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Life-cycle maintenance of deteriorating structures by multi-objective 

optimization involving reliability, risk, availability, hazard and cost 

Giorgio Barone1 and Dan M. Frangopol2*  

Abstract 

In recent years, several probabilistic methods for assessing the performance of structural 

systems have been proposed. These methods take into account uncertainties associated with 

material properties, structural deterioration, and increasing loads over time, among others. 

When aging phenomena have significant effects on the life-cycle performance of the structure, 

it becomes essential to perform actions to maintain or improve structural safety, in agreement 

with the system requirements and available funds. Various optimization methods and 

performance indicators have been proposed for the determination of optimal maintenance 

plans for simple and complex systems. The aim of this paper is twofold: (a) to assess and 

compare advantages and drawbacks of four different performance indicators related to multi-

objective optimization of maintenance schedules of deteriorating structures, and (b) to assess 

the cost-efficiency of the associated optimal solutions.  Two annual performance indicators, 

annual reliability index and annual risk, and two lifetime performance indicators (i.e. 

availability and hazard functions) are used in conjunction with total maintenance cost for 

evaluating Pareto fronts associated with optimal maintenance schedules of deteriorating 

structures. Essential maintenance actions are considered and optimization is performed by 

using genetic algorithms. The approach is illustrated on an existing deteriorating bridge 

superstructure. 
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Introduction 

Decision-making problems associated with the optimal maintenance of civil and marine 

structures and infrastructures are a crucial research topic in the field of life-cycle structural 

engineering. The increasing number of structural systems reaching critical conditions, due to 

increasing demands and/or deterioration of the component resistances, has directed 

researchers’ attention towards the development of methods for the determination of cost-

effective maintenance strategies. Optimization algorithms, having prescribed goals and 

considering maintenance times as design variables, allow the identification of several 

possible optimal maintenance strategies during the system life-cycle. The most appropriate 

intervention can be chosen with respect to several constraints, such as available funds.  

Maintenance actions can be preventive, aiming at arresting or slowing down the 

structural deterioration, or essential, totally or partially restoring the performance of single or 

multiple components of the system. These actions can be applied at prescribed regular time 

intervals. However, it has been shown [Frangopol et al. 1997] that non-uniform time intervals 

are more efficient for maximizing the structural performance over the life-cycle of the system 

while simultaneously minimizing the total cost of the maintenance plan. 

 A crucial task for the determination of optimal maintenance plans is to accurately 

model  the system, as well as the stressors and loads acting on it during its entire life-cycle. 

Probabilistic approaches constitute the most reasonable way to deal with the various 

uncertainties inherent to this task. Several indicators have been proposed during recent years 

to represent the time-dependent structural performance of deteriorating structures [Wen and 

Kang 2001, Ang and De Leon 2005, Ellingwood 2005, Moan 2005, Frangopol 2011]  

Two classes of indicators can be easily distinguished. The first includes point-in-time 

performance indicators, such as annual reliability index, annual risk, redundancy, robustness, 

and vulnerability [Saydam and Frangopol 2011]. The second class consists of the lifetime 

distributions, such as survivor, availability, and hazard functions [Yang et al. 2006a]. While 

some of these indicators have been extensively used in literature, the advantages and 
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drawbacks related to their use into optimization frameworks for the determination of optimal 

maintenance plans have not been specifically addressed. 

This paper aims at investigating four of the most commonly used performance 

indicators, namely annual reliability index, annual risk, availability and hazard functions, for 

determining optimal maintenance plans for deteriorating structures. A preliminary 

investigation has been conducted in [Barone and Frangopol 2014] by considering a threshold-

based approach. Instead, bi-objective optimization is considered herein. For each 

optimization problem, minimizing the total cost of the maintenance plan is considered as the 

first objective, while the second objective includes minimizing one of the above mentioned 

performance indicators. Essential maintenance of single or multiple components of a 

deteriorating system is considered, entailing total restoration of the performance of 

components to its original value. The components with the highest repair priority are 

determined differently for each performance indicator, considering minimum reliability, 

maximum risk, and availability and hazard importance factors.  

The approach is illustrated on an existing bridge superstructure modeled as a series-

parallel system whose components are the bridge deck and girders. Pareto fronts and optimal 

solutions obtained from the four different approaches are compared.  

Life-cycle maintenance optimization with different performance indicators 

Life-cycle maintenance of a structural system is a fundamental requirement for maintaining 

the performance above safety thresholds. A comprehensive maintenance framework should 

include inspections and maintenance interventions. Inspections can be used to identify 

structural properties at various stages during the system life-cycle, assess the structural 

performance and, possibly, update the structural models established in the design phases. 

Maintenance interventions are, instead, needed to maintain, improve, or restore the system 

performance. Maintenance actions can be preventive or essential. Preventive maintenance is 

applied before reaching critical conditions and it is used to stop or delay the structural 

deterioration processes for a period of time. Typical examples of preventive maintenance are 

painting and coating of steel girders for corrosion prevention. Essential maintenance is, 
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instead, required when the structure has reached prescribed performance thresholds, 

threatening the system safety. Essential maintenance actions provide a recovery of the 

structural performance of one or more components that may be partial (e.g., repair of 

structural components) or total (e.g., replacement of structural components). Since preventive 

maintenance can be performed when the actual structural deterioration is not critical for the 

safety of the structure, it is usually applied at regular time intervals over the system life-cycle. 

On the other hand, to maximize its cost-efficiency, essential maintenance has to be performed 

at optimal times, before the system failure occurs.  

 Therefore, life-cycle maintenance should be formulated as an optimization problem 

with design variables describing the number of repairs and their optimal application times. 

This optimization can be performed with respect to one or more prescribed performance 

indicators, considering constraints relative to maintenance costs and to repair times (e.g., 

minimum time interval between maintenance actions, maintenance effectiveness, among 

others). An alternative is to use multi-objective optimization techniques considering 

performance indicators and the maintenance cost as objectives. In this case, the result of the 

optimization is a set of optimal solutions (i.e. Pareto solutions). Subsequently, the most 

appropriate solution can be identified.  

At each repair time, prescribed components must be repaired. Therefore, it is 

necessary to establish criteria for selecting which component(s) should be repaired at each 

intervention time. These criteria have to be defined depending on the performance indicator 

selected for the life-cycle maintenance optimization problem; in addition, they should be able 

to assign repair priority to components with the highest impact on the system condition. 

A formal multi-objective framework to optimize the lifetime maintenance of 

deteriorating structures involving reliability, risk, availability, hazard and cost is presented 

herein by considering an existing deteriorating bridge superstructure. 

Maintenance optimization of a deteriorating bridge superstructure  

Four different optimization problems will be discussed in this paper for the determination of 

the optimal maintenance planning of the superstructure of the E-17-HS bridge located in 
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Colorado, over an Interstate Highway. The bridge failure modes, considered in the following 

sections for computational purposes, are briefly described herein; further details can be found 

in [Akgül 2002, Marsh and Frangopol 2008]. For illustrative purposes, the reinforced 

concrete end span of the bridge, whose cross-section is shown in Figure 1(a), has been 

modeled as a series-parallel system so that the failure occurs when either the deck or two 

consecutive girders fail (Figure 1(b)). Material properties and bridge resistances and loads are 

modeled following the data provided in [Akgül 2002]. In particular, for the bridge deck, the 

limit state function associated with bending is: 
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where the cross-sectional area of the deck steel reinforcement dA , the associated yield 

strength ,y df , the compressive strength of the concrete ,c df , the reinforcement depth 

uncertainty factor d , the modeling uncertainty factor d , and the effect of the load trk  due 

to a HS20 truck are modeled as lognormal random variables. The deterministic coefficients 

1 3,...,K K  assume the following values: 1
1 4.323 10K   , 3

2 4.085 10K   , 3 5.287K  . 

Additionally, the most critical failure mode for the girders is associated with the shea; 

therefore, the following limit state has been considered: 

 4 , , 5 , , , 0i c g d i g g i y g d i g trk f fg K f K A f V I D        (2) 

The cross-sectional area of the shear reinforcement in each girder ,g iA , the associated yield 

strength ,y gf , the compressive strength of the girder concrete ,c gf , the uncertainty factor 

related to the depth of the reinforcement ,d i , the modeling uncertainty factor g , the shear 

load  trkV , the girders impact factor fI , and the distribution factor fD  have been considered 

lognormal distributed. The deterministic coefficients 4K  and 5K  assume the following 

values: 4 30.925K  , 5 5.093K  . The means and standard deviations of the variables 

considered into Eqs. (1) and (2) are defined in [Akgül 2002]. 



6 
 

A continuous reduction over time of the cross-sectional area of the reinforcement bars 

in the bridge superstructure, due to chloride contamination, is considered over the life-cycle 

of the structure. Loads acting on the bridge are due to the average daily traffic. Readers are 

referred to [Akgül 2002] for numerical details regarding both the corrosion model and loads. 

Failure probability for the bridge superstructure, as well as failure probabilities associated 

with each component (deck, exterior and interior girders) have been evaluated by the First 

Order Reliability Method (FORM) using the RELSYS software [Estes and Frangopol 1998]. 

The results are shown in Figure 1(c).  

Optimal maintenance plans are investigated for the superstructure of the E-17-HS 

bridge, based on four different approaches. All the maintenance plans entail essential 

maintenance actions on the system components, and either deck or girders are considered “as 

new” after repair. The design variables for each optimization procedure are the repair times; 

thus each solution of the optimization problem is a sequence of maintenance actions 

performed on selected components of the bridge.  

Bi-objective optimizations based on annual performance indicators and 

maintenance cost 

Annual performance indicators assume numerical values representing the performance state 

of a system or its components at a given point-in-time during its life-cycle, computed at one 

year time intervals. Generally, the system performance is evaluated with respect to selected 

limit states (e.g., yielding, failure, or serviceability), depending on the aim of the performed 

analysis, and on the function and strategic importance of the structure. Since several 

uncertainties are associated with the resistance state of the structural components over time 

and with the acting loads, annual performance indicators provide a measure of the probability 

of the selected limit state being reached in a selected year.  

Approximate numerical methods can be used for estimating the probability of 

reaching the selected limit states. The most common among these methods are FORM and 

the Second Order Reliability Method (SORM). These methods can take into account the 

random variables associated with the component resistances and loads, the system 
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configuration (series, parallel, series-parallel), and the correlation among failure modes. 

When the analysis is performed over a large temporal window, the computational procedure 

has to be repeated at each year by considering the resistance and load variation over time, due 

to structural deterioration phenomena or increasing demand or maintenance actions.  

While several annual performance indicators have been defined in literature, annual 

reliability and annual risk will be studied herein. The former is considered because of its 

straightforward definition in terms of failure probability and ease of use, and the latter due to 

its increasing importance in the research field during recent years.  

Annual reliability index and total maintenance cost 

The first approach discussed herein is based on the use of the annual reliability index  t . 

In this section, a bi-objective optimization procedure is considered for optimal maintenance 

planning of multi-component systems, and a numerical application dealing with the 

previously introduced series-parallel model of bridge superstructure is proposed. The two 

goals of the optimization are (a) to maximize the minimum system annual reliability index 

over a 75lifet   years life-cycle, and (b) to minimize the total cost of the maintenance plan. 

The design variables are the repair times, considering as constraints a six year minimum 

interval between two subsequent repair actions and no repair after 66 years from the initial 

time. The system and components reliability profiles are shown in Figure 2(a) for the case of 

no repair actions. Values of system and components annual reliability index have been 

obtained by using RELSYS software.  

Repair actions are performed on the components with the lowest reliability at the 

repair time. Maintenance costs for the deck and girders are assumed $100,000 and $40,000, 

respectively, and an annual discount rate of money 0.02r   is considered. Therefore, the 

total cost of the maintenance plan totC  is calculated as: 
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where iC  is the cost of the i-th component, compN  is the total number of components, repN  is 

the total number of repair actions in the maintenance plan, and 1ij   if the i-th component is 

repaired at the year jt  while 0ij   in the opposite case. 

The optimization formulation is described by the following minimization problem: 

  Given:   , ,         0, , 4i ig t C r i    (4)  

  Find:  1, , ,
reprep rep NN t tt   (5) 

  To minimize: 
   1

min       0 75 
tot

t
t years

C


  


 (6) 

  Such that: 
1 6 

     1,...,
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rep

j j

rep
N

t t years
j N

t years

   
 (7)  

where  ig t  are the limit state functions associated with the structural failure modes, iC  is 

the cost of repair of the system components, r  is the annual money discount rate, repN  is the 

total number of repairs,  1, ,
reprep Nt tt   is the vector of the repair times,  min t  is the 

minimum value of the system reliability over its life-cycle, and totC  is the total cost of the 

maintenance plan, evaluated by Eq. (3). The first goal in Eq. (6) has been defined in terms of 

the inverse of the annual reliability index, so that a minimization problem is obtained with 

respect to both objectives.  

The Pareto front of optimal solutions is obtained by using the elitist genetic algorithm 

provided with MATLAB 7.12 (2011), that is a variant of the algorithm NSGA-II [Deb 2001]. 

Single point cross-over has been adopted, using an initial population of 300 trial solutions. 

Mutation and cross-over functions have been modified to avoid non-integer solutions and to 

comply with constraints defined by Eq. (7). Moreover, to improve the computational 

efficiency of the procedure, a bookkeeping technique has been implemented [Bocchini and 

Frangopol 2011] by keeping track of solutions evaluated in previous iterations and avoiding 
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redundant calculations. Since the number of repair actions repN  is variable, the obtained 

Pareto front is the envelope of the Pareto fronts that are obtained by performing a set of 

optimizations fixing a priori 0, ,11repN    (since 11 is the maximum number of repair 

actions achievable complying with the constraints in Eq. (7)). However, using a dynamic 

number of variables allows to run a single optimization routine, instead of dealing with 10 

different optimization procedures (i.e. one for each number of repair; the two particular cases 

of zero and 11 repairs admit only one solution, therefore no optimization is needed in those 

cases). 

The obtained Pareto front is shown in Figure 2(b) together with a subset of non-

dominant solutions; discontinuities in the Pareto front occur when the number of repair repN  

changes. Figure 2(c) illustrate annual reliability index of the solution denoted as A1 in the 

Pareto front (Figure 2(b)). Solution A1 is characterized by two repair actions ( 1 2A
repN  ), 

occurring at 45 and 51 years. The maintenance plan involves essential maintenance of the 

exterior girders first, and subsequently of the deck, since they are, respectively, the 

components with the lowest reliability at the maintenance times. Repair of the deck provides 

the highest effect on the recovery of the system reliability. By considering Eq. (3), the cost of 

the maintenance plan is estimated as $69,240. The reliability profile associated with solution 

A2 in Figure 2(b) is, instead, shown in Figure 2(d). In this case, five repair actions are 

provided: exterior girders are repaired at 21 and 52 years, interior ones at 45 years, and the 

deck at 31 and 60 years. In this case, the total cost of the maintenance plan is $198,770. 

Annual risk and total maintenance cost 

The annual probability of failure and annual reliability index do not contain any information 

on the consequences associated with the system or component failure. However, annual risk 

provides additional information, particularly significant when dealing with decision-making 

processes concerning system performance. Risk for determining optimal maintenance plans 

for bridges subjected to earthquakes and traffic loads has been proposed by [Zhu and 

Frangopol 2013], where single-objective minimization is performed for evaluating optimal 

essential and preventive maintenance schedules.  
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Risk is defined as the product of the failure probability and the consequences in 

monetary terms due to the failure itself [Ang and Tang 1984]. In general, for each component, 

direct and indirect risks can be distinguished. The former is obtained by considering the 

direct consequences of failure, usually associated with repair/replacement cost of the 

component itself. The latter entails an estimation of indirect consequences deriving from 

failure and not strictly related to rebuilding the structure itself. Indirect consequences may 

include, for example, injuries, fatalities, or environmental contamination due to the system 

failure. With respect to the i-th component of the system, direct and indirect risks are defined 

as: 

 
     
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where iF  and jF  denote failure of component i and survival of component j, respectively,  

 i j iP F F   is the failure probability of the component i and survival of all the other 

components, and  |sys i j iP F F F   is the failure probability of the system without the i-th 

component conditioned by the event i j iF F  . In the following, direct consequences associated 

with failure of deck and girders of the bridge superstructure are considered equal to their 

repair costs, defined previously.  

Indirect consequences are estimated as the sum of three different losses due to the 

system failure. The first one is the cost of running vehicles along the detour imposed on the 

drivers during the bridge maintenance [Stein et al. 1999], defined as: 

  r v d DT dC C L A d  (9) 

where vC  is the average running cost of a vehicle ($0.16/km), dL  is the detour length 

(assumed 10 km), DTA  is the average daily traffic (assumed 400 vehicles per day), and dd  is 

the number of days when the bridge, due to maintenance operations, is not accessible 

(assumed 365 days).  
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The second loss considered is the cost of time spent by passengers and trucks driving 

along the detour, estimated as [Stein et al. 1999]: 

 1
100 100

p p d DT d
t ad car trk

T T L A d
C C O C

s

  
    
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where adC  and trkC  are the time costs for adult persons ($7.05/hour) and trucks ($20.56/hour) 

respectively, carO  is the average vehicle occupancy in cars (1.56 adult/vehicle), pT  is the 

trucks percentage over the total number of vehicles crossing normally the bridge (assumed 

4%), and s  is the average speed along the detour (64 km/h).  

The last contribution to indirect consequences represents safety and environmental 

losses assumed as $5MsC  . Finally, taking into consideration the discount rate of money r , 

direct and indirect consequences are evaluated as: 
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The total annual system risk (i.e. the sum of direct and indirect risks) for the bridge 

superstructure when no repair actions are considered is shown in Figure 3(a) together with the 

risk associated with each component. 

 Analogously to what has been used for the reliability case in the previous section, a 

bi-objective optimization procedure is proposed for determining the optimal maintenance 

plan for the bridge superstructure considering the same constraints used in the reliability-

based approach. However, in this case, repair is always performed on the component having 

the highest associated risk. Moreover, minimization of the maximum system risk is 

considered as a second goal. Therefore, the optimization problem is as follows: 

  Given:   , ,         0, , 4i ig t C r i    (12)  
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  Find:  1, , ,
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where  maxR t  is the maximum value of the system annual risk over the considered life-cycle 

span. Also in this case, the number of design variables changes dynamically during the 

optimization routine, and a single Pareto front, shown in (Figure 3(b)), is obtained, containing 

the dominating solutions for the various possible numbers of repairs, repN . Figure 3(c) shows 

the risk profiles associated with solution B1, selected since the associated total maintenance 

cost is the closest to the cost associated with solution A1, described in the previous section 

(Figure 2(b)). Solution B1 is characterized by two repair actions, as well, occurring at 39 and 

62 years. In this case, first the deck is repaired, since it is associated with the highest 

component risk at 39 years, followed by essential maintenance on the exterior girders, having 

the highest associated risk at 62 years. In this case, the cost of the maintenance plan, 

evaluated by Eq. (3), is $69,631.  Figure 3(d) illustrates risk profiles obtained by the 

maintenance plan associated with solution B2, characterized by five maintenance actions. 

The deck is, in this case, repaired three times (at 24, 42 and 66 years), while the exterior and 

interior girders once (at 36 and 50 years, respectively), with a total maintenance cost of 

$201,706. 

Comparison between reliability-based and risk-based system maintenance optimizations 

To compare the solutions obtained by the two previously described optimization formulations, 

it is convenient to plot the two Pareto fronts as total maintenance cost of each solution versus 

the maximum system annual failure probability ,maxsysP  associated with each solution (Figure 

4(a)). Solutions A1 and B1 have been selected, respectively, from the reliability-based and 
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risk-based optimization results since they have, approximately, the same total maintenance 

costs (therefore, they are horizontally aligned in Figure 4(a)). By comparing the two solutions 

obtained for the considered bridge, it is observed that the solution associated with the risk-

based optimal strategy has a lower maximum failure probability than that associated with the 

reliability-based strategy. This is due to the additional information contained implicitly into 

the annual risk (i.e. the consequences of the structural failure). Repair priority based on 

component risk has, indeed, higher cost-efficiency than priority based simply on component 

reliability.  

In the bridge example the exterior girders are the components with the lowest 

reliability and, therefore, they are the first components to be repaired using the reliability-

based approach. However, the effect of such repair on the system failure probability is not 

significant. On the contrary, the deck is the component with highest risk (i.e. highest repair 

priority in the risk-based approach) and also the most critical component (i.e. only series 

component in the system). For the same reasons, when considering solutions of the two 

Pareto fronts associated with the same maximum system failure probability (solutions A1 and 

B3 in Figure 4(a)), the risk-based maintenance plan has a higher cost-efficiency than the 

reliability-based one. Figure 4(b) reports the maintenance schedule corresponding to each of 

the three solutions considered, and Figure 4(c) the cumulative cost profiles. 

 While risk-based maintenance has certainly advantages in terms of cost-efficiency of 

the resulting solutions, evaluation of risk profiles for the optimization procedures involves a 

higher computational effort than that associated with reliability profiles. For the studied case, 

evaluation of reliability profiles requires the calculation of the component and system failure 

probabilities each year. On the other hand, evaluations of direct and indirect risks by Eqs. (8) 

additionally require the computation of the probabilities of only one component failing 

 i j iP F F  . By considering the bridge symmetry, this has to be computed three times, once 

for the deck, once for the exterior girders, and once for the interior girders. Then, for the 

exterior and interior girders cases, the failure probability of the system without the failed 

component  |sys i j iP F F F   has to be calculated; in the case of deck failure this conditional 

probability is one. This procedure requires, therefore, the evaluation of the failure probability 
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associated with five additional systems. Therefore, the computational time required for the 

risk-based optimization is about six times longer than that associated with the reliability-

based optimization. 

Bi-objective optimization based on lifetime distributions and maintenance 

cost  

Lifetime distributions are representations of the performance state of the system over its life-

cycle through functions that define the distribution of the system time to failure, considered 

as a continuous, non-negative random variable [Leemis 1995]. The distribution of the time to 

failure can be represented by closed-form expressions, depending on the structure and its 

loadings. The distribution of the system time to failure can be computed, if the type of system 

(i.e., series, parallel, series-parallel) and the lifetime distributions of its components are 

known.  

Use of lifetime distributions for optimal maintenance planning has been already 

proposed [Yang et al. 2006b, Orcesi and Frangopol 2011]. The main advantage of lifetime 

distributions consists in dealing with closed-form expressions, while annual performance 

indicators require approximate numerical methods. Various lifetime distributions can be 

defined. In this paper the attention is focused on the availability and hazard functions.  

The availability function (i.e. the probability of the system or component to be 

functional at each instant of time) is, by definition, particularly appropriate for maintenance 

oriented decision-making, since one of the main objectives of a maintenance plan is, indeed, 

to maximize the time of functionality of the system itself over its life-cycle. The availability 

function can also take into account the lack of functionality due to repair times [Ang and 

Tang 1984]. Multi-objective optimization for determining optimal essential and preventive 

maintenance schedules has been proposed in [Okasha and Frangopol 2010a]. 

The hazard function is, instead, related to the derivative of the availability with 

respect to time and, therefore, represents an index of how fast the system tends to become 

non-functional at each time. While the hazard function is extensively used in other scientific 

fields, applications to maintenance plan optimization for civil engineering structures are 
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scarce. Preventive maintenance schedules through hazard function in civil structures are 

reported in [Caldeira Duarte et al. 2006, Baek et al. 2009]. Recently, the authors have 

proposed to use the hazard function for inspection/repair planning on single component 

systems by single-objective optimization [Barone and Frangopol 2013], and on multi-

component systems by multi-objective optimization considering also inspection errors 

[Barone et al. 2014]. 

Availability function and total maintenance cost 

The system availability is defined as the probability of the system being functioning at a 

given instant of time [Ang and Tang 1984]. When no maintenance action is performed on the 

structure, the availability function  A t  coincides, by definition, with the survivor function 

 S t : 

      FA t S t P T t    (16) 

that is the probability that the system is still surviving (and therefore functioning as well) at a 

given time instant t. In Eq. (16),  FT  is the system failure time [Leemis 1995]. Contrary to the 

survivor function, that is a continuous, non-increasing function in time, the availability 

function increases its value whenever the system is repaired. In particular, under the 

assumption that the repair action returns the system to its original performance, its 

availability is restored to its original value (i.e.,   1A t  ) after the repair. If n  consecutive 

essential maintenance actions are performed on a component at times 1,..., nT T , assuming that 

0 0T   is the initial observation time, the survivor function  iS t  becomes: 

  
 

   

1

1 1
1

                                       

      ,  1

i

n
i

i n i k k n n
k

S t t T

S t
S t T S T T T t T k 



 
 

    



 (17) 

 iS t  is continuous and non-increasing over time. The corresponding availability function is 

obtained from the survivor function as [Okasha and Frangopol 2010b]: 
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  
 
 

1

1

                       

              ,  1

i

i

i n n n

S t t T
A t

S t T T t T k

 
   

 (18) 

In the following, it is assumed that the times to failure of the bridge deck and girders 

follow the Weibull distribution: 

              0, ,4
ki

it
i iA t S t e i     (19) 

where 3
0 8 10    and 0 2.4k   for the deck, 3

1 4 8 10      and  1 4 2.3k k   for the 

exterior girders, 3
2 3 6 10      and 2 3 2.1k k   for the interior girders. Under the 

assumption of statistically independent failure modes and considering the series-parallel 

model shown in Figure 1(b), the system availability is defined as: 

             
3

0 1
1

1 1 1sys sys i i
i

A t S t S t S t S t


      (20) 

where  0S t  is the survivor function associated with the bridge deck, and  iS t  ( 1, ,4i   ) 

are the survivor functions associated with the bridge girders. System and component 

availability of the studied bridge superstructure are shown in Figure 5(a).  

 As indicated previously, it is necessary to establish a criterion for selecting which 

component should be repaired at each time. For the availability-based case, an availability 

importance factor is defined as: 

  
     

 

i
sys sys

i
sys

A t A t
IA t

A t


  (21) 

where    i
sysA t  is the availability of the system after repairing the i-th component at the instant 

t, while  sysA t  is the availability of the same system before the repair. Since after the repair 

the system availability is not decreasing,   0iIA t  . Therefore, this importance factor is an 

index of the gain in availability obtained by repairing the associated component. Moreover, a 
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normalized importance factor  0
iIA t , assuming values in the interval  0;1 , can be defined 

as follows: 

    

 
0

4

0

i
i

i
i

IA t
IA t

IA t





 (22) 

In the following, at each maintenance time, the component with the maximum normalized 

importance factor 0
iIA  at the repair instant (i.e. the component that, when repaired, returns the 

maximum gain in availability) is selected for repair.  

 In this section, the maintenance optimization problem is defined in terms of the 

availability function. In particular, maintaining the same constraints and repair costs defined 

in the previous sections, and considering the total maintenance cost as second objective, the 

bi-objective optimization problem is reformulated to maximize the minimum value of the 

system availability over the system life-cycle. Similarly to the reliability-based case, the 

inverse of the minimum availability is considered, so that a minimization problem is defined 

for both objectives: 

  Given:   , ,         0, , 4i iA t C r i    (23)  

  Find:  1, , ,
reprep rep NN t tt   (24) 

  To minimize: 
   1

min       0 75 
tot

A t
t years

C

  


 (25) 

  Such that: 
1 6 

     1,...,
66 

rep

j j

rep
N

t t years
j N

t years

   
 (26)  
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where  iA t  are the availability functions associated with the bridge components, and 

 minA t  is the minimum value assumed by the system availability function over the 

considered time span. 

 By using genetic algorithms, as described in the previous sections, the Pareto front 

illustrated in Figure 5(b) is obtained. Also in this case, discontinuities in the Pareto front 

corresponds to change in the number of repairs repN . System and components availability 

profiles of a selected solution (solution C), are shown in Figure 5(c). Solution C belongs to 

the subset of solutions involving three maintenance actions, among the solutions in the 

availability-based Pareto front. In particular, the maintenance plan is constituted by repair of 

the deck after 29 years, followed by repair of the interior girders at the year 47, and finally a 

new essential maintenance performed on the deck at the year 55. The selected repaired 

components are associated with the maximum gain in availability at the corresponding repair 

times. The total maintenance cost associated with solution C is $121,503.  

 

Hazard function and total maintenance cost 

The hazard function is defined as the ratio between the failure probability in the time interval 

 ,t t t   conditioned by the system still surviving at time t , and the time interval t  itself, 

with 0t  , that is: 

    
 0

|
lim

f f

t

P t T t t T t S t
h t

t S t 

         


 (27) 

As shown in Eq. (27), the hazard function is related to the derivative of the survivor function 

over time,  S t . Therefore, instead of providing a direct indication on the functioning state 

of the system, the hazard function represents the rate of failure of the system itself, i.e. how 

fast the system tends to fail at a given instant. 

 Maintaining the same assumption of Weibull distribution for the time to failure of 

each bridge component, the hazard functions associated with deck and girders are defined as: 
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   1        0, ,4i ik k
i i ih t k t i     (28) 

where the value of i  and ik  for deck and girders have been defined previously (i.e., Eq. 

(19)). Moreover, under the assumption of statistically independent failure modes, the hazard 

function for the series-parallel system shown in Figure 1(b) can be obtained as: 

  
   

  
3

1 1
0

1 1

1 1

1 1 1
i i i i

sys
i i i

h S h S
h h

S S
 

 

  
 

    (29) 

where  0h t  is the hazard function associated with the bridge deck, and  ih t  and  iS t  are 

hazard and survivor functions associated with the girders, respectively. System and 

components hazard functions for the studied bridge superstructure are shown in Figure 6(a). 

 A hazard importance factor indicating the reduction in the hazard system due to repair 

is introduced as: 

        
 

i
sys sys

i
sys

h t h t
Ih t

h t


  (30) 

where    i
sysh t  is the system hazard function after performing essential maintenance on the i-th 

component at instant t, while  sysh t  is the system hazard function before the maintenance is 

performed. Since the system hazard function is not increasing after repair of a component, 

  0iIh t  . In this case, a normalized hazard importance factor is considered as: 

    

 
0

4

0

i
i

i
i

Ih t
Ih t

Ih t





 (31) 

and repair priority has been given to the component with the highest 0
iIh . 

The maintenance optimization problem in terms of hazard and total maintenance cost 

has been defined taking into account the constraints with respect to the maintenance times, as 
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seen in the previous sections, and using the same repair costs and discount rate of money, as 

follows: 

  Given:    , , ,         0, , 4i i iS t h t C r i    (32)  

  Find:  1, , ,
reprep rep NN t tt   (33) 

  To minimize: 
 max       0 75 

tot

h t
t years

C

  


 (34) 

  Such that: 
1 6 

     1,...,
66 

rep

j j

rep
N

t t years
j N

t years

   
 (35)  

where  iS t  and  ih t  are the survivor and hazard function associated with the ith bridge 

components, and  maxh t  is the maximum value of the system hazard function over the 

observed time window. Therefore, analogously to the risk-based approach (where the 

maximum value of risk was minimized), in this case the first goal is to minimize the 

maximum value of the system hazard. The Pareto front of optimal solutions obtained by 

genetic algorithm optimization is shown in Figure 6(b), while system and components hazard 

profiles for solution D are shown in Figure 6(c). The latter solution is associated with a 

maintenance plan involving four maintenance actions: essential maintenance of the deck at 29 

and 53 years, and essential maintenance of the interior girders at 44 and 64 years, 

respectively. The total cost of the maintenance plan is $147,318.  

Comparison between availability-based and hazard-based system maintenance optimizations 

With the aim of comparing the two sets of solutions obtained by the availability and hazard- 

based system optimization approaches, the associated Pareto fronts have been plotted in 

Figure 7(a) considering the total maintenance cost as a function of the minimum system 

availability associated to each solution; on the other hand, Figure 7(b) shows the same set of 
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solutions in terms of total maintenance cost and maximum hazard associated with each 

solution. The two Pareto fronts are very similar when the number of repair is low (solutions 

associated with low maintenance costs). Solutions C and D, shown in Figure 7(c) and 7(d), 

respectively, have been selected so that the same minimum system availability is obtained in 

the two cases. However, solution C, obtained using the availability-based approach, requires 

a fewer number of repairs ( 3C
repN  ), and, therefore, it is associated with less maintenance 

cost than solution D, resulting from the hazard-based approach ( 4D
repN  ). This should be 

expected, since solutions that are dominant in one approach do not necessarily belong to the 

Pareto front obtained from the other approach. This is evident in Figure 7(b) where it can be 

observed that some availability-based solutions having high total maintenance cost are less 

cost-efficient than other solutions obtained with the hazard-based approach. Figures 7(c) and 

(d) show the system availability and system hazard profiles, respectively, associated with the 

solutions C and D. It is worth noting that the availability, hazard, and the remaining lifetime 

distribution functions contain the same level of information on the system performance. 

However, the two presented optimization procedures aim at controlling different aspects of 

the life-cycle maintenance problem: (a) the probability that the system is functional when 

availability is selected as objective of the optimization, and (b) the rate of failure of the 

system when the hazard function is selected as objective of the optimization. 

 The difference between availability-based and hazard-based approaches in the time 

required for the computation is negligible. In both cases, all expressions required for the 

calculation are defined in analytical form, making the computational process extremely fast. 

This is the main advantage that emerges when comparing lifetime distributions to annual 

performance indicators. The four optimization formulations have all been implemented 

running on a single core of a 64-bit, 2.33GHz Intel(R) Xeon(R) CPU E5410. The 

computational times required for the reliability-based approach is nine hours and 52 minutes, 

while only 17 minutes are necessary to complete the optimization considering availability or 

hazard functions. On the other hand, lifetime distributions are defined in analytical forms 

only for specific cases of correlation among the system components (in general, statistically 

independent or perfectly correlated failure modes). Therefore, all information regarding the 
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actual correlations among the random variables involved in the definition of components and 

system limit states is lost. Consequently, solutions provided by using annual performance 

indicators, although obtained through approximate numerical procedures, should be 

considered more representative of the actual system performance over the structure life-cycle. 

Conclusions 

In this paper, the optimization of life-cycle maintenance plans of deteriorating structures has 

been considered using four different bi-objective approaches. In the first two cases, annual 

performance indicators are considered, in particular annual reliability index and annual risk. 

Then, lifetime distributions approaches are used by considering availability and hazard 

functions as goals of the optimization problem. In all cases, the second goal of the 

optimization is the minimization of the total cost of the maintenance plan. Results of the four 

proposed approaches are illustrated through a numerical example relative to an existing 

bridge superstructure, and the advantages and drawbacks of the four approaches are 

compared and discussed. The following conclusions are drawn:  

1.  Pareto fronts obtained by using reliability and risk-based approaches are 

extremely different, although the same constraints and repair costs have been 

considered, and the same optimization method has been used. Considering the 

maximum system failure probability reached over the system life-cycle, risk-

based optimum maintenance plans are more cost-efficient than their 

reliability-based counterparts. Therefore, involving consequences of the 

component and system failures into the decision-making process plays a 

crucial role in the determination of optimal maintenance plan.  

2.  The risk-based approach requires not only an initial estimation of direct and 

indirect failure consequences, but also the evaluation of several additional 

probabilities of failure of single components and conditional probabilities of 

failure. This process increases the computational effort required to perform the 

optimization. The magnitude of this increase is proportional to the number of 

components of the system.  
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3.  Availability-based and hazard-based optimization formulations may result in 

similar solutions. In particular, several optimal solutions are identical when 

considering less than four repairs. However, when the number of maintenance 

actions is increased, optimal solutions obtained by availability and hazard-

based approaches are different.    

4.  Computational efforts required for the availability and hazard-based 

approaches are several times smaller than those associated with the reliability 

and risk-based approaches. However, information regarding actual 

correlations among random variables involved in the limit states is 

approximated by considering upper and lower correlation bounds. For this 

reason, annual performance indicators, although requiring the use of 

approximate numerical methods, have to be considered more reliable 

indicators than those associated with lifetime distributions. 
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Figure captions 

Figure 1 Bridge E-17-HS superstructure: (a) cross-section (adapted from Akgül 2002); 

(b) series-parallel model; (c) component and system annual failure probability 

profiles. 

 

Figure 2 (a) Annual reliability index profile of the bridge superstructure; (b) reliability-

based Pareto front; annual reliability index profile associated with solutions (c) 

A1 and (d) A2. 

 

Figure 3 (a) Annual risk profile of the bridge superstructure; (b) risk-based approach 

Pareto front; annual risk profile associated with solutions (c) B1 and (d) B2. 

 

Figure 4 (a) Comparison between reliability and risk-based Pareto fronts in terms of 

maximum annual system failure probability and total maintenance cost; (b) 

maintenance schedule associated with solutions A1, B1 and B3; and (c) 

cumulative cost profiles of solutions A1, B1 and B3. 

 

Figure 5 (a) Availability of the bridge superstructure; (b) availability-based approach 

Pareto front; (c) availability associated with solution C. 

 

Figure 6 (a) Hazard of the bridge superstructure; (b) hazard-based approach Pareto 

front; (c) hazard associated with solution D. 

 

Figure 7 Comparison between availability and hazard-based Pareto fronts in terms of 

total maintenance costs and (a) minimum system availability and (b) 

maximum system hazard; (c) system availability for solutions C and D and (d) 

system hazard for solutions C and D. 



Girder 2

Girder 1

Deck

Girder 3

Girder 2

Girder 4

Girder 3(b)

(a)
9.144 m

1.219 m 1.219 m2.642 m 2.642 m 2.642 m

0.406 mGirder 1 Girder 2 Girder 3 Girder 4

FIGURE 1

(c)

0 15 30 45 60 75
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Deck

Exterior girders

Interior girders

Time (years)

A
nn

ua
l f

ai
lu

re
 p

ro
ba

bi
lit

y

System

Figures



0 1 2 3 4 5
0

1

2

3

4

5

6
x 10

5

A1

Nrep=2

Nrep=3

Nrep=5

Nrep=6

Nrep=7

Nrep=8

Nrep=11

Nrep=1

No repair

Minimum annual system reliability

To
ta

l m
ai

nt
en

an
ce

 c
os

t (
$)

FIGURE 2

0 15 30 45 60 75
0

1

2

3

4

5

6

7

Exterior girders

Interior girders

Deck

0 15 30 45 60 75
0

1

2

3

4

5

6

7
Exterior girdersInterior girders Deck

Time (years)

A
nn

ua
l r

el
ia

bi
li

ty
 i

nd
ex

Time (years)

A
nn

ua
l r

el
ia

bi
li

ty
 i

nd
ex

(a) (b)

(c)

System

System
Solution A1, Nrep=2

0 15 30 45 60 75
0

1

2

3

4

5

6

7

System

Deck
Exterior girders Interior girders

Time (years)

A
nn

ua
l r

el
ia

bi
li

ty
 i

nd
ex

(d)

A2

Solution A2, Nrep=5



10
0

10
2

10
4

10
6

0

1

2

3

4

5

6
x 10

5

Nrep=1

B1

No repair

Nrep=2

Nrep=4

Nrep=5

Nrep=6

Nrep=9

Nrep=7

Nrep=3

Maximum annual system risk ($)

To
ta

l m
ai

nt
en

an
ce

 c
os

t (
$)

(b)

FIGURE 3

0 15 30 45 60 75
10

-4

10
-2

10
0

10
2

10
4

10
6

Exterior girders

Interior girders

Deck

0 15 30 45 60 75
10

-4

10
-2

10
0

10
2

10
4

10
6

Exterior girders

Interior girders
Deck

Time (years)

A
nn

ua
l r

is
k 

($
)

Time (years)

A
nn

ua
l r

is
k 

($
)

(a)

(c)

B3

System

System

0 15 30 45 60 75
10

-4

10
-2

10
0

10
2

10
4

10
6

Interior girders Exterior girders

Deck

Time (years)

A
nn

ua
l r

is
k 

($
)

B2

(d)

Solution B1, Nrep=2 Solution B2, Nrep=5



FIGURE 4

10
-6

10
-4

10
-2

10
0

0

1

2

3

4

5

6
x 10

5

Maximum annual system failure probability

To
ta

l m
ai

nt
en

an
ce

 c
os

t (
$)

A1

B1
B3

Reliability-based
Risk-based

e d

d

d e

d

e

Repair of the deck

Repair of the external girders

Time (years)
0 15 30 45 60 75

A1

0 15 30 45 60 75
0

2

4

6

8
x 10

4

Time (years)

C
um

ul
at

iv
e 

co
st

 p
ro

fi
le

 (
$) A1
Nrep=2

(a) (b)

(c)

B1

B3

B1
Nrep=2

B3
Nrep=1



0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6
x 10

5

C

Nrep=1

Nrep=2

Nrep=3

Nrep=4

Nrep=5

Nrep=6

Nrep=9

No repair

FIGURE 5

Minimum system availability

To
ta

l m
ai

nt
en

an
ce

 c
os

t (
$)

0 15 30 45 60 75
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Deck

Exterior girders

Interior girders

Time (years)

A
va

il
ab

il
it

y

0.9

0.92

0.94

0.96

0.98

1

Exterior girders

Interior girders

Deck

0 15 30 45 60 75

Time (years)

A
va

il
ab

il
it

y

(a) (b)

(c)

System

System
Solution C, Nrep=3



0 0.005 0.01 0.015 0.02
0

1

2

3

4

5

6
x 10

5

D

Nrep=1

No repair

Nrep=9

Nrep=6

Nrep=5

Nrep=4

Nrep=3

Nrep=2

FIGURE 6

Maximum system hazard

To
ta

l m
ai

nt
en

an
ce

 c
os

t (
$)

0 15 30 45 60 75
0

0.005

0.01

0.015

0.02

Deck

Exterior girders

System

Interior girders

Time (years)

H
az

ar
d

0 15 30 45 60 75
0

0.002

0.004

0.006

0.008

0.01

Time (years)

H
az

ar
d

Exterior girders

Interior girders

Deck

(a) (b)

(c)

System

System

Solution D, Nrep=4



FIGURE 7

0 15 30 45 60 75
0

1

2

3

4
x 10

-3

0.95

0.96

0.97

0.98

0.99

1

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.5

1

1.5

2

2.5

3
x 10

5

0.75 0.8 0.85 0.9 0.95 1
0

0.5

1

1.5

2

2.5

3
x 10

5

D

C C

D

Availability-based
Hazard-based

Availability-based
Hazard-based

Solution C
Nrep=3

Solution D
Nrep=4

0 15 30 45 60 75

Time (years)

S
ys

te
m

 h
az

ar
d

Time (years)

S
ys

te
m

 a
va

il
ab

il
it

y

Maximum system hazard

To
ta

l m
ai

nt
en

an
ce

 c
os

t (
$)

Minimum system availability

To
ta

l m
ai

nt
en

an
ce

 c
os

t (
$)

(a) (b)

(d)(c)

Solutions C 
and D

Solutions C 
and D

Solution C
Nrep=3

Solution D
Nrep=4


	Revised Manuscript - Barone Frangopol - SS
	Pages from STRUCS-D-13-00033R1

