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Abstract 

Aniline (C6H5NH2) plays a significant role in both industry and daily life, and can be 

synthesized via catalytic hydrogenation of nitrobenzene (C6H5NO2) over transition metals; 

however fundamental investigations on reaction mechanisms in the heterogeneous catalysis 

are still lacking. In this work, the nitrobenzene reduction reaction over the Pt(111) model 

catalyst was studied using density functional theory (DFT) with the inclusion of van der 

Waals interaction, for fundamentally understanding the mechanisms at atomic and molecular 

levels. It was found that the double H-induced dissociation of N-O bond was the preferential 

path for the activation of nitro group, having a much lower reaction barrier than that of the 

direct dissociation and single H-induced dissociation paths. The overall mechanisms have 

been identified as: C6H5NO2* → C6H5NOOH* → C6H5N(OH)2* → C6H5NOH* → 

C6H5NHOH* → C6H5NH* → C6H5NH2*. The overall barrier of the nitro group reduction 

was calculated to be 0.75 eV, which is much lower than that of the benzene reduction (1.08 



eV). Our DFT data elucidates clearly the reason why the major product of nitrobenzene 

reduction reaction was aniline. Furthermore, the adsorption/desorption of phenyl group was 

found to have significant impacts on kinetic barriers. Generally, in the hydrogenation process 

(N-H or O-H bond association), the phenyl group preferred to adsorb on the surface; but in 

the dissociation process (N-O bond dissociation) it preferred to desorb transiently at the 

transition state and to adsorb again when the dissociation was completed. This study also 

provides a solid theoretical insight into the selective catalysis of the large aromatic 

compounds. 
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1. Introduction  

Aniline (C6H5NH2) is an important chemical raw material, which is widely used in the rubber, 

fine chemicals (dyes and pigments), agrochemical (pesticides and herbicides) and 

pharmaceutical industry [1-13]. Aniline is manufactured via catalytic hydrogenation of 

nitrobenzene (C6H5NO2) over a series of transitional metal catalysts such as Pd, Pt, Ni, Cu, 

Ru and Au, at various conditions, e.g., gas-phase or liquid-phase hydrogenation, as well as 

electrochemical reduction [1-13]. In the catalytic hydrogenation of nitrobenzene, the nitro 

group is usually reduced to amino group but the phenyl group remains [1-13]. A wide range 

of catalysts for reduction of nitrobenzene to aniline have been studied experimentally. Among 

them, noble Pt and Pd based catalysts were identified to be highly effective under modest 

conditions [6,10,14-20]. Most of the investigations have been focused on the catalytic 

performance but not on the mechanisms. The mechanisms of the nitrobenzene reduction are 

complicated and the reaction environments could play significant roles, for instance, the 

products are different under acidic, neutral and alkaline electrochemical conditions [2,4]. 

Gelder et al. and Corma et al. proposed some insights into the mechanisms in the 

nitrobenzene reduction [12,13]. In fact, with respect to the aromatic compounds having 

multiple functional groups, the selectivity towards the desired functional group reaction is a 

big challenge in heterogeneous catalysis. For example, in the reduction of halonitrobenzene, 

to achieve a selective hydrogenation to haloaniline but avoiding the occurrence of 

dehalogenation requires a precise design of highly selective catalysts [14-20]. It is essential to 

get a deep understanding of the possible reaction mechanisms to enable us to achieve the 

selective catalysis.  

 

In the recent years, density functional theory (DFT) calculations have been widely employed 

to understand the surface catalytic reactions at the atomic and molecular levels. To model the 

mechanism of nitrobenzene reduction, there are two significant problems to overcome. The 

first challenge is associated with the large size of nitrobenzene molecule, because a larger 

molecule would considerably increase the number of possible adsorption configurations 

[21-32], therefore, a significantly more adsorption configurations should be carefully tested 

in the calculations of nitrobenzene, in contrast to the much fewer adsorption configurations of 



other smaller organic molecules such as formic acid or methanol. In addition, an increase in 

adsorption configurations would also lead to an increase in the numbers of possible transition 

states, which again makes the calculations more complicated and time-consuming [21,22]. 

The second challenge is associated with the fact that, in the case of weak overlap of 

electrons/orbitals between the phenyl group and the metal surface, the van der Waals (vdW) 

interaction is frequently the only force that brings and binds the molecule to the surface 

[23-25]; the influences of vdW interaction on the large aromatic compounds concerning 

adsorption, energetics or kinetics, are still less well documented in heterogeneous catalysis. 

Only a few pioneering works have been made in the study of these large molecules 

[21,22,26-32]. Saeys et al. calculated benzene adsorption and hydrogenation to cyclohexane 

on Pt(111) [21,22]. Mahata et al. reported the mechanism of nitrobenzene reduction over 

Ni(111) via direct or indirect mechanisms [26]. With respect to some other large molecules in 

heterogeneous catalysis, Lu et al. systematically calculated the hydrogenation of guaiacol 

over Ru(0001) and Pt(111) surfaces involving the C-O bond dissociation [28,29]. Wang et al. 

studied the activity and selectivity between hydrogenation and decarbonylation of furan and 

its derivatives on Pd(111) [30,31]. These studies have provided some initial insights into the 

surface chemistry of large molecules in heterogeneous catalysis. Despite of extensive 

experimental studies, there is still lacking theoretical work to elucidate the mechanism of 

nitrobenzene reduction over platinum catalysts.  

 

In order to provide a better understanding of the nitrobenzene reduction to aniline over 

platinum catalyst, we have systematically investigated the mechanism using first principle 

calculations with the inclusion of vdW interactions, for the first time. The closed-packed flat 

Pt(111) surface as the thermodynamically most stable facet was used here as an ideal model 

catalyst for calculations. This paper is organised as follows. The computational method is 

described in section 2. The calculated results, including the adsorption of nitrobenzene and 

aniline, and the hydrogenation and deoxygenation mechanisms of the nitro group, are shown 

in sections 3.1 and 3.2. Then the influence of the adsorption of phenyl group at the transition 

state on both the kinetic barriers and the selective catalysis is further discussed in sections 3.3 

and 3.4. Finally, the main conclusions are summarized. We anticipate this work would be of 



benefit for the further study of large aromatic compounds in heterogeneous catalysis, 

molecular engineering and environmental engineering. 

 

2. Computational methods 

All the DFT calculations were implemented with the Perdew-Burke-Ernzerh (PBE) 

generalized gradient approximation (GGA) exchange-correlation functional using the Vienna 

Ab-initio Simulation Package (VASP) code [33-39]. The projector-augmented-wave (PAW) 

pseudopotentials were utilized to describe the core electron interaction. Since the exclusion of 

the vdW interactions in the strongly adsorbed benzene on metals would lead to a significant 

reduction in the adsorption energy from PBE, the optB88-vdW method as implemented in the 

VASP code was utilized to describe vdW interactions [23-25]. The cut-off energy was set to 

400 eV which was tested to be accurate enough for energy calculations. The vacuum region 

layers were built more than 12 Å to ensure the slab interaction was eliminated. A p(3x3) 

supercell was used with 3x3x1 Monkhorst-Pack k-point sampling for Brillouin zone. The size 

of supercell agrees with the experimental observation of the benzene coverage [40,41]. 

During all the optimization process, the bottom half atoms were fixed in the slab while the 

top half atoms were relaxed. All the transition states were localized with constrained 

minimization approach and the convergence of forces was set to 0.05 eV/Å [42-44]. In this 

work, the adsorption energy was defined as: Ead = E(ad/Pt) - E(ad) - E(Pt), where E(ad/Pt), 

E(ad), and E(Pt) are the total energies of the adsorbate binding to Pt(111) surface, free 

adsorbate in gas phase and clean Pt(111), respectively. 

 

3. Results and discussions 

3.1 Nitrobenzene and aniline adsorption  

Experimentally, over a range of catalysts studied, only nitro- group of nitrobenzene was 

reduced to amino group whilst the phenyl group held, therefore we concentrated on the 

reduction mechanism of nitro- group in this theoretical study [1-13]. In the surface catalytic 

reactions, the first stage was the adsorption of nitrobenzene on the Pt(111) surface. It is worth 

emphasising that both the phenyl- and nitro- groups are reactive towards binding to Pt surface 

free sites, and thus the considerations of the adsorption via the phenyl- and nitro- groups are 



necessary. Firstly, we calculated the adsorption of nitrobenzene via the phenyl group, 

specifically the centre of the phenyl group was located at the top, bridge and hollow sites, 

respectively, on Pt(111) surface as the initial structures and then the geometry optimizations 

were performed.  

 

When phenyl group was located at the Pt top site, nitrobenzene spontaneously desorbed 

during the optimization since no chemical bonds were formed between the nitrobenzene and 

Pt(111) surface. It was found that nitrobenzene stayed parallel above the surface with a height 

of ~3.5 Å as shown in Figure 1a. Despite of the relative long distance between nitrobenzene 

and the surface, the adsorption energy calculated is -1.06 eV, indicating the interaction 

between nitrobenzene and the Pt surface is actually considerably strong. We conclude that the 

vdW interaction might make the vital contribution here though the weak overlap of electrons/ 

orbitals between the phenyl group and Pt(111) surface could also exist. If without 

consideration of vdW interaction in the calculation, the adsorption energy was lowered to a 

minute value (-0.15 eV), implying that there is no occurrence of nitrobenzene adsorption, in 

agreement with the parallel configuration. Therefore, in this case, the vdW interaction is 

considered as the main force for binding nitrobenzene to the Pt(111) surface, i.e., 

physisorption dominates [23]. 

 

In contrast, Figures 1b and 1c show the optimized structures of nitrobenzene adsorbed at the 

bridge and hollow sites, respectively. It was found that the phenyl group could adsorb on the 

surface via the formation of C-Pt bonds: all of the five C-H bonds were tilted out of the 

phenyl plane, aroused from the strong overlapping of the partially empty d-band of Pt with 

the pz orbitals of phenyl group [21]. Such a strong interaction between phenyl group and 

Pt(111) resulted in the rehybridization of the carbon orbitals from sp2 to sp3 and as a 

consequence, chemisorption dominated. For the bridging bonded nitrobenzene as shown in 

Figure 1b, all of the six C atoms of phenyl group were bound to four Pt atoms. The 

adsorption energy was calculated to be -1.71 eV. Remarkably, this significantly increased 

binding energy was caused by the chemisorption of phenyl group in comparison with the only 

physisorption situation shown in Figure 1a (-1.06 eV). The bridge site is the so-called bri30º 



adsorption site reported in the previous study of benzene adsorption since the angle between 

the C-C bond and the Pt-Pt bond is 30º [21-23]. At the hollow site, the α-C binding to the 

nitro- group was dangling above the surface while the other five C atoms did bind to Pt sites, 

yielding the adsorption energy of -1.52 eV which is slightly lower than that (-1.71 eV) at the 

bri30º site. It is worth mentioning that we have examined both the two hollow sites of fcc and 

hcp types, and found that virtually there was no difference (below 0.01 eV) in terms of the 

adsorption energy, therefore, only fcc hollow site is considered in the following analysis. 

 

On the other hand, if the nitro- group adsorbed via the two O ends at the two neighbouring Pt 

sites, the phenyl group would adsorb vertically to the Pt(111) plane, as shown in Figure 1d. 

The average distance of Pt-O bond would be 2.27 Å with the calculated adsorption energy 

being -0.66 eV, the latter is even lower than the aforementioned physisorption one (-1.06 eV). 

The rationale behind this data could be that since the phenyl group adsorbed vertically, the 

overlap of the electrons/orbitals between phenyl group and the Pt surface was very limited 

and as a result, a partially loss of vdW interaction would make nitrobenzene unfavourable to 

adsorb via nitro- group. Overall, the above data illustrates that, despite of the presence of 

nitro- group the most preferential adsorbing mode for nitrobenzene is via phenyl group on the 

bri30º site as shown in Figure 1b. This is, in fact, consistent with the adsorption of benzene 

on Pt(111) [21,22]. It was worth noticing that our result is different from that in ref [32], 

where the phenyl group of nitrobenzene adsorbed vertically on the surface during the reaction. 

This difference is mainly because the vdW interactions were not considered in ref [32]. 

However, it has been reported that, for the phenyl group, the vdW interaction has a 

significant influence on the adsorption at metal surfaces [21-23]. 

 

For the adsorption of aniline, the physisorption state was not observed. The N atom of amino 

group would spontaneously adsorb at the top site of Pt(111) surface via the N-Pt bonding, of 

which the distance being 2.22 Å with an adsorption energy of -1.46 eV. The optimized 

structure is shown in Figure 2a, where the lone pair electrons of the N atom have a strong 

tendency to bind to the surface. However, if the phenyl group moved to the vertical position 

as shown in Figure 2d, the adsorption energy would decrease to -1.03 eV, indicating that the 



vdW interaction between the vertically positioned benzene ring and the Pt surface would be 

weaker than the parallel one. Interestingly, unlike nitrobenzene, aniline adsorbed equally well 

at the bri30º and hollow site (as shown in Figure 2b and 2c, respectively), yielding the same 

adsorption energy of -1.66 eV.  

 

 
Fig. 1. Top and side views of the four optimized configurations of adsorbed nitrobenzene (C6H5NO2*) 

on the Pt(111) surface, together with the corresponding adsorption energies indicated. Blue: Pt, red: O, 

grey: C, white: H, dark blue: N. (The same colours are used throughout the paper.) 

 

 

Fig. 2. Top and side views of the four optimized configurations of adsorbed aniline (C6H5NH2*) on 

the Pt(111) surface, together with the corresponding adsorption energies indicated. 

 



3.2. Mechanism of nitrobenzene reduction to aniline  

During the nitrobenzene reduction to aniline process, two N-O bonds were broken and the 

produced oxygen-species (OH* or O*) were reduced to water as by-products. The energy 

profiles are presented in Figure 3 and the corresponding structures of intermediates and 

transition states are shown in Figure 4. Two feasible pathways, i.e., (i) direct dissociation and 

(ii) indirect hydrogen-induced dissociation, may be taken into account in the deoxygenation 

[45,46]. Therefore, we have examined both paths to get insights into the detailed mechanisms, 

as well as to identify which one would be more likely for the N-O bond dissociation.  

 

For the direct dissociation path (i), C6H5NO2* → C6H5NO* + O*, the calculated reaction 

energy is 0.09 eV, indicating that this path is unfavourable in thermodynamics. Moreover, a 

high barrier of 1.61 eV needs to overcome, suggesting that a direct breaking of N-O bond is 

strongly prohibited in kinetics. For the indirect path (ii), the O of N-O bond was firstly 

hydrogenated to activate the strong N-O bond and then to facilitate the subsequent N-O bond 

dissociation. The barrier of H* attacking the O was calculated to be 0.35 eV, with the O-H 

bond length at the TS1 being 1.41 Å. This elementary step, as shown in the reaction 1 below, 

is slightly endothermic of 0.06 eV. 

 C6H5NO2* + H* → C6H5NOOH*   (1) 

 

After the N-O bond being hydrogenated, the distance of N-O bond was elongated from 1.246 

Å to 1.436 Å, indicating that the N-O bond had already been activated by the H atom. The 

most stable structure of the C6H5NOOH* was the H-down of OH group configuration, which 

was 0.10 eV more stable than the H-up configuration. The decomposition barrier of 

C6H5NOOH* to yield C6H5NO* and OH*, C6H5NOOH* → C6H5NO* + OH*, was 1.05 eV 

that is much lower than 1.61 eV of the direct path, and the corresponding reaction energy was 

-0.03 eV, being slightly exothermic. 

 

Although the indirect H-induced path would noticeably facilitate the deoxygenation in 

comparison with the direct path (1.05 eV vs 1.61 eV), the high barrier of 1.05 eV still 

indicates that this step would be difficult to occur. In this case, we noticed that the other O of 



the nitro group could be further hydrogenated and therefore, another feasible path was 

examined: namely (iii) double H-induced dissociation in which the nitro group was doubly 

hydrogenated to N(OH)2 group before the dissociation to occur. The third path could be 

written as reactions 2 and 3 below.  

C6H5NOOH* + H* → C6H5N(OH)2*   (2) 

C6H5N(OH)2* → C6H5NOH* + OH*   (3) 

 

It was found that the barrier for the second H* transferred to nitro group being small (0.27 

eV), yielding the O-H bond length of 1.43 Å at the TS2. Although the reaction 2 is a little 

endothermic of 0.23 eV which is not thermodynamically favoured, the new formed 

C6H5N(OH)2* was identified to be an active intermediate. After double hydrogenation of 

nitro group, the dangling N atom started to adsorb at the Pt surface site with the H-down 

configuration. The N-O bond of C6H5N(OH)2* was found to be highly activated with only a 

small barrier of 0.46 eV, resulting in the formation of C6H5NOH* and OH* on the Pt surface. 

The N-O bond distance was lengthened to 1.73 Å at the TS3. This elementary step was found 

to be highly exothermic of -0.68 eV, and the produced OH* group would be readily reduced 

to H2O* with the exothermic of -0.77 eV. As a by-product, H2O* weakly adsorbed at the Pt 

top site with a low adsorption energy of -0.42 eV, indicating that water would easily desorb 

upon formation. The overall barrier in the double H-induced dissociation path was found to 

be 0.75 eV, from C6H5NO2* to TS3 as highlighted in Figure 3. In comparison with the direct 

dissociation path (i) of which the activation energy being 1.61 eV and the single H-induced 

dissociation path (ii) of which the overall barrier being 1.09 eV, the double H-induced 

dissociation path was identified to be the most preferential one with the lowest overall barrier 

of 0.75 eV, which could be feasible at room temperature. In comparison with the N-O bond 

dissociation mechanism reported on the Ni(111) surface in ref [26], where C6H5NOOH* was 

found to be the precursor, here on the Pt(111) surface, C6H5N(OH)2* was identified to be the 

most likely precursor. The main reason for this difference is due to the fact that Ni and Pt 

have different inherent reactivity and Ni is actually more active than Pt for this reaction. 

Therefore, for Pt(111), the double H-induced path which would make the N-O bond more 

reactive, was required to lower the dissociation barrier to a reasonable value to enable the 



reaction to be feasible; however, for Ni(111), the single H-induced path was already 

energetically favorable. 

Once C6H5NOH* was produced on surface, the N-H bond association would readily occur as 

shown in the reaction 4 below, yielding C6H5NHOH* of which the reaction energy was 

downhill of -0.45 eV. A slight hydrogenation barrier of 0.15 eV was found, with the N-H 

bond length of 1.57 Å at the TS4. In the reaction 5 (see below), to yield C6H5NH* and to 

produce the second OH*, the N-O bond dissociation barrier in C6H5NHOH* was calculated 

to be 0.66 eV, with the N-O bond distance of 1.78 Å at the TS5. This dissociation step was 

shown to be highly exothermic of -0.89 eV. Finally, after the last H* transferring to C6H5NH* 

as shown in the reaction 6 (see below), the complete reduction of nitrobenzene to aniline was 

achieved. The barrier for the N-H bond formation was 0.60 eV, with the N-H bond distance 

being 1.60 Å at the TS6, and this step was exothermic of -0.40 eV. Energetically the most 

favourable paths have been summarized as the reactions 1 to 6, with the main data shown in 

Table 1, and the scheme briefly depicted in Figure 5.  

 

C6H5NOH* + H* → C6H5NHOH*   (4) 

C6H5NHOH* → C6H5NH* + OH*   (5) 

C6H5NH* + H* → C6H5NH2*   (6) 

 

 

 
Fig. 3. Energy profiles for nitrobenzene reduction to aniline on Pt(111).  



 

 

Fig. 4. Optimized structures of the intermediates and transition states in the nitrobenzene reduction to 

aniline on Pt(111). TS1 is the transition state of C6H5NO2* + H* → C6H5NOOH*; TS2: C6H5NOOH* 

+ H* → C6H5N(OH)2*; TS3: C6H5N(OH)2* → C6H5NOH* + OH*; TS4: C6H5NOH* + H* → 

C6H5NHOH*; TS5: C6H5NHOH* → C6H5NH* + OH*; TS6: C6H5NH* + H* → C6H5NH2*. 

 

 

 

Fig. 5. Illustration of the overall mechanism of nitrobenzene reduction to aniline on Pt(111). 

 



Table 1. Calculated reaction barriers (Ea, in eV) and reaction energies (ΔE, in eV) of the elementary 

steps involved in nitrobenzene reduction to aniline on Pt(111).  

Reactions Ea ΔE 

C6H5NO2* + H* → C6H5NOOH* 0.35 0.06 

C6H5NOOH* + H* → C6H5N(OH)2* 0.27 0.23 

C6H5N(OH)2* → C6H5NOH* + OH* 0.46 -0.68 

C6H5NOH* + H* → C6H5NHOH* 0.15 -0.45 

C6H5NHOH* → C6H5NH* + OH* 0.66 -0.71 

C6H5NH* + H* → C6H5NH2* 0.60 -0.40 

 

3.3 Influence of the adsorption of the phenyl group on reaction barriers 

An interesting phenomenon was observed during the search of the transition states, i.e., the 

adsorption/desorption of the phenyl group had significant impacts on the kinetic barrier. The 

latter was remarkable sensitive to the adsorption or desorption of the phenyl group. To better 

illustrate this issue, the reactions 2, 3, 4 and 5 were taken as examples which included 

hydrogenation (N-H or O-H bond association) and deoxygenation (N-O bond dissociation) 

reactions. The energy profiles and the identified transition states are shown in Figures 6 and 

7, respectively. In the energy profiles, the red line presents the favored reaction path. A 

comparison of calculated reaction barriers and bond distances between the two transition 

states is listed in Table 2.  

 

Figure 6 shows that in the reaction 2, C6H5NOOH* + H* → C6H5N(OH)2*, where an O-H 

bond was formed, if the phenyl group adsorbed at the transition state via TS(ads) (Figure 6b), 

the barrier was 0.27 eV with the O-H bond distance of 1.43 Å. In contrast, if the phenyl group 

desorbed at the transition state via TS(des) (Figure 6c), the barrier would increase to 0.91 eV 

with the O-H bond distance being elongated to 1.70 Å. Similarly, in the hydrogenation of 

C6H5NOH* to C6H5NHOH* via formation of the N-H bond in the reaction 4, C6H5NOH* + 

H* → C6H5NHOH*, the barrier was 0.15 eV at the TS(ads) (Figure 7b) but it would increase 

to 0.44 eV at the TS(des) (Figure 7c). As well documented, the geometry of the surface 



structure generally plays a significant role at the transition state [44]. Herein, in order to 

better elucidate the issue, the contributions of the fragments (C6H5NOOH* and H*, 

respectively) to the total barrier were decomposed. It was found that at the TS(ads), the 

reactive H* migrated from the fcc site to the top site with the H-Pt bond distance of 1.71 Å, 

the energy barrier was 0.45 eV; whilst at the TS(des), the H-Pt distance was shorten to 1.59 Å, 

indicating that H* was closer to the stable top site at which the H-Pt distance was 1.56 Å, the 

barrier decreased to 0.28 eV at the TS(des), which is significantly lower than that (0.45 eV) at 

the TS(ads). With respect to the C6H5NOOH* fragment, its movement to the TS(ads) 

position was facile with only a small barrier of 0.18 eV, whilst for its movement to the 

TS(des), a significant barrier of 0.70 eV was encountered. As aforementioned, desorption of 

phenyl group could cause the partial loss of chemisorption energy resulting in the fragment at 

the TS(des) being less stable than at the TS(ads). As a consequence, the main reason of the 

higher barrier provided by the TS(des) than TS(ads) could be the destabilization of 

C6H5NOOH* fragment (0.52 eV), even though H* fragment was stabilized (-0.17 eV) by the 

TS(des) rather than TS(ads). That is, at the TS(des), the stabilization from H* of -0.17 eV 

could not compensate for the destabilization from C6H5NOOH* of 0.52 eV. From this 

analysis, it is clear that the reaction via the TS(ads) would have the kinetic advantage over 

that via the TS(des) in the hydrogenation process. 

 

On the other hand, in the reaction 3, C6H5N(OH)2* → C6H5NOH* + OH*, the N-O bond 

dissociation occurred. Differently from that in the hydrogenation process stated above, 

TS(des) was more energetically favoured over the TS(ads). To explain this point fully, the 

details are that if the TS(ads) (Figure 6d) was followed, the dissociation barrier would be 

0.91 eV with the N-O bond length of 2.16 Å; while if the TS(des) (Figure 6e) was the case, 

the barrier would be noticeably lowered to 0.46 eV with the N-O bond distance of 1.73 Å. 

Therefore it is not unreasonable to propose that the adsorbed phenyl group in C6H5N(OH)2* 

was likely to desorb from surface transiently from the bri30º site as the TS(des), but once the 

dissociation completed, the phenyl group would adsorb back at the bri30º site again. And in 

the reaction 5, C6H5NHOH* → C6H5NH* + OH*, a similar result was obtained where the 

TS(des) (Figure 7d) could provide a much lower activation energy (0.66 eV) than the TS(ads) 



(Figure 7e) would do (0.89 eV). Through the analysis of the structures of TS(ads) and 

TS(des) in the reaction 3, it was found that the thermodynamic stability of dissociating OH* 

was the dominant factor. At the TS(ads), the O-Pt distance was elongated to 2.94 Å, which is 

extremely long in comparison with the O-Pt bond length of 1.99 Å at the most stable 

adsorption site (top). Such a significant increase in the O-Pt bond distance strongly indicates 

that the OH* would hardly be effectively stabilized by the Pt surface atom and as a result, the 

corresponding adsorption energy was 1.86 eV higher than that at the top site. In contrast, at 

the TS(des), the O-Pt distance was decreased to 2.35 Å which is closer to the most stable top 

site of 1.99 Å, resulting in a weak destabilization of 0.54 eV, which is much lower than that 

at the TS(ads). With respect to C6H5NOH* fragment, the energy was close to the 

hydrogenation step in the reaction 2 as stated above. The movement of the phenyl group to 

TS(des) would require a high activation energy of 0.82 eV, but to TS(ads), 0.25 eV would be 

sufficient. Although TS(ads) could stabilize the phenyl group more effectively than TS(des) 

with 0.57 eV, TS(ads) would provide a much weaker binding energy of dissociating OH* 

(with 1.86 eV) than TS(des). It was clearly evidenced that the binding energy of OH* 

governed the total barrier and as a result, the TS(des) had the kinetic advantage over the 

TS(ads) in the deoxygenation process because of the stabilization of OH*. 

 

Taking into account all the above results, the influence of the adsorption of the phenyl group 

could be summarized as follows: (i) in hydrogenation process (N-H or O-H bond association), 

the phenyl group preferred to adsorb on the surface and the barrier was mainly determined by 

the adsorption of phenyl group since the adsorbed phenyl group could effectively decrease 

the barrier; (ii) in deoxygenation process (N-O bond dissociation), the phenyl group preferred 

to desorb transiently for stabilizing the dissociating OH* which determined the total barrier. 

Nevertheless, in the whole reaction process, the phenyl group was predominately adsorbed on 

the surface throughout the reactions. 

 



 
Fig. 6. Energy profiles (a) and structures of the 4 transition states (b-e) of the two step reactions: (i) 

C6H5NOOH* + H* → C6H5N(OH)2* involving the O-H bond association at the TS2; (ii) 

C6H5N(OH)2* → C6H5NOH* + OH* involving the N-O bond dissociation at the TS3. The solid line 

represents the adsorbed phenyl group at the transition states, TS(ads), and the dashed line represents 

the desorbed phenyl group at the transition states, TS(des). The red line presents the energetically 

favourable reaction path and the blue line represents the unfavourable path. (The same lines are used 

in Figure 7.) 

 

 



 
Fig. 7. Energy profiles (a) and structures of the 4 transition states (b-e) of the two step reactions: (i) 

C6H5NOH* + H* → C6H5NHOH* involving the N-H bond association at the TS4; (ii) C6H5NHOH* 

→ C6H5NH* + OH* involving the N-O bond dissociation at the TS5.  

 

Table 2. Comparison of the calculated reaction barriers (Ea, in eV) and the bond distance (d, in Å) 

between the adsorbed transition state, TS(ads), and the desorbed transition state, TS(des), in the 

reactions 2, 3, 4 and 5 of the nitrobenzene reduction to aniline on Pt(111). 

Reactions Ea 

(ads) 

d Ea 

(des) 

d 

C6H5NOOH* + H* → C6H5N(OH)2* 0.27 1.43 0.91 1.70 

C6H5N(OH)2* → C6H5NOH* + OH* 0.77 2.16 0.46 1.73 

C6H5NOH* + H* → C6H5NHOH* 0.15 1.57 0.44 1.55 

C6H5NHOH* → C6H5NH* + OH* 0.89 2.02 0.66 1.78 

 

 

3.4 Selectivity towards the reduction reactions of nitro- and phenyl groups 



Selective catalysis of the desired functional group of aromatic molecules is a significant issue 

and it often depends strongly on the behavior of kinetics. To get an insight into the fact that, 

in the nitrobenzene reduction to aniline over Pt catalysts the benzene ring was not reduced by 

H* attacking, we noted from our calculations that, the overall barrier for the reduction of 

nitrobenzene to aniline as highlighted in Figure 3 was 0.75 eV, which suggests that the 

reaction (nitrobenzene to aniline) is a feasible process at the room temperature. However, the 

overall barrier for the hydrogenation of benzene was remarkably high as 1.08 eV [22]. From 

these data, it could be estimated that the reduction reaction rate of nitro- group is ~105 times 

higher than that of the phenyl group, according to the Arrhenius equation, r = Ae−Ea/RT, at the 

room temperature (T = 300 K). Therefore, at the presence of nitro- group during the 

nitrobenzene reduction, H* was consumed rapidly by the nitro reduction to yield aniline, but 

no excess H* to be utilized for the hydrogenation of phenyl group. This knowledge may 

further suggest that, to control the selectivity towards different reactions concerning nitro 

aromatic molecules, such as the selectivity between the dehalogenation and hydrogenation of 

halo-nitrobenzene, the intrinsic reactivity of the functional group is highly important.  

 

4. Conclusion 

The mechanism of nitrobenzene reduction to aniline over Pt(111) catalyst has been 

systematically investigated using first principles calculation with the inclusion of the vdW 

interaction. The overall mechanism has been identified as C6H5NO2* → C6H5NOOH* → 

C6H5N(OH)2* → C6H5NOH* → C6H5NHOH* → C6H5NH* → C6H5NH2*. In addition, the 

following conclusions have been obtained.  

(1) For the initial N-O bond dissociation, double H-induced path was identified as the most 

favourable reaction route for activating and reducing the -NO2 group to -N(OH)2 group, 

resulting in the lowest N-O bond dissociation barrier of 0.46 eV, in comparison with the 

direct dissociation path (Ea = 1.51 eV) and the single H-induced dissociation path (Ea = 1.02 

eV). 

(2) The adsorption/desorption of the phenyl group at the transition state was found to affect 

considerably the kinetic barrier. In general, with respect to the hydrogenation process (N-H or 

O-H bond association), the phenyl group adsorbed at the most stable bri30º site, but as to the 



deoxygenation (N-O bond dissociation), phenyl group desorbed transiently for facilitating the 

dissociation and then it adsorbed back on the bri30º site.  

(3) The overall barrier for the nitrobenzene reduction to aniline was 0.75 eV, which is 

significantly lower than that of 1.08 eV for the hydrogenation of benzene, suggesting that the 

rapid reduction of the nitro group would prohibit the reduction of the phenyl group, leading to 

the major product being aniline. This result coincides with the experimental data and further 

explains the selectivity issue from the kinetics point of view.  
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