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ABSTRACT: In the pharmaceutical industries, the requirements of rapid process development 

and scalable design have made the tubular crystallizer a promising platform for continuous 

manufacturing and crystallization processes, capable of replacing conventional capital- and 

labor-intensive batch operations. This paper takes a process systems engineering (PSE) approach 

to the optimal design of a continuous anti-solvent addition crystallizer to deliver the most 

promising product qualities, such as the crystal size distribution. A multi-segment multi-addition 

plug-flow crystallizer (MSMA-PFC) is considered as an example of a continuous anti-solvent 

crystallization processes, in which the total number, location, and distribution of anti-solvent 

additions are to be optimized. First principles dynamic and steady-state mathematical models for 

the MSMA-PFC are presented, based on example kinetic models for nucleation and growth of 

paracetamol crystallizing in acetone, with water as the anti-solvent. The performances of 

different crystallizer configurations operated under optimal design conditions are then compared. 

The configuration in which anti-solvent could be added at a variety of different locations along 

the tube length and at optimal flow rates was able to outperform previous designs in the literature 

which considered equally-spaced anti-solvent additions. The use of dynamic models to detect 

problems during startup of an MSMA-PFC was also highlighted. 

KEYWORDS: Tubular crystallizer; mathematical modelling; crystallizer design; optimization; 

anti-solvent. 

 

 

 

  

Page 3 of 42

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 4

INTRODUCTION 

    Crystallization is a common unit operation for separation and purification and is used for 

approximately 90% of organic molecules in the pharmaceutical and fine chemical sectors
1-3

.
 

Traditionally, batch operations have been used for the crystallization stage and for downstream 

secondary manufacturing processes, as they provide a flexible way to meet the stringent 

regulations for product quality and the variable demands of the market. However, rising market 

competition and the need to reduce manufacturing costs are driving the future of pharmaceutical 

and fine chemical industries towards continuous processes, which have potential for 

improvements in product quality, through on-line process monitoring and control, and reduced 

equipment footprint, energy and labor costs
4-7

. 

     Over the last decade, the development of continuous manufacturing and purification 

processes, particularly crystallization, has mainly focused on the modification of existing batch 

units
8-10

, in addition to studying innovative equipment design. Batch crystallizers are often based 

around stirred-tank technologies, which can be converted to continuous mode as multi-stage 

mixed-suspension and mixed product removal (MSMPR) operations
11-16

, but they suffer from 

broad residence time distributions, leading to broad crystal size distributions and problems in 

downstream processes, such as filtration, isolation, drying and solids mixing. Consequently, 

interest in tubular designs of continuous crystallizer has increased in recent years, because of the 

potential benefits of a much narrower residence time distribution, enhanced control of the super-

supersaturation and the ease of scaling-up from pilot to full-scale operation. 

    Recent research efforts have been devoted to the experimental investigation of tubular 

crystallizers. For example, Lawton et al.
17

 reported the application of a continuous oscillatory 
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 5

baffled crystallizer (COBC) for a cooling crystallization which offered significant advantages in 

operating cost and processing time. Eder
18-19

 and his colleagues investigated the impacts of flow 

rate and seed loading in continuously-seeded tubular cooling crystallizers for the production of 

active pharmaceutical ingredients (APIs). Ferguson et al.
20

 reported the employment of a variety 

of process analytical technology (PAT) tools for particle size and solute concentration 

measurement in a plug flow crystallizer. Such PAT tools provide time-varying measurements at 

a single spatial location, but do not reveal the evolution of the CSD or solute concentration 

profile with increasing residence time in the flow device. These experimental studies provide 

valuable insight into the performance of tubular crystallizers, but with limited information about 

spatial evolution; moreover they show that there is a complex interaction of effects involving the 

flow configuration, the use of seeding, the supersaturation profile and the nucleation and growth 

kinetics on the final product qualities, such as the crystal size distribution. Without a process 

systems model, they could only provide qualitative indications of how to optimize the 

crystallizer design to produce crystals with a target size distribution, or of particular shape or 

polymorph type.  Thus the design of such continuous processes is complicated by the interaction 

of numerous operating variables, which affect the supersaturation profile and the product quality, 

in terms of its CSD. A purely experimental investigation of the crystallizer operating space 

would be time-consuming and difficult to interpret; hence the operation would be almost 

impossible to design and optimize without a model framework. 

Other studies make use of first-principles models, alongside experimental studies, to deduce 

the optimal operating conditions to produce crystals of a specified size.  For example, Alvarez 

and Myerson
1
 modelled and conducted experiments on a multi-segment, multi-addition plug-

flow crystallizer (MSMA-PFC) with anti-solvent addition empirically distributed along the tube 

Page 5 of 42

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 6

and showed how the device could be operated to produce crystals of a small mean size and 

narrow CSD. Zhou et al.
21

, studied experimentally a novel concentric annulus to achieve layer 

crystallization, and formulated a model which predicted the profile of the temperature, 

concentration and crystal thickness along the pipe length; their model was used to optimize the 

crystal yield and the layer thickness.   

  Process systems engineering (PSE) approaches using mathematical modeling, intensification, 

and optimization are now being applied to the design of tubular crystallizers, e.g., by Lakerveld 

et al.
 22

. Majumder and Nagy
3
 optimized the temperature profile along a multi-segment PFC, 

which included cooling and heating segments, with the objective of removing crystal fines by 

controlled dissolution. Vetter et al.
 23

 recently investigated the attainable regions of particle sizes 

for a single-stage ideal plug-flow crystallizer, which assumed continuous addition of anti-solvent 

along the tube; they compared the achievable product qualities to those manufactured in 

MSMPR and batch crystallizers. Ridder et al.
 24

 proposed a simultaneous design and control 

(SDC) approach to optimize the number of segments and anti-solvent distributions along a 

MSMA-PFC for an anti-solvent crystallization processes. More specifically, recent studies by 

Kwon et al.
 25

 also focused on the multi-segment plug-flow crystallizer to control the crystal 

shape and size distribution by optimizing jacket temperature for each segment. These simulations 

are based on first-principles process systems models using spatially-distributed mass, heat and 

population balances and include the various complexities in crystallization, such as the effect of 

anti-solvent addition, which may increase or decrease the supersaturation depending on the slope 

of the solubility curve. Moreover, these flow sheet simulations of continuous crystallizers are 

often based on bespoke code, since plug flow modules are not yet available in commercial 
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 7

software packages, such as the gCRYSTAL 4.0 software offered by Process System Enterprises 

Ltd. 

  The study reported here is part of a larger project to build dynamic simulations of continuous 

crystallization and downstream secondary manufacturing operations, to optimize performance 

and test out control strategies for an integrated pharmaceutical production plant flow sheet.  This 

paper presents an example of the first stage, which considers the mathematical modeling, design, 

and optimization of tubular crystallizers for anti-solvent crystallization, to provide a better 

understanding of flexible design, and to improve the process performance accordingly. Dynamic 

models are used to examine the non-linear system response to external manipulations or 

disturbances for process control purpose and can be applied to design start-up and shut-down 

procedures, where changes of operating states are required with minimal production of waste or 

off-specification product. The optimal design of such transient operations is critical for a cost-

effective continuous process, particularly when the production capacity is scaled up and/or the 

manufacturing time is short
26

. In contrast, a steady-state model is computationally more efficient 

when dealing with process design and optimization. However, dynamic models are still required 

to confirm that the optimal operating conditions from a steady-state model are obtained reliably 

and lead to stable operation. 

 The multi-segment multi-addition design of a plug-flow crystallizer is a generalized type of 

anti-solvent crystallization which aims to provide accurate control of supersaturation and anti-

solvent mass fraction profiles along the length of the tube, as shown in Figure 1. The modular 

design of the PFC segments
1
, where flexibility is a key aspect, is intended for campaign 

production of different active pharmaceutical ingredients using the same processing line. This is 

an important consideration for the design of a continuous manufacturing process
26

. For example, 
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 8

varying lengths of tube and longer mean residence times can be obtained by assembling a greater 

number of PFC segments and the distribution of anti-solvent additions along the segments can be 

optimized to create different supersaturation profiles along the tube
24

, as indicated schematically 

in Figure 1. 

 This paper is organized as follows. Dynamic and steady-state mathematical models of a 

general plug-flow crystallizer are presented, followed by their extensions to a multi-segment 

multi-addition design for anti-solvent crystallization. Unlike the equally-spaced anti-solvent 

addition proposed by Ridder et al.
 24

, the configuration studied here allows for optimization of 

both the locations and distributions of anti-solvent additions along the tubular crystallizer; a 

mixed integer non-linear programming (MINLP) optimization is used for this purpose. The 

results and discussion section considers the application of the proposed design and optimization 

framework to an anti-solvent crystallization of paracetamol in acetone with water as the anti-

solvent and compares its performance to other configurations reported in the literature. Finally, 

concluding remarks are made. 

  

Page 8 of 42

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 9

MATHEMATICAL MODELLING OF PLUG-FLOW CRYSTALLIZER 

 In the pharmaceutical industries, a typical bulk API is usually produced at a rate of >1 tons per 

day
27

 and thus the diameter of a tubular crystallizer could be of the order of a few centimeters, 

which is small when compared to the typical tube length (tens of meters). As a result, there is 

often near perfect mixing in the radial direction and limited dispersion in the axial direction, 

which means that the assumptions of a plug flow device are likely to apply. A relatively high 

slurry mean velocity along the tube is required to avoid the sedimentation of crystals (or, in the 

case of an oscillatory baffled crystallizer
17

, high-frequency oscillations are introduced to suspend 

the crystals and produce a narrow residence time distribution, but not perfect plug flow, as is 

discussed at the end of this section). Often it is reasonable to assume that the tubular crystallizer 

is a plug-flow crystallizer and therefore requires only one spatial dimension, i.e., the tube axial 

length, in a mathematical model. 

      The governing equations for a general segment of a plug-flow crystallizer are based on a 

population balance equation for the crystal size distribution and a mass balance equation for 

solute concentrations, as shown below: 

���� + �������	 + ��
���� = ��, �, 	, �� (1) 

���� + �������	 + 3������� � 
����� = 0 (2) 

In eqs.(1) and (2),  n is the number probability density function of crystals in the slurry, #/m
3
/m; t 

is the time, s; vz is the slurry superficial velocity along the tube axial, m/s; z is the tube axial 

coordinate, m; G is the crystal growth rate, m/s; L is the characteristic length of crystal, m; S 
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 10

represents the source and sink terms accounting for crystal breakage and agglomeration, #/m
3
/s; 

C is a vector representing molar concentrations of the various chemical species (including the 

solute, the anti-solvent and impurities if any, etc.), kmol/m
3
; φ is the chemometrics vector for the 

chemical species mole fractions in the crystal phase; ρs is the crystal density, kg/m
3
; Kv is the 

volumetric shape factor of crystal; Mw is the mean molecular weight of the crystal, kg/kmol. In 

this study, a single crystal phase is considered, but extension of the balance equations to multiple 

crystal phases or to multiple polymorphs is straightforward. 

    The plug flow crystallizer is an unsteady and spatially-distributed system and hence the 

number density n and solute concentrations C are both functions of position along the tube z and 

time t;  their boundary and initial conditions are listed below. 

    Boundary conditions for n (L, z, t) and C (z, t) at L = L0 or z = 0: 

����, 	, �� = �
 (3) 

���, 0, �� = ��  !��, �� (4) 

��0, �� = ��  ! (5) 

where B is the nucleation rate, #/m
3
/s; L0 is the nuclei size, m; nfeed is the number probability 

density function of the feed CSD at the crystallizer inlet, #/m
3
/m, which for example, is required 

for a seeded crystallization, or where a feed slurry is supplied from an upstream unit; Cfeed 

represents the feed species concentrations at the crystallizer inlet, kmol/m
3
. 

       The initial conditions for n (L, z, t) and C (z, t) at t = 0: 

���, 	, 0� = ����, 	� (6) 
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��	, 0� = ���	� (7) 

where n0 (#/m
3
/m) and C0 (kmol/m3) are the initial number probability density function for the 

CSD and species concentrations, respectively, inside the crystallizer. 

       A steady-state model of a plug-flow crystallizer can be obtained straightforwardly by 

removing the time derivative terms of the crystal number density n and solute concentrations C 

from the dynamic eqs.(1) and (2) and retaining the boundary conditions of eqs.(3) to (5) only. 

The slurry superficial velocity vz along the crystallizer is not necessarily constant, e.g., if the 

volume changes due to crystallization (formation of solids) along the crystallizer cannot be 

neglected
16

, and hence vz will depend on the yield of crystals at each point along the crystallizer 

and should be rigorously calculated. For simplicity, we assume a constant slurry mean velocity 

�� along the tube
1
 and there is no breakage or agglomeration in the tube. Hence the steady-state 

model can be simplified as follows. 

���	 + 1��
��
���� = 0 (8) 

���	 + 3��������� � 
����� = 0 (9) 

       The above partial differential equations (PDEs) (1) and (2) for the dynamic model can be 

solved in MATLAB with a high-resolution finite-volume method (FVM)
28

 by discretizing both 

the tube axial length z and the crystal characteristic length L and then integrating the resulting set 

of ordinary differential equations (ODEs), together with eq.(2), with respect to the system time t 

(i.e. using the method of lines). The FVM scheme is of second-order accuracy, combining a 

robust upwind discretization method with the novel # =  1 3⁄  flux limiter, capturing the sharp 
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 12

front of the nucleation boundary in eq.(3) without numerical oscillations, and providing a smooth 

solution. In terms of steady-state modelling of the population balance eq.(8), only discretization 

in crystal length L and integration, together with the mass balance of eq.(9) for solute 

concentrations, along the tube length z are necessary. All the integrations of ODEs were executed 

with the built-in “ode45” or “ode23” function for non-stiff problems in MATLAB. 

      Depending on the fineness of discretization in the FVM, the PDEs often result in tens or 

hundreds of ODEs which can be computationally expensive to solve. Alternatively, when the 

crystal growth rate G is size independent, the classical method of moments (MOM) can also be 

applied to integrate the PDE (8) along the crystal length L by conversion into a set of moment 

ODEs, which further reduces the computational burden for steady-state modeling. This is 

critically important when a large optimization problem is considered. In the MOM, the 

integration and moment transformation of the PDE into the first six moments are given below. 

%& = ' �&���, 	���(� ,   # =  0 ⋯  5  (10) 

�%��	 = ���  (11) 

�%&�	 = # + 
��, %&-. + + ���, ��&  (12) 

where %& is the k
th

 moment of the number CSD probability density function n, m
k
/m

3
.  Although 

the full CSD development along the tube z is lost by the integration of eq.(10), the physical 

meanings of the first few moments provide useful information: e.g., %� is the total particle 

number per volume of the slurry; %/ is related to the total volume of crystals per volume of the 

slurry. Therefore, the volume-based mean crystal size (L43) and the coefficient of variation (CV) 
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of the full CSD still can be captured by the MOM, as shown in eqs. (13) and (14). Furthermore, 

after the optimization problem is solved based on the MOM model, the full CSD can be 

recovered by solving the full model of eqs. (8) and (9). In such a way, less-expensive function 

evaluations are possible for the optimization algorithms
24

. Identical results were obtained with 

MOM and FVM when a suitably fine level of discretization was employed
29, 30

. 

�0/ = %0%/ (13) 

12 = 3%4%/%0� − 1  (14) 

        The mathematical model could easily be extended to a COBC, which is not a perfect plug 

flow device. The COBC could be considered as a cascade of MSMPR crystallizers in series or a 

plug-flow type crystallizer with dispersion terms 67��� �	�⁄  and 68���� �	�⁄  added to eqs.(1) 

and (2) for dynamic simulation, or to eqs.(8) and (9) for steady-state modeling, respectively. 

Here Dn and Dc are dispersion coefficients for crystals and liquid solution, respectively. Both the 

number of stages in a cascaded MSMPR crystallizer and the dispersion coefficients could be 

estimated from experimental residence time distributions of a COBC, which will be a future 

development in our work.  
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OPTIMIZATION OF MSMA PLUG-FLOW CRYSTALLIZER 

       In a similar way to a cascaded multi-stage continuous MSMPR crystallizer
11, 12, 15

, several 

segments of tubular crystallizer can be joined together with temperature control applied to each 

segment and / or additions of anti-solvent or fresh solution injected between any two consecutive 

segments in order to regulate the main solute concentration and supersaturation along the tube, as 

shown in Figure 1. In the present study, each segment is regarded as an individual plug-flow 

crystallizer, which forms a part of the multi-segment, multi-addition plug-flow crystallizer. The 

current study considers the addition of anti-solvent to create the supersaturation profile. 

       In terms of the dynamic simulation of the MSMA-PFC, the outlet slurry of one PFC segment 

is assumed to mix instantly with the added fresh solution or anti-solvent stream under an ideal 

mixing rule. Both solvent and anti-solvent have a low viscosity and are fully miscible with each 

other; moreover, the system does not nucleate very rapidly and hence the assumption of 

instantaneous mixing may be justified. In practice, if mixing of the anti-solvent stream with the 

slurry is limiting, then a high addition velocity or static mixers inside the tube can be applied to 

intensify the mixing conditions
1
. Hence the crystal number probability density function n and the 

solute concentrations C at the outlet are diluted accordingly and thus need to be updated and set 

as inlet boundary conditions for the next PFC segment, viz., eqs.(4) and (5). Similar calculations 

also apply to the steady-state model. For more information on this, readers are referred to the 

work by Ridder et al.
24

 

       Previously, Alvarez and Myerson
1
 reported a combination of four equal-length tubular units 

(length: 4 × 0.6 m; diameter: 1.27 cm), with empirically designed distribution of anti-solvent 

among the four units, for example, 50%, 50%, 0%, 0%, and with a fixed amount of total anti-
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 15

solvent addition. Ridder et al.
24

 optimized the distribution of anti-solvent for a number of 

equally-spaced injection points, where up to 15 injection points were considered for a 50 m long 

tube, requiring a unit segment length of 50/15 m. However, the segmentation of their design 

method is only optimal for a specific crystallization system; it may not be optimal for other 

systems and thus their multi-segment design is not as versatile as generally demanded by the 

pharmaceutical industries. Furthermore, depending on the relative competitiveness of crystal 

growth rate and nucleation rate, varying ranges of supersaturation along the tubular crystallizer 

may be required to achieve the best product attributes. Hence, without resorting to optimize too 

many equally-spaced injections, it is more desirable and useful to optimize both the locations and 

distribution of a limited number of anti-solvent or fresh solution injections to achieve better 

control of supersaturation. This new method of optimization of the continuous MSMA-PFC 

provides the same level of operating flexibility as a batch crystallizer in which anti-solvent can 

be added at any time and hence should result in better control or product quality attributes. 

To sum up, a practical multi-segment multi-addition tubular crystallizer should have the 

concept of a modular design, which comprises standardized unit segments, for example, a 

module of 0.6 m long, as studied by Alvarez and Myerson
1
. Then for a tubular crystallizer made 

up of N segments (hence with N possible addition points), the locations and distribution of anti-

solvent/fresh solution additions for a total number of m (m ≤ N) injections points could be 

optimized to obtain better product qualities. At the current stage, the optimization of only the 

anti-solvent addition is considered, as shown in eqs.(15) to (18) below; optimization of both anti-

solvent and fresh solution additions (and temperature) would be straightforward and can be 

considered in future work. The optimization problem can be stated as to maximize the product 

qualities (e.g., mean crystal size, product yield, etc.) P at the outlet of the final segment ZN 
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MAX<,=  �>�?@ (15) 

subject to a number of linear and nonlinear constraints on the product qualities P, represented by 

eq.(16) 

A�>�?@ ≤ 0 (16) 

The optimization represented by eq.(15) involves  

(i) changing the location of m anti-solvent additions; in eq.(17), C  represents an integer list of 

index numbers of the addition points; there is always an anti-solvent addition in segment 1 

and the remaining D − 1 additions may occur at the start of segments between 2 and N; 

(ii) changing the mass fraction EF of the Gth
 anti-solvent addition, where G = 1 … D, as 

represented by the list in =. The total flow rate of anti-solvent added in each case is treated as 

fixed. 

< = IJ., J�, J/, … , JKL   where J. = 1 (17) 

= = IE., E�, … , EKL   where   ∑ EF = 1KFN.  (18) 

      Under the proposed design and optimization framework, it is convenient to consider a 

MSMA-PFC with a desired total length assembled from a fixed number of unit segments
1
 and 

also with an optimized anti-solvent addition. Thus it is possible to make the MSMA-PFC flexible 

and efficient for a variety of crystallization systems. As expected, when a large number of 

injections are chosen (D~P), there would be only marginal benefits over the equally-spaced 
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injections; hence, the list U of injection positions can be fixed and only the distribution vector A 

is allowed to vary in the optimization problem. 

        The above optimization problem of eqs.(15) to (18) is a mixed integer non-linear 

programming problem (MINLP) and can be solved by the genetic algorithm with an integer 

constraint “intcon” in MATLAB. The genetic algorithm is an adaptive heuristic search method 

based on the evolutionary ideas of natural selection and genetics and is capable of searching a 

large or multi-modal state-space, offering significant benefits over more deterministic 

optimization techniques. 

       Multi-objective optimizations have been widely applied to the crystallization process, e.g. to 

observe the Pareto front among several key performance indices, such as the volume-based mean 

crystal size, coefficient of variation (CV), yield, or the ratio of seeded crystals over nucleated 

crystals
24, 31, 32

. In the current application, the residence time distribution is narrow in a plug-flow 

crystallizer and should not contribute to a broadening of the CSD through back-mixing effects. 

Instead an increase in the CV is more likely to result from multiple nucleation events along the 

tube, triggered by anti-solvent additions and potentially leading to a multi-modal CSD. Multi-

objective optimization of the mean crystal size and the CV is possible; however, here the 

objective function was simply written in terms of maximizing the mean particle size, but adding 

the constraints that (i) a minimum yield had to be obtained and (ii) the CV had to be less than 

0.30, ensuring a relatively narrow CSD.  This approach is intended to minimize the effects of 

multiple nucleation events and to provide a narrow distribution of large crystals suitable for 

secondary manufacturing processes, e.g. filtration or continuous mixing
33

.  Extensions of the 

approach to other (multi-) objective functions would be straightforward to implement, but the 

formulation proposed here is sufficient to demonstrate the ability to design optimized processes. 
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Therefore, in this study, only the mean crystal size L43 is maximized with constraints imposed 

both on CV and product yield (as shown in Table 1). 
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RESULTS AND DISCUSSION 

Tubular Crystallizer Design 

To demonstrate the proposed design and optimization framework for the MSMA-PFC, a 

unseeded anti-solvent crystallization system of paracetamol in an acetone (solvent) and water 

(anti-solvent) mixture at a constant temperature of 16 
o
C is investigated using numerical 

simulation. The feed solution of paracetamol is first saturated at a water mass fraction of 60% 

(0.1917 g solute/g solvents) and then injected into a 72 m long tube, which consists of 120 

segments.  Each modular segment is 0.6 m in length and 1.27 cm in diameter
1
. Addition of anti-

solvent is also assumed to be possible only in the inlet of each modular segment and as described 

above is assumed to mix instantly with the slurry inside the tube. A total flow rate of 50 ml/min 

of fresh saturated solution is fed to the first segment, and a total flow rate of 25 ml/min of water 

as anti-solvent is injected along the MSMA-PFC. The mean residence time is assumed to be 

fixed at 120 min
a
, similar to the typical semi-batch crystallization process reported by Woo et 

al.
34

, in which the solubility model and crystallization kinetics equations (minor typo errors 

therein are corrected) are presented as follows for easy reference. 

1∗�kg solute/kg solvents� = 1.302 × 10-`a/ − 1.882 × 10-0a� +                            

2.237 × 10-0a + 5.746 × 10-. 
(19) 

∆1 �kg solute/kg solvents� = 1 − 1∗ 
(20) 

� �# m/⁄ s⁄ � = #i∆1i 
(21) 

                                                 
a
 The mean flow rate �� in each modular segment is different due to the anti-solvent addition, 

which affects the mean residence time in each segment. 
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#i = 4.338 × 104j exp�−1.374a� (22) 

m = 1.997 × 10-/a� − 6.237 × 10-.a + 4.042 × 10 .  (23) 


 �m s⁄ � = #o∆1o (24) 

#o = −9.6300 × 10-..a/ + 3.3558 × 10-ja� 
−1.2606 × 10-`a + 3.6852 × 10-4 (25) 

p = −1.108 × 10-0a� + 1.024 × 10-�a + 1.427 (26) 

where w is the mass percentage of anti-solvent in the solvent mixture; ∆C is the absolute 

supersaturation. Both the crystal growth rate G and the nucleation rate B are dependent on 

supersaturation and anti-solvent mass fraction; as previously mentioned the anti-solvent mass 

fraction has a complex effect on supersaturation, which make the control and optimization of 

product qualities very challenging. For example, in a semi-batch crystallizer system
34

, the anti-

solvent flowrate was required to increase exponentially to maintain a constant trade-off of crystal 

growth and nucleation (so-called C-control
34

 for a semi-batch process).  

The selected crystallization kinetics was taken from batch crystallization experiments by 

Woo et al.
34

, obtained through parameter estimation.  They are used for illustrative purposes only 

and are not intended to perfectly represent the crystallization behavior in a continuous plug-flow 

crystallizer. The fluid mechanics in these two devices are not comparable, and hence phenomena 

such as the secondary nucleation processes induced by a moving impeller in a batch crystallizer 

are unlikely to the same as in plug-flow crystallizer, through particle-wall, or particle-particle 

collisions. Realistic nucleation models should be included in design calculations for continuous 

crystallizers, particularly given the sensitivity of the optimization to the detail of the nucleation 
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kinetics
24

. For the design of real crystallization processes, parameter estimation to obtain the rate 

laws relevant to the fluid flow in the process equipment should be conducted as part of a 

preliminary experimental study of a PFC design, but is not considered as part of the current 

work. 

Optimisation of Antisolvent Addition 

        As discussed previously, a computationally efficient steady-state model of MSMA-PFC 

using MOM is employed here for the optimal design problem of the anti-solvent additions. The 

optimal results are then re-simulated by the FVM to capture the full CSD development in the 

tubular crystallizer. This avoids the difficulty of trying to reconstruct the full CSD from its 

moments and reduces the computational time for the optimization; it is important here, because 

there is a possibility to obtain multi-modal size distributions, which may not be evident from the 

moments alone. 

         Practically it would be infeasible to use a large number of injection points. The 

performance of the MSMA-PFC, was studied for up 6 injection points; the first is always at the 

entry to the first segment and the remainders are selected from the following 119 segments.  

Three case studies are considered: 

• Case 1, serves as an unoptimized bench mark, and considers equally-spaced injection 

points with equally distributed anti-solvent addition, as studied by Alvarez and Myerson
1
; 

• Case 2 considers also the equally-spaced injection points, but with optimized distribution 

of anti-solvent addition, as studied by Ridder et al.
24

; 

• Case 3 optimizes both the location of the addition points and the distribution of anti-

solvent 

Page 21 of 42

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 22

For Cases 2 and 3, the objective was to maximize �0/, whilst maintaining 12 ≤ 0.30 and 

1�qr� ≤ 0.806 kg/kg, i.e. without broadening the crystal size distribution too much and with an 

acceptable yield. For an unseeded anti-solvent crystallization in this MSMA-PFC, the width of 

the CSD is mainly determined by the magnitudes of multiple nucleation events. Paracetamol in 

acetone is a relatively slow growing system and is dominated by nucleation; hence maximizing 

the mean crystal size under a minimum yield constraint, will automatically limit these multiple 

nucleation events. 

The genetic algorithm for MINLP problem in MATLAB 2013b was implemented for the 

optimization problems of Cases 2 and 3. To cope with the stochastic nature of the genetic 

algorithm, population sizes of 30, 60, 100 and 200 were implemented together with maximum 

generations of 150 for each optimization scenario of Cases 2 and 3; the best solution of each was 

then chosen as the final optimal result. 

The final optimization results of the case studies are summarized in Table 1. For example, in 

Case 2 of the MSMA-PFC with totally four injection points (m = 4), the location index U = [1 31 

61 91] means the third anti-solvent addition is located at the 61
st
 segment, or axial position of z = 

(61-1) × 0.60 m = 36.0 m. The corresponding anti-solvent feed distribution is given by A = 

[0.242, 0.025, 0.733, 0.001] and shows, for example, that the flow rate of the third anti-solvent 

addition was 0.733 × 25 ml/min = 18.3 ml/min. Comparisons of the three case studies for four 

injection points in the MSMA-PFC are shown in Figures 2 to 4 for paracetamol concentration, 

evolution of crystal number density, and the volume-based CSD profiles at specific axial 

positions, respectively. 

Page 22 of 42

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 23

       Figure 2 shows that all the three cases maintain a certain level of supersaturation, which 

reduces between each addition; the first anti-solvent addition at the inlet of the crystallizer 

produces the first burst of nuclei, which passes through the following PFC segments for further 

growth and finally contributes to the generation of the majority of the large particles at the outlet, 

as is illustrated in Figures 3 and 4. After the second addition, the equally-distributed addition in 

Case 1 creates a large supersaturation, which results in the second peak in the broadened CSD 

(see Figure 4: case 1 for z > 18 m). Case 2 reduces the amount of anti-solvent addition at the 

same position compared to Case 1 at z = 18 m; this extends the supersaturation level achieved in 

the previous segment so that before the third addition (where a large amount of anti-solvent is 

added) there are enough medium-size crystals for growth to compete with the nucleation effect 

and thereby consume the supersaturation. In such a way, there is a significant increase of the 

final mean crystal size from 370 µm of Case 1 to 499 µm of Case 2 as shown in Table 1; the CV 

was constrained to be < 0.30. Interestingly, due to the limited residence time for crystal growth 

in the final segment, there are only small amounts of anti-solvent added from the last injection 

points close to the end of PFC for 4, 5 and 6 addition points; see Case 2 (see Table 1).  Figure 3 

also shows that there is very little change in the CSD in the last few segments of the MSMA-

PFC.  Hence, when the total number of injection points is limited by practical constraints, the 

optimal locations of the injection points are rather important. With this in mind, in Case 3 both 

the locations and the distribution of the anti-solvent additions are optimized and, as a result, a 

nearly constant supersaturation level is maintained up to the fourth addition at the 63
rd

 segment, 

after which a large supersaturation level is also generated, analogous to that in Case 2. A further 

increase in the mean crystal size with a lower CV is obtained for Case 3 compared to Case 2 as 

shown in Table 1 and Figures 3 and 4. The latter indicates the strategy employed in Case 3 is 
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more successful in controlling the nucleation rate throughout the whole tube, giving the largest 

mean crystals sizes and maintaining a CV well below the constraint of 0.30. 

      The effect of the total number of injection points on the mean crystal size at the exit of the 

MSMA-PFC is summarized in Table 1 and also depicted in Figure 5; Case 3 always produces the 

largest mean crystal size and increasing the number of injection points beyond four only 

contributes marginally to improve the performance of the MSMA-PFC. Most importantly, 

consistent optimal locations for additions were found for Case 3, where nearly all of the anti-

solvent additions are added in the first half of the crystallizer tube. In contrast, variations in the 

optimization results were obtained for equally-spaced injection points of Cases 1 and 2, which 

were also reported by Ridder et al
24

. In Cases 1 and 2 the anti-solvent is added more uniformly 

along the length of the crystallizer, as the number of injection points increases; however, this 

strategy fails to provide enough anti-solvent addition in the first half of the tube. Thus results of 

Figures 3 to 5 show that for an MSMA-PFC, an optimization of both the location and amount of 

anti-solvent additions should be taken into account to achieve the best flexible, efficient and 

cost-effective design. 

       For further comparison, the batch crystallization process with an optimal C-control strategy 

(a methodology to manipulate the supersaturation to trade-off the nucleation and crystal growth 

rates), using a seed (mean size 220 µm) achieved a final crystal mean size of 556 µm for a batch 

time of 120 min in ref. 34. Therefore, the proposed design and optimization framework of 

MSMA-PFC, producing final crystals with good quality, shows the potential to implement an 

innovative continuous crystallizer design to replace existing batch crystallization processes. 
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      In terms of the robustness analysis of the optimization results, Ridder et al.
24, 35

 have 

thoroughly illustrated that, for an unseeded anti-solvent crystallization in a MSMA-PFC, the 

final product qualities are rather sensitive to uncertainties in the nucleation kinetics and the first 

anti-solvent addition rate. Obviously, the nucleation kinetics plays a decisive role in an unseeded 

crystallization, as they determine the total number of crystals generated. Therefore, the first anti-

solvent addition is important since it generates the supersaturation which is responsible for the 

largest nucleation rates. For sufficiently long tubes, the nascent crystals continue to grow until 

the supersaturation is exhausted, which leads to a reduced sensitivity of the optimization results 

to crystal growth kinetics and the subsequent anti-solvent additions. Similar trends are also found 

in the current work. For example, comparisons of the robustness of the optimal results (m = 4) in 

Table 1 under uncertainties in the nucleation kinetic parameter kb are shown in Figure 6, where 

kb is multiplied by a parameter kuc to represent the uncertainty. It is found that similar 

sensitivities are obtained for Cases 2 and 3, as mentioned above, although the proposed 

optimization framework maintains a better performance over its counterparts. Therefore, it is 

much more desirable to reduce these sensitivities by introducing proper seeding techniques or an 

elaborate design of a nucleator in the first PFC segment, which is an ongoing project in our 

group. 

Dynamic Simulation 

      A dynamic simulation of the above MSMA-PFC design was conducted with the optimized 

four injection locations and anti-solvent distributions of Case 3, as shown in Table 1. Firstly, the 

MSMA-PFC is assumed to start up by injections of anti-solvent into the crystallizer according to 

the optimal results of anti-solvent addition, by which the crystallizer can be first filled and 

purged using the less expensive anti-solvent (water). Then the fresh feed saturated solution, with 
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a constant flow rate of 50 ml/min, is injected and mixed with the first anti-solvent addition at the 

inlet of first PFC segment. 

     The evolution of the paracetamol concentration along the crystallizer axial is depicted in 

Figure 7. The discontinuities in the concentration are due to the dilution effect of the anti-solvent 

additions. Apart from the transient response at the inlet for the first few minutes, the start-up of 

the MSMA-PFC is relatively smooth compared to a stirred-tank design (which typically requires 

more than four mean residence time to reach steady-state), approaching the steady-state in just 

after the first mean residence time. The observed transient response at the inlet is due to the high 

supersaturation generated by the instant mixing of fresh solution with the first anti-solvent 

addition of 0.241 × 25 ml/min, leading to a relative large nucleation effect and its propagation 

into the following segments, as is more clearly shown in Figures 8 and 9. The initial peak at 

solute concentration profile for z = 0.0
+
 m is due to the fast depletion of solute by spontaneous 

nucleation after the generation of large supersaturation at the inlet. After that event, the 

nucleation effect is reduced (see Figure 9 for z = 0.0
+
) as the concentration remains nearly 

constant and reaches its steady-state; the already generated nuclei in the inlet then serve as the 

seeding crystals in the remaining sections of the crystallizer. 

      The large numbers of nuclei generated at the entry, pass through the following PFC 

segments, consuming supersaturation through growth and resulting in an initially slightly lower 

concentration than at the steady-state condition, as shown in Figure 8 for different tube locations. 

Figure 9 shows that the effects of this initial burst of nuclei quickly vanish from the dynamic 

evolution of the CSD inside the tube. Although this high supersaturation only occurs at the 

beginning of the start-up process, its effect on the crystal size distribution could be important in 

practice, causing crash nucleation and fouling at the inlet
35

. The use of a dynamic simulation 
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illustrates the problems that might occur on start-up and allows design of a mitigation strategy, 

e.g. to initially provide some seeding into the fresh feed saturated solution at the beginning of the 

start-up process and then move more slowly back to an unseeded operation. For example, a 2.0% 

seeded fresh slurry was used to start up the MSMA-PFC with optimal anti-solvent distribution of 

Case 3 (m = 4), as shown in Figures 10 and 11 for the paracetamol concentration and CSD 

evolution at the inlet, respectively. Here, a log-normal seed crystal size distribution with a mean 

size of 60 µm and a standard deviation of 1.5 was continuously seeded for 60 minutes. 

Comparing to the unseeded start-up in Figures 7 and  9 (for z = 0.0
+
), the seeded crystallization 

over the first 60 minutes decreased the paracetamol concentration significantly, while initializing 

the crystallization at the inlet. After stopping the seed feed addition, the process slowly resumed 

to a high concentration at the inlet and also reached the same optimal steady state as Case 3 (m = 

4), without causing an initial large burst of nucleation. 

     In summary, it is obvious that the MSMA-PFC, by optimized process design, shows the 

advantages of a quick start-up and potentially simplified process control needed to reach a 

steady-state operation, compared to that observed in cascaded multi-stage MSMPR 

crystallizers
16, 36

. 
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CONCLUSIONS AND FUTURE WORK 

       The multi-segment, multi-addition plug-flow crystallizer (MSMA-PFC) has shown potential 

benefits for the design of optimized continuous crystallization processes, which can replace 

existing batch operations. The current work has extended the previous work in mathematical 

modeling, design, and optimization of an MSMA-PFC, proposing a conceptual design based on a 

number of standardized modular units, an optimization framework for finding the best locations 

and amounts of anti-solvent additions and a dynamic simulation to study its start-up.  

Improvements to the previous optimization frameworks reported in the literature by Alvarez and 

Myerson
1
 and Ridder et al.

24 
were illustrated, showing that larger mean crystal sizes could be 

obtained, with the CV maintained below a target level.  The proposed design framework avoids 

the formation of multiple large nucleation events, which give rise to multi-modal and broad size 

distributions of the crystal product.  The method is quite general and can be adapted to take into 

account different definitions of the process objective and to target a variety of product quality 

attributes. Nevertheless, the simulations require input in the form of kinetic rate laws, which 

should be obtained from experiments conducted under the relevant flow conditions. Future work 

will consider the effects of initial seeding at the inlet, additions of fresh solution along the tube, 

and a temperature profile for a combined cooling and anti-solvent crystallization process. Further 

extensions of the plug-flow crystallizer to a continuous oscillatory baffled crystallizer (COBC) 

with some axial dispersion are also under investigation.  
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ABBREVIATIONS 

ATR-FTIR, attenuated total reflectance Fourier-transform infrared spectroscopy;  

COBC, continuous oscillatory baffled crystallizer; 

CSD, crystal size distribution; 

CV, coefficient of variation;  

FBRM, focused-beam reflectance measurement; 

FVM, finite volume method;  

MINLP, mixed integer nonlinear programming problem; 

MOM, method of moments; 

MSMA, multi-segment multi-addition;  

MSMPR, mixed-suspension mixed-product-removal; 

ODE, ordinary differential equation; 

PAT, process analytical technology; 

PDE, partial differential equation; 

PFC, plug-flow crystallizer; 

PSE, process systems engineering; 

PVM, particle vision measurement; 

SDC, simultaneous design and control.  
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FIGURES AND CAPTIONS 

 

Figure 1. Schematic of a multi-segment multi-addition plug-flow crystallizer. (Ai: anti-solvent 

addition for the i
th

 segment; Si: fresh solution addition; Zi: tube length; Ci: main solute 

concentration; C
*
i: main solute solubility in i

th
 segment; Ti: temperature; N: total number of 

segments.) 

       

            

 

 

 

 

 

 

 

 

 

Page 34 of 42

ACS Paragon Plus Environment

Organic Process Research & Development

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org/action/showImage?doi=10.1021/acs.oprd.5b00110&iName=master.img-012.jpg&w=361&h=196
http://pubs.acs.org/action/showImage?doi=10.1021/acs.oprd.5b00110&iName=master.img-012.jpg&w=361&h=196
http://pubs.acs.org/action/showImage?doi=10.1021/acs.oprd.5b00110&iName=master.img-012.jpg&w=361&h=196
http://pubs.acs.org/action/showImage?doi=10.1021/acs.oprd.5b00110&iName=master.img-012.jpg&w=361&h=196
http://pubs.acs.org/action/showImage?doi=10.1021/acs.oprd.5b00110&iName=master.img-012.jpg&w=361&h=196


 35

 

               

 

Figure 2. Optimization results of concentrations for four injection points in MSMA-PFC. (Solid 

line: solute concentration; dashed line: solute solubility.) 
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Figure 3. Optimization results of number-based CSD for four injection points in MSMA-PFC. 
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Figure 4. Optimization results of volume-based CSD for four injection points in MSMA-PFC 

(Upper four: Case 1; center four: Case 2; Lower four: Case 3). 
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Figure 5. Effect of the number of injection points on optimization results of MSMA-PFC. 

 

Figure 6. Robustness analyses of optimization results (m = 4) of MSMA-PFC with regard to 

nucleation uncertainties. 
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Figure 7. Dynamic simulation of main solute concentration in MSMA-PFC for Case 3 (m = 4). 

 

Figure 8. Dynamic simulation of main solute concentration at different tube locations of Case 3 

(m = 4) (+: after anti-solvent addition; -: before anti-solvent addition at addition locations). 
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Figure 9. Dynamic simulation of CSD in MSMA-PFC for Case 3 (m = 4). 
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Figure 10. Main solute concentration at the inlet during seeded start-up of MSMA-PFC for Case 

3 (m = 4). 

 

Figure 11. Crystal size distribution at the inlet during seeded start-up of MSMA-PFC for Case 3 

(m = 4). 
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TABLES 

Table 1. Summary of the three case studies. 

Case m U A 
L43 

(µm) 
CV 

CZN 

(kg/kg) 

1 

1 [1] [1.000] 278.5 0.182 0.0795 

2 [1 61] [0.500, 0.500] 273.3 0.160 0.0798 

3 [1 41 81] [0.333, 0.333, 0.333] 374.7 0.150 0.0804 

4 [1 31 61 91] [0.250, 0.250, 0.250, 0.250] 369.7 0.301 0.0806 

5 [1 25 49 73 97] [0.200, 0.200, 0.200, 0.200, 0.200] 327.1 0.196 0.0808 

6 [1 21 41 61 81 101] [0.166, 0.166, 0.166, 0.166, 0.166, 0.166] 361.5 0.188 0.0812 

2 

1 [1] [1.000] 278.5 0.182 0.0795 

2 [1 61] [0.245, 0.755] 494.9 0.251 0.0805 

3 [1 41 81] [0.272, 0.376, 0.353] 439.5 0.226 0.0806 

4 [1 31 61 91] [0.242, 0.025, 0.733, 0.001] 499.0 0.247 0.0805 

5 [1 25 49 73 97] [0.256, 0.018, 0.369, 0.341, 0.016] 470.3 0.225 0.0806 

6 [1 21 41 61 81 101] [0.233, 0.035, 0.079, 0.546, 0.106, 0.001] 483.5 0.229 0.0806 

3 

1 [1] [1.000] 278.5 0.182 0.0795 

2 [1,62] [0.246, 0.754] 497.2 0.248 0.0806 

3 [1 48 62] [0.238, 0.135, 0.627] 511.7 0.248 0.0806 

4 [1 46 54 63] [0.241, 0.074, 0.135, 0.551] 519.6 0.223 0.0806 

5 [1 53 61 62 64] [0.241, 0.135, 0.114, 0.156, 0.356] 520.0 0.230 0.0806 

6 [1 19 50 56 63 67] [0.237, 0.003, 0.071, 0.111, 0.516, 0.063] 521.1 0.238 0.0806 
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