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Abstract   

This paper presents analysis of mechanics in a micro-cutting process of a single-crystal metal 

– mechanisms of deformation and material removal related to an anisotropic crystallographic 

structure of a work-piece. A crystal-plasticity theory was implemented in a finite-element (FE) 

modelling scheme to consider inherently anisotropic deformation of a single-crystal metal at 

micro-scale. A new shear-strain-based criterion and several conventional strain-based criteria 

were employed to simulate the material removal process, and their effect on the anisotropy of 

cutting forces was studied. Subsequently, the micro-cutting process of single-crystal copper 

was predicted using FE modelling by combining the crystal-plasticity theory and the 

proposed criterion of material removal. The validity of the present FE modelling 

methodology was corroborated through a comprehensive comparison between FE simulations 

and experimental data in terms of cutting forces, chip morphology, deformation field, pile-up 

patterns and misorientation angle in the work-piece. 
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1 Introduction  

    A trend of product miniaturisation has led to a growing demand for high-precision micro-

scale machining techniques for manufacture of micromechanical systems [1-3]. In contrast to 

conventional macro-scale machining, a process zone in micromachining is usually limited to 

only a few grains of a metallic work-piece material. A component in the micro-scale exhibits 

a different mechanical response to that observed in its macro-scale counterpart [4, 5]; 

consequently, its cutting response in the micro-scale also differs significantly. For example, 

cutting forces and chip morphology were found to depend on crystal orientation in several 

experimental studies on micromachining of single-crystal metals [6, 7]. To better understand 

the process of local deformation and material removal at a tool-work-piece interface in a 

micromachining process, a thorough analysis of cutting mechanics at grain level is required 

[7-9].  

    In recent years, the finite-element (FE) method has been widely used to model the 

machining process of materials, including analysis of chip morphology [10], temperature 

effects [11, 12] and ultrasonic vibration [13], influence of cutting conditions on structure of 

machining subsurface [14, 15] as well as optimisation of machining parameters [16, 17]. 

Similar research was also conducted in the field of micromachining [18, 19]; for example, in 

the work of Jin and Altintas [20], a relationship between cutting forces, chip thickness and a 

tool-edge radius was identified through series of FE simulations of micro-milling. Thus, FE 

simulations could provide an in-depth understanding of underpinning micromechanics in the 

micromachining process that are difficult to quantify experimentally. Liu and Melkote [21] 

adopted FE simulations to demonstrate a size effect in metal micro-cutting, i.e. a nonlinear 

increase in specific cutting energy with a decrease in depth-of-cut. The simulation results 

indicated that strain-gradients can lead to a size effect.  
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      However, in these studies, anisotropy at a grain-level, induced by a crystallographic 

structure, was not considered. To overcome this drawback, a single-crystal plasticity (SCP) 

theory, incorporating the effects of crystal orientation and activated slip systems, was 

developed [22] to study inherently anisotropic deformation behaviour at a smallest practical 

length scale of metallic materials. The theory was used successfully to capture some of well-

known experimental observations in single crystals, including uniaxial experiments [23, 24] 

and  nanoindentation studies [25, 26]. Some efforts were also made to apply the SCP theory 

in modelling of micro-cutting processes. Studies by Abolfazl et al. [27] and Tajalli et al. [28] 

showed that chip formation and cutting forces in single-crystal copper depended on the initial 

crystal orientations in the work-piece with respect to a cutting direction. Moreover, the works 

by Demiral et al. [29] and Pal and Stucker [30], based on strain-gradient crystal-plasticity 

simulations, indicated that inhomogeneous plastic deformation could affect machinability of 

a work-piece. These studies lack comprehensive experimental validations. Recently, Lee et al. 

[31] adopted the SCP theory to analyse a variation of cutting forces and shear angles induced 

by crystallographic anisotropy. The model was able to predict the general trend of force 

variation; however, the magnitude of cutting forces was severely under-predicted for most 

directions when compared to experimental results. 

Kim and Yoon [32] introduced several simplified isotropic damage models into the SCP 

theory, including those based on principal strain, equivalent plastic strain, maximum shear 

strain and strain energy, to describe the damage evolution of single-crystal metal. It was 

claimed that the maximum-shear-strain-based damage model provided the most accurate 

prediction when compared to experimental data. On a related note, since extreme shear 

deformation usually occurs at the interface of a cutting tool and a work-piece during 

machining, an alternative shear-strain-based criterion, which accounts for the accumulated 

shear strain over all the slip systems, was employed to model the material-removal process in 
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micro-cutting by Demiral et al. [29]. Each modelling approach suffers from some 

shortcomings, and a comprehensive investigation with regard to the influences of different 

damage criteria on modelling of material removal in micro-cutting processes is lacking. The 

main primary goal of this paper is to elucidate mechanics of the micro-cutting process of 

single-crystal metal through the use of advanced FE modelling. Special attention is paid to 

the anisotropic effect of deformation and material removal at the scale of individual grains.  

     This paper is organized as follows: a theoretical framework of the SCP theory and its 

numerical implementation are summarized in Section 2, followed by a description of the 

suggested modelling procedure in Section 3. Mesh-sensitivity and a comparison of different 

material-removal modelling schemes are analysed in Section 4. Micro-cutting of single-

crystal copper using the proposed modelling approach is studied in the subsequent section. 

We conclude with some remarks in Section 6. 

2 Constitutive relations 

2.1 Theory 

In this section, a classical crystal-plasticity theory adopted in this study is reviewed. A 

deformation gradient, F , can be decomposed into its elastic and plastic parts: 

 e pF = F F ,  (1) 

where the subscripts ‘e’ and ‘p’ denote the elastic and plastic parameters, respectively. By 

applying the product rule of differentiation, one can obtain the rate of the total deformation 

gradient, F , as 

 e p e pF = F F + F F   . (2) 

Therefore, the velocity gradient, L , can be introduced following its definition -1L = FF  as 

 -1 -1 -1
e e e p p e e pL = F F + F (F F )F = L + L  . (3) 
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It is assumed that the plastic velocity gradient, pL , is induced by shearing on each slip 

system in a crystal. Hence, pL  is formulated as the sum of shear rates on all the slip systems, 

i.e. 

 ( ) ( ) ( )

1

N
α α α

α

γ
=

= ⊗∑pL s m , (4) 

where ( )αγ  is the shear slip rate on the slip system α , N  is the total number of slip systems, 

and unit vectors ( )αs  and ( )αm  define the slip direction and the normal to the slip plane in the 

deformed configuration, respectively. Furthermore, the velocity gradient can be expressed in 

terms of a symmetric rate of stretching, D , and an antisymmetric rate of spin, W : 

 e e p pL = D + W = (D + W ) + (D + W ) . (5) 

Using Eqs. (3) and (4), it can be deduced  

 ( ) ( ) ( )

1

,
N

α α α

α

γ
=

= = ⊗∑-1
e e e e p pD + W F F D + W s m  . (6) 

Following the work of Huang [33], a constitutive law is expressed as the relationship 

between the elastic part of the symmetric rate of stretching, eD , and the Jaumann rate of 

Cauchy stress, 
∇

σ , i.e.  

 
∇

e pσ+σ(I : D ) = C : (D -D ) , (7) 

where I  is the second-order unit tensor, C  is the fourth-order, possibly anisotropic, elastic 

stiffness tensor. The Jaumann stress rate is expressed as  

 
∇

e eσ = σ -W σ +σW . (8) 

On each slip system, the resolved shear stress, ( )ατ , is expressed by a Schmid law, 

 ( ) ( ) ( )( ) :α α ατ = ⊗sym s m σ . (9) 
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The relationship between the shear rate, ( )αγ , and the resolved shear stress, ( )ατ , on the slip 

system α is expressed by a power law proposed by Hutchinson [34]: 

 
( )

( ) ( )
0 ( ) sgn( )

n

g

α
α α

α

τγ γ τ=  , (10) 

where 0γ  is the reference shear rate, ( )g α  is the slip resistance and n  is the rate-sensitivity 

parameter. The evolution of ( )g α  is given by 

 ( ) ( )

1

N

g hα β
αβ

β

γ
=

= ∑  , (11) 

where hαβ  is the hardening modulus that can be calculated in the form modified from that 

proposed by Asaro [35], 

 ( ) ( )2 ( )0
0

0 0

sech , ( ),
t

s
s s

S

h h
h h h h h qh dtα
αα αβ αα

α

γ
α β γ γ

τ τ
− 

= − + = ≠ = − 
∑∫  . (12) 

Here, 0h  and sh  are the initial and saturated hardening moduli, respectively, q  is the latent 

hardening ratio, 0τ  and Sτ  are the shear stresses at the onset of yield and the saturation of 

hardening, respectively, and γ  is the accumulative shear strain over all the slip systems. 

2.2 Implementation in finite-element environment  

    Implementation of the SCP theory in an implicit ABAQUS FE environment, by means of a 

user subroutine (UMAT), was introduced in the work of Huang [33], where a time integration 

scheme and a stress update algorithm were presented as 

 ( ) ( ) ( ) ( ) ( )= 1
t t t

t tα α α αγ γ θ γ θ γ
+∆

 ∆ = ∆ ∆ − +
 

   , (13) 

 t
∇

∆ = ∆σ σ . (14) 

Here, t∆  is the time increment in the FE calculation; θ  ranges from 0 to 1, representing 

different time integration schemes (as an example, setting 0θ =  yields a simple Euler time 
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integration scheme); the Jaumann stress rate, 
∇

σ , was defined in Eq. (8). In this paper, the 

SCP theory is implemented employing a VUMAT subroutine in the explicit ABAQUS 

environment. The time integration scheme was identical to the one implemented in the 

UMAT; however, the stress update algorithm had to be modified due to the difference of the 

defined stress rate for ABAQUS/Standard and ABAQUS/Explicit formulations. The former 

employed the Jaumann stress rate, but the latter was based on the Green-Naghdi stress rate 

[36].  

     In contrast to the Jaumann stress rate defined in Eq. (8), the Green-Naghdi stress rate is 

defined as 

 
∆

e eσ = σ -Ω σ +σΩ . (15) 

Here, Ω  was found from a right polar decomposition of the total deformation gradient, F , as 

 ,= ⋅ TΩ R R F = VR , (16) 

where R  and V  are the right rotation and stretch tensors, respectively. To evaluate the stress 

update defined by the Green-Naghdi stress rate by using the Jaumann rate, one can use the 

Hughes-Winget algorithm [37], as 

 
t t t+∆

= ∆ ∆ + ∆Tσ Rσ R σ , (17) 

 ( ) ( )
11 1

2 2

−
   ∆ = − ∆ − ∆ + ∆ − ∆      

R I W Ω I W Ω , (18) 

 ,t t∆ = ∆ ∆ = ∆W W Ω Ω , (19) 

where ∆R  is the relative spin increment tensor and I  is the second-order unit tensor, ∆σ  is 

the stress increment obtained with the Jaumann stress rate (Eq. (14)). Another essential 

difference in ABAQUS/Explicit is that the stress and strain tensors are defined based on the 

spatial coordinate system (i.e. with respect to the local coordinate system rotating with the 

volume), in contrast to the material coordinate system (i.e. a fixed global coordinate system) 
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used in ABAQUS/Standard. Therefore, during the conversion of UMAT to VUMAT, the 

stress update algorithm in VUMAT should be rewritten as 

 
t t t+∆

= ∆ ∆ + ∆T Tσ Rσ R R σR . (20) 

3 Modelling procedure 

3.1 Finite-element model  

Without loss of generality, single-crystal copper with a face-centred cubic (FCC) 

crystallographic structure was used in the study. A three-dimensional (3D) FE model was 

developed to simulate a micro-cutting process as shown in Fig. 1a to reflect experimental 

studies. The cutting tool had a wedge angle of 60° and a clearance angle of 6.25°. For FCC 

single-crystal copper, slip was assumed to occur on the usual twelve {111} < 110 > slip 

systems (see Table 1). In our simulations, the cutting tool was assumed to be rigid, and the 

contact condition between the cutting tool and the work-piece was assumed to be frictionless. 

The cutting direction was in the negative X direction (Fig. 1a), with a cutting velocity of 10 

mm/min. The groove produced by micro-cutting is shown in Fig 1b, which is a result of two 

stages of micro-cutting. In Stage 1, a linearly increasing cutting depth (ranging from 0 to a 

target depth) was set for the cutting tool; while in Stage 2 a constant cutting depth (the target 

depth) was retained. In our FE simulations, two different target depths were considered - 8 

and 18 μm. To reduce a computational cost, the two stages of micro-cutting were modelled 

using two FE models. In the first model, the length, height and width of the work-piece were 

340 μm, 200 μm and 120 μm, respectively. In the second model, the respective magnitudes 

were 240 μm, 200 μm and 120 μm. 
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Fig. 1 (a) Finite-element model for simulation of micro-cutting and (b) groove geometry  

 

Table 1 Twelve slip systems in FCC single-crystal copper   

 1 2 3 4 5 6 7 8 9 10 11 12 

𝐬𝐬(𝛼𝛼) 01�1 101� 1�10 101 110 01�1 011 110 101� 1�10 101 011 

𝐦𝐦(𝛼𝛼) 111 111 111 1�11 1�11 1�11 11�1 11�1 11�1 111� 111� 111� 

 

The work-piece was meshed using eight-node brick elements with reduced integration 

(C3D8R) available in ABAQUS. To improve accuracy, a finer local mesh was used in 

regions near the cutting zone with a height of 27 μm. In this study, the [110] crystal 

orientation corresponds to a normal of the top surface of the work-piece. Three orientations 

were chosen as cutting directions: [1-10], and the other two rotated by angles of 45° (i.e. [1-

1√2]) and 90° (i.e. [001]) with respect to it. The cutting forces were defined as follows: a 

force along the cutting direction (X direction) is called the principal force, and those along 

the Y and Z directions are the thrust and lateral forces, respectively (Fig. 1b). 

3.2 Modelling of material removal 

     To our knowledge, three main modelling techniques are usually employed to simulate 

material removal: element deletion [29, 38], arbitrary Lagrangian-Eulerian adaptive 
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remeshing (ALE) [18, 20, 39] and smooth particle hydrodynamics (SPH) [27, 40, 41]. Our 

studies indicated that the three modelling techniques produce almost identical results for the 

cutting forces, however, the element deletion technique was the most computationally 

efficient [42]. Consequently, the modelling technique of element deletion was employed in 

this paper. 

    To incorporate element deletion or material removal in an FE simulation, a damage 

criterion was required [18]. In this paper, five different damage criteria are considered for the 

modelling of material removal. Three of those were based on a simplified damage model; the 

respective criteria were based on principal strain, equivalent plastic strain and maximum 

shear strain. Next, an approach based on the shear strain accumulated over all slip systems 

was considered as per the work of Demiral et al. [29]. Finally, a new shear strain-based 

criterion was proposed to account for anisotropy in the material-removal process, as follows: 

 
( )

( )( )
,min ,

,min

max , 0,

min , 1, 2 ,

cr sl sl cr

sl Nα

γ γ γ γ

γ γ α

− − ≥

= = 
 (21) 

where ,sl crγ  and crγ  are the critical values of shear strain on a single slip system and the 

accumulated shear strain on all the slip systems, respectively. That is, damage in a single 

crystal is considered based on two scenarios of partial and full activation of slip systems. In 

other words, both shear on individual slip systems as well as the overall slip due to all slip 

systems are monitored. If either the critical value for an individual slip system ( ,sl crγ ) or the 

accumulated slip ( crγ ) is attained, the element is removed. In our study, the values of crγ  and  

,sl crγ  was 6.0 and 0.068, respectively; these parameters were chosen based on initial 

calibration tests. In a nominal sense, these values imply that failure in a single-crystal copper 

occurs easier for the full activation of slip systems than for that of a partial one.  
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3.3 Calibration of material parameters 

    Experimental data for single-crystal copper under compression reported by Takeuchi [43] 

were employed to calibrate parameters of the work-piece material. As shown in Fig. 2, 

numerical results obtained after calibration show an excellent match with the experimental 

data for both [100] and [111] crystal orientations. The calibrated model parameters are listed 

in Table 2, and were used to simulate the micro-cutting process. 

 

Fig. 2 Comparison of experimental and numerical stress-strain behaviour under 

compression for single-crystal copper 

     

 

 

Table 2 Material parameters of single-crystal copper   

Parameter Definition Value Unit 

0γ  Reference shear rate 0.001 s-1 

n  Rate-sensitivity parameter 50 - 
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0τ  Initial slip resistance 4.0 MPa 

sτ  Saturated slip resistance 52 MPa 

0h  Initial hardening modulus 180 MPa 

sh  Saturated hardening modulus 24 MPa 

q  Latent hardening ratio 1.2 - 

 

4 Analysis 

4.1 Mesh-sensitivity analysis 

     For mesh-sensitivity studies, the Stage 2 of micro-cutting was considered, with a fixed 

cutting depth of 18 μm. Without loss of generality, micro-cutting along [1-10] (or 0° direction) 

was considered. Here a parameter, N, was defined providing a number of elements along the 

height of the cutting tool (Y direction as per Fig 1 (a)), to represent the mesh density used. 

The influence of mesh on the calculated cutting forces is shown in Fig. 3 for the micro-

cutting along 0° direction; both the principal and thrust forces are presented. For all the cases, 

the cutting forces initially increased with the engagement of the cutting tool, approaching a 

nominally constant level with full tool engagement in the work-piece. As shown in Fig. 3, the 

cutting forces decreased with increasing N. The effect of the mesh became less significant 

when N exceeds 25, and the difference between the cases of N=30 and N=35 was negligible. 

To give an estimate, the total number of elements used for N=30 corresponded to ~1×106 

brick elements. For the rest if the study, the mesh corresponding to N=30 was chosen as an 

acceptable balance between computational accuracy and efficiency. 



13 

 

Fig. 3 Influences of mesh number on predicted cutting forces 

4.2 Comparison of different material-removal modelling schemes 

   Here, the influence of different damage criteria on predicted anisotropy of cutting forces 

with respect to chosen cutting directions was studied. The intention was to attain a good 

correlation with regard to cutting-force magnitudes (in contrast to prior studies [29]).  As 

before, only Stage 2 of micro-cutting with a depth of 18 μm was considered. The average 

cutting forces were calculated from the nominally steady cutting region (i.e. after full 

engagement of the cutting tool). To better present the anisotropic effect predicted by different 

material-removal modelling schemes, the normalized cutting forces, f , was defined as  

 
,0p

Ff
F

= . (21) 

Here F is the true cutting force, and ,0pF  is the principal force in the 0° direction.  
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Fig. 4 Comparison of different criteria for material-removal modelling 

     The variations of normalized average cutting forces with the cutting directions, obtained 

with different material-removal models, are shown in Fig. 4. The obtained results are 

compared to experimental data performed by our partners at Tokyo Denki University, Japan. 

The effect of anisotropy is more pronounced in measurements of principal force in 

comparison to those for thrust force. It is clear that the choice of material-removal modelling 

has a noticeable influence of the predicted cutting forces for different cutting directions. The 

proposed criterion (Eq. (21)) captures anisotropy of the principal force more accurately when 

compared to other criteria. For example, the experimental data show that the principal force 

in 45° direction is about 40% higher than that in 0° direction; however, the criteria of 

equivalent plastic strain and accumulative shear strain only predicted 4% and 11% increases, 

respectively, while the criteria of maximum principal strain and shear strain even resulted in a 

decrease of 5% and 7%, respectively. This indicates that the simplified isotropic damage 
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models were not sufficient to describe the failure of single-crystal metals, which are 

inherently anisotropic.  

    Thus, it can be concluded that the material-removal model is an important factor to predict 

cutting forces in addition to deformation behaviour as described by the SCP theory.  

5 Results and discussion 

     In this section, the micro-cutting process of single-crystal copper (i.e. Stages 1 and 2) was 

predicted by combining the SCP theory and our proposed material-removal modelling. To 

verify the presented FE modelling, comprehensive experimental validations were carried out 

in terms of cutting forces, chip morphology, deformation field and misorientation angle of the 

single-grain Cu work-piece [44].  

5.1 Cutting forces    

The variation of cutting forces with time during a full micro-cutting process is shown in 

Figs. 5 and 6, corresponding to the cutting depth of 18 and 8 μm, respectively. The simulation 

results and experimental data of 0° and 45° cutting directions are reported here for each 

cutting depth. These cutting force-time curves cover two stages: Stage 1 with an increasing 

depth and Stage 2 with a constant depth of cut. In Stage 1, both principal and thrust forces 

grew with time due to the continuing increase in the cutting depth. In Stage 2, the cutting 

forces approached a nominally constant value. Here, the cutting process in Stage 2 was 

carried out for 1 second. As the two stages in the micro-cutting were simulated using two 

different FE runs, an apparent discontinuity was observed on the cutting force-time curves 

(due to concatenation of two curves). The experimental curves also show a clear discontinuity 

at the point of transition from Stage 1 to Stage 2; this is due to the nature of the experiment, 

in which, at the completion of Stage 1, the tool movement was stopped before the start of 

Stage 2. As shown in both Figs. 5 and 6, the simulation results correlate well with the 

experimental data for the principal forces (with the exception of the discontinuous region 
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between the stages). A significant dependence of the principal force on crystal orientation 

was observed both in the experiments and the simulations. In Stage 2, the principal force for 

the 45° direction was about 40% higher than that for the 0° direction for the cutting depth of 

18 μm (Fig. 5), and about 30% higher for 8 μm (Fig. 6). This anisotropy in the principal force 

was accurately captured in the FE simulations, thus validating the suggested criterion of 

material removal. Predictions for the thrust-force were comparatively less accurate for the 

studies cases; a possible reason for this could be their relatively low magnitude. The thrust 

forces showed a lower dependence on the cutting direction both in the simulation results and 

the experimental data for the normal to the work-piece surface fixed at the [110] crystal 

orientation. 

 

Fig. 5 Comparison of cutting forces from experimental data and FE simulations in micro-

cutting of single-crystal copper with depth of 18 μm for 0° (a) and 45° (b) directions 
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Fig. 6 Comparison of cutting forces from experimental data and FE simulations in micro-

cutting of single-crystal copper with depth of 8 μm for 0° (a) and 45° (b) directions 

 

5.2 Chip morphology  

     An important aspect in FE simulations of metal machining is their capability of capturing 

chip morphology. For the rest of the study, the case with the final cutting depth of 18 μm is 

considered. The chip morphology obtained with our FE simulations and in the experiment is 

compared in Fig. 7. When cutting was performed along the 0° direction (i.e. [1-10] 

orientation), slip systems activated in the FCC crystallographic structure were symmetrical 

with respect to it. Therefore, in the FE simulation, the chip separated from the work-piece 

symmetrically. The stress field was also symmetric with regard to the cutting plane (Fig. 7a). 

The simulated chip morphology was verified by the experimental results shown in the in Fig. 

7b. In contrast, micro-cutting along the 45° direction yielded an asymmetrical stress field and 

chip formation (Figs. 7c and d) as the cutting direction did not coincide with main axes of 

symmetry of the FCC structure of the work-piece material. 
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Fig. 7 Comparison of chip morphology from FE simulations and experiments in micro-

cutting of single-crystal copper: (a) simulation in 0° direction; (b) experiment in 0° direction; 

(c) simulation in 45° direction; (d) experiment in 45° direction 

 

5.3 Deformation of work-piece  

The deformation process in the work-piece caused by the machining process is discussed 

next. A distribution of displacement normal to the work-piece’s surface is shown in Fig. 8 for 

both 0° and 45° directions (here, the chip was removed for clarity). Again, symmetrical and 

asymmetrical deformation fields in the work-piece were observed for the micro-cutting in the 

0° and 45° directions, respectively. Ahead of the cutting process zone, higher deformation 

was observed for directions at about ±45° with respect to the cutting direction for micro-

cutting in the 0° direction; however, larger deformations were found to the right of the cutting 
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direction (-Z direction in Fig 8(d)) for micro-cutting in the 45° direction. Consequently, the 

pile-up height to the right of the groove was larger than that to the left in the FE simulation 

for micro-cutting in the 45° direction. The surface profile of the deformed work-piece was 

measured in the experiments (Figs. 8(b) and (d)), which was compared to that obtained from 

simulations at the locations indicated in Figs. 8 (a) and (c) (Path AB, CD).  

 

Fig. 8 Comparison of displacement fields in work-piece from FE simulation and experimental 

data on micro-cutting of single-crystal copper: (a) simulation in 0° direction; (b) experiment 

in 0° direction; (c) simulation in 45° direction; (d) experiment in 45° direction 
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Fig. 9 Pile-up profiles across groove obtained with FE simulation and experiment: (a) 0° 

direction (Line AB, Fig. 8a) and (b) 45° direction (Line CD, Fig. 8c)  

 

Fig. 10 Slip-system activation at peak pile-up height: 0° (a) and 45° (b) directions  

The pile-up profiles perpendicular to the groove (paths AB and CD in Fig. 8) are shown 

in Fig. 9 for two respective directions. It is clear that the residual imprint post machining 

depends on the cutting direction. An excellent agreement between the FE simulation results 

and the experimental data was obtained for the residual groove imprint for cutting in the 0° 

direction. In experiments, a minor asymmetry was observed with regard to the pile-up height 

on either side of the groove. This is due to the difficulty in ensuring a perfect spatial 

orientation of the cutting process due to inherent errors and precision of the system (see Fig. 

7b – the chip curls away from the central cutting direction). For results of cutting in the 45° 
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direction there were some differences when compared to the experimental data. Here, we 

would like to point out that the experimental data obtained with a laser microscope was noisy, 

and the results presented are based on averaging the data from several scans. The FE 

simulation provided a reasonable prediction of the pile-up height across the groove (Fig. 9b). 

 Magnitudes of slip on each slip system at four locations (I through IV in Fig. 9) 

corresponding to peak heights, are represented in Fig. 10. The slip systems 1 and 12 were 

arranged mirror-symmetrically relative to the [001] plane that is parallel to the 0° cutting 

direction; similarly, for slip systems 2 and 11, 3 and 10, and so forth (see Table 1). For micro-

cutting in the 0° direction, at points I and II there were four dominant slip systems activated 

symmetrically relative to the cutting direction, which explains the symmetrical pile-up profile 

observed in Fig. 9(a). The total accumulative slip at point I was almost identical to that at 

point II. In contrast, for cutting in the 45° direction, the slip-system activation at point III is 

different from that at point IV. There is a higher accumulative slip at point III in comparison 

to point IV, which explains the higher pile-up height observed at point III in Fig. 9(b).  

The activation of slip systems in the cutting process is complex. For a pure compression 

test performed in the material in the 0° and 45° directions, the slip-system activation would 

be completely different to that observed from the cutting process. In Fig. 10, the slip-system 

activation corresponding to a case of pure compression (with 50% strain) is provided for 

comparison, demonstrating that different slip systems were activated with varying 

magnitudes. Thus, simplified deformation studies cannot capture the anisotropy effect in the 

micro-cutting of crystalline materials. 

In summary, the simulation results agreed well with the experimental data for the pile-up 

height and general features of the post-machining deformation imprint. 
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5.4 Misorientation angle of work-piece  

    To characterize the variation of crystallographic orientation of the work-piece after the 

micro-cutting process, the concept of misorientation angle [45] was invoked here, which is 

expressed as 

 ( )1
1 1

min cos
2

A Btr
θ

−
−
 − =  
  

g g O
, (22) 

where θ  is the misorientation angle, Ag and Bg  is the orientation matrix at chosen spatial 

locations A and B, respectively, and O  is the crystal symmetry operator. There are a total of 

24 identical rotation operations in the case of FCC symmetry [45]. In this paper, the 

undeformed crystallographic structure was considered as the reference configuration for 

calculation of the misorientation angle. The variation of the misorientation angle along the 

path P-Q (which is perpendicular to the groove) is shown in Fig. 11(a) for the 0° direction. As 

deformation of the work-piece was nearly symmetrical for micro-cutting along the 0° 

direction (Fig. 9), only the misorientation angles on one side of the cut groove was assessed 

as shown in Fig. 10(a). A good agreement between the FE simulations and experimental data 

is apparent. The variation of crystallographic orientation was close to 20° for this cutting 

direction.  

    Using the developed model, the variation of the misorientation angles for cutting in the 45° 

direction was predicted (Fig. 11b). Here, path (R-S) across the groove was chosen because of 

the asymmetry of cutting in this direction. As expected, the misorientation angle was 

asymmetrical along the path R-S, with larger misorientation angles corresponding to the 

surface region with a higher pile-up height (Fig. 11b). The magnitude of misorientation angle 

is also relatively larger than that for 0° direction. Experiments will be conducted in the near 

future to verify the effectiveness of the predictive capability of the developed model. 
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Fig. 11 Misorientation angle across groove: (a) 0° direction, comparing FE simulation and 

experiment; (b) 45° direction, prediction based on FE simulation. 

6 Concluding Remarks 

A FE modelling approach for the micro-cutting process of single-crystal metals was 

presented, incorporating a new shear-strain-based criterion, accounting for the partial and full 

activation of slip systems. The model is shown to capture the inherent anisotropy of the 

damage process in single crystals, which in turn has a significant effect on prediction of 

anisotropy of cutting forces. Crucially, the study indicates that a suitable chip separation 

criterion is critical for accurate application of crystal-plasticity theory in micro-cutting of 

single-crystal metal.  

The numerical model is compared against experimental studies. The model is capable of 

capturing some of essential characteristics of the machining process, namely, cutting forces, 

chip morphology, pile-up profiles as well as misorientation angle for the machined work-

piece surface. The model was used to predict misorientation angles in other cutting directions, 

and can be employed to predict machining-induced deformations and stresses across any 

cutting plane and direction. 
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