
Learning and Recognition by a
Dynamical System with a Plastic

Velocity Field

Author:

Daniel Gascoyne

Supervisor:

Dr. Alexander Balanov

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for
the award of Doctor of Philosophy of Loughborough

University

September 2015



Contents

Abstract vii

1 Introduction 1

1.1 Introduction to Learning in AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Human vs Rational Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 The Human Brain and ‘Brain’ Research . . . . . . . . . . . . . . . . . . . . 4

1.1.3 AI without the Limitations of Biology . . . . . . . . . . . . . . . . . . . . . 6

1.2 Prominent AI Research Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Neural Network’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Decision Tree Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3 Association Rule Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.4 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3 “Memory Foam’ Approach to Unsupervised Learning’ . . . . . . . . . . . . . . . . 22

1.4 Elements of Non-Linear Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.1 Differential Equations and Attractors in Phase Space . . . . . . . . . . . . . 24

1.4.2 The van der Pol Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Numerical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5.1 Solving Differential Equations Numerically . . . . . . . . . . . . . . . . . . 32

1.5.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Classification and Recognition by a Dynamical System with Self-adapting Vec-

tor Field 35

2.1 “Memory Foam’ Approach to Unsupervised Learning’ . . . . . . . . . . . . . . . . 35

2.1.1 Constraints on the Stimuli and Convergence of the Potential . . . . . . . . 37

2.2 Initial Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Simulating Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.2 Application to the Memory Foam Model . . . . . . . . . . . . . . . . . . . . 42

2.3 The Influence of Gaussian Width on Class Formation . . . . . . . . . . . . . . . . . 42

2.4 Extending the Model to N-Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Non-Linear Dynamics of Learning and its Application to Colour Recognition 57

3.1 Colour Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 Machine Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



3.2 Colour Recognition and Classification by a Dynamical System with Self-adapting

Vector Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.1 Assessing the accuracy of RGB value identification . . . . . . . . . . . . . . 60

3.3 Applying a Simple RGB Stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Learning Colours by Observing Cartoons . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Southpark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Futurama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 A One-dimensional Approach to Colour Coding . . . . . . . . . . . . . . . . . . . . 73

3.5.1 Mapping RGB to Wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.2 The One-Dimensional Learning Model . . . . . . . . . . . . . . . . . . . . . 81

3.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4 Representation of Class Recognition via Limit Cycles 91

4.1 A Hierarchical Representation of Class Recognition . . . . . . . . . . . . . . . . . . 92

4.2 Utilizing the van der Pol System to Describe Recognition . . . . . . . . . . . . . . 93

4.2.1 Numerical Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Modelling the Foam Profile with Parabolas . . . . . . . . . . . . . . . . . . . . . . 102

4.3.1 Parabola width and Frequency . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Limit Cycles Recognition Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.1 One Dimensional Colour Recognition with Oscillatory Dynamics . . . . . . 109

4.5 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 Coupled Oscillators and higher order Phase Dynamics 115

5.1 Coupled Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Coupled van der Pol Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 The Truncated Equations for a Pair of van der Pol Oscillators . . . . . . . . 118

5.2.2 Dissipative Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Limit cycles for an two-dimensional Potential . . . . . . . . . . . . . . . . . . . . . 121

5.3.1 Realizing Limit Cycles, Quasi-periodic orbits and Oscillation Death . . . . 125

5.3.2 Adjusting ε as a function of distance traversed . . . . . . . . . . . . . . . . 131

5.4 A System of 3 Diffusively Coupled van der Pol Oscillators . . . . . . . . . . . . . . 134
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Abstract

Learning is a mechanism intrinsic to all sentient biological systems. Despite the diverse range of

paradigms that exist, it appears that an artificial system has yet to be developed that can em-

ulate learning with a comparable degree of accuracy or efficiency to the human brain. With the

development of new approaches comes the opportunity to reduce this disparity in performance.

A model presented by Janson and Marsden [arXiv:1107.0674 (2011)] (Memory foam model) rede-

fines the critical features that a intelligent system should demonstrate. Rather than focussing on

the topological constraints of the rigid neuron structure, the emphasis is placed on the on-line,

unsupervised, classification, retention and recognition of stimuli. In contrast to traditional AI ap-

proaches, the systems memory is not plagued by spurious attractors or the curse of dimensionality.

The ability to continuously learn, whilst simultaneously recognizing aspects of a stimuli ensures

that this model more closely embodies the operations occurring in the brain than many other AI

approaches. Here we consider the pertinent deficiencies of classical artificial learning models before

introducing and developing this memory foam self-shaping system.

As this model is relatively new, its limitations are not yet apparent. These must be established

by testing the model in various complex environments. Here we consider its ability to learn and

recognize the RGB colours composing cartoons as observed via a web-camera. The self-shaping

vector field of the system is shown to adjust its composition to reflect the distribution of three-

dimensional inputs. The model builds a memory of its experiences and is shown to recognize

unfamiliar colours by locating the most appropriate class with which to associate a stimuli. In

addition, we discuss a method to map a three-dimensional RGB input onto a line spectrum of

colours. The corresponding reduction of the models dimensions is shown to dramatically improve

computational speed, however, the model is then restricted to a much smaller set of representable

colours.

This models prototype offers a gradient description of recognition, it is evident that a more

complex, non-linear alternative may be used to better characterize the classes of the system. It

is postulated that non-linear attractors may be utilized to convey the concept of hierarchy that

relates the different classes of the system. We relate the dynamics of the van der Pol oscillator

to this plastic self-shaping system, first demonstrating the recognition of stimuli with limit cycle

trajectories. The location and frequency of each cycle is dependent on the topology of the systems

energy potential. For a one-dimensional stimuli the dynamics are restricted to the cycle, the ex-

tension of the model to an N-dimensional stimuli is approached via the coupling of N oscillators.

Here we study systems of up to three mutually coupled oscillators and relate limit cycles, fixed

points and quasi-periodic orbits to the recognition of stimuli.

KEYWORDS: Learning, Unsupervised, Self-shaping, Non-Linear Dynamics, van der Pol, Limit

cycle, Quasi-periodic.
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Chapter 1

Introduction

Learning is described as “the acquisition of knowledge or skills through experience,

practice, or study, or by being taught”[145].

The development of artificial intelligence (AI) has occupied researchers for over half a century,

however, the field remains far from concluded. In reality the notion of AI has fascinated mankind

for millennia. Greek mythology describes Talos, an artificial man of bronze, and ancient Chinese

texts describe human-shaped figures of mechanical handiwork [118]. Stories can be found from

every corner of the world and throughout human history. However, the modern reality of AI is far

less impressive than the portrayals of science fiction. There has been much speculation about the

future of AI and the potential impact it may have. In popular media Stephen Hawking has recently

cited AI as a real danger to mankind [26]. At present this may seem more like a summary of the

1984 film ‘Terminator’ than a genuine concern. Nevertheless, he is not the first scientist to express

these views [38]. This predicted singularity event, if realistic, requires a substantial break-through

in AI, which currently appears to pose little risk.

Winner of quiz show ‘Jeopardy!’ in 2011, IBM’s Watson may be considered the forerunner in

AI [47]. Applying DeepQA [48] it is currently being utilized in specialized domains such as health

care [49]. Watson searches a large database of knowledge and returns solutions based on human

input. Although it exhibits natural language processing, and is arguably a sophisticated tool, it is

undeniably algorithmic and does not ‘learn’ as we perceive a human to, functioning instead as a

next generation search engine.

The development of any learning system presents significant challenges. Can a machine re-

ally learn and how should we define intelligence? These may appear questions better posed to

philosophers and psychologists, however, we cannot hope to engineer intelligent systems without

first discussing objectives. To define intelligence we cite the definition of Russell and Norvig: “An

intelligent agent is a system that perceives its environment and takes actions that maximize its

chances for success.” [139]. This definition remains intentionally vague. This is mirrored by the

range of approaches taken to learning, intelligence, and AI, which are exceptionally diverse.

Unlike in other scientific fields, where new phenomena or results are theoretically predicted and

then explored, a working intelligent system already exists and can be studied; the human brain.

The human brain may be considered one of the most complex systems available for scientific study.

Not only does it have in excess of 120 billion computational units, but the connections between

these units are thought to number in excess of 100 trillion [168]. If we also consider that the brain
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is known to exhibit temporal changes across a persons lifespan, and that neural processes can be

altered as a result of neurological trauma or disease, then the magnitude of the modelling challenge

can be put into perspective.

The consensus within psychology is that stimuli-action pairs are retained in memory by the

brain [82]; this memory is clearly very different to that of traditional computers. Presented with

a stimulus the brain is able to recall the appropriate response and make associations with other

relevant information. On a basic level encoding new pairs to memory can be considered to encap-

sulate the essence of learning. At present, an understanding of how biology actually encodes this

information remains elusive.

Multiple definitions of machine learning exist, however, how best these can be realized is far

from apparent. The field of machine learning considers algorithms that build predictive/decision

making models based on inputs prescribed to a system1. These approaches should be contrasted

with conventional computing where programmed instructions are explicitly executed. As may be

expected there exists a plethora of machine learning techniques. Many have overlapping applica-

tions, as well as drawbacks and advantages when compared to their compatriots. Neural networks

[135] have remained a relatively effective, popular approach since the inception of the field. Never-

theless, they are by no means the only currently studied paradigm of learning. Approaches such as

Decision Tree Learning [139] and Support Vector Machines [31] have gained traction and may now

be implemented into AI. Other means for representing learning, such as Genetic Algorithms [110],

have had a profound effect on the way learning is conceptualized, but now receive less attention.

1.1 Introduction to Learning in AI

Learning within the domain of AI may be accomplished by training a system with stimuli-action

pairs, or by allowing a system to adapt its parameters until it is able to effectively elicit appropriate

responses to a stimuli [84]. When known stimuli-action pairs are used to educate a system, the

learning is said to be supervised. This is not the only possible way to achieve learning. Alternatives

to supervision include; reinforcement [33], semi-supervised [28] or fully unsupervised learning [55].

� Reinforcement learning is concerned with reward maximization. The system’s responses to

stimuli are compared to desired outcomes and feedback is provided in the form of a reward

function. This allows the system to promote suitable learning rules and neglect those that

result in a reduction of reward [12]. Reinforcement learning is a highly studied approach as it

may be seen as a method that closely emulates one way in which a human may learn. Let us

consider a simple culinary analogy to help explain the principal. When we eat something we

decide whether it tastes good or bad. If it tastes bad this is equivalent to negative feedback.

We are less likely to eat the same food again. In contrast, we are more likely to seek food

that we determine tastes nice. Where feedback is positive the behaviour is more likely to

be repeated, whereas negative feedback causes us to avoid such decisions in future. Various

complications of reinforcement learning may be considered. These include the exploration

vs. exploitation trade-off, caused by sub-optimal initial solutions, and the credit-assignment

problem, resulting from delayed feedback [12].

1Tom M. Mitchell postulated the definition of machine learning as “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.”[111]
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� Goal based learning is closely related to reinforcement learning with the addition that it in-

corporates the influence of other learning machines [55]. This may infer competition between

different elements, or conversely, the notion of teamwork. Rather than the system assessing

success against its own experiences, it also considers a measure of the other competing ele-

ments of the system. Such approaches are typically utilized in a game based environments,

goal based algorithms being utilized by game simulators such as those applied to chess or

checkers [96].

� An unsupervised learning method does not rely on an external teacher or labelled data sets.

Like a human, the system identifies characteristic properties of the input without direct

instruction by finding patterns within data. Unsupervised learning is sometimes referred

to as clustering or unsupervised pattern classification, it is essentially a pure form of data

mining [87].

� Between the supervised and unsupervised classes lie semi-supervised approaches [28]. These

include algorithms that learn from incomplete data sets. These realisations of learning may

better emulate human learning as opposed to fully supervised techniques. Some feedback

and instruction is utilized, but the system is able to generalize, find patterns in unfamiliar

data, and draw comparisons to previously learnt information. This filtering and fitting of

ambiguous examples still leads to effective learning.

It is highly unlikely that a human learner will ever experience the exact same environment

multiple times. Relevant stimuli-action pairs are identified and retained, whilst large quantities

of data may be considered superfluous. Retained information is then used in other inter-related

environments. Given an unfamiliar circumstance, decisions are reached even when stimuli are noisy

or fuzzy, this minimally increases computation time when recognizing familiar stimuli out of the

complex myriad of inputs. The flexibility of the human brain to correctly deal with unfamiliar

circumstances by making associations between retained information and stimuli, can be perceived

as unsupervised learning. This type of learning has proven the hardest to mimic utilizing machines,

however, it appears to be predominant in human learners. Currently, the most effective machine

learning routines tend to fall into either the supervised or reinforcement categories. It should be

noted that approaches to model learning and memory are extremely varied, there exists a vast

number of learning rules as well as a multitude of memory models. We should also consider that

the same model of memory may be taught by many different rules.

Modern AI has become a vibrant field of science and engineering by drawing on knowledge and

expertise from a diverse range of related subjects. Philosophy, mathematics, economics, neuro-

science, psychology, computer engineering, control theory, cybernetics and linguistics are a few of

the fields that have inspired techniques and methods applied to AI. When considering research

into learning systems, we should also reference computational intelligence and soft computing as

areas that may be considered synonymous with AI [37]. Shared components of these three dis-

ciplines include neural networks, support vector machines, fuzzy logic [81], genetic algorithms,

swarm intelligence [15] and probabilistic reasoning mechanisms, such as bayesian networks [53].

Computational intelligence generally utilizes a stricter definition of intelligence than the AI field

from which it evolved, referring to the complexity of a problem as a key indicator of intelligence.

Soft computing can be seen as a branch of computer science that seeks to emulate the parallel

reasoning skills of the human mind to utilize unpredictable fuzzy inputs, forming solutions where
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conventional computing fails. The distinction between these fields has little impact on the pro-

ceeding discussion and readers should consider the term AI to also incorporate the ideas of these

sub-fields.

1.1.1 Human vs Rational Approach

The design strategies employed in AI development may be loosely divided into human and rational

approaches. A human approach seeks to recreate some essence of the human learner. This may

refer to the structure of the system, such is the case for a neural network, or it may reflect the

decision making process (an example being the ‘General Problem Solver’, introduced by Newell and

Simon (1959) [119]). A rational approach removes focus from the human and instead concentrates

on finding optimal solutions to the problems of learning, classification, retention and recognition.

Within the rational framework, the clash between the logicist viewpoint and the connectionist

approach rages on [21, 22]; neither able to discredit the other. A viable direction of research may

lie in the amalgamation of these two concepts [20]. Connectionism may be considered to relate to

the structure of the brain. Despite this, connectionist models typically have a rational aim. It is

also apparent that most deviate from biological reality in order to enhance performance.

There is clear evidence that a ‘human’ approach can provide a successful model of learning;

we are living proof of this. However, currently achieving this artificially presents some seemingly

insurmountable challenges. A human based approach requires complex knowledge of the human

brain, this is an issue as our knowledge in this area remains limited.

1.1.2 The Human Brain and ‘Brain’ Research

The human brain is an incredibly complex system composed of around 120 billion distinct elements

called neurons [59, 57]. Each neuron has multiple connections to others within the network,

interacting at transmission points known as synapses. As many as 100 trillion connections are

thought to exist [168]. It is the way in which these connections are modulated that is thought to

determine the group dynamics of the system and hence dictates the response to a given stimuli.

It has been postulated that the modulation of connections is controlled by the interaction of

active neurons as summarized by C. Shatz as “Cells that fire together, wire together” [36]. The

storage and access of information in the brain relies on highly distributed representations and

transformations that operate in parallel. Information appears to be stored in a distributed form

across the synapses of the system [142]. The transmission of a neural impulse along a neuron is

unidirectional, a feature that is not always replicated in artificial neurons. Although there are

various types of neuron, the basic structure remains constant. The synapse of one neuron meets

the dendrites of another. Action potentials travel along the dendrites to a soma, here the action

potentials from each input neuron are combined to determine the response of the neuron. Based

on its inputs, the neuron may propagate an action potential to subsequent neurons in the network.

This is achieved by passing an impulse along the axon to its many synapses. The configuration

of the network, the processes occurring in the soma, and the behaviour of the synapses all play

pivotal roles in the behaviour of the system. A change in the excitation of a single neuron may

have dramatic repercussions on the dynamics of the system as a whole. This property may be used

to explain the seemingly infinite capacity of the human memory.

The myelin sheath, a dielectric material that encapsulates the axon dramatically increases

the action potential transmission rate. Transmission speed is fibre type dependent with speeds
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ranging from 2 mph up to 200 mph. Even at the upper limit, this is approximately 3 million

times slower than the speed of electricity through a wire [115]. Therefore, in theory, an electronic

brain should be able to process information at a much higher rate. Unfortunately there remains

a significant gap between what exists in nature and what we can manufacture. The advantage of

an electronic system is significantly faster linear processing and signal propagation than seen in

biology, however, even the most advanced neural chips cannot be manufactured with comparable

parallel processing power. Microchip manufacturing continues to push the frontiers of scale and

performance. The forerunner, the IBM TrueNorth chip, is capable of modelling 1 million neurons

and 256 million synapses. It consumes a mere 70 milliwatts of power, and is capable of 46 billion

synaptic operations per second, per watt [105]. This still pales into insignificance if we scale these

figures against the brain.

Unlike other areas of biology where processes are relatively well understood, there are still

substantial gaps in our understanding of the human brain. It appears that certain regions of the

brain can be associated with different functions, however, this mapping is not straight forward.

Vision alone is thought to involve billions of neurons and more that 300 separate but interrelated

pathways in the cerebral cortex [100]. Identifying which pathways are associated with certain tasks

is not simple. In addition to the complexity of the system, there are also moral factors to consider

when designing methods to obtain information. With so many unanswered questions it seems

essential that extensive research takes place. New research may revolutionize not only medicine,

but also inspire a new generation of computing based on parallel computation and distributed

memory architectures, advancing the current neural network paradigm.

Stimuli cause action potentials to spread across relatively large distances within the brain, even

across several quadrants. As such it is hard to connect certain regions to specific computational

tasks. The myth that we only use 10% of our brains is still widely accepted, however it has been

categorically disproved2. The fact that such a myth remains popular highlights the failings of brain

research to provide a clear interpretation of how the brain actually works. It is unclear what level

of observation is required to adequately model functionality. Is a consideration of regions adequate,

or do the interactions played at a neuronal level have wider implications to the behaviour of the

system as a whole? Alivisatos et al suggests that research should focus on uncovering the emergent

behaviours of the brain that arises from complex dynamic interactions [5]. The focus should be on

identifying dynamical attractors rather than recording the receptive field responses of individual

cells. This means that classical approaches such as the use of electrodes to monitor electrical

activity are unlikely to yield much useful information. The problems facing brain research are

wide ranging, however, the development of new techniques seems to present the opportunity to

begin to answer some fundamental questions. There is significant activity within the field which

may give us cause for optimism. Our ability to observe the brain at finer scales is improving as

new techniques are developed. For instance, images of up to 80% of all neurons at a single-cell

resolution can now be captured and used to compile an evolving image of brain activity [4].

Brain research was initially advanced through the efforts of individuals or small groups of re-

searchers focussing on highly specific areas. In this environment extensive quantities of data was

obtained. Despite this, utilizing the data to build a global picture remained beyond the scope of

each individual project [100]. The task of integrating findings and deducing a global model of brain

2This myth is generally attributed to American psychologist W. James [73] and was even popularized by Albert
Einstein when explaining his intellect. In reality we utilize almost all of our brain most of the time. Consider for
instance that the brain accounts for roughly 3% of our body weight and yet consumes approximately 20 % of our
energy [17]
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activity would require the manipulation of large databases of information. Hence, expertise from

outside neuroscience, including computer science, mathematics and physics are all called upon. In

2013, the Brain Research through Advancing Innovative Neurotechnologies Initiative (BRAIN Ini-

tiative), also referred to as the Brain Activity Map Project, commenced. Subsuming the National

Neural Circuitry Database and receiving over $300 million per year for ten years in funding, it is

now tasked with overseeing the directed study of the brain in the US.

“By accelerating the development and application of innovative technologies, researchers will be

able to produce a revolutionary new dynamic picture of the brain that, for the first time, shows

how individual cells and complex neural circuits interact in both time and space.” [155].

This US project is replicated in Europe by an independent research framework referred to as

the ‘The Human Brain Project’ (HBP). Set up by the European Commission in 2013, and now

involving 112 partners in 24 countries across Europe, it shares many of the aims of the BRAIN

Initiative. Following a pilot study [97] the remit of the HBP was established as:

“The Human Brain Project should lay the technical foundations for a new model of ICT-based

brain research, driving integration between data and knowledge from different disciplines, and

catalysing a community effort to achieve a new understanding of the brain, new treatments for

brain disease and new brain-like computing technologies.” [1]

Despite the intentions of the HBP to catalyse the scientific community, the project met with

some early scepticism, prompting a petition in 2014 to the European Commission to disband por-

tions of the project. This discontent pertained to the e1.2 billion price-tag that was felt could be

better used funding investigator-driven neuroscience grants. It was also claimed that the project

took a too narrow approach. The view of Peter Dayan, director of the Gatsby Computational

Neuroscience Unit at University College London is particularly damming:

“The project was sold on the idea of building an infrastructure to simulate the human brain.

That simply is a nonsense. We can’t even simulate a nematode”. “We don’t know what questions

to ask to build something like a simulation of the human brain. It’s not a sensible goal, it never

was a sensible goal.” [160].

Despite these concerns, both the European and American projects are now in full operation and

have begun to publish there findings. The HBP published 56 research papers in its first year.

1.1.3 AI without the Limitations of Biology

With biology not yet able to yield sufficient evidence to definitively define the way we learn, store,

and process information, it does not seem unreasonable to explore other methods of modelling

learning. Certainly there should be alternative methods to realize our aims. Consider the pioneer-

ing engineers of the 1900’s attempting to create a ‘flying machine’. Nature would indicate that

such a machine behave like a bird, the success of the Wright Brothers alternative strategy serves

to remind us that there is often another way to approach a problem. If we neglect the require-

ment for a neural-like architecture, and instead consider the composition of our learning system
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to be irrelevant to our goal, then the approaches that may be taken to the problem are diverse.

AI may be considered from a human behaviour perspective. Such an approach would focus on

selecting a response comparable with a human, rather than fixating on the internal workings of

the intelligent system. This requires an intimate knowledge of the way a human would respond in

certain circumstances. There is therefore an emphasis on the behavioural and social sciences when

considering the performance of a system. Alan Turing (1912-1954) proposed the Turing Test [154]

as a means to gauge the intelligence of an artificial system. A system that passes such a test would

be indiscernible from a human when interrogated. This would require natural language processing,

knowledge representation, automated reasoning, machine learning, computer vision and robotics.

Such a system is still a distance from being realized, however, certain requirements have been

accomplished in isolation. A review of 50 years worth of accolades in this area is presented in

[140]. Recently the AI platform ‘Cleverbot’ convinced 59.3% of users at a techniche festival at the

Indian Institute of Technology, Guwahati, that it was in fact human [6].

We may alternatively pursue a rational approach. Rational AI does not compare features

to human characteristics, rather it searches for optimal solutions. This removes a number of

obstacles and constraints. As should be apparent, there appears to be no discernible route to

create an intelligent system, biology offers some interesting insights, but at our current level of

engineering expertise and biological understanding the brain cannot be replicated. It is also evident

that evolution does not guarantee an optimal solution to a problem. Systems may be devised with

superior processing power via radically different routines to those observed in nature.

In what follows we shall review several approaches to AI. The reader should note that although

several begin from a biological premise (neural networks, genetic algorithms), many biological

concepts are either omitted or ignored in the search for optimal performance. It may be considered

that biology is a useful guide until its application becomes a hindrance. Touching upon a few

important models of AI we consider their shortcomings. We shall later introduce a new paradigm

of learning that has some important characteristics which are discernible from many of the ideas

within the AI field. We hope to demonstrate how this method may be developed to achieve a new

AI that does not suffer from the same limitations as many of the more classical ideologies. This

new concept takes the guise of a non-linear dynamical system that classifies stimuli without the

need for supervision and without a distinction between training phase and standard operation.

A rigid unit architecture is abandoned in preference of a flexible potential. This system presents

the opportunity to circumvent issues such as the ‘curse of dimensionality’ and the requirement for

microchips with connectivity and capacity comparable to the brain.

In the proceeding overview the models discussed have been chosen as it is felt they provide

an insight into some of the more notable, relevant contributions to the field. That is not to say

that alternative methods have not had a greater impact, but rather that the topic is vast and

cannot be covered in intricate detail here. Although we draw attention to back-propagation [142],

Hopfield’s model [52], genetic algorithms [110] and decision tree learning [139] and also touch

upon extreme learning machines [66] and association rule learning [46], methods such as inductive

logic programming [114], support vector machines [31], clustering [87] and bayesian networks [117]

should not be ignored from a overview of the AI family.
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1.2 Prominent AI Research Areas

1.2.1 Neural Network’s

Artificial neural networks (nn)’s are mathematical models of brain activity that are utilized within

AI for tasks such as pattern recognition and machine learning. What differentiates nn’s from

standard rule based programming is the highly parallelized structure of the system. The architec-

ture is designed to emulate the structure of the human brain, allowing nn’s to perform tasks such

as computer vision and speech recognition for which traditional linear computing is ill equipped.

Neurons are represented by artificial units within the network whilst their interactions are con-

trolled by synaptic weights. There exists a plethora of nn models with many variations in network

topology, learning rules (synaptic weight updating), unit activation functions, and stimuli/response

representations. Despite this diversity, most nn’s share some principal constituents [142]:

� Parallel, distributed processing structure.

� Processing elements that possess a local memory and are capable of localized information

processing operations.

� Processing elements that are interconnected, each element has a single output which branches

into many collateral connections.

� The output of each processing element can be of any mathematical type desired.

� All processing in an element depends only on the current input signal and values stored in

the elements local memory.

Computation within an nn happens at the localized scale of individual units. Figure 1.1 demon-

strates a typical computational unit j. Each unit receives a number of activity inputs from either

the environment or other units within the network. These inputs form a vector A = (a1, .., an).

Associated with each input is an adjustable variable referred to as a weight. The ensemble of

weights w1j , ..., wnj comprise a vector Wj . The weight wij governs the connection from unit i to

unit j. Learning within a nn is typically achieved by adjusting these weights in accordance with

a learning rule. A threshold function θj may also be modulated by a weight w0j . Generally the

activity of the unit bj is determined by some function of the dot product of A with Wj. This

function is commonly referred to as a threshold or activation function. Equation (1.1) provides a

typical example.

bj = f (A ·Wj −W0jθj) = f

(
n∑

i=1

aiwij − w0jθj

)
(1.1)

Activation functions used for traditional nn models include linear, ramp, step and sigmoid func-

tions. These choices are made mainly for convenience and often have few implications on the

performance of the network [141]. However, one exception is the step function. In this circum-

stance a unit’s output is discrete and typically binary, the number of states that the system can

represent is therefore restricted. We shall later consider an important model that utilizes this

activation function - the Hopfield network.

Research on network topology suggests that the choice of architecture is highly situation specific.

There appears to be no general purpose nn topology that works well in all environments. Barring

a few exceptional cases, most studied networks contain some form of layering [50]. Layers often

consists of input neurons (these receive stimuli from the environment), hidden neurons (that have

no contact with the outside world but play an important role in information processing) and output
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Figure 1.1: The Artificial neuron j which receives inputs a1, . . . , an. These inputs are modulated
by the set of weights ω1j , . . . , ωnj and compared to the threshold θj . The output bj of the unit is
determined by an activation rule such as that given in equation (1.1).

neurons (which elicit the response of the system). Unlike the input and output layers where the

number of units is defined by the constraints of the stimuli/responses, the hidden layer may be

composed of any number of units. It is apparent that there exists an optimal number for a given

task. Too few or too many and the system’s performance will suffer, nevertheless, networks tend

to work well over a range. As there is currently no definitive rule dictating how many hidden units

a given network requires, the size of the hidden layer is typically determined via a trial and error

approach. This may be effective when the system operates in a supervised fashion and responses

can be compared to desired results, but such an approach may fail for unsupervised learning. One

of the characteristics of ‘deep neural networks’ [120], a class of nn that has become increasingly

studied, is the high number of layers. Networks containing ten hidden layers are not uncommon.

Their hierarchical concept structure allows such networks to perform better on many tasks in

comparison to shallow nn’s [120].

In addition to layering, network topology also includes the connections between units. Con-

nections may be intra-field, inter-field or recurrent. An intra-field connection joins two units in

the same layer whilst inter-field connections connect units in different layers. These connections

may be feed-forward of feed-back. A feed-forward signal only propagates in one direction whereas

feed-back signals are bi-directional. Recurrent connections loop and connect a unit back to itself.

These topological considerations can have a significant impact on the performance of the system

and the types of task a network can be used for. From a biological perspective, action-potentials

only propagate in one direction, however, certain tasks applied to artificial nn’s cannot be achieved

with feed-forward connections alone.

Learning in a nn is defined as any change made to the set of weights W. Teaching strategies

include reinforcement learning [12], stochastic learning, hebbian learning [58], back-propagation

[138], competitive learning [83] and cooperative Learning. Furthermore, some nn’s may have hard-

wired weights. This is the case for finite state automata such as those constructed to represent

the semantics of language. In what follows we shall consider a couple of the more eminent nn

models. We shall describe their key features and discuss some of the fundamental drawbacks of

each architecture.

Back-Propagation Multi-layered Feed Forward Network

W. McCulloch and W. Pitts defined the first artificial neuron in 1943 [104]. This inspired a cascade

of research into nn theory. New ideas such as hebbian learning emerged that stimulated models
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such as the ‘Adaline’ (B. Widrow 1962) and ‘Perceptron’ (F. Rosenblatt 1962). Unfortunately, nn

research experienced a exodus of researchers and a large cut in funding after 1969 when Minsky and

Papert published their book ‘Perceptrons’ [109]. Here they proved that although Perceptrons could

learn anything that they could represent, their ability to represent information was severely re-

stricted. This exodus was exacerbated in 1973 by the publishing of the ‘Lighthill Report’ [92] which

declared the failings of the paradigm. This disappointment was overcome by ‘Back-Propagation’,

a method first conceived by Bryson and Ho [25], but only popularized in the 1980’s by a number of

researchers including Werbos [162], Rumelhart, Hinton and Williams [138]. Since then nn’s have

regained popularity and lie at the forefront of AI research. The creation of the back-propogation

algorithm, still widely utilized today, can be considered a pivotal development in the history of the

field.

Back-propagation is commonly employed to train multi-layered feed forward networks, such as

the very simple example shown in figure 1.2. Learning is achieved by searching the space of all

weights for the minimum of an error function [135]. This typically occurs off-line, meaning that

there is a dedicated learning/training phase. During this training phase the network is provided

with training patterns. It compares its performance to the desired output and adjusts its weights

to better express the function that the network is intended to replicate. This separation of learning

and utilization may be considered a primary drawback of this method.

Figure 1.2: An example of a neural network structure that may employ a back-propagation tech-
nique to modulate the connection strengths ωij between units. The hidden layer allows the system
to process more complex functions than a simple 2-layer network. Although we have only demon-
strated a single hidden layer, such systems may possess many. Each unit bj of the hidden layer
receives an input from every unit of the input layer ai. The outputs of the hidden layer all feed to
a single output layer unit c1. Note that this is a simple case, NN’s typically include many more
input, hidden and output units.

To explain how back-propagation may be applied we must first define the training set, hence

let us consider a set of p input-output vectors (I1,D1) , ..., (Ip,Dp). Here Ii is a vector defining the

state of the input units and Di is a vector defining the desired state of the output units. Firstly let

us consider just 1 of these training patterns I = {I1, I2, ..., IN}. The subscript in this case refers

to a unit in the input layer (N is the number of units in the layer). D = {D1, D2, ..., DL} refers

to the desired state of each unit in the output layer (L is the number of units in the output layer).

Allowing our input to propagate through the network in accordance with randomly chosen weights

and a prescribed activation function we obtain an output C = {C1, C2, ..., CL}. The aim of back-

propagation is to minimize the error between the outputs C and desired output D for the entire

training set. The choice of activation function may vary although it is common to apply a sigmoid
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function. As we utilize a gradient descent technique, our only restriction is that the function must

be smooth and differentiable. Continuing to consider only the single training pattern, we can

compute the error in the output layer by taking:

Ej = Cj (1− Cj) (Dj − Cj) (1.2)

Here Ej is the error of the jth unit, where j = 1, 2, ..., L. Each unit in the output layer will have an

assigned level of error. This error can be used to update the weight wij . The weight wij connects

the unit i of the hidden layer to the unit j of the output layer. We shall denote the updated weight

as w∗ij .

w∗ij = wij + ηEjBi (1.3)

Here Bi is the output of the unit i within the hidden layer. We can define the state of the hidden

layer as B = {B1, B2, ..., BM} where M is the number of units comprising the layer. Also note that

η is a learning rate parameter. We may now consider the error of the units comprising the hidden

layer. The error on the output units can be seen to propagate backwards through the network

with the portion of the error attributed to the former layer being prescribed by the weights of the

system. As such, the error in a hidden layer unit, which we shall define as Hj is given by:

Hj = Bj (1−Bj)
L∑

i=1

Eiw
∗
ji (1.4)

This is computed for each unit j = 1, ...,M of the hidden layer. The weight w∗ji refers to the

updated weight between the hidden layer unit and the output unit that it feeds (the output unit

has an error of Ei). The sum over all L infers that the unit feeds forward to all output units

but this does not necessarily have to be the case. The network topology dictates which units are

connected. The error in the hidden units is utilized to update the error in the weights between

input layer and hidden layer. In complex networks featuring back propagation, there may be many

layers of units; the same principal of error flowing backwards through the system can be applied.

In this simplified case of a 3-layer network, the new weights between input and hidden layer are

given by:

w∗ij = wij + ηHjIi (1.5)

As before, w∗ij is the updated weight. This time, i is a unit within the input layer and j is a unit

in the hidden layer. Updates should be applied for all i = 1, 2, ..., N and j = 1, 2, ..,M as dictated

by the network topology. If new outputs are computed using this same training pattern and the

new system weights, then the error value will be reduced. This process should be applied for each

training pattern (Ik,Dk) in turn. This process should be repeated until the overall error is reduced

to a suitable level.

The Back propagation algorithm reinvigorated the nn field as it presented a means to represent

information that is not linearly separable [137]. We must, however, consider the draw-backs.

Two of the main limitations of this system are the requirement for learning to be supervised and

the problem of over training (there are a small branch of back-propagating systems that learn

in an unsupervised manner, referred to as auto encoders, however their applications within AI

are limited). Supervision refers to the manipulation of unit weights by comparing outputs to
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prescribed training examples. We have previously discussed the problems with supervised learning

and explained how such a process is mostly redundant in human learners. We have not however

touched on the issue of over-training. Over training relates to the number of times that the learning

algorithm is iterated. Its influence can impair the performance of nn models and can be difficult to

guard against without significant intervention. Too few iterations and the system will not perform

well at recognizing known inputs, too many and the system becomes over trained. Over training

means that the system will not be able to recognize stimuli in the presence of small quantities of

noise. This is a problem as we desire the system to be robust. To overcome this, a measure of the

error can be compared to a validation set of data; this is in contrast to ceasing training at a finite

level of error. A validation set comprises the same inputs as the training set, plus a small amount

of noise: we therefore require the outputs of the nn to remain the same. Comparison between

inputs/outputs and a validation set ensures that the network does not become over-specialized.

Generating this validation set is not a simple task and requires a high degree of human intervention.

It is difficult and subjective to determine an adequate level of noise. Although the system becomes

resilient, it also becomes more dependent on the training method. Further, the training phase

may be significantly extended. An additional problem relates to the local minima of the error

function. Ideally we would like to identify the global minima of the error function and find the set

of weights that correspond to this. Unfortunately, gradient descent only guarantees that we find

a local minimum. This local minimum may be a long way from the global minimum in the weight

space resulting in sub-optimal performance. A typical approach to overcome this is to randomize

weights after a prescribed number of iterations if an appropriate error margin is not achieved. Such

a procedure still fails to guarantee that the global minimum is located, however, it does prevent

the system remaining trapped in an undesirable local well. This means that the time taken for

an appropriate set of weights to be located is undefined and can be extensive. Systems employing

this methodology can therefore suffer from slow convergence times.

Extreme Learning Machines

Variants of extreme learning machines (ELM) [65, 67] are currently perceived as candidates for

attaining plausible AI. These networks typically consist of a single hidden layer encapsulated

between input and output layers. The network topology closely resembles the single layer feed

forward network (SLFN) shown in figure 1.2. ELM is therefore an alternative way to train a

network instead of using back-propagation. In ELM systems the hidden layer is not required to be

neuron-like. The key feature is that the weights and biases between the input and hidden layers

are randomly assigned. Only the weights between hidden and output units are manipulated to

train the system. In order to classify unfamiliar stimuli, information propagates forward through

the network in the same way as for any other SLFN. Compared to traditional NN’s, ELM’s are

remarkably efficient whilst retaining the ability to reach the almost optimal generalization bound

of feed-forward neural networks. In [68], Huang et al shows that this method is able to train

a network approximately 170 times faster than back-propagation, and 190 times faster than a

support vector method, for certain training sets. ELM does not require a gradient approach or

iterative process to manipulate the set of weights, this property is responsible for the considerable

speed up in training. The state of a standard SLFN that has learnt N training sets may be defined

as:
Ñ∑

i=1

Big (wi · xj + bi) = oj for j = 1, ..., N (1.6)
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Here oj = [oj1, oj2, ..., ojm]
T

is the output of the SLFN, where 1, ...,m refers to the m nodes of

the output layer and j corresponds to the training set. We may refer to the entire training set

as: (xi, ti), where i = 1, .., N . For the training pair i, xi = [xi1, xi2, ..., xin]
T

is the input to the

input layer which consists of n nodes and ti = [ti1, ti2, ..., tim]
T

is the target output of the output

layer consisting of m nodes. The bias of each of the hidden units i = 1, ..., Ñ is described by bi

whilst the weights between inputs and a hidden node i are described by wi = [wi1, wi2, ..., win]
T

.

Likewise, the weights between the hidden nodes i = 1, .., Ñ and the m output nodes are described

by Bi = [Bi1, Bi2, ..., Bim]
T

. The function g () is the activation function and can be any infinitely

differentiable function.

A network that has been trained to represent a set of sample input-output relations with zero

error is characterized by the relation ||∑N
j=1 oj − tj || = 0, the state of the output units match the

state of the desired outputs for every sample input. This means that there must be wi, Bi and bi

such that:
Ñ∑

j=1

Bigi (xj) = tj for j = 1, ..., N (1.7)

This may be written in the form HB = T where

H (w1, ...,wÑ , b1, ..., bÑ ,x1, ...,xN ) =




g (w1 · x1 + b1) · · · g (wÑ · x1 + bÑ )

... · · ·
...

g (w1 · xN + b1) · · · g (wÑ · xN + bÑ )




N×Ñ

B =




BT
1

...

BT
Ñ




Ñ×m

and T =




tT1
...

tTN




N×m

(1.8)

For a back-propagation learning model the hidden layer output matrix H is tuned to minimize

the cost function that compares the state of the network to a desired state. This is achieved via

iteratively adjusting the weights of the system via gradient descent. For ELM learning, the hidden

layer output matrix is randomly defined and fixed. Learning is only associated with the adjustment

of the matrix B and so there is only one layer of tunable parameters. To correctly train the network

the least square solutions for the matrix B can be shown to correspond to:

B = H†T (1.9)

Here H† is the Moore-Penrose generalized inverse matrix of H [11]. This can be calculated via

several methods including orthogonal projection and single value decomposition [68]. These solu-

tions are not iterative and so training of the network occurs in a single time step. The principal

aim of the ELM model is to limit human intervention whilst maximizing learning speed and accu-

racy [64]. We would argue that the requirement for training sets is contrary to this objective but

do recognize that learning rates are much faster than for networks taught by back-propagation.

Traditional feed-forward NN’s suffer from slow learning rates due to the requirements of gradient

descent techniques and iterative processes. By avoiding these algorithms ELM represents a signif-
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icantly faster approach [66]. We should also point out that utilizing a random matrix H allows us

to use aspects of the same memory for very different learning sets. We may consider the modelling

of two very different functions. For traditional SLFN we would require two networks, ELM allows

us to use the same random matrix H for both systems and so significantly reduces the amount of

memory utilized by the system.

A primary drawback of the ELM method is again the requirement for training to be isolated

from the subsequent application of the system. Further to this is the limitation on the number

of training examples/hidden neurons. [68] shows that in order to guarantee effective training, the

number of hidden neurons must be greater than the number of distinct training samples. This

requirement is arguably less restrictive than the neuron population requirements for some other

neural networks (i.e Hopfield model [63]), but may still present an engineering problem. In order

to train a ELM model all sample sets must be stored in memory and utilized in a single step to

create the weight matrix B, this is not an issue when the sample set is relatively small, but can

cause major problems when trying to learn a vast amount of complex information. Where larger

training sets are necessary, alternative AI architectures such as Deep neural nets are preferred as

they are able to assimilate samples iteratively, rather than composing the weight matrix in a single

calculation. Due to the random features of the hidden layer, larger network sizes are required to

match the performance of networks with tuned parameters. This larger size results in longer run

time during the testing phase. Comparing the classification of inputs between a back-propagation

taught system and a ELM system, the back-propagation system will typically compute associated

outputs at a much faster rate. Finally, we should highlight that there will always be a degree

of uncertainty about the operations occurring in an ELM network, as a significant proportion of

the connections are randomly defined. This situation seems far from optimal, as we can never be

certain that the system is evenly remotely close to offering the simplest solution to a problem.

The Hopfield Neural Network

The Hopfield model [63] refers to an associative memory model where the updating of synaptic

weights is performed asynchronously in accordance with the Hebb rule [58]. In contrast to many

nn models, the units of the system are not arranged in layers. Instead, each unit is coupled

to every other unit and the weights between them are symmetric: by this we mean ωij = ωji.

Computational units are based on the classical McCulloch-Pitts neuron [104], with a step-function

representing the activation of the unit. As such, the state of each unit is binary. Despite the

utilization of binary units, the nn is capable of storing a vast number of patterns. The number of

different patterns that can be represented by 10 units is 210 = 1024.

The McCulloch-Pitts Neuron: The state of each unit is dependent upon the relevant synaptic

weights and the inputs from connecting units. The classical McCulloch-Pitts neuron also includes a

threshold parameter. In the original definition a unit i’s activation is described by equation (1.10).

The use of the Heaviside step function ensures the state of the neuron is either 0 or 1. However,

it is computationally more convenient to use a sigma function, this is shown in equation (1.11).

ni (t+ 1) = Θ


∑

j

wijnj (t)− µi


 (1.10)
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Θ (x) =

{
1 if x ≥ 0

0 otherwise

Si = sgn


∑

j

wijSj − θi


 (1.11)

sgn (x) =

{
1 if x ≥ 0;

−1 if x < 0;

Parallels may be drawn between the use of binary units and the actual ‘all or none’ rule that

appears to govern neuron firing in biological systems.

Associative Memory: Memory can be represented as a set of stored patterns ξµi , where i refers

to the unit of the network and µ is the identifier of the pattern. A stored pattern in this case is

simply a sequence of 1’s and -1’s for each of the units i = 1, ..., N . If we consider a test pattern,

then for an associate memory model the system would configure itself to the stored pattern that

most closely resembles this input. In order to determine which stored pattern this is, we need to

know the set of weights (wij) that will configure the network from its current state to the state

closest to the test pattern. This is referred to as a content-addressable memory. Such a system will

always retrieve the nearest pattern related to a stimuli. Issues arise when an input pattern does

not closely match any stored pattern, the information then retrieved may bear little resemblance

to the input. The configuration space that contains all possible states of the network is split into

basins of attraction. The system converges to a stable attractors by updating units in accordance

with equation (1.11). There are two plausible methods via which such an update can be applied;

synchronously or asynchronously. For the synchronous case, all units are updated simultaneously

at each time step. This would require a central clock, which is not biologically realistic and presents

the possibility of timing errors. Alternatively, the units may be updated one at a time, selected

randomly at each time step. Equivalently, each unit may independently update itself reliant on a

prescribed probability distribution.

It can be shown that for an initial configuration close to a stored pattern, the state of the

system will quickly relax to this stored state. For configurations further away a series of unit

updates are required. If less than half of the units are in an unknown configuration, then they will

be overwhelmed in the sum hi =
∑
j wijSj used to update each unit i. Here Sj is the activation of

the unit j that synapses to i. If greater than half the units are initially in an unknown configuration,

then the unit being updated will not be updated correctly and the system will fall into a spurious

state known as the reversed state.

Determining synaptic weights: The synaptic weights are determined during training via the

Hebb rule, this takes the form:

wij =
1

N

p∑

µ=1

εµi ε
µ
j (1.12)

In this formulation εµi represents the ith bit of the pattern µ and εµj represents the jth bit. Recall

that these take values 1 or -1 and that each bit is represented by a corresponding neuron from

the ensemble N . This algorithm is applied iteratively during a distinct training phase. Iteration
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continues over the ensemble of training patterns until performance for the entire set meets a desired

level of accuracy. After this, synaptic weights are fixed and the network will evolve to the closest

pattern when an input is presented.

Storage capacity of the Hopfield Model: A given pattern v will be stable (i.e units defining

the pattern will not flip into the reverse state) if:

sgn (hvi ) = εvi (1.13)

Here hvi is the net input to unit i as a result of pattern v.

hvi ≡
∑

j

wijε
v
j =

1

N

∑

j

∑

µ

εµi ε
µ
j ε
v
j (1.14)

This can be separated to present the input to the unit i in terms of the bit i of the pattern v

and what is referred to as the crosstalk term.

hvi = εvi +
1

N

∑

j

∑

µ6=v

εµi ε
µ
j ε
v
j (1.15)

If the cross talk term is zero or less than 1, it cannot change the sign of hvi . If the system

configuration pattern is stable then the system will remain there. Configurations close to the

stable pattern will also relax to this pattern. The storage capacity of the network is determined

by the crosstalk term. Let us define another function:

Cvi ≡ −εvi
1

N

∑

j

∑

µ6=v

εµi ε
µ
j ε
v
j (1.16)

If the crosstalk term has the same sign as the desired term εvi , then Cvi will be negative; the

crosstalk has no effect. If Cvi > 1, the sign of hvi will be changed, hence the pattern v is unstable.

The probability that any unit is unstable is described by Perror = Prob (Cvi > 1). As the number

of patterns that we attempt to store increases, so too does the probability of an error. As such

an acceptable error tolerance must be defined. With this in mind we can determine the storage

capacity (pmax) of the network. The probability of an error (Perror) is related to a Gaussian

function with a mean of zero and a variance σ2 =
√
p/N . We find that:

Perror =
1√
2πσ

∫ ∞

1

e−x
2/2σ2

dx =
1

2

[
1− erf

(
1/
√

2σ2
)]

=
1

2

[
1− erf

(√
N/2p

)]

where

erf (x) ≡ 2√
π

∫ x

0

exp
(
−u2

)
du

(1.17)

Utilizing equation (1.17) the initial stability of a configuration can be determined for a chosen

error tolerance. The capacity of the network for a given tolerance can therefore be inferred. It

should be stressed that this is just the error in the initial configuration. If these units are updated

to incorrect values then this can cause a cascade, resulting in the entire memory being unusable.

It can be shown that such a cascade will occur if p > 0.138N [60].

16



Limitations of the Hopfield Model In order for the network to function effectively, the

system requires a relatively high degree of redundancy. Coupled with the curse of dimensionality,

this means such models do not present an efficient method of storing large data sets. Regardless of

error tolerance thresholds, spurious attractors may also plague the performance of such systems.

We have already made reference to one type of spurious state, the reserved state. In addition, there

are also mixed states and spin glass states. Mixed states are not the result of any single pattern;

they reflect linear combinations of an odd number of patterns [167]. The mixed state scenario is

easiest to observe from an energy function perspective. Defining an energy function H is one of the

major break-throughs of the hopfield model, and is why weights must be defined symmetrically.

The energy function is described by:

H = −1

2

∑

ij

wijsisj (1.18)

Here si is the activation of the unit i, sj is the activation of the unit j and wij is the corresponding

weight between them. The energy function H always decreases or remains constant. In accordance

with this function stored patterns are represented by local minima. One problem is that some local

minima may not represent a stored, desired pattern, rather, it may be the result of a mixed state.

Stochastic units present a solution to this problem, however, they also increase convergence times.

Beyond the nn approaches to AI lie a vast array of alternative strategies. Decision Tree learning

and Genetic Algorithms are two of the more studied non-nn paradigms, whilst associative learning

rules are perhaps the most widely utilized. We have tried to present a general overview of the nn

field, however, in reality, the variability and scope of the ideas emerging from this research area are

far too vast and eclectic to summarize effectively and contrast to our new learning paradigm. It

is hoped that providing a general background on back-propagation and hebbian learning informs

readers of the necessity for alternative strategies to meet the expectations of AI. Before we move

on to developing these new strategies, let us consider the aforementioned non-nn approaches and

consider why these methodologies may not yield solutions conducive to solving the problem of

effective AI.

1.2.2 Decision Tree Learning

A selected response is rarely a function of a single decision making factor. We may consider a stimuli

as an N-dimensional vector representing a multitude of relevant decision making considerations.

Take for example the decision to get a haircut, the response is binary-yes/no, but leading to this

there are multiple relevant attributes that must be considered, these may include: ‘length’, ‘Cost’,

‘Do I have money?’, ‘Distance to Barber Shop’, ‘Time of day’ etc, there may be 100’s of components

for even the most simple of decisions.

As the name suggests, this learning algorithm can be visualized as a tree or flow diagram. Inputs

to the system are vectors of attributes. The system separates these attributes into classes and sub-

classes, until all members of a class have the same outcome. An example structure for a boolean

decision is shown in figure 1.3. To build such a system training knowledge must be exploited; as such

supervised learning is typically required. There are some classes of decision tree that operate in an

unsupervised or semi-supervised manner [78]; these are typically classifier systems that separate

databases of information in relevant classes and subclasses. Both inputs and outputs can be

continuous or discrete, however, a continuous approach introduces considerably more complexity.
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Multiple decision tree algorithms exist, each with different functionality. Amongst the most notable

are Iterative Dichotomiser 3 [130], C4.5 [131], CART (Classification And Regression Tree)[19] and

CHAID (CHi-squared Automatic Interaction Detector)[79].

Figure 1.3: Decision Tree Learning for a boolean decision. The attributes of the vector input are
divided into classes until all members of a class share a common outcome.

It can be considered that the aim of a decision tree learning system is to create a tree like

architecture with outputs at its extremities. These are reached by answering a series of ‘questions’.

This concept is demonstrated pictorially in figure 1.3. The system does not initially know which

attributes should be prioritized when forming classes. As a broad flat tree is less computation-

ally expensive, it is important to minimize the number of layers of reasoning. The system seeks

to achieve this autonomously by implementing what is referred to as an importance function or

greedy algorithm. This function calculates the entropy of the system and uses the information

gain, calculated from a test on each attribute, to reduce the entropy. The attribute yielding the

greatest reduction in entropy is then utilized to form classes. This approach is simple to interpret

and can utilize and represent large sets of data. Unfortunately, it is not without drawbacks. Prin-

cipal amongst these is the requirement for large sets of training data and the need for supervision.

Over fitting can also cause problems where the system perceives an attribute as a suitable classi-

fier when the relation is really an anomaly. Furthermore, over-fitting may result in an excessive

level of complexity. This problem is partly overcome by a technique called decision tree pruning

where statistical significance tests are applied to attributes to test their relevance. The greedy

algorithm finds the locally-optimal solution, however, the combination of these local solutions is

not guaranteed to prescribe the global optimum. As such, decisions may not be made in the

most effective/shortest reasoning hierarchy. The structure of these systems is also poorly equipped

to deal with certain classes of problem such as XOR. Although it is possible to represent XOR

relationships, the size of the tree becomes prohibitively large [139].

1.2.3 Association Rule Learning

Association rule learning has strong applications in data mining and is primarily utilized to iden-

tify hidden patterns in large data sets [46]. The applications of such techniques are extensive

and wide ranging, from studying the visiting patterns of tourists [158] to identifying patterns in
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herbal formulae [90] and accessing the vulnerability of cities to earthquakes [133]. Association rule

learning was initially proposed as a data mining method for making associations between super-

market product transactions. Such associations may be embodied by statements such as ‘90% of

transactions that include bread and butter also include milk.’ [3]. Deriving such information is

useful as it may be applied to improve store layouts or for selecting special offer discounts.

The learning system searches a database of transactions and makes associations between items.

Taking into account the confidence in the association rule and the statistical significance of the

measure, the system can follow instructions such as: ‘identify all rules that meet a prescribed

criterion’, or, ‘find the rule with the highest confidence, that meets a prescribed criterion’. Omitted

from association rule learning is the notion of feedback. Typically, outcome goals are assessed after

a response - learners then adjusts accordingly. An associative learning machine is dependent on

the initial database of information defined. As such, such systems are highly supervised and are

devoid of the flexibility to respond to short term stimuli changes.

1.2.4 Genetic Algorithms

A genetic algorithm (GA) [62] is a special type of evolutionary algorithm designed to demonstrate

learning. Evolutionary algorithms apply an iterative, stochastic learning rule that utilizes a ‘sur-

vival of the fittest’ principle to search for optimized solutions within a finite population of retained

individuals (information stored in memory) [143]. Within this framework one can also consider

genetic programming, evolutionary strategies and evolutionary programming. The method em-

ployed by a GA is based on an analogy to biology and the coding of chromosomes with specific

genes. In this context a gene can be seen as variable and the combination of multiple variables a

chromosome.

In biology a gene is thought to define a single feature of a person, for instance, we may consider

a gene indicating eye colour. The possible gene expressions are green, blue or brown. Another

gene may represent hair colour and another may represent whether a person can roll their tongue.

Combining these genes together forms a chromosome, which defines the overall features of the

person. Clearly there are many different combinations that a chromosome can express. A GA

model considers a population of these chromosomes as a type of memory. These chromosomes are

initially randomly defined. They are then trained by determining fitness, triggering crossovers and

instigating mutations. These are key ideas behind this ‘survival of the fittest’ methodology. Let

us continue to avoid the rigours of GA methodology and consider what is meant by ‘survival of

the fittest’ in evolutionary terms.

The concept of ‘Survival of the fittest’ as a driving force behind the advancement of a species

was first postulated by Charles Darwin in 1859. Pivotal to this ideology is the concept of mutation,

genetic crossover and survival. Within an animal or plant population, there exists individuals that

posses genetic traits that provide an advantage over there counterparts. These traits may include

things like longer beaks or more acute hearing. Qualities that are the result of small genetic

mutations. What classifies an advantage depends on environmental factors. For instance, more

acute hearing may be advantageous in an ecosystem with many predators. This individual would

have a higher probability of survival and hence more opportunity to pass on its genetic traits

to offspring. The genetics of any offspring share the crossover of genes from both its parents.

This presents the possibility that advantageous traits are passed onto further generations. Over

many generations environmental pressures coupled with genetic mutations cause the continual
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development of a species, optimizing its features based on environmental stimuli. This process

can be viewed as an optimization problem where the systems features are adjusted due to the

application of a stimuli. We should point out that this is essentially a definition of learning. As

such, the GA approach can be considered to restate Darwinian evolution in a different context.

In any evolutionary algorithm a representation scheme is selected to define the set of solutions

that form a search space. In the case of GA’s, a binary string is typically utilized. Solutions are

initially created randomly and form an initial population. The fitness, crossover and mutation of

members of the population are then iteratively compared to a stimuli, until a solution matching a

termination criterion is discovered. This process is summarized in figure 1.4. The fitness function

is a probabilistic measure that assigns each solution a probability of being selected for crossover.

Fitness is assigned based on a measure of a solutions similarity to some prescribed target. Two

parent solutions are selected from the population and a crossover of binary bits takes place. Of

importance is the selection method used to determine parents. Many methods have been proposed

in the literature [143, 110] to describe selection. These include, but are not limited to, roulette

wheel, tournament and Boltzmann selection. The aim is to maintain a population size whilst

favouring chromosomes that are more closely aligned to the target. Parents are typically selected

stochastically, but preference is shown to those with higher fitness assignments. In this way, the

system performs faster than a random search algorithm. The cross-over point for the exchange of

bits between parents is also generally random. The new solution is considered to be an offspring.

Due to the fitness criteria and random bit exchange there is a chance that this new solution is

closer to optimal than the member of the previous generation. This offspring is also susceptible to

mutation, this should be considered as a random flipping of a random number of bits on its string.

This may have beneficial effects.

The use of binary units for GA’s is advantageous as it captures a principle aspect of genetics

known as the laws of Mendelian inheritance. The gene inherited by the offspring is not a blend of

the two parents, instead each gene is inherited from one of the solutions alone. This hypothesis

was first attributed to Gregor Mendel (1866), who studied the cross-fertilization of pea plants.

He is now considered the founder of genetics. The representation of solutions to GA models are

predominantly based on binary units, although octal, hexadecimal and real number encoding can all

provide viable alternatives in certain situations. The flexibility of the model is further emphasised

if we consider that the fitness function can feasibly be any relevant function. There also exists a

range of methods to select parents from a population. These methods may be as simple as taking

a random choice but most utilize a function of the fitness, weighting choices based on the selection

pressures. The selection pressure should be considered as the degree to which better individuals

are favoured. Where selection pressure is higher, we would therefore expect a faster convergence

towards an acceptable solution. One of the more conventional selection methods employed by GAs

is roulette wheel. This selects parents from the mating pool with a probability proportional to

each individual’s fitness.

Advantages and Limitations of GAs

The GA approach offers several advantages over alternative AI and conventional computing. The

biological basis for the model aids in directing further research ideas as more is learnt regarding

genetics. Furthermore, the relatively simple mathematical constructs allow multi-disciplinary use

of the model. This aids in the generation of new ideas. Since GA’s can be applied to any opti-
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Figure 1.4: Demonstration of the stages involved in updating a Genetic algorithm to replicate
a given target. Via this method, the GA learns to replicate a prescribed input. After learning
the GA will then be able to select appropriate responses by comparing unknown stimuli to the
chromosomes within the population and eliciting the relevant response.

mization problem that can be represented as binary strings, the applicability is also broad. GA

approaches remain robust to noisy stimuli, a quality imperative in any AI architecture and eminent

in nature. In addition, the concepts of GAs should not be isolated from the rest of AI, they can be

incorporated with traditional optimization techniques and utilized to improve the performance of

other paradigms. Seeing as several combinations of solutions can be computed simultaneously the

speed of GA approaches can be significantly improved on distributed processing machines. The

key advantage of a GA approach over traditional computing is that it is able to address problems

that cannot be solved linearly. It is also able to interpret patterns within larger sets of data, well

beyond what is comprehensible for a human.

Like most AI paradigms, GAs have their own share of shortcomings. We may consider that

the GA approach to optimization is relatively general, it is therefore likely to be out performed by

techniques tailored to specific problems. This downside may be reflected by both the speed and

accuracy of a chosen algorithm. GAs search a restricted population of solutions that form a sub

class of the search space. The search space in complex optimization problems can be too large

for conventional computational search techniques such as stochastic hill climbing, random search,

gradient descent and simulated annealing to effectively explore within a reasonable time-scale.

GAs have the advantage that the restricted population they utilize evolves and can eventually

represent any point in the search space. We should be wary of this, as if the initial population

does not contain any members that closely resemble the target, the duration of the search can

again be extensive. Iteration of the algorithm is generally continued until a certain amount of

time is exceeded or a certain level of accuracy is achieved. Because a GA is stochastic, there is
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no guarantee that a globally optimum solution will be identified. A GA can function as a type of

memory when the population is trained to represent multiple targets. Unlike conventional memory,

there is always the risk that information pertaining to previously encountered targets is going to

be overwritten. This is less likely when targets are distinct and so the fitness of a trained solution

is low in comparison to other solutions within the population. Where targets are similar there is a

high likelihood that information that should be retained is destroyed. Furthermore, the stochastic

nature of the algorithm always presents the chance that any portion of memory may be rewritten.

The reader should hopefully be convinced that despite the wealth of ideas within the AI frame-

work, no plausible method to truly solve the problem has been developed with sufficient rigour

to even begin to emulate the capabilities of a biological brain. The extensive research presented

since the inception of AI in 1956 [139] has been fraught with exciting developments and failings.

Many ideas emerging from AI research have been implemented into the technologies now common-

place in the modern world. Regardless of this, the cumulative achievements to date remain far

short of the expectations of the field’s pioneers [30]. With this in mind, the need for new ideas is

indisputable. We cannot claim that the model we shall subsequently present offers a solution to

all of the shortcomings of alternative AI’s, however, viewed within the wider context of the field,

its development may inspire future developments and potentially a new approach to stimulate

advances.

1.3 “Memory Foam’ Approach to Unsupervised Learning’

The shortcomings of current methods to replicate the efficacy of a neural system provide an op-

portunity to re-evaluate the approach to the problem. It is apparent that even with the evolution

of silicon chips, we are still a significant distance from implementing neural-like circuits with the

same level of connectivity and parallelization as the human brain. Even if such a circuit were

currently available, we still do not know how such a system should be composed and what laws

governing interactions should be applied to produce an autonomous learning system. These issues

may perturb some considerations of neural network and alternative AI approaches until adequate

technologies can be developed. As discussed, replicating biology is not the only way to artificially

realize learning. It may not even be the optimum way. A new paradigm is presented in [74] and

developed in [99]. It is a consideration of this new paradigm that we shall concern ourselves with,

developing supplementary ideas and exploring further the presented results.

The basic ideology of the ‘Memory Foam’ model is that it is not how the brain works, but what

it achieves that should be the primary concern. As such, the realities of biology are neglected in

favour of a more flexible approach that does not involve the restraints of neuron architecture. The

simplest means to introduce this new model is to use an analogy to orthopaedic memory-foam:

Memory foam takes the shape of any object that is imprinted on its surface. This imprint

remains even once the object has been removed. To aid this description, it is beneficial to consult

the graphic shown in figure 1.5. Consider the impacts of a series of falling objects. At the places

where they land, indentations are made. These objects are comparable to a stimulus, and the foam

is ‘memory’. If objects are continuously dropped at different locations on the foam then multiple

indentations are formed. The foam’s profile will continuously change to reflect the distribution
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Figure 1.5: As objects fall onto the profile the shape continuously changes. As a depression caused
by an impact remains beyond the removal of the stimuli we may associate deeper depressions
with more prevalent stimuli. This concept can be seen as analogous to the shaping of orthopaedic
memory foam. Information about the distribution of stimuli is retained by the shape of the profile.
We may consider the foam to have learnt and retained information about its experiences.

of objects that have fallen. As impressions endure with time, the profile of the foam reflects the

distribution of stimuli that have been applied.

The memory foam is analogous to a time-dependent evolving potential that is continuously

shaped by a stimuli. Unlike in other learning systems, the stimuli are not subject to external

control or manipulation. We should also add that there is no restriction on the number of stimuli

that can be utilized. The formation of this potential is essentially a new method to visualize

learning. Prevalent stimuli impose local minima on the potential, these minima act as attractors

of the system and reflect classes of stored knowledge. Further complications may also be included

to shape the potential such as the notion of forgetting. This may be described by the gradual

disappearance of a local minimum.

In a typical learning model such as a neural network or a decision tree learner, learning is

halted whilst the system is utilized to perform some operation. This may be to solve some opti-

mization problem or assign a new, unseen stimulus to a class. This assignment will generally have

no implication on the information that has already been learnt by the system and will not add

to the system’s knowledge. In contrast, this new model allows learning and recognition to occur

simultaneously, a mechanism referred to as on-line learning. Recognition is deemed the assignment

of an unfamiliar stimulus to a class. This is realized in [74] by taking the gradient of the poten-

tial. Learning and recognition are not separated into definable phases in the systems operation.

The potential is allowed to continuously adjust to its environment, learning remaining completely

unsupervised. Concurrently, the system utilizes the potential via a gradient approach to recognize

new stimuli. Although the system has a maximal information storage capacity, the time dependent

nature of the model ensures that any information that is lost can be re-learnt. The system will

therefore train itself to any new environment. The flexibility and breadth of application of the

system is therefore much greater than that of models with distinct learning phases. Despite this

flexibility, the system should retain accuracy and may be utilized to represent precise information

in appropriate contexts.

Before we begin to explore this model, we should first discuss the intended direction of devel-

opment and highlight the tools that may achieve such ends. The behaviour of this new model is

non-linear, nonetheless, the dynamics of the prototype system are relatively simple, dependent on

basic gradient descent. Adjustment of the system to permit more complex, higher order attractors
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should improve the viability of the model to real world AI tasks. It is therefore important to

consider some of the primary elements of non-linear dynamics. We shall introduce these via the

van der Pol oscillator, a paradigmatic non-linear system that has been extensively studied, and

previously utilized to characterize the oscillations in neural systems. We shall look to utilize this

system to develop the model postulated by Janson and Mardsen.

1.4 Elements of Non-Linear Dynamics

Non-linear dynamical systems are described by time evolution equations that pertain to the state of

the system. In contrast to linear systems, the variables are non-linear; this means that the output

is not directly proportional to the input. Relevant dynamical variables include position, velocity,

acceleration etc [61]. Dynamics is now a highly inter-disciplinary branch of science which has made

important contributions across multiple subject areas (finance [29], cosmology [9], engineering

[149], climate physics [35], biology [14], population modelling [13]). To date, the accomplishments

of the field are extensive. Even with this in mind, its applications appear far from exhausted.

Developments within the younger branch of physics: non-linear dynamics, promise to deliver yet

more exciting and innovative contributions from this venerable field.

The dynamics of Janson and Marsden’s gradient technique are relatively simple; the local

minimum of an energy potential, surrounded by its basin of attraction, acts as a point attractor.

Although the gradient approach meets the basic requirements of the learning system, utilizing the

concepts of non-linearity presents an opportunity to introduce recognition in terms of higher-order

oscillatory behaviour. Such behaviours are indicative of real neural systems, where limit-cycle

oscillations, quasi-periodic motions or even chaotic trajectories have been observed [80]. Biology

aside, considering various synchronization and bifurcation regimes introduces valuable complexity

to our system. Such complexity may be utilized to reflect a hierarchical learning structure such as

the formation of classes and subclasses of retained knowledge.

1.4.1 Differential Equations and Attractors in Phase Space

The time evolution of a dynamical system can be expressed in the language of differential equations

(DE’s). These constructs take the general form ẋ = dx
dt = F (x, t), where x is a vector variable, t

refers to time and F () may be referred to as the velocity vector field. If the function F () does not

explicitly depend on time, then the system is referred to as autonomous. Where a DE is of order

higher than first, the system can be transformed into a set of first order equations by introducing

a suitable change of variables. This is advantageous as the solution of sets of first order DEs

can be utilized to study the system in phase space (the dimensions of the phase space are equal

to the number of dynamic variables required to define a solution to the DE). In this framework

important features of the system can be observed and analysed. As an example, let us consider a

DE describing simple harmonic motion: ẍ+ ω2x = 0. Here x is displacement and ω is a constant

referred to as the angular frequency. Introducing the change of variable y = ẋ the system can be

described by a pair of equations ẋ = y, ẏ = −ω2x. Trajectories of the system can then be observed

in a two-dimensional phase space with axis x, ẋ = y. Non-autonomous systems can be treated

in a similar way, consider the forced and damped harmonic oscillator: mẍ + bẋ + kx = Fcos (t).

Here m is mass, b is a damping parameter and k is a spring constant. An external oscillating force

Fcos (t), with amplitude F and period t perturbs the natural dynamics of the system. Applying
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the change of variables ẋ = y and t = z. ẋ = y, ẏ = − 1
m (by + kx− Fcosz) and ż = 1. This trick

ensures that any higher order DE can be written as sets of first order equations.

The dimensionality of the phase space is important when considering the behaviour of the

system. Uniqueness requires that within a one-dimensional phase space trajectories must either

remain stationary, converge to some fixed point, or move away to infinity. The Poincaré - Bendixson

theorem [152] dictates that phase space trajectories may never cross, as such quasi-periodicity and

chaotic trajectories are not possible on the plane, only emerging in a space with three dimensions

or greater. Oscillatory dynamics, known as limit cycles are however possible.

The methods and tools utilized within the field of dynamical systems allow complex behaviours

to be analysed and predicted. We shall introduce many of these tools whilst considering the

behaviour of the now paradigmatic system, the van der Pol (VDP) oscillator. In Chapter 4 we

shall suggest methods of incorporating limit cycles with our learning system.

1.4.2 The van der Pol Oscillator

Oscillatory dynamics are ubiquitous within living systems. The regular beat of the heart [156],

gaseous exchange in the lungs [39], sleep cycles [151], hormone level fluctuations [136], neural ex-

citations [51] and the vast array of circadian rhythms occurring within our bodies, all reflect some

kind of oscillatory behaviour. The requirements of homoeostasis prescribe that these oscillations

must occur within a finite bandwidth. Such oscillations are therefore insensitive to small pertur-

bations and return to a stable dynamic trajectory at the cessation of any external stimuli. Such a

trajectory may be visualized in phase space as a stable limit cycle.

Oscillators capable of demonstrating limit cycle dynamics all share some critical similarities.

These oscillators are often referred to as self-sustained, this name is apt as the repetitive motions

do not damp. Furthermore as t→∞ the shape, amplitude and frequency of oscillation are typically

insensitive to any change in initial conditions. This type of behaviour is only possible when there

exists an interplay between energy dissipation and power input to the system, with one or both of

these terms being non-linear. There exists an expansive array of models that meet the requirements

for self-sustained oscillation, particularly eminent is the VDP oscillator.

The DE describing the VDP oscillator normally takes the form:

ẍ− ε
(
1− x2

)
ẋ+ ω2x = 0 (1.19)

It may however be referred to in the alternative form:

ẍ−
(
ε− x2

)
ẋ+ ω2x = 0 (1.20)

It can be shown that equation (1.20) is essentially equivalent to equation (1.19). This is achieved

by introducing the change of variable y =
√
εx. The derivatives of y are then:

x =
1√
ε
y ẋ =

1√
ε
ẏ

ẍ =
1√
ε
ÿ x2 =

1

ε
y2
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ẍ− ε
(
1− x2

)
ẋ+ ω2x =

1√
ε
ÿ − ε

(
1− 1

ε
y2

)
1√
ε
ẏ +

ω2

√
ε
y

=
1√
ε
ÿ −

(
ε− y2

) 1√
ε
ẏ +

ω2

√
ε
y

(1.21)

Multiplying through by the constant
√
ε we show that the form of equation (1.19) is equivalent to

equation (1.20). The topologies of the two dynamical systems will therefore be equivalent, however

certain bifurcations may occur for differing parameter values. The system may also be described

by a Liénard type formulation [152]. Applying the Liénard transform y = x− x3

3 − ẋ
ε the van der

Pol oscillator can be written in the linearised form:

dx

dt
= ε

(
x− x3

3
− y
)

dy

dt
=
x

ε

(1.22)

Each formulation is essentially equivalent, however, certain forms may be preferred in certain

circumstances. For the sake of clarity, all references to the VDP oscillator henceforth refer to

the system as written in equation (1.19). As this system will prove intrinsic to many of the ideas

presented in later areas of this dissertation, and also serves as a suitable example on which to apply

some of the basic techniques of non-linear analysis, we shall subsequently present an overview. We

shall locate the fixed points of the system, study the stability of the system’s attractors, and

identify system bifurcations as parameter values are adjusted. Inferences and analytical results

shall be compared to numerical simulations to help illustrate the systems various regimes.

Fixed Point Analysis

The VDP equation (1.19) is a second order, non-linear, differential equation. It can be expressed

as a pair of first order equations by defining the variable change y = ẋ. This yields:

ẋ = f1 (x, y) = y

ẏ = f2 (x, y) = ε
(
1− x2

)
y − ω2x

(1.23)

The fixed points of this system are then identified by finding solutions where ẋ = 0, ẏ = 0. These

points may also be referred to as equilibrium points. If the system’s initial state is set to one of

these points, then it will remain stationary for all time. It is easy to see that y = 0, x = 0 is the

only fixed point. We shall denote a fixed point as x∗, y∗. The next important question pertains

to the stability of the fixed point. For a point x∗ to be stable x∗ + ε → x∗ as t → ∞, where ε is

a small displacement. This infers that for a fixed point to be stable the derivatives at this point

must be negative.

Greater information can be obtained by linearising about the fixed point utilizing a Taylor

expansion. As the system is non-linear, it is important to remember that this approximation is only

valid within a limited proximity of the fixed point. Nevertheless, considering the linearized points

provides an initial basis from which to consider the system’s dynamics. There are some constraints

on this approach such as the requirement for the functions to be smooth and continuous. Let us

expand about the fixed point of equation (1.23) with a Taylor expansion:
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ẋ =f1 (x∗, y∗) +
∂f1 (x, y)

∂x
(x− x∗) +

∂f1 (x, y)

∂y
(y − y∗) +H.O.T.

ẏ =f2 (x∗, y∗) +
∂f2 (x, y)

∂x
(x− x∗) +

∂f2 (x, y)

∂y
(y − y∗) +H.O.T.

(1.24)

H.O.T. refers to the higher order terms of the expansion which are generally assumed to be

negligible. Since the expansion is taken about the fixed point x = x∗, y = y∗, it follows that

f1 (x∗, y∗) = f2 (x∗, y∗) = 0. We are interested in the behaviour in close proximity to the fixed

point, as such we should define x̂ = x− x∗ and ŷ = y − y∗ and restate the equations in the form:

ˆ̇x =
∂f1

∂x
x̂+

∂f1

∂y
ŷ

ˆ̇y =
∂f2

∂x
x̂+

∂f2

∂y
ŷ

(1.25)

This may be written in vector form:

Ẋ = AX (1.26)

Here X = (x̂, ŷ)
T

and A is known as the Jacobian matrix of the system, defined as:

A =



∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y


 (1.27)

The behaviour of the non-linear system in close proximity to a fixed point is approximately the

same as for a linear system, as such the behaviour can be determined by computing the eigenvalues

λ, found by solving det (A− λI) = 0. Based on these eigenvalues, the nature of the fixed point

can be predicted. An ensemble of possible types of fixed point are summarized in figure 1.6. Note

that we are considering a two-dimensional system and therefore each fixed point is described by a

pair of eigenvalues λ1,2. These may or may not contain both real and imaginary parts λ = a+ ib.

Let us now return to equation (1.23). Taking the derivatives about the fixed point, our linearized

system is described by:

[
ˆ̇x

ˆ̇y

]
=




0 1

−ω2 ε



[
x̂

ŷ

]
(1.28)

Eigenvalues are then found by taking the determinant:




0− λ 1

−ω2 ε− λ


 = λ2 − ελ+ ω2 (1.29)

Equation (1.29) is referred to as the characteristic equation. Eigenvalues λ+− are therefore

λ+− =
ε±
√
ε2 − 4ω2

2
(1.30)

Considering the types of fixed point shown in figure 1.6 we can build a picture of the behaviour

of the point (0, 0) as a function of the parameters ω and ε. Stability is inferred by the sign of

the eigenvalue, whilst a complex eigenvalue infers rotation about the point. A diagram containing

information about the transition between different fixed point behaviours is known as a bifurcation
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(a) (b) (c)

(d) (e) (f)

Figure 1.6: The different types of fixed point that may exist on the plane. Red lines indicate
possible trajectories whilst black arrows highlight the direction of the vector field. Each type of
fixed point can be associated with certain eigenvalue conditions as summarized:

� (a): Stable Node: Reλ1,2 < 0, Imλ1,2 = 0.

� (b): Unstable Node: Reλ1,2 > 0, Imλ1,2 = 0

� (c): Stable Focus: Reλ1,2 < 0, Imλ1,2 6= 0

� (d): Unstable Focus: Reλ1,2 > 0, Imλ1,2 6= 0

� (e): Saddle Point: Reλ1 > 0,Reλ2 < 0

� (f): Centre: Reλ1,2 = 0
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plot. A bifurcation plot for the parameters ω and ε of the VDP oscillator is shown in figure 1.7.

Figure 1.7: Classification of the van der Pol oscillator fixed point at (0,0) in the parameter space
ω, ε. The red line |2ω| = |ε| is shown to partition the space into real and complex regions whilst
the line ε = 0 separates attraction and repulsion.

We can validate our inferences about the fixed point by numerically simulating the VDP os-

cillator with parameters corresponding to each of the regions of the bifurcation diagram. As is

evident from figure 1.8, numerical results support our analysis of the fixed point. The trajectories

shown in figures 1.8a, 1.8b, 1.8c and 1.8d also highlight the nature of the system when the fixed

point is unstable. In this circumstance, the system variables do not diverge away to ∞ as would

be the only possibility for a linear system, rather, they are influenced by an attractor know as a

limit cycle, which can only be realized by a non-linear system.

Limit Cycles

The limit cycle that emerges in the VDP system is predicted by Liénard theorem, which applies to

any differential equation of the form ẍ+ f (x) ẋ+ g (x) = 0, which meets the following conditions

[149]:

� g (x) and f (x) are continuously differentiable.

� g (x) is an odd function and f (x) is an even function.

� F (x) =
∫ x

0
f (u) .du has 1 positive zero at x = a, is negative for 0 < x < a, is positive and

non-decreasing for x > a and F (x)→∞ as x→∞.

These conditions are such that g (x) acts as a restoring force, whilst f (x) has a damping behaviour.

This damping behaviour is non-linear; small amplitude oscillations are amplified, but large ampli-

tude oscillations are damped. The total energy (E) of the system is the sum of the kinetic energy

(K = 1
2 ẋ

2) and the potential energy (V (x) =
∫
g (x) dx).
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The limit cycle in the VDP system is the result of a Hopf bifurcation (Poincare-Andronov-Hopf

bifurcation) [149]. A Hopf bifurcation occurs when a complex conjugate pair of eigenvalues of the

linearised flow, at a fixed point, become purely imaginary. For the VDP system this takes place

when ε = 0. Prior to the bifurcation, the system parameters are such that the fixed point is a

stable focus. When the eigenvalues cross zero, the point becomes unstable and spirals outwards.

This behaviour only persists locally, remote areas of phase space may be unaffected. The interplay

between the local and global dynamics culminates to generate a cyclic behaviour relating to the

trade-off between non-linear damping and excitation. Initial conditions in close proximity to the

fixed point move away along an unstable manifold, whilst conditions further from the fixed point are

attracted. These regions must be partitioned by a separatrix. In this circumstance, the separatrix

is considered stable and is known as a limit cycle. This environment is portrayed in figure 1.9.

Figure 1.9: The limit cycle (red line) is attracting, all trajectories approach its surface as t→∞.
In the vicinity of the fixed point, the system behaves in the manner implied by the linearized
system, whereas the global behaviour is not affected. This plot is produced utilizing XPPAUT
numerical continuation software [44].

A Hopf bifurcation is generically described by a normal form equation [61]:

ẋ1 = −x2 + x1

(
µ−

(
x2

1 + x2
2

))

ẋ2 = x1 + x2

(
µ−

(
x2

1 + x2
2

)) (1.31)

The behaviour of this system becomes more apparent if we consider the equation in the guise of

polar coordinates. Introducing the change in variables r =
√

(x2
1 + x2

2) and tanθ = x2

x1
, equation

(1.31) becomes:

ṙ = r
(
µ− r2

)
= f (r)

θ̇ = 1
(1.32)
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For µ < 0 there exists just one fixed point for r, this is at r = 0. The derivative at this point is µ.

As such µ determines the stability of the system. Where µ < 0, the fixed point will be stable. It is

clear that θ (t) = θ0 + t is a solution for θ, as such the trajectory will spiral around the origin with

increasing time. Combining these inferences we can assume that the fixed point for µ < 0 will be

a stable focus. For µ < 0, the fixed point at r = 0 will become unstable. There is now a second

fixed point r =
√
µ which is stable. As θ continuously spirals about the origin and r 6= 0 a circle

must be traced. This cycle is stable and attracting, it is referred to as a limit cycle.

The limit cycle is a phase space representation of a self-sustained oscillation. Since the VDP

oscillator portrays this behaviour, it has become a common starting point for deriving models of

sustained oscillation beyond van der Pol’s initial intentions. Applications appear within neurology,

biology, seismology, chemistry, physics, electronics and economics, as well as in many other relevant

areas. In what follows, we investigate how the self-sustained behaviour of the VDP oscillator can

be imparted onto our learning system. We shall look at how this can be applied to a simple one-

dimensional potential, before considering the more complex case of the N-dimensional learning

model. In order to achieve this we shall be highly dependent on numerical methods and computer

simulation. A numerical integration scheme is required to integrate the differential equations that

are developed. We shall also consider the applications of noise to the system, hence appropriate

means of generating uncorrelated signals are required.

1.5 Numerical Approaches

The simulation of appropriate stimuli and the integration of differential equations requires the use of

several numerical methods. Such methods allow for the computation of solutions for systems which,

to model any other way, would require dramatic simplification, and therefore significantly diminish

the corresponding model’s usefulness. Computer implemented numerical integration schemes are

capable of handling large sets of non-linear equations. When utilized appropriately they rapidly

provide accurate solutions. A further advantage of computer simulation is the insight offered

into the effect of changing parameter values. Parameters can be manipulated and the simulation

repeated in a fraction of the time it would take to implement analytical solutions.

1.5.1 Solving Differential Equations Numerically

There are many ways to numerically solve differential equations. Factors to consider when select-

ing a routine include the computational expense of the method, the level of accuracy, and the

restrictions of the system under investigation. Because our model may incorporates a stochastic

aspect, additional considerations must be made. Stochastic systems may be approached from the

viewpoint of probability theory by exploring the Fokker-Planck equation [134] that describes the

system. Alternatively, such problems can be postulated in the language of Stochastic differential

equations (SDE)[54]. Under this guise, the problem may be posed as a Langevin equation [89] and

solved via the application of either the Stratonovich [147] or Itō Integral [70]. A Langevin equation

takes the form:

ẋ = a (x, t) + b (x, t) ξ (t) (1.33)
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The term a (x, t) is commonly referred to as the drift coefficient and b (x, t) as the diffusion coef-

ficient. The requirements on the noise function ξ (t) are discussed at length in [157], as are the

methods to solve such equations. In a numerical context we can simplify the problem by selecting

a 4th order Runge-Kutta scheme (see Appendix A.1) [150]. This scheme is proven to perform well

in comparison to simpler integration schemes such as the Euler method [153], and does not require

the computation of derivatives; an advantage over Taylor schemes.

1.5.2 Gaussian Noise

In order to simulate appropriate stimuli we are required to generate Gaussian white noise. White

noise is created by a random number generator and transformed to obtain a Gaussian distribution.

Computers are deterministic machines. Generating genuine random variables is therefore not

possible. Every output is determined by a sequence of events; the rules that govern the behaviour of

the program are not subject to random fluctuation. We must therefore make a distinction between

true randomness and the pseudo-randomness that we are able to generate. An appropriately

generated pseudo-random number portrays all the statistical properties of its counterpart, and

as such, is a suitable tool used in stochastic models. Henceforth we will not distinguish between

pseudo-random and random numbers. Testing of various routines suggests that a derivative of the

Park and Miller algorithm [123] is a viable method of generating randomly distributed uniform

deviates. It is clear that the choice of RNG should be carefully considered [129]. Due to the

linear congruential execution of many of these algorithms, the period of repetition may render

many approaches invalid for all but the simplest of models. The rand() function defined by the

ANSI C standard has a period of approximately 232, this is small if we draw a comparison to other

implementations such as the Mersenne twister (219937−1)[101]. Our choice of generator is motivated

by evidence presented in [123], which cites the Lehmer RNG [88] as the minimal standard based

on the statistical analysis presented in [69, 91, 94, 125].

Methods to numerically create GWN include the box-Muller transform [16] and the Ziggurat

algorithm [98]. The box-Muller algorithm has be applied effectively across a vast range of modelling

problems. In figure 1.10 we demonstrate the algorithms output in conjunction with the RNG (see

Appendix A.2), this should convince readers that our numerical choices for the stochastic aspects

of the model are appropriate.

1.6 Summary and Conclusions

We have outlined the general state of AI research, focussing on the deficiencies of existing tech-

niques whilst commenting on the direction of ongoing research. The dependence on supervised

and reinforcement training routines and the requirement for high levels of redundancy are two fail-

ings that the majority of methodologies fail to address. The NN and alternative AI that we have

considered possess fundamental flaws that may lead to pessimism about their future development.

Unsupervised learning methods are typically complex and merely filter and cluster data-sets rather

than being applicable to evolving, real world, real time data processing. In contrast, the method

of Janson and Marsden [74] presents a simple, plausible approach to model unsupervised learning.

The relationship between intelligent systems research and biological studies is emphasised;

at the current level of biological knowledge it is felt that approaches based around brain inspired

architecture may serve as misdirection. Without a proper understanding of the processes occurring
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Figure 1.10: Numerically generated Gaussian random numbers compared to the standard normal
distribution.

within the brain, we cannot hope to exploit partial information to generate an intelligent system.

Further to this are the limitations of engineering. Even if we were to understand the functions

computed by the biological system, we have no means of engineering a system with such a highly

parallelized structure. The last sixty years of research is yet to meet the expectations of the field’s

pioneers, despite new ideologies such as back-propagation and Hopfield nets that have revitalized

the field. With this in mind, there appears to be cause to peruse alternative strategies. This

shows again that Janson’s model should be cited as a potential solution. The futility of biological

plausibility is rejected in favour of a new rational approach that does not rely on connectionism.

Where most models have separate learning and recognition phases, Janson overcomes this oversight,

creating a system that may be considered a better replication of how humans interact with their

environment.

With the need for this new system made clear, it is the aim of future Chapters to demonstrate

this systems efficacy and develop refinements that may improve the efficiency and scope. In this

regard, we have already discussed the intended areas of development. The tools of non-linear

dynamics should allow us to instigate higher order dynamic attractors for this model, inspired

by an analogy to the van der Pol oscillator. Creating attractors more complex than simple fixed

point should have implication on how this system may be used to recognize stimuli. Oscillations

are ubiquitous in neural systems. Although we do not wish to replicate biological structure, the

oscillatory dynamics of our system may be approached and understood with the same tools as used

for signal analysis, hence creating a bridge between electronics, biology and this new model.

The study of non-linear dynamical systems is not generally possible from a solely analytical

perspective. It is clear that numerical methods will play an integral role in our investigation.

Towards this end we have considered numerical methods for solving differential equations and

explored the approaches commonly taken to generate Gaussian distributed random numbers.
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Chapter 2

Classification and Recognition by

a Dynamical System with

Self-adapting Vector Field

As is apparent from the overview presented in Chapter 1, the research directions pursued within

the fields of AI and machine learning are exceptionally varied. It is also evident that many of the

directions taken have led to complications that have not yet been fully resolved. With many of the

more classical approaches continuing to present challenges, it is interesting to consider a promising

new model. This recently postulated model [74] accurately elicits unsupervised learning without the

complications typically observed in other unsupervised approaches [87]. It offers an opportunity to

concurrently learn from, and recognize, whilst eradicating the necessity of a training phase. This

ensures that the system remains relevant even when the environment changes significantly over

time.

In this chapter we will evaluate the memory foam model. By testing its performance for a

multitude of stimuli, and considering the implications of parameter choices, we shall verify that

this method warrants further attention. It is our hope that this examination will convince readers

that the model is capable of combating some of the greater issues faced by AI research. We begin

this investigation by defining the differential equations that govern the behaviour of this system.

Later we shall consider the implications of the systems parameters, before finally exploring ways

in which the model may be developed.

2.1 “Memory Foam’ Approach to Unsupervised Learning’

We first described this model via an analogy to orthopaedic memory foam in section 1.3, here

we shall consider the corresponding mathematics. The dynamics of this system are governed by

the non-autonomous, non-linear differential equations presented in equations (2.1)-(2.3). Equation

(2.1) prescribes the evolution of a time-dependent potential V (t,x) that is continuously shaped

by stimuli η ∈ x. The application of a stimuli η is associated with a Gaussian function centred

about η. This Gaussian function is described by equation (2.2). Due to the stacking properties of

Gaussians, the profile V (t,x) contains all the information pertaining to the classification of stimuli.
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We shall later show that this profile converges towards the probability density distribution (PDD)

of the ensemble of stimuli. Recognition is simultaneously inferred by the autonomous differential

equation (2.3). By computing the gradient of the potential, any initial condition on x will locate

a local minimum of the potential V (t,x). As the local minimum is characterized by the derivative
dV
dx = 0, the corresponding x is a fixed point of the systems vector field (defined by equation (2.3)).

The gradient approach ensures that all fixed points are attracting. The set of all x that converge

to this same point may be considered to fall within the basin of attraction of the same fixed point.

These processes are summarized in figure 2.1.

∂V

∂t
= −1

t
(V + g (x− η))− kV (2.1)

g (z) =
1

(√
2πσ2

)N exp
(

z2

σ2

)
(2.2)

dx

dt
= −γ ∂V

∂x
+ ξ (t) (2.3)

In equation (2.2) N refers to the number of dimensions of the system, this is equal to the number

of dimensions of the stimulus. A stimulus may be represented as a multi-dimensional vector when

it represents more that one aspect of the environment. As an example we may consider a stimulus

describing an object. The different dimensions of the stimulus may refer to the objects length,

breadth, thickness, weight, colour and a whole host of other relevant parameters. It is clear that

when η is N-dimensional, x must also be an N-dimensional vector.

We previously stated that the shape of V (t,x) converges to the PDD of the stimuli. This

feature will be explained in section 2.1.1. It should become clear that the term 1
t is important as it

ensures that a stationary solution exists. We must also define the topology of V (t,x) when t = 0

as without assigning a suitable definition we will have a discontinuity.

The concept of forgetting is represented in this model via the term −kV of equation (2.1). The

parameter k controls the rate at which the profile V (t,x) approaches a flat surface. Biological

systems tend to forget information that is not regularly re-enforced. By manipulating the constant

k we can control the rate at which local minima disappear. For the purpose of this investigation we

shall consider that the system does not forget, hence, in all future formulations we shall consider

the value of k to be zero.

Another important parameter that may influence the shape of the potential is σ, this is intro-

duced as part of the Gaussian function described by equation (2.2). σ2 is referred to as the variance

of the Gaussian. It controls the width of the curves that represent the application of a stimulus. As

we shall later show, σ plays a critical role in defining the number of local minima that our potential

may contain. We must also comment on the parameter γ of equation (2.3). This controls the rate

at which x approaches the local minima of the system. As recognition is not achieved instantly,

the potential will continue to shape and adjust to new stimuli whilst a local minimum is identified.

The rate at which a recognition trajectory approaches a minimum may therefore have implications

on what is actually recognized. A new minimum may form and existing minimum can disappear.

This may happen rapidly, the rate of gradient descent will therefore have a significant effect on

what is actually recognized. We may consider the parameter γ to relate to decision making time.

In general, we require our model to recognize stimuli quickly, however, it may be advantageous

in some instances to permit the system greater time to locate a minimum. This may result in a
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more accurate realization. The function ξ (t) is noise, which can be incorporated to demonstrate

the resilience of the system to external perturbation. We should be wary however, as its inclusion

may have undesirable consequences on the long term behaviour of the system.

The memory foam model automatically forms clusters of stimuli that may be regarded as dis-

tinct classes. A class represents a body of knowledge derived from the experiences of the system.

The ability to automatically form classes is an achievement that should not be under-appreciated,

as the realisation of unsupervised learning in neural networks or the wider AI field is not easily

accomplished. Where such claims are made by alternative models, the approach is typically com-

putationally complex and resource intensive. There may even remain some human intervention,

suggesting that the approach is semi-supervised rather than unsupervised. Further, AI models

typically operate in two distinct phases. First is a period of training, then unfamiliar stimuli

are encountered and recognized. Janson and Marsden’s approach presents a method to recognize

and classify stimuli simultaneously, without the requirement for a training phase or significant

data-manipulation. The ‘curse of dimensionality’ pertains to a severe shortcoming of the neural

network methodology. Due to the distributed architecture and finite number of activation paths,

outputs can be portrayed that are not correlated to any specified input. These are known as spu-

rious attractors. As the number of retained stimuli increase, so too must the size of the system

if erroneous responses are to be avoided. If too many patterns are learnt, the result can be a

cascade of unit activations that render the network useless [60]. Due to the deviation from a rigid

unit architecture, the memory foam model should not experience this issue. The properties of the

Gaussian function (equation (2.2)) ensure that the profile remains smooth and minima only appear

at desirable locations. Because the system continues to learn throughout its operation, it is not

restricted to learning about a finite number of stimuli. Over time it may forget certain classes,

however, this information can be re-learnt if the system experiences similar stimuli again. The

amount of information that the model may represent is therefore unlimited. We should note that,

at any finite time moment, there will be a maximal number of classes that can be represented by

the potential, these classes can however be redistributed given enough time. Here we may draw

some parallels to a human learner. Although we have an exceptionally large capacity for informa-

tion storage, it is certainly true that we forget things. Presented with some information that we

have previously learnt, we are not guaranteed to remember. This is not a problem, as, like this

new model we continuously learn from our environment.

2.1.1 Constraints on the Stimuli and Convergence of the Potential

Let us consider how we may approach finding an analytic solution to equation (2.1). Note that we

shall only consider the case where k = 0. Hence the differential equation becomes:

∂V

∂t
= −1

t
(V + g (x− η)) this may be rewritten in the form:

∂V

∂t
+

1

t
V = −1

t
g (x− η)

(2.4)

From which we can define an integrating factor e
∫

1
t dt = eln|t| = t, allowing equation (2.4) to be

written:

V = −1

t

∫
g (x− η) dt (2.5)
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Figure 2.1: Graphical representation of the operation of the autonomous learning model. The shap-
ing of the system’s potential (unsupervised learning) occurs simultaneously with the recognition
of a subset of stimuli.
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This is the negative time average of the function g (x− η). It is apparent that the term 1
t is required

to ensure that the system is able to reach a stationary state. Where the stimuli is ergodic we may

replace a time average with a statistical average. We must therefore make some assumptions about

the behaviour of η.

We assume that a stimuli is a result of a stationary, ergodic random process H (t), with a

probability density distribution P (η1, η2, ..., ηN ). Stationarity implies that the stochastic process

has a joint probability distribution that is not time dependent. This is the case if the stimuli

η = (ηt1 , ηt2 , ..., ηtk) has a distribution such that:

P (ηt1 , ηt2 , ..., ηtk) = P (ηt1+τ , ηt2+τ , ..., ηtk+τ )

for all k and all τ . Here τ is a shift in the time parameter t and η is a k dimensional vector

representing the input. An ergodic function retains all statistical properties in a single sufficiently

long realization. This means that all statistical measures remain unchanged regardless of whether

η is a time ensemble or a single realization.

We should also consider the behaviour of the function g (). This is a Gaussian function as defined

by equation (2.2). If we consider the case where σ → 0 this Gaussian function can be replaced

with a delta function. In this limit we can therefore define:

V = −1

t

∫
g (x− η) dt = −1

t

∫
δ (x− η) dt (2.6)

Then, considering the behaviour of V (t,x) as t → ∞ we may replace the time average with the

statistical average:

lim
t→∞

1

t

∫
g (x− η) dt =

∫
P (η) δ (x− η) dη (2.7)

Using the properties of delta functions [18]
∫
P (η) δ (x− η) dη = P (x). Hence, in the limit t→∞

it is apparent that V (t,x)→ −P (x), which is the negative probability density distribution of the

inputs.

We have made several assumptions to reach this solutions. Most significantly we have defined

the statistical nature of the stimuli and replaced the Gaussian function g ()with a dirac-delta

function. Generally, we will require the use of numerical methods to find solutions of equation

(2.1). This requirement is a result of the way the system interacts with stimuli. Stimuli are

interpreted in a iterative manner, a complete knowledge of a stimuli’s distribution is unknown, but

is developed as t→∞. This property is intended to replicate the way a biological learning system

would receive inputs.

2.2 Initial Simulations

The first demonstration of the versatility of this new model was presented in [74]. The model

was shown to learn and recognize musical stimuli supplied by a flute. Musical notes were char-

acterized by frequency, with the highest spectral peak of a fourier transform [72] identifying the

main frequency of the note played. This then served as the input to the learning system. Further

to exploring the classification of notes within a one-dimensional framework, Janson and Marsden

extended the model to four-dimensions and considered temporal patterns of four notes from the
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children’s song “Mary had a little lamb”. Examples of the foams convergence for various stimuli

with different probability density distributions were shown in [99]. Methods to create correlated

and uncorrelated inputs were also compared. Marsden showed that the energy potential V (t, x)

converges to the negative probability density distribution of the input faster when inputs remain

uncorrelated. The main contribution of [99] is to demonstrate a method to generate oscillatory

and chaotic behaviour utilizing delay-differential equations. It is suggested that such methods may

be applied to the problem of global optimization by utilizing a new procedure referred to as ‘Delay

Annealing’. Our investigation will deviate from this time-delay approach, instead focussing on the

paradigm of self-sustained, autonomous oscillation. It is our intention to represent the system with

dynamics that may infer a hierarchy of classes. Each class of knowledge should be represented in

the phase space by an attractor that has qualities specific to the class.

Having introduced the model and explained the various aspects of its composition, we should

now progress to test and verify the assertions that have been made. The equations of the model

may be integrated using a number of different numerical schemes [153]. Due to its accuracy

and computational efficiency we shall utilize a fourth order Runge-Kutta method, as outlined

in appendix A.1. The potential of the system should evolve to replicate the probability density

distribution of the ensemble of stimuli. We should be aware that this stationary behaviour may

only be realized as t→∞. We should consider the time scale on which an approximate convergence

is reached and may also investigate the effect of parameter choices on convergence times. Thus far,

the model has only been considered for a small set of differently distributed stimuli. We will now

consider a method to generate stimuli in accordance with a prescribed distribution. This will allow

us to compare the evolution of the potential to a known stimuli distribution. We can then contrast

the shaping of the system for different stimuli. To effectively test the model it is imperative that we

are able to define a wealth of different inputs with varying degrees of complexity. This is important

as we need to investigate the system’s efficacy in a number of different artificial environments.

2.2.1 Simulating Stimuli

Two simple methods of simulating a stimuli with a prescribed probability density distribution are

provided in [99]. The key difference between these approaches is the correlation between subsequent

values. Marsden shows that the model converges faster to a given probability density distribution

in the event that inputs are uncorrelated. Later we shall consider a real world stimuli observed

via a web-camera: in this circumstance stimuli may be considered uncorrelated. At present we

shall concentrate on producing simple correlated inputs. Correlated stimuli may be produced by

integrating a stochastic differential equation of the form:

η̇ = −dF (η)

dη
+Dξ (t) (2.8)

This formulation is equivalent to the the behaviour of a Brownian particle within an arbitrary

potential F (η) [95]. In this context, η is the stimuli, ξ is Gaussian white noise of intensity D and

F (η) is a function prescribing the desired distribution of stimuli. We shall utilize the stochastic

differential equation (2.8) to generate a series of differently distributed stimuli. These may then be

used to investigate the scope of the model’s application. It should be noted that a non-correlated

stimuli may be generated by applying a non-linear transform to a Gaussian white noise (GWN).

Alternatively, we may convert a correlated stimuli to a uncorrelated equivalent by utilizing a
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numerical random sampling method.

The equations (2.9(a-f)) indicate a number of different functions that may be utilized to describe
dF (η)
dη . These functions correspond to the illustrations of F (η) shown in figure 2.2.

dF

dη
= 0.06η3 − 0.9η − 0.3 (2.9a)

dF

dη
=

∫
1

1500
(η − 7) (η − 5) (η − 3) (η + 2) (η + 4) (η + 7) .dη (2.9b)

dF

dη
= 0.08η3 +

40 (η + 4)
(

(η + 4)
2

+ 0.4
)2 +

50 (η + 2)
(

(η + 2)
2

+ 0.5
)2 +

50 (η − 0.5)
(

(η − 0.5)
2

+ 1
)2 (2.9c)

+
300 (η − 6)

(
(η − 6)

2
+ 2
)2 +

300 (η + 7)
(

(η + 7)
2

+ 2
)2

dF

dη
= 0.2η + 6 (η − 4) e−0.5(η−4)2 + 3 (2η + 10) e−(η+5)2 (2.9d)

+ 8ηe−η
2

+ 5 (8η − 56) e−4(η−7)2

dF

dη
= 0.2η + 5 (0.4η + 0.4) e−0.2(η+1)2 + 7 (6η + 42) e−3(η+7)2 (2.9e)

+ 6 (η − 6) e−0.5(η−6)2

dF

dη
= 0.2η + 5 (0.2η + 0.4) e−0.1(η+2)2 + 10 (η + 7) e−0.5(η+7)2 (2.9f)

+ 6 (η − 6) e−0.5(η−6)2 + 6 (6η − 12) e−3(η−2)2

We have chosen various types of function to simulate stimuli. This is intended to demonstrate the

scope of the approach and allows us to investigate the shaping of the memory foam model for var-

ious stimuli compositions. Equation (2.9a) may be considered the simplest of these distributions.

The function F (η), as shown in figure 2.2a, is a double well polynomial. A similar distribution is

considered in [74], which suggests that this function is a good place to start in order to validate

the previously published results. Equation (2.9b) describes the derivative of a different polynomial

distribution. In this instance F (η) is a sixth order polynomial as shown in figure 2.2b. It con-

tains three local minima, each with a different curvature. This profile may be seen as the logical

progression from the first example. Equation (2.9c) and the corresponding graphic of F (η) shown

in figure 2.2c utilizes a series of Lorentzian functions and a quartic term to describe the stimuli.

This potential is the most complex that we shall consider at this stage. F (η) contains five local

minima. The quartic term ensures that η remains within a bound range in the vicinity of these

Lorentzian curves. The final three functions dF
dη , described by equations (2.9d,e,f), correspond to

figures 2.2d,e,f. These consist of ensembles of Gaussian functions. In each case a quadratic term is

included to ensure values remain within the necessary bound region. In each example the distribu-

tion and number of minima are chosen so as to create a profile with unique features. Figures 2.2d,f

both contain four minima, whilst 2.2e has only three. The Gaussian approach is relatively simple

to manipulate as we can define the variance and mean of each Gaussian curve independently. This

method is particularly simple if we draw a comparison to the polynomial descriptions. By applying

different normalization coefficients to each Gaussian function we can also control the depth of each

minimum. As shown, there is a large scope for creating interesting distributions with this function.
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2.2.2 Application to the Memory Foam Model

Applying the different stimuli η, as described in section 2.2.1, to the differential equation (2.1),

we can observe the evolution of the potential V (t, x) which characterizes the classification of

stimuli. Figure 2.3 illustrates the time evolution of the potential for the various stimuli generated

by equation (2.8). The stimuli distributions, described by the functions F (η), correspond to

equations (2.9a-f). The labels of figure 2.3 correspond to the labels assigned to each of the functions

described in equation (2.9). In each case V (t, x), given sufficient time, converges towards the

negative probability density distribution of the stimuli (shown by black line). We can show this

probability density distribution by normalizing a histogram composed of all the stimuli experienced

by the model. Comparing figures 2.3 and 2.2 it is clear that the stimuli distribution is related to the

functions F (η). It is important to note that in each of the examples given in figure 2.3 the Gaussian

width parameter σ =
√

0.05. In general, this is sufficiently narrow to model each of these prescribed

stimuli (the small discrepancy in figure 2.3c, between the distribution of stimuli and potential, may

be attributed to an excessively wide Gaussian parameter σ). If the stimuli distribution contains

finer details then this width parameter may need to be reduced. An alternative to reducing σ

would be to linearly transform the stimuli onto a wider range of x. Selection of σ may have a

significant effect on the number of classes that emerge within the system. It may also influence the

time it takes for the system to effectively reflect the distribution of stimuli. We shall consider the

implications of σ later, for now we shall continue to build a solid understanding of the prototype

model.

Recognition is illustrated in each plot of figure 2.3 by a set of initial conditions that follow the

contours of the potential (coloured lines at the base of each plot). These trajectories locate the

local minima of the system. This is achieved via a gradient descent function described by equation

(2.3). The local minima of the potential correspond to fixed point attractors of the systems vector

field. The system may consider the recognition of any number of stimuli simultaneously. We

choose to demonstrate the recognition of a cross section of from across the range of x in order

to approximate the basins of attraction of each fixed point. Note that the same initial condition

η = x may be recognized differently depending on when a stimulus is encountered by the system.

This is because the system’s potential V (t, x) is continuously evolving. By this reasoning, the

recognition rate parameter γ may influence which class a stimulus is recognized as belonging to.

In the examples shown in figure 2.3 γ = 1. Parallels may be drawn between our choice of this

parameter γ and thinking time. Taking longer to make a decision (allowing the gradient descent

point to converge more slowly) generally results in a better decision (means the point is attributed

to a class that better resembles the stimulus).

2.3 The Influence of Gaussian Width on Class Formation

To understand the effect that the Gaussian width parameter σ has on the learning system we can

study the evolution of the model for various values of this parameter. In each case we require an

appropriate stimuli, that presents a high enough degree of complexity to illustrate the possible

problems. A stimuli generated by the application of equation (2.8), where F (η) is defined by

equation (2.10) appears to meet this demand.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Graphical illustrations of the various functions F (η) that are employed to generate
stimuli with specific distributions. The corresponding derivatives dF

dη are described by equations

(2.9). (a):- F (η) is a fourth-order polynomial. (b):- F (η) is a sixth-order polynomial. (c):- F (η)
is a series of Lorentzian functions combined with a fourth order polynomial. (d),(e),(f):- F (η) is
a series of Gaussian functions combined with a parabolic function.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Six examples of the evolution of V (t, x) under the influence of different stimuli. These

stimuli are described by equation (2.8). The corresponding dF (η)
dη are provided in equations (2.9).

In each figure the probability density distributions of stimuli is represented by a solid black line
at t = 5000. This distribution is determined by normalizing a histogram containing all the stimuli
that the system has experienced. Each figure also shows a cross-section of recognition trajectories
on the plane (x, t), these identify the local minima of the potential. The local minima correspond
to the attractors of the system due to the gradient approach outlined by equation (2.3). Unknown
stimuli with arbitrary initial conditions are assigned to a class, the phase space is separated into
basins of attraction surrounding each fixed point. Note that in each example σ =

√
0.05, γ = 1

and D = 5.
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F (η) =0.005η4 − 0.4η2 − 10e−0.5
(η−2)2

0.08 − 10e−0.5
(η−3)2

0.2 − 10e−0.5
(η−4)2

0.08 − 10e−0.5
(η+4)2

0.08

− 10e−0.5
(η+3)2

0.15 − 5e−0.5 η
2

0.2

(2.10)

For each simulation we ensure that the PDD of the stimuli remains constant. we show that the

choice of σ has a significant influence on the formation of classes. In figure 2.4 we compare the

evolution of the potential for the same stimuli, but with various values of σ. Where smaller

values of σ are selected, the potential V (t, x) bares a closer resemblance to the probability density

distribution of stimuli on the respective time scale. In contrast, a large σ (see figure 2.4a) prohibits

the formation of some local minima altogether. Figure 2.4a demonstrates the case where σ =
√

0.5,

in this situation the profile only contains four local minima, however, the PDD of stimuli remains

the same eight minima shape as in the other examples. Reducing σ increases the number of local

minima. Where σ =
√

0.1, the potential contains five local minima and where σ =
√

0.05, seven

local minima exist. We observe all eight local minima for σ =
√

0.01. There appears to be very

little difference between the stimuli distribution and the potential V (t, x) if we reduce σ further.

A comparison of the potential (at t = 5000) for various values of σ with the probability density

distribution of inputs is provided in figure 2.4f.

Selecting an appropriate value for σ is clearly very important if the potential is to converge to

the probability density distribution of the stimuli. It is evident that some problems may be avoided

by simply selecting a small value of σ. For the example given in figure 2.4 this may mean σ <
√

0.01,

however, how we define small is clearly dependent on the distribution of stimuli. Although a small

σ is beneficial in the sense that classes form as required, selecting a small value has an adverse effect

on the systems ability to generalize when stimuli form distinct bands. Due to the properties of the

Gaussian function, any location on the potential should be associated with a basin of attraction of

a fixed point. However, when there is a large separation between stimuli there may be large regions

of the phase space that are characterized by a potential that is approximately flat. If we wish to

use this model as a type of auto-classifier this is clearly objectionable. We require that any point in

the phase space associates with a class within a reasonable time period. Utilizing a Gaussian with

a larger variance will help remove these flat regions of potential and ensure faster gradient descent.

We are therefore presented with the problem of balancing between generalization and replicating

the distribution of stimuli. At this stage we will present two suggestions to overcome this issue.

The first involves making σ a function of time, the other involves scaling σ with a function of

V (t, x).

σ as a function of time: Let us consider how a human might observe and learn from the world

around them. Consider a child learning colours for instance. A child would first learn the basics

‘red’, ‘green’, ‘blue’ etc. Given different shades or tones they are likely to still refer to only a few

basic, broad classes. As time passes they begin to distinguish between different types of colour

that they previously referenced as the same. i.e. They may now distinguish between scarlet and

crimson. This concept may be captured in the learning model by describing σ as a function of

time. Initially we require very broad classes, this means that σ must be large, as time passes σ

should be reduced so that it can reflect the difference between two similar classes such as scarlet

and crimson, that may not have been distinguishable with a larger σ. Clearly this function cannot

be linear as we require that σ > 0 and bound within some range. We propose the non-linear
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: (a)-(e):Evolution of V (t, x) under the influence of a stimuli described by equation
(2.8) where dF

dη is given by equation (2.10). In each case D = 5 and γ = 1. The evolution of initial

conditions demonstrating recognition (coloured lines) are shown on the plane (t, x) of each plot,
these points are evenly interspersed along the range of x. These trajectories approach the fixed
points of the system, which act as attractors due to the gradient method applied. The parameter
σ is shown to effect the shape of V (t, x). In (a):σ =

√
0.5, (b):σ =

√
0.1, (c):σ =

√
0.05,

(d):σ =
√

0.01 and in (e):σ =
√

0.005. It is apparent that the distribution of stimuli (which is the
same in each plot and has been obtained by building a histogram of the inputs) as indicated by
the black line at t = 5000 in each plot does not strictly coincide with the shape of the potential
at t = 5000 unless σ is suitably small. In (f) the shape of the potential at t = 5000 for (a)-(e) is
plotted along with the PDD of stimuli.
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function described by equation (2.11) and shown in figure 2.5a as an appropriate method to scale

σ. This function is continuous and smooth, ensuring that σ2 tends to a small positive constant

as t → ∞. This is necessary as we do not want our Gaussian function to become equivalent to a

delta function. In some circumstances an excessively narrow Gaussian function would impair the

smoothness of the potential and prevent trajectories associated with the gradient of the potential

converging to a fixed point of the system within a reasonable time scale. The parameters A, B and

C of equation (2.11) influence the slope of the curve, the intersect at x = 0, and the asymptotically

approached constant.

σ =
√
A
(
log
(
1 + e(−Bt−C)

)
+ C

)
(2.11)

(a)

(b) (c)

Figure 2.5: (a): The value of σ2 may be presented as a smooth function of time by utilizing
equation (2.11). Here the parameters of the function are A = 0.8, B = 0.003 and C = 0.006. σ2

tends to a small positive constant as t → ∞. As the system spends more time learning it should
be able to appreciate final details of the stimuli. (b): The shaping of the potential V (t, x) when
sigma is described by equation (2.11) with the above parameters. V (t, x) converges to the shape
of the PDD of stimuli, shown by the black line at the t = 5000. On the plane t, x a cross-section
of recognition trajectories are included (coloured lines). Note that these have the same initial
conditions as those shown in figure 2.4 and are controlled by the rate parameter γ = 1. (c):
Comparison of the PDD of stimuli and the potential at t = 5000 for the potential shown in (b).

It is evident from figures 2.5b and 2.5c that describing σ via a function of time does not

impair the shaping of the potential. A comparison between the PDD of stimuli and the potential

highlights that the system still shapes to the stimuli as required. The illustration shown in figure
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2.5b is clearly comparable to figure 2.4e (where σ =
√

0.005). This method should ensure that

regions of the potential do not remain approximately flat even if stimuli are well separated across x.

The dependence of the system on the Gaussian width function is somewhat negated by allowing the

function to adjust over a range during the runtime of the model. Despite this, there still remains

some difficulty. An appropriate choice of range must be made, as well as defining an appropriate

time scale over which this range should be covered. These factors are described by parameters

A,B,C in equation (2.11). Figure 2.5 demonstrates the case where A = 0.8, B = 0.003 and

C = 0.006. Although effective in this circumstance, the same parameters may not be favourable

for alternative stimuli. Using a range of σ values may be seen as a more flexible and general

approach than selecting a single value. In addition to improving the versatility of the model, this

adjustment may also be considered to replicate an additional feature of the way a human learns.

The model starts by making some vague generalizations, before developing the ability to discern

finer-details with time.

σ as a function of V (t, x): An alternative to representing σ as a function of time is to make

it dependent on V (t, x) at the point x = η. Similar stimuli that have been seen many times will

cause a deep well to form in the potential. It is logical to propose that if we receive similar stimuli

many times, then we should be able to recognize finer differences between them. To appreciate

finer details in the structure of the stimuli we require a narrower Gaussian. By making σ a function

of V (t, x), we ensure that if the stimulus is close to a local minimum, the Gaussian is narrow and

there is therefore a chance that a new class will emerge. Stimuli that are a long way from local

minima will be represented by a Gaussian with a much higher variance. This approach can be

seen as a different way to capture the same human based learning behaviour as making σ time

dependent. In this case the variance is dependent on what has already been learnt, rather than

simply on time spent learning. This may be considered a more realistic proposition. A function of

the same type as equation (2.11) can again be utilized. Equation (2.12) describes this alternative

approach to obtain a scaled value of σ.

σ =
√
A
(
log
(
1 + e(−BV (t,x)−C)

)
+ C

)
taken at x = η (2.12)

A demonstration of the application of this function is shown in figure 2.6. Here we have set

A = 0.8, B = 110 and C = 0.0006. A visualization of the function defining σ is given in figure

2.6a, whilst the time dependent shaping of the potential, and a comparison between the potential

at t = 5000 and the PDD of stimuli are given in figures 2.6b and 2.6c respectively. It is evident

from figure 2.6c that there is good agreement between the PDD of inputs and the potential. What

is also interesting is the number of classes recognized in this example. Although the same initial

conditions are selected (as shown by the coloured lines at the base of figure 2.6b), more classes are

recognized in this illustration than in figures 2.5b or 2.4e.

We may consider that assigning a range of values to σ is a more general approach than assigning

a single value to the parameter. Despite this, it remains unclear over what range this function

should operate and how steep the slope of the transform should be. As the value of σ required

to model the distribution of the stimuli is dependent on the stimuli itself, no simple method to

ascertain an appropriate range is apparent. A further conceptual problem with this idea is that

several closely related stimuli may not necessarily be defined by a deep well. A deep well may arise

due to stimuli occupying a small region of the phase space, whilst other areas remain approximately
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(a)

(b) (c)

Figure 2.6: (a): The function described by equation (2.12) for the parameter values A = 0.8,
B = 110, C = 0.006. This relates σ2 to the depth of the potential V (t, x). Smaller values of
V (t, x) are associated with more prevalent stimuli, the system should be able to better differentiate
between things it has seen more often, this is achieved by relating a deep potential well to a low
value of σ2. (b): The shaping of the potential when σ is described by equation (2.12). The PDD
of stimuli is shown by the black line at t = 5000. A set of recognition trajectories is shown on
the plane t, x, these again have the same initial conditions as the trajectories shown in figure 2.4
and are influenced by the rate parameter γ = 1. (c): Comparison of the PDD of stimuli and the
potential at t = 5000 where σ is described by a function of V (t, x).
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flat. Stimuli that are similar, may, in some circumstances be better inferred from a broad potential

well. What is defined as broad is again hard to quantify. If the basin of attraction is broad, then

σ should take a lower value. However, following this concept we will typically want a small σ

across the majority of the potential. If the class is wide, we wish to reduce σ to see if a new

class emerges. If the class if already narrow, it seems illogical to artificially make it broader. A

further approach to adjust σ may be to smoothly oscillate its value across a range so as to emulate

a circadian rhythm. Alternatively we may select values at random, possibly with a prescribed

probability distribution. This should permit narrow sub-classes to form, whilst ensuring broader

classes exist which guarantee effective gradient descent. Although we have focussed on a Gaussian

function (equation 2.2) to represent a stimulus, we may consider how other functions may perturb

the potential V (t, x).

2.4 Extending the Model to N-Dimensions

In previous sections the basics of the system were demonstrated for a one-dimensional stimuli.

The system is not limited to this restricted case, rather, stimuli may be represented by any N-

dimensional input. As such, the potential energy function V (t,x) may be considered as an N-

dimensional profile with trajectories evolving in accordance with the N-dimensional vector field of

the system. In [74] Janson considers a four-dimensional system to model the learning of temporal

patterns. In addition to pattern learning, each of the N dimensions may be utilized to represent

a different parameter of a learning goal. Consider a system that performs facial recognition using

fuzzy data. Each dimension may encode information about a distinct parameter, such as: ‘eye-

colour’, ‘skin tone’, ‘hair colour’, ‘hair length’, ‘facial dimensions’, ‘piercings’, ‘glasses’ etc. In this

way the model builds an internal representation of the subjects under study. New stimuli are

prescribed to classes, or if unknown, a new class develops. Following on from the one-dimensional

demonstrations, two-dimensional (i.e. the potential is a function of time and x = (x1, x2)) models

can also be portrayed. Combinations of the stimuli prescribed in equation (2.9) are utilized in

figures 2.7, 2.8 and 2.9 to characterize learning. We are again able to compare the profile to the

PDD functions of stimuli, and also consider the evolution of initial conditions under the influence

of the systems vector field. In each of the figures we have included a contour plot at the base of the

potential energy to help illustrate the local minima of the system. Because of the dimensionality

of the system we have only represented the state of the potential at finite time intervals. Readers

should be aware that in reality the profile evolves smoothly over time. This smoothness is easier

to observe from the included recognition plots. In figures 2.7g, 2.8g and 2.9g we demonstrate

recognition via the evolution of a cross-section of initial conditions as they locate the local minima

(fixed points) of the system (black circles). If we change the parameter γ we may increase/decrease

the rate at which local minima are located. In figures 2.7f, 2.8f and 2.9f we show the normalized

probability density distribution of each stimuli. Comparison with each potential demonstrates that

the same concepts apply regardless of the dimensionality of the system. The potential converges to

the shape of the negative PDD of stimuli. Figure 2.7 demonstrates the case where both η1 and η2

are described by double well polynomials, in this case the stimuli is generated by the application of

equation (2.8) where both
dF1,2

dη (x) are given by equation (2.9a). The second demonstration (Figure

2.8) illustrates the case where η1 has a five well distribution and η2 has a three well distribution.

This is accomplished by the same stochastic differential equation, however, in this circumstance
dF1(η)
dη is described by equation (2.9c) and dF2(η)

dη by equation (2.9b). The final demonstration
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(Figure 2.9) is again based on the same principal, however, dF1(η)
dη is given by equation (2.9d) and

dF2(η)
dη by equation (2.9e).

Although the model may be considered in higher dimensional spaces it becomes more difficult to

effectively illustrate. In Chapter 3 we shall consider how this model may be utilized to learn colour

as defined by the RGB colour palette. In this circumstance the dimensionality of the system

becomes an obstruction to intuitive graphical representation. We can however present enough

evidence about the state of the system to navigate this problem. The extension of the model

to higher dimensions should be simple to execute and offers an effective solution to learning and

storing complex stimuli, despite the issues with visualization.

2.5 Summary and Conclusion

Having introduced Janson and Marsden’s model of unsupervised learning we have numerically

simulated the model’s behaviour for a number of different stimuli. Stimuli may be generated with

prescribed probability density distributions as shown in [99]. Here we have generated six different

stimuli based on a range of functions; each with very different shapes. First we considered a

basic double well distribution, before increasing the complexity to consider a stimuli with five local

minima. In addition to a one-dimensional stimuli we have also considered the case where η is

a two-dimensional vector. There appears to be no obstacle, beyond computational power, that

should prohibit the system functioning effectively for any N-dimensional stimuli. This feature is

attractive as it should allow the model to represent highly complex classes of information in an

efficient way.

If we contrast this concept with other unsupervised learning routines then the advantages should

be apparent. Rather than requiring special functions/algorithms to derive relations between re-

ceived stimuli, clusters/classes of retained information are formed automatically. Two stimuli that

are closely related will share a fixed point with a basin of attraction related to the potential of the

model. The local minima of the potential (center of the class) will be adjusted with the applica-

tion of each new stimulus. This is computationally simple in comparison to typical unsupervised

clustering models [87]. Generally such models require the computation of distance metrics between

stimuli to locate nearest neighbours before clustering is considered. The memory foam model has

the advantage that the system can immediately access new information to recognize any new stim-

ulus. The system does not function in two distinct phases, unlike most learning models everything

occurs autonomously, in what may be called an ‘on-line’ operation.

One area for concern is that the Gaussian width parameter (σ) may play an important role

in determining the number of classes/sub classes that can be formed by the model. Although a

narrow Gaussian width ensures that a large number of classes may be permitted, when stimuli are

well separated the smoothness of the system may be impaired. This is an issue as there is then

the possibility that each new stimulus may form its own class rather than clustering with other

stimuli. Although this is desirable in some circumstances, we require the system to have some

ability to generalize. As such the value of σ should be carefully considered. As a means to negate

this problem we have explored various functions that could be used to determine σ. This includes

making σ a function of time, or utilizing retained knowledge as described by V (t,x).

In its current guise the memory foam model relies on gradient descent to associate a stimulus

with a class. We have been dealing with a simulated stimuli, generated with a prescribed probability

density distribution. In this format it seems irrelevant to select individual stimuli to recognize,
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.7: Evolution of V (t,x) under the influence of a stimuli η = η1, η2. The stimuli are
created using equation (2.8). In this instance the derivatives dF

dη that prescribe the distribu-

tion of stimuli are given by equation (2.9a). Both η1 and η2 are associated with a double well
polynomial distribution. Figures (a)-(e) demonstrate the energy potential at the time instances
t = 400, 800, 1600, 8000, 20000. At the base of each profile is a gradient mapping highlighting the
contours of the potential, from this it is possible to appreciate the locations of the local minima.
Figure (f) illustrates the probability density distribution of the inputs. Again a gradient mapping
is included on the plane x1, x2. The potential V (t,x) is seen to converge towards the shape of the
PDD. Figure (g) demonstrates the concept of recognition by illustrating the evolution of 81 initial
conditions interspersed across the plane x1, x2. These trajectories move towards the local minima
of the energy potential. Note that σ =

√
0.1, γ = 1 and D = 5.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.8: Evolution of V (t,x) under the influence of stimuli η = η1, η2. The stimuli η are
created by the application of the differential equation (2.8). The distribution of η1 is described
by equation (2.9c), whilst the distribution of η2 is related to equation (2.9b). Figures (a)-(e)
demonstrate the energy potential at the time instances t = 2000, 4000, 8000, 12000, 20000. At the
base of each profile is a gradient mapping highlighting the contours of the potential, from this it
is possible to appreciate the locations of the local minima. Figure (f) illustrates the probability
density distribution of the inputs. Again a gradient mapping is included on the plane x1, x2. The
potential V (t,x) is seen to converge towards the shape of the PDD. Figure (g) demonstrates the
concept of recognition by illustrating the evolution of 81 initial conditions interspersed across the
plane x1, x2. These trajectories move towards the local minima of the energy potential. Note that
σ =
√

0.1, γ = 1 and D = 5.

53



(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2.9: Evolution of V (t,x) under the influence of stimuli η = η1, η2. The stimuli η are
created by the application of the differential equation (2.8). The distribution of η1 is described
by equation (2.9d), whilst the distribution of η2 is related to equation (2.9e). Figures (a)-(e)
demonstrate the energy potential at the time instances t = 2000, 4000, 8000, 12000, 20000. At the
base of each profile is a gradient mapping highlighting the contours of the potential, from this it
is possible to appreciate the locations of the local minima. Figure (f) illustrates the probability
density distribution of the inputs. Again a gradient mapping is included on the plane x1, x2. The
potential V (t,x) is seen to converge towards the shape of the PDD. Figure (g) demonstrates the
concept of recognition by illustrating the evolution of 81 initial conditions interspersed across the
plane x1, x2. These trajectories move towards the local minima of the energy potential. Note that
σ =
√

0.1, γ = 2 and D = 5.
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rather, we have demonstrated the concept by introducing a cross-section of initial conditions and

observing their evolution in conjunction with the vector field of the model. In the next chapter we

will deal with stimuli selected from a real world environment. In such a circumstance recognition

can be demonstrated in a more organic manner, for instance, the model may observe a colour it

has never before encountered and may recognize it as a shade of red.

Thus far we have only considered the functionality of this model for simulated stimuli. Clearly,

if this model is to be adopted as a paradigm of learning its relevance to real world environments

should be investigated. Janson and Marsden previously demonstrated one such example with the

classification of musical notes and chords [74]. Alternative learning models have long been utilized

across a broad spectrum of real-world tasks. These tasks include image and speech recognition

[75, 127, 77], clustering of large data sets to identify associations [112], and even playing mind

board-games such as checkers [96]. To emphasise the scope of this model we shall subsequently

discuss the learning of colours, a typical task associated with computer vision.
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Chapter 3

Non-Linear Dynamics of Learning

and its Application to Colour

Recognition

This new dynamical system that learns via the shaping of its plastic vector field is applicable

to a number of real-world learning tasks. Janson and Marsden have already described one such

investigation, related to the learning and recognition of musical notes and phrases [74]. This

study presented an interesting initial test, however, a more complex stimuli should now be studied.

At this juncture we consider the recognition of colours in a changing unsupervised environment.

Starting from a flat vector field, we postulate that the system will develop classes that are related

to the colours observed by the system. Given sufficient time and inputs the system will be able to

recognize unfamiliar colours in relation to what it has previously learnt. To test this hypothesis

we construct a simple experiment composed of a web-camera and computer. The web-camera

observes the environment and the colours perceived are relayed to the model in the form of RGB

triplets. As the RGB scheme is composed of three components, the potential of the system is a

function of three spatial co-ordinates plus time. Utilizing this arrangement we are able to place

the web-camera to observe any backdrop. By situating the camera in the proximity of an LCD

computer screen, the system is able to learn from highly varied stimuli. In this Chapter we

first consider a stimuli composed of known colours, this allows us to compare the classes of the

system to a known input. After this, we compare the performance of the system for two cartoons,

each composed of very different colour distributions. It is important that we investigate this new

model in a variety of different situations so as to understand its range of applicability. The use of

colour stimuli may be considered a more complex, real-world, relevant example, than the previous

demonstrations. The challenge of learning colours autonomously presents a good opportunity to

compare the performance of this model to human learning. It should be clear that a human

can only learn from what it experiences or is taught. Likewise, the memory foam model should

only form classes that correspond to the environment it has observed. If the environment only

contains a limited colour palette, our model should only contain a restricted number of classes.

Any RGB colour should be related to a corresponding attractor in accordance with the systems

vector field. The learning of colours in a supervised systems would appear to be an exceptionally

time consuming task. Consider providing training examples to teach an artificial system, each
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colour would have to be presented in turn and labelled accordingly. In contrast, the automatic

learning of colours should proceed rapidly. Related colours should form classes without the need

for external interference. The memory foam model allows for continuous learning so the system

can continuously adjust to any changing circumstances.

3.1 Colour Perception

If we are going to compare the performance of our artificial learning system to a human it is

important to quantify the performance of the receptors involved. Within the animal kingdom

the ability to perceive colour is incredibly species dependent, it can even vary significantly intra-

species. The eye is a highly complex organ responsible for colour identification as well as all other

faculties of sight. Light captured by the eye causes excitatory and inhibitory action potentials,

these pass down the optic nerve to the brain. Within the brain’s visual cortex action potentials

are interpreted, this forms the basis of sight. Colour perception is largely affected by the type and

number of photo-receptive cells found within the fovea, part of the retina, within the eye. These

cells are classified as either rods or cones. Colour vision is the primary concern of cone receptors,

different types being responsive to different wavelengths of light. It is the distribution, number,

and types of these receptors that can vary substantially, this potentially leads to differences in

colour perception. We should note that an exact understanding of the mechanism by which we

interpret colour remains elusive [57]. Differences in perception may also be attributed to processes

occurring within the brains visual cortex.

The human eye contains as many as six million cone cells of 3 principal types; red (long),

green (medium) and blue (short); their names indicate the regions of the spectrum to which they

are sensitive. Inputs to these receptors are combined to identify colours. The typical trichromatic

human is able to observe approximately 1 million colours, however, deficiencies exist which prevent

some individuals from distinguishing between certain colour groups. An inability to distinguish

between two colour groups is referred to as dichromatism and the afflicted person is said to be

colour-blind. Approximately 8% of US males with Northern European ancestory had red-green

colour blindness as of April 2011 [116]. Dicromacy significantly limits the range of perceivable

colours, however, as many as 10,000 colours may still be discernible. If a person has only one

functioning type of cone cell as few as 100 colours may be perceived. On the other end of the

spectrum exist people with a 4th type of cone cell, sensitive to wavelengths between red and green.

These individuals are refered to as tetrachromatic, they posses a potential colour palette of 100

million colours [76]. In total the average human eye has around 130 million photoreceptors, yet the

optic nerve is composed of only 1 million fibres, this suggests that there must be some compression

of signals before information is transferred to the brain [45].

The study of the eye and its interaction with the brain is an ongoing concern within biology, so

to is colour perception [103]. Because of the subtle differences between individuals it would seem

unlikely that we all observe colour in the same way. One suggestion is that different people may

perceive colours differently but assign the same ‘label’ or ‘name’ to them [161]. Determining if this

is the case presents a considerable problem as we cannot simply swap input device and compare

results.
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3.1.1 Machine Vision

Machine vision [71] can be seen as the artificial parallel of biological vision. As expected, it typically

involves the acquisition of an image followed by the application of various image filtering techniques.

Critical aspects of the image are identified and then utilized to drive some autonomous process.

Images may be obtained by standard digital cameras or by any number of alternative imaging

procedures; these may include more obtuse methods such as x-ray, electron microscopy or infra-

red imaging techniques. The ability to distinguish between colours is sometimes limited by these

methods, firstly by the hardware used and then by the algorithms applied. A machine vision model

is not restricted to the realms of human vision and may incorporate stimuli from the entire range

of the electromagnetic spectrum. Consider what advantages there could be for a learning system

capable of understanding stimuli emitted within the infra-red range or ultra-violet regions. The

world we see with our eyes is limited by the receptors we possess, increasing the range of sensitivity

would completely transform the world we perceive. Equally, a reduction in sensitivity would have

a similar effect. This should be considered when comparing the performance between natural and

artificial systems. Machine vision currently has widespread applications within the realm of expert

systems [106, 113, 34, 56]. It is utilized in industry for tasks such as inspecting machined parts for

defects or making precision measurements and responding autonomously. Applications may also

be found in situations where human action may be dangerous or impractical. A pertinent example

of a system utilizing machine vision is a spacecraft, here numerous on-board functionalities are

automated [106], this may even extended as far as the landing procedure [113]. Machine vision is

an expanding field that is expected to become intrinsic to the development of future technologies

as we continue to apply automation to more and more applications. Modern day production has

become synonymous with automated robots forming production lines, in future such production

may become completely devoid of human intervention. We may also consider other fields such as

farming or transport where automation may remove the necessity for the human component [163].

Developing autonomous vehicles is a current popular trend [34], this research area is being pursued

by a number of developers including ‘Google’ [56].

Machine vision in the context of this work is presented in a relatively simple way. We demon-

strate that the self-shaping learning system is able to learn about different colours. The system

will recognize new colours as part of existing classes or develop new classes to represent unfamiliar

stimuli. The input device used to observe the environment is a standard computer web-camera.

From this RGB triplets are extracted and utilized to autonomously build an internal representation

of colour.

3.2 Colour Recognition and Classification by a Dynamical

System with Self-adapting Vector Field

Stimuli to the learning system are three-dimensional RGB triplets that define the colour of the

central pixel of a web camera. These RGB triplets are identified using code published under a GNU

general public license. Each component takes a value between 0-256, inferring a finite range of

colours rather than a continuous spectrum. Thankfully, the discretized 16,581,375 distinct colours

provide a more than adequate approximation of a continuous spectrum. Notice that the number of

colours realized by this scheme far exceeds the level of distinction the average trichromatic human

is able to perceive. For convenience we scale each component of the stimulus η = (ηR, ηG, ηB)
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onto the range 0 → 10. Here ηR = R, ηG = G and ηB = B where R,G and B are identified by

the camera. As the stimuli consist of three components, the system’s potential must be a function

of the vector x = (R,G,B) and time t. Note that R,G,B are also scaled onto the same range as

the stimuli. This scaling allows us to continue to utilize a familiar range of the Gaussian width

parameter σ. A larger range of x would require us to up-scale σ accordingly. The self-shaping

potential may therefore be described by the differential equation:

∂V (t, R,G,B)

∂t
= −1

t


V (t, R,G,B) +

1
(√

2πσ2
)3 exp

(
(R−ηR)2+(G−ηG)2+(B−ηB)2

σ2

)
 (3.1)

Note that we again omit any forgetting term, this is equivalent to setting k = 0 in equation

(2.1). The potential V (t, R,G,B) cannot be entirely visualized due to its dimensionality, we must

therefore make an attempt to describe the systems composition in an alternative way. This is

achieved by taking projections of the profile at discrete time intervals, considering the location of

local minima and observing many recognition trajectories to approximate the size and shape of

each fixed point’s basin of attraction.

Ultimately we should be able to use the memory foam model in any real life environment. The

problem with this for demonstration purposes is that only a few related colours are typically found

in an isolated situation. The limitations of our hardware impose further constraints in regard to

stimuli collection. To overcome these issues we position our web-camera to observe a standard

LCD monitor. This is shown in figure 3.1. We can apply either a known controlled stimuli, such

as a colour with a known RGB value (section 3.3), or allow the camera to observe a randomly

selected video and learn about its colour composition.

3.2.1 Assessing the accuracy of RGB value identification

For our model to emulate human recognition of colours the identification of RGB triplets must

be accurate. As discussed previously, colour perception is not uniform across populations and

species, this fact should be considered when appraising this model. We should not require the

colours recognized to match what we observe, rather, they should be compared to the colours and

distributions that the model receives. This is dependent upon the camera. We may consider the

camera as a person with an inferior level of visual acuity, or as a different ‘animal’ altogether. We

may still consider the identification of RGB triplets and compare these to our own perceptions,

this proviso is simply intended to reconcile any disagreement between man and learning model.

If we consider the LCD monitor to be correctly calibrated then we can display colours with

prescribed RGB values. We may position the web-camera to observe the screen and use dedicated

web-camera software to observe what the camera views. This setup is demonstrated in figure 3.2.

In this instance the screen is set to shown a pure red (255,0,0). It is apparent that the colour in

the left hand box, which is obtained using the web-camera software ‘Camorama’, is not exactly

the same. In fact, this colour is close to the value identified by our code, a colour defined by the

approximate triplet (254,65,0).

Any colour can be compared to both the RGB value identified by the code and also to a

photograph of the display obtained by the web-camera. Figure 3.3 contrasts RGB values for a range
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Figure 3.1: The web-camera is positioned in front of a LCD monitor. This allows us to select stimuli
such as television shows that have a wide colour contrast. This static set-up allows us to optimize
the position of the camera to obtain the strongest possible relation between a known colour and the
colour identified by the camera (see subsection 3.2.1). This is achieved by manipulating lighting
conditions and adjusting the distance between the camera and the screen.

Figure 3.2: The camera is placed to observe the screen. On the screen is a colour with a prescribed
RGB triplet. We can compare the colour of the screen, the colour seen by the camera, and the
output of the code in a single screen-shot. A colour with a known RGB value, observed by the
camera, is shown centre screen. The colour observed through web-camera software is shown to the
left of the screen. The RGB triplet identified by the code is shown to the right of screen. It is
apparent that the three colours are not identical. In this instance the RGB colour prescribed is
255,0,0. The camera appears to observe a colour closer to 254,65,0 as indicated by the code and
validated by the web-camera software screen-shot.
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of different colours. Note that light intensity and camera-screen distance have been manipulated to

try to obtain an optimal relationship. It is evident from figure 3.3c that the RGB value identified

by the code generally agrees with the camera observation. Unfortunately, figures 3.3a and 3.3b

demonstrate that the colour identified by the hardware (observed on screen through web-camera

software) does not always agree with the known screen colour. This difference is observed more

severely at the edges of the range. Where a component is close to 255, the hardware typically

underestimates this value. Components that should be close to 0 are typically over-estimated.

As such, the colours recognized by the learning model will not exactly match those perceived by

humans. This should not be seen as detrimental or inhibitory to the function of the model at this

stage. In circumstances where such a result is undesirable greater emphasis should be placed on

the selection and calibration of hardware, utilizing superior equipment is likely to incur significant

expensive, but should remedy this problem.

(a)

(b) (c)

Figure 3.3: (a): Comparison between the screen colour, the observed colour (picture taken by
web-cam software) and output RGB colour (determined by code). (b): A graphical comparison
of the screen colour and the observed colour. The optimal case is described by the black line.
(c): Observed Colour against identified colour. Note that the colour of the marker matches the
corresponding component of the RGB value. The term ‘colour identified’ refers to this output
colour (this is the RGB triplet identified by our code).

3.3 Applying a Simple RGB Stimuli

A continuously looping video of pre-defined coloured slides can be observed by the web camera to

provide a stimuli to the memory foam learning system. Although such an approach is rather con-

trived, it allows us to ensure that classes form as expected and colours are recognized accordingly.
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We have considered how the camera and code interact to provide stimuli, we must now consider

how this information is perceived by the learning model. This is an important initial test that

is intended to validate the approach before we test the system for more complex stimuli. This

method is particularly suited to provide an initial assessment as we should be able to infer which

colours correspond to which local minimum of the potential, hence, we may compare recognized

colours to known inputs.

The camera is positioned in front of the screen as shown in figure 3.1. Table 3.1 provides a list of

the colours that the system experiences as part of the observed slide show. As explained in section

3.2, each component of the stimuli is scaled to take a value between 0 and 10. With sufficient

application of the input, the classification landscape V (t, R,G,B) should posses features that

reflect the observations of the system. Initially the potential is completely flat (V (t, R,G,B) = 0),

any local minimum of the potential that develops is therefore a result of the stimuli. Because

our video is composed of eight distinct colours, we may expect eight well-defined local minima to

form. We must stress that illustrating these local minima and the topology of the potential in their

vicinity is a somewhat challenging problem due to the dimensionality of the system. As the colours

selected to form the stimuli lie at the extremes of the RGB space, the minima of the potential

may be expected to form at the extreme edges of V (t, R,G,B). It is therefore advantageous to

select a large value for σ, here we apply σ =
√

0.5. This ensures that the basins of attraction

of the systems fixed points, corresponding to the potential’s local minima, are quite wide. It is

undesirable for regions of the potential to remain approximately flat, this would inhibit the rate

of gradient descent. The time for which each colour is observed by the system is approximately

equal, whilst the model undergoes a total of 500000 iterations. Here we assume that each iteration

of the model takes approximately the same time. This is certainly not guaranteed and may explain

why some regions of the potential contain deeper local minima.

Colour (R,G,B)
Red 255,0,0

Green 0,255,0
Blue 0,0,255
Cyan 0,255,255

Yellow 255,255,0
Magenta 255,0,255

Black 0,0,0
White 255,255,255

Table 3.1: Colours used to create a contrived slide-show to be utilized as a stimuli source for the
camera.

Projections of the system’s energy potential at finite time moments are shown in figure 3.4. Fol-

lowing the discussion of the two-dimensional case in Chapter 2, the extension to three-dimensions

(plus time) has the additional complication that even at finite time moments the entire potential

cannot be observed. To overcome this problem we illustrate projections along the principal axis

(R,G), (R,B) and (G,B). At the base of each projection we include a gradient mapping of the

potential in order to highlight the location of each minimum. Although we show only three sub-

sequent time moments, t = 100, t = 300 and t = 500, it should be stressed that this potential is

a continuous, smooth function of position and time and therefore continuously evolves with the

addition of new stimuli. We may also note that given a sufficient number of stimuli this profile

may become approximately stationary. Comparing the state of the potential at each of the demon-
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strated time intervals it may appear that the potential has indeed reach a semi-stable stable. We

may consider this profile to act as a memory containing information about all the colours that

form the stimuli. Other illustrations may also prove useful when attempting to understand the

state of the system. Not least are the positions of the local minima of the potential within the

three-dimensional RGB space. These are shown in figure 3.5. This depicts the different locations

of the minima for twelve different time moments. In this instance the colour of each point cor-

responds to the location of the minimum in the RGB space and the size is related to the depth

of the potential. Larger points are associated with deeper minimum. Based on this description it

would appear that the main features of the system have emerged by t = 50, there is of course the

possibility that the potential continues to shape, but the locations of the minima remain relatively

static. Utilizing figures 3.4 and 3.5 in unison would appear to suggest that this is not the case.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Subsequent applications of a three-dimensional stimuli cause the shaping of the mem-
ory foam systems potential V (t, R,G,B). Figures (a),(b),(c) show projections of the three-
dimensional potential onto the prescribed two-dimensional space at t = 100. Figures (d),(e),(f)
and (g),(h),(i) show the same projections at the subsequent time moments t = 300 and t = 500.
Each figure also includes a gradient mapping at its base in order to illustrate the locations of the
local minima and the local topology of the potential on the plane. The parameter σ =

√
0.5, this

ensures that the basins surrounding each minimum remain relatively large.

As we may surmise from figures 3.4 and 3.5 the potential contains information relevant to all

stimuli by t = 500 (in fact this appears to occur much earlier). We may therefore focus on describing

the system’s state at this particular time moment. Perhaps the simplest way to understand the

state of the system is to consider the attractors illustrating recognition. The gradient description
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.5: Positions of the local minima of the energy potential function V (t, R,G,B) at static
time intervals as denoted on each figure. The colour of each point corresponds to the position
in the RGB space. The size of each point is scaled to the value of V (t, R,G,B), larger points
correspond to deeper minimum of the potential.
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of recognition causes each local minimum of the potential to act as an attracting fixed point. By

observing the evolution of a mesh of initial conditions from across the RGB space we not only

demonstrate the recognition of a cross-section of stimuli, but also gain a vague appreciation of the

different sizes of each fixed points basin of attraction. The sizes of these basins are related to the

shape of the potential. We may also consider the local maximas of the potential which may be

considered to act as separatrices of the system.

The recognition of a cross-section of different stimuli, each with different initial conditions

within the RGB space is shown in figures 3.6a and 3.6b from two different perspectives. Here we

only consider the evolution of trajectories in conjunction with the stationary potential as it appears

at t = 500. This recognition of stimuli may also be visualized as a colour spectrum comparison.

Figure 3.6c shows the same stimuli as contained in figures 3.6a and 3.6b. The top row corresponds

to the colour of the stimulus whilst the bottom row demonstrates the classes recognized.

Notice that the system does not exactly replicate the colours expected. As the stimuli only

contains eight colours it is interesting that eleven colours are recognized. These eleven classes

may be shown to correspond to the minima of the potential. As this potential remains relatively

stationary over the interval t = 50 → 500 this property cannot be attributed to receiving an

insufficient number of stimuli from which to learn. This difference can be reconciled by consulting

the actually RGB triplets inferred by the camera. As shown in section 3.2.1, the colour observed

by the camera is not always directly related to the screen colour, it is not uncommon for some

differences to arise. We should therefore consider the actual stimuli that are received by the

learning model. This information is inferred from figure 3.6d, which indicates the maxima of a

three-dimensional histogram built using the stimuli received by the system. Clearly such a profile

is not smooth, hence the high number of points. Larger points correspond to greater local maxima

of the probability density distribution landscape. Recall that we anticipate the memory foam

profile to converge to the shape of the negative probability density distribution of inputs (given

small enough σ and sufficient inputs), as such we should expect the positions of these local maxima

to correspond to the local minima of the potential. Although the camera is only presented with

8 colours it has perceived several more. This may be due to factors such as changing lighting

conditions or a lack of exposure time. It is clear that a strong relation exists between the actual

colours of the stimuli (figure 3.6d), the shaping of the potential (figures 3.4 and 3.5) and the colours

recognized by the system (3.6a, 3.6b and 3.6c). Each visualization infers that the system has learnt

about a set of colours that are defined by the stimuli. The system has autonomously compiled

these into classes and will recognize unfamiliar stimuli based on what it has learnt.

The difference between the colour the camera is shown and what it perceives is a problem that

will clearly persist throughout this study. As previously indicated, we do not need to be concerned

with this. We may consider this particular camera to be equivalent to a person suffering from some

minor form of visual impairment. Changing to a higher end model may reduce or even negate this

disagreement. Consider a person suffering from colour-blindness, they are still able to learn about

the different colours that they see, they just see things differently to other people. Colour-blindness

often has little effect on how people interact with their environment, as their knowledge of colours

is specific to them. Where one person always perceives red, another may see green. In most

situations this does not result in any negative consequence.

Advancing from this contrived demonstration, it is now logical to consider a more complex

stimuli. The world of cartoon is characterized by a wealth of vibrant colours, making cartoons
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(a) (b)

(c) (d)

Figure 3.6: Illustrations of the formed classes and the recognition of stimuli by the system. (a),(b):
Different perspectives of a mesh of evenly interspersed initial conditions as they evolve towards the
attracting fixed points of the stationary profile. These dynamics are in accordance with gradient
descent. Line colour infers the final class that the trajectory reaches. This indicates the recognition
of a stimuli corresponding to each initial condition. The size of each class may also be approximately
inferred from the size of each coloured region. (c): An alternative illustration of recognition. The
initial stimuli are demonstrated on the top row whilst the class to which they are assigned is shown
on the bottom. (d): The maxima of a three-dimensional histogram describing the distribution of
stimuli. Point size is dependent on the probability density at each location. Larger points therefore
correspond to more prevalent stimuli. The colour of each maxima corresponds to the location in
the RGB space.
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such as ‘Futurama’ and ‘Southpark’ ideal candidates for further exploration of this approach.

3.4 Learning Colours by Observing Cartoons

The previously discussed approach can be applied for any stimuli that comprises RGB information.

Next we shall demonstrate the approach for inputs taken from two well known cartoons. We shall

again shown how the memory foam model autonomously creates an internal representation of

its experiences and draws upon this information in order to recognize new colours. Like a human

learner the system may only learn from its surroundings. We should point out that learning colours

is generally an unsupervised routine in humans. We observe our environment and remember aspects

of what we have seen. To learn about colours via a supervised approach would appear implausible,

it would certainly seem an automatic task that does not require outside interference or complex

reasoning. Likewise, the memory foam model applies unsupervised learning to store information

about the colours perceived by a web-camera. As with humans, the system is able to continuously

learn about new colours as new stimuli are observed. In these two demonstration the system

receives two million stimuli, each one defining a colour that composes a cartoon. To teach a

supervised system would therefore require two million training examples, learning would take an

exuberant amount of time and would also fail to replicate the mechanism that appears to occur in

humans.

It is important to consider the behaviour of the system for a range of different stimuli. We

may anticipate that the colour compositions of these two cartoon are significantly different. By

considering two examples we shall demonstrate that the evolution of the system is highly dependent

on the environment.

3.4.1 Southpark

The cartoon Southpark has been selected as our first example due to the rich vibrant colours

of which it is composed. Selecting a single episode and retaining the camera and screen in con-

stant relation to each other the video was played in a loop until 2000000 iterations of the model

had been exceeded. The potential is initially flat and hence contains no pre-existing information

(V (R,G,B, t) = 0). Two million subsequent stimuli equates to a model run time of t = 2000. To

ensure that the systems vector field characterising recognition is smooth, the parameter σ is chosen

as
√

0.5. As with the previous contrived example, we represent the development of the systems

attractors via a variety of different illustrations.

Let us first consider the recognition of a set of stimuli. Figure 3.7a depicts the recognition of a

set of periodically selected stimuli that are encountered by the system as its potential is shaped.

These stimuli provide the initial conditions for trajectories that converge towards the attractors

of the system. The attractors of the vector field correspond to the local minima of the potential

which are marked as black circles in the RGB space. We may also illustrate this information in

the form of a colour comparison as shown in figure 3.7b. The colours on the top row correspond

to the observed stimuli, whilst the colours on the bottom row demonstrate the class to which the

colour is assigned. Note that we have manipulated the order of stimuli from left to right so that

all stimuli assigned to the same class appear together. This allows us to compare the range of

colours that the system may consider to be similar. As the recognition of colour is dependent on

the evolution of the potential, it is possible that the same stimulus may be recognized differently
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when encountered again at a later time moment. This is because the vector field of the system

continuously changes with the application of more stimuli. The same process may be inferred for

a human learner as more experience is gained. Initially we may only draw a distinction between

large classes of colour. For instance, a learner may initially only recognize colours as belonging to

one of the classes ‘red’, ‘green’ or ‘blue’. With more experience we may learn about the existence of

other classes, such a cyan or magenta. Where a stimulus close to magenta was previously assigned

to ‘red’, we now know that a superior classification is available. We may anticipate that where

two identical stimuli are recognized by the memory foam model at subsequent time intervals, the

recognition in the second event is likely to prove more relevant to the systems experiences than

when encountered the first time.

An attractor of the system is not guaranteed to exist for any prescribed period of time as

the potential evolves. Only once/if the potential reaches a stationary state may we infer that

the attractors of the system will endure. This has important ramifications on the recognition of

stimuli as a class may persist for a long period of time before disappearing. Where this is the

case, gradient descent will cause the corresponding trajectories to locate a different attractor of

the system. There is always some uncertainty regarding whether the recognition of a stimulus is

indeed optimal. Only when the system has reached a stationary state before a stimulus is encounter

may we be confident that the relation between stimulus and class will remain for all time.

As we would expect, some colours appear much more prevalently in this cartoon than others. It

would appear from figure 3.7b that the most prevalent colour is grey. Some stimuli that may appear

to be more related to the classes blue and yellow also fall into this attractor. These alternative

classes may not have formed when these stimuli were first encounter, or these particular shades

may actually more closely align with grey due to the inherent structure of the RGB scheme. It

should be expected that the model will recognize some colours differently to a human. It appears

to be a problem for different people to agree on how to define a colour in some circumstances

[93]. Consider the colour turquoise (48,213,200), different people would argue that this is a colour

more closely related to blue than green or vice versa. We should therefore be careful to avoid

contradicting the models recognition of a colour without first consulting the stimuli that it has

experienced and the configuration of the systems potential.

(a) (b)

Figure 3.7: Recognition of 2000 periodically selected stimuli. (a): Evolution of initial conditions
towards the local minima of the energy potential (black circles). (b): Comparison of the ini-
tial condition (stimuli)(top row) and the recognized colour (bottom row). The recognition rate
parameter γ = 5.

The assertion that grey is the most prevalent colour within this cartoon is supported by the
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projections of the potential at finite time intervals on the principal axes of the system. These pro-

jections are shown in conjunction with a demonstration of the local minima of the system in figure

3.8. Each row of this figure corresponds to to different time interval (t = 400, 800, 1200, 1600, 2000).

It is apparent that the local minima of the system remain relatively stable and constant across

the time scale investigated. This suggests that the formation of classes occurs relatively quickly in

this example. We may discern that the basic structure of the system has already been composed

by t = 400, beyond this we do observe some fluctuation in the size, number and shape of classes,

however, the most eminent features remain stable. More projections of the potential at earlier

time intervals are included in appendix figure A.1. These images highlight the changeable nature

of the potential between t = 5→ 200.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 3.8: Projections of the energy potential V (t, R,G,B) at time instance t =
400, 800, 1200, 1600, 2000. Each row relates to a different time moment. The first three columns
demonstrate the projections of the potential on the axes (R,G), (R,B) and (G,B). At the base of
each graphic is a gradient mapping of the contours of the potential. The final column illustrates
the locations of the local minima of the potential in the RGB space. The colour of each minima
indicates the location of the point in the space, whilst the size is scaled to the magnitude of the
function V (t, R,G,B). The Gaussian width parameter σ =

√
0.5 throughout.

For the demonstrations of the local minima the depth of the potential at the minima is again
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related to the size of the point, whilst the location in the RGB space corresponds to the colour.

Although this provides an indication of the number of classes, it does not demonstrate the size or

shape of each class. This information is also hard to infer from the projections of the potential,

although some characteristics can be seen with careful consideration. A deep potential at a local

minimum does not necessarily infer that the fixed point will have a large basin of attraction or

vice versa. To intimate the shapes and sizes of each basin we may introduce a dense mesh of

initial conditions and again consider recognition. Figure 3.9 illustrates the recognition of 1000

trajectories that converge to the fixed points of the system in accordance with the static vector

field of the system as it exists at t = 2000. Gradient descent in conjunction with a static potential

may be seen to infer the approximate sizes of each fixed points basin at this time moment. The

same information is provided in both figures 3.9a and 3.9b but from two different perspectives. As

was shown in figure 3.7b, the same information may be presented as a comparison between initial

input colour and the colour of the class recognized. This procedure is again replicated in figure

3.9c. The top row corresponds to the range of initial conditions, whilst the bottom row shows the

assigned classes. From these illustrations it is evident that grey does indeed have the largest basin

of attraction, but other colours such as green, brown, orange and blue also preside over large areas

of the RGB space and must therefore form a significant part of the stimuli learnt by the system.

3.4.2 Futurama

The same concepts as utilized for Southpark may be applied to any stimuli. To demonstrate

this we pursue the same treatment for the cartoon Futurama. It is important that we test the

model for a range of stimuli, this allows us to observe any limitations the system may have. All

previous experiments have demonstrated that the model is able to automnomously learn from its

environment. It is useful to consider the shaping of the model for two cartoon that we may perceive

to contain very different sets of colours.

Again we begin by demonstrating how periodically chosen stimuli are recognized in figure 3.10.

Apparent from this demonstration is the dominance of the colours red and blue (cyan). This is

in stark contrast to the large regions of grey and green observed in the previous example. One

alteration that we have made for this demonstration is to increase the recognition rate parameter

γ so that γ = 10. This ensures that recognition trajectories are more susceptible to the gradient

of the potential and locate the fixed points of the system faster. From a human perspective the

mappings between stimulus and corresponding class (show in 3.10b) appear to be better correlated,

fewer of these mappings appear disputable than was evident in the previous example. This may

be the result of selecting a larger recognition rate parameter or may be an intrinsic quality of this

stimuli choice.

In figure 3.11 we demonstrate the evolution of the systems potential in terms of projections

and the locations of local minima in the RGB space. As expected, some of the basins and local

minima grow, shrink, appear, and disappear across the time interval considered. Despite this, the

enduring local minima remain relatively stable across the timespan. We may again conclude that

the eminent features are defined during the interval t = 0→ 400 and so we include more projections

across this time period in appendix figure A.2. The locations of the local minima appear to be more

widely dispersed across the RGB space than for the Southpark stimuli. Based on the relative depth

of each minimum there also appears to be a number of colours that are appreciated in relatively

equal amounts. This notion is supported by figure 3.12 which illustrates the approximate sizes
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(a) (b)

(c)

Figure 3.9: Recognition of an ensemble of 6859 stimuli with initial conditions distributed evenly
across the RGB space. These recognition trajectories evolve in accordance with the stationary
potential shown in figures 3.8q 3.8r and 3.8s. The vector field of the system utilizes gradient type
dynamics. It may be considered that these trajectories provide an estimate of the size of each fixed
points basin of attraction. In (a)(b) the same trajectories are illustrated in the RGB space from
two different perspectives. The colour of each line corresponds to the location of the fixed point
that the trajectory identifies. This is equivalent to saying that the colour of the line indicates the
class recognized. (c) demonstrates the same set of stimuli as shown in (a)(b). On the top row are
the ensemble of stimuli, the bottom row shows the class that has been recognized. Here we have
grouped stimuli together depending on how they are identified.

(a) (b)

Figure 3.10: Recognition of 2000 periodically selected stimuli. (a): Evolution of initial condi-
tions towards the local minima of the energy potential (black circles). (b): Comparison of the
initial condition (stimuli)(top row) and the recognized colour (bottom row). The recognition rate
parameter γ = 10.
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and shapes of the basins of attraction at t = 2000. In figure 3.12 we again consider how a mesh of

stimuli points are recognized by this system. The agreement with a human observer, in general,

appears to be better than for Southpark, this indicates that we cannot expect the same levels of

performance for every stimuli. Again we reiterate that the model is only able to learn from the

information that it receives, if this is limited we cannot expect high levels of precision, especially

when assessing never before seen colours, from distant regions of the RGB space.

3.5 A One-dimensional Approach to Colour Coding

An evolving three-dimensional profile is computationally expensive to model and cannot be easily

visualized. An appropriate mapping of the three-dimensional profile onto a single dimension should

alleviate these issues while preserving the key functionality of the system. This requires a mapping

of R,G,B triplets onto a one-dimensional colour spectrum. Such a spectrum should present colour as

a continuous, gradually changing variable, with classes and sub-classes. The problem of mapping

the entire RGB space onto a single axis is complex and introduces ambiguity. Nevertheless, a

number of approaches have been developed that relate the colours of the visible electromagnetic

spectrum to RGB colours [107, 159, 2, 24]. Within an RGB space 16,581,375 unique colours are

uniquely labelled, this far exceeds the one million colours that the average trichromatic human is

able to perceive. Here we shall consider a method of mapping RGB values onto the wavelength’s

of a simplified light spectrum. Many RGB colours such a black and white are not realized in such

a spectrum, this issue is overcome by identifying nearest neighbour R∗G∗B∗ triplets. Any RGB

point can then be mapped onto a neighbouring point that is part of the spectrum. Such a mapping

allows us to represent RGB colours by wavelength, hence reducing dimensionality.

3.5.1 Mapping RGB to Wavelength

The RGB scheme is derived from biological data which infers a relationship between colours and

wavelengths [165, 166]. This data, obtained from biological investigations, forms the basis of the

1931 CIE Colour space standard [144]. Over time many refinements have been applied to this

colour model to reach the current RGB definition [23]. Various approaches to approximately

convert between wavelength and RGB have also been suggested [107, 159, 2, 24]. After comparison

of these methods we choose to utilize a model similar to [2], which creates the spectrum shown in

figure 3.13 from RGB triplets.

This model is not a 1:1 mapping between wavelength and RGB, as such a substantial part of

the RGB space is not represented by the spectrum. To overcome this issue we must restrict our

RGB space (R,G,B) to permitted (R∗, G∗, B∗) values. Any triplet can be transformed to a cor-

responding permitted triplet by finding the (R∗, G∗, B∗) that minimizes ∆ in equation (3.2). This

is equivalent to calculating the nearest neighbour. We may then utilize the associated wavelength

value of this neighbour point (R∗, G∗, B∗) as an input to the learning system.

|R−R∗| = r

|G−G∗| = g

|B −B∗| = b

∆ =
√
r2 + g2 + b2

(3.2)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 3.11: Projections of the energy potential V (R,G,B, t) at time instances t =
400, 800, 1200, 1600, 2000. Each row contains the three projections for the corresponding time
instance and the corresponding locations of the local minima in the RGB space. The colour and
size of these minima points indicate the position of the minima and magnitude of the function
V (t, R,G,B) respectively. Each projection of the potential is illustrated with a gradient mapping
of the profile at its base. This helps to identify the location of each local minimum and indicates
the surrounding topology. In this example σ =

√
0.5.
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(a) (b)

(c)

Figure 3.12: The recognition of 6859 different stimuli with initial conditions evenly interspersed
across the RGB space. The potential remain stationary and takes the shape shown in figures
3.11q, 3.11r and 3.11s. Trajectories evolve in accordance with gradient descent. In (a) and (b)
the colours of the lines represent the local minimum to which the initial conditions converge. The
colours relate to the location of the corresponding fixed points in the RGB space. Figures (a) and
(b) contain the same information but from different complementary angles. These illustrations
may be used to estimate the approximate size of each fixed points basin of attraction. (c) contains
a subset of the same information but as a spectrum. The top row identifies the initial condition
whilst the bottom row indicates the local minimum to which the stimulus is attributed.

Figure 3.13: Visible Colour Spectrum built of distinct RGB colour triplets utilizing the method
described in [2].
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An application of this approach to a grid of initial conditions corresponding to RGB values is

shown in figure 3.14a. Note that some transforms appear to be large in the context of the RGB

space. We should consider the implications of such transforms and also consider the possibility of

a 1 : n mapping in the case where a RGB value is equidistant from n different (R∗, G∗, B∗) triplets.

(a) (b)

Figure 3.14: (a): Mapping a mesh of initial conditions from across the RGB space onto the line
R∗G∗B∗ shown in red. Stimuli may take any RGB value, however, our learning system is only
capable of utilizing colours on the line R∗G∗B∗, the accuracy and applicability of this mapping
is therefore very important for the majority of stimuli. (b): Colours of the RGB space (top) and
their corresponding R∗G∗B∗ transforms (bottom). These mappings are the same as those shown
in (a).

Implications of this Approach

Figure 3.14b suggests that the proposed mappings are generally plausible, certainly there appears

to be correlation between colours and their transforms. Of particular interest is how the model

deals with black (0,0,0) and white (255,255,255). These colours, like many others, are not intrinsic

within the visible colour spectrum. Black (0,0,0) becomes (98,0,0) which appears acceptable (figure

3.15a ), however white presents more of a problem. (255,255,255) is equidistant from two R∗G∗B∗

points; (255,255,0) and (0,255,255). These points are well separated within the spectrum and reflect

radically different colours. This is also shown in figure 3.15a. Computationally we can overcome

this problem by specifying that, in such a scenario, the colour is assigned to the highest/lowest

wavelength. A problem that is harder to overcome is the subtle dependence on initial conditions

when points are close to this equidistant relation. Figure 3.15b shows the assignment of R∗G∗B∗

values for the range R=250:255,G=250:255,B=250:255. Here an assignment has been made to

highest wavelength in the case of equidistance. The subtle dependence on initial conditions is

abundantly evident, the implications are visualized in figure 3.15c. Note that in figure 3.15c the

top row represents the array of RGB values shown in figure 3.15b, these colours tend not to

be discernible with the human eye. The corresponding mappings of these colours are therefore

unrealistic, a more appropriate mapping should be applied.
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(a) (b)

(c)

Figure 3.15: (a): The transformation of the RGB colours black and white to a corresponding
R∗G∗B∗ colour. White lies at an equidistant point between yellow and cyan, hence there are two
possible transforms. (b): RGB values within the range R=250:255, G=250:255, B=250:255 are
all very similar colours, however, they can be transformed into very different R∗G∗B∗ colours (red
line) by utilizing equation (3.2). This is reinforced by the visualization shown in (c). The upper
box contains all colours within this range, the lower shows each related transform.
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Inclusion of a Grey scale

The fundamental issue with this mapping approach lies with the treatment of colours on the line

R = G = B. A standard wavelength-colour mapping neglects colours on the black-white line,

instead making large transforms to colours that, in most cases, are poor representations of the

original. In such a circumstance it has also be shown that the sensitivity to initial condition is

severe. Biologically speaking the eye contains two types of receptor; the colour sensitive cone cells,

of which there are approximately six million, and light sensitive rod cells; of which there are around

120 million. When light intensity is low cone cell performance is poor, the light sensitive rod cells

allow us to continue to perceive our environment, these cells do not respond to colour, we view the

world in a grey-scale.

Extending the spectrum of colour to include a grey scale should allow us to perform a more

relevant mapping and circumvent the other encountered issues. Such an extension should be

continuous with the previously discussed spectrum. Under such circumstances the term wavelength

loses significance, colour change remains gradual, with each distinct colour referred to by a unique

pseudo-wavelength or numbered colour label. We introduce this new colour palette by introducing

the line R = G = B which gradually fades from white to black. This line is continuous with the

existing permitted R∗G∗B∗ as can be seen from a comparison of figure 3.16a with figure 3.14a. A

definition of the spectral colour line (red line in figure 3.16a) is given in table 3.2. This definition of

the spectrum is based on the values prescribed in [2]. The attenuation term ν is utilized to account

for the reduction of colour intensity at the extremes of the spectrum. As can be seen in figure

3.16a this function traces a line around the outside of the RGB space, it is therefore appropriate

to represent a large range of colours. The different regions that we have previously referred to as

wavelength should not really be considered as wavelength in the true sense, but rather as a set of

numbered labels referring to different colours. Each section of table 3.2 can be seen to describe

one of the distinct changes in the direction of the line R∗, G∗, B∗. Although we have chosen to

follow this prescription of the line, it is clear that a number of different lines may also be drawn

that visit large regions of the RGB space. We may postulate that several alternative lines may

also be applicable as suitable colour palettes.

Utilizing the spectrum described by table 3.2 we can again compare a range of RGB colours and

the corresponding mappings. A large portion of the RGB space is now converted to grey scale as

shown in figure 3.16b. Figure 3.16a highlights the minimal distances ∆, a comparison with figure

3.14a shows that under this proposed conversion, distances are generally shorter, as such mappings

are generally more appropriate. A further step to ensure that the transformed colour reflects the

RGB triplet would be to choose a maximally permitted value of ∆. When ∆ > Γ, (where Γ is

the threshold) the stimulus is rejected. This restriction may be compared to the finite range of

wavelengths that the human eye is able to perceive. A comparison between figure 3.16b and 3.16c

should convince readers that such a procedure is valid and sometimes necessary. In figure 3.16c

the threshold parameter Γ = 40, the lower the parameter, the closer the mapping will be. We must

find a balance between precision and generality, as selecting smaller values of Γ will also mean that

a larger number of stimuli are omitted.
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Wavelength RGB
220-359 R∗ = 255− 1.82 (wavelength− 220)

G∗ = 255− 1.82 (wavelength− 220)
B∗ = 255− 1.82 (wavelength− 220)

360-380 R∗ = 97.97 + 4.87 (wavelength− 380)
G∗ = 0
B∗ = 97.97 + 4.87 (wavelength− 380)

380-439 A = 0.3 + 0.7 ((wavelength−380)
(440−380)

R∗ = 255
(
−wavelength−440

440−380 A
)ν

G∗ = 0
B∗ = 255Aν

440-489 R∗ = 0

G∗ = 255
(
wavelength−440

490−440

)ν

B∗ = 255
490-510 R∗ = 0

G∗ = 255

B∗ = 255
(
−wavelength−510

510−490

)ν

510-580 R∗ = 255
(
wavelength−510

580−510

)ν

G∗ = 255
B∗ = 0

580-645 R∗ = 255

G∗ = 255
(
−wavelength−645

645−580

)ν

B∗ = 0

645-750 A = 0.3 + 0.7 750−wavelength
750−645

R∗ = 255Aν

G∗ = 0
B∗ = 0

Table 3.2: The relation between our one-dimensional wavelength value and the line R∗G∗B∗. Here
we have extended the initial method of [2] to also include colours on a line spanning black-white in
the RGB space. The term wavelength may be misleading, by this we mean a single value that can
be used to define a colour instead of the RGB triplet. The attenuation term ν = 0.8 is responsible
for reducing the intensity of colours at the limits of the visual range. Each component of R∗G∗B∗

takes a value between 0 and 255.
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(a)

(b)

(c)

Figure 3.16: (a): The mapping of various RGB points onto the line (red) defining R∗G∗B∗. (b)
A colour comparison between an RGB colour (top) and the R∗G∗B∗ colour it is mapped onto
(bottom). (c) Presented with the same set of RGB colours as in (b) not every mapping onto a
colour R∗G∗B∗ is permitted. A threshold Γ = 40 is used to compare the distance of the mapping.
If ∆ (as defined by equation (3.2)) is greater than Γ then the mapping will not be permitted and
the system will ignore this stimulus. As shown, the restriction of RGB inputs results in a more
apparent relationship between RGB and R∗G∗B∗ colours.
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3.5.2 The One-Dimensional Learning Model

In section 3.5.1 a method to map RGB values onto a one-dimensional continuous spectrum was

discussed. Such an approach limits the range of colours utilized by the system but provides the

opportunity to fully visualize the time-dependent dynamics of class formation and recognition.

This is possible as the dimensionality of the learning system’s flexible vector field is reduced.

The one-dimensional model is also computationally less expensive and so runtime is much faster.

The colour spectrum that we utilize consists of 1060 distinct colours, however, we apply a linear

mapping so that all stimuli are limited to the range 0 → 10. As with the previously presented

three-dimensional models, we may take stimuli from genuine environments in the form of RGB

triplets, these can then be transformed into R∗G∗B∗ values that can be associated with a value

between 0→ 10 and applied to the one-dimensional learning model.

In figures 3.18, 3.19 and 3.20 the result of applying three different stimuli to the one-dimensional

learning model are shown. In each of these figures we demonstrate the time dependent shaping

of the potential for three different values of σ and the shaping of the potential with/without the

inclusion of a threshold that restricts the range of permissible stimuli. The first row of each

figure corresponds to the case where σ =
√

0.05, the second row is for σ =
√

0.01 and the third

row corresponds to σ =
√

0.001. The first three columns of each figure show the evolution of

the system when no restriction is applied to the stimuli, alternatively the next three columns

only permit certain stimuli by setting the threshold Γ = 40. In each figure we demonstrate the

shaping of the potential and recognition of stimuli for the same inputs as encountered by the

three-dimensional models discussed in section 3.2. The recognition of a stimulus is described by

gradient descent which locates the attracting fixed points of the system. These fixed points may be

considered to represent retained knowledge, obtained via learning. The restricted approach, that

only permits certain stimuli, utilizes the same initial set of input data, however, the threshold may

be seen to act as a filter, reducing the total number of stimuli that are used to shape the potential.

This restriction is intended to ensure mappings remain realistic. The first and fourth columns of

each of the figures 3.18, 3.19 and 3.20 illustrate the shaping of the potential as a function of time

and position for the unrestricted/restricted stimuli sets. On the base of each of these plots we

also demonstrate the recognition of a cross-section of 2200 stimuli. This is indicated by a set of

coloured lines originating at t = 500, that locate the local minima of the potential. The rate of

gradient descent is effected by the parameter γ, here we have set γ = 10.

The shaping of the system’s potential is determined by the density and distribution of stimuli

received by the system. We have previously shown that V (t, x)→ −P (η) as t→∞ is guaranteed

in the limit that g (z)→ δ, where δ is a delta function and g (z) is a Gaussian. g (z)→ δ in the limit

σ → 0. In general this is not desirable as we require a smooth potential. Reducing σ ensures that

the shape of the potential converges to the negative probability density distribution of the stimuli.

Each distribution of inputs is shown alongside V (t, x) at t = 2000 in the second and fifth columns

of figures 3.18, 3.19 and 3.20. It is apparent that these lines bear the closest resemblance when

σ is smaller. To demonstrate that σ is indeed the restricting factor, rather than time (number of

stimuli applied), we may compare the state of the potential under different conditions. In figure

3.17 we compare the shape of the potential to the distribution of stimuli for various values of

σ and for different lengths of time. Where time is increased we ensure that the distribution of

stimuli remains unchanged. Notice that increasing time in this example does not improve the fit

between our curves. This is only achieved by reducing σ. We should mention that over fitting
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may become an issue when the Gaussian width, dependent on σ, becomes excessively narrow. We

expect that any real stimuli received by the system will have a stochastic component, we require

our system to be robust to such noise. Two stimuli that may be considered noisy versions of the

same input may otherwise form separate classes. This problem is comparable to the over fitting of

data in a deep NN during the training phase [120]. Here the solution to our problem is somewhat

simpler, as increasing the parameter σ will ensure robustness. Selection of this parameter should

be made based on the trade-off between generalization and colour sensitivity. Beyond representing

the recognition of a colour as a simple trajectory, we are able to compare an observed RGB colour,

the transformed colour (acts as input to the learning model) and a colour corresponding to the class

recognized by the system. This comparison is shown in the 3rd and 6th columns of figures 3.18,

3.19 and 3.20. The top row of each plot shows a cross-section of RGB colours, in the centre are their

transformed R∗, G∗, B∗ colours and below this are the corresponding classes of the system. Recall

that these colours coincide with the local minima of the potential on the x range. Demonstrating

recognition via this medium is intended to provide an intuitive representation of the successful

segmentation of the colour spectrum.

Figure 3.18 is a somewhat contrived example which allows us to make some critical inferences

about this one-dimensional approach. Here the stimuli corresponds to a video created of known

colours that are well separated in the RGB space. The video is looped repeatedly throughout

the runtime of the model to ensure that the system experiences each colour. As the video only

contains eight colours, it is interesting that as many as 25 colours are recognized as part of the

learnt spectrum. The exact number of classes that develop in the systems memory is shown to

depend on the value of σ and whether stimuli are excluded by the parameter Γ. When the same

stimuli was discussed in section 3.3, in relation to a three-dimensional RGB space we again observed

the development of more system attractors than would be expected for this input. We attributed

this difference to changes in the lighting as the video progressed and to some fallibility of the input

device. The disagreement between what was observed and expected was reconciled by comparing

the state of the potential to the probability density distribution of inputs. As shown for both the

unrestricted and restricted cases, provided in the second an fifth columns of figure 3.18, the same

reconciliation may be reached here. We may note however, that although the locations of the local

minimas coincide on the line x, the profiles of the potential and probability density distribution do

not generally match. This disparity is alleviated by reducing σ as can be seen from figures 3.18n

and 3.18q. We must consider whether the value σ =
√

0.001 is too small to ensure robustness to

noise. There is also the issue of creating very narrow classes and so impairing the ability of the

system to recognize unfamiliar colours. This would appear to be an issue, the potential shown

in figure 3.18m appears to contain fourteen local minima whilst the recognition of colours shown

in the same figure, and also indicated in figure 3.18o, demonstrates many more classes. We may

surmise that these trajectories have not yet reached a fixed point of the system due to the potential

remaining approximately flat across large regions.

By excluding some stimuli from our model due to their distance from the line R∗, G∗, B∗ it

is evident that the potential of the system typically incorporates fewer local minima. We may

consider that these fewer minima are a more accurate representation of the colours of which the

stimuli is actually composed. We should also note that this reduction in attractors is not always

the case, as illustrated by the central row of figure 3.18. Here we can clearly observe two different

classes of grey for the restricted case in comparison to the single class for the unrestricted stimuli.
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This separation of classes is explainable if we again consider the stacking properties of Gaussians.

When an unrestricted stimuli is applied, values across a wider range are encountered, this results

in the stimuli forming one minimum with a larger basin. In the case where stimuli are restricted,

in-between stimuli are omitted, this results in two distinct minima forming. If we consider that this

model should contain close to eight classes (listed in table 3.1), then the best fit for this assertion

is observed in figures 3.18j,k,l, when Γ = 40 and σ = 0.01. We should be wary of this however, as

the colours seen by the camera do not exactly match the colours that it is shown. It is interesting

to note the effect that selecting parameters has on the development of the systems attractors. We

have only considered a small subset here, however it is very apparent that adjustments can have a

dramatic impact on the development of the system.

The further two examples shown in figures 3.19 and 3.20 corresponds to stimuli collected from

the cartoons Futurama and Southpark respectively. As we have no control over their colour com-

positions we cannot speculate about the appropriateness of the number of classes formed. We do

however observe that the distribution of inputs emulates the final potential in both cases. Again we

may consider the classes of the one-dimensional model against the classes of the three-dimensional

models shown in figures 3.12 and 3.9. What becomes apparent is that the transformations applied

have a considerable effect on the classes of the system. This is hardly surprising if we consider that

the 16,581,375 positions of the RGB space are mapped onto a meagre 1060 points of a spectrum.

It is difficult to compare the different colours of the three-dimensional model to those of the one-

dimensional due to the transform that has been applied. Certainly some similarities can be drawn,

for instance the one-dimensional model shown in figure 3.19 appears to contain many of the classes

of colour shown in figure 3.12, however, there are some glaring differences. One obvious example

is the pink class, this is appreciated by the three-dimensional scheme but is not replicated in the

one-dimensional case. It may be the case that this class has been replaced with a purple colour as

a result of the transform. If we consider the line R∗, G∗, B∗, then the omission of pink is easy to

account for as the spectrum transform does not permit this colour. Issues such as this suggest that

although the one-dimensional approach is less computationally expensive, the restrictions of the

scheme mean that it is ill equipped to recognize colour in an unrestricted sense. We may devise

certain environments where the colours observed are restricted to this smaller palette, however,

then we are no longer considering the system operating in a natural setting. In contrast, the short-

comings of the one-dimensional model can be seen to validate the three-dimensional approach.

It may be postulated that the three-dimensional RGB scheme is a minimal requirement for the

learning and recognition of colours in a natural environment. Another concern that may be raised

about the one-dimensional approach is highlighted if we compare figures 3.19l and 3.20l. The

differences between the classes shown in the bottom rows of these colour spectrum’s is somewhat

negligible. The relative sizes of each class are different, however both examples contain many of the

same constituent colours. Notable differences include a small regions of yellow and dark-grey that

appear for Southpark but not for Futurama. Many similar classes are realized despite the radically

different appearances of the two potentials (shown in 3.19j and 3.20j). If we compare the classes

shown in figures 3.19l and 3.20l to the classes of the three-dimensional systems shown in 3.12c and

3.9c, then we see that there is a much greater difference between the colours contained within the

two three-dimensional representations than there is for the one-dimensional models shown here.

This may suggest that a one-dimensional spectrum is simply too basic and does not adequately

portray the adjustment of colour in a continuous, gradual way.

Putting these concerns to one side we should also mention the successes of the system. These
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become apparent if we neglect the transformation from RGB to R∗G∗B∗ and instead only consider

stimuli in the form of R∗G∗B∗ triplets. Here were may draw an analogy to a person with a severely

restricted ability to perceive colour. We may consider that the range of colours that they are able

to interpret corresponds to the values defined in table 3.2. Such a limitation is comparable with

human visual limitations, for instance suffers of monochromacy may only discern approximately

100 colours. These, of course, do not correspond to our line R∗G∗B∗. Restricting our attention to

the colours R∗G∗B∗ we can compare the relationship between a stimulus and the class that it is

attributed to by considering the middle and bottom rows of each diagram in the third and sixth

columns of figures 3.19 and 3.20. It is clear from these representations that a strong relationship

exists between the colour of the stimuli and the classes that form. Again we should highlight

that the number of classes is influenced by the parameter σ. The system builds a representation

of the world that it has observed via an on-line, unsupervised, flexible approach. The downside

of the one-dimensional system lies not with the learning model, but with the transformation of

three-dimensional coordinates onto the line. We may consider the three-dimensional model to

posses a superior capacity to learn colours. The one-dimensional alternative may be thought of

as a less sensitive system, capable of drawing fewer distinctions between colours, but still fulfilling

the principal target; automatic classification and recognition of a wealth of observed colours.

(a) (b)

Figure 3.17: (a):Comparison between the PDD of inputs and the system’s potential V (t, x) at
t = 2000 for two different values of σ. Note that a narrow Gaussian width parameter ensures
convergence between the PDD of inputs and the potential. In the case where σ is larger the
system is not able replicate the distribution of the stimuli. (b) demonstrates that this is not due
to insufficient evolution time as the potential shaped with σ =

√
0.05 has still failed to imitate

the profile of the PDD of inputs by t = 10000. Note that the statistical properties of the stimuli
remain the same in each illustration.

3.6 Summary and Conclusion

Here we have considered the utilization of the memory foam model for the complex tasks of colour

learning and recognition. This autonomous dynamical system utilizes a plastic vector field to create

a representation of the experienced stimuli. Unknown stimuli are recognized in accordance with

this landscape, while no distinction between the learning and recognition of colours is required.

Here we consider a stimuli as as set of RGB triplets that are prescribed to the model via a web-
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camera. The three-dimensional vector field of the system is manipulated by these inputs to form

attractors of the system that coincide with the distribution of colours. Some of the research of this

Chapter is summarized in a yet to be published paper, this is included in the appendix.

By experimenting with colour we have been able to demonstrate that the system is applicable

to more intensive learning tasks than previously encountered. It may be argued that vision is the

most significant source of input for many biological learning system. It is certainly encouraging

that we have been able to replicate the learning of stimuli representing part of this faculty. The

ability to visually perceive our environment is integral to the way that humans interact and learn

from our surroundings. Here we have taken the first step towards demonstrating this artificially.

Modelling the learning of more general visual inputs such as objects, people or landscapes would

require an even more complex system, with a much higher level of dimensionality. We may consider

this experiment as an important part of the chain leading from the representation of individual

stimuli, to much more complex situations. Ultimately we may imagine a high-dimensional system

that retains knowledge from every imaginable source. The sensory information utilized by the

model may in fact exceed that of a human. Features of a stimuli such as: colours, sound, size,

position and temperature may all be incorporated to shape the vector field of the system.

The limitations of the system’s sensor (web-camera) are discussed and quantified in section

3.2.1. Despite these limitations the system is shown to be able to automatically form classes rep-

resenting different colours when introduced to the popular cartoons Futurama and Southpark. As

external human influence is avoided, we may stimulate that the model demonstrates unsupervised

learning. We have previously stated that the majority of human learning occurs in this fashion,

an assertion that would appear particularly relevant to learning colours. As children we may be

taught the label to assign to a specific colour, however we naturally learn to distinguish between

colours. The formation of new classes and associations made between different colours are instilled

without the need for labels, these only really exist as a necessity of language [93, 164].

The RGB colour scheme is demonstrated to be a viable construct to define colours that are

applied to our learning model. The memory foam model’s groups colours into distinct classes based

on the distribution of inputs and the parameters of the system. One difficulty that is encountered

is the illustration of the models dynamics. We should be clear that this has no relevance to the

actual functioning of the model. Because the potential is a function of R,G,B and time, it cannot

be fully visualized in a single diagram. To convince readers that the system does indeed function

as hypothesised, we presented aspects of the shaping via various alternative illustrations. These

include presenting projections of the potential against two of the three-dimensional components

at multiple time instances, visualizing the evolution of the local minima in an RGB space, and

demonstrating recognition from a large mesh of initial conditions. Considering the amalgamation

of these methods a clear description of the memory foam model’s behaviour is accumulated.

By selecting cartoon based stimuli we have ensured that the potential comes to represent a

diverse cross-section of colours. This is not a requirement, but should help readers to associate

with the results. We may also consider how the system may behave in less diverse conditions.

Consider for instance a desert, or the north/south pole, places where colour contrasts are limited.

In such locations we may expect that the system will only experience a narrow range of colours. At

the poles the system may become an expert in differentiating between shades of ‘white’ and ‘blue’,

but will have little/no knowledge of ‘red’ or ‘green’. To learn finer details the system will require σ

to be small. We may anticipate that a person who lives in a similar environment, where the contrast

between colours is low, may learn in a similar manner. We cannot learn without experience, this
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should be kept in mind when considering the results of this model. The development of this

paradigm may involve extending our trials to other real world environments, but before this is

considered we may suggest that superior hardware is acquired.

Although the three-dimensional colour representation is able to portray a wealth of colours, the

integration of the systems variables and the collection of stimuli are computationally expensive.

This means that an extensive delay exists between the observation of a stimulus and the model

utilizing this information. As a method to improve processing time we may first transform the

stimuli from a three-dimensional RGB triplet onto a one-dimensional spectrum. In section 3.5.1

we have presented one method of making such a transform. We may then progress with a one-

dimensional potential in a manner similar to that discussed in Chapter 2. Although this limits the

number of distinct colours that may be perceived by the model, the categorization of colours still

appears viable. If we were to consider the system in an artificial environment that only contained

the limited colours of our one-dimensional spectrum then this one-dimensional approach would

certainly provide a sufficient alternative to the three-dimensional model. Unfortunately it is shown

that the mapping between some RGB values and the colours of this one-dimensional spectrum are

not particularly close. An example of this problem is the colour pink which becomes associated

with purple via this approximation. As a means to counter such issues we have introduced a

restriction on the stimuli. If the mapping between an RGB colour and spectral colour exceeds a

given threshold, then the stimulus is not utilized by the system. Here we may make an analogy

to a person with a restricted set of receptors such as a person suffering from monochromatism. It

should be noted that monochromatism is unlikely to effect a person in this way, but does have the

effect of dramatically reducing the number of distinguishable colours. We may conclude that when

RGB colours are close to the one-dimensional spectrum defined by the line R∗G∗B∗, the system

utilizes this information to form classes that are relevant to the input. We are able to demonstrate

that unknown stimuli are recognized as part of relevant classes in this situation.

In the next Chapter we begin to look at the alternatives to gradient descent for modelling

recognition. We focus on the van der Pol oscillator as a paradigm of self-sustained oscillation that

may be utilized to elicit higher order dynamics. Applying non-linear dynamical principles to the

concept of recognition should allow the model to become more flexible, permit a more biologically

relevant description of recognition, allow more information to be conferred by the vector field and

possibly permit hierarchy to be conveyed.
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Chapter 4

Representation of Class

Recognition via Limit Cycles

In this Chapter we turn our attention away from the classification of stimuli and instead focus

on recognition. A major success of this new approach is that recognition and classification can

be simultaneously realized. Classification deals with utilizing stimuli to form a representation of

everything the system has learnt. This is described by a flexible, evolving potential. Recognition

is concerned with comparing a stimuli to the information stored by the system. Let us consider

the example of facial recognition, this is a task that traditional computers typically perform very

poorly at due to way in which they linearly process information. A human observer may recognize

a person almost instantaneously despite minor differences in the persons appearance from the last

time they were observed. In this context it is clear what is meant by recognition, it is identifying

whether the person is known to the learner and identifying the label (name) associated with that

stimuli. The same concept may be inferred by our system. A learnt face may be considered as a

class represented by a local minimum of the potential. Recognition is considered as identifying the

correct/most relevant class to associate a stimuli with. It is important to realize that the perceived

stimuli is unlikely to exactly resemble a known class, the learning system must therefore make

an appropriate comparison between retained information and stimuli. Returning to our facial

recognition analogy, the system should be resilient to minor changes in stimuli such as lighting

conditions, hair style, facial hair or ageing. The basin of attraction of any attractor representing

a class should be sufficiently large that stimuli encoding minor differences are still attributed to

the same class. Utilizing the system to actually perform facial recognition would be a complex

task. This description is intended to merely provide a basis for conceptualizing the process of

recognition. To employ this model for facial recognition the potential characterizing the memory

of the system would require a considerable number of dimensions to contain sufficient information

about each individual. Beyond this issue, the system may be suitably trained and should perform

recognition much faster than a standard database search. At this juncture we only use this analogy

to describe the concept of recognition, however, there may be some scope for such development in

the model’s future. The most basic premise underpinning recognition lies in the idea of comparing

a stimuli to retained information, from this the system infers which known class the stimuli most

closely resembles.
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The original model, presented in [74], utilizes gradient descent to locate a local minimum which

is associated with a class. Each local minimum of the potential corresponds to an attracting fixed

points of the system and the topology of the potential in each points vicinity dictates the rate at

which a stimuli ‘descends’ to the attractor. As such, the phase space of the system is split into a

set of basins of attraction, each containing an attracting fixed point. These basins remain smooth

due to the properties of the Gaussian function (equation 2.2). Gradient descent utilizes the vector

field of the potential to locate these minima, hence, any position η = x will converge towards an

attracting fixed point, corresponding to a local minimum of the potential. In this fashion any

stimulus can be recognized as part of a known class.

The primary issue with the gradient approach is that it lacks the ability to represent recognition

by anything other than a fixed point attractor. Recalling our discussion of non-linear dynamics

presented in section 1.4, the stable fixed point may be considered the most basic object that

organises a phase space. All trajectories within the attractor’s basin converge towards it. Here

we wish to explore a more general phase space with various types of attractor. This will allow

us to represent additional aspects of a class such as its size and relation to other classes. A class

may still be represented by a fixed point, however, the possibility of limit-cycles, quasi periodic

orbits and even chaotic motions would instigate greater scope to the way the system represents

recognition. Ideally different regions of the phase space should be occupied by different distinct

attractors. A certain region of the potential may be affiliated with a limit cycle, whilst another,

with different topological properties, may be described by a quasi-periodic orbit. The ability to

represent recognition with differing phase space attractors may form the basis of a hierarchical

approach.

4.1 A Hierarchical Representation of Class Recognition

The notion of hierarchy is intended to convey a structure that relates the different classes of the sys-

tem. It is is clear that any relation between different classes is not representable with a fixed point

attractor, but may be approached by demonstrating the recognition of a stimulus with limit cycles

and multi-dimensional quasi-periodic orbits. The knowledge of the system may be considered to

form classes and subclasses. Let us consider the hierarchy of biological classification as an analogy

for the type of structure that we may wish to identify. This classification method has the following

branches: Life→Domain→Kingdom→Phylum→Class→Order→Family→Genus→Species. These

form a pyramid structure where constituents with features in common all appear at the same

level. The same concept may be inferred from a potential such at that shown in figure 4.1. In this

figure we may consider there to be 3 classes, each divided into smaller and smaller subclasses. It

would be advantageous if this relation between classes and subclasses could be inferred from the

realizations of recognition. As stated, this is clearly not possible utilizing gradient dynamics, but

may be achieved if the system is able to utilize higher order representations such as limit cycles.

At this stage comments regarding hierarchical representation are purely speculative and are only

intended to motivate our move away from gradient approaches towards more robust methods. One

perceivable route to relate classes and subclasses may be to associate the lowest class level with

a fixed point, the next step may be associated with a limit cycle and yet wider classes may be

represented by quasi-periodic orbits. Where the system has many layers of classes and subclasses

we may consider that there will be many different, but related quasi-periodic cycles. The dimen-

sionality of the associated tori may depend on the number of levels of hierarchy that exist for
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the given potential. It may also be considered that at some stage the upper bound of the class

representation is represented by a chaotic trajectory. This concept is illustrated in figure 4.2.

Figure 4.1: Classes and sub-classes may be illustrated for an arbitrary potential as shown by this
red curve. As marked, the profile may be split into a number of smaller and smaller wells. The
black brackets indicate the approximate size of each sub-class. Here we have identified several
layers of classification. This is just one example, the topology of the evolving system may be very
different but we anticipate that similar relationships between local minima may be observed.

The first stage of our investigation should focus on generating limit cycle type dynamics, this

is the logical extension from the fixed point representation. The limit cycle should be a superior

representation of recognition as it is able to represent more information about the system than

merely the location of the local minima (fixed point corresponding to the most prevalent stimuli

that resides within a class). The limit cycle has both frequency and amplitude that may be

defined by the state of the system in order to create a unique representation of any class. These

components are important if we are to build a non-linear system that illustrates the interaction of

the various phase space objects. This notion will later become clear in Chapter 5 when we consider

synchronization dynamics. In this Chapter we shall consider the first step toward generating these

higher order dynamics, representing recognition via a limit cycle. Towards this goal we focus on

the van der Pol oscillator, a system identified and discussed in section 1.4.2. We relate the van der

Pol oscillator to a potential V (t, x) created by a one-dimensional stimuli. Here we focus on how

recognition may be conceptualized by oscillatory motions.

4.2 Utilizing the van der Pol System to Describe Recogni-

tion

The van der Pol oscillator is widely utilized as a basis for biological models that incorporate

oscillatory dynamics [156, 39, 151, 136, 51]. Due to its pedigree in this domain we shall continue

to pursue this convention. We have already discussed the critical aspects of this system in section

1.4.2 and highlighted the parameter range over which limit cycle behaviour is prevalent. At this

juncture we are required to relate the well established foundations of the VDP model to the new

venture of characterising the recognition of stimuli for this new learning system. The basic premise

behind the memory of our learning model is that the energy potential V (t,x) possesses local
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Figure 4.2: Illustration of the possible organisation of phase space attractors which may charac-
terize the relation between different classes of the system utilizing a hierarchical framework. The
lowest subclass is represented by a fixed point, higher/wider classes are represented firstly by limit
cycles and then by quasi-periodic orbits.
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minima formed as a result of the repeated application of stimuli. These local minima represent

the most prevalent stimuli, and hence the most important retained information. At this stage we

wish to relate the potential of this learning model to the potential of the van der Pol system.

As shown in section 1.4 the total energy of the VDP dynamical system may be represented by

a kinetic energy plus potential energy function, the minimum of the potential function corresponds

to the fixed point of the system. For the VDP oscillator the potential V (x) is described by a

symmetric parabola scaled by the constant ω2

2 .

V (x) =

∫
g (x) dx =

∫
ω2xdx =

1

2
ω2x2 (4.1)

We may consider the behaviour of the VDP system if the potential is no longer parabolic.

We want the potential of the oscillatory system to take any arbitrary topology defined by the

distribution of stimuli. In this way we may relate our learning system to the van der Pol oscillator.

The potential utilized by the van der Pol scheme would become a time dependent function, with

as many local minima as dictated by the distribution of the stimuli. We postulate that a Hopf

bifurcation about any fixed point of the system (defined by V (t, x)) will result in a unique limit

cycle that represents a corresponding class. Before advancing to this complex case, it is prudent

to begin with a simplified test example. Let us consider the dynamics of the VDP oscillator when

the potential is described by the fourth order double well polynomial:

V (x) = d

(
1

4
x4 − 1

3
x3 (x1 + x2 + x3) +

1

2
x2 (x1x2 + x1x3 + x2x3)− x (x1x2x3)

)
(4.2)

This polynomial, with appropriate choices of x1, x2 and x3 may be perceived as a representation

of a potential containing two local minima. The system will contain three fixed points, that

correspond to x1, x2 and x3. Such a polynomial may be considered to possess the minimum

number of fixed point to define a double well profile. Our choice of a double well is intended to be

the simplest possible complication beyond a parabola. It is speculated that the system will posses

two limit cycles centred about x1 and x3, corresponding to the two wells of the polynomial. If this

is the case we shall need to consider the extension of this method to an N th order polynomial,

before then considering the time evolving potential defined by the distribution of stimuli. Defining

the potential with the polynomial (4.2) allows us to easily define and manipulate its derivative
dV
dx . This is required to simulate van der Pol dynamics. Utilizing this double well potential our

dynamical system becomes:

ẋ =y

ẏ =ε
(
1− x2

)
y − dV

dx
= ε

(
1− x2

)
y − d (x− x1) (x− x2) (x− x3)

(4.3)

It is apparent that the fixed points of the system are (x1, 0) , (x2, 0) , (x3, 0). Recall that fixed

points correspond to locations where ẋ = 0 and ẏ = 0. If we take the Jacobian of the system we

arrive at the characteristic equation:

λ2 − ε
(
1− x2

)
λ+ 2εxy + d ((x− x1) (x− x2) + (x− x2) (x− x3) + (x− x1) (x− x3)) (4.4)

inserting initial conditions the eigenvalues of the fixed points are given by:
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(x1, 0)

λ1,2 =
ε(1−x2

1)±
√
ε2(1−2x2

1+x4
1)−4d(x1−x2)(x1−x3)

2

(x2, 0)

λ1,2 =
ε(1−x2

2)±
√
ε2(1−2x2

2+x4
2)−4d(x2−x1)(x2−x3)

2

(x3, 0)

λ1,2 =
ε(1−x2

3)±
√
ε2(1−2x2

3+x4
3)−4d(x3−x2)(x3−x1)

2

Table 4.1

By studying the eigenvalues of the systems fixed points presented in table 4.1, we can make

some inferences about the behaviour of each fixed point for certain regions of the parameter space.

To aid in this analysis we need to make the assumption that x1 < x2 < x3. To further simplify

this discussion we will also restrict ourselves to the case where ε > 0. If this were not the case the

conditions for stability of (x1, 0) and (x3, 0) would simply be inverted (i.e stable when |x1|, |x3| < 1

and unstable when |x1|, |x3| > 1). This should become evident from the following discussion.

Fixed point with coordinate (x1,0)

The implication of the assumption that x1 < x2 < x3 is that 4d (x1 − x2) (x1 − x2) < 0 if d < 0.

As ε2
(
1− 2x2

1 + x4
1

)
> 0 for any x1, we can assume that the eigenvalues of this fixed point are real

if d < 0. We should also note that ε
(
1− x2

1

)
=
√
ε2 (1− 2x2

1 + x4
1). Then denoting A = ε

(
1− x2

1

)

and B = 4d (x1 − x2) (x1 − x2) we have 2λ1,2 = A±
√
A2 + |B|. Clearly A <

√
A2 + |B|, we there-

fore have one real positive, and one real negative eigenvalue. Hence when d < 0 the fixed point x1 is

a saddle point. For the case where d > 0 there are two options. The term 4d (x1 − x2) (x1 − x2) > 0

and so the eigenvalue will be complex if 4d (x1 − x2) (x1 − x2) > ε2
(
1− 2x2

1 + x4
1

)
. In this cir-

cumstance the fixed point will be attracting or repelling depending on ε
(
1− x2

1

)
. Where |x1| > 1

the fixed point will be an attracting spiral, alternatively if |x1| < 1 we will observe a repelling

spiral. Finally there is the possibility that d > 0 and 4d (x1 − x2) (x1 − x2) < ε2
(
1− 2x2

1 + x4
1

)
.

In this situation the eigenvalues will be real. We may then consider the eigenvalue denoted as

2λ1,2 = A±
√
A2 − |B|. Evidently A >

√
A2 − |B| and so the eigenvalue will be real with a sign

determined by A. Hence if |x1| > 1 we will encounter a stable node and if |x1| < 1 the fixed point

will be an unstable node.

Fixed point with coordinate (x2,0)

Again the function ε2
(
1− 2x2

2 + x4
2

)
> 0 for all x2. The function 4d (x2 − x1) (x2 − x3)

will be positive if d < 0 or negative if d > 0. Therefore, if d > 0, ε2
(
1− 2x− 22 + x4

2

)
−

4d (x2 − x1) (x2 − x3) > 0 and the eigenvalues are real. We can again consider the eigenvalues to be

of the form 2λ1,2 = A±
√
A2 + |B| as ε

(
1− x2

2

)
=
√
ε2 (1− 2x2

2 + x4
2). Evidently A <

√
A2 + |B|,

hence the fixed point behaves as a saddle. When d < 0 the eigenvalues may still be real, this is

the case when ε2
(
1− 2x2

2 + x4
2

)
> 4d (x2 − x1) (x2 − x3). In this situation we should consider

the eigenvalues represented as 2λ1,2 = A ±
√
A2 − |B|. Clearly A >

√
A2 − |B| and so the fixed
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point will be either a stable or unstable node. This again depends on ε
(
1− x2

2

)
, if |x2| > 1 the

fixed point will be stable, conversely the point will be unstable. Finally is the situation where the

eigenvalue is complex. This occurs if d < 0 and ε2
(
1− 2x2

2 + x4
2

)
< 4d (x2 − x1) (x2 − x3). The

stability of the fixed point is again dependent on ε
(
1− x2

2

)
, however, now if |x2| > 1 the point is

a stable spiral and if |x2| < 1 the point is an unstable spiral.

Fixed point with coordinate (x3,0)

Following the same reasoning used for the previous two fixed points the eigenvalues of this

point will be real if d < 0 or ε2
(
1− 2x2

3 + x4
3

)
> 4d (x3 − x1) (x3 − x2). If the latter is realized

the stability will depend up x3. Where |x3| > 1 the point will be characterized as a stable node,

alternatively, the point will be an unstable node. Returning to the real eigenvalues that present

when d < 0, we may obtain eigenvalues of the form 2λ1,2 = A ±
√
A2 + |B|, hence the point

becomes a saddle. Where ε2
(
1− 2x2

3 + x4
3

)
< 4d (x3 − x1) (x3 − x2) the eigenvalue solutions are

complex. The fixed point will be a stable spiral if |x3| > 1, or, if |x3| < 1, an unstable spiral will

be observed.

(x1,0)
d > 0 d < 0

ε2
(
1− 2x2

1 + x4
1

)
> 4d (x1 − x2) (x1 − x3) ε2

(
1− 2x2

1 + x4
1

)
< 4d (x1 − x2) (x1 − x3)

Saddle|x1| > 1 |x1| < 1 |x1| > 1 |x1| < 1
Stable Node Unstable Node Stable Focus Unstable Focus

(x2,0)
d > 0 d < 0

Saddle
ε2
(
1− 2x2

2 + x4
2

)
> 4d (x2 − x1) (x2 − x3) ε2

(
1− 2x2

2 + x4
2

)
< 4d (x2 − x1) (x2 − x3)

|x2| > 1 |x2| < 1 |x2| > 1 |x2| < 1
Stable Node Unstable Node Stable Focus Unstable Focus

(x3,0)
d > 0 d < 0

ε2
(
1− 2x2

3 + x4
3

)
> 4d (x3 − x1) (x3 − x2) ε2

(
1− 2x2

3 + x4
3

)
< 4d (x3 − x1) (x3 − x2)

Saddle|x1| > 1 |x3| < 1 |x3| > 1 |x3| < 1
Stable Node Unstable Node Stable Focus Unstable Focus

Table 4.2: Classification of the fixed points (x1, 0), (x2, 0) and (x3, 0) of equation (4.3). The
eigenvalues of each fixed point as shown to depend on ε, d, x1, x2 and x3. The relationship
between eigenvalues and the behaviour of a fixed point is detailed in section 1.4.2.

The possible behaviours of each of the fixed points are summarized in table 4.2. We should

remember to be cautious as the overall dynamics of the system may be radically different to

the local fixed point behaviour. For non-linear dynamical systems there is typically an interplay

between the local dynamics surrounding the fixed point and the global behaviour. The Hopf

bifurcation is a type of local bifurcation that is typically observed in van der Pol systems. This

bifurcation occurs when the pair of eigenvalues of a fixed point form a complex conjugates pair,

which crosses the line Reλ1,2 = 0. Considering the fixed points of our system we can see that a Hopf

bifurcation may occur for any of these points as a focus type attractor losses stability. Further,

we may expect to see bi-stability when d > 0, |x1| > 1 and |x2| > 1. We may anticipate that the

phase space will be separated into two basins of attraction encapsulating the fixed points (x1, 0)

and (x2, 0). There is also the possibility that one of these fixed points may be attracting whilst
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the other meets the criteria for a Hopf bifurcation. In this circumstance we may again expect to

observe bi-stability, one attractor being a stable cycle, the other a fixed point. In this case we may

speculate about a further cycle/orbit that acts as a seperatrix. The possibilities indicated by the

eigenvalues of the fixed points demonstrate that even in this contrived, double well potential form,

there are some interesting dynamics to understand. Although we can understand each fixed point

in turn, how trajectories interact over the global phase space is less clear. We should consider the

topology of any limit cycles and understand how these interact with the fixed points of the system.

Of particular interest for further analysis is bi-stability. As such we should restrict our attention

to the case where d > 0. This is also necessary if we require our potential to have two local minima

(rather than two maxima). To validate our assertions and investigate the global behaviour of the

system we may utilize numerical methods and simulation. At this stage we turn to XPPAUT

continuation software [44] to illustrate the trajectories of the system and to track bifurcations.

4.2.1 Numerical Calculations

It is already becoming apparent that utilizing a potential with just two wells yields a system that

is relatively complex. Such a system will have five bifurcation parameters (x1, x2, x3, d, ε). The

standard approach to observe Hopf bifurcations in the VDP system is to adjust the parameter ε,

a Hopf bifurcation then occurs when ε crosses the line ε = 0. If we combine this oscillatory system

with the memory foam model potential, the parameters x1, x2 and x3 will be determined by the

distribution of stimuli. They will therefore be outside of our control. It is clear that they have

a significant impact on the bifurcation structure of the system. This may result in difficulties as

dynamic behaviour may be based on position rather than controllable parameters. We may also

be sceptical about extending this approach to a potential with N fixed points.

It is logical to impose the constraints x1 < x2 < x3, ε > 0 and d > 0 and consider the system’s

behaviour for fixed values of ε and d. A Hopf bifurcation is predicted around (x3, 0) when |x3| = 1

and ε2
(
1− 2x2

3 + x4
3

)
< 4d (x3 − x1) (x3 − x2). The same can be said for (x1, 0) when |x1| = 1

and ε2
(
1− 2x2

1 + x4
1

)
< 4d (x1 − x2) (x1 − x3). Note that both of these conditions may be met

simultaneously. To validate our assertions about the fixed points of the system we may consider

the phase space dynamics for the various parameter values listed in table 4.3. Each parameter

set corresponds to a different arrangement of fixed point types. Because d > 0 the fixed point

(x2, 0) is always a saddle. A sample of phase space trajectories for each of the parameters listed

in table 4.3 are illustrated in figure 4.3. It is apparent that the saddle point plays an important

role in partitioning the phase space. Each diagram shows the stable (blue) and unstable (yellow)

manifolds of the saddle point, as well as including a cross-section of trajectories that converge to

the fixed point (x1, 0) (black lines), fixed point (x3, 0) (red lines) or stable limit cycle (cyan lines).

The locations of each fixed point are marked by coloured squares, cyan denotes a saddle point, red

denotes a stable node, green a unstable node, blue a stable focus and yellow denotes an unstable

focus.

It is clear that the fixed points behave as expected, however, some important comments should

be made. Firstly we may comment on the case where both fixed points are attracting (nodes

or focus), in this instance the basins of attraction of the two fixed points are separated by the

stable manifold of the saddle point. Due to the aforementioned Poincaré - Bendixson theorem,

trajectories cannot intersect, the phase space is therefore neatly separated into two distinct basins.

This may be appreciated from figures 4.3a,c,i,k. It would also appear that if the system contains
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an unstable fixed point (node or focus) the stable manifold of the saddle point will always interact

with this point. Most important to our study is the occurrence of limit cycles. If both points (x1, 0)

and (x3, 0) are unstable, the system will converge to a stable limit cycle. This cycle exists even

when both fixed points are unstable nodes (figure 4.3f). This suggests that the bifurcation is not

always a Hopf bifurcation as the eigenvalues of the fixed point do not contain an imaginary part.

In each case this stable cycle is approached by the unstable manifold of the saddle point. In all

circumstances the system appears to contains no more than a solitary limit cycle that encapsulates

all three fixed points. Our speculation that a hopf bifurcation about either fixed point (whilst the

other remains stable) could lead to multiple distinct cycles appears to be unfounded (as shown by

figures 4.3d,l,m,o). Instead, a limit cycle bifurcation always results in a cycle that encircles all three

fixed points, a feature that does not easily lend itself to a robust recognition scheme. Despite not

realizing the co-existance of multiple cycles, we do observe bi-stability in the form of a stable focus

co-existing with a limit cycle (figure 4.3o). The stable manifold of the saddle point encapsulates

the attracting focus, forming a seperatrix. One unstable manifold of the saddle interacts with the

stable focus whilst the other unstable manifold organises an attracting limit cycle trajectory.

Fixed Point Parameter Values
(x1, 0) (x3, 0) ε d x1 x2 x3

Stable Node Stable Node 2 0.05 -1.2 -0.1 1.2
Stable Node Unstable Node 2 0.1 -1.2 -0.2 0.7
Stable Node Stable Focus 2 0.05 -1.2 0.1 1.1
Stable Node Unstable Focus 2 0.05 -1.2 0.1 0.9

Unstable Node Stable Node 2 0.1 -0.7 0 1.3
Unstable Node Unstable Node 2 0.3 -0.5 0.1 0.7
Unstable Node Stable Focus 1.5 0.3 -0.5 0.1 1.1
Unstable Node Unstable Focus 1.5 0.3 -0.5 0.1 0.9
Stable Focus Stable Node 3 0.1 -1.1 0.6 1.2
Stable Focus Unstable Node 3 0.1 -1.1 0.6 0.8
Stable Focus Stable Focus 0.5 0.5 -1.2 0.1 1.1
Stable Focus Unstable Focus 0.5 0.5 -1.3 0.1 0.7

Unstable Focus Stable Node 2 0.1 -0.7 0.9 1.1
Unstable Focus Unstable Node 2 0.04 -0.9 0.5 0.9
Unstable Focus Stable Focus 0.5 0.5 -0.8 0 1.2
Unstable Focus Unstable Focus 0.5 0.5 -0.8 0 0.8

Table 4.3: The types of fixed point behaviour demonstrated by (x1, 0) and (x3, 0) for the listed
parameter values of ε, d, x1, x2 and x3. These parameters are chosen to demonstrate every possible
combination of fixed point behaviour. In figure 4.3 we use this list to simulate the dynamics of the
system in order to numerically validate our analytical analysis.

Due to the high number of bifurcation parameters a complete bifurcation analysis would prove

to be very complex. What we have observed is that a bifurcation occurs at |x1| = 1 and |x3| = 1.

If either |x1| > 1, |x3| < 1 or |x1| < 1, |x3| > 1 this bifurcation may result in bi-stability. One fixed

point remains attracting whilst a stable limit cycle encapsulates the three fixed points. Basins of

attraction are partitioned by a seperatrix formed by the stable manifold of the saddle point. It is

also possible that despite these conditions the stable cycle does not appear. Instead all trajectories

may converge to the stable fixed point. The bifurcation to a stable cycle is therefore dependent

on the interaction of all parameters ε, d, x1, x2 and x3. What would appear evident is that a

stable limit cycle is the only attractor when both fixed points (x1, 0) and (x3, 0) are unstable. This
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behaviour appears to endure even when both points are unstable nodes. This suggests that the

Hopf bifurcation may not be the only route by which a stable limit cycle emerges in this system.

Considering the dynamics that we have thus far observed, we may be perturbed from further

consideration of a system of this type. The main deficiency that has become apparent is the

lack of distinct local bifurcations leading to new unique limit cycles. The system seems to posses

an inherent stable cycle that acts as a global attractor for certain parameter choices. Although

the dynamics of this system seem interesting, they do not endear themselves to the recognition

scheme that we wish to formulate and apply to the memory foam model. Foremost, we have not

observed cycles characterising individual local minimum, this is a clear requirement from both the

perspective of recognition and instigating higher order dynamical behaviour.

The standard VDP oscillator utilizes a parabolic potential, our deviation away from this to

a double well does not illicit the results desired. We must now attempt to devise an alternative

strategy to generate a series of unique attracting cycles. We may consider a system where each

local minima of V (t, x) is characterized by a parabolic potential with characteristic’s dependent

on the local shape of the potential V (t, x). A VDP oscillator that utilized such a potential, would,

given an appropriate value of ε, demonstrate oscillatory dynamics with a frequency relevant to the

local topology. By only utilizing local information about a minimum, the potential V (t, x) can be

modelled as a set of parabolas. As such, oscillations should be predictable and controllable, whilst

meeting our requirement for every local minimum to be associated with a distinct cycle.

4.3 Modelling the Foam Profile with Parabolas

A one-dimensional profile that contains several local minima may be approximately modelled as a

series of parabolas, each centred about a minimum with a width dependent on each minima’s local

topology. This is advantageous as the traditional formulation of the van der Pol system (equation

1.19) can then be employed. If the potential of the van der Pol system is parabolic, then it follows

that the dynamics of the system will be similar to those discussed in section 1.4.2. For ε > 0 we

may anticipate that each minimum will be associated with a limit cycle. Because the potential of

the van der Pol system reflects the local topology of the one-dimensional profile we may expect

that each limit cycle has a frequency that relates to the shape of the profile. This concept is

visualized in figure 4.4. The black line indicates an arbitrary potential and the three coloured lines

are appropriate parabolas that may be used to approximately model this potential. Advancing

from this arbitrary case, we may postulate a system where our energy potential, modulated by

the repeated application of stimuli, is modelled as a set of parabola’s, which in turn act as the

potential of a van der Pol system characterizing recognition. By relating the energy potential of

the learning system to the VDP potential we should be able to infer the structure of a class from

a phase space trajectory. If we consider each minimum to describe a class, then we may surmise

that the curvature of the potential, in the vicinity of the local minimum, provides an estimate of

the size of the class.

It is possible to construct these parabolas about any point x∗ ∈ x associated with the profile

V (t, x) using a Taylor expansion. In order to centre the parabola about x∗ the first order term of

the expansion is neglected, we also omit all higher order terms. Hence we obtain:

U (V, x) = V (x∗) +
1

2

∂2V

∂x2
(x− x∗)2 (4.5)
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Figure 4.4: An arbitrary potential (black) with parabolas (coloured lines) centred about the local
minimas. Correct scaling of the parabolas width ensures that a series of parabolas can vaguely
represent the primary features of the potential.

U (V, x) is a parabola centred about the point x∗, its width is dependent on ∂2V
∂x2 and as such will

Figure 4.5: Parabolas (red lines) constructed at various points of a polynomial (black line) by uti-
lizing equation (4.5). The width of each parabola is dependent on the curvature of the polynomial

(at the intersection point between the polynomial and a parabola), this is defined by d2V
dx2 . Where

this derivative is negative the associated parabola is in a undesirable orientation for application to
a VDP system.

be dependent on the distribution of stimuli received by the system. Note that the potential remains

time dependent and as such U () will share this property. Figure 4.5 demonstrates this transform

applied to a basic double well profile. The same procedure is applicable to represent any continuous

potential. There remains a critical oversight of this transform. The typical potential of the VDP

oscillator, as described by equation (4.1), contains the term ω2

2 , this is always positive. This ensures

that the potential is always orientated with the ‘cup’ facing upwards. It is evident from figure 4.5

that ∂2V
∂x2 may be negative and so the parabola would be inverted when compared to the shape

of the potential of the VDP oscillator. Application of the transform (4.5) would lack smoothness
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and continuity when applied to an evolving system at the point where the slope changes sign.

This obstacle can be overcome if we instead consider the modulus of the second derivative. The

downside of such an approach is that the resultant function would then lack uniqueness, positive

and negative slopes would be considered equivalent, hence the information encoded by frequency

would lose it purpose. The integral of the sigmoid function, described by equation (4.6) possesses

the following properties and therefore provides a viable solution to overcoming this issue.

� For negative values of ∂2V
∂x2 the function g

(
V
′′
)

asymptotically tends to a small positive

constant. As a result, all parabolas in this region have maximal width and are upright.

� For positive values of ∂2V
∂x2 the transformation asymptotically tends to ∂2V

∂x2 , the frequency is

coded by the curvature of the potential.

We must clearly scale and shift this transform so that it is relevant to the scale of our system. The

transform presented in equation (4.6), and depicted graphically in figure 4.6a includes a scaling

parameter s and a shift parameter ϕ.

g
(
V
′′
)

=
1

s

(
log

(
1 + e

(
sV
′′
−ϕ
))

+ ϕ

)
(4.6)

All points associated with negative d2V
dx2 now tend towards a small positive constant. This is not

an issue as these points will not typically reside in close proximity to the fixed point of the system.

As the local minimum is approached, d
2V
dx2 will become positive and the frequency of oscillation will

become dependent on the shape of the potential (g
(
d2V
dx2

)
→ d2V

dx2 for d2V
dx2 > 0).

(a) (b)

Figure 4.6: (a):Transformation g () of the second derivative as defined by equation (4.6). This
ensure that all constructed parabolas are in the correct orientation. Here we utilize the parameter

values s = 1000 and ϕ = 1. For negative values of d2V
dx2 the function tends to a small positive

constant, whereas, when d2V
dx2 > 0, g

(
d2V
dx2

)
→ d2V

dx2 . (b): Parabolas constructed at various points

of a polynomial by utilizing equation (4.5). These parabola are all in the same orientation as the
potential of a typical VDP system.

Utilizing this function, equation (4.5) becomes:

U (V, x) = V (x∗) +
1

2
g
(
V
′′
)

(x− x∗)2 (4.7)
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Applying this transform to the same double well profile as shown in figure 4.5 this addition ensures

that all parabolas take the requisite upright form. This is demonstrated in figure 4.6b. These

parabolas are completely dependent on the profile V (t, x) and offer the advantage that they allow

the potential to be represented by a curve comparable to that normally characterising the potential

of the VDP oscillator. For the VDP oscillator it is known that limit cycles emerge from a Hopf

bifurcation, these cycles encapsulate the fixed point. For limit cycles to encapsulate the fixed

points corresponding to our local minimum we must shift the fixed points of the VDP system.

This may be achieved by exchanging the term x with (x− x∗). Here x∗ is a point that approaches

the local minimum. There still remains the issue of locating this local minima. To overcome this

we can continue to apply gradient descent and describe the recognition of a stimulus by three first

order differential equations as described in equation (4.8). For appropriate values of ε we expect all

trajectories on the plane x, y to be cyclic. The shape and frequency of each orbit will be determined

by the properties of the learnt classes. The system should converge towards a stable limit cycle

trajectory as the potential V (t, x) approaches the probability density distribution of the stimuli.

dx∗
dt

= −γ dV
dx

dx

dt
= y

dy

dt
= ε

(
1− (x− x∗)2

)
(y − y∗)−

dU

dx

(4.8)

The additional term y∗ arises from the inclusion of x∗. Note that ẋ∗ = y∗.

4.3.1 Parabola width and Frequency

We have previously presented the issues of parabola approximation in reference to improving

smoothness and ensuring correct classification. A further adjustment that can be made involves

scaling the frequency. By increasing the frequency of oscillation we ensure that the time scale of

oscillation is greater that the time scale on which V (t, x) evolves. In the event that the two are

similar, it may not be possible to visibly observe oscillations. In this circumstance oscillations

will only become evident once the potential approaches a more stationary profile. Conversely, this

may be seen as an advantageous guide to judging the certainty of recognition. Regardless of this,

we should consider how frequency may be described. Typically the frequency of an oscillator is

described by:

f =
ω

2π
=

1

2π

√
∂2U

∂x2
(4.9)

We can increase the frequency by introducing the parameter α to equation (4.8) as follows:

ẍ− ε
(

1− (x− x∗)2
)

(ẋ− ẋ∗) + α
∂U

∂x
= 0 (4.10)

The frequency of oscillation will now be given by:

f =
ω

2π
=

1

2π

√
α
∂2U

∂x2
(4.11)

Because α only acts as a scaling parameter each position on V (x, t) is still associated with a unique

frequency of oscillation (when U
′′

is positive) that is related to the curvature of the potential. Next
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we shall demonstrate limit cycles in the systems phase space and show how these orbits relate to

the development of classes.

4.4 Limit Cycles Recognition Scheme

In figures 4.7 and 4.8 six examples of recognition represented by limit cycles are illustrated. The

stimuli are generated utilizing the method introduced in section 2.2.1 and are described by equation

(2.8). The utilized functions again correspond to the those described in equation (2.9). These

stimuli distributions are intended to be suitably different so as to highlight the versatility of this

approach. In each visualization σ =
√

0.05, α = 1, D = 5 and γ = 1. As predicted, when ε > 0

limit cycle oscillations are guaranteed. The time scales on which these oscillations emerge depends

upon the vector field of the systems potential. If the potential changes configuration rapidly then

the frequency and location of oscillations will also be adjusted at a similar rate. The frequency

of oscillation can be considered to present additional information about the class of recognized

stimuli. A potential well that is narrow will have a higher ∂2U
∂x2 term, this class will therefore be

realized by an oscillator with a higher frequency. A narrow potential well implies that the the

system has experienced a set of stimuli all within a narrow bandwidth, as such the class is highly

distinct. We may also consider that oscillations with higher frequency reflect the identification of

a stimulus that the system is more certain about. A lower level of identification accuracy may be

implied when a stimulus is recognized by a trajectory with lower frequency.

Each row of figure 4.7 and 4.8 pertains to a different stimuli. This is evident from the different

distributions of potential shown in the first column. Included for each stimuli is a demonstration

of the oscillatory dynamics against time, a plot of the phase plane (x, y) after a semi-stable state

has been reached, and an indication of the instantaneous frequency of each cycle. The colour

of each cycle in the phase space (x, y)(column 3) is coded to the corresponding colour for the

instantaneous frequency demonstration. As should be expected, larger limit cycles are indicative

of higher frequency. Recognition trajectories are introduced at t = 0 and evolve in conjunction

with the shaping of the potential. These ten trajectories take initial conditions evenly interspersed

across the range of x. They are chosen like this to ensure that every minimum of the potential is

demonstrated by a cycle. The gradient aspect of the system is illustrated at the base of each plot

in the first two columns of figures 4.7/4.8. We have chosen to retain aspects of gradient descent

to adjust the location of the limit cycle to coincide with the local minima of the potential, the

additional knowledge regarding frequency yields useful information about the size of each basin of

attraction surrounding a local minimum. An alternative approach would be to neglect the shifting

approach introduced by gradient descent and utilize only frequency to represent a class. Stimuli

that induce oscillations of equal frequency being considered as part of the same class. We should be

aware that such an approach my fail if two classes are described by potential wells with very similar

topologies. This issue is highlighted in figures 4.8k,l. Although four distinct cycles are observed in

4.8k, two of these cycles have very similar frequencies as shown in 4.8l. Without considering the

location of the cycle in the phase space we would struggle to differentiate between two of these

different classes. The same number of stimuli and the same time period (t = 4000 → 5000) is

used to generate the trajectories shown in the third column of each example. It is clear from

these examples that the potential of the system is not completely stationary in some of these

illustrations. The limit cycles shown in the third column are not always smooth closed curves. We

are aware that these cycles must be limit cycles due to the restrictions of the systems dimensions.
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It is certainly not possible that they are quasi-periodic. Increasing the duration of the stimuli and

improving the resolution of our numerical method would cause the unusual trajectories (4.7g,k for

example) to collapse onto a conventional limit cycle.

Because the dynamics of the VDP oscillator are well understood, we have not placed any

emphasis on the bifurcation parameter ε. This parameter may be utilized if we wish the system

to incorporate both fixed point and limit cycle dynamics. If we set ε < 0 oscillatory dynamics will

subside and the fixed point (x∗, 0) will become stable. This fact may be exploited if we require

recognition to be described by both/either a stable point and/or a cycle.

4.4.1 One Dimensional Colour Recognition with Oscillatory Dynamics

Here we shall consider the simple task of applying this approach to the evolving potentials presented

in figures 4.9a and 4.10a. These potentials are generated from the same stimuli considered in section

3.5.2 and correspond to Southpark and Futurama respectively. Here we consider the application

of the stimuli to the foam without any restriction and where σ =
√

0.01. As this new approach to

recognition retains a gradient aspect, we again demonstrate the convergence of several trajectories

towards the local minima of the potential. This is illustrated by a set of black lines at the bases

of figures 4.9a and 4.10a. The rate parameter in these cases is γ = 10. The limit cycles of the

system can be seen to oscillate around these trajectories. Figures 4.9b and 4.10b demonstrate a set

of limit cycles that characterize the recognition of a cross-section of stimuli that are encountered

by the system at t = 500. In both examples these limit cycles quickly converge to a position in

phase space that may be associated with the minima of the potential and therefore a recognisable

colour learnt by the system. The colours corresponding to these limit cycle trajectories are shown

in figures 4.9e and 4.10e respectively. Working from left to right the colours appear in the same

order as the cycles along the x-axis. Returning to figures 4.9b and 4.10b it is clear that each cycle

has a unique amplitude. This attribute may be easier to observe in figures 4.9c and 4.10c which

illustrate the semi-stable states of the cycles towards the latter stages of the time domain. For

each cycle the parameter ε = 0.01. The amplitude of the cycle is therefore only dependent on the

curvature of the potential. If we were to consider a more complex scenario, we could insist that ε

become an additional flexible variable of the potential. In Chapter 5 we begin to consider a few

possibilities for this. The frequency of each oscillator is shown in figures 4.9d and 4.10d. Here

the colour of the lines correspond to the colours of the cycles shown in figures 4.9c and 4.10c. It

is clear that larger cycles are associated with higher frequencies. As the frequency of oscillation

is determined by the curvature of the potential in the vicinity of a local minimum, it is clear

that larger cycles relate to higher values of curvature. The frequency is therefore high when the

potential well that characterizes the class is narrow. It should be noted that frequency does not

necessarily indicate the size of a limit cycle’s basin of attraction as the topology of the potential

in close proximity to a minimum may be very different from shape of the more general potential

well. We may consider that amplitude only serves as a rough estimate of class width. Comparing

the range of colours recognized by the systems, as shown in 4.9e and 4.10e, suggests that both sets

of stimuli are very similar. If we were to rely solely on a gradient technique then there would be

no evidence to contradict this statement. In this case the limit cycle approach allows us to refute

this. It can be seen from the shape of the potentials that the formation of the systems memories

are indeed very different, this difference would be lost from recognition if not for the inclusion of

oscillatory dynamics.
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The potential shown in figures 4.9a and 4.10a possesses many local minima. We have therefore

only represented a subset of the limit cycles that may exist in the phase space of the system.

Selecting further stimuli to recognize we may expect to observe several more distinct cycles.

4.5 Summary and Conclusion

In this Chapter we have considered oscillatory dynamics and demonstrated how, by taking an

appropriate function of the potential V (t, x), we can utilize the VDP system to stimulate oscillatory

recognition dynamics relevant to Janson and Marsden’s learning system. Recognition is introduced

as the assignment of a stimulus to a class that has formed based on the information that the system

has learnt. Perhaps we observe an unfamiliar animal, we may consider its features (compare it to

the information we have stored) and identify the species. This comparison and assignment occurs

autonomously. The phase space attractors of the system are controlled by the potential. The

advantage of utilizing a limit cycle to represent a class is that more information may be conveyed.

Let us consider another animal example. Identifying an animal as a bird is all the information that

may be represented by a gradient approach. We remain unaware of how many species of bird there

are. This information may be inferred by the shape of the potential, where the local minimum has

a large basin we may consider the class to be broad. A fixed point attractor would suggest that

all birds are the same. Presenting this information as a limit cycle we are able to appreciate the

size of the class. The location of the cycle in the phase space identifies the animal, however, the

frequency of oscillations provides information about the size of the class. Where the frequency is

low we should be aware that the class is relatively broad, this is equivalent to identifying that this

is one variety of bird, however, many more exist.

Continuing with this idea, frequency may also be utilized by the system to gauge how ‘expert’

it has become in a a specific domain. We may appreciate that an expert classifier would have lots

of small classes relating to different learnt items, whilst a novice may only possess a few broad

classes. It is possible that both systems may have received the same stimuli, however, due to factors

such as the correlation between stimuli, or the choice of Gaussian width parameter σ, their energy

potentials V (t, x) may be significantly different. If whilst recognising stimuli the novice system is

able to appreciate that the classes are wide, it may then take measures to focus its learning within

this region. This may include simple procedures such as narrowing the Gaussian width parameter

σ, a feature of the system that we previously explored in section 2.3. In this way recognition

may be utilized to stimulate deeper, more focussed learning. For the ‘expert’ system it may be

beneficial to recognize a new stimulus faster, this is only plausible if the system is aware that it

has developed a detailed comprehension of the environment. As stated previously this concern

may be associated with the frequency of a limit cycle. Recognition will proceed quicker if the rate

parameter γ of equation (4.10) is increased. It may be advantageous to modulate the recognition

rate in accordance with the class width. Where the system is a ‘novice’, slower recognition rates

would conceivably prevent stimuli being assigned to a less appropriate class, greater time would

potentially permit more suitable attractors to emerge.

It should also be stipulated that creating a model of recognition represented by limit cycles

is arguably the first step towards realizing a hierarchical framework in which different recognized

stimuli may be associated with each other. Identifying classes and subclasses of stimuli certainly

remains outside of the scope of a simple fixed point dynamical representation, but may be achieved

utilizing limit cycles and quasi-periodic orbits. At the start of this Chapter we speculated about
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Figure 4.9: (a): The evolution of the potential V (t, x) for a stimuli generated by observing the
colours found within an episode of the cartoon Southpark. The initial RGB triplet that identifies
each colour is mapped onto a one-dimensional colour spectrum scalar x. The Gaussian width
parameter in this instance is σ =

√
0.01. At the base of the plot are several gradient descent

trajectories indicating the recognition of stimuli from a cross-section of initial conditions. The
recognition rate parameter γ = 10, hence the rapid convergence towards each local minimum. (b):
Limit cycles representing the recognition of the cross-section of stimuli. The size and shape of each
limit cycle adjusts with time as new stimuli shape the potential. The parameter ε that influences
the oscillatory dynamics is set to 0.01. (c): As the potential approaches a stable composition
and recognition trajectories locate the local minima of the system, the limit cycles demonstrate
a stable behaviour. Here we show this stable behaviour be overlaying trajectories for the time
interval t = 1500→ 2000. (d): Each limit cycle may be associated with a distinct frequency, due
to the time dependency of the system this will also be a function of time. The colour of each cycle
in (c) corresponds to the colours of these visualization’s of the frequency. (d): The set of colours
recognized by the limit cycle orbits.
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Figure 4.10: (a): The evolution of the potential V (t, x) for a stimuli generated by observing the
colours found within an episode of the cartoon Futurama. The initial RGB triplet that identifies
each colour is mapped onto a one-dimensional colour spectrum scalar x. The Gaussian width
parameter in this instance is σ =

√
0.01. At the base of the plot are several gradient descent

trajectories indicating the recognition of stimuli from a cross-section of initial conditions. The
recognition rate parameter γ = 10, hence the rapid convergence towards each local minimum. (b):
Limit cycles representing the recognition of the cross-section of stimuli. The size and shape of each
limit cycle adjusts with time as new stimuli shape the potential. The parameter ε that influences
the oscillatory dynamics is set to 0.01. (c): As the potential approaches a stable composition
and recognition trajectories locate the local minima of the system, the limit cycles demonstrate
a stable behaviour. Here we show this stable behaviour be overlaying trajectories for the time
interval t = 1500→ 2000. (d): Each limit cycle may be associated with a distinct frequency, due
to the time dependency of the system this will also be a function of time. The colour of each cycle
in (c) corresponds to the colours of these visualization’s of the frequency. (d): The set of colours
recognized by the limit cycle orbits.
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representing sub-classes as limit cycles, whilst larger classes become associated with quasi-periodic

trajectories. Where there are many layers of classes and subclasses we may hypothesise about

a phase space containing many higher order tori. To achieve this vision we must consider the

interaction of limit cycles representing the different sub-classes.

In this Chapter we initially considered a VDP type system with a double well potential, this was

considered the most simple extension from a VDP model with a parabolic potential. This approach

was expected to generate multiple limit cycles within the phase space of the system, one for each

local minimum of the potential. This behaviour was predicted due to the existence of fixed points

that could meet the requirement for a local Hopf bifurcation. Analysis of this simple system showed

that although this Hopf criteria was met, instead of local cycles encapsulating each fixed point,

a bifurcation would only lead to a single cycle that contained all the fixed points of the system.

Although some interesting dynamics were presented, this method did not offer an appropriate

routine to generating relevant, desirable oscillatory behaviour. As such we did not extend this

approach to consider a potential with more local minima. Faced with this issue we returned to the

standard VDP system. Although the potential of the learning system may, in general, contain N

local minima, we can model such a profile using a Taylor expansion and represent any multi-well

potential as N distinct parabolas. In order to ensure that each parabola remains in the desired

orientation a further transform must be applied. This transform is the derivative of the sigmoid

function, chosen to ensure smoothness as discussed in section 4.3. Using these parabolas (that

are directly related to the potential V (t, x)) the VDP system will generate limit cycle trajectories

that have a frequency dependent on the potential. By retaining gradient descent we can position

each cycle at the corresponding local minimum. Recognition can therefore be described in terms

of frequency as well as position. One factor that we have not considered is the amplitude of the

generated cycle, this is influenced by the parameter ε and indirectly by V (t, x)). This attribute

of the cycle may be useful to characterize more properties of the system such as the depth of the

potential or the similarity between a stimulus and a fixed point. The parameter ε is important

as it ensure that the dynamics of the system follow a limit cycle, however, we may not have

exploited it fully within the current formulation of the model. A concern may be expressed about

the application of the method presented in section 4.3 when the dimensionality of the potential is

increased. It is unclear how to associate the van der Pol system with an N-dimensional potential. If

x is an N-dimensional vector quantity we may consider the oscillations in a 2N-dimensional phase

space. How trajectories will behave in this space requires further investigation.

By advancing from simple gradient descent we permit future development of the model. Later,

in Chapter 5 we discuss coupling and synchronization as a method to model the interaction of

stimuli with the learning system. These concepts may also help us to model recognition with

regards to hierachy. Coupling is known to generate a wealth of different dynamical regimes such a

quasi-periodicity or even chaos. Oscillation is paramount as a first step if we wish to demonstrate

these further behaviours. Understanding the bifurcations permissible within the model is clearly

of critical importance. Because our VDP recognition scheme utilizes a time dependent potential

we may expect that the oscillations of the system may appear noisy due to pertubations of both

frequency and position. This may be particularly eminent during the early formation of the

classification profile, when each new stimuli may have a significant impact. Clear limit cycles

may only become apparent after a sufficient amount of time has passed. In order to achieve a

smoother transition to a stable cycle the frequency of oscillation can be intentionally increased by
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a constant parameter, this is demonstrated in sub-section 4.3.1. We should note that there remains

an argument for and against such an approach. This apparent noisy, transient behaviour may be

utilized as a measure of certainty, a stimulus may only be considered to be adequately recognized

when a stable cycle is obtained. While the cycles remain susceptible to transient changes it may be

considered that the system is still learning and has not yet obtained enough relevant information

to correctly recognize/optimally recognize the stimulus.

Although we have considered a method to generate oscillatory dynamics when the potential

is characterized as a one-dimensional profile, it remains unclear how higher order dynamical be-

haviour may be instigated in a model with a potential consisting of two or more spacial dimensions.

A new approach is required to enable us to robustly model the state of the system in this circum-

stance. Incorporating oscillatory behaviour to characterize the recognition of a stimulus for a

multi-dimensional memory should allow us to create a better representation of the memory’s state.

Ultimately the application of non-linear principals may allow us to create a hierarchical repre-

sentation of recognition. This would relate classes and sub-classes of information via dynamic

properties.

The next Chapter seeks to develop our current concept of recognition so that limit cycles and

higher order phase trajectories may represent classes of information when the plastic vector field

of the system is N-dimensional. The van der Pol oscillator is a two-dimensional system, this infers

that the trajectories of the system are restricted to the limit cycle or the fixed point. When

increasing the spacial dimension of the model we should ensure that the dimensionality of the

phase space is also increased. The advantage of this is that quasi-periodic and chaotic trajectories

may then become a possibility. This increases the possibilities for characterising the state of the

potential and may form the basis of our hierarchy. We may conceive of a representation of classes

and sub-classes where each sub-class is characterized by a cycle and the wider class is inferred by

a quasi-periodic orbit. The coupling of several van der Pol systems offers one method to increase

the number of phase space dimensions of our model. A consideration of such methods may offer a

valuable insight into how our general model of non-linear recognition may be composed.
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Chapter 5

Coupled Oscillators and higher

order Phase Dynamics

In Chapter 4 we discussed a method to describe the recognition of a stimulus with oscillatory

dynamics. It would seem apparent that alternatives to a fixed point representation of a class

are necessary if we wish to describe the characteristics of a class in greater detail and within

a hierarchical structure. This concept of hierarchy is explained in section 4.1. We postulate

that the formation of non-linear attractors such as limit cycles and quasi-periodic orbits should

form the basic constituents of this recognition scheme. The model derived in Chapter 4 presents

the most simple case of oscillatory dynamics, related to the case where the stimulus consists of

a single component. This is certainly a restricted case, as, in general, a stimulus may consist

of many components that relate to environmental factors. We may therefore visualize a stimuli

η = (η1, η2, ..., ηN ) as an N-dimensional vector that relates to a multitude of sensory information. If

we compare this to the inputs received by a human, we may consider these inputs to relate to sound,

sight, touch, taste and smell. For the model, each one of these attributes may be described be

a number of different components. This notion should be clear if we recall the three-dimensional

RGB construct used to define colours in Chapter 3. In such circumstances it is clear that the

dimensionality of the stimuli must be imitated by the potential V (t,x). In this chapter we explore

how higher order attractors may be generated and related to the system when the knowledge

represented by the model takes this multi-dimensional form.

The dimensionality of the potential V (t,x) has important implications on the vector field of

the system. Where x is a N-dimensional vector we require a recognition scheme that is capable of

representing a class associated with the N-dimensional space. In the previous discussion presented

in Chapter 4, we explored the one-dimensional case using a van der Pol system to represent

recognition with a limit cycle. In that circumstance we applied a relation of the van der Pol

system to demonstrate the recognition of a stimulus on a two-dimensional phase plane. The

extension of this method for the case where the stimuli is N-dimensional is not obvious. Certainly

we wish to retain the ability of the system to portray limit cycles, however, it would be beneficial

if we could extend the dimensionality of the phase space to permit quasi-periodic and chaotic

trajectories. Different dynamic attractors may serve to characterize the recognition of stimuli

when the corresponding classes demonstrate different topological properties. These properties may
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relate to the size of a class or the curvature of the potential. We may also consider the depth of a

potential-well or the relation between several classes. A system where the potential contains many

local minima in close proximity, embedded within a larger depressed region is conceivable. Such

a scenario is shown in figure 4.1, clearly the same relation may be observed for an N-dimensional

profile. It would be useful in this circumstance to relate the attractors of the system to the

organization of the minima constituting the potential. We have previously hypothesised about

representing local minima as limit cycles, whilst wider classes of information are associated with

quasi-periodic orbits. This concept may be utilized to convey a hierarchical structure relating the

different classes of the system. This notion is explained in section 4.1.

Before we address such ideas we must first extend the limit cycle concept to characterize the

recognition of stimuli when the potential has many dimensions. It is clear that this situation may

become complex as we wish to consider both the extension of the model to an N-dimensional

potential and also permit the demonstration of hierarchy. We have previously speculated that

both of these goals may be approached by investigating the dynamics of coupled oscillators. As

it appears necessary to first model the recognition of an N-dimensional stimulus, we shall first

consider synchronization within the framework of an N-dimensional potential. A study of the

synchronization dynamics of coupled oscillators appears to be an appropriate place from which to

begin our investigation as it is known that sets of coupled van der Pol oscillators posses various

different attractors depending on the choices of parameters [10]. These attractors include quasi-

periodic orbits, fixed points and chaos. Coupling also permits the existence of limit cycles when

the systems synchronize.

In this Chapter we discuss the possible methods of coupling sets of van der Pol oscillators.

We then move on to a consideration of the bifurcation structure of a pair of dissipatively coupled

oscillators, before applying this knowledge to a system where the potential is two-dimensional. We

subsequently consider the regimes of a set of three mutually coupled oscillators and demonstrate

the difficulties of such analysis. Our analysis of a three oscillator system and the implications that

this has on recognition remain incomplete. Here we only begin to explore the possible dynamics of

the system in relation to the concept of learning. We highlight some of the dynamics that can be

expected and apply this knowledge to the stationary three-dimensional potentials of the learning

model that were created via the application of colour stimuli in Chapter 3.

5.1 Coupled Oscillators

The inclusion of a coupling term describes the case where the motions of an oscillating system are

perturbed by the influence of an ensemble of other interacting oscillators. In many situations this

coupling may be regarded as a multi-directional driving force. Such system possess a much richer

variety of dynamical attractors than uncoupled systems, these attractors include quasi-periodic

cycles, limit cycles, fixed points and chaotic orbits. The behaviour of the system is generally

different depending on the method of coupling. Most prevalently considered methods include

dissipative and reactive coupling [126], however, more unusual non-linear methods have also been

presented in the literature [124]. Any higher order differential equation may be written as a set of

linearised equation as shown in section 1.4.1. Reactive coupling is associated with the difference

between the variables x of interacting linearised systems, whereas dissipative coupling concerns

the difference between the variables y. This is demonstrated for a pair of van der Pol oscillators

in equation (5.2).
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Reactively coupling a pair of van der Pol oscillators presents the possibility of quasi-periodic

motions as well as permitting a pair of bi-stable limit cycles to emerge [27]. This bi-stability is

observed for a small portion of the parameter space, which may be partitioned into quasi-periodic,

suppression and phase locking regions.

Dissipative coupling results in different types of phase space trajectories compared to reactive

coupling. The emergence of a fixed point attractor due to oscillation death is apparent, as is the

omission of the bi-stable pair of limit cycles. Where a pair of dissipatively coupled van der Pol

oscillators are considered, the dynamics depend on the frequency of each oscillator, the non-linearity

parameter, and the coupling strength. The effect of strong dissipative coupling is considered in

[146], whilst weak is discussed in [132]. Dissipative coupling permits the emergence of stable limit

cycle trajectories and quasi-periodic orbits, however, it can be shown that the possibility of chaotic

motions is excluded for a pair of oscillators [86].

The number of oscillators included in the ensemble also plays a significant role in the dynam-

ics observed. A large portion of research is devoted to the study of pairs of oscillators [10, 126],

however, systems consisting of larger ensembles have also been explored. We may be required

to consider many interacting systems if we are to model an N-dimensional potential. We should

highlight that the complexity of such analysis increases many fold as the number of oscillators

increases. We should also be aware that including more units may permit a greater range of dy-

namical attractors. Coupled systems of many oscillators are typically introduced with coupling

between nearest neighbours rather than across the whole system. Following this approach oscilla-

tors may be organised in a ring [42, 121] or chain [40, 41]. Such approaches may have implications

for the hierarchical representation of recognition in one-dimension, however seem insufficient to

model the interaction of each dimension of an N-dimensional potential.

Recognition of stimuli by a system composed of many related categories of information (such

as the RGB example discussed in Chapter 3 or the two-dimensional simulated examples discussed

in Chapter 2) may be approached by considering a system composed of many self-oscillatory parts.

When the knowledge of the system is represented by an N-dimensional potential, recognition may

be characterized by associating each dimension of x with a van der Pol oscillator. This oscillator

may be coupled to the N − 1 oscillators representing the other dimensions. The dynamics of the

system would be described by a trajectory within a 2N-dimensional phase space that is completely

dependent upon the architecture of the potential. The frequency of each individual oscillator

will remain dependent on the local configuration of the potential in the relevant dimension. It

is evident that the analysis of such a system would be strongly reliant on numerical methods as

general analytic solutions to van der Pol equations can only be derived in limited cases [122]. Large

systems of coupled oscillators have previously been considered [43, 102, 148], however not in the

same composition as we wish to explore. The treatment of a van der Pol system with ‘all to all’

coupling and varying frequency relations has not, to our knowledge, been systematically studied.

5.2 Coupled van der Pol Oscillators

We have briefly considered some of the broad array of previous works regarding the coupling of

van der Pol systems [124, 27, 146, 132, 86, 10, 42, 121, 40, 41] . Although there appears to be

a plethora of methods we should now focus our attention. We wish to discern a suitable method

for instigating oscillatory behaviour for an N-dimensional system. The realistic choice we are

presented with is between dissipative and reactive coupling [126]. We have already proposed that
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each dimension of the potential may be represented by a van der Pol oscillator that is coupled to

every other dimension, however, we have not yet concluded the appropriate form of this coupling.

A pair of coupled van der Pol oscillators are described by equation (5.1). Dissipative coupling is

described by the term BD (ẋ1 − ẋ2), where BD is a constant referred to as the dissipative coupling

strength. Reactive coupling is described by BR (x1 − x2) where BR is the reactive coupling strength

constant.

ẍ1 − ε1

(
1− x2

1

)
ẋ1 + ω2

1x1 +BR (x1 − x2) +BD (ẋ1 − ẋ2) = 0

ẍ2 − ε2

(
1− x2

2

)
ẋ2 + ω2

2x1 +BR (x2 − x1) +BD (ẋ2 − ẋ1) = 0
(5.1)

The addition of the coupling terms adds complexity to the system. The dynamics that may be

observed within the four-dimensional phase space (x1, ẋ1, x2, ẋ2) are more varied as a result. As

a basis for applying the concept of coupling to our learning model we should explore the possible

phase space attractors of system (5.1) and consider its bifurcation structure. For convenience we

may rewrite equation (5.1) as four first order differential equations (equation (5.2)).

ẋ1 = y1

ẏ1 = ε1

(
1− x2

1

)
y1 − ω2

1x1 −BR (x1 − x2)−BD (y1 − y2)

ẋ2 = y2

ẏ2 = ε2

(
1− x2

2

)
y2 − ω2

2x2 −BR (x2 − x1)−BD (y2 − y1)

(5.2)

It has previously been shown that a pair of coupled van der Pol oscillators demonstrate a wealth of

different phase-space attractors [10]. Given suitable parameter choices the system may demonstrate

limit cycle behaviour, quasi-periodicity, chaos or attraction to a fixed point. The pathways to

these attractors vary depending on the type of coupling and the choice of parameter values. A

full analysis of a coupled van der Pol system similar to the system described by equation (5.2) is

presented in [10]. As we have a slightly different formulation, it is apparent that the parameter

values at which bifurcation events may occur should be somewhat different. However, as our system

can be transformed into this alternative form (see section 1.4.2) the qualitative dynamics are the

same. Needless to say, the ideas compiled within [10] have motivated and informed the direction

of this approach. We begin by considering the amplitude and phase of the system as a function of

its various parameters. These variables may be described by truncated equations, a derivation is

included in appendix A.4.

5.2.1 The Truncated Equations for a Pair of van der Pol Oscillators

The choice to consider the truncated equations corresponding to a pair of coupled van der Pol

oscillators is motivated by the need to study the parameter conditions that determine limit cycle

dynamics. Limit cycle oscillations are characterized by a constant phase relation between the two

systems when the amplitude is non-zero. Studying the evolution of phase and amplitude will allow

us to identify appropriate parameter choices that permit the model to represent different classes

with different phase space attractors. Generally, the solutions of the van der Pol system must be

solved by numerical methods. The truncated equations make several assumptions that allow the

evolution of the system to be approached from an analytical perspective. We are able to derive

the conditions for limit cycle behaviour using the truncated approach and then compare these
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assertions to numerical simulations of the full equations (equation (5.2)) to validate our results.

The truncated equations describe the amplitude of oscillation for each oscillator and the phase

difference between oscillators. By considering the phase of the system we can derive conditions

for synchronization. Synchronization of oscillation in this case infers limit cycle type behaviour.

Equation (5.3) is a differential equation pertaining to the evolution of the amplitude and phase.

Note that both these variables are time dependent however we have omitted the script (t). A1,2

refers to the amplitudes, whist θ = ϕ2 − ϕ1 is the phase difference between oscillators. Here ϕ1,2

is the phase of oscillators 1 and 2 respectively.

Ȧ1 = −ε1

8

(
A3

1 − 4A1

)
+
BD
2

(A2cos (θ)−A1) +
BR
2ω

A2sin (θ)

Ȧ2 = −ε2

8

(
A3

2 − 4A2

)
+
BD
2

(A1cos (θ)−A2)− BR
2ω

A1sin (θ)

θ̇ = ∆− BD
2
sin (θ)

(
A2

A1
+
A1

A2

)
+
BR
2ω

cos (θ)

(
A2

A1
− A1

A2

)
(5.3)

Equation (5.3) utilizes the condition that ω ≈ ω1 ≈ ω2. We must also define the parameter ∆

which describes the detuning between oscillations, this is described by equation (5.4).

∆ =
ω2

2 − ω2
1

2ω
≈ ω2 − ω1 (5.4)

At this stage we must make a choice between dissipative and reactive coupling. To persist with

both terms adds considerable complexity to the system which is likely to be greatly amplified

when more that two oscillators are considered. It would seem prudent to begin from the simplest

possible arrangement. The coupling of a pair of van der Pol oscillators by both reactive and

dissipative terms is discussed in [8]. In this study Aronson et al. demonstrates that such a system is

characterized by four different periodic cycles. It is also shown in [10] that reactive coupling permits

the possibility of bi-stable limit cycles. These situations are interesting, however, the ambiguity

that may arise is not desirable. A further implication of reactive coupling is that the frequency

for a synchronized pair of oscillators does not lie in-between the systems two natural frequencies.

Rather, the frequencies of both oscillators increase as BR increases. The frequencies finally coincide

at a value larger than either natural frequency, only here does synchronization occur. In contrast,

the dissipative coupling model possess a single, stable limit cycle for certain parameter values.

This limit cycle is characterized by a frequency that lies between the two natural frequencies. The

possibility of oscillation death for certain parameter values is an additional behaviour that is not

observed in reactively coupled systems. We may be able to exploit this additional behaviour to

help describe additional aspects of stimuli recognition. Having indicated our primary motives to

pursue a dissipative coupling model, it is essential that we consider the parameter ranges that

correspond to synchronization.

5.2.2 Dissipative Coupling

To consider dissipative coupling in the absence of reactive coupling we set BR = 0 in equation

(5.3). At this stage we shall also make the simplification that ε1 = ε2 = ε in order to reduce the

complexity of the analysis. These conditions lead to the truncated equations given in equation

(5.5).
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Ȧ1 =
ε

2

(
A1 −

A3
1

4

)
+
BD
2

(A2cos (θ)−A1)

Ȧ2 =
ε

2

(
A2 −

A3
2

4

)
+
BD
2

(A1cos (θ)−A2)

θ̇ = ∆− BD
2
sin (θ)

(
A2

A1
+
A1

A2

)
(5.5)

This equation possess both symmetric and asymmetric solutions for the condition θ̇ = 0. These

correspond to the synchronization of oscillations. An asymmetric solution to equation (5.5) requires

A1 6= A2. A method to determine this solution is presented in [8, 7]. It is shown that this

solution is always unstable for dissipative coupling. These cycles can therefore be neglected from

our considerations. The only stable solution to arise is characterized by a symmetric amplitude

relation.

A phase locked symmetric solution corresponds to Ȧ = 0 (A 6= 0) and θ̇ = 0. This means that

the the two oscillators retain a constant relation relative to each other throughout time. If the

system is phase locked, oscillations will take the form of limit cycles rather than quasi-periodic

orbits. If we search for symmetric solutions, where A1 = A2 = A then θ̇ of equation (5.5) does not

depend on the amplitude. Therefore we obtain solutions θ1 = sin−1 ∆
BD

and θ2 = π − sin−1 ∆
BD

,

which exist as long as |∆| ≤ BD. The borderlines of the phase-locking region in the parameter

space (∆, BD) are therefore given by ∆ = ±BD. Inserting the solutions for θ1,2 into equation (5.5),

solutions for A can be found:

Ȧ = 0 =
ε

2

(
A− A3

4

)
+
BD
2

(Acos (θ)−A)

hence

A

(
ε

2
− A2ε

8
− BD

2

)
= −BD

2
Acos (θ)

(5.6)

This can then be written in the form:

A2ε

4BD
+ 1− ε

BD
= cos (θ) =

√
1− sin2 (θ) =

√
1− ∆2

B2
D

(5.7)

Taking the square and collecting terms we arrive at the characteristic polynomial

A4 + 8A2

(
BD
ε
− 1

)
+ 16

(
∆2

ε2
− 2

BD
ε

+ 1

)
= 0 (5.8)

This has solutions:

Ã2
1 = 4

(
1− BD

ε

)
+

4

ε

√
B2
D −∆2

Ã2
2 = 4

(
1− BD

ε

)
− 4

ε

√
B2
D −∆2

(5.9)

Numerical Investigation of Two Dissipatively Coupled van der Pol Oscillators

To validate the assertions of the analytic truncated approach to this problem, the conditions for

bifurcation can be obtained via numerical simulation. Here we consider the numerical study of the

full equations are represented by equation (5.2). This allows us to validate the assertions we have

made about parameter choices and enables us to illustrate the qualitative behaviour of the array
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of attractors.

A bifurcation plot obtained from the numerical continuation software XPPAUT [44] is shown

in figure 5.1. We cannot demonstrate the effect of all parameters ε, ω1, ω2 and BD in a single plot,

hence we set ω1 = 1 and ε = 0.2 and consider the bifurcation structure on the plane (ω2, BD). We

have already demonstrated via the truncated equations that the synchronization region is a function

of ∆ (frequency detuning) and BD. This bifurcation plot supports this inference. We observe the

separation of the parameter space into five regions. A central Arnold tongue corresponds to 1:1

synchronization. This tongue is a ‘v’ shaped region which fills more of the parameter space as BD

increases. Such tongues are indicative of most systems capable of synchronization, in addition to

this 1:1 region, many systems may also contain tongues that identify other n:m phase relation. The

width of the tongue increasing with coupling strength. Outside of this tongue exists two quasi-

periodic regions for low coupling strength and two oscillation death regions for higher coupling

strengths. The parameter ε has significant implications for the systems dynamics, the line BD = ε

is seen to separate the quasi-periodic region of the parameter space from the oscillation death

region. Oscillation death is characterized by the fixed point of the system becoming stable. In

addition to demonstrating the bifurcation structure of this system, we also present an array of

trajectories corresponding to the various regions of the parameter space. These trajectories, shown

in figure 5.2, should serve as evidence to the aforementioned bifurcation structure. Quasi-periodic

orbits are shown in figures 5.2a and 5.2b. These are illustrated by a torus in the phase space of

the model. A torus may be characterized by two or more frequencies, these are associated with

the winding of trajectories in the different dimensions of the phase space. Figures 5.2c and 5.2d

demonstrate the evolution of trajectories for parameter values within the oscillation death region.

Here trajectories approach the fixed point of the system (0,0,0,0). Finally, we have highlighted the

dynamics of the synchronization region in figures 5.2e and 5.2f.

Having briefly discussed the dynamics of a pair of dissipatively coupled van der Pol oscillators,

we shall now demonstrate how this knowledge can be applied to our learning system. Clearly, as

we have only considered a system of two coupled oscillators, we may only extend our approach to a

two-dimensional potential. Once we have shown that this routine is effective for a two-dimensional

representation of learning, we may consider the dynamics of three or more coupled van der Pol

oscillators and extend the dimensionality of our system accordingly.

5.3 Limit cycles for an two-dimensional Potential

Our previous consideration of limit cycles characterising the recognition of stimuli presented to our

learning system was restricted to the simple case where the potential, containing the knowledge of

the system, was a one-dimensional profile. It is apparent that this is a very limited case. A more

desirable result would be to generate oscillatory dynamics where the potential is N-dimensional.

The extension of the approach detailed in Chapter 4 to elicit higher order phase behaviour in a

system of more than one spacial dimension may be attempted via the application of coupling. We

propose that each dimension of the system is treated as an individual oscillator in accordance with

the methods of Chapter 4. However, each oscillator representing a dimension of the potential should

interact with the ensemble of other oscillators via a dissipative coupling term. The parameters

of this coupled system should be chosen so that the system possesses the ability to synchronize

across its spacial dimensions. As such, any local minimum of the potential may be represented via
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Figure 5.1: Bifurcation plot on the plane (ω2, BD) showing the parameter values at which tran-
sitions in behaviour occur for the equation (5.2). The parameter ω1 = 1 and ε = 0.2. An
Andronov-Hopf bifurcation is shown by the dotted line separating the oscillation death regime
from the synchronization zone. The red lines indicate a saddle node bifurcation, separating the
quasi-periodic and synchronized areas. This plot was generating using the numerical continuation
software XPPAUT [44].

a unique phase space trajectory. For a two-dimensional stimulus the recognition of a stimulus may

be described by:

dx∗1
dt

= −γ ∂V (x1, x2)

∂x1

dx1

dt
= y1

dy1

dt
= ε

(
1− (x1 − x∗1)

2
)
y1 − α

∂U (V )

∂x1
−BD (y1 − y2)

dx∗2
dt

= −γ ∂V (x1, x2)

∂x2

dx2

dt
= y2

dy2

dt
= ε

(
1− (x2 − x∗2)

2
)
y2 − α

∂U (V )

∂x2
−BD (y2 − y1)

(5.10)

Here the function U (V ) is described by equation (4.7). This ensures that the parabolas character-

ising the VDP system’s potential remain in the required orientation, whilst still capturing the local

topology of the potential V (t,x). We again rely on a gradient term to identify the point x∗1, x∗2

that converges to the local minima of V (t, x1, x2). The system is composed of two VDP oscil-

lators, considering them in isolation the fixed points are (x∗1, 0) and (x∗2, 0) respectively. When

the system is coupled, the dynamics of the system should be viewed in a four-dimensional space
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Projections of the phase space trajectories for a pair of coupled van der Pol oscillators
described by equation (5.2) where BR = 0. Parameters are chosen to demonstrate the various
behaviours indicated by the bifurcation plot shown in figure 5.1. Note that in each figure ε = 0.2. A
pair of coupled van der Pol oscillators has a four-dimensional phase space, hence we cannot visualize
the entire space, we can however observe the behaviour in a restricted two-dimensional space. For
the synchronized regions only the stable behaviour is shown. For the oscillation death region we
have also included the behaviour of the system as the fixed point at (0,0,0,0) is approached. (a):-
Quasiperiodic trajectory: ω1 = 1, ω2 = 0.2, BD = 0.1, (b):-Quasiperiodic trajectory: ω1 =
1, ω2 = 1.2, BD = 0.1, (c):-Oscillation death: ω1 = 1, ω2 = 0.4, BD = 0.3, (d):-Oscillation
death: ω1 = 1, ω2 = 1.4, BD = 0.3, (e):-Synchronized (Limit cycle): ω1 = 1, ω2 = 1.1, BD =
0.3, (f):-Synchronized (Limit cycle): ω1 = 1, ω2 = 1.05, BD = 0.05.
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(x1, y1, x2, y2). The point (x∗1, 0, x∗2, 0) is then the fixed point of the coupled VDP system. The

similarity between α∂U(V )
∂x1

and α∂U(V )
∂x2

and the values of ε and BD will determine the dynamics

of the system.

Let us consider how recognition trajectories may behave for the potential shown in figure 5.3a.

This potential has been generated utilizing simulated stimuli and so provides a relevant medium

on which to test proposed ideas. The stimuli are again generated using the method discussed in

section 2.2.1 and are characterized by equation (2.8). The functions dF1

dη and dF2

dη that prescribe

the distribution of the stimuli are:

dF1

dη
=0.06η3 − 0.9η − 0.3

dF2

dη
=

−4 (η + 8)
(

(η + 8)
2

+ 0.75
)2 +

−4 (η + 5)
(

(η + 5)
2

+ 1
)2 +

−4 (η − 0.5)
(

(η − 0.5)
2

+ 4
)2 +

−4 (η − 4)
(

(η − 4)
2

+ 0.75
)2

+
−4 (η − 8)

(
(η − 8)

2
+ 0.5

)2 + 2ηe−3

(5.11)

In order to demonstrate the relative locations of the local minima and the surrounding contours

of the potential we demonstrate the evolution of a cross-section of initial conditions via gradient

descent in figure 5.3b. As an initial test we may consider the evolution of oscillatory trajectories

when this potential remains stationary in time. Towards this aim we may allow trajectories to

evolve from a mesh of initial conditions on the potential. It is apparent that the choice of coupling

strength BD and parameter ε will have important implications on the dynamics of the system. The

synchronization tongue is partly governed by the difference between natural frequencies, as these

are determined by the shape of the potential they are not directly controllable. We may however

use the parameter α, introduced in section 4.3.1 to scale frequencies onto a more appropriate range.

By scaling α we can ensure that the natural frequencies of the system are in close proximity to a

synchronization tongue. This presents the opportunity that the system may characterize classes

with various types of attractor. Figures 5.4c,d demonstrate the case where each local minimum of

the potential shown in figure 5.3 is characterized by synchronous dynamics. This is the case when

ε = 0.6, γ = 50, α = 1× 105 and BD = 0.4. For the sake of comparison figure 5.4a,b demonstrates

the same initial conditions, with the same parameters, except BD = 0. This highlights the effect of

coupling. The figures 5.4a,c illustrate the evolution of projections of the trajectories as a function

of time. In contrast figures 5.4b,d highlight the stable attractors that exist by demonstrating the

projections of the systems attractors on the plane (x1, x2).

Figure 5.1 shows that limit cycle behaviour is only guaranteed for certain regions of the pa-

rameter space. Outside of the synchronization tongue we may observe either oscillation death or

quasi-periodic orbits. Which behaviour is observed is determined by the relationship between BD

and ε. We may utilize this information to demonstrate how limit cycles and either quasi-periodic

orbits or fixed point attractors may be used to characterize the local minima of the potential. The

behaviour observed will be dependent on the relation between ω1 = α∂U(V )
∂x1

and ω2 = α∂U(V )
∂x2

.

Where the basin surrounding the local minima is characterized by sufficiently different curvatures

in each of its dimensions, the natural frequencies of the oscillators will be sufficiently different and

synchronization will not occur. In figures 5.5a,b we have set BD > ε. Here we observe that some

minima are characterized by limit cycles when |ω1 − ω2| is sufficiently small, and other minima
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are characterized by quasi-periodic, two frequency cycles. The alternative case where BD < ε is

shown in figures 5.5c,d. Here trajectories either converge to the fixed point via oscillation death or

synchronize as demonstrated by stable limit cycles. In both of these cases we retain the parameter

values γ = 50 and α = 1 × 105. To permit quasi-periodic solutions the parameter values ε = 0.6

and BD = 0.15 are set. Conversely, oscillation death is realized when ε = 0.1 and BD = 0.15. It

should also be noted that when ω1 = ω2 the limit cycle lies on the diagonal of the phase space.

As the frequencies become more distinct the observed trajectories become skewed. Figure 5.5e

indicates the frequency relations for the ensemble of oscillators. This realization may be used to

underpin the reasoning behind the dynamics that are observed.

Although constraints may be applied via the adjustment of α to ensure dynamics remain

synchronous, it is more interesting to consider a system with various conceivable phase space

attractors. Each isolated oscillator is related to a dimension of the potential, which in turn controls

the frequency. The curvature of the potential in the vicinity of the minima therefore plays an

important role in the dynamics of the system. For dissipatively coupled oscillators the natural

frequencies of the systems are perturbed so that the synchronized system oscillates with a frequency

that lies between the two characteristic frequencies [10]. We have demonstrated how alternative

dynamics may be permitted outside of the synchronization tongue, this however requires a choice

between oscillation death and quasi-periodicity. As a further development we may wish to control

either BD or ε through a function of the potential so that all three dynamical regimes may be

appreciated by this model.

(a) (b)

Figure 5.3: (a): A potential V (t,x) created by the application of 1× 107 two-dimensional stimuli
η = η1, η2. The stimuli are simulated with a prescribed PDD via equation (2.8). The distribution
of stimuli are described by equation (5.11). The intensity of noise D used to simulate the stimuli is
5 and the Gaussian shaping parameter σ =

√
0.01. On the plane x1, x2 a contour mapping of the

potential is included. (b): Gradient descent for an ensemble of evenly interspersed initial conditions
towards the local minima (marked as black circles) of the potential. This may be considered to
intimate the general size and shape of each basin. The gradient descent rate parameter γ = 5.

5.3.1 Realizing Limit Cycles, Quasi-periodic orbits and Oscillation Death

If we wish to permit both quasi-periodicity and oscillation death in addition to synchronization

then we must instigate some variation of either the parameter ε or BD. It is useful to represent

different classes of the system with these different attractors as the nature of the attractor can

125



(a) (b)

(c) (d)

Figure 5.4: The behaviour of the system defined by equation (5.10) for the stationary potential
shown in figure 5.3a. In each figure ε = 0.6, γ = 50 and α = 1×105. (a) and (c) illustrate the time
dependent oscillations of the system for a sample of 21 stimuli with initial conditions from across
the range of x1, x2. (b) and (d) demonstrate the same trajectories but only after x∗1, x∗2 has
become stationary. (a),(b) reflect the dynamics of the uncoupled system (BD = 0). For (c)(d)
BD = 0.4, as a result the oscillators synchronize and limit cycles are observed in the phase space
x1, x2.
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(a) (b)

(c) (d)

(e)

Figure 5.5: (a) and (c) illustrate the time dependent oscillations of the system for a sample of 21
stimuli with initial conditions from across the range of x1, x2. (b) and (d) demonstrate the stable
attractors of the system. (a),(b) reflect the dynamics of system when ε = 0.6 and BD = 0.15,
hence some trajectories as quasi-periodic. In (c),(d) ε = 0.1 and BD = 0.15, this corresponds to
the oscillation death region, some trajectories therefore converge to the fixed point of the system.

(e): The difference between ω1 = α∂U(V )
∂x1

and ω2 = α∂U(V )
∂x2

as the trajectories of the system
converge towards the local minima of the potential V (t, x1, x2). The difference between these two
frequencies variables and their relation to BD determines the dynamics of the system (see figure
5.1). In each example γ = 50 and α = 1x105.
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be used to convey additional information about the topology of the class and may even be able

to demonstrate the relationships between different classes. It is important that we relate the

parameters controlling the attractors of the oscillatory system to the characteristics of V (t,x),

which describes the distribution of stimuli and hence the classes of information known to the

model. It would seem illogical to change the coupling strength BD as each oscillator represents

a different dimension of the same minimum. A logical approach may be to control ε. In keeping

with our approach to the frequency, we should make ε dependent on some aspect of the potential.

It may seem appropriate that we define ε by a function of the depth of V (t,x). A function that

may be appropriate is given in equation (5.12). This function will ensure that ε tends to a small

constant for a deep potential well whilst increasing in size for larger values of V (t,x).

ε = Alog
(

1 + exp−B(−CV (x=η))+D + E
)

(5.12)

The parameters of this function may require refinement depending on the choices made concerning

the ranges of x1, x2 and σ, however, for this initial consideration the parameters A = 0.04,

B = 0.35, C = 1000, D = 9.5 and E = 0.5 are shown to scale the function onto an appropriate

range to effectively control ε. This function is plotted in figure 5.6. This choice of this function is

motivated by the distribution of V (t,x), which ranges between 0 and some negative value. The

function 5.12 asymptotically tends to a positive constant as V (x, t)→ −∞.

Figure 5.6: Function that adjusts ε as a function of V (t,x). This function is described by equation
(5.12). Here parameters are set such that A = 0.04, B = 0.35, C = 1000, D = 9.5 and E = 0.5.

The dynamics of recognition are directly derived from the topology of the potential. Here we

relate a deeper potential to a larger value of ε. If the basin of the minimum has a similar curvature

in both directions then the class will be characterized by a limit cycle, however, where the curvature

is sufficiently different a deep well will be characterized by oscillation death. Similarly, a shallow

local minimum may also be represented by a limit cycle when the curvatures are similar, the shape

of this limit cycle will be distinguishable from a limit cycle corresponding to a deep minimum as

ε will be small. In the event that the curvatures are sufficiently different, and the potential is

shallow, the recognition of a stimulus will be demonstrated with a quasi-periodic motion. Most

important to emphasise is the uniqueness of each dynamic trajectory. More distinctions may be

drawn between recognized stimuli based on the knowledge contained within the system. The same

cannot be said for a gradient approach which merely locates a local minimum and is incapable of

providing any additional information about the classes of information contained.
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To demonstrate the addition of ε scaling to the model, it is prudent to consider a potential

containing minima characterized by significantly different curvatures and depths. The systems

trajectories should only be dependent on the potential, in turn, this is dependent on the distribution

of stimuli. To highlight each possible regime we may consider the trajectories associated with

the potential shown in figure 5.7a. The change to consider this new potential is driven by the

requirements that we have outlined for the topology. If we are to observe limit cycles, quasi-

periodic orbits and oscillation death then certain topological constraints must be met. To simplify

this demonstration we consider V (t, x1, x2) to be stationary.

(a) (b)

Figure 5.7: (a): A potential V (t,x) created via the application of 1 × 107 stimuli generated by
equation (2.8) with distributions described by equation (5.13). (b): Fixing the potential we may
consider the basins of attraction of the potential via an appreciation of gradient descent from an
ensemble of initial conditions.

The potential shown in figure 5.7a is created using the method introduced in section 2.2.1 with

a Gaussian noise intensity D = 25. The function dF1

dη = dF2

dη = dF
dη that prescribes the distribution

of the stimuli is described by the function:

dF

dη
= 0.01η4 + 500e−1(η−3)2 + 200e−0.1(η+2)2 (5.13)

The potential was shaped by Gaussians with a width parameter σ =
√

0.1. It takes 1×107 iterations

of the stimuli to form this potential. The local minimas of the potential are marked in figure 5.7b

along with a cross-section of initial conditions. Gradient descent is utilized here to emphasise the

various basins of attraction for each attractor. Clearly the behaviour of a trajectory, associated with

a basin, is dependent on the frequency ω1,2, the non-linearity parameter ε and coupling strength

BD. In this example we set BD = 0.3. As is clear from figure 5.8a we have values of ε that are both

above and below the line ε = 0.3. As shown in figure 5.8b we also have values of |ω1−ω2| either side

of the line defining synchronization. These relations explain the dynamic regimes observed in figure

5.8c,d. Figure 5.8c demonstrates the time dependent evolution of the trajectories whilst figure 5.8d

indicates the stationary nature of the attractors for the time interval t = 1500→ 2000. It is shown

that two of the minima are characterized by oscillation death, here BD > ε and |ω1 − ω2| > BD,

a further three are represented by limit cycles (|ω1 − ω2| < BD) and the final local minimum is

described by a quasi-periodic trajectory (|ω1 − ω2| > BD, BD < ε). This same approach may

be applied for any prescribed stimuli. We should be aware however that we can only guarantee a
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(a) (b)

(c) (d)

Figure 5.8: (a): The parameter ε is introduced as a function of the potential. (b): The evolution
of the frequency relation |ω1 − ω2| as an ensemble of initial conditions are allowed to evolve in
conjunction with the shape of the potential. In this instance the frequency scaling parameter
α = 10000. (c): The evolution of an ensemble of initial condition towards associated phase space
attractors. Note that these trajectories are controlled by the parameters ε, ω1 and ω2 outlined in
(a),(b), these are in turn dependent on the potential shown in 5.8a. In this illustration the coupling
strength parameter BD = 0.3. (d): The phase space trajectories shown in (c) demonstrated on
the plane (x1, x2) for the time interval t = 1500→ 2000.

130



range of behaviours by manipulating the parameters of the system. During unsupervised learning

the structure of the system’s potential remains unknown and so appropriate parameter choices

cannot always be inferred. The functions that we have assigned to manipulate the parameters of

the system have been chosen to emphasise the various dynamic attractors that are possible. We

also selected a stimuli distribution that would result in local minima with dramatically different

depths and curvatures. Where the characteristics of the minima fall within a narrow range we may

expect all classes to be identified by similar attractors.

We have demonstrated how ε may be related to the depth of a potential well and explained the

implications that this may have for the recognition of a stimulus. Manipulating the parameter ε

allows us to illustrate the features of a class as described by an attractor. Our notion of hierarchy

also requires the existence of a range of different attractors, it is important to demonstrate a

method to move between different types of attractor, relative to the topology of classes. We should

keep in mind that we may also employ alternative strategies. A second line of investigation is that

ε may be used to convey the difference between a stimulus and the class that it is assigned to.

This would involve taking a measure between a stimulus’s initial condition in the space x and its

position as it evolves in time. Let us explore this alternative concept.

5.3.2 Adjusting ε as a function of distance traversed

The local minima of the potential, corresponding to the fixed points of the system, represent

the most prevalently observed stimuli. Considering our previous approaches to the problem of

recognition, we have drawn no distinction between a stimulus that falls directly at the local minima

or at the extreme of the attractors basin. Although it is true that we require both to be recognized

as part of the same class, it may also be advantageous that we identify that two such stimuli are

not exactly the same. This may be considered as a measure of certainty in the recognition, or may

even be identified as a basic hierarchical representation. Separating stimuli that associate with the

extremes of the class from those that compose the central regions may be equivalent to identifying

different colours as ‘grey’ and ‘grey-ish’. If we insist that ε is a continuous function of position,

then we may consider the whole basin to by characterized by a single colour but with continuously

changing levels of ‘ish’.

This concept may be realized by a Gaussian function such as the one provided in equation

(5.14). This takes as its argument a measure of the difference between the initial stimulus position

η and the location x (t), as the trajectory evolves with time. Defining ε via this smooth continuous

function ensures that ε remains within a defined range. We are able to control the sensitivity of

the system by defining the variance of the Gaussian or by changing our parameter BD.

ε =
1

A
exp−B∗z

2

+ C (5.14)

Here A controls the height of the Gaussian, B controls the width and C defines the minimum of

the function. It is clearly important that ε tends to some positive constant C rather than zero.

The variable z is our measure of distance. For a two-dimensional potential this may be defined as

z =

√
(η1 − x1)

2
+ (η2 − x2)

2
. We may again utilize the stationary potential shown in figure 5.3

as a profile on which to illustrate this proposed approach. Selecting the parameter values A = 0.6,

B = 0.5, C = 0.1, γ = 50 and BD = 1× 105 this approach is demonstrated in figure 5.9.

It is evident from figure 5.9b that limit cycles, quasi-periodic orbits and fixed points can all be
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(a) (b)

(c)

Figure 5.9: Illustration of the effect that ε has on the trajectories of the system when it is treated
as a function of the difference between the minima of the potential and the stimulus. The potential
utilized for this example is shown in figure 5.3. The parameters γ = 50, α = 1×105 and BD = 0.15.
(a): Demonstration of recognition as described by trajectories in the phase space x1, x2 against
time. The initial conditions for each trajectory influence the variable ε. (b): The phase space
behaviour of the system for the time interval t = 3500→ 4000. The space contains quasi-periodic
orbits, limit cycles and stationary points. (c): The frequency relations for the oscillating variables
shown in (b). Note that the relation |ω1 − ω2| = BD separates the synchronization region within
the parameter space.
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realized within this system if parameter values are adjusted accordingly. As the synchronization

region of the parameter space is defined by the line ω1 − ω2 = ±BD, the parameter ε does not

influence whether the behaviour is a limit cycle or otherwise. The emergence of limit cycles as

well as alternative dynamics are expected from an appreciation of the frequency relations shown

in figure 5.9c. It is apparent from figure 5.9b that ε will effect the shape of any limit cycle. We

can therefore distinguish between a cycle that is the result of a stimulus close to a local minimum

and a cycle that is instigated by initial conditions that are a greater distance away. When the

curvature of the potential V (t,x) is sufficiently different with respect to the two characteristic

directions of the system x1 and x2, the trajectory of the system will converge to either a fixed

point or a quasi-periodic orbit. For trajectories instigated further away from a minimum, ε is

smaller, this condition is intended to correspond to the oscillation death region. Consultation of

figures 5.9a,b highlight that any minimum represented as a quasi-periodic cycle may also elicit

fixed point dynamics depending on the initial condition of the stimulus.

Both of the discussed methods of permitting different types of dynamical behaviour in addition

to limit cycles rely on defining ε as a function of the systems variables. In the first instance we

consider how ε can become a function of the potential’s depth, hence making the dynamics com-

pletely dependent on the topology of the learning profile. Alternatively, we may be motivated to

consider the difference between a stimulus and the minimum it is assigned to. Because the condi-

tion for a limit cycle is only dependent on the frequency and coupling strength, these additional

considerations do not influence the exhibition of limit cycles. Cycles may appear for shallow or

deep wells, or for stimuli that are close/far away from a local minimum. Dynamic behaviour is

a function of the similarity between the potential’s curvatures in the different dimensions of the

profile. The value of ε does however impact upon the shape of the cycle and so it remains possible

to distinguish between different characteristics of the potential.

Applying the methodology of subsection 5.3.1 various parameters of the class may be identified.

Firstly, we may consider whether the curvature in each dimension is roughly symmetric, if this

is the case the recognition trajectory will form a limit cycle. The frequency of this cycle will lie

between the frequencies that characterize each dimension and so we can gain a unique estimate

of the curvature of this class. As the depth depends on ε we may also infer some knowledge

about the depth of the class. Where the curvature is sufficiently different in each dimension the

dynamics of recognition will converge to either a fixed point or a quasi-periodic cycle. Deeper

classes will be represented by a fixed point attractor, the result of oscillation death, whilst shallow

classes are represented by quasi-periodicity. We can again obtain additional information about the

nature of the system from the quasi-periodic trajectory. For a two-dimensional potential we may

observe a two-dimensional torus, this has two characteristic frequencies that are associated with

the curvature of the class.

The alternative approach, where ε is a function of the similarity between a stimulus and the

centre of the class also has perceivable benefits. Again the manifestation of a limit cycle is a result of

the curvature, however, this cycle is now effected by the similarity between a class and a stimulus.

ε is larger for a stimulus that is close to a local minimum. This stimulus will be recognized

with a larger limit cycle than a stimulus further from the same minimum. If the curvature is

sufficiently different the dynamics of the system will be dependent on ε. Stimuli that are towards

the extremes of a minimum’s basin of attraction will be represented by oscillation death. Stimuli

that lie in close proximity to the fixed point will be represented by quasi-periodic trajectories. It
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is therefore possible to distinguish between stimuli that are close or distant from the centre of the

class and to also gain an appreciation of the local architecture of the basin based on the frequency

of oscillation. If the basin is sufficiently similar in each dimension we will observe a limit cycle

with a frequency that lies between the natural frequencies corresponding to the curvatures in each

dimension. If, alternatively, we observe a tori or a fixed point, we are aware that the curvature is

sufficiently different in each dimension. Information about the shape of the potential and hence

the class may be derived from the two frequencies that characterize the torus. A stimulus at the

extreme of the attractors basin may not identify overly well with the centre of the class, the fixed

point type classification offers restricted information in comparison to our other regimes. This may

be seen to reflect the limited similarity between a stimulus at the extreme of the class and the

minimum that acts as the centre of the class.

5.4 A System of 3 Diffusively Coupled van der Pol Oscilla-

tors

The extension from a pair of coupled oscillators to a system composed of many mutually coupled

oscillators mirrors the extension of the learning systems potential as the dimensionality of the

stimulus is increased. By mutual coupling we infer that each unit is coupled to every other unit.

Where i refers to to a single van der Pol oscillator and N is the set of mutually coupled units. The

system may be described as:

ẍi = ε
(
1− x2

i

)
ẋi − ω2

i xi −BD
j=N∑

j=0

(ẋi − ẋj) (5.15)

In this instance we shall consider the case where N = 3. This will allow us to model our RGB

potentials, demonstrated in Chapter 3, as oscillatory systems in a six-dimensional phase space. The

extension to three oscillatory units is significantly more complex than the previously discussed two

unit system. This is apparent from an appreciation of the truncated model which may now be

written as:

Ȧ1 =
ε

2

(
A1 −

A3
1

4

)
+
BD
2

(A2cos (θA) +A3cos (θB)− 2A1)

Ȧ2 =
ε

2

(
A2 −

A3
2

4

)
+
BD
2

(A3cos (θC) +A1cos (θA)− 2A2)

Ȧ3 =
ε

2

(
A3 −

A3
3

4

)
+
BD
2

(A1cos (θB) +A2cos (θC)− 2A3)

θ̇A =
ω2

1 − ω2
2

2ω
− BD

2
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A2

A1
+
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A2

)
sin (θA) +

A3

A1
sin (θB)− A3

A2
sin (θC)

)
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ω2
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3

2ω
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2
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A3

A1
+
A1

A3

)
sin (θB) +

A2

A1
sin (θA) +

A2

A3
sin (θC)

)

θ̇C =
ω2

2 − ω2
3

2ω
− BD

2

((
A3

A2
+
A2

A3

)
sin (θC)− A1

A2
sin (θA) +

A1

A3
sin (θB)

)

(5.16)

A derivation of this relation is included in appendix A.5. As the system is comprised of three

units, there are three phase differences that must be defined. Here we have θA = ϕ1 − ϕ2,

θB = ϕ1 − ϕ3 and θC = ϕ2 − ϕ3. The simplifications that arise for a pair of coupled oscillators

cannot be introduced in the same way for a system of three coupled oscillators. We should again
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consider the phase locking region, this corresponds to limit cycle trajectories and is identified by

constant phase relations. Hence phase locked solutions require θ̇A = θ̇B = θ̇C = 0. Solutions that

correspond to this condition are not apparent, even if the restricted case of symmetric amplitude

(A1 = A2 = A3) is considered. Determining the synchronization region analytically appears to

present a considerable challenge.

The existence of phase locked solutions clearly depends on the frequency differences and the

coupling strength BD. As an alternative to the analytic approach we may infer the synchronization

region by numerically considering the interceptions of a Poincaré plane. This method will highlight

not only period-1 orbits, but also indicate regions of the parameter space where n:m:j frequency

relations exist. These relations result in higher order periodic cycles. Initially we shall consider

the case where the frequency ω1 is held at a constant value ω1 = 1 and investigate the effect of

other parameter changes.

5.4.1 Poincaré approach to characterising the Dynamical regions

Attempting to characterize the system via analytical means such as considering the truncated

equations highlights the complexity of the dynamics. An appreciation of the system as described by

equations 5.16 does not present a simple method to arrive at the set of parameters that correspond

to the various expected regimes. This does not exclude the possibility that analytical methods may

provide a suitable approach to classifying this system, but deriving a full analytical understanding

of this system will remain outside of the scope of this investigation. Faced with the difficulties

of analytical methods, we may again utilize numerical schemes to visualize the behaviour of the

system for certain parameter relations.

A simple method to gain an appreciation of the systems dynamics is to construct a Poincaré

section. Taking a subset of the phase space we may consider the intersections of our system’s flow

with this region. The number and distribution of intersections illustrates the qualitative nature of

the system’s behaviour. An alternative way to compile such a section is to consider the state of the

system after a time interval T , often T is related to the period of a driving force. Utilizing such

a regime a limit cycle may be identified by a single point on the section, whilst a quasi-periodic

orbit may be identified by a closed curve. By considering the intersection of the trajectory with

a plane in the phase space, limit cycle trajectories may be associated with a finite number of

intersections, these intersection points may be useful in indicating some of the qualitative features

of the trajectory and may indicate the ratios of the phases between the synchronized oscillators.

Quasi-periodic orbits are associated with a closed curve. We should point out that where the

tori characterising the quasi-periodic behaviour is N-dimensional, the Poincaré approach must be

applied N times in order to observe a closed curve. It is therefore not always apparent whether

a trajectory is high order quasi-periodic or chaotic from the application of a single section. For a

system of three oscillators we may anticipate partial synchronization where two of the oscillators

synchronize whilst the final one does not. This will be indicated by a two-dimensional torus.

A three-dimensional torus will characterize the absence of all synchronization. As the system is

dissipative, chaotic trajectories may be demonstrated by a large diffuse set of points or by fractal

structures.

Utilizing the Poincaré section concept we may compare the number of unique intersections

of the plane x1 = 0 for any combination of parameter choices. The choice of section is clearly
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important. As the trajectories encapsulate the fixed point of the system located at x1 = 0, y1 = 0,

x2 = 0, y2 = 0, x3 = 0, y3 = 0 the choice of plane x1 = 0 is certainly appropriate. A sample of

the different behaviours that the system may demonstrate are presented in figures 5.11, 5.12 and

5.13 along with corresponding sections. Gradually varying each parameter value and noting the

number of unique intersections, diagrams such as the one presented in figure 5.10 can be compiled.

As there are five different bifurcation parameters it is only possible to visualize a small subset.

From the perspective of synchronization the relationships between the frequencies, characterized

by ω1, ω2 and ω3 are of critical importance. Because of this we may study the relationship between

ω1, ω2 and ω3 whilst keeping ε and BD constant. Considering the number of different intersection

points that any trajectory has with the Poincaré plane as a function of its parameters we are

able to compose figure 5.10. We have numerically simulated the system’s solution for the given

parameters and recorded the number of intersections the flow has with a Poincairé plane once

a stable solution has had sufficient time to be reached. Limit cycles may be identified by a low

number of different intersection points, whilst quasi-periodic orbits will typically have a much higher

number. Here we have restricted our numerical scheme to retain no greater than 200 intersections.

It is apparent that a large synchronization region exists when all three parameters ω1, ω2 and ω3

fall within a certain bandwidth. The large section at the centre of figure 5.10 corresponds to 1:1:1

synchronization. Other smaller regions of n:m:j synchronization are also obvious, these regions

are separated by areas of quasi-periodicity. One relation that is not distinguished by this plot is

partial synchronization. A partially synchronized system should be described as a two-dimensional

tori in the phase space, whereas, a complete lack of synchronization would be implied by a three-

dimensional tori. These features can be clearly distinguished by comparing figures 5.11(i)(j) with

5.11(o)(p). In 5.11(j) the Poincaré section is a closed loop, this is not the case with 5.11(n) and

5.11(p). If we take the tori shown in 5.11(m) and 5.11(o) and apply sections with respect to both

x1 = 0 and x2 = 0 then their sections contain closed loops as may be observed in figure 5.14.

Taking a section with respect to two-planes enables us to ascertain that the tori’s shown in figures

5.11(m) and 5.11(o) are three-dimensional, these quasi-periodic cycles are therefore associated with

three distinct frequencies. We should note that there is also the possibility that this system may

be chaotic for certain regions of the parameter space. Although we have shown that some of the

yellow region of figure 5.10 corresponds to two and three-dimensional quasi-periodic orbits, it may

also be possible that regions of this space are chaotic.

The array of trajectories presented in figures 5.11, 5.12 and 5.13 are intended to validate the

regions shown in figure 5.10. (a)-(l) of figure 5.12 illustrate the main 1:1:1 region. Interestingly,

there are various other regions of synchronization, these are apparent from figure 5.10, the dynamics

within these regions are portrayed in figure 5.12(m)-(t) and also in figure 5.13.

A concern that may be raised with figure 5.10 is that ω1 will not remain fixed for our evolving,

learning system. Plotting the difference between ω1 and ω2,3 does not exclude the possibility that

the system behaviour is not only a function of the difference between these parameters, but also

dependent on the absolute values. To consider this point we may apply the same procedure again,

with the same parameters ε and BD, but with a different ω1. A comparison is shown in figure

5.15, demonstrating the 1:1:1 synchronization region when ω1 = 0.5, ω1 = 1 and ω1 = 1.5. This

highlights that the dynamics of the system are dependent not only on the differences between ω1,2,3,

but also on their absolute values. If we consider the wider bifurcation space for the parameter values

BD = 0.2, ε = 0.6 and ω1 = 1.5, as shown in figure 5.16, it is evident that the space is organised
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Figure 5.10: Bifurcation diagram indicating the behaviour of the system as a function of ω2 and ω3.
Colour indicates the number of intersections of a Poincaré plane located at x1 = 0. The maximum
number of permitted intersections is 200. Yellow regions therefore correspond to quasi-periodicity
or chaos. For this illustration ε = 0.6, BD = 0.2 and ω1 = 1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.11: By selecting various relations for frequencies ω2 and ω3, whilst keeping the parameters
BD = 0.2, ε = 0.6 and ω1 = 1 constant, the various dynamical regimes of three coupled van der
Pol oscillators with dissipative coupling (equation(5.15) when N = 3) can be observed. The first
and third columns demonstrate the systems trajectories in the phase space x2, x3. The second and
fourth columns demonstrate the intersection of these trajectories with a p Poincaré plane set at
x1 = 0. Here we observe a number of parameter values that correspond to quasi-periodic orbits.
(a),(b): ω2 = 0.5 and ω3 = 0.32, (c),(d): ω2 = 0.6 and ω3 = 1.4,(e),(f):ω2 = 0.7 and ω3 = 0.5,
(g),(h): ω2 = 0.9 and ω3 = 0.35, (i),(j): ω2 = 0.13 and ω3 = 0.36, (k),(l): ω2 = 0.34 and
ω3 = 0.14, (m),(n): ω2 = 1.7 and ω3 = 0.7, (o),(p): ω2 = 1.7 and ω3 = 1.4. Quasi-periodic orbits
are associated with a closed curve in the Poincaré section. (a)-(l) demonstrate two-dimensional
tori, indicating partial synchronization. In contrast figures (m)-(p) correspond to a complete lack
of synchronization. In these instances the tori are three-dimensional.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 5.12: By selecting various relations for frequencies ω2 and ω3, whilst keeping the parameters
BD = 0.2, ε = 0.6 and ω1 = 1 constant, the various dynamical regimes of three coupled van der
Pol oscillators with dissipative coupling (equation(5.15) when N = 3) can be observed. The first
and third columns demonstrate the systems trajectories in the phase space x2, x3. The second
and fourth columns demonstrate the intersection of these trajectories with a Poincaré plane set at
x1 = 0. Here we observe a number of parameter values that correspond to limit cycles. (a),(b):
ω2 = 0.92 and ω3 = 1.28, (c),(d): ω2 = 0.95 and ω3 = 0.4,(e),(f):ω2 = 0.68 and ω3 = 0.68,
(g),(h): ω2 = 1.45 and ω3 = 1.45, (i),(j): ω2 = 1.0 and ω3 = 1.0, (k),(l): ω2 = 1.33 and ω3 = 1.0,
(m),(n): ω2 = 0.81 and ω3 = 0.27, (o),(p): ω2 = 0.45 and ω3 = 0.49, (q),(r): ω2 = 0.245 and
ω3 = 0.16, (s),(t): ω2 = 0.485 and ω3 = 1.52. Limit cycle are indicated by single points in the
Poincaré plane.

139



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 5.13: By selecting various relations for frequencies ω2 and ω3, whilst keeping the parameters
BD = 0.2, ε = 0.6 and ω1 = 1 constant, the various dynamical regimes of three coupled van der
Pol oscillators with dissipative coupling (equation(5.15) when N = 3) can be observed. The first
and third columns demonstrate the systems trajectories in the phase space x2, x3. The second
and fourth columns demonstrate the intersection of these trajectories with a Poincaré plane set at
x1 = 0. Here we observe a number of parameter values that correspond to limit cycles. (a),(b):
ω2 = 0.89 and ω3 = 0.165, (c),(d): ω2 = 1.17 and ω3 = 0.33,(e),(f):ω2 = 0.16 and ω3 = 0.4,
(g),(h): ω2 = 0.34 and ω3 = 1.14, (i),(j): ω2 = 1.52 and ω3 = 0.485, (k),(l): ω2 = 1.67 and
ω3 = 0.32, (m),(n): ω2 = 0.16 and ω3 = 0.83, (o),(p): ω2 = 0.18 and ω3 = 0.15, (q),(r):
ω2 = 0.26 and ω3 = 0.82, (s),(t): ω2 = 0.31 and ω3 = 1.68. Limit cycle are indicated by points in
the Poincaré plane. Higher order cycles will correspond to a greater number of points.
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(a) (b)

Figure 5.14: Poincaré sections with respect to the planes x1 = 0 and x2 = 0 for a set of 3 coupled
oscillators described by equation (5.15) (N = 3). In both figures ω1 = 1, ε = 0.6 and BD = 0.2.
In (a) ω2 = 1.7 and ω3 = 0.7. (b) corresponds to the case where ω2 = 1.7 and ω3 = 1.4. In
both examples the systems dynamics are classified as third order quasi-periodic, this is identified
by the closed loop show by the Poincaré section. The quasi-periodic trajectories for these systems
are illustrated in figures 5.11m and 5.11o respectively.

with similar regions to those demonstrated in figure 5.10 when ω1 = 1. However, the relative size

and separation between regions is somewhat different as a result of the change in ω1.

It is evident from figure 5.15 that the values of ω1,2,3 have implications on the bifurcation struc-

ture of the system in addition to the implications of their differences. In each sub-plot the region

surrounding the 1:1:1 synchronization tongue within the parameter space ((ω2 − ω1),(ω2 − ω1)) is

demonstrated for different values of ω1. Quasi-periodic (or chaotic) trajectories are associated with

yellow regions, whilst limit cycles are indicated by black areas. Making a qualitative comparison,

the shape and approximate size of the 1:1:1 synchronization region appears to remain relatively

constant, however, comparing figures 5.10 and 5.16 highlights the wider differences that appear as

a result of changing ω1.

Thus far we have only numerically considered the synchronization regions of the system for the

parameter values ε = 0.6 and BD = 0.2. It is evident that this parameter choice coincides with

either quasi-periodic or limit cycle orbits. A basic investigation of the system demonstrates that,

as was the case with a pair of coupled oscillators, the fixed point of the system may become stable

as a result of oscillation death. Unlike for the two oscillator composition, the quasi-periodic and

oscillation death regimes are not separated by the line BD = ε. We may identify a set of conditions

that permit oscillation death and again study the regimes of the system as the relations between

ω1,2,3 are manipulated. Figure 5.17 illustrates the possible dynamics of the system when ε = 0.3,

BD = 0.2 and ω1 = 1. The black region of figure 5.17 corresponds to 1:1:1 synchronization, whilst

the white regions highlights parameter values corresponding to oscillation death. Comparing this

figure to figure 5.10 it is apparent that the selection of ε and BD plays an important role in defining

both the range of dynamics that the system may demonstrate and also the size and shape of the

1:1:1 synchronization region. In contrast to the previous demonstrations, figure 5.17 does not

contain any higher order n:m:j synchronized regions.
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(a) (b) (c)

Figure 5.15: Comparison between the bifurcation space when (a): ω1 = 0.5, (b): ω1 = 1.0 and (c):
ω1 = 1.5. Note that in each of these cases the same ranges of ω2 and ω3 are utilized, also BD = 0.2
and ε = 0.6. The colour corresponds to the number of intersections of the system trajectory with
a Poincaré plane set at x1 = 0. No more than 200 intersections are registered, yellow regions
therefore correspond to quasi-periodic orbits whilst black regions highlight 1:1:1 synchronization.

Figure 5.16: Bifurcation diagram indicating the behaviour of the system as a function of ω2 and ω3.
Colour indicates the number of intersections of a Poincaré plane located at x1 = 0. The maximum
number of permitted intersections is 200. Yellow regions therefore correspond to quasi-periodicity.
For this illustration ε = 0.6, BD = 0.2 and ω1 = 1.5.
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Figure 5.17: The dynamics of the system are represented via the colour of the plot, the area of
white corresponds to oscillation death. Within this region the trajectories of the system converge
to the fixed point located at the origin. Black infers the existence of a limit cycle. Parameters are
set to ε = 0.3, BD = 0.2 and ω1 = 1.

143



5.5 Oscillatory Recognition of Colour

Although gaps still remain in our knowledge of the behaviour of three coupled van der Pol oscilla-

tors, we may demonstrate the recognition of stimuli utilizing this approach. Here we shall revisit

the recognition of colour as previously studied in Chapter 3. Our model is again built around the

concept of a discreet R,G,B space where every point in this space refers to a different colour.

The potential of the system is therefore a function of three spacial coordinates and time. The

recognition of a stimulus is described by:

dx∗R,G,B
dt

=− γ ∂V
∂xR

dxR,G,B
dt

=yR,G,B

dyR,G,B
dt

=ε
(

1− (xR,G,B − x∗R,G,B)
2
)
yR,G,B − α

∂U

∂xR,G,B

−BD ((yR,G,B − yG,B,R) + (yR,G,B − yB,R,G))

where

U (V,x) =V +
1

2
g

(
∂2V

∂x2
R,G,B

)
(xR,G,B − x∗R,G,B)

2

(5.17)

Here the subscripts R,G,B refer to the spacial dimensions of the system, each described by an

oscillator. Each oscillator is influenced by the curvature of the potential in the corresponding

dimension. This consideration is captured by taking partial derivatives with respect to the function

U (V (R,G,B, t)), this determines the natural frequency of each oscillator. The function g () is

described by equation (4.6) and ensures that the function U () takes an appropriate estimate of

the local topology of the potential V () surrounding x∗. This function remains smooth, continuous

and appropriately orientated. The three oscillators are mutually coupled via a dissipative coupling

term with coupling strength BD, the combined dynamics are therefore a function of the three

natural frequencies. The location of the attractor in phase space is influenced by the local minima

of the potential V (R,G,B, t) due to the inclusion of the terms (xR,G,B − x∗R,G,B). Here x∗R,G,B

is located via gradient descent. This formulation of recognition can be seen to closely resemble

the description of recognition provided by equation (4.10) for a one-dimensional potential. The

principal alteration is the inclusion of the coupling term, as such equation (5.17) may be seen as a

generalization of equation (4.10).

As an initial test of this approach we may consider the trajectories of the system for a static

potential. Figures 5.18b and 5.18d illustrate the oscillatory dynamics of recognition for the po-

tentials shown in figures 3.8q, 3.8r, 3.8s and 3.11q, 3.11r, 3.11s respectively. These potentials are

both the result of two million stimuli, corresponding to the cartoons Southpark and Futurama.

125 initial recognition conditions form a mesh of coordinates, as such, the realizations compare the

recognition of colours from across the entire R,G,B space. The gradient aspects of the systems are

demonstrated in figures 5.18a and 5.18c. Gradient descent locates the minima of the potentials.

Oscillatory dynamics can be seen to correspond to the locations of these minima in the phase space.

It is important that parameter values are chosen carefully if both quasi-periodicity and limit cycles

are to be observed. As we previously investigated a set of three coupled van der Pol oscillators

with the parameter values ε = 0.6 and BD = 0.2, we shall persevere with these assignments. In

this investigation ω1 is now a function of the potential, as such we cannot directly compare the
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(a) (b)

(c) (d)

Figure 5.18: (a): Gradient descent for an ensemble of 125 initial conditions that locate the local
minima of a potential shown in figures 3.8q, 3.8r and 3.8s. This potential is created by the
repeated application of stimuli corresponding to the cartoon Southpark. (b): Recognition of these
125 stimuli in accordance with equation (5.17). (c)(d): Repetition of the same procedures shown
in (a)(b) but for the stationary potential shown in figures 3.11q, 3.11r, 3.11s. This corresponds to
the cartoon Futurama. In each instance γ = 50, α = 400000,BD = 0.2 and ε = 0.6.

behaviour observed in this model with the bifurcation diagrams shown in figure 5.15. In both

diagrams 5.18b and 5.18d the parameter α = 4×105, this ensures that the system is appropriately

scaled to permit the existence of both limit cycles and quasi-periodic orbits. Previously we dis-

cussed methods to control ε so as to allow quasi-periodicity and oscillation death. Although these

behaviours are show in section 5.4, it remains unclear what parameter values correspond to the

bifurcation between quasi-periodicity and oscillation death.

In both figures 5.18b and 5.18d there are observable limit cycles and quasi-periodic trajectories.

As ε remains constant the shape of each orbit is related to the frequency of oscillation. It is

important to stress that these attractors reflect the recognition of stimuli for a static potential.

Such a profile is only attainable when the learning system has received sufficient stimuli, in this

circumstance we may consider the model to have finished learning and become an expert on

its environment. We may compare the realizations of recognition demonstrated as oscillatory

trajectories in figures 5.18b and 5.18d with recognition presented via gradient descent in figures

5.18a and 5.18c. In both cases the stimuli chosen correspond to the same locations in the RGB

space. It is apparent that the oscillatory attractors yield much more information about the classes

of colour than represented by fixed points. The gradient approach only indicates the dominant

colour of each class, however, the oscillatory model indicates both the dominant colour and the

size of the class. The size of the class is indicated by the frequency of oscillation, which relates
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to the curvature of V (R,G,B) in the vicinity of a local minimum, created by the clustering of

stimuli. The behaviour of a trajectory may infer several important features of a class:

� If the attractor of the system is a two-dimensional torus then we can discern that the curva-

ture and hence, the relative size of the class in each characteristic direction is substantially

different. The attractor has three distinct frequencies that indicate the size of the class in

each direction.

� If the attractor of the system is a one-dimensional torus then we should be aware that the

class has a similar span in two directions, which are sufficiently different to the span of the

class in the third direction. The one-dimensional torus has two characteristic frequencies,

these frequencies highlight again highlight the size of the class.

� When the attractor is a limit cycle we should be aware that the curvature is similar in each

characteristic direction of V (R,G,B). This informs us that the class has a similar span in

each characteristic direction. This span, and hence the size of the class is associated with

the frequency of oscillation.

Information regarding the size of a class is useful as it may be used to specify how exact the systems

representation of colour is. It is useful to know whether a class representing red, represents only

one shade of red or a whole plethora of related colours. Each class of the model is represented

by a unique phase space attractor that is specific to the topology of the class. By comparing

attractors with similar dynamics, occupying different regions of the phase space, we can ascertain

a relationship between the different classes. Although we have not yet been able to piece these

different dynamic attractors together into a structure that represents the relation between different

classes in a hierarchical framework, it would seem clear that characterising classes with different

types of attractor is a pivotal ingredient towards achieving this goal.

The next phase of the models development is to consider the learning and recognition of unfa-

miliar stimuli whilst the model is learning. This procedure would typically follow the framework

introduced in section 3.4, but this new representation of recognition would take the place of gradi-

ent descent. The phase space corresponding to the potential V (R,G,B, t) contains six dimensions,

we should be aware that this may present a problem when trying to illustrate the systems attrac-

tors. Although we may continue to neglect a number of these dimensions and still observe the

corresponding behaviour, we should be careful as this may be to the detriment of the intuitiveness

of the system. We should also be cautious about utilizing the van der Pol model when many oscil-

lators are coupled. Although the coupling of two oscillators is well understood, we have highlighted

that this knowledge is not directly transferable to systems comprising three or more oscillators.

Due to non-linearity we may not be able to surmise the behaviour of many coupled oscillators

without studying each composition in turn. This issue requires resolution as it is important that

the model retains generality and is not restricted to a given number of dimensions.

5.6 Summary and Conclusion

A representation of recognition via oscillatory dynamics is again discussed in this Chapter. This

is necessary as we require a method to characterize the different classes of the system when the

stimuli, and hence the potential, is formed of several components. These components may refer
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to variables such as red, green and blue as was considered for a gradient style recognition method

back in Chapter 3. As with the approach for a one-dimensional stimuli, detailed in Chapter 4, we

may associate the classes of the model with oscillators. This has the advantage that we can convey

additional qualities of a class beyond its location in the space x = (x1, x2, ..., xN ). Representing

classes with higher order attractors also yields the possibility that hierarchy may be conveyed by

the relation between different attractors.

We continue to consider the van der Pol oscillator as a paradigmatic system, but must make

some important adjustments to reflect the dimensionality of the system. It is important to point

out that there may be numerous methods to incorporate this increase in dimension, here we have

considered coupling. The principal problem that we are faced with when considering this more

general system is how to create a dynamical construct that encapsulates the notion of recognition.

We require that the dynamical system identifies a class corresponding to the stimulus. In keeping

with the discussion of Chapter 4 we also require that the scheme provides more useful information

than is accessible with a simple point attractor. Permitting higher order dynamics such as limit

cycles and quasi-periodicity should enable the development of a model where different stimuli may

be considered as parts of classes and sub-classes. Here we have utilized coupling to create a model

of recognition that indicates the location of a class in phase space and defines the class’s topology.

This progression is significant as the phase space and potential may plausibly be of any dimension.

This assertion requires further investigation as it is apparent that the regimes of the van der Pol

oscillator become more complex as the number of coupled oscillators is increased. Although we have

not yet been able to capture the concept of class and sub-class by this dynamical representation,

it is important to appreciate that by representing the recognition of stimuli via limit cycles and

quasi-periodic orbits we make an important step towards this goal.

The premise behind utilizing coupling is that each dimension of the potential may be associated

with a van der Pol oscillator. The natural frequency of each oscillator remains dependent on the

curvature of the potential in the corresponding dimension. For a system where x = (x1, x2) the

potential will be two-dimensional, two van der Pol oscillators will therefore interact to represent

the recognition of a stimulus. One oscillator is related to the dimension characterized by x1 and

the other is related to x2. Where the system is one-dimensional, it is clear that the system is no

different to the model discussed in Chapter 4. This new method should be applicable regardless of

the dimensionality of the system. A problem does arise however, as the theory concerning many

coupled oscillators is not well defined.

The theory of coupled van der Pol oscillators is well understood for some restricted cases, in

other circumstances the theory is less well developed. Certainly the dynamics of pairs of oscillators

with various approaches to coupling may be appreciated from the existing body of literature

[10, 27, 124, 146, 132, 86, 122]. Conversely, less is known regarding the dynamics of larger sets of

mutually coupled oscillators. In this domain studies have typically focused on oscillators arranged

in rings or chains [42, 121, 40, 41], considerations of mutual coupling appear to have been neglected.

From the perspective of our investigation it would appear illogical not to couple all oscillators

mutually.

In this chapter we began our investigation by considering a potential V (x1, x2) and discussed

how coupling could be applied to create a model of recognition that utilized limit cycles and

quasi-periodic orbits. Again we resolved to utilize a van der Pol system, however, in this instance

coupling was utilized to relate the different oscillators describing the different dimensions of the

model. Coupling of the system is shown to be important as it permits synchronization, without
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this all trajectories would appear quasi-periodic in phase space. Before coupling could be applied

to the learning model it was important to consider the different methods of coupling. Dissipative

coupling appears to have the advantage over reactive coupling in this situation as the possibility

of oscillation death is permitted and multi-stability is avoided. Having made this assessment, a

clear understanding of the bifurcation structure was derived for a pair of coupled oscillators by

considering the truncated equations representing the system. These analytic inferences were then

compared to numerical simulations for validation. Having defined the regimes of the two-oscillator

system, the same concepts could then be applied to the task of recognition. Initially a model was

considered where ε remained fixed, here it was shown how trajectories may be quasi-periodic or

form limit cycles. Where a position on the potential has a similar curvature in both dimensions

the frequencies will be close to each other, the dynamics will therefore synchronize, and limit

cycles will be observed. If the curvatures are sufficiently different, there will be a substantial

difference between the two natural frequencies. In this case the oscillators will not synchronize,

the phase space dynamics will indicate a torus if ε > BD, or a fixed point if ε < BD. In each

eventuality the system will have a frequency that is dependent on the topology of the potential.

As such, this method of recognition will identify a class and also define its relative structure. As

the system permits the possibility of oscillation death, it would appear advantageous to exploit

this property. This may be achieved by manipulating the parameter ε. By continuing to consider a

two oscillator model we discussed two conceivable motivations for adjusting ε, firstly as a function

of the potential’s depth, and secondly as a function of the similarity between the minimum of the

potential and the stimulus. Realizations of both of these approaches are graphically provided in

section 5.3.1.

We may also consider that oscillation death may be utilized as part of a hierarchical scheme.

Previously we have speculated about the interaction of limit cycles, this description may actually

begin from a point attractor, the result of oscillation death. This may represent the lowest sub-

class, before larger classes are described by limit cycles and tori. As yet we have not been able to

define an appropriate method to illicit this hierarchy, we must stress that permitting an ensemble

of different phase space attractors should be an appropriate place to begin.

Progressing from a potential with two spatial dimensions to a profile with three, the learning

model is associated with three coupled oscillators. This presents a greater challenge as the dynamics

of such systems are not easily understood. We begin our investigation of three coupled oscillators

from the perspective of the truncated equations, however, this line of investigation appears to

be intractable when trying to derive the conditions for synchronization. Because of this issue we

resolved to consider a numerical appreciation of the system. Because three coupled oscillators

have five feasible bifurcation parameters (ε,BD, ω1, ω2, ω3), it is not possible to plot bifurcation

diagrams that describe the entire range of the system’s dynamics. Here we focused on the system’s

bifurcation structure as the parameters ω1, ω2 and ω3 were adjusted. As we can only adjust two of

these parameters on a single plot, we considered various values of ω1 and varied ω2,3 accordingly. It

is apparent from these realizations that various regions of synchronization exist. The largest region

corresponds to 1:1:1 synchronization. It is difficult to speculate how other n:m:j regions should

be perceived in the context of learning. As the size and location of each is a function of so many

parameters, it is unlikely that we can restrict the frequency of our system to a space where only

1:1:1 oscillations and surrounding quasi-periodicity remains. The large cross-section of different

limit cycles and quasi-periodic orbits (second and third order) disappear if the parameters ε and
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BD are selected from within the range corresponding to oscillation death. In this region it appears

that only fixed points and 1:1:1 synchronization remains. All other n:m:j orbits die out.

Despite a lack of complete knowledge regarding the higher order synchronization regions, we

may still apply the van der Pol structure to our learning system. We should stress that a much

deeper investigation of coupled oscillators is required before we can satisfactorily utilize and ap-

preciate the regimes of the model in a wider context. Nevertheless, we consider the recognition of

stimuli related to two different static potentials in section 5.5. These potentials correspond to the

learning of the different colours composing the cartoons Southpark and Futurama. It is clear that

with an appropriate choice of α, we may scale the frequency of the system so as to permit both

quasi-periodic and limit cycle trajectories. Although we previously considered the effect of ε as a

control of oscillation death/quasi-periodicity, we do not incorporate this in the model at this stage

due to a lack of knowledge regarding three coupled van der Pol systems.

It is clear that further work is required before we can adequately model recognition when the

potential is N-dimensional. The basis of this further investigation centres around deriving the

conditions for certain dynamical behaviours for sets of coupled oscillators and also appreciating

the effect of increasing the number of coupled oscillators. As the system under study is non-linear,

an increase in the number of oscillators may have a significant effect on the system’s dynamics.
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Chapter 6

Summary and Conclusion

Understanding the mechanics of the human brain is indisputably one of the most complex tasks

faced by modern science. Despite the vast sums of money driving multidisciplinary research, a

whole plethora of questions remain unanswered. Large research bodies such as the Human Brain

Project [1] and the Brain initiative [155] seek to discern the intricate processes that occur in the

brain and hope to define how these infer thought, behaviour and memory. New knowledge may not

only instigate a revolution in brain research, but may also have far reaching ramifications across a

diverse range of related fields. It is thought that a better understanding of biology will inspire not

only a new frontier of medicine and healthcare, but also instruct new approaches in areas such as

AI and computer intelligence.

Unfortunately, this AI revolution has not yet come to fruition. Considering the classical models

of AI, it is clear that a substantial paradigm shift may be required if a new generation of AI systems

are to be developed. As discussed in section 1.2, the current models of AI take exceptionally varied

approaches. The neural network draws its motivation from the networks formed by neurons in

the biological brain. This is certainly a solid starting point, however, the model meets with some

clear difficulties. These limitations are typically centred around the algorithms used to model the

interactions of neural units. Although the structure of the system is similar to the brain, the

way in which such models learn typically bear little resemblance to the mechanisms thought to

be occurring in humans. The human brain continuously learns from the myriad of stimuli that it

receives about its environment. It is able to simultaneously interpret stimuli perceived from each

of the body’s receptors, autonomously selecting the important features and assigning essential

information to memory. All the while it is able to compare these stimuli to retained knowledge, in

order to reach logical conclusions and decide actions. Learning is a continuous process that may

be achieved via a number of strategies, these include, reinforcement learning, supervised learning,

goal-based learning, and perhaps most commonly, unsupervised learning. Modelling unsupervised

learning appear to be a particular challenge for AI systems, however, the brain appears to be most

reliant on this process. Consider how we interact with our surroundings during our everyday life,

an example may be learning where objects are in a room. This is not something we are taught,

we perform such learning intrinsically. Unsupervised learning typically requires little focussed

attention, but is the most essential, basic, core mechanism that allows us to successfully interact

with our surroundings. An AI model that only learns via reinforcement or supervised techniques is

clearly a poor substitute for biology. Although no artificial system is able to perform computations

that remotely resemble those performed by the brain, it is clear that some models have more in
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common with the way the brain learns than others. In Chapter 1 we considered a number of

prominent AI systems. The majority operate in two discrete phases. The first phase involving

learning, before the system is then applied to some task. During this task the system is incapable of

further learning. These systems are clearly highly inflexible and do not resemble natural learning.

Models that operate in this fashion include neural networks, decision tree learners and genetic

algorithms. In fact, the majority of current AI approaches appear to share this fundamental flaw.

It would seem clear that any plausible model of AI should be able to learn about its surrounding

autonomously (unsupervised learning) in order to create a flexible internal representation of its

experiences. It should also be able to learn continuously, and should quickly recognize and respond

to stimuli. We postulate that these features should form the basic requirements for a new generation

of AI machine.

The need for a new approach to the problem of learning in artificial systems is apparent. The

current methods utilized within the field of AI suffer from a range of issues. In contrast, the self

shaping dynamical system proposed by Janson and Marsden [74, 99] demonstrates a number of

advantages over conventional methods. The greatest success of this model is that the recognition

and classification of inputs occurs simultaneously via a mechanism referred to as on-line learning.

The dynamical system is known to adjust its architecture to external stimuli in a non-algorithmic,

unsupervised manner. The potential function (V (t,x)) of the dynamical system is perturbed by

a special function that represents a stimuli applied to the system. In Chapter 2 this perturbing

function is described by a Gaussian curve. With the repeated application of a stimuli function the

shape of this potential is transformed to demonstrate different classes of retained knowledge. The

potential may therefore be conceptualized as a form of memory, where each class corresponding

to a local minimum refers to information retained by the system. This in itself is significant, as it

presents the possibility for the system to be used as an auto-classifier, grouping together similar

inputs into distinct classes. Because the system groups similar data autonomously, the model

possesses an inherent tolerance to noise.

Despite the major promise shown by this prototype, it is clear that further refinements may

be applied to improve performance. In this investigation we have postulated several pertinent

changes that may further the development of this model and improve its ability to characterize

the processes of learning, retention, classification and recognition. We have focused on relating

these refinements to the mechanisms apparent in real learning systems. We show the ability of the

system to learn from, and recognize stimuli, in an arbitrary environment, without the restriction

of supervision.

As this new class of system remains in its infancy, it was important to test its performance

for a range of stimuli so as to verify the assertions made about its self-shaping characteristics.

In Chapter 2 we studied the dynamics of the system for a range of different simulated inputs

by comparing the shape of the system’s potential V (t, x) to the probability density distributions

of defined stimuli. It was shown that the system’s potential autonomously shapes to reflect the

PDD of inputs. This behaviour has already been reported in [74, 99], but here we have considered

stimuli that posses a much higher level of complexity. Instead of selecting arbitrary values for the

Gaussian width parameter σ, which relates to the perturbing function and controls the system’s

ability to differentiate between classes of input (and can therefore be considered as an indicator

of certainty), we considered the impact that this parameter has on the number of classes that

emerge. We show that selecting smaller values of σ ensures that the potential function V (t, x)
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closely approximates the PDD of a stimuli, this relation is not observed if σ is too large. It should

be highlighted that selecting a value too small increases the time taken for convergence and may

also result in a disproportionate number of minima forming early in the model’s evolution. We

postulate that the system should be able to identify finer differences between inputs, based on how

knowledgeable it is about an environment. This is intended to parallel a human’s attention. Here

we may draw an analogy to how a person may appreciate a piece of artwork. At first glance they

may only discern the principal subject of the picture, spending larger amounts of time on the task

(receiving more stimuli) the person begins to appreciate the finer details. These finer details can

only be represented by the system if σ is reduced. The system would first identify the major themes

(whilst σ is large), before focussing on the finer details (when σ is small). We proposed a pair of

functions that may meet this criteria. The first relates σ to time, the longer the system learns,

the smaller the value of σ (down to a small positive constant). Alternatively, we may describe σ

as a function of V (t, x), relating lower values of V (t, x), indicative of more focussed learning, to

smaller values of σ. We should be aware that both of these methods may only be applicable when

subsequent stimuli are uncorrelated.

Towards the latter parts of Chapter 2 we considered the shaping of the system when the stimuli

is a multi-dimensional vector. Although the simplest stimuli are associated with a single string of

input values, it is likely that a stimuli will normally consist of several components. As an example

we may conceive of a circumstance where the model is utilized to classify different sounds. In

this case each stimuli may be characterized by two components, one relating to volume and the

other to pitch. We show that by applying a collection of simulated two-dimensional stimuli to a

potential V (t, x1, x2), the plane (x1, x2) is partitioned into basins of attraction relating to each

fixed point of the system. Each fixed point is associated with a class of information stored by the

model. A human learner may simultaneously interpret stimuli regarding sight, smell, sound and

touch. From the perspective of our model, several dimensions may be required to characterize each

of these faculties. The dimensionality of the system may be particularly high if temporal patterns

of input are to be learnt and retained. It is clear that the dimensionality of the potential V (t,x)

may always be increased to accommodate the complexity of the stimuli.

In Chapter 3 we investigated the logical extension from a contrived, simulated stimuli, to learning

in a more complex real world environment. This testing of the model is necessary to highlight the

scope of the system’s applicability. Here we presented an experiment that demonstrated how the

system automatically forms classes when presented with three-dimensional RGB inputs. In this

investigation RGB inputs define colours prescribed by a web-camera observing cartoons displayed

on a LCD monitor. The system was shown to autonomously cluster and recognize similar colours.

The classes formed by the system were again represented by attracting fixed points with basins

partitioning an RGB space. We showed how unfamiliar stimuli, selected at regular time intervals,

could be identified based on the information previously learnt by the system. Because the model

learns from the application of subsequent inputs, the locations of fixed points are shown to mi-

grate with time, new fixed points may emerge as new local minima of V (t, R,G,B) are formed.

Recognition is therefore a flexible process that changes depending on the current state of the po-

tential. Similar stimuli that are encountered at different time intervals are not guaranteed to be

recognized in the same way. This is not dis-similar to a human learner, as more knowledge about

an environment is obtained, we are able to draw a greater distinction between inputs and highlight

the finer details separating classes. It is clear that the model is only able to accurately recognize
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stimuli that are closely related to the environment that it has observed. If the system experiences

an environment bereft of a certain colour class, then subsequently tries to recognize a colour resem-

bling this class, it is likely that the relationship between stimuli and recognized colour will be poor.

Conversely, when colours all reside within a narrow bandwidth the system may became an expert

in differentiating between subtle differences in shade and tone. This concept may be replicated in

human populations. It would appear that different people perceive colours differently, or at least

derive a different lexigraph with which to define observed colours as a function of their experiences

[93]. Certainly some populations have been shown to demonstrate the ability to discern between

shades more rapidly than other populations [164], suggesting that the way colour is perceive is

different. This may be a result of continual exposure to an environment containing a narrow range

of similar colours [32].

The main drawback of the three-dimensional representation of colour is the extensive amount

of time taken to integrate the variables of the system. This prohibits the model from learning

on a time-scale comparable to a human observer. In the second half of Chapter 3 we explored

a method to map three-dimensional colours onto a one-dimensional spectrum. This meant that

the inputs to the learning system became single values. The advantage of this approach is a

substantial speed up in computation, however, it is shown that such mappings are incapable of

representing a diverse range of colours. Such simplifications of the input may be applicable to

certain special domains, however, for real world learning situations, the representation of colour

by a one-dimensional spectrum appears to be overly simplistic.

In Chapters 4 and 5 we considered how the dynamics of the model may be manipulated to

demonstrate higher order, non-linear attractors such as limit cycles and quasi-periodic orbits. As

advocated by [99], the gradient type system is not the most biologically relevant or informative

way to visualize recognition. An amendment to incorporate higher order attractors is instigated by

describing recognition via a system derived from the van der Pol oscillator. The decision to model

recognition via oscillatory dynamics is motivated by more than just the fact that oscillations are

synonymous in nature. The basic fixed point attractor is able to purvey very little information

about the topology of a class beyond the location of its centre. By representing a class as a limit

cycle we are able to convey its features via both the position in the phase space and the frequency

of oscillation. The prototype of the plastic system recognizes a stimulus by assigning it to a known

class represented by a fixed point. It draws no relation between the information stored in different

classes. It would be advantageous to illustrate the relation between different classes of the system

within a hierarchical structure. As an analogy for this we may refer to our investigation of colour.

We may consider the model to represent three principal classes; red, green and blue. As the system

learns, it may start to appreciate other colours like pink; which it may consider as a sub-class of red,

or azure; that may be considered a subclass of blue. If the system were to receive a stimulus that

closely resembled the colour azure, we would like recognition to be characterized by an attractor

that not only identifies the stimulus as azure, but also highlights that this is a subclass of blue.

The attractors of the system should illustrate the relationships between different classes. This

information cannot be conveyed by a fixed point. We postulate that higher order attractors such

as limit cycles, quasi-periodic orbits and chaos may be able to characterize such relations. We

speculate that a hierarchical framework may be represented by a series of different attractors. A

fixed point may represent the lowest sub-class of the system, whilst a larger class may be defined

by a limit cycle, the class above this may be characterized by a two-dimensional tori and a yet
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larger class may be demonstrated by a three-dimensional tori. We should then consider a pyramid

structure where each step of the pyramid is represented by a higher order tori. Eventually the

increasing of tori dimensions may lead to a chaotic type attractor. The search for higher order

attractors related to the plastic learning system is detailed in Chapters 4 and 5.

In Chapter 4 we studied methods to relate the potential V (t, x) of the learning system to the

van der Pol oscillator in order to represent the classes of system with limit cycle trajectories. We

first considered replacing the potential term of the van der Pol system with V (t, x), defined by the

learning system. The single fixed point of the van der Pol system would then be replaced by an

ensemble of fixed points determined by the distribution of stimuli. It was hypothesised that a Hopf

bifurcation about any fixed point would lead to a unique limit cycle encapsulating that point. This

notion was proven inaccurate by considering a VDP system with three fixed points. The phase

space was shown to only contain a single limit cycle. This offered little scope for distinguishing

between the different classes of the system. To overcome this we contemplated the parabolic shape

indicative of the van der Pol system’s potential. It is possible to represent the local topology of

V (t, x) about any point with a Taylor expansion and so model V (t, x) as a series of parabolas.

Each parabola may then define the potential of the van der Pol system in the region of a local

minimum. Oscillatory trajectories are shown to cycle around a fixed point that migrates with time

towards a minimum of V (t, x). The frequency associated with this trajectory is dependent on the

curvature of V (t, x), frequency may therefore be considered to indicate the relative width of a class.

We may explain the appeal of this utilizing an analogy to colours: The location of the attractor

may indicate the colour, but the frequency of oscillation will highlight how wide this class is. A

class may encapsulate the colours pink, red and orange, whilst the centre of the class corresponds

to red. It is useful to know that the class also contains these other colours. More stimuli may

cause the formation of three distinct classes, one relating to each colour. The frequency related to

each cycle will indicate the reduction in class size.

Throughout Chapter 4 we focussed on the basic case where stimuli are one-dimensional. Increas-

ing their dimensionality adds complexity as we have to consider how the different dimensions of

the system should interact to describe recognition. In Chapter 5 we considered the case where the

stimuli are two-dimensional, before starting to extend our analysis to a three-dimensional stim-

ulus. For the two-dimensional case, stimuli are associated with the characteristic directions x1

and x2. We made the logical extension to associate each dimension with its own oscillator. A

stimulus η = (η1, η2) is therefore associated with a pair of oscillators, that demonstrate properties

dependent on V (t,x). The frequency of each oscillator is then dependent on the curvature at

a minimum of V (t,x) in the characteristic directions x1 and x2. Referring to our requirement

that different classes within the phase space are associated with different attractors, we showed

that limit cycles, quasi-periodicity and oscillation death may all be present when oscillators are

dissipatively coupled. The behaviour of the system was shown to depend on the curvature of the

potential and on the relationship between the coupling strength BD and non-linearity parameter

ε. The existence of different attractors is an important ingredient to create a hierarchical learning

framework. We note that the bifurcation separating the oscillation death region from the quasi-

periodic region is controlled by ε and BD. As we would like to represent different classes by either

quasi-periodicity or oscillation death, we proposed two functions that relate ε to relevant aspects

of a classes topology.
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� ε may be related to the depth of V (t,x). We may consider that a deeper local minimum

of V (t, x1, x2) is associated with a narrower range of stimuli. When the minimum is deep

we associate this with oscillation death. A deep well may infer that the class is very well

defined and so the fixed point attractor may represent the certainty that the system has

about identifying the stimulus with this class.

� ε may be related to the level of similarity between a stimulus and the class that it is assigned

to. The parameter ε is scaled to the distance between the centre of the class and the initial

condition of the stimulus. Where this is large, the system is considered to vaguely recognize

this stimulus, this is represented by oscillation death, where the distance between stimulus

and centre of class is small, the stimulus is considered to be a good match for the class and

this relation is identified by a quasi-periodic orbit.

It should be noted that neither of these functions exclude the emergence of a limit cycle. In

each case this remains dependent on the similarity between the curvatures in each characteristic

dimension. The effect of manipulating ε via either of these approaches is still observed for a limit

cycle trajectory, as the adjustment of the parameter has implications on the topology of the cycle.

The primary achievement that should be emphasised is that an attractor representing a class

is always dependent on the distribution of stimuli. We can therefore appreciate the knowledge

retained by the system based on the recognition of a stimulus.

The implications of increasing the dimensionality of the stimulus to three or more dimensions are

not yet fully understood. In the latter half of Chapter 5 we began to develop an appreciation of the

dynamics of three coupled oscillators as this presents the logical next step from the two-dimensional

stimulus consideration. Three oscillators would be required to represent the recognition of classes

built using a three-dimensional stimuli. Before we may relate the learning system to a set of three

oscillators it is important to understand the dynamics of such systems. The theory relating to three

mutually coupled oscillators is much less developed than for a pair of oscillators. We therefore

began by considering the bifurcation structure of the system. This is necessary so that we may

select appropriate system parameters that permit informative bifurcations. It is also important to

know the range of attractors that may be permitted. The existence of three-dimensional tori, two-

dimensional tori, limit cycles and oscillation death are all demonstrated. As our analysis remains

incomplete, we cannot exclude the possibility of other attractors appearing for certain parameter

ranges. Here we focussed on the bifurcations that occurred as ω1, ω2 and ω3 were varied. These

are the three natural frequencies describing the curvature in the three characteristic directions

x1, x2 and x3. Despite our understanding of such systems being incomplete, we demonstrated

the emergence of different attractors corresponding to the coloured RGB examples discussed in

chapter 3.

It is clear that further investigation is required to adequately demonstrate the effect that in-

creasing the dimensionality has on this new model of recognition. The extension of this approach

to consider an N-dimensional stimuli would require the coupling of N oscillators and at this stage

it is not clear how these will behave. Based on our analysis of 1-3 coupled oscillators we may

speculate that the system’s parameter space will permit the existence of fixed points, limit cycles

and an array of higher-order tori whose dimension will be up to N-1. Future developments of this

system should focus on exploring these higher-order attractors and should consider how they may

be related to a theory of hierarchy. It is clear that the computational demands for high-dimensional
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systems will be expensive. It would appear that dedicated hardware may be required to assimilate

these stimuli in real-time. This presents a difficult engineering challenge as the system is very

different from the architectures currently utilized within AI. Nevertheless, an engineering solution

may be required if this new model is to gain traction within the field.

In summary, we have explored a new type of self-shaping system that completely adjusts its vec-

tor field in response to an applied stimuli. Such classes of dynamical system have thus far received

little attention. This dissertation is one of the first attempts to systematically study a system

of this type. The new model is shown to simultaneously classify and recognize inputs, without

the influence of external supervision. We began our investigation by contrasting this method to

the mainstream approaches found within the AI field. We indicated the advantages of this new

paradigm, and tested the prototype system for a range of complex stimuli including RGB inputs

obtained experimentally utilizing a web-camera. After highlighting the deficiencies of gradient

descent, we studied the van der Pol oscillator as a basis to develop an alternative representation

of recognition, reliant on the concepts of non-linear dynamics. This approach was motivated by

a desire to create a hierarchy which would highlight the associations between different classes of

the system. Finally we considered the extension of the model when the potential, characterising

the memory of the system, is multi-dimensional. Utilizing the concepts of synchronization and

coupling it was shown that the classes of the system can be characterized by a number of unique

phase-space attractors. Representing a class of the system by a higher-order attractor is shown to

permit a more complete description of the properties of a class.
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Appendix A

Appendix

A.1 Runge-Kutta Numerical Integration

The Runge-Kutta method has been shown to numerically provide more accurate solutions to

differential equations than many others approaches. This is particularly apparent if we consider it

against the commonly utilized Euler Method [150]. Differential equations are solved by computing

the next iterative step based on 4 estimates of slope between subsequent time units. These slope

estimates are then weighted and used to determine the average slope [150]. The Runge-kutta

method for the differential equation:

ẋ = F (t, x (t)) x (t0) = x0 (A.1)

Takes the form:

K1 = h.F (tn, xn)

K2 = h.F (tn + (1/2)h, xn + (1/2)K1)

K3 = h.F (tn + (1/2)h, xn + (1/2)K2)

K4 = h.F (tn + h, xn +K3)

tn+1 = tn + h

xn+1 = xn + 1/6 (K1 + 2K2 + 2K3 +K4)

(A.2)

Each of the K values is a measure of the slope between xn and xn+1 at different points on this

interval. The variable h is referred to as the integration step size, to aid accuracy a small value

should be chosen. Note that the differential equation has been transformed into a difference

equations. The errors in the Runge-Kutta values are of the order h5 per step and h4 cumulatively.

A.2 The Box-Muller Transformation

There are several ways to transform numerically generated, uniformly distributed, random num-

bers into Gaussian distributed random numbers. These include the inverse transform sampling

method [108] and the Ziggurat algorithm [98]. Possibly the most well used method is the Box-

Muller Transform [16]. This appears in two forms. The first is perhaps the most basic:
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Given uniform deviates U1 and U2 on the interval (0, 1):

z0 =
√
−2lnU1cos (2πU2)

z1 =
√
−2lnU1sin (2πU2)

(A.3)

Where z0 and z1 are Gaussian distributed random numbers.

The second method uses polar co-ordinates:

Given that U1 and U2 are uniformly distributed random number on the closed interval (−1, 1):

z0 =
√
−2lnR2

(
U1

R

)
= U1

√
−2lnR2

R2

z1 =
√
−2lnR2

(
U2

R

)
= U2

√
−2lnR2

R2

(A.4)

Here R =
√
−2.lnU1. Again, z0 and z1 are Gaussian distributed random numbers.

Both of these methods require the input of pairs of uniformly distributed random numbers and

return comparable Gaussian distributed values. The difference in uniform input ranges for the two

methods should be noted. For computer simulation the polar form of the Box-Muller transform is

less computationally demanding as it does not require the use of trigonometric functions. The polar

form differs from the basic method in that it is a type of rejection sampling, typically ‘throwing

away’ 1− π/4 ≈ 21.46% of the total input uniformly distributed random number pairs [128].
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A.3 Realizations of Colour Learning

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure A.1: Each row corresponds to a different time moment. The stimulus is equivalent to that
utilized in figure 3.8 for the cartoon Southpark. Here we demonstrate the profile at much earlier
time instances. Each row depicts three projections of the potential and highlights the locations
of the local minima. The colour of a minima relates to its location within the RGB space whilst
the size of the point relates to the depth of the well. The rows correspond to the time moments
t = 5, 10, 15, 20, 40, 80, 160, 200. As with the previous demonstration for this stimulus σ =

√
0.5.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure A.2: Each row corresponds to a different time moment. The stimulus is equivalent to that
utilized in figure 3.11 for the cartoon Futurama. Here we demonstrate the profile at much earlier
time instances. Each row depicts three projections of the potential and highlights the locations of
the local minima. The colour of a minimum relates to its location within the RGB space whilst
the size of the point relates to the depth of the well. The rows correspond to the time moments
t = 5, 10, 15, 20, 40, 80, 160, 200. As with the previous demonstration for this stimulus σ =

√
0.5.
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A.4 The Truncated Equations for a Pair of Coupled van der

Pol Oscillators

Starting from the differential equations:

ẍ1 − ε1

(
1− x2

1

)
ẋ1 + ω2

1x1 +BR (x1 − x2) +BD (ẋ1 − ẋ2)

ẍ2 − ε2

(
1− x2

2

)
ẋ2 + ω2

2x2 +BR (x2 − x1) +BD (ẋ2 − ẋ1)
(A.5)

We begin by looking for solutions of the form:

x1,2 = A1,2 (t) cos (ωt+ ϕ1,2 (t)) =
1

2

(
a1,2 (t) eiωt + a∗1,2 (t) e−ωt

)
(A.6)

Here A1,2 is the amplitude, ω is the frequency and ϕ1,2 are the relative phases of oscillation. a1 and

a2 are complex amplitudes, these form complex conjugate pairs with a∗1,2. The complex amplitudes

are related to the real amplitudes by: a1,2 = A1,2e
ϕ1,2 and a∗1,2 = A1,2e

−iϕ1,2 . Ambiguity is

introduced by the phase variables A1,2 (t) and ϕ1,2 (t). This can be overcome if we introduce

the condition that ẋ1,2 = −A1,2ωsin (ωt+ ϕ1,2). Here we have dropped the notation of time

dependence, however, we should stress that is purely for succinctness. Taking the derivative of

equation (A.6) with respect to time:

ẋ1,2 = Ȧ1,2cos (ωt+ ϕ1,2)−A1,2ωsin (ωt+ ϕ1,2)−A1,2ϕ̇1,2sin (ωt+ ϕ1,2)

=
1

2

(
ȧ1,2e

iωt + a1,2iωe
iωt + ȧ∗1,2e

−iωt − a∗1,2iωe−iωt
) (A.7)

and including the condition ẋ1,2 = −A1,2ωsin (ωt+ ϕ1,2):

Ȧ1,2cos (ωt+ ϕ1,2)−A1,2ϕ̇1,2sin (ωt+ ϕ1,2) = ȧ1,2e
iωt + ȧ∗1,2e

−iωt = 0 (A.8)

and so:

ẋ1,2 =
iω

2

(
a1,2e

iωt − a∗1,2e−iωt
)

ẍ1,2 =
iω

2

(
ȧ1,2e

iωt + a1,2iωe
iωt − ȧ∗1,2e−iωt + a∗1,2iωe

−iωt)

=
iω

2

(
ȧ1,2e

iω − ȧ∗1,2e−iωt
)
− ω2

2

(
a1,2e

iωt + a∗1,2e
−iωt)

=iωȧ1,2e
iωt − ω2

2

(
a1,2e

iωt + a∗1,2e
−iωt)

(A.9)

Substituting these derivative into equation (A.5) the van der Pol system can be described by:

iωȧ1,2 −
ω2

2

(
a1,2e

iωt + a∗1,2e
−iωt)− ε1,2

iω

2

(
a1,2e

iωt − a∗1,2e−iωt
)

+

ε
iω

2

(
a1,2e

iωt − a∗1,2e−iωt
)(1

2

(
a1,2e

iωt + a∗1,2e
−iωt)

)2

+
ω2

1,2

2

(
a1,2e

iωt + a∗1,2e
−iωt)

=
BR
2

(
a2,1e

iωt + a∗2,1e
−iωt − a1,2e

iωt − a∗1,2e−iωt
)

+
BDiω

2

(
a2,1e

iωt − a∗2,1e−iωt − a1,2e
iωt + a∗1,2e

−iωt)

(A.10)
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Subjected to some manipulation and multiplying through by eiωt

iω this becomes:

ȧ1,2 +

(
ω2

1,2 − ω2

2iω

)
(
a1,2 + a∗1,2e

−2iωt
)

− ε1,2

2

(
a1,2 − a∗1,2e−2iωt − a3

1,2

4
e2iωt − a∗1,2

4
a2

1,2 +
a1,2

4

(
a∗1,2

)2
e−2iωt +

(
a∗1,2

)3

4
e−4iωt

)

=
BR
2iω

(
a2,1 + a∗2,1e

−2iωt − a1,2 − a∗1,2e−2iωt
)

+
BD
2

(
a2,1 − a2,1e

−2iωt − a1,2 + a∗1,2e
−2iωt

)

(A.11)

We may assume that a1,2 are slow functions of time. Taking this into consideration we may apply

the Krylov-Bogoluibov method [85] and take an average over the period T . This ensures that the

average value of terms containing e−i2ωt, ei2ωt and e−i4ωt equals zero. Hence

ȧ1,2 −
(
ω2

1,2 − ω2

2ω

)
ia1,2 −

ε1,2

2

(
a1,2 −

a∗1,2
4
a2

1,2

)
=

(
BD
2
− BRi

2ω

)
(a2,1 − a1,2) (A.12)

If we then represent this in terms of real amplitudes A1,2:

Ȧ1,2e
iϕ1,2 +A1,2iϕ̇1,2e

iϕ1,2 −
(
ω2

1,2 − ω2

2ω

)
iA1,2e

iϕ1,3 − ε1,2

2

(
A1,2e

iϕ1,2 − A3
1,2e

iϕ1,2

4

)

=

(
BD
2
− BRi

wω

)(
A2,1e

iϕ2,1 −A1,2e
iϕ1,2

)
(A.13)

Dividing through by e1ϕ1,2 :

Ȧ1,2 +A1,2iϕ̇1,2 −
(
ω2

1,2 − ω2

2ω

)
iA1,2 −

ε1,2

2

(
A1,2 −

A3
1,2

4

)
=

(
BD
2
− BRi

2ω

)(
A2,1e

i(ϕ2,1−ϕ1,2) −A1,2

)

(A.14)

This can then be re-written in terms of the functions cos and sin utilizing Euler formula:

Ȧ1,2 +A1,2iϕ̇1,2 =

(
ω2

1,2 − ω2

2ω

)
iA1,2 +

ε1,2

2

(
A1,2 −

A3
1,2

4

)

+

(
BD
2
− BRi

2ω

)
(A2,1 (cos (ϕ2,1 − ϕ1,2) + isin (ϕ2,1 − ϕ1,2))−A1,2)

(A.15)

Separating real and imaginary parts:

Ȧ1 =
ε1

2

(
A1 −

A3
1

4

)
+
BD
2

(A2cos (ϕ2 − ϕ1)−A1) +
BR
2ω

A2sin (ϕ2 − ϕ1)

ϕ̇1 =
ω2

1 − ω2

2ω
+
BD
2

A2

A1
sin (ϕ2 − ϕ1)− BR

2ω

A2

A1
cos (ϕ2 − ϕ1) +

BR
2ω

Ȧ2 =
ε2

2

(
A2 −

A3
2

4

)
+
BD
2

(A2cos (ϕ1 − ϕ2)−A2) +
BR
2ω

A1sin (ϕ1 − ϕ2)

ϕ̇2 =
ω2

2 − ω2

2ω
+
BD
2

A1

A2
sin (ϕ1 − ϕ2)− BR

2ω

A1

A2
cos (ϕ1 − ϕ2) +

BR
2ω

(A.16)
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Fianlly introducing θ = ϕ2 − ϕ1 and ∆ =
ω2

2−ω
2
1

2ω (where ω ≈ ω1,2) we may define the truncated

equations for the van der Pol system as:

Ȧ1 =
ε1

2

(
A1 −

A3
1

4

)
+
BD
2

(A2cos (θ)−A1) +
BR
2ω

A2sin (θ)

Ȧ2 =
ε2

2

(
A2 −

A3
2

4

)
+
BD
2

(A1cos (θ)−A2)− BR
2ω

A1sin (θ)

θ̇ = ∆− BD
2
sin (θ)

(
A2

A1
+
A1

A2

)
+
BR
2ω

cos (θ)

(
A2

A1
− A1

A2

)
(A.17)

A.5 The Truncated Equations for Three Coupled van der

Pol Oscillators

For a set of three dissipatively coupled oscillators the system may be described by the differential

equation:

ẍ1,2,3 − ε1,2,3

(
1− x2

1,2,3

)
ẋ1,2,3 + ω2

1,2,3x1,2,3 +BD ((ẋ1,2,3 − ẋ2,3,1) + (ẋ1,2,3 − ẋ3,1,2)) = 0

(A.18)

As presented in section A.4 we may introduce the complex amplitude and define:

x1,2,3 =
1

2

(
a1,2,3e

iωt + a∗1,2,3e
−iωt)

ẋ1,2,3 =
iω

2

(
a1,2,3e

iωt − a∗1,2,3e−iωt
)

ẍ1,2,3 =iωȧ1,2,3e
iωt − ω2

2

(
a1,2,3e

iωt + a∗1,2,3e
−iωt)

(A.19)

Inserting these functions into equation (A.18) and manipulating terms the differential equation

may take the form:

ȧ1,2,3 +

(
ω2

1,2,3 − ω2

2iω

)
(
a1,2,3 + a∗1,2,3e

−2iωt
)

+
ε1,2,3

2

(
a3

1,2,3

4
e2iωt +

a2
1,2,3a

∗
1,2,3

4
− a1,2,3a

∗2
1,2,3

4
e−2iωt − a∗31,2,3

4
e−4iωt + a∗1,2,3e

−2iωt − a1,2,3

)

+
BD
2

(
2a1,2,3 − 2a∗1,2,3e

−2iωt − a2,3,1 + a∗2,3,1e
−2iωt − a3,1,2 + a∗3,1,2e

−2iωt
)

= 0

(A.20)

Then applying the Krylov-Bogoliubov method of averaging:

ȧ1,2,3 −
(
ω2

1,2,3 − ω2

2ω

)
ia1,2,3 +

ε1,2,3

2

(
a2

1,2,3a
∗
1,2,3

4
− a1,2,3

)

+
BD
2

(2a1,2,3 − a2,3,1 − a3,1,2) = 0

(A.21)
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Expressing this in terms of real amplitude A1,2,3 and phase ϕ1,2,3 (note that a1,2,3 = A1,2,3e
ϕ1,2,3

and a∗1,2,3 = A1,2,3e
−iϕ1,2,3) we arrive at:

Ȧ1,2,3e
iϕ1,2,3 +A1,2,3iϕ̇1,2,3e

iϕ1,2,3 −
(
ω2

1,2,3 − ω2

2ω

)
iA1,2,3e

iϕ1,2,3 +
ε1,2,3

2

(
A3

1,2,3

4
eiϕ1,2,3 −A1,2,3e

iϕ1,2,3

)

+
BD
2

(
2A1,2,3e

iϕ1,2,3 −A2,3,1e
iϕ2,3,1 −A3,1,2e

iϕ3,1,2
)

= 0

(A.22)

Dividing equation (A.22) through by eiϕ1,2,3 and rewriting in terms of sine and cosine:

Ȧ1,2,3 +A1,2,3iϕ̇1,2,3 −
(
ω2

1,2,3 − ω2

2ω

)
iA1,2,3 +

ε1,2,3

2

(
A3

1,2,3

4
−A1,2,3

)

+
BD
2

(2A1,2,3 −A2,3,1 (cos (ϕ2,3,1 − ϕ1,2,3) + isin (ϕ2,3,1 − ϕ1,2,3)))

− BD
2

(A3,1,2 (cos (ϕ3,1,2 − ϕ1,2,3) + isin (ϕ3,1,2 − ϕ1,2,3))) = 0

(A.23)

If we then separate real and imaginary parts:

Ȧ1 =
ε1

2

(
A1 −

A3
1

4

)
− BD

2
(2A1 −A2cos (ϕ2 − ϕ1)−A3 (ϕ3 − ϕ1))

ϕ̇1 =

(
ω2

1 − ω2

2ω

)
+
BD
2

(
A2

A1
sin (ϕ2 − ϕ1) +

A3

A1
sin (ϕ3 − ϕ1)

)

Ȧ2 =
ε2

2

(
A2 −

A3
2

4

)
− BD

2
(2A2 −A3cos (ϕ3 − ϕ2)−A1 (ϕ1 − ϕ2))

ϕ̇2 =

(
ω2

2 − ω2

2ω

)
+
BD
2

(
A3

A2
sin (ϕ3 − ϕ2) +

A1

A2
sin (ϕ1 − ϕ2)

)

Ȧ3 =
ε3

2

(
A3 −

A3
3

4

)
− BD

2
(2A3 −A1cos (ϕ1 − ϕ3)−A2 (ϕ2 − ϕ3))

ϕ̇3 =

(
ω2

3 − ω2

2ω

)
+
BD
2

(
A1

A3
sin (ϕ1 − ϕ3) +

A2

A3
sin (ϕ2 − ϕ3)

)

(A.24)

Introducing the phase differences θA = ϕ1 − ϕ2, θB = ϕ1 − ϕ3 and θC = ϕ2 − ϕ3 these equations

may be written in the more amenable form:

Ȧ1 =
ε1

2

(
A1 −

A3
1

4

)
− BD

2
(2A1 −A2cos (θA)−A3cos (θB))

Ȧ2 =
ε2

2

(
A2 −

A3
2

4

)
− BD

2
(2A2 −A3cos (θC)−A1cos (θA))

Ȧ3 =
ε3

2

(
A3 −

A3
3

4

)
− BD

2
(2A3 −A1cos (θB)−A2cos (θC))

θ̇A =
ω2

1 − ω2
2

2ω
− BD

2

((
A2

A1
+
A1

A2

)
sin (θA) +

A3

A1
sin (θB)− A3

A2
sin (θC)

)

θ̇B =
ω2

1 − ω2
3

2ω
− BD

2

((
A3

A1
+
A1

A3

)
sin (θB) +

A2

A1
sin (θA) +

A2

A3
sin (θC)

)

θ̇C =
ω2

2 − ω2
3

2ω
− BD

2

((
A3

A2
+
A2

A3

)
sin (θC)− A1

A2
sin (θA) +

A1

A3
sin (θB)

)

(A.25)
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Abstract

As a contrasting approach to the Neural Network description of learning we present a dynamical system
modelled by differential equations capable of performing the primary tasks of artificial intelligence (classification,
retention, recognition). This work draws upon the concepts introduced by Janson [arXiv:1107.0674 (2011)].
The system shapes it phase velocity vector field in response to the received inputs, classifying stimuli in an un-
supervised manner. Recognition of stimuli occurs in parallel to class formation. A 3-dimensional phase velocity
vector field is utilized to demonstrate the systems response to stimuli received from a web-camera. The model is
shown to be able to classify and recognize colours using the RGB colour classification system.

1 Introduction

Existing approaches to AI are diverse, broadly classi-
fied into systems seeking to emulate human behaviour
or thinking patterns and those that attempt to prescribe
optimal solutions [18]. The justification of models based
on brain structure need little validation as nature has
proven that such an approach is viable. Artificial Neural
Networks (NN) have become a cornerstone of AI research
but have not yet yielded the breakthrough’s that many
researchers postulated at their inception. Other learning
constructs such as Decision Tree Learning [18], Associa-
tion Rule Learning [2], Reinforcement Learning [3], Sup-
port Vector Machines [21] and Genetic Algorithms [13]
have met with limited success however each approach is
restricted to certain well-defined classes of problems. A
machine capable of emulating human levels of intelligence
appears to be far from realizable.

Due to a lack of biological knowledge NN research
takes a somewhat trial and error approach. Interactions
between neural computational units and electrochemical
signals are poorly understood. Furthermore how mem-
ory and learning is inferred is a point of debate. New
insights may yet be uncovered by the ongoing research of
the European ‘Human Brain Project’ [1] and the Ameri-
can “BRAIN’ Initiative’ [14].

The current research focus on Recurrent NN’s and
deep feed-forward NN’s attempts to alleviate some of the
difficulties of classical NN models [7]. High levels of mem-
ory redundancy required to avoid spurious attractors [6]
and the related ‘curse of dimensionality’ remain princi-
pal problems. Although silicon microchip manufacturing
continues to push the frontiers of scale and performance;
capable of modelling 1 million neurons and 256 million

synapses [12], the production of neural chips with ‘brain-
like’ capacity; 120 billion neurons and 100 trillion connec-
tions [5] is somewhat beyond the scope of modern tech-
nologies. Designed for specific tasks most NN’s cannot
be re-purposed while retaining previous knowledge, more
resilient models such as Bayesian HTP [20] display better
retention however rely on reinforcement [3] or supervised
learning.

With existing AI models failing to meet expectations
new machine learning methods should be pursued. In
[8] Janson describes a new non-algorithmic, unsuper-
vised system that retains knowledge via a potential en-
ergy function and identifies stimuli utilizing its vector
field. Unlike existing machine learning routines, training
phase is not distinct, instead learning and recognition oc-
cur ‘on-line’. Devoid of rigid network architecture this
autonomous system should be exempt from the scaling
problems faced by other systems, offering an alternative
paradigm to model learning. Here we consider a problem
of machine vision and demonstrate how this new learning
paradigm can be applied.

The ability to distinguish between different colours
within a machine vision framework is limited, firstly by
the hardware used and then by the algorithms applied.
Colour recognition has been attempted with NN’s in the
context of minimizing colour matching error in a super-
vised scheme [9]. In addition NN have been used to
smooth fuzzy colour data [10].

We shall show how Janson’s model can be applied to
stimuli in the form of RGB colour triplets taken from a
real-world environment. The system uses these stimuli
to form classes of retained information and identifies new
stimuli based on what it has learnt. A complete explana-
tion of Janson’s model is presented in [8] and [11], here
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we shall only state the critical features.

Model
A time-dependant evolving profile V (t,x) is continu-
ously shaped by a stimuli η ∈ x. This shaping utilizes
the stacking properties of the Gaussian function to en-
sure smoothness and continuity. V (t,x) contains all the
information pertaining to the classification of stimuli, its
evolution is described by differential equation 1a. Bi-
ological systems tend to forget information that is not
regularly re-enforced. This idea is introduced by the term
−kV (t,x). By manipulating the constant k we control
the rate at which local minima disappear. Local minima
of the profile represent retained knowledge. In parallel to
the formation of the landscape V (t,x) recognition can be
characterized by the gradient of the energy profile func-
tion. Any stimuli will be assigned to a class as prescribed
by equation 1c, γ reflects the rate at which a stimuli is
recognized and ξ (t) is a source of noise.

∂V (t,x)

∂t
= −1

t
(V (t,x) + g (x− η))− kV (t,x) (1a)

g (z) =
1

√
2πσ2

N
exp

(
z2

σ2

)
(1b)

dx

dt
= −γ ∂V (x, t)

∂x
+ ξ (t) (1c)

The parameter σ controls the width of the normalized
Gaussian function. If the Gaussian is excessively wide
then the number of classes that present will be restricted.
In contrast an excessively narrow Gaussian will impair
the functionality of the system as and longer time-scales
will be required if the system is to converge to a suitable
time-averaged density of inputs. In the context of the
following results we consider a 3-dimensional model, as
such N = 3 and x = (xR, xG, xB).

Machine Representation of Colour
It is evident that within an animal population the ability
of the eye to differentiate between colours can be affected
by factors such as: age, fatigue and visual impairments.
Consider for instance that approximately 8% of US males
with Northern European ancestory had Red-Green colour
blindness as of April 2011 [15]. We should also mention
that 2 people may percieve the same colour completely
differently however assign the same ‘label’ or ‘name’ to it
[22]. It is also possible that colour-class boundaries are
not consistent between different populations [4]. Deter-
mining if this is the case presents a considerable problem
as we cannot simply swap input device and compare re-
sults. The average trichromatic human is able to perceive
1 million colours, far below the number of unique colours
represented by the RGB colour palette. A machine vision
model is not limited to the realms of human vision and
may hope to appreciate a far greater number of colours.
Furthermore the incorporation of stimuli from the entire
range of the electromagnetic spectrum may be possible.

Consider what advantages there could be for a learning
system capable of understanding stimuli emitted within
the infra-red range or ultra-violet regions. The world
we see with our eyes is limited by the receptors we pos-
sess, increasing the range of sensitivity would completely
transform the world we perceive. Equally a reduction in
sensitivity would have a similar effect. In the case of our
machine learning model we are again limited by recep-
tors, the colour range of our web-camera is significantly
inhibited by low light intensity levels. In contrast the
human eye contains as many as 6 million cones cells, sen-
sitivity is therefore much greater than for the standard
camera. This hardware concern should be considered
when comparing the performance between biological and
artificial.

2 Methods

Stimuli to the system are provided in the form of RGB
triplets defining the colour of the central pixel of a web
camera. The RGB Colour scheme is an additive method
of representing colours, taking 3 principal light beams
(Red,Green,Blue) and adding their light spectra [16].
This process was initially intended to mirror the action of
the 3 principal types of cone cells found in the human eye
[19],[24],[23]. Within a digital framework each component
takes a value between 0-256, this infers a finite range of
colours rather than a continuous spectrum. Thankfully
the discretized 16581375 distinct colours provides a more
than adequate approximation of a continuous spectrum.
Unfortunately this level of acuity is unlikely to be recog-
nized due to insufficient hardware/software sensitivity.

Stimuli η = (ηR, ηG, ηB) are applied to a 3-
dimensional version of Jansons model. As such a graph-
ical demonstration of the evolution of V (t, xR, xG, xB)
cannot be realized. We can however observe projections
of the profile against 2 of the 3 principal dimensions at
finite time intervals. We can also consider the positions of
the local minima within the 3-dimensional (xR, xG, xB)
space. Combining these methods should enable us to gain
a clear understanding of the systems attractors at any
point in time. Of greater interest is the recognition of
stimuli. This can be observed in the same (xR, xG, xB)
space as the local minimas and can also be demonstrated
by the direct comparison of colour.

In order to ensure a diverse stimuli we position our
web-camera (Logitech HD 720p C270) to observe an LCD
monitor playing the popular cartoon ‘South park’. Gaus-
sian width parameter σ is set to

√
0.3 and the range

0-256 is constrained onto the scope 0-10. We also set
k = 0, which infers the system does not forget. Recog-
nition is characterised by the rate parameter γ = 1 and
system noise is neglected. 2 million stimuli are input to
the model (equations 1a,1c) which is numerically inte-
grated using a 4th order Runge-Kutta method [17] with
an integration step width of 0.001. Light intensity lev-
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els are not regulated however remain relatively moderate
throughout. Because of the low frame-rate of the camera,
which is further reduced by our coding we choose to slow
the video playback speed by 50% so that each presented
colour can be appreciated. The video is allowed to run in
a continuous loop until the model terminates at t = 2000.

3 Results

The world of cartoon possesses a wealth of vibrant colours
making cartoons such as ‘South park’ ideal candidates for
the exploration of this approach. A visualization of the
Recognition of an ensemble of 1361 stimuli encountered
at various time moments on the interval 0 : 2000 is pro-
vided in figure 1. These stimuli are recognized ‘on-line’
while the system continues to learn. The energy land-
scape characterizing class formation cannot be entirely
visualized graphically, however we can consider projec-
tions of this as shown in figures 3a,3b,3c. More accessible
and complementary are the positions of local minima in
the RGB space, these can be considered the most signif-
icant time evolving variables (local minima infer distinct
classes). Figure 2 demonstrates the location of all local
minima at several discrete time intervals. The colour of
each point is related to location and size is scaled to the
depth of the potential well. To demonstrate the basins of
attraction of each class we can consider the same gradi-
ent descent routine used for stimuli recognition. Taking
the stationary energy landscape for t = 2000 a mesh of
initial points can be allowed to evolve. The evolution of
these points is shown in figures 4b and 4c from different
viewpoints. The corresponding colour classes are given in
figure 4a. Basin size can be observed at any moment by
this approach. In figures 4b and 4c line colour indicates
the class to which the point will converge. During general
operation this learning system will automatically perceive
and classify huge arrays of stimuli while recognizing the
class to which certain selected stimuli belong.

Figure 1: Recognition of an ensemble of stimuli during
the active formation of classes (while the system contin-
ues to learn). Stimuli are shown on the top row with
recognized colour classes below.

Figure 2: Evolution of the local minima of the energy
landscape at discrete times. The colour of each point
corresponds to the position in RGB space while the size
of a point is scaled to the depth of the local minima.

(a) (b)

(c)

Figure 3: (a)-(c):Projections of the the energy profile
V (t, R,G,B) at t = 2000 on the 3 pairs of axis (R,G),
(R,B) and (G,B).

3



(a)

(b)

(c)

Figure 4: (a):Colour Classification of an array of RGB
colours (top) and their associated classes (bottom). En-
ergy Potential is fixed at the landscape for t = 2000.
(b),(c): Gradient descent to local minima (class), ini-
tial and final states corresponding to those shown in (a).
Colour infers the final class to which a stimuli is at-
tributed. The sizes of each basin of attraction can be
inferred.

4 Discussion

Distinct classes emerge that are represented by the local
minima of the potential energy function. Classes are suc-
cessfully realized by gradient descent demonstrating the
recognition of a stimuli based on the knowledge retained
by the system. The rate of convergence to the minima
of a class is associated with the parameter γ. Control of
this parameter may be related to the urgency/focus of the
learning system. Since the energy profile continuously re-
ceives stimuli the basin of attraction for a given attractor
in phase space is continuously adjusted, the recognition
rate parameter may therefore directly influence the classi-
fication of a stimuli. From a human learning perspective
this may be perceived as ‘thinking time’, decisions made
in haste are less likely to be optimal compared to those
where more time is exceeded. Selecting a rate of conver-
gence that is too high may result in sub-optimal stimuli
class recognition. From an evolving time perspective the
system is not guaranteed to always recognized identical
stimuli as belonging to the same class. A class recognized
at one moment in time may no longer exist at a subse-
quent moment. New experiences since that stimuli was
last encountered can have a dramatic effect on recogni-
tion. This feature is indicative of human learners where
greater experience of a subject allows us to make more
accurate decisions and better asses our environment. The
depth of a local minima within the potential energy land-
scape (figure 3) infers the rate of convergence, a narrow
deep well can be considered a well defined class, a stimuli
within this class is recognized rapidly. Broader shallower
potential well’s result in a longer convergence time and
may also be considered to be less well defined, reflect-
ing a vague knowledge. When considering the efficacy of
the model it is important to consider the limitations of
the hardware. The success of the routine is emphasized
when one considers the home computing, budget equip-
ment utilized. If we consider the Acer monitor to be cor-
rectly calibrated then we can compare the known RGB
values to colours detected by the hardware/software. Fig-
ure 5a compares the known colour, the colour observed by
the web camera and the colour identified by our code. By
‘observed colour’ we refer to the colour observed by com-
mercial web camera software whilst the camera observes
the screen. Standard indoor lighting conditions are main-
tained. The limitations of the hardware are made appar-
ent by figure 5b where the observed colour is not linear
with screen colour. Problems exist at the extremes of
the RGB range and observed colour intensity is generally
deficient. In contrast figure 5c presents an almost lin-
ear relationship between observed colour and the colour
identified by our code. This suggests that any differences
between colours perceived by a human learner and those
learnt by our artificial system, whilst observing the same
input, are a result of the hardware receptors used rather
than the learning methodology.

4



(a)

(b)

(c)

Figure 5: (a): Comparison between the screen colour,
the observed colour (screenshot of webcamera software)
and output RGB colour. (b): A graphical comparison
of the screen colour and the observed colour. The opti-
mal case is described by the line x = y. (c): Observed
Colour against Output colour. Note that the colour of
the marker matches the corresponding component of the
RGB value.

If we re-consider the earlier comments referring to the
differing levels of visual acuity within biology then these
hardware limitations can be perceived as having negli-
gible effect on our overall goal. We effectively classify
stimuli that are received by our artificial system, there
is no requirement that machine vision should perceive
colours equivalent to those inferred by humans. Repeat-
ing the routine with a superior web camera is expected to
improve the correlation between what a human observes
and the colours learnt. The functionality of the learning
model would remain unchanged.

5 Conclusion

The system autonomously shapes its architecture in an
unsupervised manner to a received stimuli. Where this in-
put is colour data results may not exactly replicate those
of a human learner however this is due to hardware re-
strictions rather than large learning errors. Colours ob-
served by the system are attributed to classes, the char-
acteristics of a class depending on the frequency and dis-
tribution of inputs. The recognition and classification of
stimuli occur simultaneously without the need for an iso-
lated training phase. Although we have utilized colour
data the same paradigm can be applied to any learning
goal. Previous work ([8]) has featured auditory stimuli.
Increasing the dimensionality of the system should allow
for the combined modelling of a vast numbers of sensory
inputs. This would however increase computational de-
mand. The development of dedicated hardware may lead
to this model becoming a viable model of Artificial In-
telligence that could out-perform current neural network
models.
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[124] I. Pastor-Dı́az and A. López-Fraguas. Dynamics of two coupled van der pol oscillators.

Physical Review E, 52(2):1480, 1995.

[125] W. H. Payne, J. R. Rabung, and T. P. Bogyo. Coding the lehmer pseudo-random number

generator. Communications of the ACM, 12(2):85–86, 1969.

[126] A. Pikovsky, M. Rosenblum, and J. Kurths. Synchronization: a universal concept in nonlinear

sciences, volume 12. Cambridge university press, 2003.

[127] E. J. Powers, D. Gray, R. C. Green, S. Levialdi, V. Cantoni, and V. Roberto. Artificial

Vision: Image Description, Recognition, and Communication. Academic Press, 1996.

[128] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in

C (2nd ed.): the art of scientific computing. Cambridge University Press, New York, NY,

USA, 1992.

[129] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in C,

volume 2. Citeseer, 1996.

[130] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[131] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[132] R. H. Rand and P. J. Holmes. Bifurcation of periodic motions in two weakly coupled van

der pol oscillators. International Journal of Non-Linear Mechanics, 15(4):387–399, 1980.

[133] I. Riedel, P. Gueguen, F. Dunand, and S. Cottaz. Macroscale vulnerability assessment of

cities using association rule learning. Seismological Society of America, 85(2):295–305, 2014.

[134] H. Risken. The Fokker-Planck Equation: Methods of Solution and Applications. Springer

Series in Synergetics, 1996.

[135] R. Rojas. Neural networks: a systematic introduction. Springer, 1996.

[136] K. Rompala, R. Rand, and H. Howland. Dynamics of three coupled van der pol oscillators

with application to circadian rhythms. Communications in Nonlinear Science and Numerical

Simulation, 12(5):794–803, 2007.

[137] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. Cognitive modelling, 1988.

[138] D. E. Rummelhart. Learning representations by back-propagating errors. Nature, 323(9):533–

536, 1986.

[139] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2009.

180



[140] A. P. Saygin, I. Cicekli, and V. Akman. Turing test: 50 years later. In The Turing Test,

pages 23–78. Springer, 2003.

[141] P. Sibi, S. A. Jones, and P. Siddarth. Analysis of different activation functions using back

propagation neural networks. Journal of Theoretical and Applied Information Technology,

47(3):1344–1348, 2013.

[142] P. K. Simpson. Artificial neural systems. Pergamon, 1990.

[143] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms. Springer, 2008.

[144] T. Smith and J. Guild. The cie colorimetric standards and their use. Transactions of the

Optical Society, 33(3):73, 1931.

[145] A. Stevenson. Oxford dictionary of English. Oxford University Press, 2010.

[146] D. W. Storti and R. H. Rand. Dynamics of two strongly coupled van der pol oscillators.

International Journal of Non-Linear Mechanics, 17(3):143–152, 1982.

[147] R. L. Stratonovich. A new representation for stochastic integrals and equations. SIAM

Journal on Control, 4(2):362–371, 1966.

[148] S. H. Strogatz. From kuramoto to crawford: exploring the onset of synchronization in

populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143(14):1 – 20, 2000.

[149] S. H. Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology and

chemistry. Perseus publishing, 2001.

[150] K. A. Stroud and D. J. Booth. Engineering mathematics. palgrave macmillan, 2013.

[151] C. Tenreiro and R. Elgueta. Modeling the sleep–wake cycle using coupled van der pol oscil-

lators. Biological Rhythm Research, 41(2):149–157, 2010.

[152] G. Teschl. Ordinary differential equations and dynamical systems, volume 140. American

Mathematical Soc., 2012.

[153] A. Tocino and R. Ardanuy. Rungekutta methods for numerical solution of stochastic dif-

ferential equations. Journal of Computational and Applied Mathematics, 138(2):219 – 241,

2002.

[154] A. M. Turing. Computing machinery and intelligence. Mind, pages 433–460, 1950.

[155] U.S. Department of Health & Human Services (HHS). the BRAIN Initiative. http://www.

nih.gov/science/brain/, 2013. [Online; accessed 26-August-2014].

[156] B. Van der Pol and J. Van der Mark. Lxxii. the heartbeat considered as a relaxation oscilla-

tion, and an electrical model of the heart. The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, 6(38):763–775, 1928.

[157] N. G. Van Kampen. Stochastic processes in physics and chemistry. Elsevier, 2011.

[158] M. Versichele, L. de Groote, M. Claeys Bouuaert, T. Neutens, I. Moerman, and N. van de

Weghe. Pattern mining in tourist attraction visits through association rule learning on

bluetooth tracking data: A case study of ghent, belgium. Tourism Management, 44:67–81,

2014.

181



[159] J. Walker. Colour rendering of spectra. http://www.fourmilab.ch/documents/specrend/

specrend.c, 2003. [Online; accessed 13-November-2014].

[160] G. Watts. Neuroscientists condemn european brain simulation project. BMJ, 349, 2014.

[161] M. A. Webster. Human colour perception and its adaptation. Network: Computation in

Neural Systems, 7(4):587–634, 1996.

[162] P. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sci-

ences. PhD thesis, Harvard University, Jan 1974.

[163] A. Wilson. Machine vision and image processing: Past, present, and future. Vision Systems

Design, 2013.

[164] J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky. Russian

blues reveal effects of language on color discrimination. Proceedings of the National Academy

of Sciences, 104(19):7780–7785, 2007.

[165] W. D. Wright. A re-determination of the trichromatic coefficients of the spectral colours.

Transactions of the Optical Society, 30(4):141, 1929.

[166] W. D. Wright. A re-determination of the mixture curves of the spectrum. Transactions of

the Optical Society, 31(4):201, 1930.

[167] M. Zeidenberg. Neural networks in artificial intelligence. Ellis Horwood, 1990.

[168] C. Zimmer. 100 trillion connections. Scientific American, 304(1):58–63, 2010.

182


