
This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Abstract—This paper studies a multiple double-load crane
scheduling problem in steel slab yards. Consideration of multiple
cranes and their double-load capability makes the scheduling
problem more complex. This problem has not been studied
previously. We first formulate the problem as a mixed-integer
linear programming (MILP) model. A two-phase model-based
heuristic is then proposed. To solve large problems, a pointer-
based discrete differential evolution (PDDE) algorithm was
developed with a dynamic programming algorithm embedded to
solve the one-crane sub-problem for a fixed sequence of tasks.
Instances of real problems are collected from a steel company to
test the performance of the solution methods. The experiment
results show that the model can solve small problems optimally,
and the solution greatly improves the schedule currently used in
practice. The two-phase heuristic generates near-optimal
solutions, but it can still only solve comparatively modest problems
within reasonable (4-hour) computational timeframes. The PDDE
algorithm can solve large practical problems relatively quickly,
and provides better results than the two-phase heuristic solution,
demonstrating its effectiveness and efficiency and therefore its
suitability for practical use.

Note to Practitioners—Bridge cranes are commonly used to
move heavy items in manufacturing and logistics systems. Usually,
more than one crane runs on a common track. The latest versions
of such cranes, such as those used in slab yards in the steel
industry, can hold two items simultaneously. Operations
scheduling of multiple double-load cranes involves assignment of
tasks to the cranes, combination of tasks to double-load
operations, and sequencing of the tasks, considering the non-
crossing constraint between cranes. Effective solution of this
complex problem can help fully utilize the crane capability,
increase productivity, and reduce energy consumption. This paper
models this problem and develops a heuristic solution that
combines differential evolution and dynamic programming.

Experiment results show that the algorithm is effective and
efficient for practical use in slab yards. It may also be applicable
to other systems using similar cranes.

Index Terms—Multiple crane scheduling, Double-load cranes,
Integer programming, Differential evolution, Dynamic
programming.

I. INTRODUCTION
TEEL slabs are intermediate products in the steel
production system. They are produced in the continuous-

casting stage and are used as materials in the hot-rolling stage.
To ensure smooth production, slabs are stacked in a storage
yard/warehouse that functions as a buffer between the two
stages. Based on production requirement, the slabs may need to
be moved between two stacks, or between a stack and an entry
or exit point. These movement tasks are carried out by bridge
cranes. The warehouse may consist of several halls, but their
operations are independent of each other and so can be planned
separately. There can be two or more cranes in the same hall,
running on a common overhead rail track. Fig. 1 shows the
layout of an example storage hall with two cranes.

The hall is often divided into several areas in practice, such
that each area is served by one crane. With this practical
strategy, a single-crane scheduling problem can be solved to
optimize the operations of each storage area. The most
advanced cranes can hold up to two slabs simultaneously. The
problem of scheduling such double-load cranes is more
complex than scheduling the traditional cranes which hold only
one slab at a time. Zhao et al. [1] studied the problem of
scheduling a single crane with double-load capability.

However, cranes in the same hall can travel to different areas.
In situations where the workloads are not balanced, higher
productivity may be achieved if cranes are allowed to assist
each other rather than being restricted to their own areas. As the
cranes run on the same track, they cannot cross each other and
must also maintain a safety distance. When more than one crane
is considered, there are also new decisions on the assignment of
tasks to cranes. These new constraints and decisions add
additional complexity to the problem. In this paper we study
this problem of scheduling multiple cranes each with double-
load capability.

Problems of scheduling multiple cranes on a common track
have been studied previously in different contexts. Lieberman
and Turksen [2] studied a crane scheduling problem in
production systems, and proposed heuristic solutions
considering situations where the tasks are ready at the same

Model and Heuristic Solutions for
the Multiple Double-Load Crane Scheduling Problem

in Slab Yards
Guodong Zhao, Jiyin Liu, Lixin Tang, Senior Member, IEEE, Ren Zhao, and Yun Dong

S

This work was supported by the Fund for Innovative Research Groups of
the National Natural Science Foundation of China (71621061), the Major
International Joint Research Project of the National Natural Science
Foundation of China (71520107004), General fund of the National Natural
Science Foundation of China (71472081), and the 111 Project (B16009).

Guodong Zhao is with Key Laboratory of Data Analytics and
Optimization for Smart Industry (Northeastern University), Ministry of
Education, Liaoning Engineering Laboratory of Data Analytics and
Optimization for Smart Industry, Shenyang, 110819, China. (E-mail:
gascoigne_0509@163.com).

Jiyin Liu is with the School of Business and Economics, Loughborough
University, Leicestershire LE11 3TU, U.K. (E-mail: j.y.liu@lboro.ac.uk).

Lixin Tang is with Institute of Industrial and Systems Engineering,
Liaoning Key Laboratory of Manufacturing System and Logistics.
Northeastern University, Shenyang, 110819, China. (E-mail:
lixintang@ise.neu.edu.cn).

Ren Zhao and Yun Dong are with Key Laboratory of Data Analytics and
Optimization for Smart Industry (Northeastern University), Ministry of
Education, Institute of Industrial and Systems Engineering, Northeastern
University, Shenyang, 110819, China. (E-mails: zhaoren@ise.neu.edu.cn;
dydexter@hotmail.com).

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

time and at different times respectively. More research was
done on crane scheduling problems in container terminal
operations, mostly at container ports. These include yard crane
scheduling problems (e.g., Lim et al. [3]; Ng [4]; Li et al. [5];
Li et al. [6]), quay crane scheduling problems (e.g., Liu et al.
[7]; Lee et al. [8]; Chen et al. [9]; Alosufi et al. [10]), and
combined problems (e.g., Zhang et al. [11]). Guo et al. [12]
studied a crane scheduling problem in a railroad container
terminal. Zheng et al. [13] studied a crane scheduling problem
with uncertain release times of retrieval tasks in a container
yard. They proposed a two-stage stochastic programming
model and developed a heuristic algorithm to solve the
problem. The tasks in our problem are all ready to perform
though there may be precedence constraints among them. If
anticipated future tasks are also included in the problem, then
the method in the above reference could be useful for handling
possible uncertainties in the task arrivals. In all these problems
each task needs to be performed by a crane at one fixed position,
while the tasks in the problem studied in this paper involve a
crane movement from one position to another.

Crane scheduling problems with movement tasks are often
seen in production systems. Hirsch et al. [14] studied a two-
crane routing problem in the roof-tile industry, where the tasks
involved moving workpieces on iron pallets from stage to stage
and moving the pallets back in a four-stage hybrid flowshop
system. An ant colony optimization (ACO)-based solution
approach was used to solve the problem. Other studies
examined cyclic production in electroplating lines, where items
for plating are moved between the line stages by hoists on a
common track. Lei and Wang [15] studied a problem with two
hoists where part movements were all in one direction. The line
was partitioned into two non-overlapping zones and the tasks in
each zone were assigned to one hoist. Che and Chu [16]
proposed a branch-and-bound algorithm for a multi-hoist
problem with all part movements in one direction. Zhou and Liu
[17] proposed a heuristic search algorithm for the two-hoist
problem allowing movements in both directions. Leung and
Zhang [18] and Leung et al. [19] presented mixed-integer linear
programming (MILP) models for the multi-hoist scheduling
problem. Liu and Jiang [20] and Jiang and Liu [21] analyzed a
no-wait version with fixed processing times for multi-hoist
scheduling problems and developed polynomial time
algorithms to solve them optimally. Based on the analysis, a
new MILP model is developed for the general problem, which
enables an efficient branch-and-bound solution (Jiang and Liu,
[22]).
There has been some previous research studying crane
scheduling problems in the steel industry. Dohn and Clausen

[23] studied a slab yard planning problem to decide the slab
movements, and a crane scheduling problem to carry out the
movement tasks. The crane scheduling problem was solved
using a greedy heuristic and local search. Xie et al. [24] studied
a multi-crane scheduling problem arising in the batch annealing
process, to move heaters and coolers among the steel coils
stacked on annealing bases. A MILP was formulated, and a
heuristic solution algorithm was proposed with analysis of its
worst-case performance. Maschietto et al. [25] studied a two-
crane scheduling problem in a steel coil distribution center and
solved it using a genetic algorithm. Zhou et al. [26] studied a
new combined transportation problem for China’s “the Belt and
Road” initiative, they proposed a time–distance-based cost to
compare with traditional transportation. The research
considered the combination of sea–rail transportation, while our
problem is to consider the combination of different tasks.

In all of the above studies, the cranes or hoists can only
handle one item. In this paper, the crane can hold two slabs
simultaneously, and so two slab-moving tasks can be combined
in one loaded trip. Considering this new feature, we need to
decide both the task combination and the crane routes to
perform all the tasks.

In the following sections of the paper, we first describe the
problem in more detail and present a MILP model (Section II).
A two-phase heuristic is proposed in Section III. Section IV
combines differential evolution and dynamic programming to
solve the problem. Section V reports experiment results.
Conclusions are drawn in Section VI.

II. PROBLEM DESCRIPTION AND MODELING
Slabs are stored in stacks in the warehouse hall. These stacks

are arranged in rows and columns as shown in Fig. 1. The
position of a stack can be indicated by its row and column
numbers. There are m cranes in the hall. When a crane moves a
slab from one stack to another, the crane bridge travels along
the length of the hall and the hoist travels on the bridge along
the width of the hall. The time needed for the movement is the
longer one of these two travel times. In practice, the width of
the hall is much shorter and so the travel time is determined by
the distance traveled in the length direction. Therefore, it is
sufficient to just use the column position to represent the stack
position and only consider the crane movements in one
dimension. An entry or exit point can be viewed as a stack. All
the cranes run on a common track. Although each of them can
travel along the full length of the hall, they cannot cross each
other, and any two adjacent cranes must also maintain a
minimum safety distance.

In the problem studied, a set of slab-movement tasks are
given. These may include receiving and storage, rearrangement,
retrieval, and shuffling. Each task requires the movement of one
slab from its initial stack to its target stack. There may be
precedency requirements among the tasks. For example,
priority must to be given to urgent tasks; the task of picking up
a slab in a higher position must be performed before the task of
picking up a slab underneath it.

A crane can hold at most two slabs simultaneously.
Therefore, it can perform single tasks one after another, or

Crane（hoist）

Row 1

Row 2

Column NColumn 2Column 1

Stack

Direction of movement

#1 #2

V 2

V 1

V

Fig. 1. An example slab storage hall with two cranes.

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

combine two tasks in a double-load operation. In a double-load
operation the crane picks up the first slab from its initial stack,
travels to the initial stack of the second slab, picks up the second
slabs, travels to the target stack of the second slab, drops off the
second slab, then travels to the target stack of the first slab and
drops it off there. Some of these steps may be saved if the two
slabs have the same initial stack and/or the same target stack.
No more than two slabs are allowed to be combined in a double-
load operation, i.e., the crane cannot pick up another slab before
both slabs are dropped off. Note that a double-load operation
combining task A and task B is different from that combining
B and A. To combine two tasks, the slab of the first task cannot
be wider than that of the second task. Slab widths are known for
the given tasks.

Considering the tasks and constraints described above, the
scheduling problem is to allocate the tasks to the cranes and
determine the schedule for the cranes to perform the tasks,
including the combination of tasks into double-load operations,
so as to complete all the tasks as soon as possible, i.e., to
minimize the makespan.

A. Parameters
O set of tasks, O = {1, …, N}.
K set of cranes, K = {1, …, m}.

io + initial stack of task i.

io − target stack of task i.
v maximum crane speed when carrying one slab.
v+ maximum crane speed when carrying two slabs.
v− maximum crane speed when empty.

,i jp + − 1 if task j must complete later than task i starts,
otherwise 0.

, +i jp + 1 if task j must start later than task i starts, otherwise 0.

,i jp − − 1 if task j must complete later than task i completes,
otherwise 0.

,i jp − + 1 if task j must start later than task i completes,
otherwise 0.

ijq 1 if task i and j meet the double-load conditions,
otherwise 0.

mind the safety distance between cranes.
M A sufficiently large constant.

B. Decision Variables

,

1 if task starts later than task starts,
0 otherwisei j

j i
x + +


= 


，

，

,

1, if task completes later than task starts,
0, otherwisei j

j i
x + −


= 


,

1, if task starts later than task completes,
0, otherwisei j

j i
x − +


= 


,

1, if task completes later than task completes,
0, otherwisei j

j i
x − −


= 


if task is assigned to crane 1, ,
0, otherwise

k
iz

i k
= 


1, if tasks and are performed together
by a crane in a double-load operation,

0, otherweise
ij

i j
y


= 



iS start time of task i.

iC completion time of task i.

maxC time when all tasks are completed.
k
ip + position of crane k at the time point when task i starts.
k
ip − position of crane k at the time point when task i

completes.

C. Mathematical Formulation
Using the above notation, our crane scheduling problem can

be formulated as the following integer programming model.

Minimize maxC

1
=1

m
k
i

k
z

=
∑ , 1,...,i N= . (1)

, , 1i j j ix x+ + + ++ = , , 1,...,i j N= , i j≠ . (2)

, , 1i j j ix x+ − − ++ = , , 1,...,i j N= , i j≠ . (3)

, , 1i j j ix x− + + −+ = , , 1,...,i j N= , i j≠ . (4)

, , 1i j j ix x− − − −+ = , , 1,...,i j N= , i j≠ . (5)

, ,4 k k
ij i j j i i jy x x z z+ + − −≤ + + + ,

 1,...,k m= , , 1,...,i j N= , i j≠ . (6)

, , 3k k
ij i j j i i jy x x z z+ + − −≥ + + + − ,

 1,...,k m= , , 1,...,i j N= , i j≠ . (7)

1 1
1

N N

ij jl
i l
i j l j

y y
= =
≠ ≠

+ ≤∑ ∑ , 1,...,j N= . (8)

ij ijy q≤ , , 1,...,i j N= , i j≠ . (9)

(1)k k
i i ip o M z+
+ ≤ + − , 1,...,k m= , 1,...,i N= . (10)

(1)k k
i i ip o M z+
+ ≥ + − , 1,...,k m= , 1,...,i N= . (11)

(1)k k
i i ip o M z−
− ≤ + − , 1,...,k m= , 1,...,i N= . (12)

(1)k k
i i ip o M z−
− ≥ + − , 1,...,k m= , 1,...,i N= . (13)

1
min

k k
i ip d p +
+ ++ ≤ , 1, , 1k m= … − , 1,...,i N= . (14)

1
min

k k
i ip d p +
− −+ ≤ , 1, , 1k m= … − , 1,...,i N= . (15)

1 1
| | / () (1)

N N
k k k
i i i i i ji ij

j j
j i j i

p p v C S M z y y+ −
= =
≠ ≠

− ≤ − + − + +∑ ∑ ,

 1,...,k m= , 1,...,i N= . (16)
| | / () (2)k k k

i j i j i jip p v S S M z y+ +− ≤ − + − − ,
 1,...,k m= , , 1,...,i j N= , i j≠ . (17)
| | / () (2)k k k

i j j i i jip p v C C M z y− −− ≤ − + − − ,
 1,...,k m= , , 1,...,i j N= , i j≠ . (18)

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

,
| | / () (2)k k k

i i i i i ji
j O j i

p p v C S M z y+
+ −

∈ ≠

− ≤ − + − − ∑ ,

 1,...,k m= , 1,...,i N= . (19)

,| | / () (1)k k
i j j i i jp p v S S M x−
+ + + +− ≤ − + − ,

 1,...,k m= , , 1,...,i j N= , i j≠ . (20)

,| | / () (1)k k
i j j i i jp p v C S M x−
+ − + −− ≤ − + − ,

 1,...,k m= , , 1,...,i j N= , i j≠ . (21)

,| | / () (1)k k
i j j i i jp p v S C M x−
− + − +− ≤ − + − ,

 1,...,k m= , , 1,...,i j N= , i j≠ . (22)

,| | / () (1)k k
i j j i i jp p v C C M x−
− − − −− ≤ − + − ,

 1,...,k m= , , 1,...,i j N= , i j≠ . (23)

min /j iS S d v− ≥ , , 1i jp + + = , , 1,...,i j N= , i j≠ . (24)

min /j iC S d v− ≥ , , 1i jp + − = , , 1,...,i j N= , i j≠ . (25)

min /j iS C d v− ≥ , , 1i jp − + = , , 1,...,i j N= , i j≠ . (26)

min /j iC C d v− ≥ , , 1i jp − − = , , 1,...,i j N= , i j≠ . (27)

maxiC C≤ , 1,...,i N= . (28)

{ }, , , ,, , , , , 0,1k
i j i j i j i j ij ix x x x y z+ + + − − + − − ∈ ,

 , 1,...,i j N= , i j≠ , 1,...,k m= . (29)
, , , 0k k

i i i ip p S C+ − ≥ , 1,...,i N= , 1,...,k m= . (30)

In this model, the objective is to minimize the time required

to complete all the crane tasks. Constraints (1) ensure that each
task is performed by one crane. Constraints (2) to (5) ensure
that any two events (start and completion time points of tasks)
can happen in only one order. Constraints (6) and (7) require
that the two tasks in a double-load operation must be performed
by the same crane. Constraints (8) mean that any task may be
carried out in a double-load operation with at most one other
task. Constraints (9) indicate that the double-load conditions
must be met if two tasks are combined in a double-load
operation. Constraints (10) to (13) link the positions of cranes
to those of tasks: if a crane k performs a task i, constraints (10)
and (11) ensure that crane k must be at the initial stack of task i
when the task starts, while constraints (12) and (13) ensure that
the crane must be at the target stack of the task when the task
completes. If crane k is not assigned to perform task i, then its
positions at the start and completion times of this task will be
determined by the model and not restricted by the positions of
this task. Constraints (14) and (15) guarantee the minimum
safety distance between any two adjacent cranes at all times.
These two constraints also ensure that the cranes will never
cross each other, as any crane k is required to be always on one
side of crane k+1 and to maintain at least the safety distance.
Constraints (16) to (23) require that there are sufficient times
for the cranes to perform the tasks and also to make the
necessary empty movements between tasks. Constraints (16)
are for single-load tasks, constraints (17) to (19) are for double-
load tasks, and constraints (20) to (23) are for empty crane
movements. Constraints (24) to (27) ensure that the precedence
requirements are satisfied. Constraints (28) states that the
completion time of all tasks cannot be earlier than the

completion time of any of the individual tasks. Constraints (29)
and (30) define the range of variable values.

The value of M in the constraints needs to be sufficiently
large to ensure model correctness. However, too large value of
M may affect the efficiency of the solution process. The value
of M can be set differently in different constraints. For
constraints (10) to (13), it is sufficient to set the value of M to
the largest distance between any two stacks. For constraints
(16) to (23), the value of M needs to be greater than the
makespan. We set it to the time required for one crane to
perform all tasks one by one.

We tested the model by running it on some small problem
instances. CPLEX 12.51 was used to solve the model with the
maximum running time set to 14400 seconds (4 hours). The
solution time increases quickly with the number of tasks in the
problem, and when the number of tasks reaches 9, some
instances cannot be solved optimally within the given time. If
the problem size increases any further, the model cannot
generate even a feasible solution within the 4-hour limit.

III. A TWO-PHASE DECOMPOSITION HEURISTIC
As an attempt to solve larger problems we try to decompose

the problem into two phases: the first phase determines the task
combinations assuming that all tasks are performed by a single
crane; then, with the task combinations fixed, the second phase
decides the task assignment and schedule. Each phase can also
be formulated as a smaller MILP model.

A. Phase 1: Solve the problem as if it is a single-crane
problem.

This phase assumes that there is only one crane. Therefore,
the z variables and safety distance constraints are not needed.
Some of the other constraints may also be simplified
accordingly. Using the notation defined in the previous section,
the model for this phase can be represented as follows.
Minimize maxC

, , 1i j j ix x+ + + ++ = , , 1,...,i j N= , i j≠ . (31)

, , 1i j j ix x+ − − ++ = , , 1,...,i j N= , i j≠ . (32)

, , 1i j j ix x− + + −+ = , , 1,...,i j N= , i j≠ . (33)

, , 1i j j ix x− − − −+ = , , 1,...,i j N= , i j≠ . (34)

, ,2 ij i j j iy x x+ + − −≤ + , , 1,...,i j N= , i j≠ . (35)

, , 1ij i j j iy x x+ + − −≥ + − , , 1,...,i j N= , i j≠ . (36)

1 1
1

N N

ij jl
i l
i j l j

y y
= =
≠ ≠

+ ≤∑ ∑ , 1,...,j N= . (37)

ij ijy q≤ , , 1,...,i j N= , i j≠ . (38)

1 1
| | / () ()

N N

i i i i ji ij
j j
j i j i

o o v C S M y y+ −
= =
≠ ≠

− ≤ − + +∑ ∑ ,

 1,...,i N= . (39)
| | / () (1)i j i j jio o v S S M y+ +− ≤ − + − ,
 , 1,...,i j N= , i j≠ . (40)

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

,
| | / () (1)i i i i ji

j O j i
o o v C S M y+

+ −
∈ ≠

− ≤ − + − ∑ ,

 1,...,i N= . (41)
| | / () (1)i j j i jio o v C C M y− −− ≤ − + − ,
 , 1,...,i j N= , i j≠ . (42)

,| | / () (1)i j j i i jo o v S C M x−
− + − +− ≤ − + − ,

 , 1,...,i j N= , i j≠ . (43)
0j iS S− ≥ , , 1i jp + + = , , 1,...,i j N= , i j≠ . (44)

0j iC S− ≥ , , 1i jp + − = , , 1,...,i j N= , i j≠ . (45)

0j iS C− ≥ , , 1i jp − + = , , 1,...,i j N= , i j≠ . (46)

0j iC C− ≥ , , 1i jp − − = , , 1,...,i j N= , i j≠ . (47)

maxiC C≤ , 1,...,i N= . (48)

{ }, , , ,, , , , , 0,1k
i j i j i j i j ij ix x x x y z+ + + − − + − − ∈ ,

 , 1,...,i j N= , i j≠ . (49)
, 0i iS C ≥ , 1,...,i N= . (50)
The meanings of the constraints in this model are similar to

the corresponding ones in the overall MILP model. Note that
the assignment constraints and the large number of collision-
avoidance constraints do not appear in this model, making it
easier to solve.

After solving this first phase model, any two tasks that are
performed in the same double-load operation in the solution
will be viewed as one new task approximately in the second
phase. Each of the tasks that are performed in single-load
operations is also considered as a new task. For each new task
representing a double-load operation, the “initial” and “target”
positions and the duration can be calculated as follows:

Suppose that the task picked up first in this double-load
operation (the new task i) is task A, and the other task is task B.
The “initial” position n

io + and “target” position n
io − of the

“new task” can be set based on the direction of task A, i.e., the
relationship between its initial and target positions:

If A Ao o+ −≤ ,
n
io + = min { Ao + , Ao − , Bo + , Bo − },
n
io − = max { Ao + , Ao − , Bo + , Bo − };

Otherwise,
n
io + = max { Ao + , Ao − , Bo + , Bo − },
n
io − = min { Ao + , Ao − , Bo + , Bo − }.

The duration of the “new task”:

it = | | /n
i Ao o v−
+ +− + | | /A Bo o v+ +− + | | /B Bo o v+

+ −− +

| | /B Ao o v− −− + | | /n
A io o v−
− −− .

For example, Fig. 2 shows the initial and target positions of
two tasks (A and B) of a double-load operation. The initial
position of A is on the left of its target position (A Ao o+ −≤).
According to the above formulae, the “initial” and “target”
positions of the “new task” will be positions 2 and 9,
respectively. The duration of the “new task” is the sum of empty

travel time from position 2 to position 4, single-load travel time
from position 4 to position 2, double-load travel time from
position 2 to position 7, and single-load travel time from
position 7 to position 9.

B. Phase 2: Allocate the new tasks to cranes and schedule the
tasks for each crane.

The phase-two problem is then to assign the cranes to
perform the new tasks without further task combination. We
redefine the following parameters and variables to present the
phase-two model. The parameters concerning cranes remain
unchanged.

Parameters
O set of new tasks, O = {1, …, N}. For simplicity, we

refer to these as “tasks” when describing this model.
n
io + initial position of task i.
n
io − target position of task i.

it duration of task i.

,i jp + − 1 if task j must complete later than task i starts,
otherwise 0.

, +i jp + 1 if task j must start later than task i starts, otherwise 0.

,i jp − − 1 if task j must complete later than task i completes,
otherwise 0.

,i jp − + 1 if task j must start later than task i completes,
otherwise 0.

M a sufficiently large constant.

Decision Variables

,

1 if task starts later than task starts,
0 otherwisei j

j i
x + +


= 


，

，

,

1, if task completes later than task starts,
0, otherwisei j

j i
x + −


= 


,

1, if task starts later than task completes,
0, otherwisei j

j i
x − +


= 


,

1, if task completes later than task completes,
0, otherwisei j

j i
x − −


= 


1 2 3 4 5 6 7 8 9Position

n
io +

n
io −

Bo + Bo −Ao + Ao −

Fig. 2. Schematic of the “new task” definition

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

if task is assigned to crane 1, ,
0, otherwise

k
iz

i k
= 


iS start time of task i.

iC completion time of task i.

maxC time when all tasks are completed.
k
ip + position of crane k at the time point when task i starts.
k
ip − position of crane k at the time point when task i

completes.
Using the parameters and variables, the following integer

programming model is established:

Minimize maxC

1
=1

m
k
i

k
z

=
∑ , 1,...,i N= . (51)

, , 1i j j ix x+ + + ++ = , , 1,...,i j N= , i j≠ . (52)

, , 1i j j ix x+ − − ++ = , , 1,...,i j N= , i j≠ . (53)

, , 1i j j ix x− + + −+ = , , 1,...,i j N= , i j≠ . (54)

, , 1i j j ix x− − − −+ = , , 1,...,i j N= , i j≠ . (55)

min

1
, ,

max{ , } min{ , }

 (4)

n n n n
i i j j

k k
i j i j j i

o o d o o

M z z x x
+ − + −

+
+ + + −

+ ≤

+ − − − −
,

 1, , 1k m= … − , , 1,...,i j N= , i j< .(56)

min

1
, ,

max{ , } min{ , }

 (4)

n n n n
i i j j

k k
i j i j j i

o o d o o

M z z x x
+ − + −

+
+ − − −

+ ≤

+ − − − −
,

 1, , 1k m= … − , , 1,...,i j N= , i j< .(57)

min

1
, ,

max{ , } min{ , }

 (4)

n n n n
i i j j

k k
i j j i i j

o o d o o

M z z x x
+ − + −

+
+ + + −

+ ≤

+ − − − −
,

 1, , 1k m= … − , , 1,...,i j N= , i j< .(58)

i i iS t C+ ≤ , 1,...,i N= . (59)

,(1)i j i jS S M x + +≤ + − , , 1,...,i j N= , i j< . (60)

,(1)i j i jS C M x + −≤ + − , , 1,...,i j N= , i j< . (61)

,(1)i j i jC S M x − +≤ + − , , 1,...,i j N= , i j< . (62)

,(1)i j i jC C M x − −≤ + − , , 1,...,i j N= , i j< . (63)

,| | / (3)k k k k
i i j j i j i jC p p v S M z z x−

− + − ++ − ≤ + − − − ,
 1,...,k m= , , 1,...,i j N= , i j< . (64)

min /j iS S d v− ≥ , , 1i jp + + = , , 1,...,i j N= , i j< . (65)

min /j iC S d v− ≥ , , 1i jp + − = , , 1,...,i j N= , i j< . (66)

min /j iS C d v− ≥ , , 1i jp − + = , , 1,...,i j N= , i j< . (67)

min /j iC C d v− ≥ , , 1i jp − − = , , 1,...,i j N= , i j< . (68)

maxiC C≤ , 1,...,i N= . (69)

{ }, , , ,, , , , 0,1k
i j i j i j i j ix x x x z+ + + − − + − − ∈ ,

 1,...,k m= , , 1,...,i j N= , i j< . (70)
, 0i iS C ≥ , 1,...,i N= . (71)

This is a multi-crane model, and the constraints are similar to
those in the overall MILP model. However, all tasks in this
model are “single-load” tasks and so there are no variables and
constraints related to decisions on combining tasks to double-
load operations. This model is thus smaller than the overall
model.

This two-phase heuristic was also tested using a maximum
allowable running time of 2 hours for each problem instance
that was used for testing the overall MILP model. The first-
phase model can reach optimal solutions relatively quickly, and
all the remaining time is used to solve the second-phase model.
For the instances that are solved optimally by the overall MILP
model, the two-phase heuristic solution is about 5.2% to
optimal on average, and its solution time is about half that of
the overall MILP model. With such time performance, this
heuristic is still not suitable for solving large problems, and
therefore a more efficient method is needed.

IV. HEURISTIC SOLUTION WITH DIFFERENTIAL EVOLUTION
The problems that can be solved by the two-phase heuristic

within a reasonable time limit are still relatively small. To solve
larger practical problems, we turn to metaheuristics.
Differential evolution (DE) is one of the latest metaheuristics
and has shown excellent performance in solving optimization
problems. It was initially proposed for solving continuous
optimization problems. Subsequent modifications have made it
applicable to discrete optimization problems. Tang et al. [27]
studied an improved DE for steelmaking-continuous casting
production. A new mutation strategy and an incremental
mechanism are proposed, which can prove the efficiency and
effectiveness of DE for solving scheduling problems in the steel
industry. Tang et al. [28] studied differential evolution with an
individual-dependent mechanism. They proposed a new
parameter setting and mutation strategy for DE, which
significantly improves the computational efficiency of DE.
Dong and Zhao [29] proposed a pointer-based discrete
differential evolution (PDDE) for problems where the solutions
are expressed as a permutation of integers. They defined
addition and multiplication operations based on the concept of
memory pointers in some programming languages and used
them in the genetic operators of the algorithm. We adopt the
PDDE algorithm to solve our problem, as the solution can be
expressed as a permutation.

A. Individual Representation
We represent a solution using a permutation of integers, 1, 2,

…, N+m-1. Here, integers 1, 2, …, N represent the N tasks. The
positions of the m-1 largest numbers N+1, …, N+m-1 in the
sequence separate the tasks into m subsequences. The first
subsequence is used as the sequence of tasks performed by
crane 1, the second subsequence is used as the sequence of tasks
performed by crane 2, and so on. Fig. 3 shows an example
solution code for a problem with 13 tasks (N=13) and 3 cranes
(m=3). As seen from the figure, the two largest numbers (14 and
15) separate the whole sequence into three subsequences, which
indicate that crane 1 performs tasks 9, 3, 8, 11; crane 2 performs
tasks 12, 7, 2, 13; and crane 3 performs tasks 6, 10, 4, 5, 1.

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

For each solution represented by a sequence, we need to
calculate the objective function value of the corresponding
schedule. This objective value will be used as the fitness
function. In the following subsections (B, C and D), we first
introduce the operators of mutation, crossover and selection.
Then we provide a method for scheduling the tasks and
calculating the objective value based on the sequence. Finally,
the overall PDDE procedure is presented.

B. Discrete Mutation, Discrete Crossover and Selection
The mutation, crossover and selection operators in this PDDE

procedure are defined as in Dong and Zhao [29]. The DE
mutation operation generates a mutant individual vi for each
current individual xi. The mutation operation of PDDE is a
combination of addition and subtraction operations of
individuals as shown in (72).

1 2 3 ()i r r rF= ⊕v x x x  (72)
The difference vector 2 3i r r=d x x is obtained by using

subtraction operations as illustrated in Fig. 4(a), and the new
mutant 1i r i= ⊕v x d is obtained through addition operations as
illustrated in Fig. 4(b). The mutation factor F determines
whether the current individual is mutated, as shown in (73). If
a random real number in the interval of (0, 1) is less than F, the
new mutant vi is xr1⊕di, otherwise it is the base individual xr1.

1
1

1

, if ((0,1))

, otherwise
r i i

r i
r

rand F
F

⊕ <
⊕ = 



x d
x d

x
 (73)

 Single-point crossover operation is then applied to combine
the mutation individual vi and the target individual xi. First, a
random integer is selected from the interval (1, N+m-1) as the
intersection point. Next, the first segment of one of these two
individuals and the second segment of the other individual are
connected to constitute a preliminary child individual u′i.
Finally, the second segment of this preliminary individual is
checked, and the missing elements are added replacing the
repeated elements to obtain a feasible child individual ui. We
use ⊗ as the crossover operation symbol. Then the situations
shown in Fig. 5(a) and Fig. 5(b) can be expressed as ui=xi⊗vi
and ui=vi⊗xi. With the crossover rate CR, the crossover
operator in PDDE is defined as in (74).

, if ((0,1))
, otherwise

i i i
i

i i

rand CR⊗ <
=  ⊗

x v
u

v x
 (74)

C. Fitness Function Calculation
According to the coding method above, for a given sequence,

the assignment of tasks and the order for each crane to perform
its tasks are determined. However, we still need to work out an
overall schedule and calculate the objective value. This is not a
straightforward problem. On one hand, we need to decide which
tasks should be combined as double-load operations so that the
operation time can be minimized. On the other hand, we need
to avoid conflict between cranes to ensure the feasibility of the

schedule. The objective value of each individual solution must
be calculated in the DE search process, and so the calculation
has to be quick. Therefore, we address the above two issues
separately in two steps, first working out a schedule for each
crane and then checking the schedules to resolve conflicts, to
obtain a feasible overall schedule and the objective value.

Given the subsequence of tasks for one crane, we first check
whether any precedence requirements are violated. If the
precedence requirement of two tasks is violated, then the order
of the two tasks is changed. This is done until all the precedence
requirements are satisfied. For the modified subsequence, we
develop a forward dynamic programming (DP) procedure to
efficiently generate the schedule for the crane to perform the
tasks. In each stage of the DP, one of the tasks is considered.
We denote the total number of tasks in the sequence as n, and
use [i] to represent the ith task in the sequence. There are two
states in each stage i: (1) performing task [i] as a single-load
operation, and (2) combining it with task [i-1] in a double-load
operation. Note that if task [i-1] is combined with task [i-2],
then tasks [i] and [i-1] cannot be combined. The links between
the states in different stages can be expressed as a network in
Fig. 6.

Let Fi(s) be the objective function of state s in stage i
representing the time for completion of all tasks up to this state.
To simplify the presentation so that stage 2 need not be treated
as a special case, we define [0] [2]o o− += . Then the DP can be
presented as follows.

First stage:
1 1

1(1)
o o

F
v

+ −−
=

1(2)F = ∞
Recursion for other stages:

[1] [] [2] []
1 1

[] []

(1) min (1) , (2)

 + /

i i i i
i i i

i i

o o o o
F F F

v v

o o v

− − + − − +
− −− −

+ −

 − − = + + 
  

−

54106141327121511839 1

task sequence
for crane 1

task sequence
for crane 2

task sequence
for crane 3

1 1088765432 11 15141312

xi,g:

Index j:

Fig. 3. A 15-dimensional individual in PDDE.

 (a) 5 6 1 3 2 4

3 2 6 4 5 1

(Index j:) 1 2 3 4 5 6

4 5 2 6 1 3

xr3:

xr2:

di:

⊝

 (b)

2 3 5 6 4 1

di: 4 5 2 6 1 3

(Index j:)1 2 3 4 5 6

xr1:

5 2 1 3 6 4vi:

⊕

Fig. 4. Examples of subtraction and addition of six dimensions: (a) Discrete
subtraction, (b) Discrete addition.

 (a)

2 6 3 4 5 1

u'i: 2 6 3 1 2 5

2 6 3 1 4 5

xi:

4 3 6 1 2 5vi:

Crossover point

ui:

 (b)

4 3 6 1 2 5

u'i: 4 3 6 4 5 1

4 3 6 2 5 1

xi:

2 6 3 4 5 1

vi:

Crossover point

ui:

Fig. 5. Examples of discrete one-point crossover operations of six dimensions:
(a) ui=xi⊗vi , (b) ui=vi⊗xi.

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[1] [1] [1] [] [] []
1 +

[] [1]
[1][]

(1) +

(2)
 , if 1,

, otherwise.

i i i i i i
i

i i i
i i

o o o o o o
F

v v v
F o o

q
v

− + − − + + + −
−

− − −
−

 − − −
 − +
=  −

+ =

∞

-

Finally, min {Fn(1), Fn(2)} will be the optimal objective
value for the complete solution. The corresponding schedule for
this crane can also be worked out backwards.

The schedules of the cranes are then put together to
determine whether they are feasible and, if not, to resolve any
conflict. This is done by checking the crane positions at each
time point. The cranes cannot cross each other, and they must
maintain at least the safety distance at all times. In case of
conflict between any two cranes, the operation of one of them
will be delayed to avoid the conflict. To decide which crane’s
operation should be delayed, the tasks they are performing at
that time are considered. If the two tasks have a precedence
relationship, then the crane performing the task with lower
priority will give way to the other. Otherwise, the crane carrying
less load will give way. In case the cranes carry the same load,
the crane with earlier final completion time will give way. Fig.
7 shows a conflict between cranes 1 and 2 as well as the
resolution by delaying the operation of crane 1. While the rules
used in this checking process eliminate conflicts, the resulting
makespan may not be optimal even if the task assignment,
combination and sequencing decisions are optimal.
Nevertheless, as will be seen from the experimental results
described in section V, the solution obtained is close to optimal.
In addition, the rules such as giving way to the crane with
heavier load, lead to solutions with good operational safety.

In this way, an overall schedule can be obtained. Based on
the task start and finish times in the schedule, we can conduct a
final check of the precedence requirements between tasks of
different cranes. If they are all satisfied, the schedule is feasible
and the makespan of the schedule is taken as the fitness function
value. Otherwise, a large penalty value is imposed on this
infeasible solution as its fitness function value.

D. PDDE Procedure
With the integer coding and the above method for calculating

the fitness values, the PDDE framework can be followed to
solve our problem. Algorithm 1 summarizes the overall PDDE
procedure used.

Algorithm 1: The PDDE procedure
Initialization: Set the maximum number of iterations gmax; Let
the initial iteration index g = 0; Randomly generate an initial

population of NP individuals }{ 1, ,,...,g g NP g=P x x ; Calculate the

fitness value ,()i gf x of each individual ,i gx .
WHILE g < gmax

FOR each individual in Pg
Generate a mutant vi,g using the following mutation

operation:

, 1, 2, 3, ()i g r g r g r gF= ⊕v x x x  ,

 1 2 3, , [1,]r r r D∈ , 1 2 3i r r r≠ ≠ ≠ .
Generate an offspring ui,g using the following

crossover operation:

, ,
,

, ,

, if ((0,1))
, otherwise

i g i g i
i g

i g i g

rand CR⊗ <=  ⊗

x v
u

v x

Calculate the fitness value of ui,g: ,()i gf u

Select the better one of ui,g and ,i gx to survive into
the next generation.

, , ,
, 1

,

, if () ()
, otherwise

i g i g i g
i g

i g

f f
+

≤= 


u u x
x

x

END FOR
g = g + 1;

END WHILE

V. COMPUTATIONAL EXPERIMENTS
Computational experiments are carried out to test the

effectiveness and efficiency of the solution methods, using a
64-bit Windows 10 system with an Intel Core i5 2.30 GHz CPU
and 8 GB RAM. All the methods are implemented using C++
programming language, and the MILP models are solved using
CPLEX 12.51 with default parameter settings.

We used an orthogonal experimental design to tune the
PDDE algorithm parameters. The orthogonal experiments were
conducted on an 8-task instance taken from actual production.
The PDDE has three parameter factors: NP, F, and CR. For each
factor, four value levels are chosen to test (see Table I). So, the
orthogonal table is selected as 3

16 (4)L for 16 tests.
The test plan and results are shown in Table II. For each test,

we use the average objective value of 10 instances as the
response value. Column ‘AVG’ in Table II show the response
values. Row AVG1 is the average of the response values at level
1 for each factor. Similarly, AVG2 , AVG3 , and AVG4 are

dmin

dmin

time

position

0

Crane 1

Crane 1 diverted route

Crane 1 original route

Crane 2

Fig. 7. Illustration of conflict handling.

……

Task [1] Task [2] Task [3] Task [m-1] Task [m]

State 1:
Single load

State 2:
Combine with
previous task

Stages:

Fig. 6. The network of DP procedure.

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

averages at other levels . The best performance level for each
factor is highlighted in Table II, and the parameters used in
PDDE are set accordingly as NP = 100, CR = 0.5, F = 0.5. Fig.
8 shows the evolution of the best objective value up to the
current generation of the PDDE solution process for one
instance. It can be seen that the evolution converges before
5000 generations. This is also observed for other instances and
with different parameter settings. Based on this we set gmax =
5000.

Instances of actual problems of different sizes were collected
from the slab yard of a steel company. Each instance
corresponds to a crane-scheduling scheme in the production
plan. The plan contained the initial position and target position
of the slab of each task, the precedence relationships between
the tasks, and whether the tasks meet the double-load operation
conditions. The actual slab yard is equipped with two cranes
that are used to perform all tasks in practice. For consistency
and fair comparison, two cranes are used for each instance in
our numerical experiments. The overall MILP model, the two-
phase heuristic, and the PDDE heuristic were used to solve each
of the instances. The actual production schedules that were used
for these instances were also obtained for comparison.
According to the actual production schedule of each instance,
we obtain the objective value by using the calculation method
in part C of section 4 as a benchmark to compare the
performances of the solution methods.

We also proposed a lower bound of the problem based on the

first phase of the heuristic method in section III. Considering
any optimal schedule of the problem with m cranes, we can
obtain the route of each crane in it. Linking these routes by
adding (m-1) empty moves, a feasible single-crane solution to
perform all tasks can be obtained. The makespan of this solution
should not be shorter than the optimal makespan of the single-
crane problem. The above analysis leads to a method of
calculating a lower bound of our problem. First, solve the first-
phase problem in the two-phase heuristic method to obtain the
optimal makespan of the single-crane problem. Then, from this
makespan subtract the longest (m-1) empty move times
between the target stack of a task and the initial stack of a
different task; Finally, dividing the result by m provides us a
lower bound of the multi-crane problem.

The maximum computation time allowed for solving an
instance is 4 hours. Within this time limit, the overall MILP
model solved instances with up to 9 tasks, and the two-phase
heuristic solved instances with up to 11 tasks. We first compare
the performances of different methods for these small instances.

For each instance, the objective value of the schedule in
practice is used as the benchmark. The percentage improvement
made by a tested method over this benchmark is then calculated.
The experiment results also show the gaps of the proposed
methods to the lower bound. The formulas are as follows.

Improvement = (benchmark – objective value of the test
method)/benchmark×100%.

Gap = (objective value of the test method – lower
bound)/lower bound×100%.

Table III shows the Improvement, the Gap and Computation
time (in CPU seconds) for each method. From Table III, it can
be seen that the overall MILP model achieved optimal solutions
to the first 16 instances, with average improvement of 24.83%.
This indicates that there is great potential for improving the
present, manually constructed schedule. For the same 16
instances, the average improvements made by the two-phase
heuristic and the PDDE heuristic are 20.93% and 22.50%,
respectively. Neither is far from the optimal solution, with the
PDDE solution being better than the two-phase heuristic
solution. These can also be seen from their gaps to the lower
bound. While the average gap of the optimal solution to the
lower bound is 9.16%, those for the two-phase heuristic and
PDDE are 14.82% and 12.55%, respectively. For all 24
instances in the table, the average improvements of the two-
phase heuristic and the PDDE heuristic are 22.79% and
24.23%, respectively, which are slightly higher than those for

Fig. 8. Evolution of the best objective value up to different generations

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1000 2000 3000 4000 5000

B
es

t o
bj

ec
tiv

e
va

lu
e

Generations

TABLE I
PARAMETERS, FACTORS, AND LEVELS

Level NP F CR
1 50 0.1 0.1
2 100 0.3 0.3
3 150 0.5 0.5
4 200 0.7 0.7

TABLE II
ORTHOGONAL TABLE 3

16 (4)L AND RESPONSE VALUES
Index NP F CR AVG

1 1(50) 1(0.1) 1(0.1) 1206
2 1(50) 2(0.3) 2(0.3) 1253
3 1(50) 3(0.5) 3(0.5) 1019
4 1(50) 4(0.7) 4(0.7) 1193
5 2(100) 1(0.1) 2(0.3) 988
6 2(100) 2(0.3) 1(0.1) 1289
7 2(100) 3(0.5) 4(0.7) 1107
8 2(100) 4(0.7) 3(0.5) 1215
9 3(150) 1(0.1) 3(0.5) 1097

10 3(150) 2(0.3) 4(0.7) 1241
11 3(150) 3(0.5) 1(0.1) 959
12 3(150) 4(0.7) 2(0.3) 1067
13 4(200) 1(0.1) 4(0.7) 996
14 4(200) 2(0.3) 3(0.5) 1285
15 4(200) 3(0.5) 2(0.3) 1149
16 4(200) 4(0.7) 1(0.1) 1141

AVG1 1150 1122 1106

AVG2 1127 1167 1164

AVG3 1165 1065 1104

AVG4 1135 1154 1134

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

the first 16 instances. Part of these increases is due to one
exceptionally high improvement in instance 24. Overall, the
performances of the heuristic solutions appear quite stable.

In terms of computation time, MILP spends more than 3
hours to solve one of the 9-task instances and cannot find a
feasible solution for any instances larger than that within 4
hours. The two-phase heuristic reached the 4-hour limit when
solving one of the instances with 11 tasks. The PDDE algorithm
solved any of the instances within 2 minutes, demonstrating that
the PDDE algorithm could solve larger problems in reasonable
time. Therefore, we tested it on large practical instances ranging
from 20 to 60 tasks. The improvements of the PDDE solution
over the current benchmark schedule, the gaps between the
PDDE solution and the lower bound and computation times for
these large instances are shown in Table IV. It can be seen that
the computation time of the PDDE algorithm is only around 15
minutes even for the large problem instances with 60 tasks.
PDDE required only a few minutes to solve most of the
common instances seen in the company’s real operations, which
comprise 20 to 30 tasks. Such solution time are suitable for
practical use. For these large problems, the average
improvements of the PDDE solution over the current
benchmark schedule are also stable and similar to those for
small problems. The average improvement of the PDDE
solution over the actual production schedule is 23.58% and its
average gap to the lower bound is 9.44%. These are similar to
the averages for small instance. The gap is actually smaller

which may be because the lower bound in better for large
instances. We also calculated another performance measure,
namely the average operation time for each task, which is the
makespan divided by the number of tasks completed. These are
shown in the last two columns in Table IV. The overall average
task operation time of the PDDE solution for all the test large
instances is 135 s. For the first 16 small instances, the average
task operation times of the optimal solution and the PDDE
solution are 129.7s and 134.4s respectively. This indicates that
the quality of the PDDE solution for large instances is similar
to that for small instances and is close to optimal.

VI. CONCLUSIONS
In this paper, we have studied a multiple double-load crane

scheduling problem in steel slab yards. The double-load crane
can handle two slabs simultaneously and so requires additional
decisions on combinations of tasks for double-load operations.
Scheduling multiple cranes on a common track needs to
consider non-crossing and safety distance constraints. Each of
these features makes the problem more complex. We are not
aware of any previous research on crane-scheduling problems
that combines both of these features. We first formulated the
problem as a mixed-integer linear programming model. Then a
two-phase heuristic was proposed with each phase formulated
as a smaller MILP model. A pointer-based discrete differential
evolution algorithm was then developed with a dynamic
programming algorithm embedded to solve the one-crane sub-
problem for a fixed sequence of tasks. Computational

TABLE III
EXPERIMENTAL RESULTS COMPARING DIFFERENT SOLUTION METHODS FOR SMALL-SIZED INSTANCES

Instance index Size
Improvement Gap Computation time (s)

MILP 2-PHASE PDDE MILP 2-PHASE PDDE MILP 2-
PHASE PDDE

1 6 21.31% 17.38% 19.77% 9.44% 14.91% 11.59% 48.88 37.27 29.90
2 6 25.66% 21.87% 23.35% 8.97% 14.53% 12.36% 82.28 58.32 35.87
3 6 18.83% 14.61% 16.49% 10.77% 16.53% 13.97% 55.90 41.62 30.34
4 6 22.01% 18.24% 21.43% 9.02% 14.29% 9.83% 62.44 45.74 29.52
5 7 28.29% 24.81% 24.89% 11.51% 16.92% 16.79% 590.94 268.70 38.95
6 7 16.67% 12.38% 13.43% 8.12% 13.69% 12.33% 391.55 242.33 43.69
7 7 26.34% 22.04% 21.65% 9.37% 15.75% 16.33% 433.76 209.16 47.29
8 7 23.62% 19.10% 21.60% 9.75% 16.24% 12.64% 482.58 261.07 46.12
9 8 28.05% 23.78% 25.84% 10.72% 17.29% 14.12% 6339.43 3239.41 58.24

10 8 24.19% 19.56% 22.29% 11.92% 18.76% 14.73% 7057.20 2903.03 46.17
11 8 27.65% 23.27% 26.19% 7.45% 13.95% 9.62% 5728.38 2191.31 52.22
12 8 26.58% 22.15% 24.10% 8.25% 14.78% 11.91% 6859.01 2777.92 59.33
13 9 29.72% 26.92% 27.87% 10.60% 15.01% 13.52% 7041.94 2944.45 76.17
14 9 23.01% 19.87% 19.31% 7.07% 11.44% 12.22% 7187.33 3830.13 84.24
15 9 28.03% 25.14% 25.88% 9.33% 13.72% 12.59% 6843.53 3313.16 90.01
16 9 27.29% 23.78% 25.84% 4.21% 9.24% 6.29% 11383.26 2244.74 81.45
17 10 - 19.16% 20.94% - 12.97% 10.48% - 5642.76 113.60
18 10 - 31.05% 31.46% - 12.41% 11.74% - 6549.09 99.73
19 10 - 26.25% 28.97% - 12.03% 7.90% - 5831.43 117.43
20 10 - 23.14% 25.29% - 10.26% 7.17% - 6251.47 99.03
21 11 - 22.87% 22.39% - 8.74% 9.42% - 11491.28 106.28
22 11 - 26.96% 28.51% - 9.33% 7.01% - 14400 117.93
23 11 - 19.14% 20.94% - 14.57% 12.02% - 9388.87 108.40
24 11 - 43.50% 43.14% - 9.76% 10.45% - 9655.22 113.39

AVG (Instances 1-16) 24.83% 20.93% 22.50% 9.16% 14.82% 12.55%

AVG (all 24 instances) - 22.79% 24.23% - 13.63% 11.54%

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

experiments were conducted on real instances collected from a
steel company, to test the performance of the solution methods.
The results show that the MILP solutions greatly improve upon
the schedules used in practice, with an average improvement of
about 24.83%, although it can only solve small test instances.
The qualities of the two-phase heuristic and the PDDE solutions
are both near-optimal, with the PDDE solution performing
better. In addition, while the problem size that can be solved by
two-phase heuristic is still relatively small, the PDDE algorithm
solves large practical problems in acceptable time.

REFERENCES
[1] G. Zhao, J. Liu, and Y. Dong, “Scheduling the operations of a double-

load crane in slab yards,” Int. J. Prod. Res. 2019. In press, available on-
line. DOI: 10.1080/00207543.2019.1629666. [Online].

[2] R. Lieberman, and I. Turksen, “Crane scheduling problems,” AIIE Trans.,
vol. 13, no. 4, pp. 304–311, 1981.

[3] A. Lim, B. Rodrigues, F. Xiao, and Y. Zhu, “Crane scheduling with
spatial constraints,” Nav. Res. Log., vol. 51, no. 3, pp. 386–406, 2004.

[4] W. Ng, “Crane scheduling in container yards with inter-crane
interference,” Eur. J. Oper. Res., vol. 164, no. 1, pp. 64–78, 2005.

[5] W. Li, Y. Wu, M. Petering, M. Goh, and R. Souza, “Discrete time model
and algorithms for container yard crane scheduling,” Eur. J. Oper. Res.,
vol. 198, pp. 165–172, 2009.

[6] W. Li, M. Goh, Y. Wu, M. Petering, R. Souza, and Y. Wu, “A continuous
time model for multiple yard crane scheduling with last minute job
arrivals,” Int. J. Prod. Econ., vol. 136, pp. 332–343, 2012.

[7] J. Liu, Y. Wan, and L. Wang, “Quay crane scheduling at container
terminals to minimize the maximum relative tardiness of vessel
departures,” Nav. Res. Log., vol. 53, no. 1, pp. 60–74, 2006.

[8] D. Lee, J. Chen, and J. Cao, “Quay crane scheduling for an indented
berth,” Eng. Optim., vol. 43, no. 9, pp. 985–998, 2011.

[9] J. Chen, D. Lee, and M. Goh, “An effective mathematical formulation for
the unidirectional cluster-based quay crane scheduling problem,” Eur. J.
Oper. Res., vol. 232, pp. 198–208, 2014.

[10] G. Alsoufi, X. Yang, and A. Salhi, “Combined quay crane assignment and
quay crane scheduling with crane inter-vessel movement and non-
interference constraints,” J. Oper. Res. Soc., vol. 69, no. 4, pp. 1–12, 2016.

[11] R. Zhang, Z. Jin, Y. Ma, and W. Luan, “Optimization for two-stage
double-cycle operations in container terminals,” Comput. Ind. Eng., vol.
83, pp. 316–326, 2015.

[12] P. Guo, W. Cheng, Y. Wang, and N. Boysen, “Gantry crane scheduling
in intermodal rail-road container terminals,” Int. J. Prod. Res., vol. 56, no.
16, pp. 5419–5436, 2018.

[13] F. Zheng, X. Man, F. Chu, M. Liu, and C. Chu, “A two-stage stochastic
programming for single yard crane scheduling with uncertain release
times of retrieval tasks,” Int. J. Prod. Res., 2018. Published. DOI:
10.1080/00207543.2018.1516903. [Online].

[14] P. Hirsch, A. Palfi, and M. Gronalt, “Solving a time constrained two-crane
routing problem for material handling with an ant colony optimisation
approach: an application in the roof-tile industry,” Int. J. Prod. Res., vol.
50, no. 20, pp. 6005–6021, 2012.

[15] L. Lei and T. Wang, “The minimum common-cycle algorithm for cyclic
scheduling of two material handling hoists with time window
constraints,” Manage. Sci., vol. 37, pp. 1629–1639, 1991.

[16] A. Che and C. Chu, “Single-track multi-hoist scheduling problem: a
collision-free resolution based on a branch-and-bound approach,” Int. J.
Prod. Res., vol. 42, pp. 2435–2456, 2004.

[17] Z. Zhou and J. Liu, “A heuristic algorithm for the two-hoist cyclic
scheduling problem with overlapping hoist coverage ranges,” IIE Trans.,
vol. 40, no. 8, pp. 782–794, 2008.

[18] J. Leung and G. Zhang, “Optimal cyclic scheduling for printed circuit
board production lines with multiple hoists and general processing
sequence,” IEEE Trans. Robot., vol. 19, pp. 480–484, 2003.

[19] J. Leung, G. Zhang, X. Yang, R. Mak, and K. Lam, “Optimal cyclic multi-
hoist scheduling: a mixed integer programming approach,” Oper. Res.,
vol. 52, pp. 965–976, 2004.

[20] J. Liu and Y. Jiang, “An efficient optimal solution to the two-hoist no-
wait cyclic scheduling problem,” Oper. Res., vol. 53, pp. 313–327, 2005.

[21] Y. Jiang and J. Liu, “Multi-hoist cyclic scheduling with fixed processing
and transfer times,” IEEE Trans. Autom. Sci. Eng., vol. 4, pp. 435–450,
2007.

[22] Y. Jiang and J. Liu, “A new model and an efficient branch-and-bound
solution for cyclic multi-hoist scheduling,” IIE Trans., vol. 46, no. 3, pp.
249–262, 2014.

[23] A. Dohn and J. Clausen, “Optimising the Slab Yard Planning and Crane
Scheduling Problem using a two-stage heuristic,” Int. J. Prod. Res., vol.
48, no. 15, pp. 4585–4608, 2010.

[24] X. Xie, Y. Zheng, L. Tang, and Y. Li, “Multiple crane scheduling in a
batch annealing process with no-delay constraints for machine
unloading,” Appl. Math. Model., vol. 49, pp. 470–486, 2017.

TABLE IV
EXPERIMENTAL PDDE RESULTS FOR LARGE SIZE INSTANCES

Instance
index Size Improvement Gap Computation Time (s) Average operation

time for one task
Average operation time
of each size for one task

1 20 24.50% 10.54% 216.14 123

134
2 20 24.35% 16.30% 224.91 139
3 20 23.91% 10.77% 213.57 137
4 20 28.02% 17.65% 203.30 137
5 30 20.31% 10.29% 362.36 153

145
6 30 23.10% 9.13% 375.03 143
7 30 26.77% 8.66% 369.96 141
8 30 22.81% 12.43% 337.75 143
9 40 21.71% 8.75% 602.21 135

133
10 40 21.71% 8.00% 611.39 158
11 40 20.24% 11.46% 662.18 127
12 40 28.54% 5.77% 608.94 110
13 50 28.83% 8.71% 718.82 113

129
14 50 21.05% 7.49% 693.94 120
15 50 24.94% 3.87% 789.83 137
16 50 21.05% 10.03% 677.83 146
17 60 22.22% 9.53% 912.00 138

136
18 60 24.28% 3.51% 860.70 129
19 60 21.05% 7.29% 885.40 135
20 60 22.15% 8.60% 1001.30 141

AVG 23.58% 9.44% 135

This paper was accepted for publication in IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[25] G. Maschietto, Y. Ouazene, M. Ravetti, M. de Souza, and F. Yalaoui,
“Crane scheduling problem with non-interference constraints in a steel
coil distribution centre,” Int. J. Prod. Res., vol. 55, no. 6, pp. 1607–1622,
2017.

[26] C. Zhou, H. Li, W. Wang, L. H. Lee, and E. P. Chew, “Connecting the
belt and road through sea-rail collaboration,” Frontiers Eng. Manage.,
vol. 4, no. 3, pp. 315–324, 2017.

[27] L. Tang, Y. Zhao, and J. Liu, “An improved differential evolution
algorithm for practical dynamic scheduling in steelmaking-continuous
casting production,” IEEE Trans. Evol. Comput., vol. 18, no. 2, pp. 209–
225, 2014.

[28] L. Tang, Y. Dong, and J. Liu, “Differential evolution with an individual-
dependent mechanism,” IEEE Trans. Evol. Comput., vol. 19, no. 4, pp.
560–574, 2015.

[29] Y. Dong and R. Zhao, “Solve train stowage planning problem of steel coil
using a pointer-based discrete differential evolution,” Int. J. Prod. Res.,
vol. 56, no. 22, pp. 6937–6955, 2017.

Guodong Zhao holds a B. Eng. degree in
Automation and a M. Eng. degree in
Systems Engineering from Northeastern
University, Shenyang, China (awarded
2009 and 2011 respectively). He is
currently working toward a PhD in
Systems Engineering at the Institute of
Industrial and Systems Engineering,
Northeastern University, Shenyang, China.

Mr. Zhao’s research interests include production planning
and scheduling, modeling and optimization in the steel industry,
decision support systems, and metaheuristics-based
optimization algorithms. His research paper has been published
in academic journal International Journal of Production
Research.

Jiyin Liu is Professor of Operations
Management at the School of Business and
Economics at Loughborough University,
UK. He previously taught at Northeastern
University and the Hong Kong University
of Science and Technology in China. He
received his PhD in Manufacturing
Engineering and Operations Management

from the University of Nottingham in the UK, and his B. Eng.
in Industrial Automation and M. Eng. in Systems Engineering
from Northeastern University, China.

Prof. Liu’s research interests are in the areas of operations
planning and scheduling in production and logistics, as well as
in modeling, analysis, and solution of practical operations
problems. His research has been published in various academic
journals, including European Journal of Operational Research,
IEEE Transactions, IIE Transactions, International Journal of
Production Research; Manufacturing & Service Operations
Management, Naval Research Logistics, Operations Research,
and Transportation Research.

Lixin Tang (M’09–SM’14) received a B.
Eng. degree in Industrial Automation, M.
Eng. degree in Systems Engineering, and
PhD in Control Theory and Application
from Northeastern University, Shenyang,
China (1988, 1991, and 1996, respectively).

He is a Cheung Kong Scholars Chair
Professor, and Director of the Institute of

Industrial & Systems Engineering at Northeastern University,
China.

Prof. Tang’s research interests cover industrial big-data
science, data analytics and machine learning, reinforcement
learning and dynamic optimization, computational intelligent
optimization, plant-wide production and logistics planning,
production and logistics batching and scheduling and
engineering applications in manufacturing (steel,
petrochemical, nonferrous), energy, resources industry and
logistics systems. His research papers have appeared in
academic journals such as Operations Research, IIE
Transactions, Naval Research Logistics, IEEE Transactions on
Evolutionary Computation, IEEE Transactions on Power
Systems, IEEE Transactions on Control Systems Technology,
and the European Journal of Operational Research.

Prof. Tang serves as an Associate Editor of IISE
Transactions, IEEE Transactions on Evolutionary
Computation, IEEE Transactions on Cybernetics, Journal of
Scheduling, International Journal of Production Research,
Journal of the Operational Research Society; on the Editorial
Board of Annals of Operations Research; and is an Area Editor
of the Asia-Pacific Journal of Operational Research.

Ren Zhao is a postdoctoral faculty member
of the Institute of Industrial and Systems
Engineering, Northeastern University,
Shenyang, China, where she also gained her
PhD. Her research interests include
production scheduling problems of iron and
steel enterprises, logistics scheduling, port
container logistics scheduling problems, and
optimization theories and methods. As the

main researcher of the project, Dr. Zhao participated in the
National Science Foundation for Outstanding Youth
(70425003), National High-tech Research and Development
Plan (2006AA04Z174), and other projects. Her research papers
have been published in academic journals such as Naval
Research Logistics and Journal of Automation.

Yun Dong received a Bachelor’s degree in
automation from Harbin Institute of
Technology in 2005 and a Master’s degree
and PhD in Systems Engineering from
Northeastern University, Shenyang, China
(2009 and 2015 respectively). He is
currently a lecturer at the Institute of
Industrial and Systems Engineering,

Northeastern University. Dr. Dong’s research interests include
planning and scheduling, modeling and optimization, meta-
heuristics, machine learning, and the development of decision
support systems. His research papers have been published in
academic journals such as IEEE Transactions on Evolutionary
Computation, IISE Transactions, and International Journal of
Production Research.

	I. INTRODUCTION
	II. Problem description and modeling
	A. Parameters
	B. Decision Variables
	C. Mathematical Formulation

	III. A two-phase decomposition heuristic
	A. Phase 1: Solve the problem as if it is a single-crane problem.
	B. Phase 2: Allocate the new tasks to cranes and schedule the tasks for each crane.
	Parameters
	Decision Variables

	IV. Heuristic solution with differential evolution
	A. Individual Representation
	B. Discrete Mutation, Discrete Crossover and Selection
	C. Fitness Function Calculation
	D. PDDE Procedure

	V. Computational experiments
	VI. Conclusions
	References

