Intramolecular Hydrogen Bonded Tertiary Phosphines as 1,3,5-Triaza-7-phosphaadamantane (PTA) Analogues

Allen T. Ekubo, Mark R. J. Elsegood, Andrew J. Lake and Martin B. Smith*

Department of Chemistry, Loughborough University, Loughborough, Leics,

LE11 3TU, UK

^{*} To whom correspondence should be addressed. E-mail: m.b.smith@lboro.ac.uk. Tel: +44 (0)1509 222553. Fax: +44 (0)1509 223925.

Abstract–New cationic trialkylphosphines $[P(CH_2NH_2R)\{CH_2N(R)CH_2N(R)CH_2\}]^+$ ($R = C_6H_5CH_2$ **a**; 4-FC₆H₄CH₂ **b**), as their Cl⁻ (**1a**, **1b**), SbF₆⁻ (**2a**, **2b**) and PF₆⁻ (**3a**, **3b**) salts, are described. The phosphine framework is conformational locked, in the solid state, through pairs of intramolecular N–H···N hydrogen-bonds which are maintained in the Ru^{II} and Rh^{III} complexes **4** and **5**. Phosphines **1a–3b** can be considered as charged variants of the well known PTA ligand.

Introduction

The ability by which tertiary phosphines can be modified undoubtedly remains a major reason why this ligand class continues to find spectacular success in many branches of chemistry. Considerable recent interest has focused on the aliphatic caged tertiary phosphine 1,3,5-triaza-7-phosphaadamantane (hereafter abbreviated PTA) which has been shown to possess many desirable attributes including water solubility. 1 Synthetic routes for modifying the adamantanoid framework of PTA such as protonation/alkylation of the tertiary nitrogen atoms or upper/lower rim functionalization have been reported.^{2,3} Consequently numerous applications of PTA and their derivatives in biomedicine,⁴ coordination and organometallic chemistry^{4,5} and catalysis,⁶ especially in aqueous media, have been realized. One aspect of PTA not previously investigated is the ability to manipulate the nitrogen centers by, for example, changing the alkyl/aryl substituents yet preserve the tertiary amine character as opposed to quaternization^{3b} or forming boronated species.^{5c} One approach by which this could be accomplished is to envisage removal of two "upper-rim" methylene (N-CH₂-N) groups from PTA thereby allowing different R groups on nitrogen to be incorporated. Using suitable non-covalent interactions, such as intramolecular H-bonding, would allow for retention of the adamantane core. As part of ongoing studies in our group we have recently developed highly functionalized (di)tertiary phosphines with regiospecific H-bonding capabilities. Herein a simple concept for the synthesis of novel cationic trialkylphosphines, with similar stereoelectronic properties to PTA, and a preliminary exploration of their late transition metal chemistry are reported. All new compounds have been characterized by a combination of spectroscopic and single crystal X-ray diffraction techniques.

Experimental Section

Materials. All manipulations and reactions were carried out under aerobic conditions. Dichloromethane was previously distilled over CaH₂, diethyl ether over sodium/benzophenone and tetrakis(hydroxymethyl)phosphonium chloride (THPC) was recrystallized from 2-propanol before use.⁸ All other solvents and chemicals were obtained from commercial suppliers and used without further purification. The dinuclear metal compounds $\{RuCl_2(\eta^6-p\text{-cymene})\}_2$ and $\{RhCl_2(\eta^5\text{-Cp*})\}_2$ were prepared according to published procedures.^{9,10}

Instrumentation. FT–IR spectra were recorded within pressed KBr pellets over the range 4000–200 cm⁻¹ using a Perkin-Elmer system 2000 FT spectrometer. ¹H NMR and ³¹P{¹H} NMR spectra were recorded on a Bruker DPX-400 FT spectrometer with chemical shifts (δ) reported relative to external TMS or 85% H₃PO₄. Coupling constants (*J*) in Hz. All NMR spectra were recorded in dmso-*d*⁶ solutions at ca. 298 K. Elemental analyzes (Perkin-Elmer 2400 CHN or Exeter Analytical, Inc. CE-440 Elemental Analyzers) were performed by the Loughborough University Analytical Service within the Department of Chemistry. Mass spectra for 1a–5 were analyzed (JEOL SX102 instrument) by fast atom bombardment (FAB) in a positive ionization mode using a 3-nitrobenzyl alcohol (NOBA) matrix. Compounds 6a and 6b were analyzed (Finnigan MAT 95XP) by low-resolution FAB (LSIMS) in positive ionization mode using CH₂Cl₂ as the solvent and a NOBA matrix.

Preparation of 1a. To a solution of THPC (3.83 g, 20.1 mmol) in EtOH (100%, 75 ml) was added dropwise C₆H₅CH₂NH₂ (8.94 g, 83.4 mmol). During the addition heat was generated and thick white fumes were observed. After ca. 5 min the solution became clear. The mixture was stirred for 2 h at room temperature (frequently some unwanted "sticky" material was formed which was separated from the solution by decantation) and the volume reduced on a rotary evaporator to approx. a quarter of the original volume. The resulting crystalline solid was filtered and dried under vacuum. Yield: 7.60 g

(86%). Selected data: ${}^{31}P\{{}^{1}H\}$ NMR: -55.0 ppm. ${}^{1}H$ NMR: 9.55 (br, NH₂, 2H), 7.59-7.01 (m, arom. H, 15H), 4.21 (s, CH₂, 2H), 3.42–3.38 (m, CH₂, 8H), 3.18 (d, ${}^{2}J_{PH}$ 13.6, CH₂, 2H), 2.65 (t, CH₂, 2H) ppm. FT–IR: 3028 and 2781 (br, NH and CH) cm⁻¹. FAB–MS: m/z 404 [M – Cl]. Anal. Calcd. for C₂₅H₃₁N₃PCl: C, 68.24; H, 7.12; N, 9.55. Found: C, 68.25; H, 7.10; N, 9.58.

Preparation of 1b. To a solution of THPC (2.85 g, 14.9 mmol) in EtOH (100%, 55 ml) was added dropwise 4-FC₆H₄CH₂NH₂ (7.77 g, 62.0 mmol). The mixture was stirred for 2 h at room temperature and the volume reduced on a rotary evaporator to approx. a quarter of the original volume. The resulting crystalline solid was filtered and dried under vacuum. Additional crops of **1b** were obtained when the filtrate was allowed to stand for more than 24 h. Yield: 6.11 g (83%). Selected data: ³¹P{¹H} NMR: -55.2 ppm. ¹H NMR: 7.62–6.93 (m, arom. H, 12H), 4.21 (s, CH₂, 2H), 3.29 (multiplicity could not fully be assigned due to overlap with residual solvent peaks, CH₂), 3.18 (d, ²J_{PH} 13.8, CH₂, 2H), 2.67 (t, CH₂, 2H) ppm. FT–IR: 3044 and 2821 (br, NH and CH) cm⁻¹. FAB–MS: *m/z* 458 [M – Cl]. Anal. Calcd. for C₂₅H₂₈F₃N₃PCl: C, 60.78; H, 5.73; N, 8.51. Found: C, 60.56; H, 5.58; N, 8.41.

Preparation of 2a. A solution of Na(SbF₆) (0.18 g, 0.69 mmol) in the minimum volume of HPLC grade CH₃OH was added to a solution of **1a** (0.20 g, 0.45 mmol) in HPLC grade CH₃OH (10 ml). The solution was stirred at room temperature for 30 min. Concentration of the solution, under reduced pressure, and addition of distilled water afforded a colorless precipitate which was filtered and dried under vacuum. Yield: 0.28 g (97%). Selected data: ³¹P{¹H} NMR: -55.2 ppm. ¹H NMR: 9.01 (br, NH₂, 2H), 7.49–6.92 (m, arom. H, 15H), 4.22 (s, CH₂, 2H), 3.57–3.41 (multiplicity could not fully be assigned due to overlap with residual solvent peaks, CH₂), 3.10 (d, ²J_{PH} 12, CH₂, 2H), 2.66 (t, CH₂, 2H) ppm. FT–IR: 3064, 3031 and 2808 (s, NH and CH), 654 (vs, SbF) cm⁻¹. FAB–MS: m/z 404 [M –

SbF₆]. Anal. Calcd. for C₂₅H₃₁N₃PSbF₆·0.5H₂O: C, 46.25; H, 4.98; N, 6.47. Found: C, 46.35; H, 4.80; N, 6.46.

Preparation of 2b. A solution of Na(SbF₆) (0.16 g, 0.61 mmol) in the minimum volume of HPLC grade CH₃OH was added to a solution of **1b** (0.20 g, 0.40 mmol) in HPLC grade CH₃OH (10 ml). The solution was stirred at room temperature for 30 min. Concentration of the solution, under reduced pressure, and addition of distilled water afforded a colorless precipitate which was filtered and dried under vacuum. Yield: 0.21 g (73%). Selected data: 31 P{ 1 H} NMR: $^{-55.0}$ ppm. 1 H NMR: 8.95 (br, NH₂, 2H), 7.57–6.98 (m, arom. H, 12H), 4.22 (s, CH₂, 2H), 3.84–3.50 (multiplicity could not fully be assigned due to overlap with residual solvent peaks, CH₂), 3.10 (d, 2 J_{PH} 13.6, CH₂, 2H), 2.67 (t, CH₂, 2H) ppm. FT–IR: 3052, 2953, 2830, 2799 and 2730 (m, NH and CH), 653 (vs, SbF) cm⁻¹. FAB–MS: m/z 458 [M – SbF₆]. Anal. Calcd. for C₂₅H₂₈N₃PSbF₉·0.5H₂O: C, 42.70; H, 4.16; N, 5.98. Found: C, 42.46; H, 3.90; N, 5.87.

Preparation of 3a. A solution of K(PF₆) (0.13 g, 0.71 mmol) in the minimum volume of HPLC grade CH₃OH was added to a solution of 1a (0.20 g, 0.45 mmol) in HPLC grade CH₃OH (10 ml). The solution was stirred at room temperature for 30 min. Concentration of the solution, under reduced pressure, and addition of distilled water afforded a colorless precipitate which was filtered and dried under vacuum. Yield: 0.18 g (72%). Selected data: ³¹P{¹H} NMR: -54.6, -144.2 ppm, ¹J_{PF} 711 (PF₆⁻). ¹H NMR: 9.02 (br, NH₂, 2H), 7.49–7.01 (m, arom. H, 15H), 4.23 (s, CH₂, 2H), 3.85–3.41 (multiplicity could not fully be assigned due to overlap with residual solvent peaks, CH₂), 3.10 (d, ²J_{PH} 14, CH₂, 2H), 2.67 (t, CH₂, 2H) ppm. FT–IR: 3030 and 2809 (w, NH and CH), 842 (vs, PF) cm⁻¹. FAB–MS: *m/z* 404 [M – PF₆]. Anal. Calcd. for C₂₅H₃₁N₃P₂F₆: C, 54.64; H, 5.70; N, 7.65. Found: C, 55.03; H, 5.61; N, 7.68.

Preparation of 3b. A solution of K(PF₆) (0.11 g, 0.60 mmol) in the minimum volume of HPLC grade CH₃OH was added to a solution of 1b (0.20 g, 0.40 mmol) in HPLC grade CH₃OH (10 ml). The solution was stirred at room temperature for 30 min. Concentration of the solution, under reduced pressure, and addition of distilled water afforded a colorless precipitate which was filtered and dried under vacuum. Yield: 0.20 g (83%). Selected data: ³¹P{¹H} NMR: -54.4, -144.2 ppm, ¹J_{PF} 714 (PF₆⁻). ¹H NMR: 9.00 (br, NH₂, 2H), 7.58–6.98 (m, arom. H, 12H), 4.22 (s, CH₂, 2H), 3.84–3.51 (multiplicity could not fully be assigned due to overlap with residual solvent peaks, CH₂), 3.12 (d, ²J_{PH} 13.6, CH₂, 2H), 2.67 (t, CH₂, 2H) ppm. FT–IR: 3077, 3042, 3007, 2949, 2820 (m, NH and CH), 848 (vs, PF) cm⁻¹. FAB–MS: *m*/*z* 458 [M – PF₆]. Anal. Calcd. for C₂₅H₂₈N₃P₂F₉·H₂O: C, 48.32; H, 4.88; N, 6.76. Found: C, 48.21; H, 4.51; N, 6.72.

Preparation of RuCl₂(η⁶-*p*-cymene)(2a) (4). To a stirred solution of {RuCl₂(η⁶-*p*-cymene)}₂ (0.030 g, 0.049 mmol) in CH₂Cl₂ (10 ml) was added 2a (0.063 g, 0.10 mmol) as a solid in one portion. The solution was stirred for 30 min, the volume reduced to ca. 1–2 ml under reduced pressure and Et₂O (10 ml) added. The suspension was stirred for 30 min and the solid collected on a glass sinter and dried under vacuum. Yield: 0.080 g (91%). Selected data: 31 P{ 1 H} NMR: 7.3 ppm. 1 H NMR: 8.98 (br, NH₂, 2H), 7.53–6.99 (m, arom. H, 15H), 5.94 (dd, 3 J_{PH} 8, C₆H₄, 4H), 4.29 (s, CH₂, 2H), 4.02 (d, 2 J_{PH} 4.8, CH₂, 2H), 3.80–3.71 (m, CH₂, 4H), 3.45 (partially obscured by solvent, CH₂), 2.62 (sept, 3 J_{PH} 6.8, CH(CH₃)₂, 1H), 1.96 (CH₃, 3H), 1.14 (d, 3 J_{PH} 6.8, CH(CH₃)₂, 6H) ppm. FT–IR: 3060 and 2967 (w, NH and CH), 660 (vs, SbF) cm⁻¹. FAB–MS: m/z 710 [M – SbF₆]. Anal. (bulk material) Calcd. for C₃₅H₄₅N₃PSbF₆RuCl₂·3.5CH₂Cl₂: C, 37.18; H, 4.22; N, 3.38. Found: C, 37.17; H, 4.00; N, 3.24. A single crystal X-ray determination of 4 showed 1.67 CH₂Cl₂ molecules present in the crystal lattice.

Preparation of RhCl₂(η⁵-**Cp***)(**2a**) (**5**). To a stirred solution of {RhCl₂(η⁵-Cp*)}₂ (0.030 g, 0.050 mmol) in CH₂Cl₂ (10 ml) was added **2a** (0.062 g, 0.10 mmol) as a solid in one portion. The solution was stirred for 30 min, the volume reduced to ca. 1–2 ml under reduced pressure and Et₂O (10 ml) added. The suspension was stirred for 30 min and the solid collected on a glass sinter and dried under vacuum. Yield: 0.090 g (98%). Selected data: 31 P{ 1 H} NMR: 4.6 ppm, 1 J_{RhP} 144. 1 H NMR: 7.51–6.91 (m, arom. H, 15H), 4.37 (s, CH₂, 2H), 4.10 (s, CH₂, 2H), 3.76 (d, 2 J_{PH} 12.4, CH₂, 4H), 3.22 (multiplicity could not fully be assigned due to overlap with residual solvent peaks, CH₂), 1.67 (s, η⁵-Cp*, 15H) ppm. FT–IR: 3031 (br, NH and CH), 660 (vs, SbF) cm⁻¹. FAB–MS: m/z 712 [M – SbF₆]. Anal. (bulk material) Calcd. for C₃₅H₄₆N₃PSbF₆RhCl₂·CH₂Cl₂: C, 41.81; H, 4.68; N, 4.06. Found: C, 41.46; H, 4.50; N, 4.07. A single crystal X-ray determination of **5** showed two CH₂Cl₂ molecules present in the crystal lattice.

Preparation of *trans*-RhCl(CO)(1a)₂ (6a). To a stirred solution of {RhCl(CO)₂}₂ (0.030 g, 0.080 mmol) in CH₂Cl₂ (10 ml) was added 1a (0.14 g, 0.32 mmol) as a solid in one portion. The dark orange solution immediately went pale yellow and a yellow solid deposited within ca. 10 min. The suspension was stirred for 30 min, the volume reduced to ca. 1–2 ml under reduced pressure and Et₂O (10 ml) added. The solid was collected on a glass sinter and dried under vacuum. Yield: 0.14 g (88%). Due to the extreme insolubility of 6a in both non polar and polar solvents no meaningful NMR (¹H, ³¹P) data could be obtained for this compound. FT–IR: 1979 (CO) cm⁻¹. LSI–MS: *m/z* 1009 [M – 2H – Cl]. Anal. Calcd. for C₅₁H₆₂N₆OP₂RhCl₃·1.25CH₂Cl₂: C, 54.45; H, 5.65; N, 7.29. Found: C, 54.28; H, 5.40; N, 7.46.

Preparation of trans**-RhCl(CO)(1b)₂ (6b).** To a stirred solution of {RhCl(CO)₂}₂ (0.030 g, 0.080 mmol) in CH₂Cl₂ (10 ml) was added **1b** (0.15 g, 0.30 mmol) as a solid in one portion. The dark orange

solution immediately went pale yellow and a yellow solid deposited within ca. 10 min. The suspension was stirred for 30 min, the volume reduced to ca. 1–2 ml under reduced pressure and Et₂O (10 ml) added. The solid was collected on a glass sinter and dried under vacuum. Yield: 0.16 g (93%). Due to the extreme insolubility of **6b** in both non polar and polar solvents no meaningful NMR (¹H, ³¹P) data could be obtained for this compound. FT–IR: 1979 (CO) cm⁻¹. LSI–MS: *m/z* 1117 [M – 2H – Cl]. Anal. Calcd. for C₅₁H₅₆N₆OP₂F₆RhCl₃·CH₂Cl₂: C, 50.40; H, 4.72; N, 6.78. Found: C, 50.63; H, 4.70; N, 6.94.

X-ray crystallography. Suitable crystals of **1b** were obtained by allowing an ethanol filtrate, obtained from the reaction of THPC with 4-FC₆H₄CH₂NH₂, to stand for several days. Crystals of **2b** and **3a** were obtained upon layering a CH₂Cl₂ solution with petroleum ether (b.p. 40–60 °C) over several days. Slow diffusion of petroleum ether (b.p. 40–60 °C) into a CDCl₃/CH₂Cl₂ solution gave X-ray quality crystals of **4**·1.67CH₂Cl₂. Vapor diffusion of Et₂O into a CH₂Cl₂ solution gave suitable crystals of **5**·2CH₂Cl₂.

Measurements for **1b**, **2b**, **3a** and **4**·1.67CH₂Cl₂ were made on a Bruker Apex 2 CCD diffractometer, at 150 K, using graphite-monochromated radiation from a sealed tube Mo– $K_α$ source (λ = 0.71073 Å). Diffraction data for **5**·2CH₂Cl₂ was collected, at 153 K, using a rotating anode source and a Bruker-Nonious Roper CCD camera. Narrow frame ω-scans were employed for **1b**, **2b**, **3a** and **4**·1.67CH₂Cl₂, φ and ω-scans were used for **5**·2CH₂Cl₂. Intensities were corrected semi-empirically for absorption, based on symmetry-equivalent and repeated reflections. The structures were solved by direct methods (Patterson synthesis for **4**·1.67CH₂Cl₂) and refined on F^2 values for all unique data by full-matrix least-squares. Table 1 gives further details. All non-hydrogen atoms were refined anisotropically. NH hydrogens for **2b**, **3a** and **4** had coordinates freely refined with U_{eq} set to $1.2U_{eq}$ of the carrier atom, whilst the remaining hydrogen coordinates were constrained using a riding model with U_{eq} set to $1.2U_{eq}$

of the carrier atom (1.5 U_{eq} for methyl hydrogen). In $4\cdot1.67$ CH₂Cl₂, one of the CH₂Cl₂ molecules was modeled as disordered over two sets of positions. This disorder was refined with restraints on geometry and anisotropic displacement parameters. Major component = 66.0(3)%. In $5\cdot2$ CH₂Cl₂, the SbF₆⁻ counter ion was found to be disordered over two sets of positions and was refined as above; major component = 80.7(5)%. Programs used were COLLECT¹¹ or Bruker AXS APEX 2^{12} for diffractometer control and DENZO¹³ or SAINT¹⁴ for frame integration, Bruker SHELXTL^{15,16} for structure solution, refinement and molecular graphics and local programs. Disordered molecules of CH₂Cl₂ (for $5\cdot2$ CH₂Cl₂) were modeled by the Platon Squeeze procedure.¹⁷

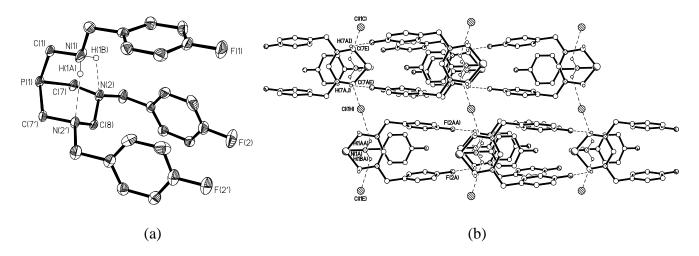
Table 1. Details of the X-ray data collections and refinements for compounds **1b**, **2b**, **3a**, **4**·1.67CH₂Cl₂ and **5**·2CH₂Cl₂.

Compound	1b	2b	3a	4 ⋅1.67CH ₂ Cl ₂	5·2CH ₂ Cl ₂
formula	C ₂₅ H ₂₈ ClF ₃ N ₃ P	C ₂₅ H ₂₈ F ₉ N ₃ PSb	C ₂₅ H ₃₁ F ₆ N ₃ P ₂	C _{36.67} H _{48.33} Cl _{5.33} F ₆ N ₃ PRuSb	C ₃₇ H ₅₀ Cl ₆ F ₆ N ₃ PRhSb
M	493.92	694.22	549.47	1087.65	1119.13
Cryst dimens, mm ³	0.40 x 0.34 x 0.23	0.27 x 0.21 x 0.04	0.50 x 0.21 x 0.15	0.31 x 0.22 x 0.11	0.16 x 0.10 x 0.04
Cryst morphology and color	block, colorless	plate, colorless	block, colorless	block, orange	plate, orange
Cryst syst	orthorhombic	triclinic	orthorhombic	triclinic	monoclinic
space group	Ama2	<i>P</i> –1	Pbca	P-1	$P2_1/n$
a/Å	13.7194(15)	8.5038(12)	17.9476(5)	12.9426(5)	8.9106(3)
$b/ ext{Å}$	18.513(2)	8.8389(13)	15.8400(5)	14.0425(5)	14.7367(4)
$c/ ext{Å}$	9.5476(10)	19.082(3)	19.1365(6)	14.7175(6)	30.8857(9)
α /(deg)		77.019(2)		65.2785(5)	
β /(deg)		78.879(2)		70.5853(5)	95.887(2)
γ/(deg)		84.880(2)		66.5392(5)	
V /Å 3	2425.0(5)	1369.8(3)	5440.3(3)	2184.23(15)	4034.3(2)
z	4	2	8	2	4
μ/mm^{-1}	0.265	1.147	0.220	1.383	1.578
θ range/°	2.20-28.97	2.23-24.76	2.02-30.55	1.67-30.55	2.00-27.55
measured reflns	10554	10538	62276	25887	47660
independent reflns	2932	4663	8335	13047	9116
observed reflns	2902	4154	6759	11295	6545
$(F^2 > 2\sigma(F^2))$					
$R_{\rm int}$	0.0216	0.0227	0.0291	0.0183	0.0658
R1 $[F^2 > 2\sigma(F^2)]^a$	0.0546	0.0259	0.0377	0.0377	0.0830
wR2 [all data] ^b	0.1281	0.0675	0.1091	0.1033	0.2031
largest difference map features/eÅ ³	0.388, -0.621	0.838, -0.759	0.408, -0.316	1.863, -1.184	1.389, -0.648

 $[^]a R1 = \sum ||F_{\rm O}| - |F_{\rm C}|| / \sum |F_{\rm O}|. \ ^b \ wR2 = [\sum [w(F_{\rm O}{}^2 - F_{\rm C}{}^2)^2] / \sum [w(F_{\rm O}{}^2)^2]]^{1/2}.$

Results and Discussion

Commercially available tetrakis(hydroxymethyl)phosphonium chloride (THPC, [P(CH₂OH)₄]Cl) has previously been shown to react with primary aromatic amines, through a series of condensation and elimination steps, to give aniline based tertiary phosphines.^{8,18} In contrast we have found when more basic benzylic amines such as $C_6H_5CH_2NH_2$ and 4-FC₆H₄CH₂NH₂ are reacted with THPC (ca. 4:1 ratio), crystalline cationic chloride salts **1a** and **1b** are obtained in high yields (typical non-optimized yields >80%, Scheme 1). Using this procedure we have successfully synthesized batches of **1a** at the 5–10 g scale. Anion metathesis of **1a** or **1b** with Na(SbF₆) or K(PF₆) in CH₃OH at r.t. gave the corresponding salts **2a–3b** in excellent yields (72–97%). Compounds **1a–3b** have been fully characterized by spectroscopic and analytical methods. In particular, the $^{31}P\{^{1}H\}$ NMR spectra (dmso- 46) of **1a–3b** showed a single phosphorus resonance around δ_P –55, some 40 ppm downfield with respect to PTA [δ_P –96.2, D₂O].^{2a} At ambient temperature **1a–3b** possess good solubility in CH₂Cl₂, CH₃OH and dmso but were found to be insoluble in H₂O. Furthermore, in the solid state **1a–3b** are air stable, but slowly oxidize in dmso- 46 solution over ca. 24 h.


Scheme 1 Preparation of salts 1a-3b.

HO P OH (i) R
$$\neg$$
 + CI R \neg + CI R \neg + CI R \neg + X \neg H \neg H \neg H \neg H \neg R \neg + X \neg H \neg H \neg R \neg + X \neg H \neg H \neg R \neg + X \neg H \neg R \neg + X \neg + X \neg P \neg + X \neg +

^aKey: Reagents and conditions: (i) 4.1 equiv C₆H₅CH₂NH₂ or 4.2 equiv 4-FC₆H₄CH₂NH₂, C₂H₅OH (ii) Na(SbF₆) or K(PF₆), CH₃OH.

The X-ray structures of 1b (Figure 1), 2b (Supporting Information) and 3a (Figure 2) have been determined. Compound 1b was found to lie across a crystallographic mirror plane that bisects the ammonium group of the cation and the methylene diamine bridge (mirror plane runs through P1/C1/N1/C2/C3/C6/F1/C8). Inspection of the intracage P-C bond lengths and P-C-N bond angles reveals close similarities with those of PTA.¹⁹ The C-P-C angles within the P-C-N-C-N-C ring in **1b**, **2b** and **3a** are in the range 97.78(5)–99.4(2)° and slightly enlarged in comparison with PTA [C–P–C 96.1(1)°]. 19 The most significant structural feature observed in 1b, 2b and 3a is the presence of a pair of intramolecular hydrogen-bonds between $N(1)-H(1A)\cdots N(2)$ and $N(1)-H(1B)\cdots N(3)$ [1b, $N(1)\cdots N(2)$ 2.915(5) Å, H(1B)···N(2) 2.27 Å, N(1)–H(1B)···N(2) 126°. **2b**, N(1)···N(2) 2.804(3) Å, H(1A)···N(2) 2.14(3) Å, $N(1)-H(1A)\cdots N(2)$ $138(3)^{\circ}$ and $N(1)\cdots N(3)$ 2.841(3) Å, $H(1B)\cdots N(3)$ 2.20(3) Å, $N(1)-H(1B)\cdots N(3)$ 130(2)°. **3a**, $N(1)\cdots N(2)$ 2.8506(13) Å, $H(1A)\cdots N(2)$ 2.241(15) Å, $N(1)-H(1A)\cdots N(2)$ 128.7(12)° and $N(1)\cdots N(3)$ 2.8234(13) Å, $H(1B)\cdots N(3)$ 2.154(15) Å, N(1)-H(1B)···N(3) 132.9(12)°]. Various additional weak intermolecular H-bonding contacts exist between the cations and Cl⁻, SbF₆⁻ or PF₆⁻ counter ions leading to infinite 1-D chains or 2-D sheet structures (Supporting Information for further details).

The single crystal data highlight three key findings regarding the N–H···N hydrogen-bonded framework²⁰ in the cations of **1b**, **2b** and **3a**, namely (i) while all synthetic reactions were performed in alcohol solvents (CH₃OH or C₂H₅OH), or required water for precipitation, no disruption of the N–H···N intramolecular hydrogen-bonded motif was apparent under the experimental/crystallization conditions employed, (ii) the core structure of each cation is independent of counter anion (Cl⁻, SbF₆⁻ or PF₆⁻) even though the potential for alternate hydrogen-bonding arrangements involving these anions is possible, and (iii) the absence of N–H···F–C contacts, albeit rarely observed²¹, shows that the three electronegative fluorines in the 4-position (**1b** and **2b**) do not disrupt the N–H···N hydrogen-bonding array found here.

Figure 1. (a) ORTEP of the cation in **1b**. Selected bond lengths (Å) and angles (deg). P(1)–C(1) 1.841(5), P(1)–C(7) 1.847(3). P(1)–C(1)–N(1) 116.2(3), P(1)–C(7)–N(2) 113.8(2). Thermal ellipsoids are drawn at the 50% probability level. (b) Packing plot of **1b** viewed along the *c*-axis showing the H-bonded sheet pattern.

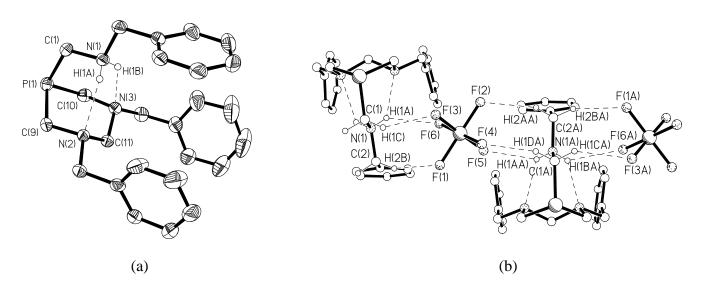


Figure 2. (a) ORTEP of the cation in 3a. Selected bond lengths (Å) and angles (deg). P(1)–C(1) 1.8490(12), P(1)–C(9) 1.8359(12), P(1)–C(10) 1.8366(13). P(1)–C(1)–N(1) 116.70(7), P(1)–C(9)–N(2) 114.09(7), P(1)–C(10)–N(3) 113.53(7). Thermal ellipsoids are drawn at the 50% probability level. (b) Packing plot of 3a viewed along the *c*-axis showing the 1-D chain pattern.

Dyson and co-workers^{4h,4j} have previously shown that half-sandwich organometallic Ru^{II} and Rh^{III} compounds of PTA can be synthesized. In order to assess whether **2a** could function as a similar *P*-monodentate ligand, the piano-stool complexes **4** and **5** were prepared in high yields. Reassuringly the coordination chemical shifts for **4** ($\Delta\delta_P$ 62 ppm) and **5** ($\Delta\delta_P$ 60 ppm) were found to closely match those of RuCl₂(η^6 -*p*-cymene)(PTA) ($\Delta\delta_P$ 60 ppm) and RhCl₂(η^5 -Cp*)(PTA) ($\Delta\delta_P$ 65 ppm)^{4h,4j} suggesting comparable stereoelectronic properties.

X-ray analyses of **4** and **5** have been performed (Figure 3). The M–P, M–Cl(1) and M–Cl(2) (M = Ru or Rh) parameters for **4** and **5** are similar to those of analogous complexes with PTA.^{2b,4h,4j} Morover, upon coordination of the phosphine **2a**, there are minimal differences in the P–C and P–C–N metric parameters with respect to **1b**, **2b** or **3a**. As seen previously for **1b**, **2b** or **3a**, pairs of intramolecular N–H···N hydrogen-bonds are once again maintained upon complexation [**4**, N(1)···N(2) 2.894(3) Å, H(1A)···N(2) 2.22(3) Å, N(1)–H(1A)···N(2) 130(3)° and N(1)···N(3) 2.840(3) Å, H(1B)···N(3) 2.24(3) Å, N(1)–H(1B)···N(3) 128(3)°. **5**, N(1)···N(2) 2.952(9) Å, H(1A)···N(2) 2.34 Å, N(1)–H(1A)···N(2) 124° and N(1)···N(3) 2.851(8) Å, H(1B)···N(3) 2.18 Å, N(1)–H(1B)···N(3) 129°]. Additional weak H-bonding interactions link molecules into dimer pairs (Supporting Information) and is a feature that has recently been observed in cationic dimeric Ru^{II} complexes of PTA.²²

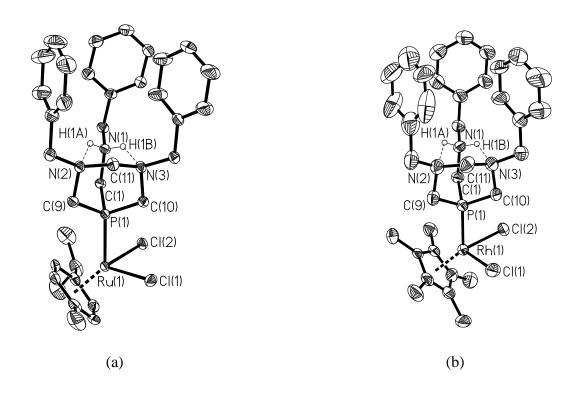


Figure 3. (a) ORTEP of the cation in 4. Selected bond lengths (Å) and angles (deg). Ru(1)–Cl(1) 2.4064(7), Ru(1)–Cl(2) 2.4103(6), Ru(1)–P(1) 2.3293(6), Ru(1)–C $_{av}$ 2.210(3), P(1)–C(1) 1.843(2), P(1)–C(9) 1.831(3), P(1)–C(10) 1.828(2). Cl(1)–Ru(1)–Cl(2) 88.00(2), Cl(1)–Ru(1)–P(1) 87.60(2), Cl(2)–Ru(1)–P(1) 83.75(2), P(1)–C(1)–N(1) 115.07(16), P(1)–C(9)–N(2) 110.35(16), P(1)–C(10)–N(3) 111.74(16). (b) ORTEP of the cation in 5. Selected bond lengths (Å) and angles (deg). Rh(1)–Cl(1) 2.406(2), Rh(1)–Cl(2) 2.424(2), Rh(1)–P(1) 2.2851(19), Rh(1)–C $_{av}$ 2.188(8), P(1)–C(1) 1.834(7), P(1)–C(9) 1.836(8), P(1)–C(10) 1.830(7). Cl(1)–Rh(1)–Cl(2) 92.67(8), Cl(1)–Rh(1)–P(1) 88.85(7), Cl(2)–Rh(1)–P(1) 83.37(7), P(1)–C(1)–N(1) 115.4(5), P(1)–C(9)–N(2) 110.1(5), P(1)–C(10)–N(3) 110.0(5).

The electronic properties of **1a** and **1b** have been evaluated through preparation of the square-planar dicationic Rh^I carbonyl complexes **6a** (88%) and **6b** (93%) from Rh₂(CO)₄(μ-Cl)₂ and the appropriate ligand. Both Rh^I compounds displayed poor solubility in common solvents preventing full

characterization. However FT–IR spectra of **6a** and **6b** were recorded as KBr pellets and showed, in each case, a single terminal carbonyl band at v_{CO} 1979 cm⁻¹. These findings suggest the electronic properties of **1a** (R = CH₂C₆H₅) and **1b** (R = 4-CH₂C₆H₄F) are similar despite the different *para* substituents. Although no direct comparisons between the FT–IR data for **6a/6b** with the known neutral complexes *trans*-RhCl(CO)(L)₂ [L = PTA, v_{CO} 1963 cm⁻¹ (chloroform); L = "lower-rim" trisubstituted analogues of PTA, v_{CO} 1978–1987 cm⁻¹ (chloroform)]^{2c,23} can be drawn, **1a** and **1b** can be viewed as possessing similar electron donating properties to this series of PTA ligands.

Concluding Remarks

In summary, we have shown how simple modification of the PTA core can be achieved in which non covalent interactions maintain the rigid cage structure in the solid state. Further studies are in progress and directed towards understanding the properties of this ligand family in aqueous and organic media, their coordination chemistry and potential catalytic/medicinal applications.

Acknowledgements

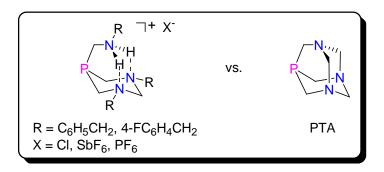
We thank the EPSRC, Loughborough University and Niger Delta University, Bayelsa State, Nigeria for funding (ATE, AJL). Rhodia UK Ltd (Dr Ranbir Padda) and Johnson Matthey are gratefully acknowledged for their kind donations of THPC and precious metal salts, respectively. We wish to acknowledge the use of the EPSRC Chemical Database Service at Daresbury.

Supporting Information Available

X-ray data for **1b**, **2b**, **3a**, **4**·1.67CH₂Cl₂ and **5**·2CH₂Cl₂ in CIF format. This material is available free of charge via the internet at http://pubs.acs.org.

References

- (1) Daigle, D. J.; Pepperman, A. B.; Vail, S. L. J. Heterocycl. Chem. 1974, 11, 407–408.
- (2) For recent examples of PTA functionalization, see: (a) Erlandsson, M.; Gonsalvi, L.; Lenco, A.; Peruzzini, M. *Inorg. Chem.* 2008, 47, 8–10. (b) Wong, G. W.; Lee, W.-C.; Frost, B. J. *Inorg. Chem.* 2008, 47, 612–620. (c) Huang, R.; Frost, B. J. *Inorg. Chem.* 2007, 46, 10962–10964. (d) Wong, G. W.; Harkreader, J. L.; Mebi, C. A.; Frost, B. J. *Inorg. Chem.* 2006, 45, 6748–6755. (e) Zablocka, M.; Duhayon, C. *Tetrahedron Lett.* 2006, 47, 2687–2690. (f) Darensbourg, D. J.; Yarbrough, J. C.; Lewis, S. J. *Organometallics* 2003, 22, 2050–2056.
- (3) For the chemistry of open cage ligands related to PTA, see: (a) Mena-Cruz, A.; Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M. *Inorg. Chem.* **2008**, *47*, 2246–2248. (b) Mena-Cruz, A.; Lorenzo-Luis, P.; Romerosa, A.; Saoud, M.; Serrano-Ruiz, M. *Inorg. Chem.* **2007**, *46*, 6120–6128. (c) Krogstad, D. A.; Ellis, G. S.; Gunderson, A. K.; Hammrich, A. J.; Rudolf, J. W.;


- Halfen, J. A. *Polyhedron* **2007**, *26*, 4093–4100. (d) Phillips, A. D.; Bolaño, S.; Bosquain, S. S.; Daran, J.-C.; Malacea, R.; Peruzzini, M.; Poli, R.; Gonsalvi, L. *Organometallics* **2006**, *25*, 2189–2200. (e) Darensbourg, D. J.; Ortiz, C. G.; Kamplain, J. W. *Organometallics* **2004**, *23*, 1747–1754.
- (4) For recent medicinal examples using PTA and related ligands, see: (a) Gossens, C.; Tavernelli, I.; Rothlisberger, U. J. Am. Chem. Soc. 2008, 130, 10921–10928. (b) Miranda, S.; Vergara, E.; Mohr, F.: de Vos, D.: Cerrada, E.: Mendía, A.: Laguna, M. Inorg, Chem. 2008, 47, 5641–5648. (c) Vock, C. A.; Renfrew, A. K.; Scopelliti, R.; Juillerat-Jeanneret, L.; Dyson, P. J. Eur. J. Inorg. Chem. 2008, 1661–1671. (d) Dutta, B.; Scolaro, C.; Scopelliti, R.; Dyson, P. J.; Severin, K. Organometallics 2008, 27, 1355-1357. (e) Leyva, L; Sirlin, C.; Rubio, L.; Franco, C.; Le Lagadec, R.; Spencer, J.; Bischoff, P.; Gaiddon, C.; Loeffler, J.-P.; Pfeffer, M. Eur. J. Inorg. Chem. 2007, 3055-3066. (f) Dillinger, S. A. T.; Schmalle, H. W.; Fox, T.; Berke, H. Dalton Trans. 2007, 3562–3571. (g) Bergamini, P.; Bertolasi, V.; Marvelli, L.; Canella, A.; Gavioli, R.; Mantovani, N.; Mañas, S.; Romerosa, A. Inorg. Chem. 2007, 46, 4267-4276. (h) Dorcier, A.; Ang, W. H.; Bolaño, S.; Gonsalvi, L.; Juillerat-Jeannerat, L.; Laurenczy, G.; Peruzzini, M.; Phillips, A. D.; Zanobini, F.; Dyson, P. J. Organometallics 2006, 25, 4090–4096. (i) Dorcier, A.; Dyson, P. J.; Gossens, C.; Rothlisberger, U.; Scopelliti, R.; Tavernelli, I. Organometallics 2005, 24, 2114–2123. (j) Allardyce, C. S.; Dyson, P. J.; Ellis, D. J.; Heath, S. L. Chem. Commun. **2001**, 1396–1397.
- (5) For recent examples of PTA coordination complexes, see: (a) Serrano Ruiz, M.; Romerosa, A.; Sierra-Martin, B.; Fernandez-Barbero, A. Angew. Chem. Int. Ed. 2008, 47, 8665–8669. (b) Tu, X.; Nichol, G. S.; Wang, R.; Zheng, Z. Dalton Trans. 2008, 6030–6038. (c) Bolaño, S.; Albinati, A.; Bravo, J.; Caporali, M.; Gonsalvi, L.; Male, L.; Rodríguez-Rocha, M. M.; Rossin, A.; Peruzzini, M. J. Organomet. Chem. 2008, 693, 2397–2406. (d) Jaremko, L.; Kirillov, A. M.;

- Smoleński, P.; Lis, T.; Pombeiro, A. J. L. *Inorg. Chem.* 2008, 47, 2922–2924. (e) Mena-Cruz, A.; Lorenzo-Luis, P.; Romerosa, A.; Serrano-Ruiz, M. *Inorg. Chem.* 2008, 47, 2246–2248. (f) Marchi, A.; Marchesi, E.; Marvelli, L.; Bergamini, P.; Bertolasi, V.; Ferretti, V. *Eur. J. Inorg. Chem.* 2008, 2670–2679. (g) Smoleński, P.; Dinoi, C.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. *J. Organomet. Chem.* 2008, 693, 2338–2344. (h) Mebi, C. A.; Frost, B. J. *Inorg. Chem.* 2007, 46, 7115–7120. (i) Mohr, F.; Falvello, L. R.; Laguna, M. *Eur. J. Inorg. Chem.* 2006, 3152–3154. (j) Wang, Z.; Liu, J.; He, C.; Jiang, S.; Åkermark, B.; Sun, L. *Inorg. Chim. Acta* 2007, 360, 2411–2419. (k) Frost, B. J.; Bautista, C. M.; Huang, R.; Shearer, J. *Inorg. Chem.* 2006, 45, 3481–3483. (l) Phillips, A. D.; Gonsalvi, L.; Romerosa, A.; Vizza, F.; Peruzzini, M. *Coord. Chem. Rev.* 2004, 248, 955–993. (m) Darensbourg, D. J.; Robertson, J. B.; Larkins, D. L.; Reibenspies, J. H. *Inorg. Chem.* 1999, 38, 2473–2481.
- (a) Erlandsson, M.; Landaeta, V. R.; Gonsalvi, L.; Peruzzini, M.; Phillips, A. D.; Dyson, P. J.; Laurenczy, G. Eur. J. Inorg. Chem. 2008, 620–627. (b) Korthals, B.; Göttker-Schnetmann, I.; Mecking, S. Organometallics 2007, 26, 1311–1316. (c) Xu, X.; Wang, C.; Zhou, Z.; Tang, X.; He, Z.; Tang, C. Eur. J. Org. Chem. 2007, 4487–4491. (d) Ruiz, J.; Cutillas, N.; López, F.; López, G.; Bautista, D. Organometallics 2006, 25, 5768–5773. (e) Krogstad, D. A.; DeBoer, A. J.; Ortmeier, W. J.; Rudolf, J. W.; Halfen, J. A. Inorg. Chem. Commun. 2005, 8, 1141–1144. (f) Mejia-Rodriguez, R.; Chong, D.; Reibenspies, J. H.; Soriaga, M. P.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 12004–12014. (g) Darensbourg, D. J.; Joó, F.; Kannisto, M.; Kathó, A.; Reibenspies, J. H.; Daigle, D. J. Inorg. Chem. 1994, 33, 200–208.
- (7) (a) Smith, M. B.; Dale, S. H.; Coles, S. J.; Gelbrich, T.; Hursthouse, M. B.; Light, M. E.; Horton,
 P. N. CrystEngComm 2007, 9, 165–175. (b) Dann, S. E.; Durran, S. E.; Elsegood, M. R. J.;
 Smith, M. B.; Staniland, P. M.; Talib, S.; Dale, S. H. J. Organomet. Chem. 2006, 691,
 4829–4842. (c) Elsegood, M. R. J.; Smith, M. B.; Staniland, P. M. Inorg. Chem. 2006, 45,

- 6761–6770. (d) Smith, M. B.; Dale, S. H.; Coles, S. J.; Gelbrich, T.; Hursthouse, M. B.; Light, M. E. *CrystEngComm* **2006**, *8*, 140–149.
- (8) Frank, A. W.; Drake Jr., G. L. J. Org. Chem. 1972, 37, 2752–2755.
- (9) Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans. 1974, 233–241.
- (10) White, C.; Yates, A; Maitlis, P. M. *Inorg. Synth.* **1992**, 29, 2283–234.
- (11) COLLECT: Data Collection Software, R. Hooft, Nonius B. V., 1998.
- (12) APEX 2: User Manual, Bruker AXS Inc., Madison, WI, 2005.
- (13) DENZO, Otwinowski, Z.; Minor, W. in: Carter Jr., C. W.; Sweet, R. M. (Eds.), Methods in Enzymology, Macromolecular Crystallography, part A, vol. 276, Academic Press, **1997**, 307–326.
- (14) SAINT: Software for CCD Diffractometers, Bruker AXS Inc., Madison, WI, 2001.
- (15) Sheldrick, G.M. Acta Crystallogr., Sect. A. 2008, 64, 112–122.
- (16) Sheldrick, G.M. SHELXTL User Manual, v.6.10, Bruker AXS Inc., Madison, WI, 2001.
- (17) Spek, A. L. Acta Crystallogr., Sect. A. **1990**, 46, C34.
- (18) (a) Hatnean, J. A.; Raturi, R.; Lefebvre, J.; Leznoff, D. B.; Lawes, G.; Johnson, S. A. *J. Am. Chem. Soc.* 2006, 128, 14992–14999. (b) Han, H.; Elsmaili, M.; Johnson, S. A. *Inorg. Chem.* 2006, 45, 7435–7445. (c) Keen, A. L.; Doster, M.; Han, H.; Johnson, S. A. *Chem. Commun.* 2006, 1221–1223. (d) Han, H.; Johnson, S. A. *Organometallics* 2006, 25, 5594–5602.

- (19) (a) Jogun, K. H.; Stezowski, J. J.; Fluck, E.; Weidlein, J. *Phosphorus Sulfur*, 1978, 4, 199–204.
 (b) Marsh, R. E.; Kapon, M.; Hu, S.; Herbstein, F. H. *Acta Crystallogr.*, Sect. B: Struct. Sci., 2002, 58, 62–77.
- (20) (a) Cambridge Structural database version 5.29 (Nov. 2007) + 2 updates, Allen, F. R. *Acta Crystallogr.*, *Sect. B* **2002**, *58*, 380–388. (b) The United Kingdom Chemical Database Service, Fletcher, D. A.; McMeeking, R. F.; Parkin, D. *J. Chem. Inf. Comput. Sci.* **1996**, *36*, 746–749.
- (21) Dunitz, J. D.; Taylor, R. Chem. Eur. J. 1997, 3, 89–98.
- (22) Bolaño, S.; Ciancaleoni, G.; Bravo, J.; Gonsalvi, L.; Macchioni, A.; Peruzzini, M. Organometallics 2008, 27, 1649–1652.
- (23) Pruchnik, F. P.; Smoleński, P.; Raksa, I. Polish J. Chem. 1995, 69, 5–8.

Table of Contents Synopsis – New intramolecular N−H···N stabilized cage phosphines and their selected complexes with Ru^{II}, Rh^I and Rh^{III} have been synthesized and fully characterized. Comparisons with 1,3,5-triaza-7-phosphaadamantane (PTA) and its complexes revealed similar steric and electronic properties.

