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I. INTRODUCTION

There is a strong drive for Unmanned Aerial System (UAS) to be integrated into the national airspace

system. However, a challenge exists as these UAS must safely and autonomously handle emergency

situations as a pilot usually would aboard a manned aircraft. Engine failure is one such situation which

has been identified as a critical issue [1].

A forced landing is a complex manoeuvre, that requires research in a number of different areas. First

the sites need to be identified using Geographical Information System (GIS) data, and machine vision

where the bulk of the research has been conducted [2]. The glide reachability of each site needs to be

calculated, which is done simplistically in [3] then extended to include wind and the full manoeuvre in

[4]. The landing site needs to be chosen, it must maximise public and airframe safety, discussed in the

next paragraph. Finally a path needs to be planned to the chosen site, some of the proposed path planning

algorithms are detailed in [5], [6].

An algorithm needs to be developed in order to decide the most suitable forced landing site from a

list of known landing sites. There are a vast number of sometimes conflicting criteria that determine the

most suitable field for landing. As suggested in [7], decision making is the most important aspect in the

initial stage of a forced landing. However, this paper only gives an overview of multi criteria decision

making, whilst the work is left for future study. There is some related works that have been conducted

for safe landing of commercial aircraft in an emergency [3, 8]. A simple weighted sum decision-making

algorithm for commercial aircraft is proposed in [3] to choose an airport within a reachability footprint for

an emergency landing. To reduce the probability of “loss of life”, [8] proposes to conduct path planning,

Research Associate, Dept. of Automotive and Aeronautical Engineering: ttmjc2@lboro.ac.uk

Professor in Autonomous Vehicles, Dept. of Automotive and Aeronautical Engineering: w.chen@lboro.ac.uk

Senior Lecturer in Aircraft Aerodynamics, Dept.of Automotive and Aeronautical Engineering: p.r.render@lboro.ac.uk



taking into account risks of four areas involved in the landing process (i.e. en-route, approach, runway

and airport) by assigning probabilities based on their associated risks.

II. FIELD SELECTION CRITERIA

There are three main criteria for selecting a suitable location for an UAS to attempt a forced landing

in order of importance: risk to civilian population, reachability, and probability of a safe landing. These

are developed based on the specifications for a forced landing system laid out in [1]. The emphasis is

on public safety, where human life and property are more important than the UAS airframe and payload.

Mitigating risk to civilian population has a much higher weighting than site reachability and safe landing

since aircraft survival is of a lower priority.

A. Risk to civilian population

As pointed out earlier, the dominant concern in a UAS forced landing situation in civilian airspace is

the threat of a crash into people or property. Landing sites close to people or property are given a low

rating. This disproportionate rating reflects the low value of the UAS airframe and payload over human

lives and property.

B. Reachability

Previous work in [4] has detailed the reachability analysis of a landing site where the level of reachability

is quantified in terms of the excess glide distance (Eg). Flying to a closer site is important as it keeps

landing options open and the field can be surveyed much earlier, which gives the aircraft an opportunity

to divert to another field if it turns out to be unsuitable. A landing site which is outside of the reachable

area is completely unsuitable as the aircraft could crash land anywhere. This can be represented in the

Conditional Probability Distribution (CPD) of suitability where P(suitmax|reachOutofrange) = 0.

C. Probability of a safe landing

A technique called the ”WOSSSSS” has been widely used by General Aviation (GA) pilots to capture

the main factors in making a decision for safe forced landing (e.g. [9, 10]). A GA aircraft is not too

dissimilar from an UAS when attempting a safe forced landing at an unprepared site. Therefore, similar

factors will be considered in the decision making for UAV forced landing.



• Wind - A good headwind in the landing direction is required to make the landing roll shorter, to

minimise the aircraft’s kinetic energy relative to the ground, and to maximise survivability.

• Obstacles - There needs to be no obstacles on the approach or landing area (e.g. trees or power

lines) to eliminate any chance of collision on landing.

• Size - The site must have an appropriate length for the aircraft to land with a safety factor.

• Shape - The shape of the landing site governs how many landing directions are available to the

aircraft on this single landing site. More landing options available means a higher chance of a safe

landing.

• Slope - The slope of the landing site shall be flat or uphill to decrease the ground roll of the aircraft.

• Surface - The surface must be suitable to land on, together with a smooth surface without loose

material, and free from elevation changes.

To simplify the problem, the probability of making a safe landing can be broken down into two sections:

hazards at the landing site and alternative landing options. These can then be evaluated separately.

III. FORCED LANDING BAYESIAN NETWORK STRUCTURE

The Directed Acyclic Graph (DAG) for the Multi Criteria Decision Making (MCDM) Bayesian Network

(BN) is constructed using the techniques outlined in [11, 12]. A list of all the nodes, their states and node

types are shown in Table 1 while a diagram of the developed DAG is shown in Fig. 1

As described in the previous section, the Suitability (Suit) of a landing site is determined by three

criteria nodes: Reachability Reach, safe landing Landing, and civilian proximity (Civ Prox). The CPD

for Suit effectively weights the three criteria in the order of preference. There is a greater weighting

on Civ Prox than Landing and Reach, which is represented in their CPDs as shown in Table 2. For

ease of compiling the CPD for the Landing node, hidden nodes have been used as explained in [13].

CivProx and Reach are pre-calculated, so much of the remaining network is to find the probability of

a safe landing (Landing). This is calculated using 5 hidden nodes

The effective size (Eff Size) node encapsulates the relationship between the field length and Wind.

The Eff Size of the field increases with a strong head wind and dramatically shortens with a tail wind.

Excess landing distance (El) is used as a non-dimensional measure of field length, this is the extra landing

distance available as a ratio of the total field length.



TABLE 1: List of all node and their discrete states in the proposed BN

Node States Node type
Field Number of fields. Decision
Wind Tail; Light; Medium; Strong Chance
Obstacles(Obs) Low; High Chance
Excess Landing Distance(El) Long; Medium; Short; Can’t land Chance
Surface (Surf ) Tarmac Chance

Grass or flat natural surface
Hazardous Surface
Very Hazardous surface

Landing options at site(Site Opt) >3; 3; 2; 1 Chance
Field Density (Density) High; Medium; Low Chance
Over/Undershoot (Shoot) Both; Undershoot; Overshoot; None Chance
Effective Size (Eff Size) Long; Short Hidden
Obstacle Density (Obs Den) Low; High Hidden
Energy Dangerous; Safe Hidden
Landing hazard (Land Haz) Dangerous; Safe Hidden
Options Low; High Hidden
Safe Landing (Landing) Safe; Crash Criteria
Reachability (Reach) Close; Medium; Marginal; Out of Range Criteria
Civilian Proximity (CivProx) Far; Close Criteria
Field Suitability (Suit) Suitable; Unsuitable Utility

TABLE 2: CPD for the utility node Suit, P(Suit|Reach, Landing, CivProx)

Civ Prox Reach Landing Suitable Unsuitable
Far Close Safe 1 0
Far Med Safe 0.9375 0.0625
Far Marginal Safe 0.8125 0.1875
Far Out of Range Safe 0 1
Far Close Crash 0.6250 0.3750
Far Med Crash 0.5625 0.4375
Far Marginal Crash 0.4375 0.5625
Far Out of Range Crash 0 1

Close Close Safe 0.5625 0.4375
Close Med Safe 0.5 0.5
Close Marginal Safe 0.3750 0.6250
Close Out of Range Safe 0 1
Close Close Crash 0.1875 0.8125
Close Med Crash 0.1250 0.8750
Close Marginal Crash 0 1
Close Out of Range Crash 0 1



Obstacle density (Obs Den) adjusts the danger of obstacles using Eff Size. An larger field with a

high obstacle count will be of less concern than the same in a small field as its obstacle density is higher,

making obstacles harder to avoid.

The Energy node represents the danger to the landing aircraft from the surface of the landing site by

adjusting the danger with Wind. With a Strong Wind, its ground speed is much lower, which makes a

surface is less dangerous.

The Land Haz node represents the combined danger of landing from, size, obstacles, and surface type.

This is done by combining Eff Size, Obs Den, Energy to the single hidden node Land Haz.

Combining the three chance nodes: Site Opt, Density and Shoot, an overall measure of the field

options can be calculated in the hidden node Options, where Density is a measure of how many other

fields are reachable from the targeted field.

The decision node Field is the parent of all chance nodes. Each discrete states of Field represents

each possible site, the number of states is determined by the number of landing sites (Fn). The CPDs

of each chance node is used to enter evidence by instantiating the state that corresponds to the field in

question to 1 and setting all other states for that field to 0. An example is shown in Table 3. This is

in order to solve the network for all sites at once. This can be done using diagnostic reasoning, which

enables the decision site D to be determined by solving:

D = argmax
Field

P(Field|SuitSutiable) (1)

This is effectively asking which site gives the highest probability of that it is suitable. This is as opposed

to the causal reasoning method, which determines the suitability probability P(Suitsuitable) for each site

as below:

D = argmax
SuitSutiable,i∈(1,Fn]

P(Suit|Fieldi) (2)

where i is the index for each site.

Each landing site can represent more than one entry in Field as there could be more than one landing

direction at that site in accordance with Site Opt. While most of their parameters are the same, the states

of Wind may change as the landing directions may be different.



TABLE 3: P(CP |F ) CPD for the Civilian Proximity node with three fields

Field
Civ Prox One Two Three
Close 1.0 0.0 0.0
Far 0.0 1.0 1.0
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Fig. 1: The DAG structure for the proposed force landing multi criteria decision making Bayesian Network

This network is to be run online. Upon an engine failure, the aircraft needs to react instantly and make

a landing site decision. Being able to run online is also important since there could be inaccuracies in

field data, which can only be corrected when the aircraft is close to the landing site. As this is a discrete

BN, a small change in Eg may lead to a state change in Reach which could change the decision if there

are a number of similarly suitable landing sites. Consequently this could result in poor behaviour by the

aircraft changing directions repeatedly. This can be prevented by allowing the decision to be changed in

flight only if a non-dynamic parameter is changed, i.e. all but Reach.

IV. RESULTS

Using a pre-mapped area with known field locations and parameters, a simulation is run to demonstrate

the use of the presented decision making algorithm. A map with fourteen pre-surveyed fields is shown

in Fig. 2 with discrete criteria states of each landing site shown in Table 4. A single landing direction is

considered for each landing site in this example. The scenario is a Cessna 182 in climb-out after taking



TABLE 4: Field parameters

Field Obs El Wind Surf Site Opt Density Shoot Reach Civ Prox
1 Low Long Med Tarmac Two Low Both Marginal Far
2 Low Long Light Tarmac Two Low Both Marginal Far
3 Low Long Med V Haz One Low Both Marginal Far
4 Low Med Tail Grass One Low None Medium Close
5 Low Long Med Grass Three Med Both Medium Close
6 Low Long Med Grass Three Med Over Medium Close
7 Low Long Med Grass Three Med Both Medium Close
8 Uncertain Long Med Grass One Med Both Medium Far

Low/High
9 Low Can’t Land Med Grass One Med Both Marginal Far

10 Low Med Med Grass One Med Both Out of Range Far
11 Low Med Med Grass One Med Both Out of Range Far
12 Low Med Med Grass One Med Both Out of Range Far
13 Low Med Light Grass One Med Both Medium Far
14 Low Med Light Grass One Med None Out of Range Far

off from Nottingham aerodrome. It has an engine failure at 400 meters above ground level with a wind

speed of 10 m/s from 270°. Using the reachability analysis algorithm laid out in [4], the proposed MCDM

BN, the most suitable site to land in will be selected. Fig. 2 shows an example path used to calculate the

landing site reachability. While a Cessna 182 is not a UAS, this system is also suitable for use by GA

aircraft as an aid in a situation where they have an engine failure.

As the aircraft’s engine fails, the chosen decision landing site is taken from the BN running real time.

From the point that the aircraft’s engine fails, the marginal posterior distribution for Field is calculated

and updated with the arrival of new information, as shown in Table 5. Landing site 13 is the site chosen

to attempt the forced landing into, as it has the highest marginal posterior probability of 0.1445. It is the

favoured choice because it is a long field with over 50% extra length than required, medium reachability,

a safe grassy surface, free from obstacles, having both an overshoot and an undershoot, far from the

civilian population, and with a medium field density. Landing site 8 is similar and it seems it should

be more favourable due to its Med wind state as opposed to Light. However, it is not favoured since

there is uncertainty in its obstacle state, represented as 70% chance of a Low obstacle state and 30% of

a High state. This is an example showing that the BN can handle uncertainty and make use of (soft)

evidence in decision making. After injecting this soft evidence into Obs, the marginal of Landing site 8 is

0.122. Once the aircraft flies close, it confirms that it is of low obstacle state (i.e. 1 for the Low obstacle),

consequently its calculated marginal becomes the highest so will be chosen as the landing site.

If a field decision was selected using the slower casual inference method used in [14], the marginals
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Fig. 2: Cessna 182 on climb-out from Nottingham aerodrome, suffering an engine failure at 400m AGL.
with potential landing sites and landing directions

TABLE 5: Field marginal posterior distribution & Field Suitability marginal posterior distribution

Field P(Field|SuitSuitable) Suitable Unsuitable
1 0.1353 0.7209 0.2791
2 0.1329 0.7083 0.2917
3 0.1212 0.6460 0.3540
4 0.0614 0.3271 0.6729
5 0.0686 0.3657 0.6343
6 0.0654 0.3485 0.6515
7 0.0663 0.3530 0.6470
8 0.1222 0.7826 0.2174
9 0.0821 0.4375 0.5625
10 0 0 1
11 0 0 1
12 0 0 1
13 0.1445 0.7699 0.2301
14 0 0 1

for Suit for each field are also shown in 3rd and 4th columns of Table 5. It can be seen that it reaches

the same decision outcome but takes much longer to compute. When running on an Intel i7 computer,

the proposed MCDM BN can be run at 4Hz whereas the casual inference network operates at 1Hz.

V. CONCLUSION

The knowledge of a human pilot in evaluating landing sites and making site selection decisions in a

forced landing is captured and implemented by a multi criteria decision making BN. It has been identified

that public safety is of greater importance, therefore sites without people or property are given highest

priority in the network decision making. An underutilised method of solving the BN using diagnostic



reasoning is employed which significantly improves upon computational speed over the causal reasoning

method. This enables real-time decision making. The added advantage offered by this method is that it

can handle uncertainty in the applied factors without extra modification or effort. An example scenario

is presented to show the principle of the networks and verify the effectiveness of the proposal decision

making network in an emergency. Further investigation of the decision making behaviour will be conducted

by generating a large number of random scenarios.
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