Loughborough University
Browse
e-copy-Integrating BIM and GIS for Design Collaboration in Railway Projects.pdf (5.49 MB)

Integrating BIM and GIS for design collaboration in railway projects

Download (5.49 MB)
thesis
posted on 2019-11-26, 16:11 authored by Sahar Kurwi
Collaboration is essential to achieve project targets and minimising rework in any project including railway projects. The railway project is considered as a megaproject that requires effective collaboration in order to achieve efficiency and effectiveness. To ensure that the railway continues to provide safe, reliable, cost-effective services, and remains environmentally friendly while driving economic growth, engaging new technologies and new types of work models are required. Among these technologies, Building Information Modelling (BIM) and Geographic Information Systems (GIS) are recent technologies that support collaboration. However, using these technologies to achieve effective collaboration is challenging, especially in railway projects as they are amongst the most complicated projects and often numerous parties are involved in making important decisions. Currently, there is a lack of evidence-based guidelines or processes for effective collaboration in railway projects throughout their design stage. Therefore, this thesis has focused on developing a process model to improve collaboration in the design stage of railway projects using BIM and GIS. This research adopted a mixed-methods approach to examine and identify the issues that hinder collaboration in railway projects to assist in developing theBIM and GIS-enabled collaboration process model. An online questionnaire was designed and distributed to professionals to assess the state-of-the-art in BIM and GIS followed by two rounds of in-depth interviews with experts. The first round aimed to identify collaboration issues and consisted of 15 in-depth, face to face and videoconference/telephone interviews; while the second round consisted of 10 in-depth interviews to identify the process model components of the collaborative process using IDEF technique.
The questionnaire data were analysed using descriptive statistics and statistical tests (for example, Regression analysis, Wilcoxon Signed Ranks and Kruskal-Wallis Test). The results showed a lack of training in BIM and GIS and identified collaboration as a significant factor for railway projects, but there were many challenges to achieve effective collaboration. These challenges have been further investigated during the first round of interviews using content and thematic analysis. The results revealed that the most common challenges were getting the right information at the right time for the right purposes followed by resistance to change. Furthermore, the findings indicated that developing a process model, based on a clear plan of work demonstrating the collaboration process, is a potential solution to tackle these challenges. Thus, a Collaborative Plan of Work (CPW) has been developed through combining the RIBA (Royal Institute of British Architects) Plan of Work and the GRIP (Governance for Railway Investment Projects) stages. This CPW will be the basis to develop a process model for BIM and GIS-enabled collaboration. The results from the second round of the interviews identified the process model components which are: key players’ roles and responsibilities, tasks (BIM and GIS Uses), BIM and GIS-based deliverables, and critical decision points for collaborative process design. Moreover, this process model was formulated utilising Integrated DEFinition (IDEF) structured diagramming techniques (IDEF0 and IDEF3).
In conclusion, the process model of the collaboration process and the integrated implementation of BIM and GIS sets out role and responsibilities, deliverables, and key decision points. Finally, the research outcomes have been validated through a focus group and interviews with professionals in the biggest Railway company where the proposed process model was operationalised using a commercial Common Data Environment platform (viewpoint 4project). From their discussion, feedback and recommendations the IDEF processes model have been refined. It is concluded that such a process is crucial for effective collaboration in railway projects as it enables the management of the design process in terms of technologies used, activities, deliverables, and decision points. Therefore, the research findings support the notion that BIM and GIS can help to achieve effective collaboration by delivering the right information at the right time for the right purposes. As a result, they help to achieve the projects’ objectives efficiently in terms of time, cost and effort.

Funding

BIM and GIS-enabled collaboration process model and Collaborative Plan of Work

History

School

  • Architecture, Building and Civil Engineering

Publisher

Loughborough University

Rights holder

© Sahar Kurwi

Publication date

2019

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy of Loughborough University.

Language

  • en

Supervisor(s)

Peter Demian ; Tarek Hassan ; Karen Blay

Qualification name

  • PhD

Qualification level

  • Doctoral

This submission includes a signed certificate in addition to the thesis file(s)

  • I have submitted a signed certificate

Usage metrics

    Architecture, Building and Civil Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC