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Abstract—This paper studies a multiple double-load crane 
scheduling problem in steel slab yards. Consideration of multiple 
cranes and their double-load capability makes the scheduling 
problem more complex. This problem has not been studied 
previously. We first formulate the problem as a mixed-integer 
linear programming (MILP) model. A two-phase model-based 
heuristic is then proposed. To solve large problems, a pointer-
based discrete differential evolution (PDDE) algorithm was 
developed with a dynamic programming algorithm embedded to 
solve the one-crane sub-problem for a fixed sequence of tasks. 
Instances of real problems are collected from a steel company to 
test the performance of the solution methods. The experiment 
results show that the model can solve small problems optimally, 
and the solution greatly improves the schedule currently used in 
practice. The two-phase heuristic generates near-optimal 
solutions, but it can still only solve comparatively modest problems 
within reasonable (4-hour) computational timeframes. The PDDE 
algorithm can solve large practical problems relatively quickly, 
and provides better results than the two-phase heuristic solution, 
demonstrating its effectiveness and efficiency and therefore its 
suitability for practical use. 
 

Note to Practitioners—Bridge cranes are commonly used to 
move heavy items in manufacturing and logistics systems. Usually, 
more than one crane runs on a common track. The latest versions 
of such cranes, such as those used in slab yards in the steel 
industry, can hold two items simultaneously. Operations 
scheduling of multiple double-load cranes involves assignment of 
tasks to the cranes, combination of tasks to double-load 
operations, and sequencing of the tasks, considering the non-
crossing constraint between cranes. Effective solution of this 
complex problem can help fully utilize the crane capability, 
increase productivity, and reduce energy consumption. This paper 
models this problem and develops a heuristic solution that 
combines differential evolution and dynamic programming. 

Experiment results show that the algorithm is effective and 
efficient for practical use in slab yards. It may also be applicable 
to other systems using similar cranes. 
 

Index Terms—Multiple crane scheduling, Double-load cranes, 
Integer programming, Differential evolution, Dynamic 
programming. 
 

I. INTRODUCTION 
TEEL slabs are intermediate products in the steel 
production system. They are produced in the continuous-

casting stage and are used as materials in the hot-rolling stage. 
To ensure smooth production, slabs are stacked in a storage 
yard/warehouse that functions as a buffer between the two 
stages. Based on production requirement, the slabs may need to 
be moved between two stacks, or between a stack and an entry 
or exit point. These movement tasks are carried out by bridge 
cranes. The warehouse may consist of several halls, but their 
operations are independent of each other and so can be planned 
separately. There can be two or more cranes in the same hall, 
running on a common overhead rail track. Fig. 1 shows the 
layout of an example storage hall with two cranes. 

The hall is often divided into several areas in practice, such 
that each area is served by one crane. With this practical 
strategy, a single-crane scheduling problem can be solved to 
optimize the operations of each storage area. The most 
advanced cranes can hold up to two slabs simultaneously. The 
problem of scheduling such double-load cranes is more 
complex than scheduling the traditional cranes which hold only 
one slab at a time. Zhao et al. [1] studied the problem of 
scheduling a single crane with double-load capability. 

However, cranes in the same hall can travel to different areas. 
In situations where the workloads are not balanced, higher 
productivity may be achieved if cranes are allowed to assist 
each other rather than being restricted to their own areas. As the 
cranes run on the same track, they cannot cross each other and 
must also maintain a safety distance. When more than one crane 
is considered, there are also new decisions on the assignment of 
tasks to cranes. These new constraints and decisions add 
additional complexity to the problem. In this paper we study 
this problem of scheduling multiple cranes each with double-
load capability. 

Problems of scheduling multiple cranes on a common track 
have been studied previously in different contexts. Lieberman 
and Turksen [2] studied a crane scheduling problem in 
production systems, and proposed heuristic solutions 
considering situations where the tasks are ready at the same 
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time and at different times respectively. More research was 
done on crane scheduling problems in container terminal 
operations, mostly at container ports. These include yard crane 
scheduling problems (e.g., Lim et al. [3]; Ng [4]; Li et al. [5]; 
Li et al. [6]), quay crane scheduling problems (e.g., Liu et al. 
[7]; Lee et al. [8]; Chen et al. [9]; Alosufi et al. [10]), and 
combined problems (e.g., Zhang et al. [11]). Guo et al. [12] 
studied a crane scheduling problem in a railroad container 
terminal. Zheng et al. [13] studied a crane scheduling problem 
with uncertain release times of retrieval tasks in a container 
yard. They proposed a two-stage stochastic programming 
model and developed a heuristic algorithm to solve the 
problem. The tasks in our problem are all ready to perform 
though there may be precedence constraints among them. If 
anticipated future tasks are also included in the problem, then 
the method in the above reference could be useful for handling 
possible uncertainties in the task arrivals. In all these problems 
each task needs to be performed by a crane at one fixed position, 
while the tasks in the problem studied in this paper involve a 
crane movement from one position to another. 

Crane scheduling problems with movement tasks are often 
seen in production systems. Hirsch et al. [14] studied a two-
crane routing problem in the roof-tile industry, where the tasks 
involved moving workpieces on iron pallets from stage to stage 
and moving the pallets back in a four-stage hybrid flowshop 
system. An ant colony optimization (ACO)-based solution 
approach was used to solve the problem. Other studies 
examined cyclic production in electroplating lines, where items 
for plating are moved between the line stages by hoists on a 
common track. Lei and Wang [15] studied a problem with two 
hoists where part movements were all in one direction. The line 
was partitioned into two non-overlapping zones and the tasks in 
each zone were assigned to one hoist. Che and Chu [16] 
proposed a branch-and-bound algorithm for a multi-hoist 
problem with all part movements in one direction. Zhou and Liu 
[17] proposed a heuristic search algorithm for the two-hoist 
problem allowing movements in both directions. Leung and 
Zhang [18] and Leung et al. [19] presented mixed-integer linear 
programming (MILP) models for the multi-hoist scheduling 
problem. Liu and Jiang [20] and Jiang and Liu [21] analyzed a 
no-wait version with fixed processing times for multi-hoist 
scheduling problems and developed polynomial time 
algorithms to solve them optimally. Based on the analysis, a 
new MILP model is developed for the general problem, which 
enables an efficient branch-and-bound solution (Jiang and Liu, 
[22]). 
There has been some previous research studying crane 
scheduling problems in the steel industry. Dohn and Clausen 

[23] studied a slab yard planning problem to decide the slab 
movements, and a crane scheduling problem to carry out the 
movement tasks. The crane scheduling problem was solved 
using a greedy heuristic and local search. Xie et al. [24] studied 
a multi-crane scheduling problem arising in the batch annealing 
process, to move heaters and coolers among the steel coils 
stacked on annealing bases. A MILP was formulated, and a 
heuristic solution algorithm was proposed with analysis of its 
worst-case performance. Maschietto et al. [25] studied a two-
crane scheduling problem in a steel coil distribution center and 
solved it using a genetic algorithm. Zhou et al. [26] studied a 
new combined transportation problem for China’s “the Belt and 
Road” initiative, they proposed a time–distance-based cost to 
compare with traditional transportation. The research 
considered the combination of sea–rail transportation, while our 
problem is to consider the combination of different tasks. 

In all of the above studies, the cranes or hoists can only 
handle one item. In this paper, the crane can hold two slabs 
simultaneously, and so two slab-moving tasks can be combined 
in one loaded trip. Considering this new feature, we need to 
decide both the task combination and the crane routes to 
perform all the tasks. 

In the following sections of the paper, we first describe the 
problem in more detail and present a MILP model (Section II). 
A two-phase heuristic is proposed in Section III. Section IV 
combines differential evolution and dynamic programming to 
solve the problem. Section V reports experiment results. 
Conclusions are drawn in Section VI.   

II. PROBLEM DESCRIPTION AND MODELING 
Slabs are stored in stacks in the warehouse hall. These stacks 

are arranged in rows and columns as shown in Fig. 1. The 
position of a stack can be indicated by its row and column 
numbers. There are m cranes in the hall. When a crane moves a 
slab from one stack to another, the crane bridge travels along 
the length of the hall and the hoist travels on the bridge along 
the width of the hall. The time needed for the movement is the 
longer one of these two travel times. In practice, the width of 
the hall is much shorter and so the travel time is determined by 
the distance traveled in the length direction. Therefore, it is 
sufficient to just use the column position to represent the stack 
position and only consider the crane movements in one 
dimension. An entry or exit point can be viewed as a stack. All 
the cranes run on a common track. Although each of them can 
travel along the full length of the hall, they cannot cross each 
other, and any two adjacent cranes must also maintain a 
minimum safety distance. 

In the problem studied, a set of slab-movement tasks are 
given. These may include receiving and storage, rearrangement, 
retrieval, and shuffling. Each task requires the movement of one 
slab from its initial stack to its target stack. There may be 
precedency requirements among the tasks. For example, 
priority must to be given to urgent tasks; the task of picking up 
a slab in a higher position must be performed before the task of 
picking up a slab underneath it. 

A crane can hold at most two slabs simultaneously. 
Therefore, it can perform single tasks one after another, or 
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Row 1
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Column NColumn 2Column 1

Stack

Direction of movement

#1 #2

V 2

V 1
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Fig. 1. An example slab storage hall with two cranes. 
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combine two tasks in a double-load operation. In a double-load 
operation the crane picks up the first slab from its initial stack, 
travels to the initial stack of the second slab, picks up the second 
slabs, travels to the target stack of the second slab, drops off the 
second slab, then travels to the target stack of the first slab and 
drops it off there. Some of these steps may be saved if the two 
slabs have the same initial stack and/or the same target stack. 
No more than two slabs are allowed to be combined in a double-
load operation, i.e., the crane cannot pick up another slab before 
both slabs are dropped off. Note that a double-load operation 
combining task A and task B is different from that combining 
B and A. To combine two tasks, the slab of the first task cannot 
be wider than that of the second task. Slab widths are known for 
the given tasks. 

Considering the tasks and constraints described above, the 
scheduling problem is to allocate the tasks to the cranes and 
determine the schedule for the cranes to perform the tasks, 
including the combination of tasks into double-load operations, 
so as to complete all the tasks as soon as possible, i.e., to 
minimize the makespan.  

A. Parameters 
O  set of tasks, O = {1, …, N}. 
K  set of cranes, K = {1, …, m}. 

io +  initial stack of task i. 

io −  target stack of task i. 
v  maximum crane speed when carrying one slab. 
v+  maximum crane speed when carrying two slabs. 
v−  maximum crane speed when empty. 

,i jp + −  1 if task j must complete later than task i starts, 
otherwise 0. 

, +i jp +  1 if task j must start later than task i starts, otherwise 0. 

,i jp − −  1 if task j must complete later than task i completes, 
otherwise 0. 

,i jp − +  1 if task j must start later than task i completes, 
otherwise 0. 

ijq  1 if task i and j meet the double-load conditions, 
otherwise 0. 

mind  the safety distance between cranes. 
M  A sufficiently large constant. 

B. Decision Variables 

,

1 if task  starts later than task   starts,
0 otherwisei j

j i
x + +


= 


，

，  

,

1, if task  completes later than task   starts,
0, otherwisei j

j i
x + −


= 


 

,

1, if task  starts later than task   completes,  
0, otherwisei j

j i
x − +


= 


 

,

1, if task  completes later than task   completes,
0, otherwisei j

j i
x − −


= 


 

if task  is assigned to crane 1, ,
0, otherwise

k
iz

i k
= 


 

1, if tasks  and  are performed together 
by a crane in a double-load operation,

0, otherweise
ij

i j
y


= 



 

iS  start time of task i. 

iC  completion time of task i. 

maxC  time when all tasks are completed. 
k
ip +  position of crane k at the time point when task i starts. 
k
ip −  position of crane k at the time point when task i 

completes. 

C. Mathematical Formulation 
Using the above notation, our crane scheduling problem can 

be formulated as the following integer programming model. 

Minimize maxC  

1
=1

m
k
i

k
z

=
∑ , 1,...,i N= . (1) 

, , 1i j j ix x+ + + ++ = , , 1,...,i j N= ,  i j≠ . (2) 

, , 1i j j ix x+ − − ++ = , , 1,...,i j N= ,  i j≠ . (3) 

, , 1i j j ix x− + + −+ = , , 1,...,i j N= ,  i j≠ . (4) 

, , 1i j j ix x− − − −+ = , , 1,...,i j N= ,  i j≠ . (5) 

, ,4 k k
ij i j j i i jy x x z z+ + − −≤ + + + , 

 1,...,k m= , , 1,...,i j N= ,  i j≠ . (6) 

, , 3k k
ij i j j i i jy x x z z+ + − −≥ + + + − , 

 1,...,k m= , , 1,...,i j N= ,  i j≠ . (7) 

1 1
1

N N

ij jl
i l
i j l j

y y
= =
≠ ≠

+ ≤∑ ∑ , 1,...,j N= . (8) 

ij ijy q≤ , , 1,...,i j N= ,  i j≠ . (9) 

(1 )k k
i i ip o M z+
+ ≤ + − , 1,...,k m= , 1,...,i N= . (10) 

( 1)k k
i i ip o M z+
+ ≥ + − , 1,...,k m= , 1,...,i N= . (11) 

(1 )k k
i i ip o M z−
− ≤ + − , 1,...,k m= , 1,...,i N= . (12) 

( 1)k k
i i ip o M z−
− ≥ + − , 1,...,k m= , 1,...,i N= .  (13) 

1
min

k k
i ip d p +
+ ++ ≤ , 1, , 1k m= … − , 1,...,i N= . (14) 

1
min

k k
i ip d p +
− −+ ≤ , 1, , 1k m= … − , 1,...,i N= . (15) 

1 1
| | / ( ) (1 )

N N
k k k
i i i i i ji ij

j j
j i j i

p p v C S M z y y+ −
= =
≠ ≠

− ≤ − + − + +∑ ∑ ,

 1,...,k m= , 1,...,i N= . (16) 
| | / ( ) (2 )k k k

i j i j i jip p v S S M z y+ +− ≤ − + − − , 
 1,...,k m= , , 1,...,i j N= ,  i j≠ . (17) 
| | / ( ) (2 )k k k

i j j i i jip p v C C M z y− −− ≤ − + − − , 
 1,...,k m= , , 1,...,i j N= ,  i j≠ . (18) 
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,
| | / ( ) (2 )k k k

i i i i i ji
j O j i

p p v C S M z y+
+ −

∈ ≠

− ≤ − + − − ∑ , 

 1,...,k m= , 1,...,i N= . (19) 

,| | / ( ) (1 )k k
i j j i i jp p v S S M x−
+ + + +− ≤ − + − , 

 1,...,k m= , , 1,...,i j N= ,  i j≠ . (20) 

,| | / ( ) (1 )k k
i j j i i jp p v C S M x−
+ − + −− ≤ − + − , 

 1,...,k m= , , 1,...,i j N= ,  i j≠ . (21) 

,| | / ( ) (1 )k k
i j j i i jp p v S C M x−
− + − +− ≤ − + − , 

 1,...,k m= , , 1,...,i j N= ,  i j≠ . (22) 

,| | / ( ) (1 )k k
i j j i i jp p v C C M x−
− − − −− ≤ − + − , 

 1,...,k m= , , 1,...,i j N= ,  i j≠ .  (23) 

min /j iS S d v− ≥ , , 1i jp + + = , , 1,...,i j N= ,  i j≠ . (24) 

min /j iC S d v− ≥ , , 1i jp + − = , , 1,...,i j N= ,  i j≠ . (25) 

min /j iS C d v− ≥ , , 1i jp − + = , , 1,...,i j N= ,  i j≠ . (26) 

min /j iC C d v− ≥ , , 1i jp − − = , , 1,...,i j N= ,  i j≠ . (27) 

maxiC C≤ , 1,...,i N= . (28) 

{ }, , , ,, , , , , 0,1k
i j i j i j i j ij ix x x x y z+ + + − − + − − ∈ , 

 , 1,...,i j N= ,  i j≠ , 1,...,k m= . (29) 
, , , 0k k

i i i ip p S C+ − ≥ , 1,...,i N= , 1,...,k m= . (30) 
 
In this model, the objective is to minimize the time required 

to complete all the crane tasks. Constraints (1) ensure that each 
task is performed by one crane. Constraints (2) to (5) ensure 
that any two events (start and completion time points of tasks) 
can happen in only one order. Constraints (6) and (7) require 
that the two tasks in a double-load operation must be performed 
by the same crane. Constraints (8) mean that any task may be 
carried out in a double-load operation with at most one other 
task. Constraints (9) indicate that the double-load conditions 
must be met if two tasks are combined in a double-load 
operation. Constraints (10) to (13) link the positions of cranes 
to those of tasks: if a crane k performs a task i, constraints (10) 
and (11) ensure that crane k must be at the initial stack of task i 
when the task starts, while constraints (12) and (13) ensure that 
the crane must be at the target stack of the task when the task 
completes. If crane k is not assigned to perform task i, then its 
positions at the start and completion times of this task will be 
determined by the model and not restricted by the positions of 
this task. Constraints (14) and (15) guarantee the minimum 
safety distance between any two adjacent cranes at all times. 
These two constraints also ensure that the cranes will never 
cross each other, as any crane k is required to be always on one 
side of crane k+1 and to maintain at least the safety distance. 
Constraints (16) to (23) require that there are sufficient times 
for the cranes to perform the tasks and also to make the 
necessary empty movements between tasks. Constraints (16) 
are for single-load tasks, constraints (17) to (19) are for double-
load tasks, and constraints (20) to (23) are for empty crane 
movements. Constraints (24) to (27) ensure that the precedence 
requirements are satisfied. Constraints (28) states that the 
completion time of all tasks cannot be earlier than the 

completion time of any of the individual tasks. Constraints (29) 
and (30) define the range of variable values. 

The value of M in the constraints needs to be sufficiently 
large to ensure model correctness. However, too large value of 
M may affect the efficiency of the solution process. The value 
of M can be set differently in different constraints. For 
constraints (10) to (13), it is sufficient to set the value of M to 
the largest distance between any two stacks. For constraints 
(16) to (23), the value of M needs to be greater than the 
makespan. We set it to the time required for one crane to 
perform all tasks one by one. 

We tested the model by running it on some small problem 
instances. CPLEX 12.51 was used to solve the model with the 
maximum running time set to 14400 seconds (4 hours). The 
solution time increases quickly with the number of tasks in the 
problem, and when the number of tasks reaches 9, some 
instances cannot be solved optimally within the given time. If 
the problem size increases any further, the model cannot 
generate even a feasible solution within the 4-hour limit.  

III. A TWO-PHASE DECOMPOSITION HEURISTIC 
As an attempt to solve larger problems we try to decompose 

the problem into two phases: the first phase determines the task 
combinations assuming that all tasks are performed by a single 
crane; then, with the task combinations fixed, the second phase 
decides the task assignment and schedule. Each phase can also 
be formulated as a smaller MILP model. 

A. Phase 1: Solve the problem as if it is a single-crane 
problem. 

This phase assumes that there is only one crane. Therefore, 
the z variables and safety distance constraints are not needed. 
Some of the other constraints may also be simplified 
accordingly. Using the notation defined in the previous section, 
the model for this phase can be represented as follows.  
Minimize maxC  

, , 1i j j ix x+ + + ++ = , , 1,...,i j N= ,  i j≠ .  (31) 

, , 1i j j ix x+ − − ++ = , , 1,...,i j N= ,  i j≠ . (32) 

, , 1i j j ix x− + + −+ = , , 1,...,i j N= ,  i j≠ . (33) 

, , 1i j j ix x− − − −+ = , , 1,...,i j N= ,  i j≠ .  (34) 

, ,2 ij i j j iy x x+ + − −≤ + , , 1,...,i j N= ,  i j≠ . (35) 

, , 1ij i j j iy x x+ + − −≥ + − , , 1,...,i j N= ,  i j≠ . (36) 

1 1
1

N N

ij jl
i l
i j l j

y y
= =
≠ ≠

+ ≤∑ ∑ , 1,...,j N= . (37) 

ij ijy q≤ , , 1,...,i j N= ,  i j≠ . (38) 

1 1
| | / ( ) ( )

N N

i i i i ji ij
j j
j i j i

o o v C S M y y+ −
= =
≠ ≠

− ≤ − + +∑ ∑ , 

 1,...,i N= . (39) 
| | / ( ) (1 )i j i j jio o v S S M y+ +− ≤ − + − , 
 , 1,...,i j N= ,  i j≠ . (40) 
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,
| | / ( ) (1 )i i i i ji

j O j i
o o v C S M y+

+ −
∈ ≠

− ≤ − + − ∑ , 

 1,...,i N= . (41) 
| | / ( ) (1 )i j j i jio o v C C M y− −− ≤ − + − , 
 , 1,...,i j N= ,  i j≠ . (42) 

,| | / ( ) (1 )i j j i i jo o v S C M x−
− + − +− ≤ − + − , 

 , 1,...,i j N= ,  i j≠ . (43) 
0j iS S− ≥ , , 1i jp + + = , , 1,...,i j N= ,  i j≠ . (44) 

0j iC S− ≥ , , 1i jp + − = , , 1,...,i j N= ,  i j≠ .  (45) 

0j iS C− ≥ , , 1i jp − + = , , 1,...,i j N= ,  i j≠ . (46) 

0j iC C− ≥ , , 1i jp − − = , , 1,...,i j N= ,  i j≠ . (47) 

maxiC C≤ , 1,...,i N= . (48) 

{ }, , , ,, , , , , 0,1k
i j i j i j i j ij ix x x x y z+ + + − − + − − ∈ , 

 , 1,...,i j N= ,  i j≠ . (49) 
, 0i iS C ≥ , 1,...,i N= . (50) 
The meanings of the constraints in this model are similar to 

the corresponding ones in the overall MILP model. Note that 
the assignment constraints and the large number of collision-
avoidance constraints do not appear in this model, making it 
easier to solve. 

After solving this first phase model, any two tasks that are 
performed in the same double-load operation in the solution 
will be viewed as one new task approximately in the second 
phase. Each of the tasks that are performed in single-load 
operations is also considered as a new task. For each new task 
representing a double-load operation, the “initial” and “target” 
positions and the duration can be calculated as follows: 

Suppose that the task picked up first in this double-load 
operation (the new task i) is task A, and the other task is task B. 
The “initial” position n

io +  and “target” position n
io −  of the 

“new task” can be set based on the direction of task A, i.e., the 
relationship between its initial and target positions: 

If A Ao o+ −≤ , 
n
io +  = min { Ao + , Ao − , Bo + , Bo − }, 
n
io −  = max { Ao + , Ao − , Bo + , Bo − }; 

Otherwise, 
n
io +  = max { Ao + , Ao − , Bo + , Bo − },  
n
io −  = min { Ao + , Ao − , Bo + , Bo − }. 

The duration of the “new task”: 

it = | | /n
i Ao o v−
+ +− + | | /A Bo o v+ +− + | | /B Bo o v+

+ −− +

| | /B Ao o v− −− + | | /n
A io o v−
− −− . 

For example, Fig. 2 shows the initial and target positions of 
two tasks (A and B) of a double-load operation. The initial 
position of A is on the left of its target position ( A Ao o+ −≤ ). 
According to the above formulae, the “initial” and “target” 
positions of the “new task” will be positions 2 and 9, 
respectively. The duration of the “new task” is the sum of empty 

travel time from position 2 to position 4, single-load travel time 
from position 4 to position 2, double-load travel time from 
position 2 to position 7, and single-load travel time from 
position 7 to position 9.  

B. Phase 2: Allocate the new tasks to cranes and schedule the 
tasks for each crane. 

The phase-two problem is then to assign the cranes to 
perform the new tasks without further task combination. We 
redefine the following parameters and variables to present the 
phase-two model. The parameters concerning cranes remain 
unchanged. 

Parameters 
O set of new tasks, O = {1, …, N}. For simplicity, we 

refer to these as “tasks” when describing this model. 
n
io +  initial position of task i. 
n
io −  target position of task i. 

it  duration of task i. 

,i jp + −  1 if task j must complete later than task i starts, 
otherwise 0. 

, +i jp +  1 if task j must start later than task i starts, otherwise 0. 

,i jp − −  1 if task j must complete later than task i completes, 
otherwise 0. 

,i jp − +  1 if task j must start later than task i completes, 
otherwise 0. 

M a sufficiently large constant. 

Decision Variables 

,

1 if task  starts later than task   starts,
0 otherwisei j

j i
x + +


= 


，

，
 

,

1, if task  completes later than task   starts,
0, otherwisei j

j i
x + −


= 


 

,

1, if task  starts later than task   completes,  
0, otherwisei j

j i
x − +


= 


 

,

1, if task  completes later than task   completes,
0, otherwisei j

j i
x − −


= 


 

1 2 3 4 5 6 7 8 9Position

n
io +

n
io −

Bo + Bo −Ao + Ao −

 

Fig. 2. Schematic of the “new task” definition 
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if task  is assigned to crane 1, ,
0, otherwise

k
iz

i k
= 


 

iS  start time of task i. 

iC  completion time of task i. 

maxC  time when all tasks are completed.  
k
ip +  position of crane k at the time point when task i starts. 
k
ip −  position of crane k at the time point when task i 

completes. 
Using the parameters and variables, the following integer 

programming model is established: 

Minimize maxC  

1
=1

m
k
i

k
z

=
∑ , 1,...,i N= . (51) 

, , 1i j j ix x+ + + ++ = , , 1,...,i j N= ,  i j≠ .  (52) 

, , 1i j j ix x+ − − ++ = , , 1,...,i j N= ,  i j≠ . (53) 

, , 1i j j ix x− + + −+ = , , 1,...,i j N= ,  i j≠ . (54) 

, , 1i j j ix x− − − −+ = , , 1,...,i j N= ,  i j≠ . (55) 

min

1
, ,

max{ , } min{ , }

      (4 )

n n n n
i i j j

k k
i j i j j i

o o d o o

M z z x x
+ − + −

+
+ + + −

+ ≤

+ − − − −
, 

 1, , 1k m= … − , , 1,...,i j N= , i j< .(56) 

min

1
, ,

max{ , } min{ , }

      (4 )

n n n n
i i j j

k k
i j i j j i

o o d o o

M z z x x
+ − + −

+
+ − − −

+ ≤

+ − − − −
, 

 1, , 1k m= … − , , 1,...,i j N= , i j< .(57) 

min

1
, ,

max{ , } min{ , }

      (4 )

n n n n
i i j j

k k
i j j i i j

o o d o o

M z z x x
+ − + −

+
+ + + −

+ ≤

+ − − − −
, 

 1, , 1k m= … − , , 1,...,i j N= , i j< .(58) 

i i iS t C+ ≤ , 1,...,i N= . (59) 

,(1 )i j i jS S M x + +≤ + − , , 1,...,i j N= , i j< . (60) 

,(1 )i j i jS C M x + −≤ + − , , 1,...,i j N= , i j< . (61) 

,(1 )i j i jC S M x − +≤ + − , , 1,...,i j N= , i j< . (62) 

,(1 )i j i jC C M x − −≤ + − , , 1,...,i j N= , i j< . (63) 

,| | / (3 )k k k k
i i j j i j i jC p p v S M z z x−

− + − ++ − ≤ + − − − , 
 1,...,k m= , , 1,...,i j N= , i j< . (64) 

min /j iS S d v− ≥ , , 1i jp + + = , , 1,...,i j N= , i j< . (65) 

min /j iC S d v− ≥ , , 1i jp + − = , , 1,...,i j N= , i j< . (66) 

min /j iS C d v− ≥ , , 1i jp − + = , , 1,...,i j N= , i j< . (67) 

min /j iC C d v− ≥ , , 1i jp − − = , , 1,...,i j N= , i j< . (68) 

maxiC C≤ , 1,...,i N= . (69) 

{ }, , , ,, , , , 0,1k
i j i j i j i j ix x x x z+ + + − − + − − ∈ , 

 1,...,k m= , , 1,...,i j N= , i j< . (70) 
, 0i iS C ≥ , 1,...,i N= . (71) 

This is a multi-crane model, and the constraints are similar to 
those in the overall MILP model. However, all tasks in this 
model are “single-load” tasks and so there are no variables and 
constraints related to decisions on combining tasks to double-
load operations. This model is thus smaller than the overall 
model. 

This two-phase heuristic was also tested using a maximum 
allowable running time of 2 hours for each problem instance 
that was used for testing the overall MILP model. The first-
phase model can reach optimal solutions relatively quickly, and 
all the remaining time is used to solve the second-phase model. 
For the instances that are solved optimally by the overall MILP 
model, the two-phase heuristic solution is about 5.2% to 
optimal on average, and its solution time is about half that of 
the overall MILP model. With such time performance, this 
heuristic is still not suitable for solving large problems, and 
therefore a more efficient method is needed. 

IV. HEURISTIC SOLUTION WITH DIFFERENTIAL EVOLUTION  
The problems that can be solved by the two-phase heuristic 

within a reasonable time limit are still relatively small. To solve 
larger practical problems, we turn to metaheuristics. 
Differential evolution (DE) is one of the latest metaheuristics 
and has shown excellent performance in solving optimization 
problems. It was initially proposed for solving continuous 
optimization problems. Subsequent modifications have made it 
applicable to discrete optimization problems. Tang et al. [27] 
studied an improved DE for steelmaking-continuous casting 
production. A new mutation strategy and an incremental 
mechanism are proposed, which can prove the efficiency and 
effectiveness of DE for solving scheduling problems in the steel 
industry. Tang et al. [28] studied differential evolution with an 
individual-dependent mechanism. They proposed a new 
parameter setting and mutation strategy for DE, which 
significantly improves the computational efficiency of DE. 
Dong and Zhao [29] proposed a pointer-based discrete 
differential evolution (PDDE) for problems where the solutions 
are expressed as a permutation of integers. They defined 
addition and multiplication operations based on the concept of 
memory pointers in some programming languages and used 
them in the genetic operators of the algorithm. We adopt the 
PDDE algorithm to solve our problem, as the solution can be 
expressed as a permutation. 

A. Individual Representation 
We represent a solution using a permutation of integers, 1, 2, 

…, N+m-1. Here, integers 1, 2, …, N represent the N tasks. The 
positions of the m-1 largest numbers N+1, …, N+m-1 in the 
sequence separate the tasks into m subsequences. The first 
subsequence is used as the sequence of tasks performed by 
crane 1, the second subsequence is used as the sequence of tasks 
performed by crane 2, and so on. Fig. 3 shows an example 
solution code for a problem with 13 tasks (N=13) and 3 cranes 
(m=3). As seen from the figure, the two largest numbers (14 and 
15) separate the whole sequence into three subsequences, which 
indicate that crane 1 performs tasks 9, 3, 8, 11; crane 2 performs 
tasks 12, 7, 2, 13; and crane 3 performs tasks 6, 10, 4, 5, 1. 
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For each solution represented by a sequence, we need to 
calculate the objective function value of the corresponding 
schedule. This objective value will be used as the fitness 
function. In the following subsections (B, C and D), we first 
introduce the operators of mutation, crossover and selection. 
Then we provide a method for scheduling the tasks and 
calculating the objective value based on the sequence. Finally, 
the overall PDDE procedure is presented. 

B. Discrete Mutation, Discrete Crossover and Selection 
The mutation, crossover and selection operators in this PDDE 

procedure are defined as in Dong and Zhao [29]. The DE 
mutation operation generates a mutant individual vi for each 
current individual xi. The mutation operation of PDDE is a 
combination of addition and subtraction operations of 
individuals as shown in (72). 

1 2 3 ( )i r r rF= ⊕v x x x   (72) 
The difference vector 2 3i r r=d x x is obtained by using 

subtraction operations as illustrated in Fig. 4(a), and the new 
mutant 1i r i= ⊕v x d  is obtained through addition operations as 
illustrated in Fig. 4(b). The mutation factor F determines 
whether the current individual is mutated, as shown in (73). If 
a random real number in the interval of (0, 1) is less than F, the 
new mutant vi is xr1⊕di, otherwise it is the base individual xr1. 

1
1

1

, if ( (0,1) )
 

, otherwise
r i i

r i
r

rand F
F

⊕ <
⊕ = 



x d
x d

x
  (73) 

 Single-point crossover operation is then applied to combine 
the mutation individual vi and the target individual xi. First, a 
random integer is selected from the interval (1, N+m-1) as the 
intersection point. Next, the first segment of one of these two 
individuals and the second segment of the other individual are 
connected to constitute a preliminary child individual u′i. 
Finally, the second segment of this preliminary individual is 
checked, and the missing elements are added replacing the 
repeated elements to obtain a feasible child individual ui. We 
use ⊗ as the crossover operation symbol. Then the situations 
shown in Fig. 5(a) and Fig. 5(b) can be expressed as ui=xi⊗vi 
and ui=vi⊗xi. With the crossover rate CR, the crossover 
operator in PDDE is defined as in (74). 

, if ( (0,1) )
, otherwise

i i i
i

i i

rand CR⊗ <
=  ⊗

x v
u

v x
 (74) 

C. Fitness Function Calculation 
According to the coding method above, for a given sequence, 

the assignment of tasks and the order for each crane to perform 
its tasks are determined. However, we still need to work out an 
overall schedule and calculate the objective value. This is not a 
straightforward problem. On one hand, we need to decide which 
tasks should be combined as double-load operations so that the 
operation time can be minimized. On the other hand, we need 
to avoid conflict between cranes to ensure the feasibility of the 

schedule. The objective value of each individual solution must 
be calculated in the DE search process, and so the calculation 
has to be quick. Therefore, we address the above two issues 
separately in two steps, first working out a schedule for each 
crane and then checking the schedules to resolve conflicts, to 
obtain a feasible overall schedule and the objective value. 

Given the subsequence of tasks for one crane, we first check 
whether any precedence requirements are violated. If the 
precedence requirement of two tasks is violated, then the order 
of the two tasks is changed. This is done until all the precedence 
requirements are satisfied. For the modified subsequence, we 
develop a forward dynamic programming (DP) procedure to 
efficiently generate the schedule for the crane to perform the 
tasks. In each stage of the DP, one of the tasks is considered. 
We denote the total number of tasks in the sequence as n, and 
use [i] to represent the ith task in the sequence. There are two 
states in each stage i: (1) performing task [i] as a single-load 
operation, and (2) combining it with task [i-1] in a double-load 
operation. Note that if task [i-1] is combined with task [i-2], 
then tasks [i] and [i-1] cannot be combined. The links between 
the states in different stages can be expressed as a network in 
Fig. 6. 

Let Fi(s) be the objective function of state s in stage i 
representing the time for completion of all tasks up to this state. 
To simplify the presentation so that stage 2 need not be treated 
as a special case, we define [0] [2]o o− += . Then the DP can be 
presented as follows. 

First stage: 
1 1

1(1)
o o

F
v

+ −−
=  

1(2)F = ∞  
Recursion for other stages: 

[ 1] [ ] [ 2] [ ]
1 1

[ ] [ ]

(1) min (1) , (2)

                  + /

i i i i
i i i

i i

o o o o
F F F

v v

o o v

− − + − − +
− −− −

+ −

 − − = + + 
  

−

 

54106141327121511839 1

task sequence 
for crane 1

task sequence 
for crane 2

task sequence 
for crane 3

1 1088765432 11 15141312

xi,g:

Index j:

 

Fig. 3. A 15-dimensional individual in PDDE. 

 (a) 5 6 1 3 2 4

3 2 6 4 5 1

(Index j:) 1 2 3 4 5 6

4 5 2 6 1 3

xr3:

xr2:

di:

⊝

 (b)

2 3 5 6 4 1

di: 4 5 2 6 1 3

(Index j:)1 2 3 4 5 6

xr1:

5 2 1 3 6 4vi:

⊕

 

Fig. 4. Examples of subtraction and addition of six dimensions: (a) Discrete 
subtraction, (b) Discrete addition. 

 (a)

2 6 3 4 5 1

u'i: 2 6 3 1 2 5

2 6 3 1 4 5

xi:

4 3 6 1 2 5vi:

Crossover point

ui:

 (b)

4 3 6 1 2 5

u'i: 4 3 6 4 5 1

4 3 6 2 5 1

xi:

2 6 3 4 5 1

vi:

Crossover point

ui:

 

Fig. 5. Examples of discrete one-point crossover operations of six dimensions: 
(a) ui=xi⊗vi ,  (b) ui=vi⊗xi. 
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[ 1] [ 1] [ 1] [ ] [ ] [ ]
1 +

[ ] [ 1]
[ 1][ ]

(1) +

(2)
         ,                          if 1,

,  otherwise.

i i i i i i
i

i i i
i i

o o o o o o
F

v v v
F o o

q
v

− + − − + + + −
−

− − −
−

 − − −
 − +
=  −

+ =

∞

-

 

Finally, min {Fn(1), Fn(2)} will be the optimal objective 
value for the complete solution. The corresponding schedule for 
this crane can also be worked out backwards. 

The schedules of the cranes are then put together to 
determine whether they are feasible and, if not, to resolve any 
conflict. This is done by checking the crane positions at each 
time point. The cranes cannot cross each other, and they must 
maintain at least the safety distance at all times. In case of 
conflict between any two cranes, the operation of one of them 
will be delayed to avoid the conflict. To decide which crane’s 
operation should be delayed, the tasks they are performing at 
that time are considered. If the two tasks have a precedence 
relationship, then the crane performing the task with lower 
priority will give way to the other. Otherwise, the crane carrying 
less load will give way. In case the cranes carry the same load, 
the crane with earlier final completion time will give way. Fig. 
7 shows a conflict between cranes 1 and 2 as well as the 
resolution by delaying the operation of crane 1. While the rules 
used in this checking process eliminate conflicts, the resulting 
makespan may not be optimal even if the task assignment, 
combination and sequencing decisions are optimal. 
Nevertheless, as will be seen from the experimental results 
described in section V, the solution obtained is close to optimal.  
In addition, the rules such as giving way to the crane with 
heavier load, lead to solutions with good operational safety.  

In this way, an overall schedule can be obtained. Based on 
the task start and finish times in the schedule, we can conduct a 
final check of the precedence requirements between tasks of 
different cranes. If they are all satisfied, the schedule is feasible 
and the makespan of the schedule is taken as the fitness function 
value. Otherwise, a large penalty value is imposed on this 
infeasible solution as its fitness function value. 

D. PDDE Procedure 
With the integer coding and the above method for calculating 

the fitness values, the PDDE framework can be followed to 
solve our problem. Algorithm 1 summarizes the overall PDDE 
procedure used.  

 
Algorithm 1: The PDDE procedure 
Initialization: Set the maximum number of iterations gmax; Let 
the initial iteration index g = 0; Randomly generate an initial 

population of NP individuals }{ 1, ,,...,g g NP g=P x x ; Calculate the 

fitness value ,( )i gf x  of each individual ,i gx . 
WHILE g < gmax 

FOR each individual in Pg 
Generate a mutant vi,g using the following mutation 

operation: 

, 1, 2, 3, ( )i g r g r g r gF= ⊕v x x x  ,  

 1 2 3, , [1, ]r r r D∈ , 1 2 3i r r r≠ ≠ ≠ . 
Generate an offspring ui,g using the following 

crossover operation: 

, ,
,

, ,

, if ( (0,1) )
, otherwise

i g i g i
i g

i g i g

rand CR⊗ <=  ⊗

x v
u

v x  

Calculate the fitness value of ui,g: ,( )i gf u  

Select the better one of ui,g and ,i gx  to survive into 
the next generation. 

, , ,
, 1

,

, if ( ) ( )
, otherwise

i g i g i g
i g

i g

f f
+

≤= 


u u x
x

x
 

END FOR 
g = g + 1; 

END WHILE 
 

V. COMPUTATIONAL EXPERIMENTS 
Computational experiments are carried out to test the 

effectiveness and efficiency of the solution methods, using a 
64-bit Windows 10 system with an Intel Core i5 2.30 GHz CPU 
and 8 GB RAM. All the methods are implemented using C++ 
programming language, and the MILP models are solved using 
CPLEX 12.51 with default parameter settings.  

We used an orthogonal experimental design to tune the 
PDDE algorithm parameters. The orthogonal experiments were 
conducted on an 8-task instance taken from actual production. 
The PDDE has three parameter factors: NP, F, and CR. For each 
factor, four value levels are chosen to test (see Table I). So, the 
orthogonal table is selected as 3

16 (4 )L  for 16 tests.  
The test plan and results are shown in Table II. For each test, 

we use the average objective value of 10 instances as the 
response value. Column ‘AVG’ in Table II show the response 
values. Row AVG1 is the average of the response values at level 
1 for each factor. Similarly, AVG2 , AVG3 , and AVG4  are 

dmin

dmin

time

position

0

Crane 1

Crane 1 diverted route 

Crane 1 original route

Crane 2

 
Fig. 7. Illustration of conflict handling. 

……

Task [1] Task [2] Task [3] Task [m-1] Task [m]

State 1: 
Single load

State 2:
Combine with
previous task

Stages:

Fig. 6. The network of DP procedure. 
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averages at other levels . The best performance level for each 
factor is highlighted in Table II, and the parameters used in 
PDDE are set accordingly as NP = 100, CR = 0.5, F = 0.5. Fig. 
8 shows the evolution of the best objective value up to the 
current generation of the PDDE solution process for one 
instance. It can be seen that the evolution converges before 
5000 generations. This is also observed for other instances and 
with different parameter settings. Based on this we set gmax = 
5000. 

Instances of actual problems of different sizes were collected 
from the slab yard of a steel company. Each instance 
corresponds to a crane-scheduling scheme in the production 
plan. The plan contained the initial position and target position 
of the slab of each task, the precedence relationships between 
the tasks, and whether the tasks meet the double-load operation 
conditions. The actual slab yard is equipped with two cranes 
that are used to perform all tasks in practice. For consistency 
and fair comparison, two cranes are used for each instance in 
our numerical experiments. The overall MILP model, the two-
phase heuristic, and the PDDE heuristic were used to solve each 
of the instances. The actual production schedules that were used 
for these instances were also obtained for comparison. 
According to the actual production schedule of each instance, 
we obtain the objective value by using the calculation method 
in part C of section 4 as a benchmark to compare the 
performances of the solution methods. 

We also proposed a lower bound of the problem based on the 

first phase of the heuristic method in section III. Considering 
any optimal schedule of the problem with m cranes, we can 
obtain the route of each crane in it. Linking these routes by 
adding (m-1) empty moves, a feasible single-crane solution to 
perform all tasks can be obtained. The makespan of this solution 
should not be shorter than the optimal makespan of the single-
crane problem. The above analysis leads to a method of 
calculating a lower bound of our problem. First, solve the first-
phase problem in the two-phase heuristic method to obtain the 
optimal makespan of the single-crane problem. Then, from this 
makespan subtract the longest (m-1) empty move times 
between the target stack of a task and the initial stack of a 
different task; Finally, dividing the result by m provides us a 
lower bound of the multi-crane problem. 

The maximum computation time allowed for solving an 
instance is 4 hours. Within this time limit, the overall MILP 
model solved instances with up to 9 tasks, and the two-phase 
heuristic solved instances with up to 11 tasks. We first compare 
the performances of different methods for these small instances. 

For each instance, the objective value of the schedule in 
practice is used as the benchmark. The percentage improvement 
made by a tested method over this benchmark is then calculated. 
The experiment results also show the gaps of the proposed 
methods to the lower bound. The formulas are as follows. 

Improvement = (benchmark – objective value of the test 
method)/benchmark×100%. 

Gap = (objective value of the test method – lower 
bound)/lower bound×100%. 

Table III shows the Improvement, the Gap and Computation 
time (in CPU seconds) for each method. From Table III, it can 
be seen that the overall MILP model achieved optimal solutions 
to the first 16 instances, with average improvement of 24.83%. 
This indicates that there is great potential for improving the 
present, manually constructed schedule. For the same 16 
instances, the average improvements made by the two-phase 
heuristic and the PDDE heuristic are 20.93% and 22.50%, 
respectively. Neither is far from the optimal solution, with the 
PDDE solution being better than the two-phase heuristic 
solution. These can also be seen from their gaps to the lower 
bound. While the average gap of the optimal solution to the 
lower bound is 9.16%, those for the two-phase heuristic and 
PDDE are 14.82% and 12.55%, respectively. For all 24 
instances in the table, the average improvements of the two-
phase heuristic and the PDDE heuristic are 22.79% and 
24.23%, respectively, which are slightly higher than those for 

 
Fig. 8. Evolution of the best objective value up to different generations 
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TABLE I 
PARAMETERS, FACTORS, AND LEVELS 

Level NP F CR 
1 50 0.1 0.1 
2 100 0.3 0.3 
3 150 0.5 0.5 
4 200 0.7 0.7 

 

TABLE II 
ORTHOGONAL TABLE 3

16 (4 )L  AND RESPONSE VALUES 
Index NP F CR AVG 

1 1(50) 1(0.1) 1(0.1) 1206 
2 1(50) 2(0.3) 2(0.3) 1253 
3 1(50) 3(0.5) 3(0.5) 1019 
4 1(50) 4(0.7) 4(0.7) 1193 
5 2(100) 1(0.1) 2(0.3) 988 
6 2(100) 2(0.3) 1(0.1) 1289 
7 2(100) 3(0.5) 4(0.7) 1107 
8 2(100) 4(0.7) 3(0.5) 1215 
9 3(150) 1(0.1) 3(0.5) 1097 

10 3(150) 2(0.3) 4(0.7) 1241 
11 3(150) 3(0.5) 1(0.1) 959 
12 3(150) 4(0.7) 2(0.3) 1067 
13 4(200) 1(0.1) 4(0.7) 996 
14 4(200) 2(0.3) 3(0.5) 1285 
15 4(200) 3(0.5) 2(0.3) 1149 
16 4(200) 4(0.7) 1(0.1) 1141 

AVG1 1150 1122 1106  

AVG2  1127 1167 1164  

AVG3  1165 1065 1104  

AVG4  1135 1154 1134  
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the first 16 instances. Part of these increases is due to one 
exceptionally high improvement in instance 24. Overall, the 
performances of the heuristic solutions appear quite stable. 

In terms of computation time, MILP spends more than 3 
hours to solve one of the 9-task instances and cannot find a 
feasible solution for any instances larger than that within 4 
hours. The two-phase heuristic reached the 4-hour limit when 
solving one of the instances with 11 tasks. The PDDE algorithm 
solved any of the instances within 2 minutes, demonstrating that 
the PDDE algorithm could solve larger problems in reasonable 
time. Therefore, we tested it on large practical instances ranging 
from 20 to 60 tasks. The improvements of the PDDE solution 
over the current benchmark schedule, the gaps between the 
PDDE solution and the lower bound and computation times for 
these large instances are shown in Table IV. It can be seen that 
the computation time of the PDDE algorithm is only around 15 
minutes even for the large problem instances with 60 tasks. 
PDDE required only a few minutes to solve most of the 
common instances seen in the company’s real operations, which 
comprise 20 to 30 tasks. Such solution time are suitable for 
practical use. For these large problems, the average 
improvements of the PDDE solution over the current 
benchmark schedule are also stable and similar to those for 
small problems. The average improvement of the PDDE 
solution over the actual production schedule is 23.58% and its 
average gap to the lower bound is 9.44%. These are similar to 
the averages for small instance. The gap is actually smaller 

which may be because the lower bound in better for large 
instances. We also calculated another performance measure, 
namely the average operation time for each task, which is the 
makespan divided by the number of tasks completed. These are 
shown in the last two columns in Table IV. The overall average 
task operation time of the PDDE solution for all the test large 
instances is 135 s. For the first 16 small instances, the average 
task operation times of the optimal solution and the PDDE 
solution are 129.7s and 134.4s respectively. This indicates that 
the quality of the PDDE solution for large instances is similar 
to that for small instances and is close to optimal. 

VI. CONCLUSIONS 
In this paper, we have studied a multiple double-load crane 

scheduling problem in steel slab yards. The double-load crane 
can handle two slabs simultaneously and so requires additional 
decisions on combinations of tasks for double-load operations. 
Scheduling multiple cranes on a common track needs to 
consider non-crossing and safety distance constraints. Each of 
these features makes the problem more complex. We are not 
aware of any previous research on crane-scheduling problems 
that combines both of these features. We first formulated the 
problem as a mixed-integer linear programming model. Then a 
two-phase heuristic was proposed with each phase formulated 
as a smaller MILP model. A pointer-based discrete differential 
evolution algorithm was then developed with a dynamic 
programming algorithm embedded to solve the one-crane sub-
problem for a fixed sequence of tasks. Computational 

TABLE III 
EXPERIMENTAL RESULTS COMPARING DIFFERENT SOLUTION METHODS FOR SMALL-SIZED INSTANCES 

Instance index Size 
Improvement   Gap  Computation time (s) 

MILP 2-PHASE PDDE  MILP 2-PHASE PDDE  MILP 2-
PHASE PDDE 

1 6 21.31% 17.38% 19.77%  9.44% 14.91% 11.59%  48.88 37.27 29.90 
2 6 25.66% 21.87% 23.35%  8.97% 14.53% 12.36%  82.28 58.32 35.87 
3 6 18.83% 14.61% 16.49%  10.77% 16.53% 13.97%  55.90 41.62 30.34 
4 6 22.01% 18.24% 21.43%  9.02% 14.29% 9.83%  62.44 45.74 29.52 
5 7 28.29% 24.81% 24.89%  11.51% 16.92% 16.79%  590.94 268.70 38.95 
6 7 16.67% 12.38% 13.43%  8.12% 13.69% 12.33%  391.55 242.33 43.69 
7 7 26.34% 22.04% 21.65%  9.37% 15.75% 16.33%  433.76 209.16 47.29 
8 7 23.62% 19.10% 21.60%  9.75% 16.24% 12.64%  482.58 261.07 46.12 
9 8 28.05% 23.78% 25.84%  10.72% 17.29% 14.12%  6339.43 3239.41 58.24 

10 8 24.19% 19.56% 22.29%  11.92% 18.76% 14.73%  7057.20 2903.03 46.17 
11 8 27.65% 23.27% 26.19%  7.45% 13.95% 9.62%  5728.38 2191.31 52.22 
12 8 26.58% 22.15% 24.10%  8.25% 14.78% 11.91%  6859.01 2777.92 59.33 
13 9 29.72% 26.92% 27.87%  10.60% 15.01% 13.52%  7041.94 2944.45 76.17 
14 9 23.01% 19.87% 19.31%  7.07% 11.44% 12.22%  7187.33 3830.13 84.24 
15 9 28.03% 25.14% 25.88%  9.33% 13.72% 12.59%  6843.53 3313.16 90.01 
16 9 27.29% 23.78% 25.84%  4.21% 9.24% 6.29%  11383.26 2244.74 81.45 
17 10 - 19.16% 20.94%  - 12.97% 10.48%  - 5642.76 113.60 
18 10 - 31.05% 31.46%  - 12.41% 11.74%  - 6549.09 99.73 
19 10 - 26.25% 28.97%  - 12.03% 7.90%  - 5831.43 117.43 
20 10 - 23.14% 25.29%  - 10.26% 7.17%  - 6251.47 99.03 
21 11 - 22.87% 22.39%  - 8.74% 9.42%  - 11491.28 106.28 
22 11 - 26.96% 28.51%  - 9.33% 7.01%  - 14400 117.93 
23 11 - 19.14% 20.94%  - 14.57% 12.02%  - 9388.87 108.40 
24 11 - 43.50% 43.14%  - 9.76% 10.45%  - 9655.22 113.39 

AVG (Instances 1-16) 24.83% 20.93% 22.50%  9.16% 14.82% 12.55%     

AVG (all 24 instances) - 22.79% 24.23%  - 13.63% 11.54%     
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experiments were conducted on real instances collected from a 
steel company, to test the performance of the solution methods. 
The results show that the MILP solutions greatly improve upon 
the schedules used in practice, with an average improvement of 
about 24.83%, although it can only solve small test instances. 
The qualities of the two-phase heuristic and the PDDE solutions 
are both near-optimal, with the PDDE solution performing 
better. In addition, while the problem size that can be solved by 
two-phase heuristic is still relatively small, the PDDE algorithm 
solves large practical problems in acceptable time. 
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