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Abstract—This paper investigates the problem of global
exponential lag synchronization of a class of switched neural
networks with time-varying delays via neural activation function
and applications in image encryption. The controller is dependent
on the output of the system in the case of packed circuits, since
it is hard to measure the inner state of the circuits. Thus, it is
critical to design the controller based on the neuron activation
function. Comparing the results, in this paper, with the existing
ones shows that we improve and generalize the results derived
in the previous literature. Several examples are also given to
illustrate the effectiveness and potential applications in image
encryption.

Index Terms— Exponential stability,
switched neural networks.

lag synchronization,

I. INTRODUCTION

YBRID systems have been investigated extensively with

the rapid development of intelligent control. As a
special case of hybrid systems, switched systems consist of a
family subsystems, which are controlled by a switching rule.
In reality, many systems can be modeled as switched systems,
switched circuits, switched networks, and so on. Considerable
attention has been drawn to the theoretical analysis of switched
systems [1].

Meanwhile, synchronization of neural networks has
attracted great attention due to its potential applica-
tions in many fields such as secure communications,
biological systems, information science, image encryption,
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pseudorandom number generator, and adaptive dynamic pro-
grammer [2]-[14]. Synchronization phenomena including
complete synchronization [15]-[17], generalized synchroniza-
tion [18], phase synchronization [19], and lag synchroniza-
tion [20] have been investigated. In connected electronic
networks, time delays are unavoidable due to finite signal
transmission times, switching speeds, and the complete
synchronization of neural networks with time delays hard
to implement effectively, but we can implement lag
synchronization.

Several control methods have been proposed for the lag
synchronization of delayed neural networks, such as
periodically intermittent control in [21]-[23]. Exponential
stability criteria are derived for the synchronization error sys-
tems with constant time delays in [21] and [22], however, these
criteria are not applicable for systems with time-varying
delays. Meanwhile, only asymptotical stability criteria
are derived for synchronization error systems in [23].
Li and Bohnerb [24] investigated the exponential synchro-
nization of chaotic neural networks via linear matrix inequality
techniques. However, there are a few results on global expo-
nential lag synchronization of switched neural networks.

Motivated by the above discussion, in this paper, we
investigate the problem of globally exponential lag syn-
chronization for a class of switched neural networks with
time-varying delays. It is worth pointing out that, the proposed
problem is nontrivial because of the difficulties such as the
controller is designed via the neuron activation function.

The rest of this paper is organized as follows. In Section II,
preliminaries are given. In Section III, a new model of
synchronization error system is formulated within a unified
framework. In Section IV, synchronization of switched neural
networks is discussed by the controller based on the neuron
activation function. Several sufficient conditions are derived
to ensure the synchronization of switched neural networks.
Analysis has been made on results in this paper and the
previous ones. In Section V, two illustrative examples are
discussed to demonstrate the effectiveness of the theoretical
analysis. Finally, the conclusion is drawn in Section VI.

II. PRELIMINARIES

Denote u = (uq, ..., un)T, |u| as the absolute-value vector,
ie, lul = (il luzl, ..., lu.D?, lIx||, as the p-norm of
vector x, 1 < p < 00. ||x]lec = mMaX;e(1,2,....n IXi| is the
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Fig. 1. Synchronization scheme of coupled memristive neural networks.

infinity norm of vector x. Denote ||D||, as the p-norm of the
matrix D. Denote C as the set of continuous functions.

A set of neural networks is considered as the individual
subsystems of the switched neural network. The driving
switched neural network is described as follows:

(1) =-Cx@)+ A f(x@)+ B f(x(t —z@®)+1 (1)

where [ is a switching signal taking its value in the
finite set Z = {I,...,N}, which means that the
matrices (A;, By, C;) are allowed to take values in the finite
set {(A1,B1,Cy1),...,(An, By,Cn)}. The parameters of
system (1) are utilized to reflect the switched property of
the electronic elements in neural networks, such as switched
resistors and so on.

Throughout this paper, we assume that the switching rule / is
known priori to the receiver and its instantaneous value
is available in real time. The initial condition of system (1) is
in the form of x(¢t) = ¢(¢t) € C([—yx, 0], R"), y = max{7},
where T = max;<;<y 77, 0 < 7;(t) < 7.

Consider the following response system:

X@)=—-Cx@)+ A fx@)+ B fxt—t@®)N+1. (D

Define an indicator function I1(¢) = (IT;(¢), ..., IIx (1)),
where

1, when the switched system is described

;@) = by the /th mode(A;, By, Cy) 3)
0, otherwise
with [ = 1,...,N. Then, the driving switched neural

network (1) can be represented by

N
£(0) = D M()(=Crx(t) + Arf (x (1))
=1

+ Bif(x(t —z(®)) + D). “)

Compare Unit

It follows that lez 1 II;(#) = 1 under any switching rules.
Assume the response system has the same switching law as
the driving system

N
3O =D T (=Cry@) + Arf (@)
=1
+ Bif =)+ 1 +u@) ()

where u;(t)(I = 1,...,N) are the controllers. The initial
condition of system (5) is in the form of y(t) = ¢(t) €
C([—7,0],R").

The synchronization scheme of coupled switched neural
networks can be presented as in Fig. 1, in which, we have
the synchronization error state via the compare units and the
control input.

In this paper, we assume the following.

Al: For i € {1,2,...,n}, the activation function f; is
Lipchitz continuous; and Vri,r, € R, there exists real
number z; such that

o< LD =S _
r—rnr

A2: Fori e€{l,2,...,n}, 7;(t) satisfies

i

0<7(@®) <7, () <ui <l

To derive sufficient conditions for the global exponential lag
synchronization of system (4) with system (5), we will need
the following lemmas.

Lemma 1 [25]: Given any real matrices X, Z, P of
appropriate dimensions and a scalar g > 0, where P > O,
the following inequality holds:

XTZ+2"X <eoXTPX +¢,'2TP7'2Z.
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In particular, if X and Z are vectors, X'Z <
XTX +277).

1/2

III. NEW MODEL FOR THE SYNCHRONIZATION
ERROR SYSTEM

It is hard to obtain real-time inner states of the integrated
and packed circuit, the output of this circuit can be utilized to
measure such packed circuit. Therefore, we aim to design a
controller of the circuit based on its output function, which is
also called activation function in neuromorphic circuit, and to
reach lag synchronization [y(t) — x(t — &) for some constant
lag time ¢ > 0]. The error system can be obtained as

N
é(t) = D () (~Cre(t) + A (e (1)
=1
+ Bi®(e(t — 7(1))) + ui (1)) (6)

where e(r) = (e1(t),ex(t),...,en())T s
synchronization error, and

ei(t) = yi(t) — xi(t = &). @)
The neural activation functions with/without delays are

O(e(r)) = (P1(e1()), - .., Pulen(®)))"
= fle@) +x(@t =) — fx(t =)
De(t—1(1) = (Pi(e1(t — 11(1))), ..., Pulen(t — T ()"
= flet —t(@®) +x(t —1(t) =)
—fx@—1() = 9)).
In the case of packed circuits, it is hard to measure the inner
state of the circuits, the controller is dependent on the output

of the systems. An output controller is designed in this paper
as follows:

the lag-

ui(t) = Ki®(e(r)) ®)

where K; = (kjij)uxn is a constant gain matrix to be deter-
mined to synchronize the drive and response systems, and
@ (e(1)) is the output function without delays.

With controller (8), the error system (6) is transformed into

N
é(t) = D () (—Cre(t) + Ai®(e(1) + Bi®(e(t — (1))
=1
©)

where Ap = (alij)nxn = (alij + klij)nxn-

IV. MAIN RESULTS

To gain the main results, the following lemma is
introduced. The initial condition of system (9) is in the form of
et)=9() — ¢t —<) e C(I—7 + <, CILRY).

Lemma 2: For the lag-synchronization error system (9), if
there exist a positive number 1 and positive definite diagonal
matrices L = diag{11,12,...,1,}, F =diag(F1,F2, ..., Fn),
R = diag(ry,r2, ..., 1), and

O, =-22F L' =T+ R+2|IF|IIIBill2] <0

where 4 = l—lr%in N{imin{cl}}» -il = (-Ilij)nxn with

i = —2F iyii, and Tij = —(F iaiij + F jagi), for i # j,
such that V (t)|9) < —BA/2e” (t)e(t), where

B

" 10
V() =T @e) +23 ki /0 ®; (s)ds
i=1

n t
+Z/
i=1"1

=7 (7)

% (e;(s))rids.  (10)

Proof: Let

230 Fi
Then

Vi) = 12T ()e(r), Vat) =
GO0 )ds Xy [ P ei(s)rids.

V() = pVi@t) + V(1)
where the scalar f > 0. Then
V() = Vi) + Va(r)
where
. N A
Vi) = D L) (=" (1)Cre(t) + e (1) Ad (e (1))
I=1
+ e (B D(e(t — 7(1))))

Va(t) =2 Fi@] (1)

i=1

+ D i (@] (i) Di(ei (1)) — (1 — i (1) ]

i=1
(ei(t — T(1) @ (e; (t — 7(1))))
=207 (e(1))Fé(t) + O (e(t)) RD(e(r))
— (1= 1@))®" (e(t — (1)) RD(e(t — (1))

N
= 22 I (1) (— " (e(t)F Cre(t)
=1

+ 207 (e(1))F A @ (e(r))

+207 (e()F Bi®(e(t — (1))
+ @7 (e(r)) RD(e(1))
—(A=1@)®T (e(t—7(1)))RD(e(t — 1 (1))).

As V() can be presented as

al (€12
Vi(r) = ; ) | —e" (0)Cre@) + (eT(t)%)

X V)T Aidle() + (e%)%)

X V/2(C)) T BO(e(t — (1))



By Lemma 1
Vi(1)
I < A )
< 3 2O ( = Ce) +207 (@) AT €7 Aroe()
=1
+207 (et = () B] ¢ B0 (et — (1))
I < )
= 3 2O (=" OCe) + 2116 1A

-
I

1
x T (e(t)D(e(r)) + 211C; I1IBIl13

x @7 (e(t = T(O)D(elt — 7(1)))

S_

N >

N
> m0e” ()elr)

=1

+ 2 O (116 HIA1BOT ) de@)+I1C 1B

=1
x o7 (e(t — () D(e(t — (1))
< LT 0o + MOT ()@ ie)
+ MO (e(t — (1)) D (e(t — (1))

where

AN T sg) = o.

.....

As ¢;(1)®;(t) > 17 (®;(1))?, we have

N
— 207 (e(t)F D (1)Cre(t)

=1
N
< =207 () D MOCL™ ®(e(r).
=1

Therefore
Va(t) < 207 (e()F
N
x> n,(r)( — L7 @ (e(r))
=1

+ 207 (e())F AiD(e(t))
1207 (e(t)F Bi®(e(r — T(t))))
+ @7 (e(r)) RO (e(1))

— (1= )@ (et — (1)) RD(e(t — (1))
< =0T (e(t))21F L™ ®(e(1))

N
= 20 (07 )T e) ~ 201 Bl
=1

x O (el d(elt — (1))
+ 07 (e(1) RO(e(1))

— (1= @)@ (et — (1)) RD(e(r — (1))). (11)
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Furthermore, we can obtain
20 1B 211@T (eI D@ (et — (1)))]]
< 1F 1B (07 () (e ()
+ @7 (et — (1)) D(e(t — r(t)))). (12)
From (11) and (12), we have
Va(t)
N
< SO (07 €O) (=220 L7 =T+ R+ IF 1B
=1

X ®(e() = O (et = 1 ())((1 = R
— IF 1B @ (et = ().

As O; < 0, there exists v > 0 such that ®; +2v /I < 0. Define

R = ! B 1 >0

= max [m(nﬂm 1||2+v)] > 0.

Then, we can obtain

Va(t) < —v @ (e(0)) @ (e(t)) — v® (e(t —7 () D(e(t —1(1))).

Let

M >0

v
— M>
5—[ﬁ M=0

where w > 1. Then, V(t) < —B4/2¢" (t)e(r).

Moreover, we can obtain the following theorem.

Theorem 1: Assume that the conditions in Lemma 2 hold,
then the driving system (4) is globally exponentially lag
synchronized with the response system (5).

Proof: Let A = minj—1,_ N{Amin{Ci}}. As V() defined
in Lemma 2 is a positive definite and radially unbounded
Lyapunov functional. We can choose a positive number € > 0
to satisfy

€ff — B + 2€||LIF || +2€7eT||L*R]| < 0. (13)

By Lemma 2, we can obtain

d €t
E{e V(t)} .
=e“(eV () + V(1)

N B n ei(?)
< Z ;e [ el Zel ()e@) +2 z F,-/ D;(s)ds
I=1 2 i=1 B
+2.
i=I
N
<52 e (eﬂeT(t)e(t) — Bre’ De()
=1
n ei (1)
4 i D;(s)d
+4e ; F /0 () s)

n t
+eet > /tr(t) @7 (ei (s))rids.

i=1

t cb%(ei(s)>rid9—@Jme(r))
1—i(t) 2
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Since
n ei(t)
E Fi / D, (s)ds
i=1 0

" ei(r) 1
< ZF,-/O 1isds < EeT(t)LFe(t)
i=1

then
d €t
E(é’ V()

1 N
< EZ H;(t)e“(eﬁeT(t)e(t) — Brel(t)e(t)+ 2eeT(t)LF e(r)

=1
n t
¢ D7 (e (5))rid
+ €e ;/twm Slei())r s)

IA

2 (e — 4 + 26l LE )T et
+ eeet Z
i=1

Changing the integral of the second term on the right-hand
side of (14)

s n t
E/ e“Z/ (I)l-z(e,-(g))r,-dgdt
0 . t—1; (1)

i=

t (I)l-z(e,- (s))rids.

t—1;(t)

(14)

n
i=

1
_ * €t ! 2
=c E e O; (¢)ridgdt
0 t—1; (1)

i=1

n s min{¢+7,s} )
EZ/_/ e dt®; (ei(¢))rids

i=177"

max{g,0}

n s c+7
“ldr ) ®2(ei(c))rid
ezlf_(/g e r) 2(er(e)rids

n s )
> [ e 0k eomds
=177

n s _
Z/_fe5(§+r)el-2(g)ll-2r,-dg
i=1""°
N

el (0)e(e)ds

-7

_ 0
fe“||L2R||( | e @ees

T

IA

IA

IA

IA

7e“T||L*R))|

IA

IA

+/OS e‘geT(c)e(g)dg)- (15)

By (13)—(15), we have

e V(s) — V(0)

1 _

5(eﬁ — B+ 2€|ILF || + 2efe”||L2R||)

IA

0
) eLel (e(t)dt

-7

S -
x / e’ (t)e(r)dt + eTe T ||L*R)|
0

IA

-7

0
(ef||L2R|| _e“dt)llv/IIzEHlllwllz-

Thus
V() < (V) + Hilly|P)e ™ ¥r>0 (16)
where
B T n ¢; (0)
V(0) = e’ (0)e(0) +2 D g / @, (s)ds
2 i=1 0
nooe0
—i—Z/ ®?(e; (s))rids
i=1 —7;(1)
1 )
< §(ﬂ+2IIFLII+21||L2R||)|Iw||2
= iyl
By (10) and (16), we have
LT ety < V) = (1 + Ho)llplPe™ Vi >0
Thus, we have
2 Py
[le@®)I] < IE(HI + m)||ly|le”? (17)

which implies the drive system (4) is globally exponentially
lag synchronized with the response system (5). This completes
the proof.

By Theorem 1, we can obtain the following corollary.

Corollary 1: The drive system (4) is globally exponen-
tially lag synchronized with the response system (5), if
there exist positive definite matrices L = diag{i1,12,...,1,},
F = diag{f 1, F2,...,Fn}, R = diag{ri,r,...,r,} and a
positive definite symmetric matrix M, such that

= —22F L™ — T+ R+ M+|[FIPIM B3 <0
(18)

where 1 =, rlninN{Dl}, T = (iijdnxn With i = =2F ay;;,

and Tij = —(Fiau; + F jdyji), for i # j.
Proof: By Lemma 1

———— M+ |IFI1Bil2M ™" > 21
AR

then

M+ NFIPIMTNNBIET = M+ 1F1PNBEM ™!
> 2/1F |1IBII31.

Thus

AP LY =T R4 21 1IBillaL
< —2FL ' =T+ R+ M+ FIPIM BRI

< 0. (19)

This proof is complete.

Let F = M = [ in Corollary 1, we obtain the following
corollary.

Corollary 2: The drive system (4) is globally exponen-
tially lag synchronized with the response system (5), if
T = (Tiij)nxn is positive definite, and ||B;||> < 2z — 1)1/,
where # = minj<j<,(1/1;), and Ty = —2F;au,
Tij = —(Fiduij + F jayi), for i # j.
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Fig. 2.  Transient behavior of the switched system (4) with the initial
value [0.2 — 0.2]7.

Some criteria about globally exponential stability can
be derived for the switched lag-synchronization error
system (9) with the controller of the neural activation
function [26]-[31]. The globally asymptotical stability
conditions for for the switched lag-synchronization error sys-
tem in [26, eq. (9)] and [27, eq. (9)] are presented as follows.

Corollary 3: The drive system (4) is globally exponen-
tially lag synchronized with the response system (5), if
T = (Tiij)nxn is positive definite, and ||B;||2 < =, where
T =mini<j<,(4/1;), and Tij = =2F jaui, Tij = —(F idj +
Fj&lji)» fori # j.

Corollary 4: The synchronization error system (9) is
globally asymptotically stable if there exist a positive
definite diagonal matrices f = diag{f1,F2,...,Fn},
R = diag{ry, r2, ..., r,} such that

I = =20l =T+ R+2[IFIPIIBIGI <0 (20)

where © = mini<i<u(Fi2/1), 1 = (Tiij)axn with
i = =2F i, Tuij = —(Fiauj + F jagi), for i # j.
The following inequality holds:

;= =20l — T+ R+2/F1PBiI3]

> 2AFLT =T+ R+FIPIUBIGL @D

where @ = mini<;j<,(F;4/1;). This means the conditions
about stability criteria derived for switched neural networks
in [26] and [27] are more restrictive than those in Theorem 1.
Meanwhile, these results can only guarantee the globally
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X, .Y,(0)

X050

(b)

Fig. 3. (a) and (b) State trajectories of driving system (4) with the initial
value [0.2 — 0.2]7 and slave system (5) with the initial value [0.5 — 0.5]7,
when lag time ¢ = 1.5.

asymptotical stability of the switched lag synchronization error
system (9).

V. ILLUSTRATIVE EXAMPLES

To show the effectiveness of the obtained results, two
illustrative examples are presented as follows.
Example 1: Consider a switched system (4) with

1.8 10 ~15 0.1
Az:[o& LS}’ Bz:[OJ —15}

1
filx)) = §(|xi + 1] —|x — 1))
(t) = 0.97,i = 1,2.

If x1(r) <0
1.0 0
C=[0 12}

12 0
C=[o 10}

The initial values of driving system (4) is set to be
[0.2 — 0.2]7. In addition, the dynamical behaviors of this
system is shown as in Fig. 2, which is chaotic and can be
used in secure communications.

As

Else

A= lrilliflz{lmin{cz}} =1
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X.Y,(0)

Fig. 4. (a) and (b) State trajectories of driving system (4) with the initial
value [0.2 — O.2]T and slave system (5) with the initial value [0.5 — 0.517,
when lag time ¢ = 0.8.

Obviously, there exists a positive definite diagonal matrix

F = diag{0.5,05}, v = 0.1, R = 1/(0 — w{(IF]]
[|B]]2 4+ v)I}, such that
T=—A
to make
© = =2 L™ =T+ R+IFIBill21
RO
therefore

-33 —11
Ki< [—1 —3.3}
can make the lag-synchronization error system (9) globally
exponentially stable. However, ||B|l = 1.6 > w@, which

means that the results in [26] cannot be used for the
lag-synchronization error system (9). To simulate the obtained

result, let
-3.6 —11
ki = [—1 —3.6}'

Set the initial states of slave system (9) is [0.5 — 0.5]7.
The state trajectories of driving system and slave system are
presented in Figs. 3—5 with the lag times £ = 1.5, £ = 0.8,
and ¢ = 0, respectively, which illustrate the effectiveness of
the obtained results.

Algorithm 1 Transformation of Chaotic Signals

Initialization:
Seti < 1; j < 1; k < 1;

1: while i # m do

2:  while j #n do

3: z1(i, j) < 1000 % (zl(k) - ﬂoor(zl(k)));
z1(i, j) < mod(z1(i, j), 256);
20, j) < 1000 % (zg(k) - ﬂoor(zz(k)));
22(i, j) < mod(z2(i, j), 256);
20, j) < 1000 % (z3(k) - ﬂoor(z3(k)));
z3(i, j) < mod(z3(i, j), 256);
k< k+1;
J<Jj+1

4:  end while

I <—i+1;
5: end while

X .Y,(0)
°

Fig. 5. (a) and (b) State trajectories of driving system (4) with the initial
value [0.2 — O.Z]T and slave system (5) with the initial value [0.5 — 0.517,
when lag time ¢ = 0.

Example 2: Based on Example 1, the obtained results
can be applied in the field of digital signal processing, and
the algorithm is presented for a color picture F with a
size m x n x 3, as follows.

1) Separating color image F into three gray ones with
red, green, and blue, respectively, and via sort func-
tion to rearrange the pixels in each gray image,
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Fig. 8.
(b)
Fig. 6. (a) Original image. (b) Encrypted image.
700
m Fig. 9.
T
0 50 100 150 200 250
(b)

Fig. 7. (a) Histogram of the original gray image. (b) Histogram of the
encrypted gray image.

therefore, three new ordered pixel series are obtained as
R@, j), GG, j), BG, j),i €{l,...,m},j €{l,....,n}.

2) Through driving system (4), two groups of time- 3)
series chaotic signals obtained as z;(i, j) = x;(k),

(a) Original image. (b) Encrypted image.

(®)

(a) Gray image of the red channel of the original image. (b) Same

plots for the encrypted image.

k € {1,...,mn},l € {1,2}. As there are three gray
images needed to be encrypted, the third chaotic signal
can be set as z3(k) = 0.5(x1 (k) + x2(k)). After certain
transformation, the chaotic signals can be presented as
in Algorithm 1.

Based on the proceeded chaotic signals and gray images,
the encrypted gray images can be obtained as the
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(®)

Fig. 10. (a) Gray image of the green channel of the original image. (b) Same
plots for the encrypted image.

(b)

Fig. 11. (a) Gray image of the blue channel of the original image. (b) Same
plots for the encrypted image.

following operation:
R(, j) < mod(R(i, j) * 1000, 256) ® z1 (i, j)

G, j) < mod(G(i, j) % 1000, 256) & z2(i, )
B(i, j) < mod(G(i, j) * 1000, 256) & z3(, j).

4) Reorganizing R(i, j),G(i, j), and B(i, j), we can
obtain the encrypted color image.

As the decryption process is the same as the encryption
process, is omitted, we notice that as the existence of lag,
the decryption chaotic signal should be employed after &/ h
signals, where # is the length of the iterative step. In addition,
two simulations about gray and color image encryption have
been provided in Figs. 6-11, which illustrate the applica-
tion potential of the lag synchronization of switched neural
networks in signal encryption. As the existence of the lag
between the coupled switched neural networks, decryption
chaotic signal should be adopted after certain iterative steps.

VI. CONCLUSION

As the applications of switched neural networks become
more and more popular, lag synchronization of such networks
becomes necessary. On the other hand, after the switched
neural networks have been packed, it is very hard to
measure their inner states. Therefore, the authors investigate
the problem of global exponential lag synchronization of a
class of switched neural networks with time-varying delays via
the neural activation controller. Two numerical examples were
provided to demonstrate the effectiveness and improvement of
the obtained results in this paper.
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