Loughborough University
Browse
Thesis-2005-Juna.pdf (37.86 MB)

Investigation of low-cost infrared sensing for intelligent deployment of occupant restraints

Download (37.86 MB)
thesis
posted on 2018-11-13, 12:52 authored by Amjad Juna
In automotive transport, airbags and seatbelts are effective at restraining the driver and passenger in the event of a crash, with statistics showing a dramatic reduction in the number of casualties from road crashes. However, statistics also show that a small number of these people have been injured or even killed from striking the airbag, and that the elderly and small children are especially at risk of airbag-related injury. This is the result of the fact that in-car restraint systems were designed for the average male at an average speed of 50 km/hr, and people outside these norms are at risk. Therefore one of the future safety goals of the car manufacturers is to deploy sensors that would gain more information about the driver or passenger of their cars in order to tailor the safety systems specifically for that person, and this is the goal of this project. This thesis describes a novel approach to occupant detection, position measurement and monitoring using a low-cost thermal imaging based system, which is a departure from traditional video camera-based systems, and at an affordable price. Experiments were carried out using a specially designed test rig and a car driving simulator with members of the public. Results have shown that the thermal imager can detect a human in a car cabin mock up and provide crucial real-time position data, which could be used to support intelligent restraint deployment. Other valuable information has been detected such as whether the driver is smoking, drinking a hot or cold drink, using a mobile phone, which can help to infer the level of driver attentiveness or engagement.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Publisher

© Amjad Juna

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2005

Notes

A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy at Loughborough University.

Language

  • en

Usage metrics

    Mechanical, Electrical and Manufacturing Engineering Theses

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC