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Abstract

Numerical modelling of flood inundation over large and complex floodplains often requires mesh 

resolutions coarser than the structural features (e.g. buildings) that are known to influence the 

inundation process. Recent research has shown that this mismatch is not well represented by 

conventional roughness treatments but that finer scale features can be represented through porosity-

based sub grid scale treatments. This paper develops this work by testing the interactions between

feature representation, sub grid scale resolution and mesh resolution. It uses as the basis for this 

testing a 2D diffusion-based flood inundation model which is applied to a 2004 flood event in a 

topologically-complex upland floodplain in northern England. Results showed serious degradation of 

model predictions without explicit representation of features like walls. Inclusion of such features 

through raising mesh cell elevations where intersected by a feature resulted in a major improvement in 

model predictions in terms of reduced inundation extent. To make such treatments physically realistic, 

and notably so that the full potential for floodplain storage is included, it was shown that a sub grid

scale treatment also needed to be included. The effects of this combined treatment was the recovery of 

more plausible floodplain friction values as well as a sensitivity to friction that allows for more 

effective representation of floodplain friction effects such as vegetation.

KEY WORDS: fluvial flood modelling; diffusion-based modelling; sub grid scale treatment; feature 

representation;  spatial resolution
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INTRODUCTION

Fluvial flood modelling in both rural and urban areas has been shown (Dutta, et al., 2007; Mignot et 

al., 2006; Yu and Lane, 2006a, 2006b; Tayefi et al., 2007) to require explicit representation of small-

scale topographic variation in order to capture the patterns of flux near structural elements (e.g. walls, 

buildings and railroads, etc). Such elements are commonly represented in two-dimensional models 

explicitly as far as the model resolution allows, with sub grid scale features represented by upscaling 

momentum losses, usually using a friction parameter. However, a number of studies have 

demonstrated the severe sensitivity of such modelling approaches to mesh resolution (e.g. Horritt & 

Bates, 2001a, b; Yu and Lane, 2006a) and that neither roughness upscaling (e.g. Yu and Lane, 2006a; 

Neelz and Pender, 2007) nor a wetting parameter (e.g. Bradbrook et al., 2004; Yu and Lane, 2006a) 

are sufficient to represent the effects of structural elements, especially where the floodplain is 

complex. The basic reason for this is that changes in mesh resolution simultaneously change the

topographic information content of the surface being modelled (Bates and Anderson, 1996; Marks and 

Bates, 2000). This impacts upon the way that flow is blocked and routed, rather than just the speed 

with which the wetting front moves across the floodplain. Here we take topography to include both 

natural features (e.g. river terraces) and anthropogenic features (e.g. buildings, walls).

The rapid development of remote sensing of floodplain surfaces over the last 10 years (e.g. Marks and 

Bates, 2000; Mason et al., 2003) has meant that the limitations imposed by data availability over large 

areas are less significant than those associated with the numerical constraints upon simulation extent. 

Modelling large floodplains still requires mesh resolutions coarser than the features (e.g. walls, 

buildings) that influence the flow routing process, and it is likely that sub grid-scale treatments of 

topographic detail finer than the chosen mesh resolution will remain necessary. One solution to this 

has been roughness upscaling (e.g. Horritt and Bates, 2001a, b; Yu and Lane, 2006a) and progress has 

been made in the derivation of spatially-distributed roughness values derived either from remotely 

sensed land cover data (e.g. Wilson and Atkinson, in press) and from airborne scanning laser altimetry 
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(e.g. Mason, et al., 2003; Mason, et al., 2007). Aside from the fact that sensitivity to floodplain 

friction is relatively low, often necessitating values of friction greater than those used to parameterise 

the original friction representation, friction treatments only represent the effects of momentum loss 

and not mass blockage (Lane, 2005). Thus, effort has been put into representing floodplain roughness 

using alternative methods, and notably explicit parameterisation of mass blockage (e.g. Yu and Lane, 

2006b; McMillan and Brasington, 2007; Soares-Frazao et al., 2008), such that the effects of flow 

routing upon the movement of the flood wetting front is represented more effectively. Yu and Lane 

(2006b) explored sub grid treatments with a mesh resolution that followed a dyadic series (i.e. r22n),

for n = 0 to 3, where r is the finest resolution of data available, in their case, 2 m. For each mesh 

resolution defined by n (except for n = 0), they assessed the effects of sub grid scale treatments with a 

resolution of mn+2 for m = 1. They found that use of a sub grid scale treatment significantly improved 

model performance, but did not consider the situation where m > 1. In this paper, we assess the effects 

of situations where m > 1, as an attempt to begin to identify just how coarse a model resolution can 

become, whilst still retaining a reasonable representation of the effects of floodplain elements upon 

the flood inundation process. We include in the effects of topographic post-processing upon the 

representation of floodplain features as the averaging process used to determine the elevations of cells 

in coarser meshes can often smooth these features out of the analysis.

METHODOLOGY

Our method develops the treatment presented by Yu and Lane (2006b) which tested the effects of 

mesh resolutions r22n, for n = 0 to 3 and sub grid scale resolutions mn+2 for m = 1. The basis of the 

model used is described in Bradbrook et al. (2004) and Yu and Lane (2006a). Here, we restrict 

description of the process representation for situations where m > 1. Mesh coarsening impacts upon 

both numerical solution and the topographic content of the model. In terms of the latter, coarsening 

has two effects, depending upon how the topographic information is represented in a coarser mesh. 

First, the simplest and most often adopted coarsening simply averages all the sub grid scale 
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topographic information in the coarser mesh. As the surface wets, this means that water, in reality, 

may be able to flow into the area represented by the cell if the area has locations lower than the 

average. This is a cell blockage, introduced by averaging, that impacts upon mass balance calculations. 

Second, and more importantly, the arrangement of elevations within a cell will control where water is 

able to flow. As the elevations are averaged, and especially where m >1, it is reasonable to assume 

that possible flow paths and blockages to flow become averaged out of the surface. This can have a 

dramatic impact upon the ease of diffusion of flood water across a floodplain.

Cell blockage effect

The cell blockage effect can be generalised as:
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where Vij is the volume of water in the mesh cell ij which has a resolution of R; nw is the number of 

sub grid scale cells that are wet; Hij is the elevation of the water in cell ij; and ke  is the bed elevation 

of the sub grid cell k. Inspection of [1] shows that when the cell is fully wet, nw becomes equal to the 

total number of sub grid cells (i.e. 22m) and the volume of water in the cell is effectively represented 

by the average elevation of the sub grid cells. Thus, it is where Hij < max(ek) that the cell blockage 

effect creates an error in the available volume of the coarser cell for inundation. For each sub grid cell 

resolution mR 2/ , the extent of this effect will increase as m increases in relation to the variability in 

the set of ke  values at each m. Thus, our first correction is to evaluate water volume using [1]. This is 

identical to Yu and Lane (2006b), but uses situations where m ≥ 1 rather than m = 1. It is important to 

note that, in order to speed up computation time, DEM pre-processing for a range of Hij values for 

each cell is necessary.
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Cell flux effect

The second correction controls for sub grid-scale effects upon the flux across cell faces. Cell flux is 

calculated using a porosity-type treatment which has proved to be a powerful means of representing 

sub grid scale topographic effects in river flows (e.g. Olsen and Stokseth, 1995; Lane and Hardy, 2002; 

Lane et al., 2002; Lane et al., 2004) and for representation of wetting and drying processes in depth-

averaged hydrodynamic models of floodplain inundation (e.g. Bates, 2000). The procedure of 

calculating the porosity of a common face is based upon the Yu and Lane (2006b) treatment for m = 1, 

where each face has two sub grid-scale cells. The assumption made here is that flux should only occur 

across the face between two cells when a sub grid scale cell in cell 1 is wet and the water surface in 

that sub grid scale cell is higher than that the adjacent sub grid cell in cell 2. Thus, the first step is to 

establish a set of rules that determine when flux can occur across the common face of cell 1 and 2, and 

this has to be done in both directions (i.e. for flux from cell 1 to 2 and from cell 2 to 1). A porosity 

term is set based upon the percentage of cells that will be able to flux from cell 1 to 2 along the 

common face of cell 1 and cell 2, which varies as a function of Hij. If the number of sub grid-scale 

cells along a common face is 2m, total face porosity will be based upon evaluation of 2m values. For 

the case of flux from cell 1 to 2, the porosity values are set by evaluating two conditions: (a) the water 

surface elevation values that must be reached in cell 1 for there to be water in a given sub grid cell in 

cell 1; and (b) the elevation of the adjacent grid cell in cell 2, which must be exceeded by the water 

surface elevation value of the in cell 1 for their to be a sub grid scale flux. If both (a) and (b) are met, 

the water surface elevation of each sub-grid cell in cell 1 along the common face is compared to its

adjacent sub grid cell in cell 2. The porosity of cell 1 to cell 2 is calculated as the total number of sub 

grid cell in cell 1 along the common face that has a water surface elevation higher than its adjacent 

sub grid cell in cell 2 divided by the total number of sub grid cells along the common face, i.e. 2m. 

Therefore, the porosity from one grid cell to another can vary between 0 (100% blockage) and 1 (0% 

blockage). The porosity values are used to scale the flux explicitly. 
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One additional correction was introduced in the modified FloodMap (Yu and Lane, 2006b). As the 

flux is a non-linear function of water depth (from the Manning equation), then we need to make sure 

that the correct water depth is used in the evaluation of flux. This is done by determining an effective 

depth for the flux, based upon:

5/3 1

3/5

n

d
d

n

i
i

e

∑
==

(2) 

 

where n is the number of sub grid cells that are wet along the outflow side of the modelling cell and di

is the effective depth of the individual sub grid wetted cells along the outflow wall of the modelling 

cell. If flux occurs across one sub grid cell face, then the flux evaluated using [2] with the porosity 

scaling gives the same flux as if a mesh set at the sub grid scale resolution was being adopted. This is 

not the case when more than one sub grid scale flux occurs because of the non linear form of the 

depth-flux relationship in the Manning equation. However, provided the topographic variability within 

fluxing sub grid scale cells is small then the error is small, and the weighting used in [2] further 

reduces this error. This approach differs from the wetting and drying parameter developed by 

Bradbrook et al. (2004) and used in Yu and Lane (2006a, b) in that their wetting and drying parameter 

represents an empirical means for dealing with mesh resolution effects without taking into account the 

cell blockage and cell flux effect described above. The sub grid approach developed here is explicitly 

grounded in rules that are locally evaluated in relation to information on the sub grid scale topography 

in a particular grid cell.

Froude number control on effective depth

In this application, we are using a 2D diffusion-based flood inundation model. This assumes that the 

inertial terms are negligible, an assumption that is only valid if flow velocities are relatively low. In 
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such models, flow velocity is implicitly controlled by effective water depth, cell size and Manning’s n

as expressed in (equation 3):  

 

2/1

5.0

w

d
v

R+

= (3)

Where R is the exponent of hydraulic radius. The exponent of hydraulic radius is set to be 3/2  as an 

approximate value in the original Manning equation. The derivation of the exponent of hydraulic 

radius was derived from experimental data on artificial channels. Manning noted that the mean value 

of the R exponent in Manning Equation is not a true constant and varies (1891). The average value of 

the exponent was found to vary from 0.6499 to 0.8395 for different shapes and roughness of channels

(Manning, 1891). Chow (1964) argued that a value of 4/3 or a variable exponent should be used. 

Many studies have shown that n typically decreases with increasing hydraulic radius (e.g. Azmon, 

1992; Leonard et al., 2000). Hydraulic radius in the 2D diffusion formulation is the depth of the water 

in a single cell. This implies 2D diffusion-based formulation may require a variable hydraulic 

exponent should Manning’s n be used. Simulations were undertaken to test this parameter. It was

found that the model sensitivity to this parameter is extremely low. Thus, this will not be used as a 

calibration parameter in this study.

Therefore, velocity is essentially determined by mesh discretization (w) and floodplain roughness (n) 

in diffusion based approaches, controlled by effective depth (d). Flow in a coarser mesh will generally 

be faster than that in a finer mesh. Equation (3) also shows the effect of roughness specification on 

flood inundation. Floodplain with a higher roughness value will result in slower flow and vice versus.

Given the same roughness characteristic, questions arise as to whether a finer mesh will result in a 

better prediction. Apart from mesh size and roughness, the effective depth is a dynamic parameter that

is spatially and temporally variable. Over topographically complex floodplains, super-critical flow is 

likely to occur in isolated places, largely due to the abrupt change in ground elevation associated with 
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structural features (e.g. walls in this case). In such situations, exceptionally high velocity will occur.

This has three implications for the model. First, as the optimum time step for the next time step is 

calculated based on the Courant condition (Yu and Lane, 2006a) where the velocity used is the 

maximum velocity found in the current time step, exceptional high velocity will reduce the time step 

significantly. Second, flux calculated based on the diffusion model will be considerably high which 

may cause check-board effect (Hunter et al., 2006). Third, and most importantly, diffusion wave 

approximation is theoretically best applicable to low slopes with Fr number smaller than 1. Therefore, 

a modification was made to the model to account for the influence of effective depth on flow velocity.

This is based on a Froude number condition. The maximum effective depth between cells is set such 

that the flow is kept at the subcritical state. This prevents sudden changes in water depths due to high 

effective depths at places where there are abrupt changes in topography. The maximum effective 

depth for a specific mesh resolution and roughness specification is calculated using this equation:

2/34/34/3 ngwd < (4) 

 

When an effective water depth between two cells calculated based on water surface elevations exceeds 

the maximum effective depth, the effective depth is scaled down to this maximum effective depth. A 

number of advantages are offered by this approach. Firstly, the adoption of this parameter to a large 

extent eliminates the check-board effect associated with complex topography in 2D diffusion based 

models (Hunter et al., 2006). Secondly, according to equation [4], the maximum velocity will occur at 

the maximum effective depth. Cascading of the maximum velocity can result in a near-monotonic 

decrease in time step during the simulation. The maximum effective depth condition imposed by 

equation [4], in combination with the Courant number condition described in Yu and Lane (2006a), is 

usually sufficient to obtain the optimum time step with a stable solution. This parameter is more likely 

to be applied to the finer meshes in that: (i) the maximum effective depth for a finer mesh is 

proportional to 4/3w ; and (ii) the smoothing effect of mesh coarsening reduces the possibility of abrupt 

changes in topography.
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MODEL APPLICATION

Study site and data source

Tests for m ≥ 1 were carried out for a reach of rural floodplain in northern England: the upper River 

Wharfe, UK. This is a typical upland gravel-bed river with complex floodplain topography, 

characterized by networks of dry stonewalls (Figure 1), hedges and fences. This study focuses in 

particular on the effects of dry stonewalls. These features are largely impervious during flood, except 

in places where there are gates in between. These walls were observed to exert an important control on 

flood routing (Tayefi et al., 2007). Therefore, it is recognized that representing these features is 

essential for the representation of flow routing on the floodplain. It is also a site with good floodplain 

topographic data (LiDAR), well-established boundary conditions and reliable data on the maximum 

inundation extent during a 1:2 year flood event in February 2004.

Floodplain topography is represented with digital elevation models of different mesh resolution: 4 m, 

8 m, 16 m and 32 m. The 4 m mesh was interpolated using bilinear interpolation to produce the 

coarser meshes. In this paper, we explore resolutions of 8 m, 16 m and 32 m, with sub grid scale 

treatments of 4m, 8 m and 4m, and 16 m, 8 m and 4m respectively. To simplify reference to these, we 

refer to them as ratios: i.e. an 8 m mesh with a sub grid scale of 4 m is a 2:1 ratio. These are 

summarised in Table 1. 

Boundary conditions

The flood lasted for 22 hours. However, only the first 10 hours of the flood, as the floodplain wetted,

were used. As this was a 1:2 year event, it did not fully occupy the floodplain. Furthermore, this 

allows a large number of simulations to be carried out.

Two-dimensional flood inundation modelling has traditionally adopted a tightly coupled modelling

approach, i.e. the river flow and floodplain flow is solved simultaneously at each time step (e.g. 
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Horritt and Bates, 2001a, b; Yu, 2005). This approach is not suitable for the comparative evaluation of 

simulations with different sub grid treatment proposed in this paper in that it will not necessarily 

guarantee that the same amount of water is routed onto the floodplain for each simulation. In the 2D 

diffusion approach, flow routing at the river channel and floodplain boundary requires an additional 

boundary condition which itself will be sensitive to mesh resolution. To control for this, we use a 

loosely-coupled approach: i.e. river flow is solved prior to floodplain routing; aided by the observation 

that during the wetting phase, return flow to the main channel was negligible. In order to route the 

same amount of water onto the floodplain for simulations with different meshes and sub grid

representation of floodplain topography, the river channel was divided into sections retained for each 

simulation. Each section has a unique flow hydrograph. In this study, the hydrographs for different 

sections were obtained from a 1D river flow model HEC-RAS. A flow hydrograph contains flow rate 

(m3/s) from a particular river session to the floodplain. This ensures the objective evaluation of the sub 

grid treatments given the same boundary condition from the river channel.

Manning’s n and exponent of hydraulic radius

This study also investigated the role of Manning’s n. Following the findings of Yu and Lane (2006a, 

b), simulations with both lower (0.04. 0.06, 0.08 and 0.1) and higher (1.0 and 10.0) values of n were 

undertaken to investigate the interaction between roughness specification and sub grid treatment with 

high sub grid mesh ratio.

Model validation and verification

In this study, model testing combines both validation and verification. Model validation involved

comparing model prediction with observed maximum inundation extent. Increasingly over the last 

decade, distributed validation data such as synoptic inundation extent have been used to validate 

model prediction from various sources including post-event trash line surveys, aerial photos, airborne 

and satellite Synthetic Aperture Radar  (SAR) data and post-event LiDAR survey of flood deposits 

(Hunter, 2007). Some of the data are point at-a-time (e.g. aerial photos and SAR) while others are 
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collected after the event (e.g. trash line survey and flood deposit survey). It is recognized that the use 

of at-a-point validation data may be misleading in some situations (Yu and Lane, 2006a, b), e.g. when 

the validation time is long after a laterally-confined floodplain is fully inundated. In this study,

maximum inundation extent during the flood was obtained by field survey of wrack lines (Tayefi et al., 

2007) and, as it was only a 1:2 year flood event, the maximum floodplain inundation was not reached 

during the event. This provides validation data for this study. Post-event wrack line can be 

misinterpreted due to uncertainty during collection of data. To overcome the limitations of using such 

data, this study also undertook model verification wherein the predicted inundation extents over time 

are compared with a series of corresponding reference extents. The reference extents used in this study 

are those predicted by the finest mesh simulation, i.e. the 4 m simulation. The choice of reference 

extents does not imply that the finest mesh will necessarily result in best predictions given the 

sensitivity of model prediction to mesh resolutions. However, given that the focus of this paper is 

comparative studies, any reference dataset should produce the same results. Verification against a 

reference dataset over time to a large extent overcomes the limitation associated with validation using 

at-a-point data. Following Yu and Lane (2006a, b) three accuracy statistics are calculated for each 

simulation, i.e. overall accuracy, conditional Kappa for wet cells and the F statistic. Overall accuracy 

is calculated as the sum of correctly predicted cells divided by the total number of cells in the domain. 

The main disadvantage with this statistic is that it is strongly dependent upon the number of mesh 

cells used in the computation in relation to the maximum inundated area as the latter is used as the 

denominator in the equation: the statistic may appear to do very well if the number of dry cells, that 

are never wetted but are always both observed and predicted as dry is large. Conditional Kappa for 

wet cells is derived from a discrete multivariate technique called Kappa analysis (Bishop et al., 1975) 

and is often cited as a more reliable measure of accuracy or agreement than overall accuracy (Cohen, 

1960). The F statistic is calculated as the number of cells both predicted and observed as wet divided 

by the total number of cells that are either predicted or observed as wet (e.g. Horritt and Bates, 2001a, 

b). The F statistic is particularly suitable for assessing predictions of flood inundation as it focuses on 

how the model-predicted wet areas agree with validation dataset.
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RESULTS AND DISCUSSION

Effect of dry stone walls on inundation extent over time

In the 4 m mesh, the topographic information associated with walls are preserved explicitly: Linear 

cells can be identified from the DEM as continuous elevated cells. The inundation extent over time 

predicted using the 4 m mesh with a Manning’s n of 0.06 is shown in Figure 2. This maps the water 

depth and the locations of walls over time. These images shows immediately the effect of walls upon 

flood inundation. At the initial wetting stage, water flow is highly controlled by the walls. Notably, 

upstream of the river, for the first 4 hours of the flood, flow is constrained in compartments formed by 

walls near the river bank. Until the walls are submerged, water can only flow out of the compartments

through gates in between. As the water depths increase, some of the walls become submerged, 

particularly downstream of the reach. Water depths at locations where walls are submerged are

notably lower, indicated by linear cells with faded tones. This implicitly recognizes the mass storage 

effect of these structural features. The higher resolution view of the upper reach of the inundation map 

at 4.0 hrs reveals that flow paths are highly channelled by structural features (Figure 3). On the right 

bank of the river, water depth is relatively low. Therefore, flow is constrained by the walls. Gates in 

between walls allow water to flow out of the compartment. As the mesh is coarsened from 4 m to 8 m, 

16 m and 32 m resolutions, the walls are gradually averaged out during interpolation. Some of the 

walls can still be identified from the 8 m mesh. But in the 16 m and 32 m meshes, no walls are 

discernable. Consequently, this is reflected in the simulation results. Flow becomes increasingly less 

controlled by  the network of walls simply because the topographic information contained in these

features is smoothed out in the coarsened meshes.

Effect of sub grid scale treatments with coarser meshes

The effect of sub grid treatments was investigated by comparing the inundation areas over time.

Figure 4 shows the inundation areas over time for all resolutions and their sub grid simulations, 

compared with the default 4 m simulation. Two observations emerge here. First, the results are in line 
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with the findings from previous studies in terms of the strong model sensitivity to mesh resolution (e.g. 

Horritt and Bates, 2001a; Yu and Lane, 2006a). All meshes over-estimate inundation extents 

compared to the 4 m mesh simulation throughout most of the simulation. Second, in all cases, sub grid

treatment results in reduced inundation extents. Furthermore, for all resolutions, a higher sub grid

mesh ratio further reduces inundation extents. This is also confirmed by visualisation of the

inundation extents over time. The reason for this is that higher-ratio sub grid mesh contains more 

topographic information on the walls compared to the default model mesh. With the sub grid mesh 

coarsening ratio increases from 2:1 to 4:1 and then 8:1, topographic content associated with structural 

features represented in the model through the sub grid mesh will be increased, thus resulting in 

reduced inundated areas.

The normal practice for generating a coarser mesh is to interpolate a finer mesh. The simulations 

presented so far have used bilinear interpolation to generate the 8 m, 16 m and 32 m meshes from the 

4 m mesh. During interpolation, topographic variability will be reduced and structural features may be 

smoothed out. Indeed this is the case for the walls investigated in this study (Figure 1): their 

representation gradually decreases as the mesh is coarsened. In order to include the effect of walls on 

flow routing, the directly interpolated meshes used above were post-processed to introduce the walls 

into the floodplain surface topography, by raising the ground elevation of the cells where walls are 

present to the corresponding elevation identified from the 4 m mesh. To evaluate the effect of the

post-processing on flood inundation, Figure 5 compares the inundation extents from 3 hrs to 4.5 hrs 

for the 32 m mesh with and without walls. The results suggest that, with walls included explicitly, 

water diffuses much slower than its counterpart in the simulations with directly interpolated 

topography. Inundation area over time for all mesh solutions (Table 1) is plotted in Figure 6. Overall, 

there is less inundation with the post-processed meshes as compared to the directly-interpolated

meshes. Furthermore, comparing Figure 6 with Figure 4, less sensitivity of inundation extent to mesh 

resolution is found when walls are included. Contrary to Figure 4, where a higher sub grid mesh ratio 

indeed reduces inundation extent, with walls built into the topography we see mixed results for the 32 
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m simulations with different sub grid mesh ratios (Figure 6). For the 16 m simulations (Figure 6c), 

results from different sub grid ratios are also less discernable compared to the results in Figure 4. To a 

significant extent, explicit representation of floodplain features slows down the flow, especially for 

the coarser meshes. Topographic information associated with walls will gradually be reduced with 

directly-interpolated coarser meshes, in particular for the 16 m and 32 m meshes. Therefore, the 

sensitivity of the model to mesh resolution in terms of inundated areas is increased for the normal 

treatment. This also has implications for the sub grid treatment where post-processed sub grid meshes 

contain more wall-related topographic information than the directly-interpolated meshes. Thus, the

sub-grid treatment shows a similar response to the normal treatment, i.e. reduced sensitivity with post-

processed meshes with walls re-introduced. For example, for the 8 m mesh, Figure 6d shows that, for 

the 8 m simulations, the difference between the sub grid treatment and the normal treatment is 

marginal. However, the difference is much more pronounced with the directly-interpolated 8 m mesh

(Figure 4d). This has two bearings. First, even for a mesh with a 2:1 coarsening ratio, the topographic 

complexity associated with walls will be reduced in a directly-interpolated mesh, resulting in

smoother topography, thus more inundation. Only when the topographic complexity is built into the 8 

m mesh explicitly, can the default mesh produces reduced inundation. Second, a directly-interpolated

8 m mesh with 2:1 sub grid topography gives similar results to a post-processed 8 m mesh with the 

same sub grid topography. This implies that the sub grid treatment is more effective in reducing 

inundation with a coarser mesh. For example, for the post-processed 16 m and 32 m meshes, there is a 

remarkable reduction in the inundation area for all ratios of sub grid treatment (Figure 6b, 6c) as 

compared to the directly-interpolated meshes (Figure 4b, 4c).  

 

Representing structural features by simply raising cell elevations is questionable, in particular for a 

coarser mesh. It is physically unrealistic as the dimension of a single cell in such a mesh is usually 

much wider than these of the structural features in reality (e.g. Bates et al., 2006). Indeed, even 

representing walls in the 4 m DEM using linear cells is problematic given that the dimension of these 

features is unlikely to be larger than 4 m. Furthermore, this would potentially reduce the available 
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floodplain storage by a significant amount. In terms of floodplain storage, simply raising averaged 

ground elevations of wall-intersected cells is likely to introduce large mass balance errors, i.e. large 

areas of floodplain that could otherwise be inundated are not allowed to become inundated. The sub 

grid treatment approach addresses these problems by representing structural features implicitly in the 

sub grid topography, thus allowing realistic representation while maintaining mass storage effect 

associated with such features.  A potential way to represent discontinuity associated with such features 

might be the fusion of both raster representation and vector representation in the model. 

Model validation

Table 2 shows the results of model validation obtained with the simulations listed in Table 1 for both 

the directly-interpolated meshes and the post-processed meshed with walls re-introduced. Results 

show that all the simulations produced quite good predictions of maximum inundation extent for 

overall accuracy and conditional Kappa for wet cells. But the F statistics are not particularly high. For 

the normal treatment, there is no obvious difference (within 1%) in all the statistics for all mesh 

resolutions. It seems validation does not distinguish between meshes with different topographic 

content. Sub grid simulations with all mesh ratios perform better than or equally to the corresponding 

normal treatment. However, the difference in the accuracy statistics between different mesh ratios is 

generally low. The sensitivity observed in both Figure 4 and Figure 6 in terms of inundation area to 

different mesh resolution for the normal treatment as well different mesh ratios of the sub grid 

treatment is not reflected in the accuracy statistics obtained from validation. This may due to the type 

of validation data  that we use to evaluate the model. This emphasises the drawback of using point-in-

time validation data to evaluate performance of distributed models of this type (e.g. Yu and Lane, 

2006a; Hunter et al., 2007). In this case, maximum inundation extent is not particularly useful for 

assessing different model formulations in that it will not allow evaluation of model performance 

before the maximum inundation extent is reached. 
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Given that model validation did not distinguish between model simulations in terms of their 

performance, model verification was carried out whereby comparative studies can be made with 

regards to model performance over time as compared to a reference dataset. Model verification used 

predictions from the 4 m simulation as the reference dataset, and compared the inundation extents 

obtained from all other simulations back to the 4 m data. This is effectively a check on the extent to 

which introducing treatments, such as the sub grid-scale treatment, reduce the sensitivity to mesh 

resolution. For each simulation, accuracy statistics were calculated by comparing the results with the 4 

m predictions at a 5-minute interval. This generates the accuracy statistics of each model prediction 

over the whole simulation period. Figure 7 shows the results in terms of the overall accuracy, Kappa 

for wet cells and F statistic. A number of observations emerge from the results. First, the general 

pattern for all categories of statistics over time, is that the finer the mesh, the better the statistical 

values of accuracy, though with some exceptions during the initial wetting process (i.e. before c. 2.5 

hrs). Second, the sub grid treatment outperforms the simulation with default resolution for all mesh 

resolutions, in particular for the period of rapid inundation (c. 2.5 hr-5 hr). Third, higher sub grid mesh 

ratios further improve the predictions. This is particularly obvious for the F statistic (Figure 7c). We 

compares the F statistics of simulations obtained from the directly-interpolated meshes (Figure 7c) 

with these obtained from simulations with walls explicitly built in (Figure 7d). In the absence of 

influence from extensive topographic controls imposed by networks of walls the sub grid treatment 

shows higher sensitivity to mesh ratio (Figure 7c). This is reduced when the walls are introduced in 

the meshes. Similar to the analysis of inundation areas (Figure 4 and Figure 6), the relatively low 

improvement obtained with the higher ratio sub grid mesh in the latter case (Figure 7d) is due to the 

fact that the meshes used contain more topographic information on the walls. These features 

essentially represent topological barriers to the flow at different stages of the flooding, modifying the

flow behaviour which would otherwise occur in smoother floodplains (Figure 7c). In other words, the 

effects of both mesh resolution and sub grid treatment with different mesh ratios were dwarfed by the 

re-introduction of walls into the topography.
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Effect of Manning’s n

Given the model’s strong sensitivity to mesh resolution, the obvious question is whether this can be 

reconciled through adjustment of Manning’s n. This was tested using the interpolated topographies. 

Following Yu and Lane (2006a, b), both low (0.04, 0.06, 0.08, 0.1) and high (1.0 and 10) values of 

Manning’s n were tested. Figure 8 compares the inundation areas over time obtained with different 

Manning’s n values for the 4 m, 8 m 16 m and 32 m simulations with and without the sub grid

treatment. In each plot, the inundation area is compared with the 4 m simulation with a n value of 0.06. 

In line with previous findings (Yu and Lane, 2006a, b), the model shows very low sensitivity to low 

Manning’s n values (0.04, 0.06, 0.08 and 0.1) which are broadly within the Chow et al.’s range of 

Manning’s n values (1988). Roughness specification only starts to have a noticeable effect on flow 

routing with a much higher value of 1.0. It is apparent that we can increase n to reduce inundation 

extent. However, due to the low sensitivity of n, the required increase in n could be very high, well 

beyond of the range of values within which Manning equation was originally formulated. 

For the simulations with a 32 m (Figure 8a) or 16 m (Figure 8e) mesh and the normal treatment, the n

value of 1.0 best approximates the inundation area predicted by the 4 m simulation with an n value of 

0.06 over time. This agrees with the results from Yu and Lane (2006b) where a Manning’s n value of 

1.0 was also found to best approximate the 4 m simulation results. However, for the 8 m simulation 

(Figure 8i), the low values of n (0.04-0.01) produced better approximation to the 4 m results than an n

value of 1.0 or 10.

With the sub grid treatment, a lower value of n is required to reproduce the 4 m results. For example, 

the 32 m mesh with a 16 m sub grid mesh and an n value of 1.0 brings the corresponding curve closer

to the 4 m simulation, as compared with n = 1.0 in the default 32 m simulation. The effect of sub grid

treatment in approximating the 4 m inundation gradually increases with a higher sub grid mesh ratio. 

For example, the sub grid simulation with a 32 m mesh and a mesh ratio of 8:1 (Figure 8d) improves 

the agreement with the 4 m inundation extents over time even with relatively low values of roughness 
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in the range between 0.04 and 0.1 as compared to the 4:1 (Figure 8c) and 2:1 (Figure 8b) mesh ratios.

In other words, where it is possible for m to be >1, using m > 1 is a means of allowing values of 

floodplain friction to be used that are more within the range for which the friction rule was developed. 

There is also greater sensitivity to floodplain friction as a result, which means that parameterisation of 

other floodplain friction effects, such as vegetation, should become more straightforward.

CONCLUSION

This study investigated the interaction between sub-grid scale treatment of floodplain features, post-

processing of the floodplain surface in order to represent those features and parameterisation of sub-

grid scale effects using roughness parameterisation. This emphasises the dominant effects of post-

processing to introduce the topological controls associated with structural features. With the 

topological effects (i.e. connectivity between elements) being particularly important, it is necessary to 

post-processing in order to retain such features. However, particularly in relatively coarse meshes,

introducing linear features by raising cell elevations may not be physically realistic and this may 

reduce the potential storage volume that is available on the floodplain. The analysis of the sub grid 

treatment showed that using as much sub grid scale information as possible in coarser meshes did 

improve model predictions with respect to a verification dataset, although the magnitude of this 

improvement was relatively small. However, its impacts were dwarfed by the effects of post-

processing to include, in this case, the topological complexity arising from walls on the floodplain. As 

this post-processing was achieved by explicitly raising floodplain cells at their intersection with these 

floodplain features, modelling this floodplain with particularly coarse meshes is only meaningful with 

a sub grid scale treatment to make it physically realistic. The clear recommendation here for 

floodplain inundation studies is that floodplain features such as buildings and walls should be retained 

in the high resolution data used to parameterise a sub grid scale model, and not used, simply, to raise 

the elevation of coarser resolution mesh cells. Our results are particularly encouraging as by 

combining the sub grid scale correction and retaining the detailed elevation of floodplain features, it 
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was possible to use more meaningful Manning’s n values, and to recover a sensitivity to n, which will 

aid parameterisation of other effects such as vegetative roughness.
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                Original mesh
Sub mesh

32 m 16 m 8 m

16 m 32, 2:1
8 m 32, 4:1 16, 2:1
4 m 32, 8:1 16, 4:1 8, 2:1

Table 1: combinations of meshes with different coarsening ratio.
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Overall accuracy Conditional Kappa for wet 
cells

F statistic

interpolated Post-
processed

interpolated Post-
processed

interpolated Post-
processed

32 m 0.89 0.89 0.83 0.83 0.56 0.54
32 m, 2:1 0.90 0.90 0.88 0.87 0.57 0.56
32 m, 4:1 0.90 0.90 0.90 0.88 0.57 0.56
32 m, 8:1 0.89 0.89 0.88 0.86 0.56 0.54
16 m 0.89 0.89 0.84 0.82 0.55 0.54
16 m, 2:1 0.90 0.90 0.91 0.88 0.58 0.56
16 m, 4:1 0.89 0.89 0.90 0.88 0.56 0.57
8 m 0.88 0.88 0.83 0.82 0.54 0.54
8 m, 2:1 0.89 0.89 0.90 0.89 0.56 0.55

Table 2: Accuracy statistics obtained from model validation. Left column: results obtained with 
directly-interpolated meshes; Right column: results obtained with meshes post-processed to introduce 

walls. 
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Figure 1: Floodplain topography (shaded DEM) with observed max inundation extent. 
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Figure 2: Inundation extent over time predicted by the 4 m simulation with a Manning’s value of 0.06.
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Figure 3: Effect of dry stone walls on flow routing.
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Figure 4: Inundation area versus time with different mesh resolutions and sub grid scale treatments.

Obtained with directly-interpolated meshes. (a) simulations with normal treatment; (b) 32 m 

simulation with and without sub grid treatment; (c) 16 m simulation with and without sub grid 

treatment; (b) 8 m simulation with and without sub grid treatment
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(a) 32m with wall (b) 32m without wall

3.0 hrs 3.0 hrs

3.25 hrs
3.25 hrs

3.5 hrs 3.5 hrs

4.5 hrs 4.5 hrs
Figure 5: Inundated areas from 3.0 hrs to 4.5 hrs for simulations with and without post-processing
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Figure 6: Inundation area versus time with different mesh resolutions and sub grid scale treatments. 

Obtained with post-processed topographies with walls built in. (a) simulations with normal treatment; 

(b) 32 m simulation with and without sub grid treatment; (c) 16 m simulation with and without sub 

grid treatment; (b) 8 m simulation with and without sub grid treatment.
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(d) F statistic for simulations – post-processed with walls built in
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Figure 7: Accuracy statistics obtained from model verification for all model resolutions. For directly-interpolated

meshes: (a) overall accuracy; (b) conditional Kappa for wet cells; (c) F statistic; and for post-processed meshes

with walls explicitly built-in: (d) F statistics. 
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Figure 8: Predictions of inundated area through time with different mesh resolutions and values of Manning’s 
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