paper.pdf (736.18 kB)

Learning industrial robot force/torque compensation: A comparison of support vector and random forests regression

Download (736.18 kB)
conference contribution
posted on 09.01.2017 by Ali Al-Yacoub, Sara Sharifzadeh, Niels Lohse, Zahid Usman, Yee Goh, Michael Jackson
Haptics, as well as force and torque measurements, are increasingly gaining attention in the fields of kinesthetic learning and robot Learning from demonstration (LfD). For such learning techniques, it is essential to obtain accurate force and torque measurements in order to enable accurate control. However, force and torque measurements using a 6-axis force and torque sensor mounted at the end effector of an industrial robot are known to be corrupted due to the robots internal forces, gravity, un-modelled dynamics and nonlinear effects. This paper presents an evaluation of two techniques, SVR and Random Forests, to recover the external forces and accurately selected possible contact situations by estimating a robots internal forces. The performance of the learned models have been evaluated using different performance metrics and comparing them with respect to the features contained in the input space. Both SVR and Random Forests require low computational complexity without intensive training over the operational space under the given ssumptions. In addition, these methods do not need data to be available online. The SVR and Random Forests models are experimentally validated using Motoman SDA10D dual-arm industrial robot controlled by Robot Operating System (ROS). The experiments showed that force and torque compensation based on Random Forests has outperformed Support Vector Regression.


The authors acknowledge support from the EPSRC Centre for Innovative Manufacturing in Intelligent Automation, in undertaking this research work under grant reference number EP/IO33467/1.



  • Mechanical, Electrical and Manufacturing Engineering

Published in

ISAR 2016 - The International Conference on Intelligent Systems and Robotics


AL-YACOUB, A. al., 2016. Learning industrial robot force/torque compensation: A comparison of support vector and random forests regression. IN: Hamza, M.H. (ed.) International Conference on Intelligent Systems and Robotics (ISAR 2016), Zurich, Zwitzerland, 6-8th October.


© Acta Press


AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Acceptance date


Publication date



This is a conference paper.






Zurich, Zwitserland