Mechanical modification of bacterial cellulose hydrogel under biaxial cyclic tension

This study presents a novel and simple method to modify the microstructure of bacterial cellulose (BC) hydrogel. BC specimens were produced using Gluconacetobacterxylinus ATCC 53582, then cut into cross-shape specimens and subjected to biaxial cyclic tension in a displacement-control mode. Microstructural changes in the tested specimens were recorded during a biaxial deformation process. The effect of biaxial load on microstructure of BC hydrogel was investigated to understand deformation and fracture mechanisms of a BC fibrous network. The obtained knowledge reveals the fundamental principles of microstructural modifications, which could enhance biological performance of such hydrogels. The mechanically re-constructed BC specimens demonstrated a relatively homogeneous micro-porous structure with an average pore size of 100 μm.