even dynamics can be calculated. Here we show that the
equilibrium droplet profiles calculated using the mesoscale theory are in good agreement with the
profiles calculated directly from the microscopic DFT. For liquids composed of particles where the
range of the attraction is much less than the diameter of the particles, we find that at low temperatures
g(h) decays in an oscillatory fashion with increasing h, leading to highly structured terraced liquid
droplets. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974832]

I. INTRODUCTION

The wetting behaviour of liquids1–4 on a substrate is
important in a great range of industrial and biological fields.
The lubricating properties and the time it takes the liquid to
evaporate to leave a dry surface are just two examples of prop-
erties that depend on the wetting behaviour of the liquid. A
key quantity in the study of wetting is the binding, or inter-
face, potential g(h). It gives the contribution to the excess free
energy of the system arising from having a film of liquid of
thickness h on a surface. The total grand potential for a system
with volume V, containing a single planar solid surface with
area A covered by a liquid film of thickness h is

Ω = −pV + A[γwl + γlg + g(h) + Γδµ], (1)

where p is the pressure, γwl is the wall-liquid interfacial ten-
sion,γlg is the liquid-gas interfacial tension,Γ∼ h is the adsorp-
tion on the surface and δµ = (µcoex − µ). The function g(h),
which may be considered to be defined by Eq. (1) [cf. Eq. (23)],
has the property that g(h) → 0 as h → ∞ when the chemical
potential in the system µ is equal to the value at bulk gas-
liquid phase coexistence µcoex. For finite film thickness h, g(h)
describes the contribution of the interaction between the two
interfaces to the free energy and is related to the disjoining
pressure Π = −∂g/∂h.

For a given liquid in contact with a specific substrate, the
binding potential g(h) encodes important information about
the wetting of the liquid on the substrate. The location of
the global minimum of the binding potential indicates if
the liquid wets the substrate or not. When the system is at
gas-liquid phase coexistence, where δµ = 0, a global minimum
at h → ∞ indicates that the liquid does wet the surface—i.e.,
that a drop placed on the surface spreads and that it is ener-
getically favourable for the vapour to condense onto the sur-
face to thicken the wetting film. On the other hand, when the
global minimum is at a finite value of the film height, h0, this
indicates the liquid is partially wetting—i.e., it does not com-
pletely wet the surface. h0 is the equilibrium film thickness on
the dry surface. This is the so-called “precursor film” thick-
ness, although given that often this film can be sub-monolayer
in thickness, this name might be considered misleading. The
value of the binding potential at h0 determines the equilib-
rium contact angle that a liquid-gas interface makes with the
substrate,5,6

θ = cos−1
(
1 +

g(h0)
γlg

)
. (2)

When considering the free energy of a system with a non-
uniform thickness film of liquid on a surface, with film thick-
ness profile h(x), where x = (x, y) is the coordinate of a point
on the surface, the binding potential is included into the widely
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used interfacial Hamiltonian (IH) model,2,7–10 where the free
energy of the system is given by the functional

F[h] =
∫ [

g(h) + γlg

√
1 + (∇h)2

]
dx, (3)

which is a generalisation of Eq. (1) to the inhomogeneous case
and neglecting all terms that are constant or linear in h. The
second term in the integral is simply the surface area of the film
multiplied by the gas-liquid interfacial tension. Minimising
this functional gives the equilibrium shape of a liquid droplet.
This free energy is often further approximated by assuming
that the gradients in the film height profile are small, i.e., that√

1 + (∇h)2 ≈ 1 + 1
2 (∇h)2, which gives

F[h] =
∫ [

g(h) +
γlg

2
(∇h)2

]
dx, (4)

where we have neglected an irrelevant constant term. Interest-
ingly, this is the same energy functional that is minimised by
the dynamical equations that one obtains from fluid mechanics.
Starting from the Navier-Stokes equation to describe the flow
of the film of liquid on the surface, together with kinematic
and dynamic boundary conditions at the free surface and mak-
ing also the small gradient (or long-wave) approximation, one
obtains the thin film evolution equation11–14 which describes
the dynamics of a thin liquid film,

∂h
∂t
= ∇ ·

[
Q(h)∇

δF[h]
δh

]
, (5)

where the free energy functional F is that in Eq. (4). The most
common approximation used for the mobility coefficient is
Q(h) = h3/3η, where η is the viscosity of the liquid. This is
what is obtained in the long-wave approximation with a no-slip
boundary condition at the surface. However, other approxi-
mations are also used, particularly if the effects of slip are
important12,15 or if transport by diffusion is incorporated.16,17

What the above discussion should make clear is that the
binding potential g(h) is a key fundamental quantity for descri-
bing the behaviour of liquids at surfaces. Expressions used
for this quantity are often obtained via an asymptotic expan-
sion,2,7,18 such as g(h) = ah−2 + bh−3 + · · · , valid when there
are long-range (London dispersion) interactions between the
fluid particles, or g(h) = c exp(−h/ξ) + d exp(−2h/ξ) + · · · ,
when only short-range particle interactions are assumed. In
both expressions, a, b, c, d, and ξ are all parameters that depend
on the state point of the system, i.e., on the value of the chemi-
cal potential µ and the temperature T. Approximations for g(h)
that are a combination of these two forms are also used.12,19

These forms for g(h) are asymptotic expressions, in principle
only valid for large h. These should be expected to break down
in the microscopic regime, as h→ 0.

In our previous paper,20 we developed a density func-
tional theory (DFT) based approach for calculating the binding
potential, that is valid for all values of h. DFT is a microscopic
statistical mechanical theory, which calculates the particle den-
sity distribution ρ(r) at all points r = (x, y, z) on and above
the surface, and so this approach incorporates the influence
of the inter-particle interactions down to the smallest relevant
length scales. Reference 20 also presents results from apply-
ing the method to a simple discrete DFT for a lattice-gas (LG)

model fluid. In order to validate the coarse-graining proce-
dure for going from the microscopic density distribution level
description to the coarse grained film height profile h(x) level
description, we calculated the density profile ρ(r) for liquid
droplets on a surface and then compared the film height pro-
files h(x) obtained from Eq. (3), together with the expression
for g(h) that we obtained from our DFT based method. Overall
the method works well, showing very good agreement between
the two approaches. However, there are some aspects that are
unsatisfactory and these relate to the fact that the LG is used
to model the fluid. In particular, due to the discrete nature of
the LG model, oscillations that do not decay in amplitude are
sometimes present in the h → ∞ tails of the binding poten-
tials. Thus, while the LG model is adequate for the purpose of
describing many aspects of fluids at interfaces and for demon-
strating the validity of our method for calculating g(h), the
LG fluid does exhibit some non-physical discretisation arte-
facts. These inaccuracies motivate the research described here,
which utilises a continuum DFT model. Here, we apply the
approach of Ref. 20 to calculate the binding potential for a
model Lennard-Jones (LJ) fluid at various different model
substrates using a state-of-the-art continuum DFT. We also
calculate the density profile for droplets on surfaces and com-
pare the film height profiles obtained from the density profiles
with the film height profiles obtained from minimising Eq. (3)
together with the binding potentials obtained from our DFT
based method. We find good agreement, further validating
our coarse-graining method. Note that a similar “parameter-
passing” is done in Ref. 21 where binding potentials are
obtained via microscopic molecular-dynamics computer sim-
ulations. References 10 and 22–24 also present binding poten-
tials obtained via computer simulations.

We also study the effect on the binding potential and drop
profiles of having a short-ranged attraction between the liq-
uid particles. In particular, we consider the Asakura-Oosawa
model25 for colloid-polymer mixtures. For this system, we find
oscillatory binding potentials that lead to striking terraced drop
height profiles.

This paper is laid out as follows: In Sec. II the used DFT
model is introduced and in Sec. III the method for calculat-
ing density profiles with a specified value of the adsorption
is described. From the resulting profiles, the binding potential
is calculated and results from this are displayed in Sec. IV.
This section also contains a comparison of droplet height pro-
files calculated directly using the DFT with the height profiles
from the IH [Eq. (3)], together with the binding potentials
calculated using the DFT. In Sec. V, results for the colloid-
polymer mixture which has oscillatory binding potentials and
forms terraced droplet profiles are presented. We finish with a
brief summary and conclusions in Sec. VI.

II. DFT FOR THE FLUID

We consider a fluid of particles interacting via the pair
potential u(r), which is strongly repulsive for small distances
r between the particles, and then at larger r is attractive. This
potential may be split into a repulsive part ur(r) and an attrac-
tive part v(r), which sum together to give the full potential
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u(r) = ur(r) + v(r). Thus, in the usual manner for simple liq-
uids,1 we may use a perturbative approximation for the excess
Helmholtz free energy

Fex[ρ(r)] = Fr[ρ(r)] +
1
2

∫∫
ρ(r)ρ(r′)v(|r − r′ |)drdr′, (6)

which is a functional of the one-body density profile ρ(r) and
where Fr[ρ] is the excess Helmholtz free energy for the ref-
erence fluid of particles interacting via the potential ur(r).
As long as a judicious splitting of the potential is made,1,26

Fr[ρ]≈Fhs[ρ], where Fhs[ρ] is the excess Helmholtz free
energy for a hard-sphere fluid; here we use the highly accurate
White Bear version of fundamental measure theory (FMT).1,27

In FMT the excess free energy is expressed as

Fhs =

∫
Φ({nα})dr, (7)

where

Φ = −n0 ln(1 − n3) +
n1n2 − n1 · n2

1 − n3

+ (n3
2 − 3n2n2 · n2)

n3 + (1 − n3)2 ln(1 − n3)

36πn2
3(1 − n3)2

, (8)

is a function of a set of weighted densities {nα} which are
convolutions of the fluid density profile and a set of weight
functions based on the geometrical measures of a sphere,

nα(r) =
∫
ρ(r′)wα(|r − r′ |)dr′. (9)

The set of four scalar and two vector weight functions, {wα},
is defined as

w3(r) = θ(R − r),

w2(r) = δ(R − r),

w1(r) =
w2(r)
4πR

,

w0(r) =
w2(r)

4πR2
,

w2(r) =
r
r
δ(R − r),

w1(r) =
w2(r)
4πR

, (10)

where r = |r|, R is the hard-sphere radius, θ(r) is the Heaviside
step function, and δ(r) is the Dirac delta function. For more
details, a good review of FMT can be found in Ref. 28.

The total grand free energy of the system is

Ω[ρ(r)] = kBT
∫
ρ(r)(ln[Λ3ρ(r)] − 1)dr

+ Fex[ρ(r)] +
∫
ρ(r) (V (r) − µ) dr, (11)

where the first term is the ideal-gas contribution to the free
energy, with kB being Boltzmann’s constant, T the tempera-
ture, andΛ the thermal de Broglie wavelength. In the last term,
V (r) is the external potential and µ is the chemical potential.
The equilibrium fluid density profile is that which minimises
Eq. (11) and so is the solution to the Euler-Lagrange equation

δΩ

δρ
= kBT ln(Λ3ρ) +

δFex

δρ
+ V (r) − µ = 0, (12)

which can be solved iteratively via Picard iteration on the
equation

ρ(r) = ρb exp
[
c(1)(r) − βV (r) − c∞

]
, (13)

which is obtained from Eq. (12) and where β = (kBT )−1 is
the inverse temperature. The quantity c(1)(r)=−βδFex/δρ is
the one-body direct correlation function and c∞ is defined
as c(1)(r → ∞)= c∞, which assumes that the external field
decays to zero in the bulk, where the fluid density is ρb. A
detailed account of the use of Picard iteration can be found in
Ref. 28. The key idea is that one starts from an initial guess
for the density profile ρold, which is substituted into the right
hand side of Eq. (13), to give the profile ρrhs. A new guess
for the density profile is obtained by mixing, ρnew =mρrhs

+ (1 − m)ρold, where the mixing parameter m is typically in
the range 0.005–0.1. This is then repeated until convergence is
achieved.

We initially consider the case where the attractive pair
interaction is that for a truncated and shifted Lennard-Jones
(LJ) potential

v(r) = vLJ(r) − vLJ(rc), (14)

where rc is a cutoff range and

vLJ(r) =

{
4ε

(
(σ/r)12 − (σ/r)6

)
, if σ < r < rc,

0, otherwise,
(15)

where σ = 2R is the diameter of the particles. The effect of
varying the cutoff range rc is discussed below. The presence of
attractive interactions means that gas-liquid phase coexistence
can occur; indeed all of the results presented here are calculated
at the point of liquid-gas coexistence.

In the uniform bulk fluid, the FMT weighted densities sim-
plify; the vector weighted contributions vanish and the scalar
weighted densities are simply the bulk density multiplied by
the integrated weight function. The Helmholtz free energy per
unit volume in the bulk fluid is

a(ρ) = kBT ρ(ln(Λ3ρ) − 1) +
4πR3ρ2

1 − 4
3πR3ρ

+

4
3πR3ρ2

(1 − 4
3πR3ρ)

2
+

1
2
ρ2

∫
v(r)dr. (16)

From this we can take derivatives to obtain the pressure p and
the chemical potential µ.1 The bulk fluid phase diagram in
Fig. 1 shows the coexisting liquid and gas densities, ρl and ρg,
which are found by solving the simultaneous equations

p(ρg) = p(ρl),

µ(ρg) = µ(ρl), (17)

at a fixed temperature T. This gives the points where the
pressure, chemical potential, and temperature are equal for
each phase. These meet at the critical point at the tempera-
ture Tc = 1.21ε/kB and density ρcσ

3 = 0.249, for rc → ∞.
The spinodal, which is the curve where ∂2a/∂ρ2 = 0, is also
plotted in this phase diagram.

Note that in Eq. (16) the form of v(r) does not influence
the value of a(ρ), it is only the integrated value ∫ v(r)dr ∝ ε
which determines the free energy per unit volume. As such, the
phase diagram of a fluid where the Helmholtz free energy is
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FIG. 1. Phase diagram of the fluid in the temperature T versus density ρ
plane, where T c is the temperature at the critical point. The red solid curve
shows the binodal, which gives the coexisting liquid and gas densities. The
blue dotted curve is the spinodal.

given by Eq. (6) with any choice of v(r) is just a rescaling of the
curve in Fig. 1. To ensure that varying the cutoff range rc does
not alter the bulk fluid phase behaviour and phase diagram,
the interaction strength ε is renormalised so that the integrated
strength of the pair potential remains equal to the value when
rc → ∞. In what follows, when an interaction strength ε is
quoted, this is the equivalent value for rc → ∞ and the true
interaction strength is

ε true = ε

/
*
,
1 + 2

(
σ

rc

)9

− 3

(
σ

rc

)3
+
-

. (18)

We assume that the solid planar wall surface onto which
the liquid is deposited is composed of particles interacting
with the fluid particles via the pair potential Eq. (14) and an
additional hard-core repulsion term. Assuming too that the
particles in the surface have a uniform density ρwσ

3 = f in
the region z < 0 and density equal to zero for z ≥ 0, then the
net potential between the whole solid and a single fluid
particle is

V (r) =
2πf ε

3
*
,

2
15

(
σ

z + σ/2

)9

−

(
σ

z + σ/2

)3
+
-

, (19)

for z ≥ σ/2 and V (r) = V (x, y, z) = ∞ for z < σ/2. Note that
the product f ε determines the attractive strength of the wall
and can be replaced by the single parameter εw = f ε . However,
using the product notation f ε allows for easier comparison with
the simulation data in Ref. 29 and thus the parameter f gives the
relative attractive strength of the wall-fluid interactions com-
pared to the fluid-fluid interactions. The absolute parameter
εw allows an easier comparison of fluids defined by various
choices of ε on the same substrate.

One motivation for considering the system with the pair
potential (14) is that it is frequently used in simulations.21,22,29

For the fluid at walls with three different values of f, we dis-
play in Table I the values of the surface tensions and contact
angles obtained using molecular dynamics (MD) simulations
(from Ref. 29) and also from the present DFT. The agree-
ment of the contact angles between the two approaches is
surprisingly good. DFT is a mean field theory and so does

TABLE I. A comparison of contact angles and surface tensions obtained from
molecular dynamics (MD) simulations (from Ref. 29) with the present DFT
model for the temperature T = 0.75T c and rc = 2.5σ.

f Model σ2βγlg σ2βγwl σ2βγwg θ (deg)

0.3
MD 0.489 0.375 −0.014 137
DFT 0.373 0.290 −0.002 142

0.6
MD 0.489 0.028 −0.014 99
DFT 0.373 0.053 −0.028 103

1.0
MD 0.489 −0.548 −0.062 39
DFT 0.373 −0.419 −0.102 32

not capture all of the interfacial fluctuations that are present
in the MD simulations and so some discrepancy should be
expected. The MD results are for the temperature T = 0.75T c,
where T c is the critical temperature, and with rc = 2.5σ. The
DFT results are equivalently for ε = (4/3)εc, where εc is the
critical value of ε for a fixed β. This gives coexisting densities
of ρgσ

3 = 0.0127 and ρlσ
3 = 0.7606 in the MD simulations29

and ρgσ
3 = 0.0277 and ρlσ

3 = 0.6367 from the present DFT.
There are differences between the surface tensions but inter-
estingly, the calculated contact angles are in very good
agreement.

The interfacial tensions are excess free energies per unit
area, so are straightforward to calculate using the DFT. From
these, together with Young’s equation

γwg = γwl + γlg cos θ, (20)

the contact angle θ can be obtained. For example, to calculate
the wall-liquid interfacial tension γwl, the equilibrium density
profile of the fluid within the external field Eq. (19) is found by
solving Eq. (13) for µ = µcoex, the value of the chemical poten-
tial at bulk liquid-gas coexistence, with the density in the bulk
ρ(z → ∞) = ρl. Substituting the resulting density profile into
Eq. (11) gives the grand potential of the system with the liquid
at the wall, Ωwl. Then, the interfacial tension is obtained by
subtracting the bulk contribution, γwl = (Ωwl + pV )/A, where
p is the bulk fluid pressure, V is the volume of the system,
and A is the area of the wall. Recall that for a bulk system, the
grand potential Ω = −pV .

The wall-gas interfacial tension γwg is found in a similar
manner, although the wall attraction strength parameter has
to be sufficiently small that the liquid does not wet the wall.
A selection of such density profiles is displayed in Fig. 2.
These are calculated for µ = µcoex, with the density in the bulk
ρ(z → ∞) = ρg. We see that for the smaller values of the wall
attraction strength parameter f < 1.06, there is a low gas-like
density at the wall. However, a wetting film is observed for the
curves corresponding to the higher values of f > 1.06. In these
cases, there is a thick film of the higher density liquid adsorbed
on the wall. For f < 1.06 we obtain γwg = (Ωwg + pV )/A,
where Ωwg is the grand potential of the system with the gas in
contact with the wall.

The liquid-gas surface tension γlg is obtained by setting
the external potential V (r) = 0 and then calculating the density
profile for the free gas-liquid interface.30,31 Substituting the
resulting profile back into Eq. (11) gives the total free energy
of the system containing the interface and then the interfacial
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FIG. 2. Density profiles for the fluid with βε = 1.1, rc = 5σ, and µ = µcoex
at a planar wall with varying attraction strength f. As f is increased, the density
at the wall increases and there is increased oscillatory structure in the profile,
particularly for f > 1.06, when the liquid wets the wall and so there is a thick
(macroscopic) film of the liquid adsorbed on the wall.

tension is given as γlg = (Ωlg + pV )/A, where A is the area of
the liquid-gas interface.

III. DENSITY PROFILES WITH ADSORPTION
CONSTRAINT

The procedure for calculating a binding potential using the
DFT is presented in Ref. 20 but is briefly summarised here.
The binding potential g(h) is calculated as a constrained free
energy—see Eq. (1). The constraint is that there is a specified
thickness, h, of liquid on the wall. At the microscopic scale,
particularly when the system is described by the DFT, it is
more natural to describe the liquid on the surface in terms
of the adsorption Γ, rather than in terms of a film height h.
The adsorption is defined as the excess fluid density per unit
area

Γ =
1
A

∫
(ρ(r) − ρb)dr. (21)

When the adsorbed film thickness is large enough, then
the adsorption is obviously related to the film height, since
Γ≈ h(ρl − ρg). In fact, one can define an effective film thick-
ness as

h ≡
Γ

ρl − ρg
, (22)

although it should be borne in mind that for small adsorption Γ,
the effective film height h can be much less than the diameter
of the individual molecules. In the case of a depletion of the
gas phase at a non-wetting wall, the adsorption and therefore
effective film height may even become negative. Then evolu-
tion equations like (5) may only be used with an adequately
adapted mobility Q(h).

To calculate the constrained free energy g(h), instead of
specifying the value of h, we specify the value of the adsorp-
tion Γ, i.e., we calculate g(Γ). Minimising the grand potential
functional (11), together with Eq. (19), yields the equilibrium
density profile with adsorption Γ0, which when substituted
back into Eq. (11) gives the minimum value of the binding
potential g(Γ0) [c.f. Eq. (2)]. To find g(Γ) for any other value
of Γ, the system must be constrained. The full curve g(Γ) is

obtained by calculating for a series of values of Γ. At each
value, the constrained fluid density profile is calculated and
inserted into Eq. (11) to obtain Ω(Γ). The binding potential is
then

FIG. 3. Density profiles for a fluid with βε = 1.1, rc = 5σ, and µ = µcoex at
the wall with attraction strength f = 1.1 with specified values of the adsorp-
tion displayed together with the fictitious external potentials that are needed
to stabilise them. In (a) and (b) the plain lines are the density profiles (left
axis) and the lines with symbols are the fictitious potentials (right axis). The
fictitious potential for Γσ2 = 0.2 is not displayed as its magnitude is greater
than the scale displayed, it is approximately 100 times larger than the other
potentials. Smaller adsorption values are shown in (a) which also correspond
to the coloured symbols of the binding potential shown in (c). Note that in all
the plots above only a part of the system is displayed; the full system is of
length 82σ.
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g(Γ) =
Ω(Γ) + pV

A
− γlg − γwl. (23)

The constrained density profile with specified Γ is calculated
using the normalisation method developed in Ref. 32. In the
Picard iteration of Eq. (13), at each iteration the density profile
is also normalised via

ρnew = (ρold − ρg)
Γ

Γold
+ ρb, (24)

where Γold is the adsorption of the current iterate density pro-
file and Γ is the target value for the adsorption. Note that
normalising in this way on the excess density results in a
profile that has the correct density value, ρg, away from the
wall at large z. When the iteration converges, it yields a den-
sity profile with the desired value of Γ. This procedure in
effect amounts to adjusting the Euler-Lagrange equation,
Eq. (12), to

δΩ

δρ
= kBT ln(Λ3ρ) +

δFex

δρ
+ V (r) + Vf (r) − µ = 0, (25)

where V f is an additional fictitious external potential, self-
consistently calculated by the algorithm, that stabilises the
density profile at the desired adsorption. It has the property

Vf (z → ∞) = 0, so that the bulk gas density at z → ∞ has the
correct value, ρg. See Refs. 20 and 32 for further discussion
of this method for calculating the binding potential and the
properties of V f .

The values of the binding potential obtained over a range
of Γ can be fitted with a suitable choice of “fit function” to
enable it to be used in the free energy functional (3). For the
LG model, the fit function

g(Γ) = Aexp[−P(Γ)] − 1

Γ2
, (26)

with

P(Γ) = a0Γ
2e−a1Γ +

m∑
n=2

anΓ
n (27)

often gives an excellent fit over the whole range of values
of Γ, as long as the wall-fluid dispersion interactions are not
truncated.20 A and a0, a1, . . . are parameters to be fitted. The
polynomial in P(Γ) is normally truncated at m = 5 or 6. If
desired, via Eq. (22) this can also be expressed as a function
of h instead of Γ. For large Γ, Eq. (26) yields the correct ∼Γ−2

decay, and for thin films with small Γ, Eq. (26) yields a polyno-
mial plus an additional exponential from the first term in P(Γ)
that allows one to describe correctly the asymmetry of the

FIG. 4. Droplet profiles for a fluid of
fixed volume with βε = 1.1 and rc = 5σ
against substrates of varying attraction
strength f. The values of f and the con-
tact angles for the droplets in (a), (c), and
(d) are (f , θ) = (0.4, 151◦), (1.04, 20◦),
and (0.8, 87◦), respectively. A plot of the
density profiles at the wall in regions
away from the droplets is shown in (b)
and a zoom of the contact region of the
droplet in (c) is shown in (e).
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minimum near Γ ≈ 0 that is present when the fluid does not
wet the wall.20 For many (but not all) of the results presented
below, we find that Eq. (26) also gives an excellent fit to the
DFT data.

For a series of specified values of Γ, in Fig. 3 we display
the corresponding density profiles ρ(z) together with the fic-
titious potentials V f (z) required to stabilise them against the
wall with attraction strength f = 1.0. The lines without symbols
are the density profiles (left axis scale) while the correspond-
ing lines with symbols are the fictitious potentials (right axis
scale). Density profiles with smaller values of Γ are displayed
in Fig. 3(a), while those for larger Γ are in Fig. 3(b). In the
profiles for larger Γ, we see near the wall a region where the
density is almost uniform with a value equal to that of the
coexisting bulk liquid. At larger z there is an interface, beyond
which the profiles decay to the bulk gas density value.

In Fig. 3(c) we display the binding potential calculated
from this series of density profiles via Eq. (23). The symbols
on g(Γ) refer to the results in Fig. 3(a) with the corresponding
point style. From the local gradient of g(Γ), we can see why the
fictitious potentials in (a) are either attractive or repulsive, or in
the case of the profile with Γσ2 = 0.5, which is at the minimum
of g(Γ), we find V f (z) = 0. Consider, for example, the density
profile with Γσ2 = 1. In this case, V f is attractive and the
gradient of g(Γ) at this point is negative. If one were to remove
the constraint and set V f = 0, then the system would relax
down the gradient in g(Γ) to the equilibrium density profile at
Γσ2 = 0.5, decreasing the adsorption. Conversely, to stabilise
a density profile with an adsorption value that lies outside of
the potential well in g(Γ), an additional repulsive external field
is required. The unconstrained behaviour in this case would
increase the adsorbed film thickness to reach the minimum
at Γ → ∞ (the global minimum in this case). The repulsive
V f forces a lower adsorption. For the larger adsorption cases
shown in Fig. 3(b), the potential V f extends only as far as
the liquid layer and the magnitude of V f decreases for larger
adsorptions as the energetic minimum in g(Γ) at Γ → ∞ is
approached.

The density profile for Γσ2 = 0.2 (red solid line) is plotted
in Fig. 3(a) but the corresponding V f is not displayed because it
is very large, approximately two orders of magnitude greater
than the fictitious potentials for the other adsorption values
displayed in Fig. 3. That the potential V f is large when the
adsorption is very small is not surprising since to enforce
Γ → 0, one has to remove all of the liquid from the surface
thereby cancelling the effect of the true external field that is
attracting the fluid to the wall. Therefore, one must expect V f

to be of the same magnitude as the true potential V as Γ → 0.
In Fig. 4 we display density profiles calculated using the

DFT assuming that the density profile can vary in the x and z
directions, but is invariant in the y-direction, along the surface.
With the same adsorption constraint applied, two-dimensional
(2D) droplet profiles (i.e., three-dimensional ridges) can be
found, as constrained equilibrium solutions. The selection of
droplet profiles shown in Fig. 4 is for f = 0.4, 1.04, and 0.8,
which (see Fig. 12) correspond to contact angles of θ = 151◦,
20◦, and 87◦. There is a significant structure in the density
profiles in the vicinity of the wall, especially in the cases with
smaller contact angles. The contact region where the edge of

the droplet meets the substrate is quite diffuse with substantial
density oscillations, as seen in Fig. 4(e). The effect of packing
of particles in the body of the droplet can also be seen from
the density peaks close to the substrate. The thin adsorption
layer outside the drop is also present which shows just one
or two density peaks. A zoom of the density profile in this
region is shown in Fig. 4(b) for all three droplets. For previous
examples of droplet density profiles calculated using the DFT,
see Refs. 33–38.

IV. BINDING POTENTIALS

In Fig. 5 we display the binding potentials calculated
via Eq. (23) for various values of the wall attraction strength
parameter f, for a fluid with βε = 1.1 and rc = 5σ. We see
that for large values of f, the global minimum in g(Γ) is at
Γ → ∞, corresponding to the case where the fluid wets the
wall and the unconstrained equilibrium corresponds to a thick
adsorbed film. As the wall attraction f is decreased, a local
minimum appears in g(Γ) at a small finite value of Γ. This
minimum then deepens to become the global minimum at the
wetting transition at f ≈ 1.06. For f < 1.06 the unconstrained
equilibrium corresponds to a finite thickness film of liquid on
the wall, with adsorption Γ equal to the value at the minimum
of g(Γ).

The inset of Fig. 5 shows that the binding potentials exhibit
the expected ∼Γ−2 decay due to the power-law tail for z → ∞
in the wall potential (19). The decay for Γ → ∞ is monotonic,
without oscillations; in Sec. V we present binding poten-
tials that do have oscillatory decay. The binding potentials in
Fig. 5 are qualitatively similar to those found in Ref. 20 for
the LG model. One difference between the present continuum
DFT results and the results for the LG is that the minimum in
g(Γ) that can be present for small values of Γ occurs at lower
values of the adsorption than in the LG model. In fact, when
the wall is very weakly attractive (e.g., for f = 0.3), then the
minimum in g(Γ) occurs at a slightly negative value of Γ.

These binding potentials should be related to the density
profiles that are displayed in Fig. 2. Note that for f < 1.06, the

FIG. 5. The binding potential g(Γ) calculated using the DFT for the fluid with
βε = 1.1 and pair-potential truncated beyond a range of rc = 5σ, for a series
of different values of the wall attraction strength f, as indicated in the key. The
inset shows the same data on a logarithmic scale. The binding potentials have
the same ∼Γ−2 decay, due to the external potential (19) that is not truncated.
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global minimum occurs at a low value of the adsorption
which corresponds to a non-wetting fluid. This is reflected
in the density profiles of Fig. 2 where the corresponding den-
sity profiles all have only a small amount of fluid adsorbed
to the wall. The global energetic minimum occurs at infi-
nite adsorption in Fig. 5 for the external potentials with
f = 1.2 and f = 1.4 and then density profiles for these cases
in Fig. 2 show a macroscopic liquid layer adsorbed to the
wall.

The depth of the potential well in g(Γ) is strongly depen-
dent on the fluid-fluid interaction strength ε , or equivalently,
on the temperature. As the temperature is decreased (or ε is
increased) below the bulk critical temperature, the densities of
the coexisting liquid and gas phases move further apart and the
potential well in the binding potential becomes deeper. This
behaviour is illustrated in Fig. 6. The case in (a) is for fixed
βεw = 0.7. The external potential does not change as the value
of βε is varied. For the case displayed in Fig. 6(b), the strength
of the wall attraction is defined relative to the fluid-fluid in-
teractions, i.e., βεw = f βε , so that the attractive strength of
the substrate is increased with increasing βε . Nevertheless,
increasing βε still leads to the minimum in g(Γ) becoming
deeper. Independent of how the external potential is chosen,

FIG. 6. As the strength of fluid-fluid interactions is increased (or equivalently
the temperature is decreased), the fluid becomes less wetting and the minimum
in g(Γ) becomes deeper. Results are shown for (a) a substrate of fixed attraction
strength βεw = 0.7 and (b) a substrate with attraction strength equal to the
fluid-fluid interaction strength, i.e., fixed f = 1.

FIG. 7. The binding potential for βε = 1.1 and βεw = 1.25 calculated for
a series of different values of the fluid-fluid pair potential cutoff range rc.
Computer simulations often truncate the particle interactions at rc = 2.5σ.
At this state point, we see here a change in the predicted interfacial phase
behaviour as rc is varied. Even going from rc = 5σ to rc = 10σ changes the
system from wetting to non-wetting.

the depth of the potential well at small Γ decreases as the bulk
fluid critical temperature is approached.

In our previous work,20 calculating g(Γ) for the LG
model, it was found that truncating the particle interactions can
have a significant effect on the wetting behaviour. The present
continuum DFT results show that this observation is generally
true and is not just an artefact of the LG. In Fig. 7, we display
the binding potential for βε = 1.1 and βεw = 1.25 (near to the
wetting transition) calculated for a number of different values
of the fluid-fluid pair potential cutoff range rc, namely, from
rc = 2.5σ to rc = 20σ. In computer simulations, it is com-
mon to truncate the LJ potential at rc = 2.5σ. However, the
results in Fig. 7 show that there is even a change in the interfa-
cial phase behaviour from non-wetting to wetting when going
from rc = 5σ to rc = 10σ. This shows that the tails of the
potentials have a significant effect in determining the wetting
behaviour. Fig. 7 shows that for this temperature, making the

FIG. 8. A demonstration of the quality of fit achieved with the fit function in
Eq. (26). The binding potential displayed here is for a fluid with βε = 1.1,
βεw = 1.06, and rc = 5σ. The solid line is the fit function and the symbols
are the data points from the DFT.
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commonly used rc = 2.5σ truncation would lead to an incor-
rect prediction of the wetting behaviour. Note that the binding
potentials displayed in Fig. 7 are all for the case when the exter-
nal potential due to the wall has a fixed strength of βεw = 1.25
and the range is not truncated. All these binding potentials are
for exactly the same point on the bulk fluid phase diagram
since we renormalise ε according to the truncation range—see
Eq. (18). This observation is particularly pertinent in light of
the good agreement with computer simulation results shown
in Table I, for rc = 2.5σ.

Fig. 8 illustrates that the form in Eq. (26) gives an excel-
lent fit to the binding potential for the case when βε = 1.1,
βεw = 1.06, and rc = 5σ. The agreement is just as good for
all the other state points discussed so far. Recall that this fit
function also gave excellent agreement with the LG results.20

Some typical values of the fitting parameters are given in the
Appendix. This fit form for g(Γ) can then be used as an input
to the IH model (Eq. (3)) to find droplet height profiles and
these can also be compared directly with film height profiles
extracted from the 2D droplet density profiles calculated using
the DFT, such as those displayed in Fig. 4. Before showing
these comparisons, we should remark about an aspect of the
numerics used: The binding potential results above are all cal-
culated using a DFT code that assumes that the density profiles
only depend on z, the perpendicular distance from the wall,
and are invariant in the other two directions. In these effec-
tive one-dimensional (1D) computations, a small grid spacing
(∆x = 0.01σ) can be used in the spatial discretisation of the
profiles, so that there are no appreciable discretisation errors
in any of the quantities calculated. However, when calculat-
ing 2D drop profiles of sizes such as those in Fig. 4 a coarser
grid is used (typically ∆x = 0.1σ), since otherwise the cal-
culations are just not feasible with the computer resources
currently available. The coarser grid can result in small errors,
particularly in the integration of the attractive LJ contribution,
that can lead to deviations in the comparisons between the

FIG. 9. A comparison of equilibrium density profiles obtained using both
the 1D (lines) and 2D (symbols) calculations, for the fluid with βε = 1.1
and µ = µcoex against a wall with f = 0.9 and f = 1.3. The 1D calculations
are performed using grid spacings of ∆x = 0.01σ and ∆x = 0.1σ. The 2D
profiles are calculated with grid spacings of ∆x = 0.1σ and ∆x = 0.25σ. The
system is non-wetting for f = 0.9, but a wetting film is observed for f = 1.3.
The profiles calculated using the very coarse grid spacing ∆x = 0.25σ are in
surprisingly good agreement with the finer grid spacing results.

contact angles of the two models. These errors are particularly
prevalent at state points close to the wetting transition where
small shifts in the minimum value of the binding potential,
g(h0), lead to appreciable changes in the calculated contact
angle. Therefore, for a consistent comparison, we calculate
both the binding potentials and the droplet profiles using the
same spatial discretisation and the same 2D code. In Fig. 9
we display a comparison of density profiles calculated for var-
ious values of ∆x. Various grid spacings in both one and two
dimensions are displayed and there is good agreement between
all of the results. The errors mentioned above occur in quan-
tities obtained via numerical integration involving the density
profiles, such as free energies. Given the results in Fig. 7 show-
ing how sensitive the form of the binding potential is to the
range of the pair interactions rc, it is not surprising that there
is also a sensitivity to the accuracy of the numerics used in the
calculations.

Fig. 10 displays a comparison of the film height profiles
obtained from the IH model with the results from the DFT for
the fluid with βε = 1.1 and rc = 5σ for walls with varying
f. From the 2D DFT density profiles ρ(x, z), the drop height
profile is defined as

h(x) =
Γ(x)

(ρl − ρg)
, (28)

where

Γ(x) =
∫ ∞

0
(ρ(x, z) − ρg)dz (29)

is the local adsorption. The IH model uses as input the binding
potential calculated from the DFT. The parameters in the fit
function (26) are given in the Appendix. Fig. 10 shows there
is excellent agreement between the two models over a wide
range of contact angles. A very small discrepancy exists in the
contact line region where the IH model slightly underestimates
the film height. The two droplets in each case are constrained to
have the same average film height, which is identical to fixing
the volume. There is no constraint on the maximum height

FIG. 10. A comparison of droplet profiles for the fluid with βε = 1.1, rc
= 5σ, and µ = µcoex with various wall strengths, f = 0.8, 0.85, 0.9, 0.95, 1.01,
1.02, 1.04. The coloured lines show film height profiles calculated from the
DFT and the black lines show the corresponding droplet profile found from
the IH model [Eq. (3)] using the binding potential obtained from the DFT as
the input. Excellent agreement is found for the whole range of contact angles.
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FIG. 11. A comparison of two methods for extracting a film height pro-
file from a DFT drop density profile, namely, (i) the density contour ρ(x)
= (ρl + ρg)/2 (plain lines) and (ii) the height profiles found by calculating
the local adsorption (lines with symbols). The black dashed lines show the IH
results. These are two cases from Fig. 10, with f = 0.8 (red solid curve) and
f = 1.04 (blue dotted curve).

of the droplets, nevertheless the agreement of this maximum
height between the two methods is very good.

An alternative method of finding a film height profile from
the density profile of a liquid droplet is to use the contour of
a specific density value, such as the density value (ρl + ρg)/2
which is the value half way between the two coexisting den-
sities. Finding a height profile in such a way better shows the
structure of the droplets in the contact region, as illustrated in
Fig. 11. However, this does not give as much insight into the
nature of the adsorption on the surface away from the droplet.
Calculating the local adsorption, illustrated in Fig. 10, clearly
allows for a better comparison with the IH model and accu-
rately fits the height of the droplet compared to the IH output. It
should be noted, however, that for droplets with a contact angle
of θ > 90◦ the local adsorption becomes somewhat misleading
and the contour method is a much more meaningful measure

FIG. 12. A comparison between the contact angle θ found using the DFT
and Young’s equation (20) with the contact angle obtained from drop profiles
calculated using the IH model with the binding potential calculated from the
DFT as the input. These results are for varying wall attractive strength f and
for fixed βε = 1.1 and rc = 5σ.

FIG. 13. Droplet profiles of various volumes when βε = 1.1 and f = 0.8.
This corresponds to a macroscopic contact angle of θ = 87◦. As the volume is
varied, good agreement is found between the DFT and IH results, even down
to very small droplet sizes.

of the droplet profile. In such a case, only the density con-
tour can accurately describe the droplet, since the adsorption
method cannot describe the multivalued nature of the droplet
profile.

The contact angle predicted by the two models can
be directly compared. Using the DFT, the contact angle is
obtained by calculating the three interfacial tensions and then
applying Young’s equation (20). Using the IH model, the con-
tact angle is extracted from the drop profiles by fitting a circle
to the apex of the droplet and finding the contact angle of
this circle. In Fig. 12 we see excellent agreement between the
two methods. Note that only the DFT results can be extended
beyond θ = 90◦. Note too that these results are for the macro-
scopic contact angle which is only attained by larger droplets.
Indeed with the DFT one does not have to calculate a droplet
profile to calculate θ.

In Fig. 13 we display a series of drop profiles as the volume
in the drop is varied. We see that the droplet profiles obtained
from the two models agree down to very small volumes. As
the volume of a droplet increases, the contact angle obtained
from the profile approaches the macroscopic contact angle.
The (coloured) solid lines in Fig. 10 show the results from the
DFT and the (black) dashed lines are the IH droplet profiles.

We should mention that it is possible to find solutions
to the IH model that are droplets with a macroscopic con-
tact angle slightly beyond θ = 90◦. However, in such cases the
agreement with the DFT is not good and fitting the droplet
with a circle is a very bad approximation of the film height
profile, even though it accurately predicts the macroscopic
contact angle. This poor fit stems from the inability of the
film height profile to display the multivalued character of the
droplet profile.

V. A MODEL FLUID WITH OSCILLATORY BINDING
POTENTIALS

In the work above for the LJ fluid with the pair-potential
(14), all of the binding potentials g(Γ) decay monotoni-
cally with increasing Γ. One can observe oscillatory binding
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potentials for this system, however these occur for low temper-
ature states where the liquid phase wetting the wall is expected
to be metastable with respect to the crystalline solid phase, so
we consider a different model fluid where this is not the case.
The occurrence of oscillatory binding potentials is connected
to the location of the Fisher-Widom (FW) line,39 which is
the locus in the phase diagram at which the asymptotic decay
of the correlations crosses over from monotonic to damped
oscillatory. The form of decay can be seen in the bulk fluid
radial distribution functionG(r), given by the Ornstein-Zernike
equation,1 as well as in the decay of the inhomogeneous fluid
density profiles. Whether the r → ∞ decay of G(r) is mono-
tonic or damped oscillatory is determined by the complex pole
with smallest real part that is a solution of 1 − ρbĉ(k) = 0,
where ĉ(k) is the Fourier transform of the bulk fluid pair direct
correlation function c(2)(|r − r′ |) = −βδ2Fex/δρ(r)δρ(r′).1,40

Whatever the fluid pair potential, there is normally some
oscillatory structure at a wall-liquid interface (see, e.g., the
curve for f = 1.5 in Fig. 2), even if the ultimate (asymptotic)
decay of the density profile is monotonic. However, when the
liquid state is sufficiently far from the critical point, the asymp-
totic decay can instead be oscillatory, depending on which side
of the FW line that state point lies. The decay from the liquid
phase to the gas phase at the liquid-gas interface is almost
always monotonic (see Fig. 3(b)).

The fluid we now consider is a colloid-polymer mixture.
The effective potential between the colloids in a colloid-
polymer mixture has a range that is determined by the radius
of gyration of the polymers, σp/2, as well as being deter-
mined by the diameter of the colloids, σ. In these systems,
the location of the FW line is closely related to the size ratio
q = σp/σ.41 Moreover, in colloid-polymer mixtures one can
also find the FW line located well away from freezing which
means that in such systems one may observe oscillatory liquid-
gas interfacial profiles and multiple layering transitions.41,42

Note that in the colloid-polymer context, the “liquid” is a col-
loid rich phase and the “gas” is a colloid poor phase. The
layering transitions observed in the Asakura-Oosawa (AO)
model of colloid-polymer mixtures41,42 are indicative that the
binding potential for this system is oscillatory, since each new
“layer” corresponds to a different minimum in g(Γ). Indeed,
the presence of layering transitions in any system is indicative
of oscillatory binding potentials.

In colloid-polymer mixtures, the effective pair-potential
between the colloids can be approximated using the AO
potential,25 which for σ ≤ r ≤ (1 + q)σ,

vAO(r) = −ε

(
1 −

3r
2σ(1 + q)

+
r3

2σ3(1 + q)3

)
(30)

and vAO(r) = 0 for r > R, where R = (1 + q)σ. The depth of
the attractive well is governed by the parameter

ε =
1
6
πσ3

pzp

(
1 + q

q

)3

, (31)

where zp is the polymer fugacity. Here, we quote simply the
value of ε ; the corresponding value of the fugacity can be
obtained via Eq. (31). Recall that this attractive potential orig-
inates from the entropic gain when colloids are close together,
as the excluded volume from the interactions with the polymers

overlap.25 The size ratio q specifies the range R = (1+ q)σ of
the potential vAO(r).

Using the functional in Eq. (6) with v(r)= vAO(r) in
Eq. (30) for r ≥ σ and v(r) = vAO(σ+) for r < σ, we cal-
culate the density profile of the colloids in the vicinity of a
wall. We assume that the wall is composed of particles in the
domain z < 0 interacting with the fluid particles via the poten-
tial in Eq. (30). Thus, as previously, the net interaction of a
single fluid particle with the entire wall is found by integrating
the pair potential assuming a uniform density distribution of
particles in the wall. The parameter governing the net strength
of the wall potential is εw . This approximation for the external
potential provides a model in which we can vary the strength
of the attraction between the particles and the wall. The effec-
tive potential between the colloids and a hard wall in the AO
model is given in Ref. 43.

In the AO model, when the range of the potential is small
(i.e., small q) and the interaction strength ε is large enough
(equivalently, low enough temperature), oscillations can be
found on the liquid side of the liquid-gas interface, as can be
seen in Fig. 14 (see also Refs. 41 and 42). The amplitude of
these oscillations increases as ε is increased.

The binding potentials displayed in Fig. 15 illustrate that
the range of the pair potential is a key factor in determin-
ing whether or not oscillations occur in the binding potential.
The two binding potentials displayed are (within the present
mean-field treatment) at the same state point in the bulk fluid
phase diagram, since the integrated strength of the pair poten-
tial (30) is the same in both cases. However, only the bind-
ing potential for the fluid with q = 0.5 exhibits oscillations,
when the pair potential is short ranged, but deeper. In con-
trast, when q = 1 the pair-potentials are longer ranged and the
binding potential decays monotonically as Γ → ∞. This is
because the location of the FW line in the bulk fluid phase
diagram depends on both the shape and depth of the pair-
potential well ε , not just on the total integrated interaction
strength.

FIG. 14. Density profiles for the AO fluid with q = 0.5 and varying βε , with
the adsorption constrained to be Γσ2 = 10. For these values of βε , the liquid
state on the wall is below the FW line so that the decay of the density profiles
into the liquid from both interfaces is oscillatory. Increasing βε leads to the
amplitude of these density oscillations increasing and also the amplitude of
the oscillations in g(Γ). The external potential in all cases has βεw = 3.2.



064705-12 Hughes, Thiele, and Archer J. Chem. Phys. 146, 064705 (2017)

FIG. 15. The binding potential g(Γ) for the AO fluid with two different values
of q. The wall attraction strength is βεw = 2.8. The parameters are chosen so
that these are at identical state points on the bulk fluid phase diagram. When the
range of the pair interactionsR = (1+q)σ is decreased (i.e., q is decreased),
the range of g(Γ) decreases and oscillations appear in the binding potential.
Note that only a portion of the curves is displayed, focusing on the range
where oscillations are best seen. See Fig. 16 for a wider view.

The occurrence of oscillations in g(Γ) can also be under-
stood from considering how the wall-liquid and liquid-gas
interfaces interact through the liquid. When the interfaces are
far apart, the oscillations from each interface decay to the bulk
value and so the two interfaces do not interact. As the two
interfaces approach each other, the envelopes of the oscil-
lations from each interface overlap. In effect, the liquid gas
interface constrains the shape of the density oscillations from
the wall-liquid interface and similarly, the wall-liquid inter-
face constrains the liquid-gas interface. Any constraint must
raise the free energy of the system. Some film thicknesses (i.e.,
Γ values) raise the free energy more than others because the
oscillations from one interface cannot smoothly transition into
the oscillations of the other. This leads to oscillations in the
free energy g(Γ).

Fig. 16 displays the binding potential for the AO fluid with
βε = 2.56 and q = 0.5 as the wall attraction strength εw is var-
ied. As before, when εw is increased, the system transitions
from non-wetting to wetting. However, now we see the pres-
ence of multiple minima in g(Γ) for values of εw near to the
wetting transition. These minima are due to the oscillations in
g(Γ) and so give rise to the multiple layering transitions studied
in detail by Brader and co-workers.41,42

The presence of the oscillations in g(Γ) means that the fit
function in Eq. (26) is no longer appropriate. For the present
system with only short-range interactions (i.e., no London dis-
persion interactions), we find that the following form gives a
good fit to the DFT data:

gf (h) = a3 cos(a1h + a2)e−h/a0 +

m−3∑
n=1

an+3e−nh/a0 , (32)

where a0, a1, . . . , am are parameters to be fitted. Typically,
we go to m = 9, but less is often acceptable. The first term
accounts for the oscillatory behaviour. The remaining terms
are what one finds when only short range forces are present
and the decay of the density profiles is monotonic.2,7 Using
this fit function as an input to the IH model, together with

FIG. 16. The binding potential g(Γ) for the AO fluid with βε = 2.56 and
q = 0.5 as the wall attraction strength εw is varied. Oscillations are present in
g(Γ) due to the oscillations in the density profiles. The oscillatory structure
from the wall-liquid interface cannot smoothly transition into the oscillations
of the liquid-gas interface at all film heights. The inset shows |σ2βg(Γ) | and
the logarithmic scale makes the oscillatory decay clearly visible.

σ2βγlg = 0.51, the value obtained from DFT, droplet profiles
such as those shown in Fig. 17 are obtained. Panel (a) shows
three droplets of different volumes, all obtained with the bind-
ing potential displayed in panel (b). The droplets are very thin
and clearly show a layering structure in the contact region. The
binding potential in (b) is given as a function of the film height

FIG. 17. In (a) we display film height profiles for different drop volumes
calculated from the IH model together with the oscillatory binding potential
in Eq. (32), displayed in (b). The droplet forms distinct layers and spreads out
as the volume is increased with no increase in the maximum height. These
results are for the AO fluid with βε = 2.6 and βεw = 3.24. The parameters
in the binding potential fit Eq. (32) are a0 = 0.908, a1 = −7.352, a2 = 5.901,
a3 = −0.011, a4 = −0.000 15, a5 = 0.045, a6 = 0.423, a7 = −0.77, a8 = −0.231,
a9 = 0.559.
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using Eq. (22). Note that the minima of g(h) correspond to the
observed steps in the droplet profiles.

The droplet profiles can also be found directly using the
DFT as shown in Fig. 18, although, of course, the DFT gives a
much more detailed description of the structure on the surface.

FIG. 18. (a) and (c) are equilibrium droplet density profiles for βε = 2.6 and
βεw = 3.24. The significant structure in the drops, particularly in the contact
region, can also be clearly seen from the ρσ3 = 0.375 contour in (b), which
corresponds to the profile in (a). The non-equilibrium intermediate state in (d)
points to the possibility of novel spreading dynamics.

The drop profiles in Fig. 18 exhibit much more structures than
the droplets displayed in Fig. 4 which are for state points on
the monotonic-decay side of the FW line. From the binding
potential in Fig. 17, we see that the drop in Fig. 18(c) is for
a state point near to the wetting transition. In the contact line
region of these drops, a terrace-like structure is found. This is
most clearly observed in the ρσ3 = 0.375 contour displayed
in Fig. 18(b). Above this stepped region, the droplet takes on
the form of a spherical cap. On approaching the wetting tran-
sition, the droplets are more spread out, becoming very wide
and flat, as shown in Fig. 18(c). Here there is no spherical cap
component to the droplet and instead it is very flat, dominated
by the local minima of the oscillations of the binding poten-
tial. Each minimum corresponds to having an additional layer
of particles at the wall. Displayed in Fig. 17(b), the global
minimum in g(h) is at h≈ 0.1σ, which corresponds to a small,
sub-monolayer, number of particles adsorbed on the wall. This
can also be seen from the density profiles outside the droplets
in Fig. 18. Increasing the film thickness, the next local mini-
mum in g(h) in Fig. 17 is at h≈σ, corresponding to an almost
complete monolayer adsorbed on the wall. However, the free
energy for this configuration is much higher than the ones
for the two minima either side, corresponding to a near empty
surface (h≈ 0.1σ) and two adsorbed layers (h ≈ 1.7σ), respec-
tively. The minimum in g(h) at h≈ 2.5σ, corresponding to
three layers of particles, is an even lower free energy state.
The fact that two or three almost complete layers are lower
energy states than a single layer is reflected in the density pro-
files in Fig. 18, where a single layer of particles adsorbed at
the wall cannot be observed.

Finally, Fig. 18(d) shows an intermediary non-equilibrium
density profile found during the minimisation to the droplet
shown in (c). The initial condition was half a circular disc of
the liquid density surrounded by the gas. As the Picard itera-
tions proceed, the drop spreads by first advancing through a
“precursor” film composed of two layers of colloids. It must be
stressed that this iterative minimisation procedure is not nec-
essarily representative of the true spreading dynamics of the
system but may still be considered as representing a “pseudo-
dynamics.” Then, intermediary forms such as that in (d) sug-
gest that the evolution of these droplets towards equilibrium
may correspond to very interesting spreading dynamics. We
mention that in some other systems,44 the pseudo-dynamics
generated by the Picard iteration is actually very similar to
the true dynamics from dynamical density functional theory
(DDFT).45–48 Here, the spreading dynamics is not discussed
further; this is pursued in Ref. 16.

VI. SUMMARY AND CONCLUSIONS

We have presented results from a DFT based method for
calculating the binding potential, which is based on calculat-
ing density profiles with an adsorption constraint. Compar-
ing drop height (adsorption) profiles from solving the DFT
in 2D with those from using the obtained binding potential
in the IH model in Eq. (3), shows good agreement, validat-
ing this coarse-graining procedure. The liquids considered
consist of particles interacting via a hard-sphere potential
and an additional attraction that is treated in a mean field
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TABLE II. Parameter values from fitting the binding potentials calculated using the DFT to the fit function given
in Eq. (A1).

βε f rc A a0 a1 a2 a3 a4 a5

1.1 0.8 5 −0.310 0.147 3.621 −0.378 0.174 −0.028 0.002
1.1 0.85 5 −0.336 0.151 3.237 −0.302 0.139 −0.021 0.001
1.1 0.9 5 −0.362 0.155 2.962 −0.233 0.109 −0.016 0.0008
1.1 0.95 5 −0.388 0.158 2.774 −0.168 0.081 −0.012 0.0006
1.1 1.01 5 −0.420 0.160 2.663 −0.093 0.051 −0.007 0.0004
1.1 1.02 5 −0.426 0.160 2.658 −0.081 0.043 −0.006 0.0003
1.1 1.04 5 −0.437 0.160 2.659 −0.056 0.036 −0.005 0.0002

fashion.30,31 The reference hard-sphere system is described
using the accurate White Bear version of FMT.1,27,28 The first
case considered has an attraction given by a truncated and
shifted Lennard-Jones potential. Comparing with molecular
dynamics simulation results indicates that the DFT describes
the system fairly well—see Table I.

Our results demonstrate that truncating fluid-fluid pair
interactions can have profound effects on the predicted wet-
ting behaviour. Specifically, it was shown that at certain state
points (see Fig. 7), changing the truncation range even from
rc = 5σ to rc = 10σ, leads to a change in the predicted inter-
facial phase behaviour, from wetting to non-wetting. This shift
in the phase behaviour occurs far beyond the usual truncation
range of rc = 2.5σ that is used in most computer simulations.

To input the calculated binding potentials into the IH
model to calculate droplet profiles, they are fitted to an alge-
braic form. These droplet profiles can then be compared to
droplet profiles calculated directly using the DFT by inte-
grating over the 2D density profile to obtain the film height
profile. Excellent agreement is found between the two meth-
ods, including even for small droplet volumes. Compari-
son of macroscopic contact angles from each model also
showed that excellent agreement is found for all contact angles
0◦ < θ < 90◦. However, only the DFT is able to find droplet
profiles for θ > 90◦.

The AO model pair potential has also been considered,
being a typical model system with a short-range attractive pair
interaction potential, compared to the diameter of the parti-
cles. For this system, at lower effective temperatures (higher
ε), density profiles with oscillatory decay into the liquid are
observed. These occur when the bulk liquid state is to the right
of the FW line in the phase diagram. At such state points, there
can also be oscillations on the liquid side of the density pro-
file at the liquid-gas interface.41,42 Of course, there are also
oscillations in the liquid density profile near the wall. These
oscillatory density profiles give rise to oscillations in the tails of
the binding potentials. By fitting the algebraic form in Eq. (32),
suitable for short ranged interactions, to these binding poten-
tials, droplet height profiles can be found from the IH model.
The droplet profiles for state points close to the wetting tran-
sition which have a very pronounced terraced structure, are
very thin and can lose their spherical cap shape. Such droplet
profiles can also be found directly using the DFT and exhibit
the same stepped structure. A spherical cap is still found for
larger droplets but there remains a high degree of structuring
in the contact region of the drops.

The droplet profiles observed in Figs. 17 and 18 are
remarkably similar to droplet profiles observed in the experi-
ments reported in Ref. 49. See also the discussions in Refs. 4
and 50–56. The experiments in Ref. 49 were for polydimethyl-
siloxane (PDMS) on a silicon wafer surface and terraced
droplet profiles were observed, pointing to an underlying oscil-
latory binding potential. Layered and terraced droplets have
also been observed in atomistic MD simulations of small
droplets on surfaces.21,57–59 The striking non-equilibrium
droplet profile, with a “precursor-film” advancing in front of
the droplet displayed in Fig. 18(d), found during the pseudo-
dynamics formed by the iterative minimisation procedure used
to calculate the density profiles, indicates that this system is
capable of exhibiting unusual spreading dynamics like that
observed experimentally in Ref. 49. Such spreading dynamics
is the subject of a separate study,16 based on Eq. (5).

Finally, we should mention that although the local IH (3)
with a binding potential g obtained from the DFT as the input
is sufficient for the cases studied here, Parry and co-workers
have showed that the true effective IH is in fact non-local.60–63

At wetting transitions, non-locality and fluctuation effects are
particularly important. This is of particular relevance to the
AO model fluid discussed in Sec. V, due to the short-ranged
interactions. Going beyond the present mean field treatment,
we expect capillary-wave-like fluctuations to somewhat smear
out the terraces in the profile h(x), particularly away from the
surface.

APPENDIX: PARAMETERS USED TO FIT g(Γ)

Several binding potentials are used in the results
throughout this paper. The parameters used to fit these data
to an analytic fitting function are given in Table II. The fit
function is also repeated here for convenience,

g(Γ) = Aexp[−P(Γ)] − 1

Γ2
, (A1)

with

P(Γ) = a0Γ
2e−a1Γ + a2Γ

2 + a3Γ
3 + a4Γ

4 + a5Γ
5. (A2)
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Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2013).

http://dx.doi.org/10.1103/RevModPhys.57.827


064705-15 Hughes, Thiele, and Archer J. Chem. Phys. 146, 064705 (2017)

5N. V. Churaev, Adv. Colloid Interface Sci. 58, 87 (1995).
6M. Rauscher and S. Dietrich, Annu. Rev. Mater. Res. 38, 143 (2008).
7S. Dietrich, in Phase Transitions and Critical Phenomena, edited by
C. Domb and J. L. Lebowitz (Academic Press, 1988), Vol. 12.

8L. G. MacDowell, M. Müller, and K. Binder, Colloids Surf., A 206, 277
(2002).

9L. G. MacDowell, J. Benet, and N. A. Katcho, Phys. Rev. Lett. 111, 047802
(2013).

10L. G. MacDowell, J. Benet, N. A. Katcho, and J. M. G. Palanco, Adv. Colloid
Interface Sci. 206, 150 (2014).

11V. S. Mitlin, J. Colloid Interface Sci. 156, 491 (1993).
12A. Oron, S. H. Davis, and S. G. Bankoff, Rev. Mod. Phys. 69, 931

(1997).
13U. Thiele, in Thin Films of Soft Matter, edited by S. Kalliadasis and U. Thiele

(Springer, Wien New York, 2007), pp. 25–94.
14U. Thiele, J. Phys.: Condens. Matter 22, 084019 (2010).
15A. Münch, B. Wagner, and T. P. Witelski, J. Eng. Math. 53, 359

(2005).
16H. Yin, D. N. Sibley, U. Thiele, and A. J. Archer, Phys. Rev. E 95, 023104

(2017).
17C. Honisch, T.-S. Lin, A. Heuer, U. Thiele, and S. V. Gurevich, Langmuir

31, 10618 (2015).
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