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Abstract 

This work presents the results of the first interlaboratory comparison of linearity 

measurements of short-circuit current versus irradiance that includes a wide variety of 

photovoltaic (PV) device types, from reference cells to full-size modules. The aim of this 

inter-comparison was to compare the methods employed and to collect new inputs useful for 

the revision of the standard IEC 60904-10, which deals with linearity measurements for PV 

devices. The procedures and facilities employed by the partners include the differential 

spectral responsivity, the white light response, the solar simulator method and the two-lamp 

method. The facilities are generically described and compared and their main sources of 

uncertainty are discussed. Comparison results show good agreement within declared 

uncertainties between all partners. A few minor exceptions under low-light conditions raise 

questions of possible uncertainty underestimation for these specific conditions. The overall 

outcome of the comparison also highlights the importance of considering correlations in the 

uncertainty budget, which can potentially improve the overall stated uncertainty. A critical 

review is made of the data analysis adopted in the standard IEC 60904-10 to calculate the 

linearity degree of the short-circuit current towards irradiance. The analysis review suggests 

a way to make results based on different methods more comparable and less prone to 

erroneous linearity assessment.  
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1 Introduction 

The measurement of linearity of the photocurrent output with the irradiance incident on a 

photovoltaic (PV) solar cell is an important aspect, especially for reference devices (IEC 

60904-2, 2015). Indeed, for the proportionality principle at the basis of the common use of a 

reference PV device to measure the irradiance, a non-linear reference would cause 

undesirable errors of irradiance reading when used at other conditions than those at which it 

was calibrated and if proper correction for the deviations from the linear function were not 

made. Therefore, the international standard IEC 60904-2 (IEC 60904-2, 2015) requires a 

reference device to have a linear response of the short-circuit current ISC versus the incident 

irradiance G. The ISC response is deemed linear if it shows a deviation from perfect linearity 

below 2% (ASTM-E1143-05, 2005; IEC 60904-10, 2009). 

Linear dependence of the short-circuit current of a reference cell (RC) versus irradiance 

(hereafter called simply linearity) is also important in power matrix measurements (i.e. 

performance measurements at different temperatures and irradiances (IEC 61853-1, 2011)) 

for energy rating purpose or when using a reference module for field performance 

measurements (IEC 61829, 2015). Furthermore, if a device under test (DUT) is proved to be 

linear towards irradiance and temperature variations, both performance matrix 

measurements under varying irradiance and temperature and spectral responsivity (SR) 

measurements to be used for the energy-rating procedure can be significantly simplified (IEC 

61853-1, 2011; IEC 61853-2, 2016), with substantial reduction of measurement time and 

cost. 

To properly assess a DUT as linear, the expanded uncertainty (k=2) of the measurements 

propagated to the linearity calculation should be considered as well. Whether this uncertainty 

(UC) has to be included or not within the 2% threshold for linearity is still under discussion in 

the PV community. Certainly, low measurement UC is desirable for determining linearity of 

reference devices with the highest level of confidence possible. Indeed, this may lead to 

reduced energy-rating testing costs and eventually to the possibility to correct for non-

linearity of PV devices. 

In order to assess the measurement UCs stated by the participant laboratories, this work 

evaluates the results of an interlaboratory comparison on ISC(G) linearity measurements of 

samples of different size and technology, from WPVS-type reference cells to full-size 

modules. To the authors’ knowledge, this is the first interlaboratory comparison of this kind. 

The facilities employed by the partners cover the majority of procedures detailed in the 

standard IEC 60904-10 (IEC 60904-10, 2009). One of the purposes of this work is to 

evaluate the different methods and facilities that are employed by the laboratories, with a 

critical view on comparability and measurement uncertainties that is beneficial for improving 

them. Additional purpose of the work presented here is the evaluation of possible lacks in the 

current edition of the IEC 60904-10. The experience gained as part of this inter-comparison 

will therefore serve directly as input to the on-going revision of the IEC 60904-10 and 

indirectly for refinement of the standards series IEC 61853 for PV module energy rating with 

regards to ISC(G) linearity testing. 

In the following, the procedures and data analysis from the linearity standard IEC 

60904-10 are critically described and areas of improvement in results, comparability and 

accuracy are highlighted. Thereafter, the measurement methods and facilities employed by 
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the participants are generically outlined with their main UC contributions. Finally, the 

measurement results are compared and discussed. 

The laboratories that took part in the measurement intercomparison were the German 

Physikalisch-Technische Bundesanstalt (PTB), which acted also as round-robin coordinator, 

the European Solar Test Installation (ESTI) of the European Commission’s Joint Research 

Centre, the Centre for Renewable Energy Systems Technology (CREST), the Fraunhofer 

Institute for Solar Energy Systems (FhG-ISE), the Institute for Solar Energy Research 

Hamelin (ISFH).  

2 Calculating linearity 

According to the standard IEC 60904-10 (IEC 60904-10, 2009), with the exception of the 

two-lamp method, the linearity of a PV parameter with respect to a test parameter is in 

general determined by calculating a least-square linear fit as regression line on all measured 

points taken over the region of interest. In the case of this paper, the PV parameter is ISC and 

the test parameter is the irradiance. A percentage deviation of each measured point from the 

regression line is then calculated. While this approach is adequate to evaluate for example 

linear dependence of open-circuit voltage on temperature, calculating the linearity of ISC(G) 

by allowing a Y-axis intercept other than zero can result in erroneous evaluation of the real 

linearity degree of a PV device, whose short-circuit current is usually better described by a 

direct proportionality to irradiance than by a generic straight-line fit. This indeed is also what 

the standard IEC 60904-4 on traceability of PV devices explicitly states (IEC 60904-4, 2009) 

and it implies the physical fact that ISC(0 W/m2) = 0 A. As previously mentioned, the 

irradiance measured by a RC is usually calculated by the following equation (1). Essentially 

this is proportionality (i.e. half the signal corresponds to half the irradiance), whereas a 

general linear fit including a non-zero intercept would need to provide both the slope and the 

intercept to determine the irradiance from the measured signal. The latter is never 

considered, and in fact all standards which require linearity of RC output with irradiance 

mean implicitly proportionality. Hence, generic linear regression leads to a different 

quantification, which is inappropriate for describing the dependence of ISC(G).  

Figure 1 illustrates this problem. A non-linear device (left side of Figure 1, black dashed 

line with squares) would be considered linear over the range of (700 ; 1100) W/m2 using 

linear regression according to the IEC 60904-10 (Figure 1, blue line with dots), while in reality 

at 700 W/m2 the error introduced by the linear but non-proportional dependence of ISC to G 

would be about 15% if this device were used as a RC calibrated at Standard Test Conditions 

(STC). By using the proportional dependence defined by: 

 𝐺𝑚𝑒𝑎𝑠 =
𝐼𝑚𝑒𝑎𝑠

𝐼𝑆𝑇𝐶
∙ 1000

𝑊

𝑚2 (1) 

to determine the linearity degree of ISC, this large deviation would be spotted and no error in 

the assessment of the linearity degree of the device would occur (beyond the measurement 

uncertainty). Within the proportionality approach, it is useful also to define an additional 

quantity, which is the normalized responsivity given by: 

 𝑠𝑛𝑜𝑟𝑚(𝐺) =
𝑠(𝐺)

𝑠𝑆𝑇𝐶
=

𝐼𝑠𝑐(𝐺)

𝐺
∙

𝐺𝑟𝑒𝑓

𝐼𝑆𝑇𝐶
 , (2) 
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where ISC and G are the measured short-circuit current and irradiance, respectively, and Gref 

is the reference irradiance 1000 W/m2. 

Based on this approach the correct deviation from linearity (L) for the short-circuit current 

would be given by: 

 ∆𝐿(𝐺) = 100 ∙ (𝑠𝑛𝑜𝑟𝑚(𝐺) − 1) . (3) 

As shown in Figure 1, the proportionality approach (see red dashed line with triangles) 

represents the actual non-linearity of a reference cell calibrated at STC. The curve L(G) 

calculated via the proportionality approach (red dashed curve of the right side of Figure 1) 

gives inverse values to those obtainable by the IEC standard’s definition of deviation from 

linearity (blue and green lines with dots and diamonds respectively), because here a positive 

L reflects the physical fact that such a DUT has higher ISC compared to a perfectly linear 

device for the G at which it is calculated. 

 

  

Figure 1: (left) non-linear DUT (black dashed line) compared to ideal 

proportionality dependence (red dashed line) and the calculated linear 

fit by the standard IEC 60904-10 definition (blue and green lines for 

entire or limited range, respectively), the non-zero intercept is 

highlighted with an extended dotted line; (right) deviation from linearity 

using general linear regression defined in the standard compared to the 

one obtained by using a proportionality approach. 

Another lack of the IEC standard lies in the linearity calculation specific for the two-lamp 

measurement approach. According to this, the linearity degree of a DUT is measured 

between the irradiance level achieved when the two lamps (labelled A and B) are individually 

illuminating the DUT (A or B) and the level reached when both lamps illuminate it 

simultaneously (A + B). As detailed in the IEC 60904-10, the percentage deviation from 

linearity is calculated according to equation (4), where IA, IB, IAB and Iroom are, respectively, the 

measured short-circuit currents of the DUT generated by the individual lamps, by both lamps 

together and with none of them illuminating it (background light). 

 𝐷𝑙𝑖𝑛 = [
𝐼𝐴𝐵−𝐼𝑟𝑜𝑜𝑚

𝐼𝐴+𝐼𝐵−2∙𝐼𝑟𝑜𝑜𝑚
− 1] ∙ 100 (4) 

Even if the 50/50 balance recommended by the standard for 𝐼𝐴 and 𝐼𝐵 is applied, the 

deviations from perfect linearity do not represent in their raw form the actual 𝐼𝑆𝐶(𝐺) linearity 

function over the entire irradiance range, but rather the (average) linearity degree just 
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between two measured points that are separated in irradiance by a factor of 2. Currently, 

there is no indication in the standard on how to combine these separate measurements in 

order to calculate the deviation from linearity over a larger (i.e. > 2) irradiance range, let 

alone the entire irradiance range of interest, which should cover at least one order of 

magnitude (i.e. typically from 100 W/m2 to 1000 W/m2).  

As discussed in (Emery et al., 2006; Müllejans and Salis, 2018), two-lamp data in their 

raw form cannot be compared to other methods of the IEC 60904-10. Although some 

methods from the photometry sector could be applied (Coslovi and Righini, 1980; Hamadani 

et al., 2016), they may be too complex for reasonable full inclusion in the IEC standard. 

Therefore, a simpler approach has been proposed in (Müllejans and Salis, 2018), building a 

connection between the individual irradiance subranges. According to the new approach, 

essentially the deviation from linearity for each single measurement is then calculated using: 

 𝐷𝑙𝑖𝑛 = [
𝐼𝐴+𝐼𝐵−2∙𝐼𝑟𝑜𝑜𝑚

𝐼𝐴𝐵−𝐼𝑟𝑜𝑜𝑚
− 1] ∙ 100 (5) 

as this represents a change in the photocurrents generated by the individual lamps as 

compared to the condition in which both lamps illuminate the DUT, which is the typical case 

in PV (from the reference irradiance 1000 W/m2 down to low irradiance levels). 

Between the data points measured with the 2-factor method, information is necessarily 

missing and can be estimated at first by simple linear interpolation, which, however, only 

approximates the actual full curve. The approximation, though, can be refined by additional 

intermediate measurements, as already foreseen in the standard. The same normalisation 

applied to the other methods (see equation (2)) can be adapted to this new approach as well 

while merging the separate irradiance ranges (see (Müllejans and Salis, 2018)). The final 

deviation from linearity that is calculated through this new procedure for the two-lamp method 

can then be written in the same form as given by (3). In this way the results of the two-lamp 

method can be made comparable to the results obtained by the other measurement methods 

included in the IEC 60904-10. This new approach was used to analyse the data included 

here from the two-lamp method (see section 3.4). 

The linearity results reported in this paper were calculated and are compared according to 

the proportionality approach as given in (1) to (3), with specific steps for the data analysis of 

the two-lamp method data. The ISTC value necessary in (2) was determined by each 

participant and is not explicitly compared in this work. 

3 Measurement facilities and uncertainty components  

All main procedures described in the standard IEC 60904-10, with the exception of 

measurements under natural sunlight, are represented by one or more participating partners. 

The following sections report in a generic way the methods and facilities utilised by the 

participating partners; more details can be found in the references given, where available. 

This section also highlights the key UC components of the different measurement methods 

keeping in mind that the proportionality approach will be used for comparison of results. The 

reported uncertainty ULIN(G) of each facility depends strongly on the individual measurement 

setup and procedure, including UC correlation estimates.  
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3.1 Differential Spectral Responsivity (DSR) 

DSR measurements were introduced by J. Metzdorf (Metzdorf, 1987). The procedure 

determines the DUT’s ISTC indirectly from the AM1.5G reference spectrum (IEC 60904-3, 

2016) together with the absolute spectral responsivity (SR), which is calculated from 

measurements of differential spectral responsivity as a function of bias light intensity. Thus, 

the non-linearity measurement of a PV solar cell is an integral part of the DSR measurement. 

Detailed descriptions of the general procedure are given in (Metzdorf, 1987; Winter et al., 

2014). 

DSR measurements use a dual beam configuration with a monochromatic beam and a 

constant white bias-light source (as included in the IEC 60904-8 (IEC 60904-8, 2014)). The 

bias light is used to set the overall light intensity on the DUT and consists commonly of 

dichroic halogen light sources (Ebner et al., 2000; Winter et al., 2014, 2000) or LEDs 

(Hamadani et al., 2013). The monochromatic light beam is used to probe the DUT SR. In 

order to separate the photocurrent generated by the monochromatic light from the 

photocurrent generated by the bias light, the lock-in technique is applied by modulating the 

monochromatic light with a chopper. The monochromatic beam can be generated essentially 

in two ways. The first is to narrow a broad light distribution of xenon or other broadband 

sources by using monochromators (Hamadani et al., 2013; Winter et al., 2000) or bandpass 

filters (Ebner et al., 2000). The second is to use already narrow-band light sources like LEDs 

(Young et al., 2008; Zaid et al., 2010) or lasers (Schuster et al., 2012). There are also cases 

in which tuneable lasers are used in combination with a monochromator (Winter et al., 2014). 

A calibrated reference is used for determining the absolute spectral irradiance. A monitor 

detector is used to correct for intensity variation of the monochromatic beam. 

From a linearity measurement perspective, the advantage of the complete DSR method 

(i.e. with measurement of SR at all bias-light levels and use of AM1.5G) is that it does not 

have any significant UC related to spectral mismatch because ISC(Gbias) is obtained 

mathematically using the reference spectrum AM1.5G (Winter et al., 2014). Furthermore, the 

measurement UC in ISC(Gbias) caused by the calibrated SR of the reference detector and by 

imperfect positioning of the reference/target plane are in general the same for all ISC(Gbias) 

measurements. Thus, those correlated uncertainties are greatly reduced in the ULIN(G) 

budget. The remaining UC contributions are comparatively small and include the non-

linearity of the reference detector and of the amplifiers, imperfect monitoring of the 

monochromatic light beam, temperature variations of the reference and DUT and their 

deviation from the reference temperature 25 °C as well as the impact of a changing bias light 

spectrum at different bias light intensities. Spatial uniformity stability and wavelength 

repeatability of the monochromatic beam also need to be considered. 

The facilities included in this inter-comparison use halogen bias light and generate the 

monochromatic beam either by filtering a xenon and halogen light sources with a 

monochromator or by a combination of a tuneable laser system with a monochromator. Both 

setups over-illuminate the DUT (i.e. the illuminated area is larger than the DUT active 

surface), which simplify the absolute calibration of the differential spectral responsivity. Due 

to the complexity of the systems, both setups can measure samples only up to wafer size, 

i.e. about 15.6 cm by 15.6 cm. 
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3.2 White Light Response (WLR) 

The WLR method is not explicitly mentioned in the linearity standard, even though it is 

included in the IEC 60904-8. It was developed by J. Hohl-Ebinger (Hohl-Ebinger et al., 2007) 

and inspired by (Dalal and Moore, 1977). It resembles the DSR method as for linearity 

measurement, with the exception that it measures differential white-light responsivity with a 

white light source rather than the spectral responsivity with monochromatic light. Hence, 

ISC(Gbias) is directly measured instead of calculated using the AM1.5G spectrum. This 

significantly reduces linearity measurements time but requires correction of the spectral 

mismatch present between the white light and the reference spectrum as well as between 

the SR of RC and DUT. The differential white-light responsivity 𝐼𝑠𝑐
𝑊𝐿𝑅( 𝐺𝑏𝑖𝑎𝑠) is integrated to 

acquire the absolute ISC(G) curve to determine the linearity of the DUT. 

Using a white light instead of a monochromatic beam means that a UC contribution due to 

the spectral mismatch factor (MMF) (IEC 60904-7, 2008) is likely introduced. The systematic 

error introduced by the presence of a MMF does not per se significantly affect ULIN(G) if the 

MMF is the same for all ISC(G) measurements in Inorm(G), because it will be cancelled in the 

mathematical ratio. However, as shown in (Hohl-Ebinger et al., 2007), the MMF can also 

change significantly with bias-light irradiance on nonlinear devices if they exhibit a strong 

bias-light dependence of the relative spectral responsivity. Such a relative change in MMF 

will, instead, affect the final ULIN(G) budget. Other main UC contributions are similar to the 

DSR measurements. 

The partner facility participating in the inter-comparison uses an unfiltered xenon lamp as 

white light source. However, the source can in general be improved upon by applying 

suitable AM1.5G filters to the xenon lamp, by adding/using LEDs or by using a shaped 

supercontinuum laser source (Mundus et al., 2015). The facility employed here measured 

devices up to wafer size. 

3.3 Solar simulator 

The solar simulator method measures directly ISC(G). The irradiance on the test plane of 

the solar simulator can be adjusted by interposing attenuation masks, filters or meshes in 

front of the lamp(s) (Kenny et al., 2013), by changing the solar simulator’s lamp power or by 

excluding some light sources in a multi-source setup with fully independent light sources 

(Salis et al., 2017). The irradiance has to be measured by a reference cell of known linearity. 

Because the change in spatial and spectral irradiance on the test plane can be significant 

depending on the specific procedure chosen to vary the total irradiance, one should apply a 

MMF correction (IEC 60904-7, 2008) and, if possible, a correction for spatial uniformity (Bliss 

et al., 2017) in order to reduce the overall measurement UC. The main advantage of using a 

large-area solar simulator for linearity measurements is that it can be used for measuring PV 

devices up to full-size modules. 

Because the solar simulator method relies on the irradiance measurement by a RC, the 

accuracy of Inorm(G), and so of L, depends also on the linearity of the RC short-circuit 

current over the entire irradiance range. Therefore, the reference cell linearity is an 

uncertainty component. Significant UC can also be introduced by the procedures employed 

to vary the irradiance on the test plane. Changes in the spectral irradiance can directly affect 
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the spectral MMF and variations in the spatial uniformity on test plane can affect the ISC(G) 

due to possible different irradiance received by the RC and the DUT. However, usually only 

the relative change in spectral irradiance and spatial uniformity between ISC(G) 

measurements has significant impact on ULIN(G), because any systematic error is generally 

introduced for all ISC(G) in (2) and has thus little to no impact on ULIN(G). The UC due to the 

data acquisition systems as well as that due to temperature difference between RC and DUT 

and variations from the reference 25 °C can also be major contributing factors. 

The participants to this measurement inter-comparison used either pulsed or steady-state 

xenon solar simulators. Attenuation masks, lamp intensity adjustments or lamps shuttering 

were used to change the irradiance on the test plane. MMF correction was applied by all 

partners on all measurements. Correction for irradiance spatial non-uniformity was included 

by one participant and for RCs only. 

3.4 Two-lamp method (TLM) 

The TLM was introduced in PV by K. Emery (Emery et al., 2006) as pass/fail test only. It is 

based on the superposition principle well known in photometry and its principle has already 

been roughly described in section 2. The basic set-up consists essentially of two light 

sources A and B, which can be intended in a wide sense from a single lamp with two main 

intensity levels (e.g. by applying a filter to it, so to halve the total irradiance) up to two 

separate groups of lamps (as in (Müllejans and Salis, 2018; Salis et al., 2017)). The 

necessary irradiance levels can be achieved by interposing filters, mask attenuators or 

meshes between the light sources and the test plane, by changing the power to the light 

source(s), by varying the distance between light source and device under test or by 

excluding some of the lamps in a multi-source solar simulator with individually-controllable 

lamps. A combination of these procedures can be used too, and this can be applied to 

various steps in the irradiance change as well. However, this should be done always with the 

forethought that the same principle must be used for a complete data set {IA; IB; IAB; Iroom}. For 

example, if a mesh is used with distinct lamps A and B to decrease the total irradiance 

(A + B) to a certain level, it has to be used for all three levels IA, IB and IAB but also for their 

Iroom, as in principle it could change also the background light detected by the DUT. 

The advantage of this method is that it does not require a RC, but only one calibrated 

point of the function ISC(G) (which is usually ISTC) according to the approach presented in 

(Müllejans and Salis, 2018). In case of single PV cells (as applied to this work) it is also 

independent on spectral and spatial variations of the irradiance, although it still requires class 

A temporal stability of the light source according to the IEC 60904-9 classification (IEC 

60904-9, 2007) during the acquisition of one data set (IA, IB and IAB).  

Variations in DUT temperature and in irradiance temporal stability are the main UC 

contributions to ULIN(G) because the three to four measurements of the short-circuit currents 

are taken sequentially in time. Monitor devices integrated into each light source could be 

used to correct for temporal instability of the irradiance, even though averaging the DUT’s 

reading over a long-time acquisition (typically 60 s) may be enough to significantly decrease 

this UC component. The use of a temperature-controlled system to keep the DUT stable in 

temperature can decrease the other UC component. The process of converting the raw data 
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to the correct Inorm(G) could be the most significant source of uncertainty, depending on the 

method employed (Müllejans and Salis, 2018). 

The partner facility in this inter-comparison used a multi-source Xe-lamp steady-state 

large-area solar simulator with independent lamps to illuminate the DUT with suitable 

subsets of the total of 11 lamps, when necessary in combination with a mesh to reach the 

lowest irradiance levels (about 25 W/m2 for sources A or B, meaning 50 W/m2 for their 

combination A+B).  

4 Inter-comparison results 

The inter-comparison included 25 PV devices of different size from WPVS-type reference 

cells to full-size modules. A description of the devices measured in this intercomparison can 

be found in Table 1 of (Salis et al., 2019). Furthermore, the spectral responsivity of the DUTs 

detailed here are available as supplementary data. The results of the different partners are 

anonymised with identifiers including the name of the method used to maintain some link 

between results and methods employed. 

4.1 Reference cells 

The active area of the tested RCs has dimension of 2 cm x 2 cm. A selection of the worst 

comparing L results for RCs is shown in Figure 2. They are four devices: S03- c-Si with 

KG5 filter cover, S04- non-linear c-Si with clear cover glass, S06- c-Si with 590 nm long pass 

filter cover glass and S01- c-Si without cover glass (see supplementary materials for SR 

data). All measurements show that there is an overall good agreement within stated UCs 

between all the laboratories, with only few exceptions. At 100 W/m2, the spread in L 

between partners is within ±0.2% at best and ±0.5% at worst. 

As evident from Table 1 and in Figure 2, the stated UCs of DSR 1 and TLM are 

significantly lower than for the other partners. These results, considered together with their 

UC, overlap in all cases. Even though, this overlap is very small  at low irradiance in 

measurements of S01 and S04. In those cases, the small overlap between DSR 1 and TLM 

UC bands might indicate that the uncertainty may be too stringent for one or both facilities at 

those conditions. However, it is noted that the results from the TLM for S01 and S04 are 

overall statistically closer to the reported non-linearity of the other two partners. 

The results reported by SolSim for S03 and S06 generally deviate the most from other 

partners. Even though these deviations are within the stated expanded UCs, one could 

attribute them to a possible error in the MMF correction due to some causes not fully 

considered in the calculation. 

The device S04 shows the strongest deviation from linearity for all laboratories and it was 

previously investigated in (Winter et al., 2008), where it shows a wavelength-independent 

nonlinear effect caused by the surrounding area of the active cell part. Since all participating 

facilities are over-illuminating the DUT area, all laboratories can spot the effect in a similar 

way. If an under-illuminating system had been used with the measurement spot in the centre 

of the sample, the device would have been measured as linear (Winter et al., 2008). 
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Figure 2: A selection of worst comparing L results for WPVS-type RCs; error 

bars indicate the stated UC. A few results do not overlap even within UC 

(see text), but overall there is a good agreement between partners. Note 

the different vertical scale for S04. 

Table 1: Example of UC in L as stated by the partners at various irradiances for 
device S01; the UC of the nearest datapoint to the irradiance was used.  

Nominal 
Irradiance 

[W/m2] 

Device S01 - Combined Uncertainty k=2 [%] 

DSR 1 DSR 2 WLR SolSim TLM 

200 0.21 2.38 2.00 0.70 0.31 

400 0.16 2.42 1.93 0.54 0.25 

600 0.11 2.36 1.96 0.51 0.18 

800 0.05 2.36 2.05 0.50 0.18 

1000 0.00 2.38 2.01 0.05 0.00 

4.2 Bare wafer cells 

Three different types of mono c-Si and one of poly c-Si large-area bare cells have been 

tested, which are identified in this paper as Type I, Type II, Type III and Poly c-Si. Spectral 

responsivity methods and solar simulator method were used to measure these devices. 

Figure 3 shows a selection of the bare cells’ results. As evident from the plots, all of them 

agree with each other within their stated uncertainty (worst-case ±0.75% overall). However, 

large scattering in the results of SolSim 2 is clearly evident for all devices. This might be 

related to a possible change in irradiance spatial non-uniformity, which was not corrected for 

but instead included in the measurement UC and which allows agreement with the other 
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results. Improvements of the measurement procedure and of its UC calculation have already 

been initiated on the basis of this round-robin inter-comparison. Note that the WLR system 

reported results only up to about 300 W/m2 or 500 W/m2, depending on the case. This was 

due to limitations in current measurements. 

 

  

  

Figure 3: Selection of L results of c-Si bare wafer cells; all shown measurements 

agree with each other within stated expanded uncertainties (k=2). 

4.3 Encapsulated wafer cells 

The same type of cells used for the previous group was encapsulated in mini-modules, 

where only individual cells were contacted and measured. Figure 4 shows a selection of the 

submitted results. Only three partners were able to measure these devices due to their 

increased size. Similar to the case of bare cells, all shown measurements agree with each 

other within their stated uncertainties (±0.75% overall). The DSR 1 facility reported an ISC 

dependence on irradiance closer to perfect linearity than the other two partners. Even though 

within uncertainty, SolSim 1 reported systematically higher values than DSR 1, while SolSim 

2 seem to show more random behaviour.  
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Figure 4: Selection of L results of encapsulated wafer cells; all shown 

measurements agree with each other within stated expanded 

uncertainties (k=2). 

4.4 Mini modules 

The mini modules tested are CIGS devices with 17 and 67 cells in series and an active 

area of about 10 x 10 cm2 and about 30 x 30 cm2, respectively. The largest device was 

measured using the solar simulator method only. As shown in Figure 5, a general good 

agreement is found with typical deviation between the results within ±0.5%, which is well 

within the stated uncertainties. The SolSim 1 solar simulator reported consistently larger 

deviations from linearity.  

  

Figure 5: L results of the two CIGS mini modules. 
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4.5 Modules 

  

Figure 6: L results of full-size PV modules; only the best- and worst-case 

comparisons are shown. 

Full-size PV modules were only measured using the solar simulator method. The five 

commercially available modules cover the same four c-Si wafer types tested as bare and 

encapsulated cells and incorporate either 60 or 96 cells within an area of about 1.6 x 1.0 m2. 

The L results shown in Figure 6 represent the worst- and best-case comparison of the five 

modules tested. Observed deviations between the two reported sets of results are all within 

stated uncertainties and no particular offset between them is observed. 

5 Discussion 

Overall, the results show that in all cases the measurements of the partner laboratories 

agree with each other within their stated uncertainties. As no clear measurement outliers 

were spotted, this intercomparison exercise gives a first input based on which all 

measurements can be considered reliable within stated UCs. However, the measurements 

and results reported here are –for the majority of the partners– only a first step towards full 

implementation of the linearity measurements for short-circuit current’s dependence on 

irradiance, because most laboratories had to develop their own procedure and UC 

calculation specifically for this project.  This is especially relevant in the case of full-size PV 

module measurements, for which there can be significant additional UC contributions due to 

the device size, and here only two laboratories reported results. All partners will now 

therefore critically assess their own uncertainty analysis based on the outcome of this inter-

comparison as well as on further independent evaluations. 

In order to state that the non-linearity of the short-circuit current of a PV device as function 

of irradiance is within the limit of ±2% required by the standard IEC 60904-10, its expanded 

measurement uncertainty (k = 2) should be much below this. Some of the reported 

uncertainties are above 2% and most possibly represent just the uncertainty in ISC. The 

uncertainty of the linearity result should consider the correlations between the single 

measurements, but also those introduced by the analysis. For example, if the same RC is 

used for all measurements, the uncertainty of ISTC is correlated between all ISC(G) 

measurements and thus it has reduced effect on  the UC of L itself. However, the 

contribution of the (non-)linearity of the RC (and therefore of the UC of its reading at 

conditions other than STC) should be considered. Additionally, because Inorm(1000 W/m2) = 1 

by definition (see equation (2)), this point has very low uncertainty, caused only by the 
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uncertainty in the irradiance reading due to imperfect determination of the ISC of the RC used 

to measure it. Thus, depending on the measurement procedure and set-up, ULIN(G) can be 

lower than the combined uncertainty for ISC(G). 

Some RC results (devices S01 and S04) suggest that uncertainties are likely too stringent 

at low irradiance for the DSR 1 and/or the TLM procedures. However, even though the 

overlap of UC bands is very small, statistically both still agree with each other. 

Overall it was found that most PV devices tested were linear (within stated uncertainties), 

which is good news for their use as reference devices. For a comparison of methods and 

actual procedures a DUT with a significant (i.e. larger than uncertainties) non-linearity would 

be more appropriate. At least for the RCs there was one DUT of such kind (S04). 

6 Conclusion 

This work presented the results of the first reported interlaboratory comparison of linearity 

measurements for short-circuit current as function of irradiance. All linearity results submitted 

by the partner laboratories agree with each other within the stated expanded uncertainty 

(k = 2). Because a large variety of devices of different size and spectral responsivity (with 

regards to procedures including point by point MMF corrections) has been used, it shows 

that the applied procedures can measure a large range of PV devices sufficiently reliably, 

although the UCs calculation has likely to be refined for all. For the TLM, linearity curves over 

the full irradiance range were constructed from the measured data, so that for the first time 

linearity results obtained by this method were directly comparable to those obtained by the 

other methods. 

A critical assessment of the measurement uncertainties led to several outcomes. First, in 

a few cases partners seem to have a too stringent uncertainty at low irradiance as some 

results show very little overlap within the stated UCs. Secondly and more importantly, the 

uncertainty of L can in principle be overestimated when uncertainty correlations are not 

considered and can thus result in false positives. Depending on the measurement procedure 

and facility, accounting for correlations might significantly reduce the final linearity uncertainty 

ULIN(G). The latter needs to be below 2% to meaningfully assess a device as linear within the 

present standard’s specifications. 

Inputs for improvement of the linearity standard IEC 60904-10 have been discussed here 

on the basis of the intercomparison methodology and results. A clear need to separate the 

data analysis for the short-circuit current’s dependence on irradiance from all other linear 

dependences dealt with by the standard has been shown. The suggestions are aimed to 

improve comparability between measurement procedures and to greatly reduce the 

possibility of false positives (i.e. declaring devices as linear when in fact they are not).  
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