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Abstract

We present two statistical mechanics based methods for simulating the evaporation of

droplets of nanoparticle suspensions from upon a heterogeneous surface. These are based

on a generalised lattice-gas model. Properties such as wettability and the dynamic contact

angle, are determined by the attraction strength parameters between particles and from the

dynamic mobility coefficients. Both models incorporate the effects of surface roughness and

slip at the surface. The two approaches used are Monte Carlo (MC) computer simulations

and Dynamical Density Functional Theory (DDFT). We calculate the bulk fluid phase be-

haviour including the influence of the suspended nanoparticles, comparing results from the

two approaches. We also calculate thermodynamic quantities such as the surface tensions.

Our results show that the presence of steps in the surface can be crucial in controlling dewet-

ting from heterogeneous surfaces. We also observe that coffee ring stains can be formed via

the coupling of evaporation to phase separation and that the advective hydrodynamics within

the droplets in not required for ring stains to form.
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Chapter 1

Introduction

Modeling offers a way to obtain results for something potentially expensive and time consum-

ing if done using experiments. Computer simulations and theory also offer the possibility to

calculate quantities such as the free energy, which is not straightforward to do in experiments.

It is almost trivial to run a simulation with a range of different values of parameters such as

those determining the strength of attraction between molecules, whereas changing param-

eters experimentally can be difficult or impossible. The challenge is to create simulations

that give good results and run in a practical amount of time.

In this thesis we look at two different modelling approaches to simulate the evaporation

of droplets and films of colloidal suspensions, like ink or paint, from various different types

of surfaces. Colloid suspensions are common in industry and the drying stage is a key part

of the process. The size of droplets we consider are on the mesoscopic scale, typically only

a few hundred times the size of the colloids. Colloid particles are typically 10nm-10µm

in diameter. However the methods we develop can easily be scaled up to describe larger

systems. There are a number of properties of droplet evaporation that make it difficult to

simulate on the microscopic scale. The molecules that make up the liquid are many orders

of magnitude smaller than the drop itself. The time scale for the interaction between the

molecules is of the order of picoseconds, but it can take minutes for even small droplets to
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Chapter 1. Introduction 2

fully evaporate. Such differences in scales make it infeasible to directly solve the Newton’s

equations of motion for all the particles. Instead of trying to handle each particle individually

we use statistical mechanics, a theory that looks at the average behaviour of a system to

determine the probability of observing a particular state.

The simulation models developed in the thesis consist of lattice-gas type models, i.e.,

generalised Ising models [1]. Putting the system on a discrete lattice makes the computer

code for the simulations easier and run faster. Lattice models do have some limitations,

for example they do not properly distinguish between the liquid and the solid state of a

substance, nevertheless we show that lattice models can still give useful results.

The first few chapters in this thesis serve as an introduction to the material for the two

main chapters, 6 and 7, which contain original results. The main chapters are structured

as standalone research publications and can be read independently by readers familiar with

the background material. The penultimate chapter is a publication where the author of this

thesis contributed as second author to work that was led by another PhD student in the

group. The system being modelled is different, but the methods are related.

Chapter 2 gives a brief introduction to simple liquids. It also introduces more complex

liquids and gives some ideas on how they might be modelled. This is built on by us to

chapter 3, which describes the key ideas of statistical mechanics used in this thesis. Sta-

tistical mechanics is the study of the average mechanics of systems of interacting particles.

Statistical mechanics is an important topic and ideas in this chapter are the basis for both

the density functional theory (DFT) [2, 3] and Monte Carlo (MC) [4, 5] models used in this

thesis. Chapter 4 describes DFT which is a statistical mechanical theory able to predict the

equilibrium density profiles for a system. Initially, continuum DFT is described, and then

this is subsequently extended to describe the lattice based model which is used in chapter 7.

Chapter 5 introduces the basics of MC and Markov chains. This is to provide some of the

background fundamentals for chapter 6. This uses an extended Metropolis MC algorithm

to simulate the evaporation of droplets of nanoparticle suspensions. This work stems from
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seeking to model some of the phenomena observed and overcome in using ink-jet printing in

advanced manufacturing.

Chapter 7 develops a different method for simulating evaporating droplets, namely a

dynamical DFT (DDFT) based model [6, 3, 7, 8, 9, 10, 11]. DDFT is based on DFT and is

a theory that can calculate the progression of a density profile in time. The results from the

DDFT are related to the MC results in the previous chapter since the underlying system is

the same.

Chapter 8 describes work that is not connected to the previous two chapters. It looks at

pattern forming in two dimensional colloid suspensions with a complex attraction potential.

Lattice based DFT and MC simulations are used and the results are compared.

Chapter 9 contains some final concluding remarks and ideas for future work.



Chapter 2

Simple and complex liquids

Physical simple matter under normal conditions in everyday life exists in three different

states, solid, liquid and gas. By simple matter, we mean systems of one type of roughly

spherical particles with isotropic interactions between them. Each of these states has very

different physical properties. The state of a substance can be changed by varying its tem-

perature or pressure. We consider a substance to be made up of a collection of N molecules

(where N is large, on the order of Avogadro’s constant). The structure in which the particles

are assembled depends on the thermodynamic state. When a substance is solid there is no

‘flow’ and each particle is rigidly part of a fixed structure. Liquid or gas (i.e. vapour) phases

on the other hand can flow. Substances in the gas phase condense on cooling or when the

pressure is increased. Similarly, liquids can evaporate when the temperature is increased or

the pressure is reduced [3].

Under normal conditions a gas has a very low density. Collisions between the molecules

in a gas are rare and can be modelled by the Boltzmann kinetic equation [12]. In contrast,

liquids have a much higher density. The molecules are close together so that they constantly

interact with each other. This significant change in behaviour is dependant on the balance

between the intermolecular forces and the kinetic energy of the particles. If the temperature

is high enough the modules are able to move fast enough to overcome the attractive inter-

4



Chapter 2. Simple and complex liquids 5

molecular forces and spread out as much as possible, forming a gas. At lower temperatures,

the intermolecular forces are strong enough to keep the particles together; this is known

as cohesion. On further cooling the substance becomes solid. The particles can no longer

move past one another and the substance forms a rigid solid. In this thesis we are mostly

interested in substances in their fluid state.

Consider a closed system containing both the liquid and gas. For the two phases to

coexist they must have the same temperature, pressure and chemical potential. Also when

two different phases of a substance are in contact there is an interface between them. At the

molecular level the density distribution profile at an interface takes the form of a continuous

density change between one phase to the other but at the macroscopic scale the interface

appears to be a sharp shift in density between the two phases and has a well defined surface

area, A. At coexistence there is a constant exchange of molecules between the two phases

but overall there is no net flux from one to the other. There is a free energy cost associated

with the presence of the interface. There are entropic contributions to this, but the largest

contribution is generally due to the broken bonds of the liquid molecules at the interface,

since they have less neighbouring molecules than those in the bulk. The extra free energy

is known as the surface tension, γ, which is the excess free energy per unit area due to the

interface [13, 14, 15]. Thermodynamic systems try to minimise the free energy and so seek

to minimise the surface area of the interface, which is why we see spherical drops of water

when no gravity is present and why soap bubbles form sometimes complex shapes. There is

an interfacial tension not only between the fluid phases but also there is a fluid-solid surface

tension, which plays a key role in determining the shape of a liquid droplet on a surface.

2.0.1 Surface tension and contact angles

The equilibrium shape of a droplet in contact with a flat surface is determined by the various

interfacial energies [14]. There are three interfaces, the gas-liquid interface, the liquid-solid

and the gas-solid interface. There is an interfacial energy associated with all of these and
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Figure 2.1: Three droplets in contact with a surface. From left to right: partially dry, 90°
contact angle and partially wet.

the droplet shape is determined by minimising the total free energy. In fact, the droplet

will make a spherical cap with the surface, at least at the macroscopic scale but whilst the

drop is still small enough that the effect of gravity can be neglected. The contact angle this

spherical cap makes with the surface depends on the three surface tensions, liquid-gas: γlg,

wall-liquid: γwl and wall-gas: γwg and can be calculated by using Young’s equation [14]:

cos θ =
γwg − γwl

γlg
. (2.0.1)

Generally speaking a strong attraction between the liquid molecules and the surface gives

a smaller contact angle with the limit θ → 0° producing a film of liquid that spreads out

on the surface, known as total wetting of the surface. Similarly, the weaker the attraction,

the larger the contact angle with the surface in the limit θ → 180° (almost never achieved

in nature) producing a sphere that only touches the surface at single point, known as total

dewetting. Typical hydrophobic materials such as Teflon and wax do not usually reach a

contact angle over 130°, however there are some nano and micro structured surfaces with

contact angles near 170° [16]. A surface with a contact angle between 0° and 90° is known as

partially wet and an angle between 90° and 180° is known as partially dry. Figure 2.1 shows

a illustration of droplets in contact with a surface at different contact angles.

Normally, when a drop is initially placed on a surface it is not at equilibrium. The drop

subsequently flows towards a shape with the equilibrium contact angle and tries to reach

the minimum free energy equilibrium state. This is a problem that has been extensively
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studied, both experimentally and theoretically. Assuming the surface is completely smooth,

in the case of complete wetting (θ = 0), the drop keeps spreading until it reaches a limiting

thickness (usually determined by the van de Waals forces) [14]. However in day-to-day life,

most surfaces are rough and very few surfaces are molecularly flat. Defects on a surface

can pin the contact line of a drop. This is why droplets on an small inclusion can stay at

rest even when the equilibrium contact angle is not achieved. A lot of the time a drop does

not reach its equilibrium state because it gets caught in some metastable state, for example

getting caught on a defect on the surface. If such a drop is left to evaporate the contact line

can stay pinned initially and so the contact angle gets smaller as the evaporation proceeds.

After enough evaporation, the contact line can suddenly start moving. This contact angle

is smaller than the equilibrium contact angle and is called the receding contact angle [17].

Similarly, when the volume of a drop is increased, for example by injecting further liquid, the

contact line remains pinned initially and then the contact angle increases until the contact

line start moving. The angle at this point is called the advancing contact angle. The value

of these angles depend on the roughness of the surfaces.

Contact angles offer a quantitative way to compare simulations, experiments and theo-

retical results. In chapter 6 contact angles are calculated from simulation results and briefly

discussed. In chapter 7 the contact angles are compared with the KMC model and the

receding contact angles as a drop evaporates are also calculated.

2.1 Pair potentials

The microscopic description of a liquid often starts from specifying an interaction potential

between particles which in the simplest form is a pair potential. The pair potential is the

potential energy from two molecules/particles in the liquid interacting. It is a function

of the distance between the centres of two particles and can sometimes also depend on the

orientation [3]. Assuming the interactions are solely via pair potentials often provides a good
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description for how most particles interact. Sometimes three-body potentials and maybe even

higher-body potentials are required, however, these are not considered here. Depending on

the nature of the interactions between the molecules, the pair potentials can take different

forms, including hard spheres, potentials with attraction, repulsion and combinations like

potentials exhibiting short range attraction, but also with a long range repulsion.

The mechanisms for how particles truly interact are often quantum in nature [18] and

so pair potentials are really only a classical approximation to the total effective interaction

between the particles. One of the simplest pair potentials one can conceive is one with no

interactions other than the prevention of particles overlapping:

VHS(r) =




∞ r ≤ σ,

0 otherwise.
(2.1.1)

This is known as the hard-sphere potential and describes certain colloid particles suspended

in a solvent [3]. The parameter σ is the diameter of the particles. Another commonly used

pair potential for describing simple molecules is the Lennard-Jones potential:

VLJ(r) = rε

[(σ
r

)12

−
(σ
r

)6
]
, (2.1.2)

where ε is the attraction parameter. This is a reasonable approximation for the interaction

between the atoms of a Nobel gas such as Argon atoms which are spherical, do not overlap

and have a small van-der Waals-London pair attraction [12]. Pair potentials are not limited

to describing the interactions between the molecules of the same species as they can also

describe the interactions between different molecules. In this case one must define a set of

pair potential Vij(r), specifying the interaction between particles of species i and j.

More complex pair potentials can arise for more complicated fluids. The next sections

considers examples of complex fluids and how this is reflected in the pair potentials.
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2.1.1 Complex fluids

Simple fluids are those made up of a single species of small approximately spherical particles

with simple short range van de Waals interaction, like nitrogen or argon. The behaviour of

simple liquids has been studied extensively and is well understood [3]. While simple liquids

are important, many useful liquids used in industry and everyday life are so called “complex

liquids” and understanding their properties is crucial to improving their performance and

reliability.

Even liquids that might seem simple can still exhibit complex behaviour. Take water for

example: the arrangement of the hydrogen atoms around each oxygen at a 109° angle results

in a dipole. Also, the arrangement of the electronic orbitals in water means that there are

strong highly directional bonds between water molecules, which means that on the molecular

scale, the molecules are aligned in a network-like structure. These complex interactions lead

to interesting behaviour like the fact that an increase in the pressure can actually reduce the

viscosity of water [12]. The arrangement of the bonds is also responsible for ice being less

dense than water.

There are many ways a fluid can be complex: mixtures of different species can demix

or have opposite charges; fluids can consist of molecules that are non-spherical or bonded

in chains to form polymers. However, the class of complex liquids we are interested in here

is colloidal suspensions. These are fluids where colloids, which are relatively large particles

with diameter on the nm-µm scale, are suspended in a fluid. Colloidal suspensions are very

common in everyday life: milk, ink, paint and lubricants are a few examples. The colloids

can have varying shapes and sizes which can lead to interesting properties.

In Fig. 2.2 there is an illustration of a colloid surrounded by liquid molecules. The

significant difference in the size of the colloids compared to the molecules that make up the

surrounding fluid poses a problem for developing theories or computer simulation models.

Attempting to model each liquid molecule individually using Newton’s equations of motion

is simply computationally infeasible. Even to model a few colloids would require of order of
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Figure 2.2: A 2D illustration of colloids (red) in suspension in a liquid (blue). Note that
this is not to scale, the colloid would typically be much larger than this relative to the liquid
molecules.

millions of particles. Instead, we take a step back and look at the motion at the scale of the

colloid. At this scale the movement of the colloid appears to be random, known as Brownian

motion [19]. Particles that undergo Brownian motion are called Brownian particles. The

velocity of this motion is of the order of
√
kBT/m for particles of mass m and temperature

T where kB is Boltzmann’s constant. We can also define a Brownian timescale, τB, which

is the time it takes the colloid to travel a distance of order is own diameter. On the time

scales for the overall macroscopic fluid motion this is a short time. However in this time

many rearrangements of the surrounding liquid molecules have occurred.

To give a feeling for how this can be modelled we derive an equation of motion by

considering the forces acting on a colloid. The resistance force that the liquid molecules

apply to a colloid moving though the liquid is approximately proportional to the velocity of

the colloid, Ffric = −γṙ. We also assume that the liquid molecules have zero overall flow,

meaning we neglect any hydrodynamic effects. Due to the thermal fluctuations there is also

a random fluctuating force on the colloid.
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Finally we consider the colloid to be under the influence of an external potential, φ.

Therefore, the force exerted on it is given by −∇φ(r). Combining these three forces in

Newton’s equation yields the Langevin equation:

mr̈ = −γṙ +
√

2DR(t)−∇φ(r), (2.1.3)

where
√

2DR(t) is the random force due to the thermal fluctuations in the liquid and where

D is the diffusion coefficient [19] and R(t) ∈ R3 is a vector whose components are Gaussian

random variables.

By considering the probability of a particle at position x+ ∆x at time t+ ∆t and using

Eq. (2.1.3) in the over-damped limit, it is possible to derive the Smoluchowskii equation [19]

∂ρ

∂t
= D∇ · [∇ρ+ βρ∇φ(r)] , (2.1.4)

where ρ = ρ(r, t) is the probability of finding the particle at position r at time t and

β = 1/kBT .

This is a partial differential equation that describes the time evolution of the probability

of finding the particle at position r. Note that when φ = 0, Eq. (2.1.4) reduces to the diffusion

equation. Using probability to describe a system is the essence of statistical mechanics. In

the next section we introduce statistical mechanics and the basics of DFT.



Chapter 3

Statistical mechanics

The term ‘Statistical Mechanics’ was coined by American Physicist Josiah Willard Gibbs.

He, together with Ludwig Boltzmann and James Clerk Maxwell in 1902 created the branch

of mathematics that uses probability theory to study the average behaviour of many-body

mechanical systems.

We consider an isolated system of N identical spherical particles of mass m. The state

of the system is described by coordinates rN = r1, . . . , rN and momenta pN = p1, . . . ,pN .

The Hamiltonian is the total energy of the system:

H(rN ,pN) = KN(pN) + VN(rN) + ΦN(rN), (3.0.1)

where KN is the kinetic energy of the N particles of mass m:

KN(pN) =
N∑

i=1

p2
i

2m
. (3.0.2)

VN is the potential energy due to the interactions between particles; we only consider two

12
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body interactions so VN can be written as a sum over pair contributions

VN(rN) =
N∑

i<j

V (|ri − rj|) (3.0.3)

where V (r) is the pair potential. The external potential, Φ, is given by

ΦN(rN) =
N∑

i=1

φ(ri), (3.0.4)

where φ is the one body external potential [3].

3.1 Ensembles

An ensemble, also called a statistical ensemble, is a potentially infinite set of possible states

that a certain real system might be in. In statistical mechanics we calculate average proper-

ties of a system by averaging over the ensemble of states. There are various different kinds

of ensemble that are considered [1, 3], but here we only consider two: the canonical ensemble

and the grand canonical ensemble.

3.1.1 Canonical ensemble

The states in a canonical ensemble all have the temperature T , volume V and the number

of identical particles N is fixed. This is an appropriate ensemble to describe a closed system

coupled to a heat bath. The probability of a given state in the canonical ensemble is given

by [1, 3]

f(rN ,pN) =
1

hdNN !

e−βH(rN ,pN )

Z
(3.1.1)

where h is Plank’s constant, β = 1/kBT and d the dimensionality of the system. The term

1/N ! is to correct for counting duplicate states, since the particles are indistinguishable. The
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canonical partition function is

Z =
1

hdNN !

∫∫
e−βH(rN ,pN ) drNdpN , (3.1.2)

where
∫

drN =
∫

dr1

∫
dr2 . . .

∫
drN and

∫
dpN =

∫
dp1

∫
dp2 . . .

∫
dpN . The partition

function is the sum (i.e. integral) over all the possible configurations of the system.

The total internal energy of the system at equilibrium, U , is given by the ensemble

average of the Hamiltonian:

U = 〈H〉. (3.1.3)

We use the notation 〈B〉 as the statistical average of the thermodynamic quantity B, defined

by

〈B〉 =

∫∫
B(rN ,pN)f(rN ,pN) drN dpN (3.1.4)

The Helmholtz free energy, F , which is the obtainable work from a closed system, is given

by

F = −kBT lnZ. (3.1.5)

This is entirely consistent with the thermodynamic definition of the Helmholtz free energy [3].

F = U − TS (3.1.6)

where U is the internal energy of the system defined in (3.1.8) and S is the entropy. The

equilibrium state of a canonical system corresponds to the minimum of F .

An infinitesimal change to the internal energy can be written in differential form as

dU = TdS + µdN − pdV, (3.1.7)

where µ is the chemical potential and p is the pressure. This is just the first law of ther-

modynamics, which is statement of the conservation of energy. Since S, N , and V are all
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extensive quantities (quantities that scale with the size of the system) we have

U = TS + µN − pV. (3.1.8)

Differentiating to write Eq. (3.1.6) in differential form and substituting in Eq. (3.1.7)

gives

dF = dU − TdS − SdT

= µdN − pdV − SdT. (3.1.9)

Considering derivatives with each of N , V and T whilst the two other variables are constant

we get three equations:

S = −
(
∂F

∂T

)

V,N

, µ = −
(
∂F

∂N

)

T,V

, p = −
(
∂F

∂V

)

T,N

. (3.1.10)

The above relations are used later extensively to calculate phase diagrams.

3.1.2 The configuration integral

The configuration integral is a factor of the partition function which is shown here and used

to simplify calculations later. Using Eq. (3.0.1) the partition function can be written as

Z =
1

hdNN !

∫
e−βKN (pN ) dpN

∫
e−β[VN (rN )+ΦN (rN )] drN . (3.1.11)

The integrals over the momenta and positions are independent, so they can be factorised

using Eq. (3.0.2)
∫
e−βK(pN ) dp =

N∏

i=1

∫
e−

βp2
i

2m dpi. (3.1.12)
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The components pi = (p(i,1), p(i,2), . . . , p(i,d)) are also independent where d is the dimension-

ality of the space. Now since
∫∞
−∞ e

−α2u2du =
√
π/α we can write this as

∫
e−

βp2
i

2m dpi =

(
2πm

β

)d/2
. (3.1.13)

Thus we can write the partition function as

Z = QΛ−dN , (3.1.14)

where Λ =
√

βh2

2πm
is the thermal de Broglie wavelength and

Q =
1

N !

∫
e−β(VN+ΦN ) drN (3.1.15)

is the configuration integral.

3.1.3 Grand canonical ensemble

Unlike the canonical ensemble where N , V and T are fixed, we can consider systems where

the number of particles is no longer fixed. Instead the particles are free to move back and

forth between the system and a reservoir that allows the exchange of particles. The average

number of particles in the system is determined by the chemical potential of the reservoir,

µ, which is the energy required to insert a particle into the system.

The probability of observing a particular state in the grand canonical ensemble is given

by [3]

f(rN ,pN) =
1

hdNN !

e−β(H−µN)

Ξ
, (3.1.16)

where Ξ is the grand partition function,

Ξ = Tr
(
e−β(H−µN)

)
, (3.1.17)
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and where Tr denotes the classical trace [3, 20]:

Tr(·) ≡
∞∑

N=0

1

hdNN !

∫∫
(·) drNdpN . (3.1.18)

The ensemble average is

〈B〉 = Tr(fB), (3.1.19)

where f is the probably density (3.1.16) and B is an arbitrary physical quantity.

The thermodynamic potential for the grand canonical system is called the grand free

energy, Ω, defined as

Ω = F −Nµ, (3.1.20)

where N = 〈N〉 is average number of particles in the system.

Similar to the canonical free energy we can write the grand potential in differential form:

dΩ = −SdT −Ndµ− pdV. (3.1.21)

In a manner analogous to that in the canonical ensemble we can consider the variables

separately in order to obtain thermodynamic quantities expressed as derivatives of the free

energy:

S = −
(
∂Ω

∂T

)

µ,V

, N = −
(
∂Ω

∂µ

)

T,V

, p = −
(
∂Ω

∂V

)

T,µ

. (3.1.22)

Using Eq. (3.1.20) and Eq. (3.1.8) we find that the grand potential reduces to

Ω = −pV. (3.1.23)

The grand potential can also be written in terms of the grand partition function as

Ω = −kBT ln Ξ, (3.1.24)
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which expresses Ω in terms of Ξ, which is a sum over all states of the system. The equilibrium

state of a system is given by the minimum of Ω [1, 3, 20].



Chapter 4

Density Functional Theory

Density Functional Theory (DFT) started as a quantum mechanical theory developed in the

1960s to describe the density distribution of electrons. It was known this theory could also be

extended to describe classical systems around this time but it wasn’t until the 1970s review by

Evans [20] that DFT was introduced for systems of classical interacting particles to a broad

audience.

Calculating the partition function Z is not always practical as it involves summing all

possible configurations of the system. Thus, an approximation of the partition function is

needed. DFT [2, 3, 20] instead focuses on developing a good approximation for the Helmholtz

free energy and is therefore [c.f. Eq (3.1.24)] able to provide a good approximation of the

partition function. The grand free energy Ω is expressed as a functional of the average

density at point r, ρ(r). This functional is then minimised with respect to variations in ρ(r)

and the profile which minimises Ω is the equilibrium profile. The value of Ω at this minimum

is the thermodynamic grand potential.

19
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4.1 Intrinsic Helmholtz free energy

The intrinsic Helmholtz free energy, F is defined as the Helmholtz free energy minus the

contribution due to the external field. Recall that the external potential is given by

ΦN =
N∑

i=1

φ(ri) (4.1.1)

=

∫
ρ̂(r)φ(r) dr, (4.1.2)

where ρ̂(r) =
∑N

i=1 δ(r− ri) is the density operator. The ensemble average density profile is

defined by ρ(r) = 〈ρ̂(r)〉 and so also the statistical average contribution to the (free) energy

due to the external potential can be written as

〈ΦN〉 =

∫
ρ(r)φ(r) dr. (4.1.3)

Thus, the intrinsic Helmholtz free energy is

F = F − 〈ΦN〉. (4.1.4)

It turns out that the intrinsic free energy functional F in no way depends on the external

potential [2, 3, 20].

To obtain an expression for F , we first consider the case with no external potential

and no interactions between the particles, VN = Φ = 0, i.e. an ideal gas. In this case the

configuration integral (3.1.15) is

Q =
1

N !

∫
drN (4.1.5)

=
V N

N !
. (4.1.6)
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Using Eqs. (3.1.5), (3.1.14) and (4.1.4) the ideal intrinsic free energy is

Fid = kBT ln

(
N !ΛdN

V N

)
(4.1.7)

= kBT

(
lnN ! +N ln

Λd

V

)
. (4.1.8)

For large N we can use Stirling’s formula, lnN ! ≈ N lnN −N , to obtain

Fid ≈ kBTN

(
lnN + ln

Λd

V
− 1

)
(4.1.9)

= kBTN

(
ln
NΛd

V
− 1

)
. (4.1.10)

For this uniform system the density ρ(r) is constant with ρ = N/V . This gives

Fid = kBTV ρ(ln[Λdρ]− 1). (4.1.11)

This result is in fact more general and for an inhomogeneous ideal gas we obtain the gener-

alisation of this:

Fid = kBT

∫
ρ(r)(ln[Λdρ(r)]− 1) dr. (4.1.12)

More generally, when there are interactions between the particles, the total intrinsic free

energy can be written as a sum of the ideal gas part plus an excess free energy term which

incorporates the contribution to the free energy due to the particle interactions [2, 3, 20]:

F = Fid + Fex. (4.1.13)
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4.2 The grand potential functional

Using equation Eq. (4.1.4) we write the grand potential, Ω = F −Nµ, as

Ω = F +

∫
ρ(r)φ(r) dr−Nµ (4.2.1)

= F −
∫
ρ(r)u(r) dr, (4.2.2)

where u(r) = µ − φ(r). The grand potential and intrinsic Helmholtz free energy are func-

tionals of the density profile, which we denote using the notation Ω[ρ] and F [ρ] to show

functional dependencies. From (4.1.12) and (4.2.2) we obtain

Ω[ρ(r)] = kBT

∫
ρ(r)

(
ln[Λdρ(r)]− 1

)
dr + Fex −

∫
ρ(r)u(r) dr. (4.2.3)

Note that this shows that Ω is a Legendre transform of F . Since the system is in the grand

canonical ensemble, the minimum of the grand potential corresponds to the equilibrium

state. We denote the density profile which minimises Ω to be ρ0(r). This minimising density

profile can be found by solving the Euler-Lagrange equation

δΩ[ρ(r)]

δρ(r)

∣∣∣∣
ρ(r)=ρ0(r)

= 0. (4.2.4)

Taking the functional derivative of Eq. (4.2.3) gives

δΩ[ρ(r)]

δρ(r)
= β−1 ln[Λdρ(r)]− β−1c(1)(r)− u(r) = 0, (4.2.5)

where β = 1/kBT and

c(1)(r) ≡ −β δFex[ρ(r)]

δρ(r)
(4.2.6)
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is the one-body direct correlation function [2, 3]. Taking a further functional derivative yields

the two-body direct correlation function

c(2)(r1, r2) ≡ −β δ
2Fex[ρ(r1)]

δρ(r1)δρ(r2)
. (4.2.7)

This is a key quantity used in the study of pair correlations in liquids.

The general approach in DFT is to develop a suitable approximation for Fex[ρ] and then

by solving Eq. (4.2.5) the equilibrium density profile ρ(r) is obtained. This profile can then

be substituted into Eq. (4.2.3) to obtain the grand free energy Ω and from this many other

thermodynamic quantities can also be obtained. For more background on DFT and also

some of the approximations used for Fex[ρ], see Refs. [2, 3].

4.3 The Ornstein-Zernike Equation

The Ornstein-Zernike (OZ) equation is an integral equation used to define the direct correla-

tion function [3]. The total pair correlation function for an inhomogeneous fluid h(2)(r1, r2)

is defined as

h(2)(r1, r2) = g(2)(r1, r2)− 1 (4.3.1)

where g(2) is the pair distribution function, a quantity from which one can obtain the joint

probability of finding one particle at r1, at the same time as finding another at r2. As

|r1 − r2| → ∞, h(2) → 0. It turns out that the correlation function c(2)(r1, r2) is related to

the total pair correlation function and to the single particle density by the (inhomogeneous

fluid) Ornstein-Zernike equation [3, 20]

h(2)(r1, r2) = c(2)(r1, r2) +

∫
c(2)(r1, r3)ρ(1)(r3)h(2)(r3, r2) dr3. (4.3.2)

This allows for a good intuitive understanding of c(1)(r1, r2): it gives the direct correlation

between particles 1 and 2 whilst the second term in (4.3.2) gives the indirect correlation
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between the other particles. That can be seen even more clearly by recursively substituting

Eq. (4.3.2) for h(2) to give

h(2)(r1, r2) = c(2)(r1, r2) +

∫
c(2)(r1, r3)ρ(1)(r3)c(2)(r3, r2) dr3

+

∫∫
c(2)(r1, r3)ρ(1)(r3)c(2)(r3, r4)ρ(1)(r4)c(2)(r4, r2) dr3dr4 + · · · . (4.3.3)

In general the pair direct correlation function c(2) is unknown so we cannot directly find the

value of h(2). However if we assume the particles interact via a pair potential V (r), one can

obtain the following closure relation [3]

c(2)(r) = h(2)(r)− ln[g(2)(r)]− βV (r) +B(r), (4.3.4)

although this still involves B(r), which is the bridge function and which is also not known

exactly. However, simple approximations for B(r) can often yield fairly accurate results. For

example, the so called Hypernetted-Chain (HNC) approximation sets B = 0 to yield [3]

c
(2)
HNC(r) = h(2)(r)− ln[g(2)(r)]− βV (r), (4.3.5)

which can be fairly accurate, especially for soft core particle fluids.

4.4 DFT for lattice models

The following section closely follows the presentation in Ref. [21]. We can map a continuous

system to be described on a regular grid with lattice spacing σ, which we set to σ = 1

throughout. Each site is labeled with an index i. For a one component fluid we describe the

state of the system by a set of occupation numbers

{n1, n2 . . . , nN} (4.4.1)
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where ni is the occupation number for site i = (i, j, k), i.e., ni = 0 for an empty site and

ni = 1 for an occupied site. Note that there are M = NxNyNz lattice sites in the system

where the M th site is N = (Nx, Ny, Nz). Now the configuration integral (3.1.15) becomes a

sum over all the different configurations of the lattice sites. The configurational part of the

Hamiltonian is approximated by

E ({ni}) =
M∑

i=1

niΦi +
1

2

∑

i,j

Vi,jninj (4.4.2)

where Φi is the external potential at lattice site i and the second term is the energy contribu-

tion from interactions between particles, i.e., Vi,j is a discretised pair potential. We assume

there are only two-body interactions.

The probability of a certain state {ni} is given by

f
(
{ni}

)
=
e−βE({ni})

Z
(4.4.3)

where

Z =
∑

all states

e(−βEstate), (4.4.4)

is the partition function and “state” means a possible lattice configuration {ni}. This can

also be written as Z = TrL(e−βEstate) where TrL is the lattice trace:

TrL(x) =
∑

all states

x =
1∑

n1=0

1∑

n2=0

· · ·
1∑

nN=0

(4.4.5)

Calculating Z directly is not always possible. However if we consider the case with no

inter-particle interactions, Vi,j = 0, and no external potential, Φi = 0, we have f({ni}) = 1/Z.

This means each state has equal probability. Therefore, from Eq. (4.4.4), the partition for a
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system of N identical particles distributed around M lattice sites is

Z =
M !

N !(M −N)!
. (4.4.6)

For large N and M we can use Stirling’s approximation: lnN ! ≈ N lnN −N . Substituting

into the equation for the Helmholtz free energy we get

βF = −M lnM +N lnN + (M −N) ln(M −N). (4.4.7)

Since this is a uniform system, the density ρ = N/M , so the free energy per unit volume can

be written as
βF

M
= ρ ln ρ+ (1− ρ) ln(1− ρ). (4.4.8)

For inhomogeneous fluids the density is not uniform. The Helmholtz free energy of an

inhomogeneous fluid can be expressed in terms of the average density at site i, defined as

ρi = 〈ni〉

= TrL(niPstate) (4.4.9)

where there grand canonical probability

Pstate =
e−β(Estate−µN)

Ξ
(4.4.10)

and where the normalising factor is the grand partition function

Ξ = TrL
(
e−β(Estate−µN)

)
. (4.4.11)



Chapter 4. Density Functional Theory 27

From Eq. (3.1.24) we have Ξ = e−βΩ. Substituting this into (4.4.11) yields

e−βΩ = TrL
(
e−β(Estate−µN)

)
. (4.4.12)

In order to develop an approximation for Ω we choose an inhomogeneous reference system

with Hamiltonian E0 that has no particle interactions (Vi,j = 0) (with probability P0 and

grand partition function Ξ0):

E0 =
M∑

i=1

(Φi + ϕi)ni, (4.4.13)

where Φi is the external potential and ϕi are variational parameters to be determined. Then

we can rewrite the energy as E = E0 + ∆E where ∆E = E − E0. We have

e−βΩ = TrL
(
e−β(E0−µN)e−β∆E

)
. (4.4.14)

From Eq. (4.4.10), we can write P0 = e−β(E0−µN)/Ξ0. Now the statistical average value of

any quantity x in the reference system is given by

〈x〉0 = TrL

(
e−β(E0−µN)

Ξ0

x

)
, (4.4.15)

so, returning to Eq. (4.4.14), recalling that Ξ0 = e−βΩ0 and that TrL is a linear operator, we

have

e−βΩ = e−βΩ0 TrL
(
e−β(E0−µN)

Ξ0

e−β∆E

)

= e−βΩ0〈e−β∆E〉0. (4.4.16)

Now since e−x is a convex function this implies 〈e−x〉 ≥ e〈−x〉. Making use of this we get

e−βΩ ≥ e−βΩ0e−β〈∆E〉0 . (4.4.17)
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Taking the logarithm of each side yields the Gibbs-Bogoliubov inequality:

Ω ≤ Ω0 + 〈∆E〉0. (4.4.18)

This gives an upper bound that we can minimise to give an approximation for the grand

potential. Note that this depends only on the energy of our reference system, E0.

Furthermore, since E0 contains the undermined parameters ϕi, these can be varied to

obtain a minimal value in the right hand side of (4.4.18) and so obtain an optimal approxi-

mation for Ω.

From Eq. (4.4.11) we have

Ξ0 = TrL e−β(E0−µN)

=
1∑

n1=0

1∑

n2=0

· · ·
1∑

nM=0

e
−β

M∑
i=1

γini

=

[
1∑

n1=0

e−βγ1n1

][
1∑

n2=0

e−βγ2n2

]
· · ·
[

1∑

nM=0

e−βγMnM

]

=
[
1 + e−βγ1

] [
1 + e−βγ2

]
· · ·
[
1 + e−βγM

]

=
M∏

i=1

(
1 + e−βγi

)
(4.4.19)

where γi = Φi + ϕi − µ. Rearranging and substituting Eq. (4.4.10) into Eq. (4.4.9) we get,

ρi =
1

Ξ0

1∑

n1=0

1∑

n2=0

· · ·
1∑

nM=0

nie

(
−β

M∑
j=1

γjnj

)

=

1∑
ni=0

nie

(
−β

M∑
j=1

γjmj

)

1∑
ni=0

e

(
−β

M∑
j=1

γjnj

)

=
e−βγi

1 + e−βγi
. (4.4.20)
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This implies that

1− ρi =
1

1 + e−βγi
(4.4.21)

and

ρi = e−βγi(1− ρi). (4.4.22)

From Eq. (4.4.19) this means Ξ0 =
M∏
i=1

1

1− ρi
so the grand free energy becomes:

Ω0 = −kBT ln Ξ0

= −kBT ln

(
M∏

i=1

1

1− ρi

)

= −kBT
M∑

i=1

ln

(
1

1− ρi

)

= kBT
M∑

i=1

ln (1− ρi) .

= kBT
M∑

i=1

(ρi + 1− ρi) ln(1− ρi)

= kBT
M∑

i=1

[ρi ln(1− ρi) + (1− ρi) ln(1− ρi)] . (4.4.23)

From Eq. (4.4.22) we have ln(1− ρi) = βγi + ln ρi. So above equation can be expressed as

Ω0 = kBT
M∑

i=1

[ρi ln(ρi) + (1− ρi) ln(1− ρi)] +
M∑

i=1

γiρi. (4.4.24)

Substituting γi = Φi + ϕi − µ from above:

Ω0 = kBT

M∑

i=1

[ρi ln(ρi) + (1− ρi) ln(1− ρi)] +
M∑

i=1

(Φi + ϕi − µ)ρi. (4.4.25)

We can write

Ω = F − µ
M∑

i=1

ρi, (4.4.26)
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where,

F = kBT

M∑

i=1

[ρi ln(ρi) + (1− ρi) ln(1− ρi)] +
M∑

i=1

(Φi + ϕi)ρi. (4.4.27)

From Eq. (4.4.2) we can write

∆E =
1

2

∑

i,j

Vi,jninj −
M∑

i=1

ϕini. (4.4.28)

Since ρi = 〈ni〉, we have

〈∆E〉0 =
1

2

∑

i,j

Vi,jρiρj −
M∑

i=1

ϕiρi. (4.4.29)

From Eqs. (4.4.25) and (4.4.29) we can write the upper bound for the grand potential, Ω̂,

Ω̂ = Ω0 + 〈∆E〉0

= kBT
M∑

i=1

[ρi ln(ρi) + (1− ρi) ln(1− ρi)] +
1

2

∑

i,j

Vi,jρiρj +
M∑

i=1

(Φi − µ)ρi. (4.4.30)

We see that ϕi = 1
2

∑
j Vi,jρj, by comparing Eqs. (4.4.25) and (4.4.30), where ϕi is the mean

field, i.e. the effective field at site i due to other particles around it. In Eq. (4.4.30) we see we

have derived a discretised DFT with a particular approximation for the excess free energy

Fex.

The foundations of DFT derived in this chapter are used later in chapter 7 to run simula-

tions using Dynamic DFT (DDFT) which is based on equilibrium DFT. In the next chapter

we look at another approach to statistical mechanics: Monte-Carlo simulations. This ap-

proach no longer uses densities to describe a system, but instead uses a discrete description,

namely the lattice occupation numbers in Eq. (4.4.1), and evolves these in time by repeated

random sampling from a probability distribution that takes as input the lattice Hamiltonian

in Eq. (4.4.2).



Chapter 4. Density Functional Theory 31

4.5 DDFT

Now we have established a way to calculate equilibrium density profiles, we wish to build

upon this theory to incorporate dynamics. The following derivation follows the description

presented in [8].

For a system of N interacting Brownian particles with overdamped equation of motion

[c.f. Eq. (2.1.3), in the limit m→ 0]:

γṙi = −∇UN(ri) +
√

2DR(t), (4.5.1)

where the total potential energy is [c.f. Eqs. (3.0.1) – (3.0.4)]:

UN(rN , t) =
N∑

i=1

φ(ri, t) +
1

2

∑

j 6=i

N∑

i

v(ri, rj), (4.5.2)

where φ(r) is the external potential and v(r) is the pair interaction potential between the

particles. Thus, the configuration of the system is defined by rN = {r1, r2, . . . , rN}, the set

of positions of all the particles. The time evolution of the N -particle probability distribution

ρ(N)(rN , t) is given by the Smolochowskii equation [20]

∂ρ(N)(rN , t)

∂t
= Γ

N∑

i=1

∇i

[
kBT∇i +∇iU(rN , t)

]
ρ(N)(rN , t), (4.5.3)

where Γ = γ−1. Integrating over all except one of the position coordinates in the Smolo-

chowskii equation yields

∂ρ(r1, t)

∂t
= ΓkBT∇2

1ρ(r1, t) + Γ∇1[ρ(r, t)∇1φ(r1, t)] + Γ∇1

∫
ρ(2)(r1, r2, t)∇1v(r1, r2) dr2

(4.5.4)
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where the one-body density profile

ρ(r1, t) = N

∫
dr2 · · ·

∫
drNρ

(N)(rN , t) (4.5.5)

and the two-body density

ρ(2)(r1, r2, t) = N(N − 1)

∫
dr3 · · ·

∫
drNρ

(N)(rN , t). (4.5.6)

Note that in Eq. (4.5.4) if we set the pair potential v = 0, then we obtain Eq. (2.1.4). In

order to close Eq. (4.5.4), we can apply the equilibrium sum rule [20]

− kBTρ(r1)∇c(1)(r1) =

∫
ρ(2)(r1, r2)∇v(r1, r2) dr2 (4.5.7)

to approximate ρ(2)(r1, r2, t) in terms of ρ(r, t). Inserting this into Eq. (4.5.4) and recalling

(4.1.12) and (4.2.3) we obtain:

∂ρ(r, t)

∂t
= Γ∇

[
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

]
, (4.5.8)

where F [ρ(r, t)] is the equilibrium fluid Helmholtz free energy functional. This result and

its generalisation to a two component mixture is used in chapter 7 to describe the dynamics

of droplets of evaporating colloidal suspension.



Chapter 5

Monte Carlo

In 1953 the paper “Equation of State Calculations by Fast Computing Machines” [5] was

published by Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta

H. Teller and Edward Teller. The algorithm described in this paper is now known as the

Metropolis Monte Carlo algorithm, even though “Metropolis played no role in its develop-

ment other than providing computer time” [22]. The theoretical work was done by Marshall

Rosenbluth. The method was later generalised by Wilfred K. Hastings in 1970 [23].

A Monte Carlo (MC) simulation does not evolve forward in time using equations of

motion, such as Newton’s equations of motion. Instead it is event driven and uses random

numbers in order to generate a sequence of configurations drawn from a relevant probability

distribution. A different sequence of numbers may lead to different system trajectories but

if sufficient simulations are carried out the distribution will be properly sampled and the

quantities resulting form the simulation will be statistically similar. Monte Carlo simulations

can be used for a wide variety of problems ranging from data analysis to simulating quantum

systems. In statistical mechanics we can use MC as a statistical evolution algorithm to sample

a phase space, which evolves the system along a trajectory in phase space over time. This

enables us to obtain a thermal average of a many particle system.

33
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5.0.1 Markov chains

A Markov chain is a sequence of states where the probability of the next states depends only

on the current state. The transition state probability from state α to state β of a Markov

process is

wα→β = P (Sβ, t|Sα, t− 1) (5.0.1)

where Sβ is the state of the system at time t and Sα is state at time t − 1. The transition

probability also requires

wα→β ≥ 0,
∑

β

wα→β = 1. (5.0.2)

5.0.2 Metropolis Hastings

The Metropolis-Hastings Monte Carlo algorithm is a Markov chain MC method for obtaining

a sequence of random samples from a probability distribution. It can be used to draw samples

from any probability distribution P (x) given a function, g(x), that is proportional to the

density of P . Metropolis-Hastings is particularly useful for approximating distributions that

are difficult to sample directly.

For our purposes we use the Metropolis-Hastings algorithm for sampling the Boltzmann

distribution of the system. In this case, recall from Eq. (3.1.1) the probability of being in a

given state is

fstate =
e−Ei/kBT

Z
. (5.0.3)

In the practical implementation of the algorithm for our problem we only need a function

that is proportional to the probability distribution, which means we do not need to evaluate

the partition function, Z, and we can use the probability distribution g(x) = e−βH . The

specific steps for the Metropolis algorithm are described in the next chapter in section 6.2

but the basic idea is to initialise states of the lattice fluid on the three dimensional grid.

Allowed random changes of state are then considered at points on the grid and the change in

the energy is evaluated. If the move results in a lower energy, the change is accepted. If the
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change results in an increase in energy this is accepted with the probability e−β∆Ei , where

∆Ei is the change in the energy. The event clock is advanced and the procedure is repeated.

The Metropolis algorithm, with a suitable time scaling, produces results in good and

fair agreement with Brownian dynamics [24] for both 1D analytical results and 3D colloid

suspension simulations for metastable fluids crystallising. Thus, one can use MC to study

equilibrium dynamics and in fact also non-equilibrium dynamics, as we show later.



Chapter 6

Modelling the evaporation of

nanoparticle suspensions from

heterogeneous surfaces

We present a Monte Carlo (MC) grid-based model for the drying of drops of a nanoparticle

suspension upon a heterogeneous surface. The model consists of a generalised lattice-gas in

which the interaction parameters in the Hamiltonian can be varied to model different proper-

ties of the materials involved. We show how to choose correctly the interactions, to minimise

the effects of the underlying grid so that hemispherical droplets form. We also include the

effects of surface roughness to examine the effects of contact-line pinning on the dynamics.

When there is a ‘lid’ above the system, which prevents evaporation, equilibrium drops form

on the surface, which we use to determine the contact angle and how it varies as the param-

eters of the model are changed. This enables us to relate the interaction parameters to the

materials used in applications. The model has also been applied to drying on heterogeneous

surfaces, in particular to the case where the suspension is deposited on a surface consisting of

a pair of hydrophilic conducting metal surfaces that are either side of a band of hydrophobic

insulating polymer. This situation occurs when using inkjet printing to manufacture electri-

36
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cal connections between the metallic parts of the surface. The process is not always without

problems, since the liquid can dewet from the hydrophobic part of the surface, breaking the

bridge before the drying process is complete. The MC model reproduces the observed dewet-

ting, allowing the parameters to be varied so that the conditions for the best connection can

be established. We show that if the hydrophobic portion of the surface is located at a step

below the height of the neighbouring metal, the chance of dewetting of the liquid during the

drying process is significantly reduced.

6.1 Introduction

How ink or paint dries, i.e. how liquid droplets containing nanoparticles deposited on a surface

evolve in time as the liquid evaporates has significant relevance in modern manufacturing.

Inkjet deposition is increasingly used during the manufacture of functional nano-structured

materials. An innovative recent example is the application described in [25] which uses inkjet

printing as part of a new method for constructing solar panels. This includes making the

electrical interconnections after the various different layers that form a solar cell have been

laid down on the glass substrate and then scribed using laser ablation [25]. The benefits of

using inkjet printing include reduced costs, wastage and potentially improved performance.

Several parts of the structure are inkjet printed. An insulating polymer layer can be formed

by depositing an ink that consists of a polymer solution. Another ink consists of a suspension

of conducting metal nanoparticles. As the solvent evaporates, the goal is for the remaining

nanoparticles to form an electrically conducting connection over the surface.

The surface onto which the nanoparticle ink is printed consists of two materials: (i) a

metal conducting surface that is either side of (ii) a strip of a polymer insulating material.

The metallic part of the surface is hydrophilic and the polymeric part is hydrophobic. When

the liquid is deposited onto these two materials side-by-side, there is a tendency for the liquid

to dewet from the surface of the insulator and move onto the metal, since this reduces the
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(c)

inkjet conductor

inkjet insulator(b)

glass
TCO
semiconductor
metal

(a)

Figure 6.1: Illustration of the solar cell manufacturing process developed in Ref. [25], which
uses inkjet printing. In the initial stage (a), three layers are deposited in sequence onto a
glass substrate. The first is a transparent conducting oxide (TCO) layer, then the semicon-
ductor and finally a metallic layer. Then, trenches are made by depth selective laser scribes.
Following this, the insulating polymer and conductive inks are deposited, as shown in (b).
When the process is complete, the conductive ink should form a conducting connection be-
tween the TCO at the bottom of one cell and the metal on the top of the neighbouring cell,
bridging the insulating polymer. In (c) we display a zoom of the conducting connection that
we model here.

energy of the system. In the solar cell manufacturing process [25], this insulating polymer

strip is created by inkjet printing into a trench created on the surface by laser ablation, at

a previous stage — see Fig. 6.1.

If the nanoparticle suspension deposited perpendicular to the polymer strip is to dry to

form an electrical connection, it is crucial that the ink does not dewet from the hydrophobic

surface. The aim of the present work is to understand when this dewetting occurs and also to

determine if there are processes that can be done during manufacturing to prevent dewetting.

The specific example considered is a particular case of a more general class of problem:

that of modelling the evaporation of a nanoparticle suspension from a heterogeneous surface.

The deposition and drying of the ink involves processes that occur over a huge range of time

and length scales. The procedure can be roughly split into two parts: (i) the process of the

ink being sprayed from the print head and arriving at the surface and (ii) the behaviour of

the ink as it dries, once it is on the surface. In our work, we focus solely on stage (ii), in
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which there are still processes that occur over a great range of length and time scales.

The nanoparticles move throughout the liquid with a diffusive dynamics, where changes

occur on a time scale much larger than the time scale for rearrangements of the solvent

molecules. Drop shape changes occur on a time scale that is very much larger than the

molecular time scale and also the nanoparticle diffusive time scale. There are also several

disparate length scales, ranging from the solvent molecular diameter scale, to the size of

the nanoparticles, the scale of any surface structures and then largest of all, the liquid drop

size. Because of this, modelling such a multi-scale system has many challenges. Mesoscopic

thin-film partial differential equation based models can be used [26, 27, 28, 29, 30, 31] but

relating properties of the microscopic interactions between the particles and the structures

they form in the liquid is not straightforward, because this type of model describes the distri-

bution of the nanoparticles over the surface via a height-averaged concentration profile. This

does not allow for a description of the variations in the nanoparticles density distribution in

the direction perpendicular to the surface. A fully microscopic approach, such as molecular

dynamics (MD) does include every aspect of the motion of the particles and can be used

to describe small liquid drops on a surface [32, 33, 34, 35]. Generally MD is computation-

ally infeasible even for moderate system sizes due to the long time scales over which the

evaporative drying occurs. Similarly, classical density functional theory (DFT) [20, 2, 3] and

dynamical DFT [7, 8, 36, 6] can describe in great detail the density profile of the liquid at

the interface and the structure down to the scale of individual particles [2, 3, 37, 38, 39] but

the level of detail makes this also computationally very expensive.

We require a coarse-grained model to describe the fluid dynamical processes of interest

here but not to the degree of coarse-graining as is present in the thin-film equation based

models. Thus, we develop a lattice model for the system using Monte Carlo (MC) to capture

the non-equilibrium dynamics and model the system time evolution as a series of discrete

events. We model the nanoparticles individually, incorporating in the model their diffusion

through the liquid over time thus enabling a description of the structures they may form
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on the surface. However, instead of modelling every solvent molecule individually, we group

them together and statistically model them by a single, larger effective ‘particle’ of the same

size as the nanoparticles, also residing on a lattice. MC models of this type have been used

before, initially by treating the system effectively in two dimensions [40, 41, 42, 43]. However,

more recently models that are fully three-dimensional have been used [44, 45, 46, 47, 48].

Our model here is of this kind but differs from previous studies in the manner in which we

describe the particle interactions, allowing for correct modelling of the (hemispherical) liquid

drop shape. Additionally, the effect of surface roughness is incorporated.

How a liquid wets a surface is characterised by the spreading parameter s [14]. It is

defined as the difference in the surface tensions between the liquid, gas and the substrate:

s = γsg − (γsl + γlg). (6.1.1)

The first term, γsg, is the excess free energy per unit area of the substrate when dry (i.e. in

contact with the gas phase), referred to as the solid-gas interfacial tension. The second term

is the excess free energy per unit area of the substrate when it is wet by a thick film of the

liquid and is the sum of the solid-liquid interfacial tension γsl and the liquid-gas interfacial

tension γlg. When s > 0 the liquid seeks to spread over the surface. In contrast, when s < 0

the liquid only partially wets the substrate, forming a drop with contact angle θ. Young’s

equation [14] relates the contact angle θ to the interfacial tensions

γlg cos θ = γsg − γsl. (6.1.2)

Therefore, the contact angle and spreading parameter are related by s = γlg(cos θ−1). From

our simulation results we can calculate the contact angle and also determine how this depends

on the parameters in our model. Thus, to model a particular experiment, we have to find the

contact angle of the solvent on the particular material(s) in the substrate (many are available

in the literature) and then we select our model parameters to match the experiments.
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y z

x

Figure 6.2: An example of a simulation starting condition. The liquid (blue) is initiated
in a semi-circular strip connecting the conductive metal surfaces. Nanoparticles (black) are
randomly dispersed throughout the liquid. The metal surface (in grey) can be elevated above
the insulating portion in the middle (yellow), but in the case displayed here is not.

The remainder of this chapter is laid out as follows: In Sec. 7.2 we describe our model and

the MC algorithm for the dynamics. This section also presents results for the model when

no nanoparticles are present, to illustrate the wetting behaviour of the pure solvent liquid on

a uniform planar surface. We determine the dependance of the contact angle on the model

parameters, to enable selecting values to match experiments. In Sec. 6.3 we briefly present

the bulk solvent fluid phase diagram. In Sec. 6.4 we present results for droplets containing

nanoparticles evaporating from a smooth planar surface and also show how to include the

effect of surface roughness by changing the fluid dynamics in the vicinity of the surface.

Sec. 6.5 presents results for the drying of the nanoparticle suspension from a heterogeneous

surface, with emphasis on the drying of liquid bridges spanning a hydrophobic patch. Finally,

in Sec. 7.7 we make a few concluding remarks.

6.2 Lattice model for the system

The system is discretised onto a regular three dimensional grid with lattice spacing σ and

with periodic boundary conditions in the x and y coordinates. The surface of the substrate

onto which the nanoparticle suspension (ink) is deposited is perpendicular to the z direction.
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Ink cannot penetrate the surface. At the top of the simulation box, at z = L, we apply various

different boundary conditions, discussed below. A typical starting configuration is displayed

in Fig. 6.2. Each lattice site above the surface can be in one of three states: (i) empty, (ii)

containing a nanoparticle or (iii) containing liquid. We refer to a lattice site containing liquid

as containing a liquid ‘particle’, but it should be borne in mind that this does not mean an

individual solvent molecule but rather many of them grouped together in a volume σ3. The

lattice constant σ is most easily envisaged as being the diameter of the nanoparticles but

this does not have to be so: one can also consider σ to be a larger coarse-graining length

scale, in which case when a lattice site is said to be ‘containing’ a nanoparticle, we mean

‘contains mostly nanoparticles’.

We define ni and li to be the occupation numbers of lattice site i for nanoparticles and

liquid respectively, where

i = (i, j, k) (6.2.1)

is the discrete position vector (c.f. Fig. 6.2). If site i is occupied by liquid, then li = 1,

otherwise li = 0. Similarly, if site i is occupied by a nanoparticle then ni = 1 and ni = 0 if

there is no nanoparticle. Liquid and a nanoparticle cannot occupy the same site.

We model the total energy of the system E by the following sum:

E =−
∑

i,j

(εnn
2
cijninj + εnlcijlinj +

εll
2
cijlilj

)

− µ
∑

i

li +
∑

i

V l
i li +

∑

i

V n
i ni.

(6.2.2)

The first term, a sum over pairs of lattice sites, is the contribution from particle interactions.

The overall strength of the interactions between pairs of nanoparticles is determined by the

parameter εnn, between liquid and nanoparticles by εnl and between pairs of liquid particles

by εll. The precise value of the interaction energy between pairs of particles at sites i and

j is determined by the dimensionless coefficient cij, which decreases in value as the distance
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between the pair of particles increases. We use the following values

cij =





1 j ∈ {NN i}
3

10
j ∈ {NNN i}

1

20
j ∈ {NNNN i}

0 otherwise

(6.2.3)

where NN i, NNN i and NNNN i stand for nearest neighbours, next nearest neighbours

and next-next nearest neighbours of site i, respectively. Thus, we truncate all interactions

for |i − j| >
√

3σ. The influence on the wetting behaviour of truncating the range of the

interactions is discussed in Refs. [38, 39].

The choice of particular values in Eq. (6.2.3) is important, as this leads to liquid droplets

on the surface having a hemispherical shape. For example, if instead we set cij = 0 for j ∈

NNN i and j ∈ NNNN i, (i.e. just nearest neighbour interactions) then the system forms

unrealistic rectangular shaped droplets, particularly at low temperatures. Thus, with the

values in Eq. (6.2.3) the dependence of the gas-liquid surface tension on the orientation of

the interface with respect to the grid is minimised. That one should select the particular

values in Eq. (6.2.3) comes from noting that the sum over neighbours in Eq. (6.2.2) has the

same form as a finite difference approximation for the Laplacian [49]. It can be shown that

the values for cij given in Eq. (6.2.3) minimise the errors from discretising the Laplacian on

the grid [50], dictating the choice in Eq. (6.2.3)1

The second term in Eq. (6.2.2) is the contribution from treating the liquid as being

coupled to a reservoir, which is the vapour above the surface. µ is the chemical potential

of the vapour. The value of µ determines the rate at which the liquid evaporates from the

surface. The last two terms of Eq. (6.2.2) are the contribution from the interaction with
1In addition to leading to hemispherical droplets, we expect the particular values for cij in Eq. (6.2.3) to

result in the roughening transition [51, 52] temperature to be suppressed. Indeed, at all the temperatures for
which we have performed simulations, we have seen no evidence of a roughening transition. The roughening
transition temperature is the value where the free energy barrier that much be surmounted to add a new layer
to the substance becomes negligible. Thus, above this temperature the interfacial fluctuations are greater.
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the surface, where V l
i and V n

i are the external potentials due to the surface exerted on the

liquid and the nanoparticles, respectively. Assuming that the surface is composed of particles

interacting with the fluid with interaction strength εwl and a pair potential of the same form

as the pair potentials in Eq. (6.2.2), then for a flat structureless surface the potential takes

the form

V l
i =





∞ k < 1

−12εwl/5 k = 1

0 otherwise,

(6.2.4)

where k is the perpendicular distance from the surface. Similarly, if the interaction strength

with the nanoparticles is εwn, then the external potential for the nanoparticles takes the

same form as (6.2.4) but the suffix l is replaced by n.

The external potential in Eq. (6.2.4) is modified when the surface varies in height or if

the material changes. For example, to model the situation illustrated in Fig. 6.1, since the

polymer hydrophobic section of the surface is inkjet printed at an earlier stage, its surface

height can be controlled. We denote the step in height from the polymer to the metal part

of the surface, to be h.

In all that follows below, we non-dimensionalise and set εll to be the unit of energy and

the lattice spacing σ to be our unit of length. All other parameters are given in terms of

these.

The Monte Carlo Algorithm

We denote a particular state of the system as Sα ≡ {n1, n2, . . . , l1, l2, . . .}, i.e. a particular

set of values of the occupation numbers, which we index with the label α. We also denote

the probability of the system being in this state at time t as P (Sα, t). The time evolution of
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this probability is given by the master equation

P (Sα, t+ 1) = P (Sα, t)−
∑

β 6=α
wα→βP (Sα, t)

+
∑

β 6=α
wβ→αP (Sβ, t)

(6.2.5)

where wα→β is the transition rate from state Sα to state Sβ.

In equilibrium, where P (Sα, t+ 1) = P (Sα, t), we have [53]:

wα→β
wβ→α

= e−∆E/kBT (6.2.6)

where T is the temperature, kB is Boltzmann’s constant and ∆E = E(Sβ) − E(Sα), with

the energy E given in Eq. (6.2.2). The following Metropolis Monte Carlo algorithm satisfies

this [53]:

1. Pick a random particle.

2. Pick a random neighbouring site.

3. Calculate the change in energy, ∆E, from swapping these particles using Eq. (6.2.2).

4. If ∆E < 0, perform the swap. Otherwise, swap the particles with probability e−∆E/kBT .

The assumption here is that even when the system is out of equilibrium, the transition

rates given by Eq. (6.2.6) still hold, allowing us to use the algorithm to determine the non-

equilibrium dynamics of the liquid.

This algorithm is refined for a system with both nanoparticles and liquid. To evolve the

liquid, a random site on the lattice is picked. The MC algorithm described above is used,

however any move involving a nanoparticle is forbidden during a liquid step.

The nanoparticles are modelled differently. Instead of selecting any random particle from

the system, we keep an explicit list of nanoparticle positions and select a nanoparticle from

this list to attempt the following dynamics: Firstly, to prevent nanoparticles from being
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left floating when the surrounding liquid moves away, after selecting a nanoparticle, we first

check if there is a vacancy in the lattice site below the chosen nanoparticle. If there is, the

nanoparticle is moved down to that empty site, finishing the move. If the site below is non-

empty or is part of the surface, we then perform a weighted sum over the neighbouring lattice

sites to determine how much liquid there is in the vicinity of the nanoparticle. We calculate

the quantity l̄i =
∑

j cijlj, where the coefficients cij are the same as those used to calculate

the energy, given in Eq. (6.2.3). If l̄i < 5/3 then the nanoparticle move is rejected. Only if

l̄i ≥ 5/3 we do allow the nanoparticle to move, swapping with one of the neighbouring liquid

particles, as per steps 2–4 above. This is done to prevent excessive nanoparticle movement

once most of the liquid has evaporated, since the physical origin of the nanoparticle dynamics

is the Brownian motion due to being suspended in the liquid. If there are not enough liquid

particles neighbouring the nanoparticle, then it remains stationary. The threshold value 5/3

was determined empirically; a lower value makes the nanoparticles too mobile on the dry

surface, but higher values leads to the formation of immobile nanoparticle clusters. Note

that the algorithm described above for evolving the nanoparticles violates detailed balance.

This is in keeping with previous MC models for systems of this kind [40, 41, 42] and is a

consequence of the facilitated dynamics of the nanoparticles. Of course, for the liquid there

is detailed balance.

Liquid and nanoparticles evolve at different rates. We perform M liquid steps for every

nanoparticle step. This ratio determines the diffusion coefficient of the nanoparticles in

the liquid [40, 41, 42]. We set the value of M to depend on the ratio of nanoparticles to

non-nanoparticles in the system as:

M = ξ
V −Nσ3

Nσ3
(6.2.7)

where V is the volume of the system and N is the total number of nanoparticles. For all

simulations in this paper, we use a value of ξ = 0.2. For typical systems this corresponds to
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a value of M ≈ 30. Eq. (6.2.7) is required to prevent the nanoparticles “speeding up” as the

liquid evaporates from the system, which decreases the ratio of liquid to nanoparticles.

Diffusion coefficient

In what follows the system is referred to as having evolved for a time of x Monte Carlo steps

(MC steps), which means that there has been an attempted move on average x times per

lattice site. To relate MC steps to the physical time scales, the diffusion coefficient of a single

nanoparticle moving though the bulk liquid is determined.

This is calculated by running multiple simulations with a single nanoparticle in a system

full of liquid. The distance r that the nanoparticle travels is recorded at certain time intervals.

A plot of 〈r2〉 against the number of MC steps is then made. Note that 〈P〉 denotes the

statistical average of any quantity P . Using the relation [54]

〈r2〉 = 6Dt (6.2.8)

where D is the diffusion coefficient and t is time, the value of D can be determined from the

gradient of the plot.

For a system with µ/εll = 6 (a system filled with liquid), kBT/εll = 0.6 and averaging

over 10, 000 simulations, a value of D = 2.6 × 10−4 σ2 MC step−1 was found. Thus, the

Brownian timescale τB ≡ σ2/6D = 650 MC steps. τB is the time it takes on average for a

nanoparticle to diffuse a distance of order its own diameter. We obtain a similar value at

the higher temperature kBT/εll = 1.0, since the value of D only starts to change when the

temperature is high enough or the chemical potential is low enough that the density of the

vacancies in the liquid becomes sizeable. Although we specify times below in units of MC

steps, knowing the value of D allows to easily relate to the true timescales in a given system.
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Figure 6.3: A density profile for a drop at equilibrium with kBT/εll = 1 and εwl/εll = 0.7
obtained by averaging along the length of the liquid drop. The approximating circle used
to estimate the contact angle is shown as the black line. This circle is calculated using the
Taubin circle fitting method [55] on the boundary points of the profile.

Determination of contact angles

Once the system, such as that illustrated in Fig. 6.2, has reached equilibrium we can measure

the contact angle. This is done by taking an average along the length of the liquid ridge in

the y-direction (c.f. Fig. 6.2). We average over the configurations of a liquid ridge instead

of a hemispherical drop because this is easier to measure and gives us more samples to

average over. This average calculates a density profile ρi = 〈li〉. From this density profile,

we define the liquid drop to be where ρiσ3 > 0.5. We then fit a circle to the top portion of

the boundary of the drop using the Taubin circle fitting method [55], illustrated in Fig. 6.3.

From this circle, it is then straightforward to determine the contact angle, which is the angle

made with the surface. The density profile in Fig. 6.3 is for a system with temperature

kBT/εll = 1.0 and wall attraction strength εwl/εll = 0.7. The 0.7 value corresponds to

a weakly hydrophilic interface and so the liquid does not spread and forms a drop with

a contact angle ≈ 75◦. Increasing εwl decreases the contact angle, corresponding to the

surface becoming more hydrophilic. On the other hand, decreasing εwl makes the surface

hydrophobic.

In Fig. 6.4 we display a plot of the contact angle as the surface-liquid attraction strength

εwl is varied, for the temperature kBT/εll = 1.0. In addition to results for this ‘smooth’

surface, we also include in Fig. 6.4 results for a ‘rough’ surface, discussed further below. We
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Figure 6.4: The contact angle θ plotted as a function of the surface attraction εwl with
kBT/εll = 1.0, for both a smooth and a rough surface. We see that increasing the attraction
due to the surface decreases the contact angle. When εwl > εll, the drops wet the surface.

see that as the attraction strength increases, the contact angle decreases, until eventually at

εwl ≈ εll there is a wetting transition to a state where the liquid wets the surface, with contact

angle 0◦. For small values of εwl the surface only weakly attracts the liquid, corresponding to

a strongly hydrophobic surface on which the drop takes a shape that is close to a full circle,

with a large contact angle. Owing to the way we define the wall potential, the contact angle

plot in Fig. 6.4 varies only weakly with the temperature in the range 0.6 < kBT/εll < 1.2,

the range in which most of our results are calculated. At higher temperatures, one should

expect the wall attraction strength for wetting to be lower. However, at higher temperatures

the interfacial fluctuations become significant and the system is no longer in the regime

relevant to modelling the drying of inkjet printed drops. At lower temperatures (results not

displayed), the simulations become slow and the system becomes hard to equilibrate.

We also display in Fig. 6.4 the contact angle obtained for the liquid on a rough surface.

This surface is physically rough on the scale of the lattice, modelled by randomly raising and



Chapter 6. Modelling the evaporation of nanoparticle suspensions from
heterogeneous surfaces 50

lowering respectively one third of the blocks on the surface by one lattice spacing σ. When

the wall is sufficiently attractive, for εwl/εll > 0.5, this generates a surface that contains

many pits, into which liquid condenses (from the vapour) and becomes trapped. This makes

the surface effectively more attractive and so the contact angle in this regime is decreased,

compared to the smooth surface. However, for εwl/εll < 0.5 the surface roughness makes

the surface more hydrophobic and with a larger contact angle than the smooth surface

with the corresponding value of εwl. This is the well-known lotus effect used to create

superhydrophobic surfaces via surface roughness [56, 57, 58, 14].

6.3 Bulk solvent phase behaviour

Understanding the behaviour of the liquid in equilibrium gives us insight into how the liq-

uid behaves out of equilibrium. Calculating the binodal allows us to pick parameters that

correspond to a suitably high density liquid phase coexisting with low density vapour phase.

The binodal gives the coexisting density values for a system in equilibrium. Two coex-

isting phases have the same chemical potential, temperature and pressure in each phase.

Since we do not need to know the binodal densities with great accuracy we calculate

the binodal by performing simulations in a long, narrow box of size 10σ × 10σ × 80σ, with

periodic boundary conditions, treated in the canonical ensemble. Initially one end of the

box is filled with liquid particles, with the other half being empty. The simulation then

equilibrates in a state with half the system in the liquid phase, coexisting with the other half

containing the vapour.

To estimate the density of the two coexisting phases we first calculate the mean density

ρi of each 10σ×10σ layer of the box. The layer densities are then split into two groups: those

with ρi > 0.5 and those with ρi < 0.5. In each of these groups the statistical outliers are

eliminated, since these are layers that correspond to the interface between the gas and the

liquid. Then the mean of the remainder in each group is used as the density on the binodal.
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Figure 6.5: The bulk fluid binodal, which gives the densities of the coexisting gas and liquid
phases as the temperature is varied.

The result of this approach, over a range of temperatures, yields the binodal displayed in

Fig 6.5. For example, when kBT/εll = 0.9 the density of the coexisting liquid and vapour is

ρl = 0.99 and ρg = 0.01.

In the vicinity of the critical temperature Tc, the binodal can not be calculated with any

great accuracy using the approach described above, due to the fact that the average densities

of the two coexisting phases become rather similar and also because the system is strongly

fluctuating with a diverging correlation length at Tc [3, 53]. The top of the binodal curve

displayed in Fig. 6.5 was estimated by inspecting the histogram of densities ρi in each layer.

Below the critical temperature, this histogram has two distinct maxima, corresponding to

the two phases. We use the density value at each of these maxima as our estimate for

the densities of the two coexisting phases. For T > Tc, the density histogram has only

one maximum, at ρi = 0.5. Based on this method we find that the critical temperature is

kBTc/εll = 2.08± 0.02.
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6.4 Evaporating droplets

For evaporation to occur, the statistical mechanics of the system must be done in the semi-

grand canonical ensemble: the liquid is treated grand canonically, whilst the nanoparticles

are dealt with canonically. The liquid is treated grand canonically because the vapour above

the drop acts as a reservoir with chemical potential µ, with which the system can exchange

particles, allowing the number of liquid particles in the system to vary over time. This is

achieved by periodically setting the density of the top layer of the system to the low density

result ρi ≈ eβµ/(1 + eβµ) [59, 38]. This enables the removal of particles from the system as

the liquid drop evaporates. In contrast, the nanoparticles are treated canonically, since the

number of nanoparticles in the system is fixed over time. In contrast, as discussed above,

in order to determine the contact angle of a drop of liquid on the surface, we must treat it

canonically, with a fixed number of liquid particles in the system.

We initiate the system with a fraction φ of the liquid particles replaced by nanoparticles.

Fig. 6.6 shows the evaporation of a droplet containing nanoparticles with initial concentration

φ = 0.15. The substrate area is 120σ × 120σ and the height of the top of the simulation

box above the substrate is 80σ. The initial droplet consists of a hemisphere with a radius of

40σ with the vertical part linearly scaled to have a height of 24σ. The chemical potential is

µ/εll = −9 and temperature kBT/εll = 0.8 which corresponds to an equilibrium vapour with

a density ρg = 0.001. The interaction parameters are εlw/εll = εnw/εll = 0.8, εln/εll = 1.25

and εnn/εll = 1.5.

The drop in Fig. 6.6 initially spreads to cover a greater area of the surface, since the

starting configuration does not have the equilibrium contact angle. However, over time,

liquid evaporates and the drop reduces in volume and so subsequently the area of the surface

covered by the drop decreases – i.e. the contact line initially advances and then later recedes.

Owing to the smooth surface, the drop retains a dynamic contact angle that is close in

value to the equilibrium contact angle throughout most of the time evolution. Since the

nanoparticles are attracted to the liquid they generally follow the liquid.
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t = 9.22× 1011t = 4.24× 1011

t = 2.40× 1011t = 1.84× 1010

Figure 6.6: Droplet evaporation simulation, for kBT/εll = 0.8, µ/εll = −9, φ = 0.15,
εnn/εll = 1.5, εnl/εll = 1.25, εlw/εll = εnw/εll = 0.8 in a system with surface area 120σ×120σ
and box height 80σ. Times, in units of MC steps, are given at the bottom right of each
snapshot. After most of the liquid has evaporated, the nanoparticles diffuse out over the
smooth surface, with dynamics facilitated by the small, but non-zero, vapour density.

After most of the liquid has evaporated there is then a further spreading of nanoparticles

over the surface. Because of the smoothness of the surface and the non-zero vapour density,

the residual liquid facilitates a diffusive dynamics that allows the nanoparticles to spread out

over the surface to a state where the average distance of the nanoparticles from the centre

of the system is larger than when the liquid is present.

Surface roughness

The roughness of surfaces is known to play an important role in how liquids spread. Surface

roughness can hinder contact line motion over the surface and can lead to significant dif-

ferences between the advancing, receding and equilibrium contact angles [14]. We consider

two different methods of modelling the effect of surface roughness. The first is to introduce

a dynamic rule that forbids moves parallel to the surface for all particles in contact with

the surface. This is equivalent to a no-slip boundary condition. Thus, for a contact line

to advance, particles in the second layer of lattice sites or higher above the surface must
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t = 9.22× 1011t = 4.24× 1011

t = 2.40× 1011t = 1.84× 1010

Figure 6.7: Snapshots of a liquid drop evaporating from a rough surface, with surface rough-
ness modelled by incorporating a no-slip dynamic rule preventing motion at the surface being
parallel to the surface. These are for the same times and parameter values as the smooth
surface results in Fig. 6.6.

advance and then drop down to wet the dry surface ahead of the spreading droplet.

Fig. 6.7 shows snapshots from a simulations with the same parameter values as the

evaporation simulation in Fig. 6.6 but with the no-slip dynamical rule forbidding moves

across the surface. The droplet still spreads to a cover an area similar to that in the case with

the smooth surface – i.e. to a value similar to that dictated by the equilibrium contact angle

for this particular value of εwl. We then find that once most of the liquid has evaporated,

the nanoparticles are left in an almost uniform circle which has a slightly larger radius than

the original drop. There is also no further spreading out over the surface, even though the

vapour density is still non-zero.

We have also investigated droplet evaporation from the rough surface considered at the

end of Sec. 7.2 that is physically rough on the scale of the lattice, made by randomly setting

the height of the surface to be 0 or ±σ, each with equal probability. Results for this surface

are displayed in Fig. 6.8. Recall that for εwl/εll > 0.5 the contact angle is less than on

the corresponding flat surface (see Fig. 6.4). This second approach to modelling surface

roughness generates a wall that contains many pits, within which liquid becomes trapped.
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t = 9.22× 1011t = 4.24× 1011

t = 2.40× 1011t = 1.84× 1010

Figure 6.8: Snapshots of a liquid drop evaporating from a rough surface, the effect of which
is modelled by setting the height of the surface to randomly be 0 or ±σ, each with equal
probability. These are for the same times and parameter values as the cases in 6.6 and
Figs. 6.7.

This leads to a much higher amount of liquid remaining adsorbed on the surface than in the

cases in Figs. 6.6 and 6.7. The adsorbed liquid facilitates the spreading of the nanoparticles

over the surface out to distances well beyond where the liquid droplet was located. Whilst

this facilitated dynamics is interesting, it is not what is observed on the experimental surfaces

of interest here.

In Fig. 6.9 we display a plot of the mean distance 〈r〉 of the nanoparticles from the

centre of the system (the centre of where the droplet was initiated) as a function of time for

the three different surface roughness cases. Initially the average radius increases due to the

droplet spreading in order to try and reach the equilibrium contact angle. However, except

in the case where we model the surface roughness via the no-slip dynamic rule, once the

liquid has evaporated, 〈r〉 further increases because the nanoparticles continue to spread out

over the surface, facilitated by the vapour of liquid particles. The plateau value of 〈r〉 for

the physically rough surface (Fig. 6.8) is even greater than the smooth surface case (Fig. 6.6)

due to the higher amount of liquid adsorbed on the surface, in the surface pits. Eventually,

〈r〉 tends to a constant value as the spreading nanoparticles become trapped in the pits in
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Figure 6.9: Plot of the average distance of the nanoparticles from the centre over time, for
the three cases of (i) a smooth surface [Fig. 6.6], (ii) a rough surface where the effect of the
surface roughness is modelled by a no-slip dynamic rule [Fig. 6.7] and (iii) surface roughness
modelled by making the surface height randomly higher/lower than the average [Fig. 6.8].

the surface. For the case with the no-slip dynamic rule modelling surface roughness, as the

droplet spreads and evaporates, 〈r〉 reaches a maximal value at around t = 4 × 1011. It

then decreases slightly as the droplet contact line starts to recede, due to the droplet volume

being decreased by the evaporation.

The results in Figs. 6.7 and 6.9 show that incorporating the effects of surface roughness

via the no-slip dynamical rule seems to model the required physics. It also has the additional

advantage of not introducing an additional length scale to be considered, namely the length

scale of the surface roughness. Thus, this is the model we adopt henceforth to model the

effects of surface roughness.
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6.5 Modelling the ink drying process

Evaporating liquid bridge over a hydrophobic strip

In Fig. 6.10 we display snapshots as the liquid evaporates from a surface containing a hy-

drophobic strip. The interaction parameters are given in the figure caption. The surface

is smooth – i.e. we do not implement the no-slip dynamical rule. The chemical potential

in the vapour is set to be µ/εll = −6, which corresponds to the vapour phase being the

thermodynamic equilibrium state, so the liquid seeks to evaporate from the surface. The

substrate is made of a central hydrophobic strip of width 20σ (coloured yellow) which we

denote region A, with εA
wl/εll = εA

wn/εll = 0.4, i.e. only weakly attracting the liquid and the

nanoparticles. From Fig. 6.4 we see that on this part of the surface the liquid has contact an-

gle θ ≈ 110◦. Either side of this (coloured grey) is region B, where the surface is hydrophilic,

having attraction strength parameters εB
wl/εll = εB

wn/εll = 0.8, corresponding to θ ≈ 60◦.

When there is no step in height from region B to region A (h = 0), then Fig. 6.10 shows that

during the drying, the liquid dewets from the hydrophobic part of the surface, breaking the

nanoparticle bridge at time t ≈ 1.2 × 1012 MC steps. When there is a small step of height

h = σ (results not displayed), then the behaviour is similar, although the breaking of the

bridge is slightly delayed. In contrast, a step of height h ≥ 2σ enables the liquid bridge to

remain intact as it dries, so that a nanoparticle bridge is formed, spanning the hydrophobic

part of the surface. The nanoparticle density is even slightly increased on the hydrophobic

part of the surface when h ≥ 2σ (see Fig. 6.10).

The reason a step enables the liquid bridge to remain is that a corner is created into

which the liquid is strongly attracted. The ability of corners and wedges to promote wetting

by a liquid is well known [60, 61, 62, 63, 64, 65]. Since surface roughness can also modify the

wetability of surfaces, a combination of steps and roughness can be used to control dewetting.

Fig. 6.11 shows results from a case when the nanoparticles are less strongly attracted

to one another, which enhances the spreading over the hydrophilic part of this (smooth)
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Figure 6.10: Time series from the drying of the liquid from the surface, when εnl/εll = 1.5,
εnn/εll = 2, φ = 0.2, kBT/εll = 0.6 and µ/εll = −6. The attraction strength with the
hydrophobic yellow part A surface is εA

wl/εll = εA
wn/εll = 0.4, while the interaction with the

grey part B strips either side has strength εB
wl/εll = εB

wn/εll = 0.8. On the right of each
snapshot is the nanoparticles density distribution for that snapshot as viewed from above.
The results on the left are for the case when there is no step (h = 0) going from the part
B to part A. In this case, as the liquid evaporates, it also dewets from the surface, breaking
the bridge. The results on the right correspond to when there is a step of height h = 2σ.
This step prevents the dewetting, so that as the liquid evaporates, the nanoparticles gather
to form a bridge. The times t are given in terms of average number of MC steps per lattice
site.



Chapter 6. Modelling the evaporation of nanoparticle suspensions from
heterogeneous surfaces 59
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Figure 6.11: Snapshots from a simulation of a liquid bridge drying from the smooth surface
with εnl/εll = 1.25, εnn/εll = 1.5, kBT/εll = 0.6, φ = 0.1, µ/εll = −6. The attraction
strength with the hydrophobic yellow part A surface is εA

wl/εll = εA
wn/εll = 0.4, while the

interaction with the grey part B strips either side has strength εB
wl/εll = εB

wn/εll = 0.8. In
the four snapshots on the left in (a) there is no difference in height between the two surfaces
(h = 0). In the four on the right (b) the hydrophilic part B (in grey) is raised a distance
h = σ above part A.

surface, compared to the case in Fig. 6.10. With no step present (h = 0), the bridge of liquid

breaks at the time t ≈ 2.4× 1011 MC steps and the nanoparticles temporally group together

with the remaining liquid, but eventually spread out over the hydrophilic region. With a

step of height h = σ, the bridge still breaks at t ≈ 2.4× 1011 MC steps. More nanoparticles

remain at the corner formed from the step but the end result is similar to the case with

no step. Although not shown here, when h = 2σ, the connection breaks at t ≈ 2.1 × 1011

MC steps but the break occurs in the hydrophilic region and the nanoparticles collect in

the hydrophobic region, scattering randomly as the rest of the liquid evaporates, due to the

smoothness of the surface.

Fig. 6.12 shows results from a simulation where the parameters are the same as in

Fig. 6.11, except here we assume the surface is rough, i.e. we implement the no-slip dy-

namical rule. When there is no step (h = 0), the bridge breaks at t ≈ 4.4× 1011 MC steps.

When the step height h = σ, the bridge connection almost holds, but eventually breaks
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Figure 6.12: Time series from a bridge of liquid drying from a rough surface (modelled using
the no-slip dynamical rule), with the same parameter values as given in caption of Fig. 6.11.
The four on the left (a), are snapshots for the case when there is no step (h = 0) in the
height of the surface. In this case, as the liquid evaporates, it also dewets from the surface,
breaking the bridge. The four on the right (b) correspond to a step of height h = σ between
the hydrophobic and hydrophilic parts of the surface. The times t are given in terms of
average number of MC steps per lattice site, taken at the same times as in the previous
figure.

at t ≈ 5.2 × 1011 MC steps. Interestingly, however, due to the attractive step from the

hydrophobic to the hydrophilic region, most of the nanoparticles are stabilised in a cluster

on the hydrophobic region.

Evaporating film over an hydrophobic strip

Figs. 6.13 and 6.14 illustrate the situation when a film of nanoparticle suspension that

initially has uniform thickness evaporatively dewets from the same surface considered already,

i.e. with both hydrophobic and hydrophilic parts. All the parameters for the simulations in

Figs. 6.13 and 6.14 are the same as in Fig. 6.11 except for the temperature which is increased

from kBT/εll = 0.6 to kBT/εll = 0.76, which slightly speeds up the simulations.

Fig. 6.13 for the smooth surface shows there are differences between h = 0 and h = σ.

As the liquid evaporates, in both cases holes appear in the film during the drying, at around

t ≈ 2.0× 1011 MC steps. We are not able to determine conclusively whether these holes are
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nucleated or are formed via spinodal dewetting, which is expected to occur when the film

thickness decrease below a critical value [27, 28, 49]. In the h = 0 case, the holes appear first

in the hydrophobic region. This leads to a dewetting of the liquid from off the hydrophobic

region, moving many of the nanoparticles onto the hydrophilic region. In contrast, for the

h = σ case, since the film is thicker over the hydrophobic region, the holes instead appear

first over the hydrophilic region. Thus, in the h = σ case, initially the dewetting from the

hydrophilic part of the surface leads to a clear increase in the density of the nanoparticles on

the hydrophobic region. However, they then subsequently move back onto the hydrophilic

part of the surface as the evaporation continues. In both cases, after most of the liquid has

evaporated, the nanoparticles are distributed inhomogeneously over the surface, having a

greater density on the hydrophilic part of the surface. However, for the h = σ case, because

the nanoparticles congregate at the corner of the steps, there is therefore slightly more bare

patches on the hydrophilic part of the surface, compared to the h = 0 case.

Fig. 6.14 shows snapshots from two simulations with the no-slip dynamical rule, which

prevents horizontal movement of particles that are in contact with the surface. Holes in the

film appear in a manner similar to that observed in the early stages of the dynamics when the

surface is smooth (Fig. 6.13). However, once the holes are formed, the dynamics is changed

significantly. The surface roughness results in the nanoparticles becoming congregated in

clumps and they spread far less than in the case with the smooth surface. For the h = 0 case

in Fig. 6.14(a), the final state consists of the nanoparticles being clustered into two mounds

with fewer lone nanoparticles than observed on the smooth surface. Surprisingly, one of the

nanoparticle clusters spans the hydrophobic region of the surface. We believe this stems from

the interplay of the no-slip dynamics and the fact that the attraction of the nanoparticles to

each other is stronger than their attraction to the surface.

In the case with a step of height h = σ displayed in Fig. 6.14(b), the dewetting initiates

in the thinner film on the hydrophilic part of the surface, similar to the smooth surface case

in Fig. 6.13(b). This leads to the nanoparticles becoming deposited on the hydrophobic
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region, similar to in the smooth surface case, except that fewer nanoparticles remain on the

hydrophilic region. However, in contrast to the smooth surface case, ultimately the relative

lack of mobility leads to the nanoparticles remaining on the hydrophobic region, forming a

large cluster that is stabilised at the edges by the step.

6.6 Conclusion

In this paper we have presented a MC model of the drying of a nanoparticle suspension on

heterogeneous surfaces. This mixture of liquid and nanoparticles is a simple model for the

ink that is used in the ink jet printing manufacturing process described in [25]. The model

contains parameters which can be determined from experiments. Measuring the equilibrium

contact angle of drops of the liquid on the relevant surfaces, in conjunction with the present

work, allows the determination of the required values of the liquid-liquid and liquid-wall

attraction parameters. Similarly, knowledge of the diffusion coefficient allows to relate the

MC time step to the experimental time scales. The model can include the effects of surface

roughness via a simple no-slip dynamical rule that forbids the motion of all particles that

are in contact with the surface.

A key finding of the present work is the observation that when printing a bridge over a

hydrophobic region to connect hydrophilic strips either side, adhesion is improved when the

hydrophobic strip is at a lower level than the surrounding hydrophilic regions. We find that

when the bridge does not properly form, generally the break occurs over the hydrophobic

strip. However, for some parameter values occasionally the counter-intuitive result occurs,

whereby the film breaks, but with nanoparticles congregating in the hydrophobic strip. This

effect generally occurs when considering the evaporation of a film of liquid, rather than a

bridge. That said, evaporating films can still result in clumps of nanoparticles distributed

over the two regions.

The results have shown the necessity to choose ink and surface parameters carefully
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to obtain the best connections when ink jet printing. For example, it may be possible to

enhance particle bridge formation by adjusting the surface chemistry of the nanoparticles

to make them favour the hydrophobic portion of the surface. This aspect has not been

explored here. However, such enhancement might also instead lead to results such as that

in Fig. 6.12, where the bulk of the nanoparticles are deposited on the hydrophobic part of

the surface and the bridge is broken. Further work will directly relate the parameters in the

model Hamiltonian to the properties of the specialist materials used in the printing process.

Our work here shows that to fully understand the observed phenomena requires knowledge

of both the fluid dynamics and the thermodynamics.
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Figure 6.13: Snapshots of a uniform film of nanoparticle suspension drying from a smooth
surface. On the right of each is a grey-scale density profile of the nanoparticles viewed from
above. The parameter values are the same as in Fig. 6.11 except kBT/εll = 0.76. The results
on the left in (a) are for h = 0 and those on the right in (b) are with h = σ.
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Figure 6.14: Snapshots of a uniform film of nanoparticle suspension drying from a rough
surface, modelled via the no-slip dynamic rule. On the right of each is a grey-scale density
profile of the nanoparticles viewed from above. The parameter values are the same as in
Fig. 6.13. The results on the left in (a) are for h = 0 and those on the right in (b) are with
h = σ.



Chapter 7

Dynamical density functional theory for

the evaporation of droplets of

nanoparticle suspension

We develop a lattice gas model for the drying of droplets of a nanoparticle suspension on

a planar surface, using dynamical density functional theory (DDFT) to describe the time

evolution of the solvent and nanoparticle density profiles. The DDFT assumes a diffusive

dynamics but does not include the advective hydrodynamics of the solvent, so the model is

relevant to highly viscous or near to equilibrium systems. Nonetheless, we see an equivalent

of the coffee-ring stain effect, but in the present model it occurs for thermodynamic rather

the fluid-mechanical reasons. The model incorporates the effect of phase separation and

vertical density variations within the droplet and the consequence of these on the nanoparticle

deposition pattern on the surface. We show how to include the effect of slip or no-slip at

the surface and how this is related to the receding contact angle. We also determine how the

equilibrium contact angle depends on the microscopic interaction parameters.

66
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7.1 Introduction

The structures formed on surfaces from the drying of liquid films or droplets containing

suspended colloids or nanoparticles can vary significantly, depending on the nature of the

suspended particles, the solvent, the surrounding airflow, the vapour pressure and the na-

ture of the surface [66, 67, 68, 69]. Whether the surface is rough or smooth, solvophobic

or solvophilic, patterned, curved or in any other way heterogeneous, makes a crucial differ-

ence. Understanding the drying dynamics and pattern formation in such systems is not only

fascinating fundamental science, but there are many practical application that rely on the

behaviour of such fluids at interfaces, ranging from lubrication to the use of ink-jet printing

in advanced manufacturing – see e.g. the recent example in [25].

Perhaps the most typical example of this is the coffee ring stain formed when a spilt

droplet of coffee (or indeed many other liquids containing solutes or suspended particles)

dries on a surface [67, 68, 69, 70, 71]. As the water in the droplet evaporates, the majority

of the coffee is deposited around the edge, in the vicinity of the droplet contact line. This is

despite more of the coffee having been initially in the centre, since it is uniformly dispersed

within the liquid and the centre is where the liquid thickness above the surface is greatest.

The coffee stain is formed because the evaporation of the liquid leads to a hydrodynamic flow

of liquid from the centre of the droplet towards the edge. This flow carries the suspended

particles to the edge of the droplet, where they remain when all the liquid is finally evaporated

[68, 69, 70, 71]. Note however that ring deposition does not alway occur. For example, it can

be suppressed if the particles are elongated instead of roughly spherical [72]. But in general

the effect must be overcome in applications requiring uniform surface deposition, such as in

printing and coating.

Modelling such intricacies present a challenge, because they depend on a fine balance

and interplay of thermodynamic effects related to evaporation and perhaps also phase tran-

sitions within the droplet and hydrodynamic effects related to fluid flow within the droplet

and overall droplet dynamics. These considerations are especially important if there are
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advancing or receding contact lines [73]. Thin film hydrodynamic models have been used

to to describe many key aspects [26, 27, 28, 29, 30, 31], but such models are unable to de-

scribe vertical variations in the local particle concentration and do not fully capture any of

the microscopic structure within the liquid. Fully microscopic models based on molecular

dynamics (MD) computer simulations, such as those described in Refs. [32, 33, 34, 35], do of

course describe every aspect of the structure and dynamics in the droplet. However, these

approaches are limited in the size of droplet that can be modelled. The same is to some ex-

tent also true when classical density functional theory (DFT) [20, 2, 3] and dynamical DFT

(DDFT) [7, 8, 9, 10, 11] are applied to describe the structure and dynamics of droplets – see

e.g. Refs. [59, 37, 74, 38, 39] and references therein. That said, because DFT and DDFT are

statistical mechanical theories, the scaling of the computational cost with size of the system

is better than the scaling with MD [75]. Here we develop a DDFT for droplets containing

suspended nanoparticles that is based on a lattice Hamiltonian (generalised Ising) model

of the microscopic interactions in the system. The advantage of assuming the nanoparticle

suspension can be modelled as a lattice fluid is that it allows us to describe much larger

droplets than is feasible using a fully microscopic DFT – see e.g. [39].

Lattice models have been successfully used previously to describe the evolution of liquids

and particle suspensions on surfaces. These models were initially 2-dimensional (2D) Monte

Carlo (MC) models [66, 40, 41, 42, 43, 76] that assumed there is no vertical variation in the

liquid in the direction perpendicular to the solid surface on which the liquid is deposited.

However, 3-dimensional (3D) MC models have subsequently also been developed [44, 45, 46,

47, 48, 77]. The present DDFT assumes the same Hamiltonian as the MC model in [77].

Thus, the DDFT presented here is able to fully describe any vertical variations in the local

densities within the droplet, such as the formation of a nanoparticle ‘crust’ on the drying

droplet, unlike the 2D DDFT models developed previously [78, 49].

An important aspect of the MC model in [77] is the identification of how the interactions

between lattice sites should vary with distance in order to have liquid droplets with a realistic
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hemispherical shape, so as to lessen the influence of the underlying grid. Owing to the

fact that we base our DDFT on the same Hamiltonian, the present model also has this

advantage. An additional feature of the DDFT developed here is that it incorporates the

effects of slip, no-slip or partial slip of the liquid at the surface. We show how this affects the

evolution of the shape of droplets as they evaporate and how this is connected to the receding

contact angle. Since the DDFT incorporates all the thermodynamics related to the degree

of solubility of the nanoparticles in the solvent liquid, the model incorporates the effects of

phase separation (aggregation) of the nanoparticles as the local nanoparticle concentration

increases due to the solvent evaporation. We show that this can lead to a coffee-ring like

stain. However, in the present model it is due to the thermodynamics of phase separation,

not the usual advective fluid mechanical mechanism [68, 69, 70, 71]. The DDFT we use

is one that assumes only diffusive particle motion – i.e. we assume the droplet is not too

far from equilibrium. This is the original DDFT of Refs. [7, 8, 9] for both the solvent and

the suspended particles, rather than more sophisticated DDFTs that include inertial effects

[10, 11] or effects of hydrodynamics [79, 75, 80]. We also show that the thermodynamics of

phase separation can lead to the deposition of multiple rings.

This paper is structured as follows: In Section 7.2 we introduce the lattice Hamiltonian

for the system and the approximation we use for the free energy of the system that is the

input to the DDFT. In Section 7.3 we describe the bulk-mixture phase behaviour and present

phase diagrams showing how the vapour-liquid phase separation depends on the model in-

teraction parameters and changes as the concentration of the nanoparticles is varied. In

Section 7.4 we calculate equilibrium interfacial properties, including calculating the density

profiles of the solvent and the nanoparticles at the vapour-liquid interface, the surface ten-

sion and how it depends on temperature and also the equilibrium contact angle. We also

compare with the MC results from Ref. [77] to illustrate the accuracy of the DFT. In Sec-

tion 7.5 we describe the DDFT used to describe the non-equilibrium dynamics of the solvent

and the nanoparticles, including how to include the effects of (no)slip at the substrate. In



Chapter 7. Dynamical density functional theory for the evaporation of
droplets of nanoparticle suspension 70

Section 7.6 we display the results from simulating evaporating droplets of both pure solvent

and also containing nanoparticles. We show how the receding contact angle depends on

the parameters controlling the slip at the surface and present results for the deposits left

by evaporating droplets including a coffee-ring like deposit, a deposit equivalent to multiple

rings and also patterns related to spinodal dewetting. Finally, in Section 7.7 we make a few

concluding remarks.

7.2 Lattice model for the system

We model the nanoparticle suspension by discretising onto a 3D cubic lattice with lattice

spacing σ (which is also the diameter of the particles), with each site on the lattice labelled

by the index i, where i = (i, j, k) ∈ Z3. Thus, i defines the location of the lattice site.

Henceforth, we set σ = 1, defining our unit of length. The energy of the system (Hamiltonian)

is given by

E =−
∑

i,j

(
1

2
εllijn

l
in
l
j + εnlij n

l
in
n
j +
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2
εnnij n
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(7.2.1)

where nli is the occupation number for the liquid at site i and nni is the occupation number for

nanoparticles at site i, i.e., nli = 1 if the site is occupied by liquid and nli = 0 if unoccupied

by liquid. Similarly, nni = 0 or 1 depending on whether or not the site i is occupied by

a nanoparticle. A lattice site can not be occupied by both liquid and a nanoparticle. Φl
i

is the external potential due to the surface influencing the liquid at site i and Φn
i is the

external potential for the nanoparticles. The interaction between pairs of liquid particles at

sites i and j is determined by the matrix εllij = εllcij, which is a discretised pair potential.

The parameter εll governs the overall strength. Similarly, εlnij = εlncij is the interaction

matrix between nanoparticles and liquid, with strength determined by the parameter εln,

and εnnij = εnncij is the interaction between pairs of nanoparticles, with εnn determining the
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overall strength. cij is a dimensionless coefficient which decreases in value as the distance

between the pairs of particles increases. We use the following values

cij =





1 j ∈ {NN i}
3

10
j ∈ {NNN i}

1

20
j ∈ {NNNN i}

0 otherwise

(7.2.2)

where NN i, NNN i and NNNN i stand for nearest neighbours, next nearest neighbours

and next-next nearest neighbours, respectively, to lattice site i. The choice of particular

values in Eq. (7.2.2) is important, as this leads to liquid droplets on the surface having a

hemispherical shape [77]. For example, if instead we just have nearest neighbour interactions,

then the system forms unrealistic shaped droplets with facetted surfaces, particularly at low

temperatures.

If the nanoparticle suspension is in contact with a planar solid surface, this exerts external

potentials that we assume are

Φl
i =




−12

5
εwl j = 0,

0 otherwise,
(7.2.3)

and

Φn
i =




−12

5
εwn j = 0,

0 otherwise,
(7.2.4)

where εwl is the attraction between the surface and the liquid and εwn is the attraction

between the surface and the nanoparticles, and j is the component of i that varies in the

direction perpendicular to the surface. The factor 12/5 in Eq. (7.2.3) comes from assuming

a pair potential εwlij = εwlcij between wall lattice sites and the liquid. When a liquid particle

is next to the wall, summing over the interaction with the neighbouring wall particles leads
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to Eq. (7.2.3). Similarly, summing over εwnij = εwncij leads to Eq. (7.2.4).

For the lattice model defined above, one can study both the equilibrium and non-

equilibrium behaviour using the Monte-Carlo simulation approach developed in [77]. Here,

a statistical mechanical theory based on DFT [20, 2, 3] and DDFT [7, 8, 9] is derived. Thus,

we develop a theory for the average densities,

ρli = 〈nli〉 and ρni = 〈nni 〉, (7.2.5)

which are the ensemble average densities at site i, i.e., 〈. . .〉 denotes a statistical average.

Making a mean field approximation, the Helmholtz free energy for the binary lattice-gas

is [59, 81, 82, 83, 38]

F ({ρli}, {ρni }) = kBT
∑

i

[
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, (7.2.6)

where kB is Boltzmann’s constant and T is the temperature. The above is a discretised DFT

for a binary mixture.

7.3 Bulk solvent phase behaviour

The densities can be constants when Φl
i = Φn

i = 0, i.e., we have a uniform fluid with ρli = ρl

and ρni = ρn, for all i. In this case, the sum over neighbours in the interaction terms in

the Helmholtz free energy (7.2.6) can be evaluated. The integrated interaction matrix is
∑

j cij = 10 for all i, so we have all = 10εll, aln = 10εnl and ann = 10εnn as the integrated

strengths of the pair interactions. From Eq. (7.2.6) the average Helmholtz free energy per
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lattice site, f = F/V , where V is the volume of the system, is given by

f = kBT (ρl ln ρl + (1− ρl − ρn) ln(1− ρl − ρn) + ρn ln ρn)

− 1

2
allρ

2
l − alnρlρn −

1

2
annρ

2
n. (7.3.1)

From this we can calculate the spinodal, the locus where ∂2f/∂ρ2 = 0 and where ρ = ρl+

ρn is the total density. The spinodal defines the boundary of the region of the phase diagram

where the system is unstable and density fluctuations in a uniform system spontaneously

grow, leading to phase separation. For temperatures where two-phase coexistence can occur,

the binodal curve gives the coexisting density values for a system in equilibrium. This

is calculated by equating the chemical potential, temperature and pressure in each of the

coexisting phases. States in the phase diagram outside the binodal are stable and no phase

separation occurs.

We can use Eq. (7.3.1) to calculate the binodal since thermodynamic quantities such as

the chemical potentials, µl and µn, and pressure, P , may be obtained using the following

relations

µl =
∂f

∂ρl
, µn =

∂f

∂ρn
, P = − ∂f

∂V
. (7.3.2)

These give

µl = kBT (ln ρl − ln(1− ρl − ρn))− allρl − alnρn, (7.3.3)

µn = kBT (ln ρn − ln(1− ρl − ρn))− alnρl − annρn, (7.3.4)

P = −kBT ln(1− ρl − ρn)− 1

2
allρ

2
l − alnρlρn −

1

2
annρ

2
n, (7.3.5)

where we have used the fact that in a uniform system the densities ρl = Nl/V and ρn = Nn/V ,

where Nl and Nn are the total numbers of each species in the system.

For the pure liquid with no nanoparticles present (ρn = 0), we can use the symmetry

of the Hamiltonian (7.2.1) to simplify the calculation of the binodal [49]. This allows us to
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Figure 7.1: Binodal curve for the lattice fluid using both DFT and MC computer simulations
in the temperature versus density plane. We also display the spinodal from DFT. The MC
results are from Ref. [77].

observe that if ρl is the density of the liquid at coexistence then (1 − ρl) is the density of

the coexisting vapour. On equating the pressure in the two phases we obtain the following

equation for the binodal:
kBT

εll
=

5(2ρl − 1)

ln[ρl/(1− ρl)]
. (7.3.6)

This has a maximum at ρl = 0.5 which corresponds to a critical temperature of kBT/εll = 2.5.

Fig. 7.1 shows a plot of this binodal curve together with the binodal from Ref. [77] that was

calculated using MC simulations for the same system, with Hamiltonian given by Eqs. (7.2.1)

and (7.2.2). The binodals are qualitatively similar, but at higher temperatures there is a

sizeable difference between the two curves since the DFT in Eq. (7.2.6) is a mean field theory.

The critical temperature predicted by the DFT is around 0.4kB/εll higher than the true value.

However, for temperatures kBT/εll < 1.5 we see that the coexisting density values from the

DFT are in fairly good agreement with those from the MC. This is the regime in which the

results below are obtained.
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Returning to consider the full binary mixture, to calculate the binodals we have the

additional condition that the chemical potential of the nanoparticles, µn, is the same in both

phases. The phase diagram is no longer symmetric around ρl = 0.5 when the nanoparticles

are present. Thus, we must solve the following simultaneous equations:

T LDP = THDP, (7.3.7)

P LDP = PHDP, (7.3.8)

µLDP
l = µHDP

l , (7.3.9)

µLDP
n = µHDP

n , (7.3.10)

where LDP stands for low density phase, HDP stands for high density phase. The first

equation can be trivially satisfied by simply setting the same temperature in both phases.

We then also fix the chemical potential of the nanoparticles to some specified value. This

then gives us four equations for the four unknowns, namely the densities of the two species

in the two different phases [49]. Solving like this for a range of temperatures gives us the

phase diagram.

Figs. 7.2 and 7.3 show the binodals for the liquid-nanoparticle mixture for the case when

εnl/εll = 1.25 and εnn/εll = 1.5 and for different values of the nanoparticle chemical potential

µn. We see that as µn is increased the density of the nanoparticles increases in both phases

and can in fact become the majority species for large enough µn. Note that Fig. 7.1 can

be considered to be the µn = −∞ case in this sequence with varying µn, where, of course,

ρn = 0 in both coexisting phases.

In Fig. 7.4 we show results for a case where εnl is less than both εnn and εll, in contrast to

the case in Figs. 7.1–7.3, where εnl = 1
2
(εnn+εll). In this case it is energetically unfavourable

for the nanoparticles to mix with the liquid and so for the case in Fig. 7.4 where µn/εll =

−8 (a low value), the density of the nanoparticles in both coexisting phases is low. For

higher values of µn (not displayed) we observe liquid-liquid phase separation similar to that
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Figure 7.2: Binodal curves for the binary mixture with µn/εll = −10, εnl/εll = 1.25, εnn/εll =
1.5.

described in Ref. [84].

7.4 Equilibrium interfacial behaviour

Having determined the bulk fluid phase behaviour, we now briefly consider the interface

between the coexisting phases and calculate the surface tension.

7.4.1 Density profiles at the free interface

At the planar interface between the vapour and the liquid phases the density profiles vary

only in the direction perpendicular to the interface. We assume that the index varying in

the direction perpendicular to the interface is j. Recall i = (i, j, k). The density profiles are

calculated by minimising the grand potential

Ω = F − µl
∑

i

ρli − µn
∑

i

ρni (7.4.1)
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Figure 7.3: Binodal curves for the binary mixture with µn/εll = −8, εnl/εll = 1.25 and
εnn/εll = 1.5.
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Figure 7.4: Binodal curves for the binary mixture with µn/εll = −8, εnl/εll = 0.75 and
εnn/εll = 1.5.
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Figure 7.5: Liquid density profiles (top) and nanoparticle density profiles (bottom) at the
free liquid-vapour interface for εnl/εll = 0.75, εnn/εnl = 1.5 at different values of kBT/εll,
the dimensionless temperature, as indicated in the key. The corresponding bulk fluid phase
diagram is in Fig.7.4.
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where the Helmholtz free energy F is given by Eq. (7.2.6) and the chemical potentials

µl and µn are set to be the values at which vapour-liquid phase coexistence occurs. In

Fig. 7.5 we display the density profiles of the solvent and the nanoparticles for the case when

µn/εll = −8, εnl/εll = 0.75 and εnn/εll = 1.5 and various temperatures. The corresponding

bulk fluid phase diagram is displayed in Fig. 7.4. We see that as the temperature is increased

the total density difference between the two coexisting phases decreases. We note also that

at lower temperatures, kBT/εll . 1.8, there is a small enhancement of the nanoparticle

density at the interface, indicating that the nanoparticles have a slight propensity towards

being surface active [15] for these values of εnl and εnn. As we show below, this slight surface

enhancement in equilibrium can become greater during non-equilibrium droplet evaporation.

7.4.2 Surface tension

Having calculated interfacial density profiles such as those in the Fig. 7.5, we can then

substitute back into Eq. (7.4.1) to calculate the grand potential, Ω, of the whole system,

including the interface.

The surface tension is defined as the excess free energy in the system due to the presence

of an interface between two coexisting phases. Subtracting the grand potential Ω0 = −PV

for a system with the same volume V , temperature and chemical potentials but containing

either only the uniform vapour or liquid gives the excess grand potential due to the interface.

The interfacial tension is then

γ =
Ω + PV

A
, (7.4.2)

where A is the area of the interface. From the density profiles in Fig. 7.5, this gives γgl, the

planar liquid-gas interfacial tension. In a similar manner, for the fluid at the wall exerting

potentials Φl
i and Φn

i we can calculate γwl, the wall-liquid interfacial tension and γwg, the

wall-gas interfacial tension. These are all calculated for µl = µcoex
l and µn = µcoex

n , the values

at bulk gas-liquid phase coexistence.
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Figure 7.6: The liquid-gas surface tension as a function of temperature, calculated using
DFT. The corresponding bulk fluid phase diagram is in Fig. 7.1.

From these interfacial tensions one can then calculate the contact angle a droplet of liquid

would have with the surface using Young’s equation [14],

θ = arccos

(
γwg − γwl

γlg

)
. (7.4.3)

Fig. 7.6 shows the liquid-gas surface tension for the pure liquid (µn = −∞) plotted

as a function of temperature. There is a slight local minimum in the surface tension at

kBT/εll ≈ 1.0. In the limit T → 0 the density of the liquid ρl → 1 and the coexisting gas has

ρl → 0. It is then straightforward to see from Eq. (7.2.1) or Eq. (7.2.6) that for T → 0 the

surface tension γlg/εll → 12/5. At the critical temperature, T = Tc = 2.5εll/kB, the density

difference between the two coexisting phases goes to zero, so as T → Tc, γlg → 0.

Fig. 7.7 shows the contact angles calculated from the DFT for the pure liquid at the

temperature kBT/εll = 1.0, as the attraction due the surface is varied. We see that for

εlw/εll > 0.97 the contact angle θ = 0, i.e. the liquid wets the surface. In contrast, for

εlw/εll < 0.97 the liquid is only partially wetting. As the attraction to the surface εlw
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is decreased below this value, the contact angle θ increases and can become large, as the

surface becomes increasingly solvophobic. It is also possible to directly measure the contact

angle by fitting a circle to an equilibrium droplet density profile calculated using DFT (e.g.

using the method in [55]), which gives almost identical results [38]. Such a droplet density

profile is calculated by constraining the total volume of liquid in the system to be fixed

and also allowing the density to vary in both perpendicular and parallel directions to that

surface – see Ref. [38] for further details. For comparison, in Fig. 7.7 we also show the

contact angles measured by fitting a circle to equilibrium density profiles calculated in [77]

using MC simulations of droplets on surface, using Hamiltonian (7.2.1). At higher values

of εlw/εll the curves are almost identical but at lower values the MC simulations give a

higher contact angle. We believe this is due to the fact that at higher values of εlw the

energetic contributions to the free energy dominate and so the DFT describes the droplet

accurately. However, for smaller εlw, i.e., a solvophobic surface, the fluctuations of the liquid

near the surface and in the contact line region are significant [85, 86] and so the mean-field

DFT, which neglects some fluctuation contributions to the free energy, does less well. We

should emphasise, however, that interfacial tensions and especially the contact angle θ are

quantities that depend very sensitively on approximations, so the agreement in Fig. 7.7 is

actually rather good.

7.5 Theory for the non-equilibrium dynamics

We assume that the non-equilibrium fluid dynamics is described by DDFT [7, 8, 9]. This is

a good assumption to make for the nanoparticle dynamics, since it is a theory for Brownian

particles suspended in a liquid, as derived in [7, 8, 9]. However as discussed in [10, 11], the

theory can also approximate the dynamics of molecular liquids, especially when the fluid is

not too far from equilibrium, which is certainly true for the cases of interest here. For a two
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Figure 7.7: The contact angle for a droplet on a surface with temperature kBT/εll = 1.0.
The solid line is the result from DFT using the interfacial tensions together with Young’s
equation (7.4.3). The dashed line is the corresponding results from MC simulations [77].

component system, DDFT generalises to give the following pair of coupled equations [87]

∂ρli
∂t

= ∇ ·
[
M l

iρ
l
i∇
∂F

∂ρli

]
, (7.5.1)

∂ρni
∂t

= ∇ ·
[
Mn

i ρ
n
i∇

∂F

∂ρni

]
, (7.5.2)

where M l
i and Mn

i are the mobility coefficients for the liquid and nanoparticles and F is the

Helmholtz free energy. The average densities of the liquid and nanoparticles at site i, ρli and

ρni , respectively, are now both functions of time t. Note that since the system we consider

here is a lattice model, the ∇ operators in Eqs. (7.5.1) and (7.5.2) are implicitly the finite

difference approximations. For more details on this, see Ref. [49] and also the Appendix

below.

Here, we generalise the mobilities M l
i and Mn

i to be mobility matrices which depend on

both position i and the direction of the fluid flow, so as to model the effect of slip, partial-slip
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or no-slip at the surface. Thus we set the mobility matrix at site i for species c to be

M c
i =





mc
i




s 0 0

0 v 0

0 0 s




j = 1,

mc
i




1 0 0

0 1 0

0 0 1




otherwise,

(7.5.3)

where s and v are parameters that allows us to model the effects of slip at the surface. mc
i

is the local mobility coefficient for species c. For the liquid, we set ml
i to be a constant, ml.

However, following Ref. [49], for the nanoparticles we set

mn
i =

mn

2

(
tanh(8ρli − 4) + 1

)
. (7.5.4)

This is a smooth function that is ≈ mn when the solvent density is high and ≈ 0 when the

solvent density is low. This reflects the fact that the origin of the nanoparticle motion is

due to the Brownian motion from being suspended in the solvent and so the nanoparticles

should be immobile when there is no solvent liquid surrounding them [77, 49]. It also prevents

the nanoparticles from moving around once the liquid has evaporated. Henceforth we set

mn = ml = 1, so that all times are given in terms of the Brownian timescale τB = σ2/mnkBT .

The parameter s in Eq. (7.5.3) determines the fluid mobility parallel to the surface in the

first layer of lattice sites (j = 1). The parameter v controls the mobility from the first to the

second layer, in the direction perpendicular to the surface. If there is slip, then s = v = 1.

When there is no-slip or partial-slip then s = 0 and v � 1. As we show below, the receding

fluid contact angles are determined by the value of v.

We solve this system numerically on a lattice with a finite time step. The divergence and

gradients in Eqs. (7.5.1) and (7.5.2) are performed using nearest neighbour finite difference
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approximations. Care in how these are done is needed to prevent numerical instabilities.

We use a mix of forward and backward finite differences. At a particular time step, if a

forward finite difference for the gradient is used then a backward finite difference is used for

the divergence. As time precedes the direction of the spatial finite difference is alternated to

prevent a directional bias that can lead to droplets drifting across the surface. More detail

about the finite difference integration scheme is given in the Appendix.

7.6 Evaporating droplets

7.6.1 Influence of slip at the surface

First, we discuss the behaviour of evaporating liquid ridges that do not contain any nanopar-

ticles. We assume that the fluid density profile only varies in one of the directions parallel to

the surface in order to simplify the numerics. However, we expect the results to be similar to

those one would obtain for a droplet that is initially circularly symmetric with diameter equal

to the width of the liquid ridge, so henceforth we refer to them as ‘droplets’. Evaporation is

simulated by fixing the liquid density of the lattice sites at the top of the simulation box to

a very low value (10−8). This emulates an open system with a mechanism, (e.g. air-flow over

the top of a container) for taking the solvent vapour out of the system. The evaporation

rate of a droplet depends very sensitively on the distance from the top layer of lattice sites

from which the liquid is removed down to the top of the droplet. If the distance is small the

droplet evaporates relatively quickly. On the other hand, if the distance to the top of the

container is large, the droplet evaporation is slow. Here, we set the system size to be three

times the height of the initial droplet. This sets the overall timescale for evaporation: it is

determined by the time it takes for the vapour to diffuse the height of the system.

In Fig. 7.8 we display results for a surface with the slip parameters s = v = 1, for the

evaporation of a droplet that initially has semicircular cross-section and with equilibrium

contact angle ≈ 90°. As it evaporates, the droplet retains its semicircular shape and has a
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t = 4.00× 104t = 3.00× 104

t = 1.50× 104t = 1.00× 102

Figure 7.8: Snapshots of a droplet evaporating from a surface calculated using DDFT with
s = v = 1 (corresponding to slip at the surface), εwl/εll = 0.45, kBT/εll = 1.3 in a 128× 64
system. The times at which the snapshots occur are given on each figure and are in units of
the Brownian timescale τB.

t = 4.00× 104t = 3.00× 104

t = 1.50× 104t = 1.00× 102

Figure 7.9: Snapshots of a droplet evaporating from a surface with s = 0, v = 0.001
(corresponding to no-slip at the surface and a small receding contact angle), εwl/εll = 0.45,
kBT/εll = 1.3 in a 128× 64 system. The times are given on each snapshot.

receding contact angle that remains almost equal to the equilibrium contact angle. This is a

consequence of the smoothness of the surface on which the droplet is sitting and due to the

slip at the surface, since s = v = 1. However, most observed evaporating droplets have (at

least initially) a pinned contact line. This is due to the fact that almost all real surfaces are

rough, at least on the microscopic scale. It is also interesting to note in Fig. 7.8 the slight

vertical density gradient in the vapour, due to the absorbing upper boundary.

By setting the slip parameter s = 0 we prevent any density exchange between neighbour-

ing lattice sites directly above the surface, i.e. those in the j = 1 layer. The density in these

lattice sites can only vary by exchanging mass with the j = 2 lattice sites above them. The

rate at which this occurs is set by the parameter v. Fig. 7.9 shows snapshots of a droplet
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Figure 7.10: The contact angle as a function of time for slip parameters s = 0 and various
values of v, as given in the key. The line stops when the droplet has evaporated (in the v = 0
case the droplet never fully evaporates since for this case the j = 1 layer directly above the
surface is completely immobile). The value v = 0.05 gives very similar results to v = 1, i.e.
for v ≥ 0.05 the behaviour is independent of v.

evaporating from a surface when the slip parameters s = 0 and v = 0.001. We see that the

effect of this decreased mobility near the surface is to pin the contact line, modelling the

effect of surface roughness. The contact lines stay almost stationary at the beginning of the

simulation until the droplet reaches the receding contact angle (in the case in Fig. 7.9, this is

rather small in value). At this stage the droplet continues evaporating with a moving contact

line until it has completely evaporated. We calculate the contact angle over time using the

circle-fitting method of Refs. [77, 55] (see also section 7.4.2). Results from doing this are

shown in Fig. 7.10, for various values of v. We see that when s = 0 the selected value of v

specifies the receding contact angle. Note that there are small oscillations over time in the

value of the receding contact angle created by the top of the droplet moving from one layer

of lattice sites to another. This artefact of the lattice can also be seen in the underlying

binding potential, as discussed in Ref. [38]. Note also that in the final stages the droplet

becomes very small so the circle fitting becomes less and less accurate until eventually it

becomes ill-defined.
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7.6.2 Evaporating droplets of nanoparticle suspension

Now we consider the evaporation of droplets containing nanoparticles. Since the vapour

density near the top of the simulation box is always low, due to Eq. (7.5.4) there is a

very low probability of nanoparticles entering the vapour and escaping the system. The

method for incorporating the effects of surface roughness (i.e. no-slip) via Eq. (7.5.3) is also

applied to the nanoparticles, using the same values of s and v. We assume that the initial

density of the nanoparticles in the liquid droplet is ρn = 0.05ρl, i.e. the initial concentration

ρn/(ρl + ρn) ≈ 0.048.

Fig. 7.11 shows snapshots of a droplet of nanoparticle suspension evaporating from a

surface with almost no-slip (s = 0, v = 0.005). As evaporation proceeds the local density

of the nanoparticles at the gas-liquid interface builds up to form a crust on the surface of

the droplet, with the nanoparticle density at the interface becoming approximately twice

the density inside the droplet. By the time t = 2.98× 104 a buildup of nanoparticles at the

contact line has started to appear, as can be seen in Fig. 7.12. This is the start of significant

change in the nanoparticle density distribution. A short time thereafter t = 3.00 × 104,

the majority of the nanoparticles have collected together at the contact line. This occurs

due to phase separation within the droplet, between a nanoparticle rich phase (with a low

density of the solvent) and a nanoparticle poor phase (with a high density of the solvent)

– i.e. a liquid-liquid phase separation. The phase separation is driven by the fact that as

the solvent evaporates, the concentration of the nanoparticles within the droplet slowly rises.

The separation is triggered when the nanoparticle density reaches the value where the system

becomes unstable to demixing. The phase separation occurs relatively rapidly, depositing

the nanoparticles in two piles at the contact lines. By the time t ≈ 4.8× 104 the bulk of the

solvent has evaporated and the majority of the nanoparticles are at the contact lines. Beyond

this time, the density profiles no longer change in time. Recall that we have assumed that

the system is invariant in one direction, i.e. an evaporating liquid ridge. Thus, the deposited

nanoparticles correspond to two parallel lines of nanoparticles deposited where the edges of



Chapter 7. Dynamical density functional theory for the evaporation of
droplets of nanoparticle suspension 88

t = 4.80× 104t = 4.00× 104

t = 3.02× 104t = 2.98× 104

Figure 7.11: Snapshots during the evaporation of a droplet of nanoparticle suspension from
a surface with εwl/εll = 0.8, εln/εll = 0.75, εnn/εll = 1.5 and kBT/εll = 1.3, s = 0 and
v = 0.005 in a 256 × 128 system. In each pair of density profiles, the solvent is on the left
and the nanoparticle density profile is on the right.
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Figure 7.12: Magnification of a portion of the time t = 2.98×104 nanoparticle density profile
in Fig. 7.11, in the contact line region.

the liquid ridge was initially located. However, if the droplet had initially been circular,

then the nanoparticle deposit would correspond to a ring, like a coffee stain. Note, however,

that the mechanism just described for the formation of this structure is completely different

from that which is normally invoked for coffee ring stain formation, where it is the advective

hydrodynamic fluid flow within the droplet from the centre towards the edge, driven by the

evaporation, that leads to a pile-up of the suspended particles at the pinned contact line. In

the present model there is no advective hydrodynamics and it is for thermodynamic reasons

(i.e. the phase separation) that the nanoparticles are deposited at the contact line.

In Fig. 7.13 we present results for a case where there is slip at the surface (i.e. s = 1,

v = 1), in contrast to the previous case in Figs. 7.11 and 7.12. Fig. 7.13 displays snapshots

from the evaporation of a wider droplet that is initially pancake-like, with a flat top. As
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t = 2.50× 104t = 1.50× 104

t = 5.00× 103t = 5.00× 101

Figure 7.13: Snapshots taken from simulating a droplet of nanoparticle suspension evapo-
rating from a surface with εwl/εll = 0.8, εln/εll = 0.75, εnn/εll = 1.5, kBT/εll = 1.3 and slip
s = v = 1 in a 128× 64 system.

the liquid evaporates, a crust of nanoparticles still forms at the gas-liquid interface, but in

this case the contact line also recedes, due to the slip at the surface. There is a buildup of

nanoparticles at the contact line, which is enhanced compared to the case in Figs. 7.11 and

7.12, due to the fact that the contact line is receding. As it recedes, the demixing transition

is triggered, so there is a deposition of the nanoparticles partway between the initial location

of the contact line and the centre of the droplet. Furthermore, not all of the nanoparticles

are deposited at this stage, due to the larger size of the droplet. As evaporation continues,

the contact lines de-pin from the nanoparticle deposits and further recede. There is therefore

again an increase in the concentration of the nanoparticles in the droplet and also a build

up at the contact line untill again the phase transition is triggered, leading to a second

deposition of nanoparticles closer to the centre. These deposits are somewhat smaller than

the first. We believe that for different parameter values and for even larger droplets, this

process could lead to the formation of a deposit consisting of a greater number of concentric

rings and perhaps even of a periodic nanoparticle deposition. This would appear similar

to the periodic nanoparticle deposition process described in Refs. [69, 28, 30, 31] and the

(experimental) references therein. However, the mechanism here is entirely different: it is

due to the thermodynamics of phase separation, rather than due to advective fluid-dynamics.

For the parameter values used here, when we keep the initial height of the droplet the

same, but make the width greater, we see in Fig. 7.14 something different: At the receding
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contact line, we still see the deposition just described. However, in the middle of this wide

pancake-like droplet, when the concentration of the nanoparticles reaches a high enough level

due to the evaporation, we see spinodal demixing occurring in the middle of the film. This

has a characteristic wavelength and so leads to a periodic array of nanoparticle deposits on

the surface. Such spinodal dewetting may be triggered through the coupling of film height

and solute concentration flucations [88]. In the present system it is not clear whether it is a

surface instability, a bulk instability or a coupling of the two that selects the wavelength of

the structure in the centre of the droplet in Fig. 7.14. The characteristic wavelength is also

seen in the small amplitude periodic modulation in the thickness of the liquid film, that is a

precursor to the demixing. The nanoparticle deposits occur where the troughs are located.

In this situation the film is so thin that the surface and what is left of the bulk of the film

are strongly coupled. The coupling of demixing within the film to the film height has been

observed e.g. in films of polymer blends [89]. For a detailed discussion of demixing in thin

liquid films and how this may couple to the film height profile, see Ref. [90]. There may be

regimes where this leads to demixing induced front instabilities [76, 91].

7.7 Concluding remarks

We have described a DDFTmodel for the evaporation of droplets of a nanoparticle suspension

from surfaces. We have shown that the model can include the effects of (no)slip at the surface,

nanoparticle crust formation and nanoparticle aggregation which leads to the deposition of

ring deposits and other more complex structures.

A particularly striking result of the present work is the observation that the coffee stain

effect can still arise in a system with no advective hydrodynamics to carry the suspended

nanoparticles to the contact line. Here we show that the thermodynamics of aggregation and

phase separation can also lead to the formation of ring stains. Furthermore, it can also lead to

the formation of multiple rings. Further work is required to see if there is a regime within the
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t = 3.00× 104

t = 1.45× 104

t = 7.00× 103

t = 5.00× 102

Figure 7.14: Snapshots taken from simulating a pancake-like droplet of nanoparticle suspen-
sion evaporating from a surface with εwl = 0.8, εln = 0.75, εnn = 1.5 and kBT/εll = 1.3 in a
1024× 64 system.

present model where periodic line deposition can be observed, as in certain hydrodynamic

models [30, 31]. We believe there probably is a regime where periodic deposition occurs,

however for the parameter values and system sizes we have so far explored, we have not

observed this.

The main direction where the present approach should be extended is to incorporate

the advective hydrodynamics of the solvent liquid. The DDFT is certainly adequate for

describing the dynamics of the nanoparticles. However, for the solvent dynamics, especially

for situations such as sliding droplets on inclined planes (see e.g. [92]), then the present

approach is likely not adequate. That said, since the theory is based on a free energy

functional incorporating the correct thermodynamics, it should remain qualitatively correct,

at least for when the system is not driven too far from equilibrium.

Indeed, this is one of the great advantages of using DFT and DDFT as the theoretical

foundation: these base the theory on a free energy function(al) – in the present case, Eq.
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(7.2.6) – so as a result, this gives easy access to important thermodynamic quantities such

as the pressure, surface tension and equilibrium contact angle. Obtaining these from MC

simulations or other approaches is generally more complicated and requires more lengthy

computations [77].
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7.8 Appendix

We integrate the coupled Eqs. (7.5.1) and (7.5.2) forward in time using the Euler algorithm:

ρci (t+ ∆t) = ρci (t) +
∂ρci
∂t

∆t, (7.8.1)

where c = l, n and we replace the terms ∂ρci/∂t by the respective expressions in either the

right hand side of Eq. (7.5.1) or Eq. (7.5.2). We use the value ∆t = 10−5.

To evaluate the spatial finite differences in the direction parallel to the surface, we do the

following: Let d be the direction in which we take the derivative. d alternates between 1 and

−1 from one time step to the next to prevent any direction bias. The following quantity

ρc∇ ∂F

∂ρc

∣∣∣∣
(i,j)

=
(
Ic(i,j), J

c
(i,j)

)
, (7.8.2)
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which occurs in the right hand sides of Eqs. (7.5.1) and (7.5.2), is evaluated as

Ic(i,j) =
ρc(i,j) + ρc(i+d,j)

2

(
∂F

∂ρc

∣∣∣∣
(i+d,j)

− ∂F

∂ρc

∣∣∣∣
(i,j)

)
, (7.8.3)

J c(i,j) =
ρc(i,j) + ρc(i,j+1)

2

(
∂F

∂ρc

∣∣∣∣
(i,j+1)

− ∂F

∂ρc

∣∣∣∣
(i,j)

)
. (7.8.4)

Note that we have assumed that for all time the densities remain invariant in the direction

indexed by k, where i = (i, j, k). If this is not the case, then there is an additional component

of the same form as Eq. (7.8.3).

Multiplying Eq. (7.8.2) by the respective mobility matrix from Eq. (7.5.3) we obtain

(Xc
i , Y

c
i ) = M c

i ρ
c
i∇

∂F

∂ρci
. (7.8.5)

Now when we take the divergence we use the opposite direction d:

∇ · (Xc
i , Y

c
i ) = Xc|(i,j) −Xc|(i−d,j) + Y c|(i,j) − Y c|(i,j−1). (7.8.6)

This is the expression we use for ∂ρci/∂t in Eq. (7.8.1).
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Fluids with competing short range attraction and long range repulsive interactions between the
particles can exhibit a variety of microphase separated structures. We develop a lattice-gas (gener-
alised Ising) model and analyse the phase diagram using Monte Carlo computer simulations and also
with density functional theory (DFT). The DFT predictions for the structures formed are in good
agreement with the results from the simulations, which occur in the portion of the phase diagram
where the theory predicts the uniform fluid to be linearly unstable. However, the mean-field DFT
does not correctly describe the transitions between the different morphologies, which the simula-
tions show to be analogous to micelle formation. We determine how the heat capacity varies as
the model parameters are changed. There are peaks in the heat capacity at state points where the
morphology changes occur. We also map the lattice model onto a continuum DFT that facilitates
a simplification of the stability analysis of the uniform fluid.

I. INTRODUCTION

When the forces between colloidal particles suspended
in a liquid are sufficiently strongly attractive, they can
exhibit phase separation into a high density colloidal
fluid, referred as a colloidal “liquid” and low density sus-
pension, a colloidal “gas”.1 However, in some circum-
stances, the interactions can be attractive at short ranges
when the particle cores are close to one another, but at
longer ranges be repulsive. These short-range attrac-
tive, long-range repulsive (SALR) potentials can arise
in certain suspensions of charged colloids and polymers2

and also in protein solutions.3 Self-consistent Ornstein-
Zernike approximation (SCOZA) integral equation the-
ory for a model of such systems,4,5 showed that when
the long range repulsion is not too strong there is a large
region of the phase diagram where the correlations in
the fluid show significant fluctuation effects and where
the compressibility increases significantly. The SCOZA
theory (which is sophisticated and rather accurate) was
also compared with results from DFT,6 which showed
good agreement between the theories for the liquid struc-
ture. When the long range repulsion is further increased,
the SALR interaction between the particles gives rise to
pattern formation in the fluid state, such as gathering
to form clusters, stripes (lamellas) and holes (bubbles),
referred to as microphase separation. In Ref. 7 Monte
Carlo (MC) computer simulations and integral equation
theory was used to understand the details of the rela-
tion between the liquid-vapour transition line and the
occurrence of any microphase separated phases. As the
repulsion strength is increased, starting from the criti-
cal point, the gas-liquid phase separation is replaced by
microphase separation. In Ref. 8, a study of the cluster
formation showed that it is very similar to micelle for-
mation in aqueous surfactant solutions. However, for the
system considered in Ref. 9, discontinuities in thermo-
dynamic quantities were observed at the onset of cluster
formation, suggesting it is indeed a phase transition.

Further understanding of the phase ordering in SALR
systems was recently gained by Pekalski and co-workers10

by studying a simple one-dimensional lattice model, in
which the SALR interaction was modelled using an at-
tractive interaction between neighbouring particles, re-
pulsion between the third neighbours and no interaction
between second neighbours or any other neighbours. An
exact solution was presented using the transfer matrix
method. The same SALR system was then extended to
two-dimensions (2D) on a triangular lattice,11,12 where
microphase separated phases and also a reentrant uni-
form liquid is observed in the phase diagram. This ap-
proach, based on using lattice models to elucidate the
nature of the structure formation in systems with com-
peting interactions, has a long track record, going back to
seminal works, such as Refs. 13,14. There are several ad-
vantages of using lattice models stemming from the fact
that they are much more straightforward to analyse than
the equivalent continuum models and also the computa-
tions are much simpler, allowing larger systems to be sim-
ulated over longer times. Due to the fact that the clusters
and other structures formed can be more than an order of
magnitude larger than the size of the individual particles,
to properly observe the microphase formation, the sys-
tem size generally needs to be much larger than that one
would use for studying simple gas-liquid systems. There
have also been other (field) theoretical and simulation
studies considering aspects of the phase behaviour of a
variety of fluids interacting via SALR potentials.15–18

The more recent interest in SALR systems in 2D
stems from the experimental observation of microphase-
ordering of nanoparticles at a water-air interface,19,20

which led to theoretical and simulation work to under-
stand the nature of the structures that are formed. Impe-
rio and Reatto21–23 made a detailed study of the phase di-
agram using parallel-tempering MC simulations to deter-
mine the location in the phase diagram of the microphase
separated states for a 2D fluid of particles interacting via
the double-exponential pair potential

u(r) =





∞, if r < σ

−εaσ
2

R2
a

e−r/Ra +
εrσ

2

R2
r

e−r/Rr , otherwise
(1)
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where r is the distance between the centres of the par-
ticles, which have a hard-core of diameter σ. The short
range attraction has strength determined by εa and range
Ra. Similarly, the repulsion strength is determined by
εr and has range Rr. When Ra = σ, Rr = 2σ and
εa = εr = ε , microphase ordering is observed for tem-
peratures kBT/ε . 0.6, where kB is Boltzmann’s con-
stant. At lower densities this takes the form of clusters or
“droplets”, whilst at higher densities striped structures
were observed. At even higher densities a hole phase
is observed, although here the simulations can be diffi-
cult to perform. Imperio and Reatto21–23 showed that
at the onset of microphase ordering, one observes a peak
in the heat capacity and this was used to identify the
location in the phase diagram of the microphase ordered
states. Following this, a DFT model for this system
was developed,24 which is in good qualitative agreement
with simulation results with regard to the topology of the
phase diagram and the structure of the fluid and inhomo-
geneous phases. The DFT also predicts that the transi-
tions from the uniform to the modulated fluid phases are
all either first or second order phase transitions,24 How-
ever, the DFT is a mean-field theory and so one should
be cautious about accepting this prediction of the theory.

The aim of the work described here is to study the
formation of patterns using both MC computer simula-
tions and also DFT for a 2D lattice model in order to
determine the nature of the transitions to and between
the different microphase ordered structures and also to
compare between the methods in order to elucidate what
aspects of the microphase ordering the mean-field DFT
is able to describe. We fix the strength of the repul-
sion between the particles to a particular value and we
also fix the temperature and then calculate the proper-
ties of the fluid as the density and the strength of the
attractive interactions between the particles are varied.
In particular, we calculate the heat capacity and deter-
mine the phase diagram. We also map the lattice model
onto a continuum DFT that allows a simple calculation
of roughly where in the phase diagram one can expect to
find the microphase ordering. This takes the form of a
linear stability analysis.

This paper is laid out as follows: In Sec. II we define
the model fluid and in Sec. III we present MC computer
simulation results, including for the heat capacity, for
the ratio of particles in the system within the clusters
as the total density in the system is increased and for
the static structure factor. In Sec. IV we present the
lattice DFT results, comparing with the MC results and
calculating the fluid phase diagram. In Sec. V we map
onto a continuum DFT and discuss the linear stability of
the fluid. Finally, in Sec. VI we draw our conclusions.

II. THE MODEL FLUID

We assume that the colloids interact via the pair po-
tential

u(r) =

{
V (r) r ≥ σ
∞ r < σ,

(2)

where r is the distance between the centres of the two
particles and the tail of the potential is given by the
double-Yukawa potential7

V (r) =




−εe

−z1(r−σ)/σ

r/σ
+
Ae−z2(r−σ)/σ

r/σ
r ≥ σ

0 r < σ
(3)

where ε is the attraction strength coefficient and A is the
repulsion strength coefficient. The parameters z1 and
z2 determine the range of the attraction and repulsion,
respectively. σ is the diameter of the particles, which
we set to be our unit of length. We fix the coefficients
z1 = 2 and z2 = 0.2 so that the potential is of the form
illustrated in Fig. 1.

In order to simplify the analysis and to reduce the com-
putational costs, we assume that the positions of the par-
ticles are discrete variables, and represent the fluid via a
2D lattice model, containing M lattice sites and with pe-
riodic boundary conditions. We use a square lattice of
size L × L, with lattice spacing equal to the diameter
of the particles σ and we assume that each lattice site
can be occupied by at most one colloid. We denote a
particular configuration of particles by a set of occupa-
tion numbers {ni}, such that, if the site i is empty, then
ni = 0 and ni = 1, if it is occupied. Note that i here is
used as a short form for the position on the 2D lattice,
at point (j, k). We treat the system in the grand canoni-
cal ensemble and so the Hamiltonian of our lattice model
can be written as25

E ({ni}) =

M∑

i=1

ni(Φi − µ) +
1

2

∑

i,j

Vi,jninj , (4)

where Φi is the external potential at the lattice site i and
µ is the chemical potential which determines the number

0 2 4 6 8

−2

−1

0

r/σ

β
V
(r
)

FIG. 1: The double-Yukawa pair interaction potential be-
tween the particles, in the case when the parameters are
βA = 1.5, z1 = 2, z2 = 0.2 and βε = 4.
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of particles in the system N . The final term is the energy
contribution due to the interactions between particles,
where Vi,j is the pair interaction potential between two
particles at sites i and j, which is the discrete lattice
version of the potential in Eq. (3), i.e. evaluated by taking
r in Eq. (3) to be the distance between sites i and j. We
also assume that there are no three-body or higher-body
interactions between the particles. Since here we only
consider the ordering in the bulk fluid, we henceforth
assume that Φi = 0, ∀i. Also, in all our MC and DFT
results below, we truncate the tail of the pair potential
beyond r = rc = 16σ. It is also worth noting that the
lattice model Hamiltonian (4) has a symmetry between
particles and holes (i.e. replacing ni → 1−ni) that, as we
show below, results in the phase diagram of the system
being symmetric around the density ρ = 〈ni〉 = 1/2.

III. MONTE CARLO

We study the system using standard Metropolis MC
simulations.26 The lattice is initiated in a state where
all the sites are randomly occupied by a particle with
probability 0.5. At each step during the simulation, a
random lattice site i is selected and we then calculate the
change in energy ∆E using Eq. (4) when the occupation
number for that lattice site is replaced ni → (1 − ni).
Thus, if the site is already occupied, the trial change is
to remove the particle and if the site is unoccupied, the
trial move it to insert a particle at that site. If ∆E is
negative, then we keep the change. Otherwise, we only
keep the change with probability, e−β∆E .

In Fig. 2, we display typical snapshots from our MC
simulations for a range of state points, for various av-
erage densities ρ = 〈N〉/M (determined by the value of
the chemical potential µ) and several values of the inverse
attraction strength parameter, (βε)−1. At low values of
(βε)−1, as the average density is increased, the system
exhibits a sequence of microphase separated structures.
At very low densities, the system forms a gas phase. In-
creasing ρ, when the value of (βε)−1 is low enough, we see
the particles are arranged into clusters of a characteristic
size. Further increasing ρ, we observe stripe like patterns
for ρσ2 ∼ 0.5. At even higher densities, we observe a fluid
containing ‘bubbles’, again with a characteristic size. Fi-
nally, for large ρ, the system is almost entirely full of
particles, forming a dense liquid. Increasing (βε)−1 leads
to the particles becoming less correlated, making it dif-
ficult to identify what microphase separation occurs, if
any.

A. Heat Capacity

We calculate the heat capacity as the chemical poten-
tial µ is varied, in order to identity the regions of the
phase diagram where the microphase separation occurs.
At a phase transition, in the thermodynamic limit, there

is normally either a discontinuity or a divergence in the
heat capacity. For finite size systems, these show up as
peaks in the heat capacity. Recall also that a “bump” in
the heat capacity was observed at the onset of microphase
ordering in the simulations of Imperio and Reatto.22 The
heat capacity at constant volume can be obtained from
the following derivative with respect to temperature,27

CV =

(
∂U

∂T

)

V

, (5)

where the internal energy U = 〈E〉. Alternatively, it
can be calculated by measuring the energy fluctuations
within the system,28

CV =
〈E2〉 − 〈E〉2

kBT 2
. (6)

A plot of the heat capacity of a system of size 40σ×40σ
as a function of µ and for various values of (βε)−1 calcu-
lated via Eq. (6) is shown in Fig. 3. The heat capacity
tends to zero when the system is completely empty or
fully filled. This is as expected, since the system contains
hardly any particles to give rise to energy fluctuations at
lower values of the chemical potential, µ → −∞, and in
the opposite limit µ → ∞, the system is almost com-
pletely full of particles, so that the energy of the system,
E, also does not fluctuate much in value.

For higher values of (βε)−1, we see in Fig. 3 that the
heat capacity varies smoothly as µ is increased. However,
for lower values of (βε)−1, we see four clear peaks in the
heat capacity. These peaks correspond to changes in the
structure of the fluid (see Fig. 2). Increasing µ, the first
peak corresponds to a change from a low density gas to
a clustered structure. The second peak corresponds to
the change from the cluster to the stripe morphology.
The third peak to the change from stripe to bubble and
then the final fourth peak to the change from a liquid
containing bubbles to a dense liquid without bubbles. As
(βε)−1 is increased, these peaks become smaller in height,
eventually being so small that they cannot be identified.

The overall energy fluctuations in the system also get
larger as one increases (βε)−1. The large (peak) values of
the heat capacity CV corresponds to state points where
there are large fluctuations in the energy of the system.
Hence, the peak in CV identifies state points where there
are multiple types of typical configurations, each with
different energy E.

The presence of these peaks in the heat capacity at
state points where the fluid changes morphology natu-
rally leads to the question: are these phase transitions,
or just changes in the nature of the fluid correlations?
For the low density and high density peak, this question
is addressed in the following section.

B. Cluster Formation

To answer the question just posed above: no, the clus-
ter formation is not a phase transition, it is a continuous
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FIG. 2: Snapshots of typical configurations for a 40σ × 40σ size system with βA = 1.5, z1 = 2 and z2 = 0.2, obtained from
grand-canonical MC simulations for various values of the average density and varying values of (βε)−1.
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FIG. 3: Heat capacity verses chemical potential, µ, for differ-
ent values of (βε)−1, obtained from Monte Carlo simulations
for a 40σ × 40σ size system with βA = 1.5, z1 = 2 and
z2 = 0.2.

change analogous to micellisation in surfactants.

Recall that N is the total number of particles in the
system, which changes over time in a grand canonical
system. We denote the average total number of particles
to be 〈N〉, and 〈N1〉 be the average number of particles
that have no nearest or next nearest neighbours, which
we refer to as “lone particles”. We also calculate the
ratio of lone particles to the total number of particles,
R = 〈N1〉/〈N〉, and how this quantity depends on the
average density and chemical potential of the system.

In Fig. 4, we see that at lower values of chemical po-
tential (i.e. low density), almost all the particles are lone

particles and so R ≈ 1. This is because when we have
a small overall number of particles in the system, we are
likely to find them all to be alone. As the attraction
strength is increased (i.e. as (βε)−1 is decreased), we see
that the drop in value from R ≈ 1 for low µ, to a value
R � 1, becomes much steeper. For example, we see in
Fig. 4(a) that when (βε)−1 = 0.2, there is a very sudden
drop in the value of R at βµ ≈ −5. This corresponds
to the change in morphology of the system from being
mostly full of lone particles to the cluster phase. How-
ever, as can be seen in Fig. 4(b), where we display the
variation of R with the average density ρ on a logarithmic
scale, we see that actually the change in R is continuous.
The results in Fig. 4 were calculated for a 40σ× 40σ size
system, but these results do not change as the system
size is increased (see also section III C below).

As we increase (βε)−1, we see the ratio of lone parti-
cles, R tends towards the value that one would obtain
for a system with ε = 0 and A = 0, i.e. where the par-
ticles are randomly distributed in the system. This is
due to the decrease in particle correlations at higher val-
ues of (βε)−1, where the structure is essentially that of a
highly supercritical fluid. Since the change in the ratio of
lone particles is smooth and continuous as we increase the
chemical potential (density) of the system, it is clear that
the transition that we observe is not a phase transition,
instead it is a structural change in the fluid much like mi-
cellisation at the critical micelle concentration (CMC).29

Micellisation is the spontaneous self assembly of am-
phiphilic molecules in fluids. The forces that hold the am-
phiphiles together are generally weak, so that the struc-
ture within the micelles is fluid-like. Varying the solvent
in which the micelles are suspended changes the inter-
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FIG. 4: Ratio of lone particles in the system, R, for different values of (βε)−1, as a function of: (a) the chemical potential and
(b) the average density. The solid line labelled “Random” corresponds to the value of R for the entirely random uncorrelated
configurations that the system with ε = 0 and A = 0 exhibits. All other results are for the system with βA = 1.5, z1 = 2 and
z2 = 0.2.

actions and so determines the structure and size of the
micelles.29 The clusters we see are equivalent to spher-
ical micelles, the bubbles are analogous to inverted mi-
celles and the stripes to lamellar bilayer micelles. The
similarities between the self-assembly of colloids and am-
phiphilic molecules have been observed in many experi-
mental, simulation and theoretical studies.7,18,22,30,31 In-
deed, Ciach and co-workers were able to describe both
the SALR colloidal system and amphiphilic systems us-
ing the same functional,32 highlighting the many parallels
between these systems.

Further support for the above conclusion about the na-
ture of the structural changes in the system can be gar-
nered from noting that the static structure factor S(k)
varies smoothly as µ is changed, taking the system from
the low density gas state to the cluster morphology. S(k)
is a non-local quantity and so is sensitive to any onset of
long range order, in contrast to R, which characterises
only local (nearest neighbour) ordering. The static struc-
ture factor we compute is1,21

S(k) = N−1 〈ρkρ−k〉

= N−1
〈( N∑

j=1

cos(k · rj)
)2

+
( N∑

j=1

sin(k · rj)
)2〉

,

(7)

where ρk =
∑N
j=1 exp(ik · rj), N is the number of parti-

cles in the system, and rj is the position on the lattice of
each of the particle. In our calculations presented here,
we fix the wavevector k = (k, 0).

In Fig. 5(a) we display results for S(k) for a range
of state points where the cluster phase is observed, for
fixed (βε)−1 = 0.18. At lower densities (i.e. lower values

of the chemical potential µ), the peak in S(k) is fairly
broad with a maximum at kσ = 0.15π ≈ 0.47, but for
higher densities, the peak is sharper, with a maximum at
kσ = 0.2π ≈ 0.63. This is because at the higher densities
the clusters interact more strongly with one another and
the cluster-cluster correlations become significant. When
(βε)−1 = 0.18, the peak in the heat capacity for the
gas to cluster transition occurs at βµ ≈ −6 [see Fig. 3].
Fig. 5(b) shows that as µ is varied around this value, S(k)
varies smoothly, indicating there is no phase transition.
This can also be seen from the plot in Fig. 6, where we
plot S(k) for fixed values of k as the chemical potential µ
is varied, going from the low density gas state to deep in
the region of the phase diagram where the cluster mor-
phology occurs. One further interesting feature of the
results in Fig. 6 is that in the cluster phase, the value of
S(kσ = π/4) is almost constant.

We also calculate the histogram of the probability of
finding a given instantaneous density ρ = N/M (not dis-
played). This has a single peak for all values of the chem-
ical potential βµ ≈ −6, where the heat capacity peak oc-
curs. This is in contrast to the three dimensional system
considered in Ref. 7, where a double peaked histogram is
observed at the onset of cluster formation.

C. Changing Box Size

Our MC simulations are performed in a finite size box
with periodic boundary conditions to approximate an in-
finite system. However, for some of the transitions, it
turns out that the box size is significant in determining
the properties of the system. In Fig. 7 we plot the heat
capacity for (βε)−1 = 0.18, calculated for simulations in
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FIG. 5: In (a) we display the static structure factor S(k)
for fixed (βε)−1 = 0.18 and for a range of different values
of the chemical potential µ where the cluster morphology is
observed. The gas to cluster morphology change occurs at
βµ ≈ −6, where there is a peak in the heat capacity (c.f. Fig.
3). In (b) we display S(k) over a smaller range of values of
µ, going from the gas to the cluster morphology. We see that
S(k) varies smoothly as µ is varied – see also Fig. 6.

a box of size 40σ × 40σ and compare with results for a
larger box of size 60σ × 60σ.

In Fig. 7, we do not observe any effect of the finite box
size on the value of the heat capacity at the peaks cor-
responding to the gas to cluster transition and also the
bubbles to liquid transition. This confirms the conclu-
sion in the previous section that this transition is akin
to micellisation, and that there are no discernable effects
in the above results due to a finite system size. How-
ever, for the heat capacity peaks corresponding to the
cluster to stripe and the stripe to bubble transitions, in
Fig. 7 we do see significant finite size effects. These peaks
shift and become sharper and higher as the system size
is increased. This might be seen as indicative that these
are second order phase transitions, with a heat capacity
divergence in the thermodynamic limit. However, recall
that at a phase transition, in a small finite size simula-
tion box the system fluctuates between the two phases.
This leads to a double peak in the density histogram at
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FIG. 6: The static structure factor S(k) for a range of differ-
ent wavevectors k, as the chemical potential µ is varied, for
fixed attraction strength (βε)−1 = 0.18.
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FIG. 7: The heat capacity versus chemical potential µ, for
two different box sizes for (βε)−1 = 0.18 [c.f. Fig. 3].

that state point (or indeed the histogram of any other
quantity that is a suitable order parameter for the tran-
sition). However, as can be seen in Fig. 8, where we
display the density histogram calculated at the value of
µ corresponding to the peak in the heat capacity, there is
a single peak (the corresponding chemical potential val-
ues are βµ ≈ 4.0 and βµ ≈ 3.1 for L = 40σ and L = 60σ,
respectively). We obtain very similar distributions for
state points either side of where the heat capacity peak
occurs. An alternative order parameter that is more sen-
sitive to periodic ordering is the density Fourier mode
amplitude,

|ρk| =

√√√√
( N∑

j=1

cos(k · rj)
)2

+
( N∑

j=1

sin(k · rj)
)2

. (8)
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FIG. 8: Probability of finding a certain instantaneous density
ρ = N/M calculated at the cluster to stripe transition (i.e.
at the second peak in the heat capacity) for two different box
size for (βε)−1 = 0.18.

In Fig. 9 we display the histogram of |ρk| for the wavevec-
tor k = (kp, 0), where kpσ = 0.2π, which is the value
where there is a peak in S(k). This order parameter his-
togram also has a single peak for values of µ where the
heat capacity exhibits a peak.

From the fact that there is only a single peak in Figs. 8
and 9, we infer that the transition from the cluster to
striped state is simply a change in morphology, much like
the micellisation process. We infer the same for the tran-
sition from the stripe to the bubble morphology. For low
values of (βε)−1, we believe that the large heat capacity
peak at the transition to the stripe phase and the strong
finite-size effects are due to the fact that the stripes that
are formed span the simulation box (see Fig. 2). The
finite size box stabilises the stripes, damping some of the
long wavelength fluctuations.

IV. LATTICE DFT

We now present results for the structure and thermo-
dynamics of the fluid, which are calculated using density
functional theory, and compare with the MC simulation
results. The mean-field DFT that we use is a generalisa-
tion of the theory presented in Ref. 25 (see also references
therein for other applications of the theory). The ther-
modynamic grand potential is approximated by

Ω = kBT
M∑

i=1

[ρi ln(ρi) + (1− ρi) ln(1− ρi)]

+
1

2

∑

i,j

Vi,jρiρj +
M∑

i=1

(Φi − µ)ρi . (9)
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FIG. 9: Probability distribution for the density Fourier mode
amplitude |ρk|, with kσ = 0.2π, calculated at the cluster to
stripe transition (i.e. at the second peak in the heat capacity)
for two different box sizes L and for (βε)−1 = 0.18.

The equilibrium density profile is that which minimises
Ω, i.e. is the solution of

∂Ω

∂ρi
= 0, for all i. (10)

Thus, from Eqs. (9) and (10) we obtain

ρi = (1− ρi) exp
[
β
(
−
∑

j

Vi,jρj − Φi + µ
)]
. (11)

This set of coupled equations are solved by Picard
iteration.25 In order to make sure ρi does not fall out-
side the interval (0, 1) during the iteration process, we
introduce a mixing parameter, α. The idea is that after
each iteration, we mix the new density value with the
previous one,

ρi = αρnew
i + (1− α)ρold

i . (12)

The mixing parameter α typically takes a value in the
range (0.01, 0.2). Too large a value of α leads to instabil-
ities in the iteration, whilst if α is too small, it leads to
slow convergence.

DFT results and comparison with MC

In Fig. 10, we display examples of density profiles cal-
culated using the lattice DFT for various values of the at-
traction strength parameter (βε)−1. These are obtained
by initiating the Picard iteration with a flat density pro-
file, to which is added a small amplitude random value
at each lattice site. The density profiles show the same
sequence of structures as observed in Fig. 2 from the
MC simulation, namely uniform, cluster, stripe, bubble
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FIG. 10: A series of density profiles for varying values of (βε)−1 calculated using the lattice DFT for a 40σ × 40σ size system
with random initial conditions, for βA = 1.5, z1 = 2 and z2 = 0.2 [c.f. Fig. 2]. The colours associated with each density value
can be deduced from the top row of profiles, which are for (βε)−1 = 0.5.

and uniform as the chemical potential (density) is in-
creased. The agreement between Fig. 10 and Fig. 2 is
rather good. Within the DFT each of these different
structures correspond to different solution branches of
the grand potential. The global minimum structure for a
given state point contains no defects. Thus, in Fig. 10 the
vast majority of the structures displayed are not global
minima of Ω. To calculate the phase diagram, we calcu-
late the free energy for defect-free structures, which are
obtained by initiating the Picard iteration from profiles
with the required structure, rather than from random ini-
tial conditions. As µ is increased, there are points where
these branches cross. At these points the solutions on
the different branches have the same µ, T and pressure
p = −Ω/V , where V = Mσ2 is the area of the 2D system.
Thus, the (incorrect) prediction from the mean-field DFT
is that there are first order phase transitions between all
the different structures.

We calculate the lines of thermodynamic coexistence
in the phase diagram predicted by the DFT by select-
ing an initial lattice with a certain microphase separa-
tion and then change the chemical potential µ and follow
that particular branch of solutions. For example, to find
the coexistence curve for the gas to cluster transition, we
start the DFT iteration with a uniform gas profile and
increase µ with the new guess being the minimised den-
sity profile from the previous value of µ. While doing this
we record the grand potential Ω. Also, we start with an
initial density profile corresponding to the cluster struc-
ture at a higher value of µ and then decrease µ following
this branch of solutions. Coexistence is found when the
pressure, temperature and chemical potential of the two

structures are equal. The lines of coexistence define the
boundaries in the phase diagram of where the different
microphase separated structures occur.

−5 0 5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4

0.45

βµ

(β
ε)

−
1

MC

DFT

Spinodal

FIG. 11: Phase diagram showing the instability threshold
(spinodal, displayed as the blue dashed line) and the coex-
istence lines (red solid lines) obtained from DFT for varying
values of the chemical potential µ and attraction strength
(βε)−1. The location of the peaks in the heat capacity deter-
mined from the MC simulations for a 40σ × 40σ system are
also shown, as the green dotted line. Note that these lines
terminate where the peaks disappear (c.f. Fig. 2).

As shown in Fig. 11, we see that at the highest val-
ues of (βε)−1 (weak attraction) there is no microphase
separation and the system exhibits a single uniform fluid
phase. The DFT predicts microphase separation for val-
ues of (βε)−1 < 0.45. For the higher values in this range,
e.g. (βε)−1 = 0.4, the heat capacity from MC simulations
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in Fig. 3 has no discernible peaks. Nonetheless, compar-
ing Fig. 10 and Fig. 2, we see that the DFT is correctly
predicting the structures formed, it is solely failing to
describe the nature of the transition to the modulated
structures.

We also see a general shift of the occurrence of mi-
crophase ordering to higher values of µ as we increase
(βε)−1. In Fig. 11 we also display as green dotted lines
the locations of the peaks in the heat capacity, from the
MC simulations for a system of size 40σ × 40σ. We see
that these peaks lie close to the DFT coexistence lines for
the gas to cluster transition and also the bubble to liq-
uid transition. However, for the transitions to the stripe
state, they are further away. We should emphasise, how-
ever, that these are subject to significant finite size ef-
fects. For a larger system, these are much closer to the
DFT coexistence line.

The linear instability threshold line in Fig. 11 is cal-
culated numerically by starting from an initial density
profile with the given average value of the density, but
with small amplitude random fluctuations. We then de-
termine whether the fluctuations grow over time as we
iterate. The boundary of the region where they do grow
is referred to as the spinodal in Fig. 11. We can also see
that the instability line is completely inside the coexis-
tence line. An alternative (but entirely equivalent) way
to calculate the spinodal is to determine when the uni-
form density solution to Eq. (9) ceases to be a mimimum.
Consider a small amplitude harmonic density perturba-
tion of the form

ρi = ρ+ aeik·ri , (13)

where the amplitude a is a small parameter, ri is the
location of lattice site i and k is any wavevector that
is commensurate with the lattice. Substituting Eq. (13)
into Eq (9) and then requiring that there is no solution
except when a = 0, is equivalent to the requirement that

1

1− ρ + ρβVd(k) > 0, (14)

where Vd(k) =
∑
j Vi,je

−ik·ri,j is the discrete Fourier sum
of the potential, where ri,j = ri−rj . The quantity on the
left hand side of Eq. (14) is equal to 1/SDFT (k), where
SDFT (k) is the static structure factor predicted by the
DFT. Within the spinodal displayed in Fig. 11, Eq. (14)
is no longer true for all k and thus the uniform density
profile is no longer a minimum of the free energy.24

In Fig. 12 we compare how the average density varies
with chemical potential in the MC simulations with the
results from DFT. We see that the MC simulation results
show a smooth increase in the density. However, for suffi-
ciently low values of (βε)−1, the DFT gives jumps in the
density as we increase µ. The jumps are plotted as dots
in Fig. 12, which corresponds to the values of µ where mi-
crophase separation occurs. The magnitude of the jumps
decreases as we increase (βε)−1. The jumps in the DFT
occur because of various local minima in the free energy.

0 10 20 30
0

0.2

0.4

0.6

0.8

1

βµ

ρ
σ
2

(βε)−1 = 0.18, MC

(βε)−1 = 0.26, MC

(βε)−1 = 0.18, DFT

(βε)−1 = 0.26, DFT

4 6 8 10 14

βµ

FIG. 12: Top: a comparison of the average density as a func-
tion of µ for two different values of (βε)−1 from the MC sim-
ulations (dashed lines) and DFT (solid lines). The dotted
line in the DFT curves show the jumps at which the tran-
sitions between the different morphologies occurs. Bottom:
DFT density profiles showing the discontinuous changes in
the stripes as we vary µ for fixed (βε)−1 = 0.18, resulting in
the non-smooth curves in the density plot above.

Hence, the DFT has a tendency to stick to the initial den-
sity profile (local minimum) that we start from. Thus,
the initial density profile is important for determining if
the grand potential minimum that the iteration goes to
is actually the global minimum. Different initial density
profiles give us different local minima, which also depends
on the box size, as expected. The DFT results are closer
to the MC simulation results at higher values of (βε)−1

where there are more fluctuations in the system and the
structural changes that occur in the system are smoother.

For example, when (βε)−1 = 0.18 (typical of low values
of (βε)−1), the DFT exhibits many discontinuities as we
increase the chemical potential. This can be easily no-
ticed in the middle portion of the curve in Fig. 12 which
corresponds to the stripe region. This is due to discon-
tinuous changes in the width of the stripes that arise as
we change the chemical potential. This is illustrated in
the lower plots in Fig. 12, where we see that the width of
individual stripes varies with changing chemical potential
- i.e. not all stripes in Fig. 12 have the same width. This
confirms that the pattern formed is not necessarily the
global equilibrium, since we expect the width of all the
individual stripes to be identical at a global minimum.

Plotting the value of (βε)−1 at which the transitions
occur as a function of density, we see that in this represen-
tation the phase diagram is symmetric around ρσ2 = 0.5
(see Fig. 13). The instability line is fully within the re-
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FIG. 13: Phase diagram showing the instability line (blue)
and the coexistence lines (red) from DFT for varying values
of the density ρ and attraction strength ε, for fixed βA = 1.5,
z1 = 2 and z2 = 0.2.

gion of the phase diagram where the uniform liquid is
metastable. The shaded regions are the regions of co-
existence between the two phases. We also see that the
density range over which there is coexistence decreases
as we increase (βε)−1.

V. CONTINUUM DFT APPROXIMATION

We now approximate the discrete lattice model by
treating it with a continuum DFT, that enables a more
straightforward calculation of quantities such as the lin-
ear instability threshold (spinodal) and other related
quantities. This mapping from the lattice to a continuum
assumes that the density profile ρi varies slowly enough
that we can treat it as a discretised representation of
a continuous profile ρ(r). This also enables us to con-
vert the sums over lattice sites into integrals. Hence, the
Helmholtz free energy F = Ω + µ〈N〉 [cf. Eq. (9)], can
be written as the following functional:

F =

∫
f(ρ(r)) dr +

1

2

∫∫
ρ(r)ρ(r′)V (|r− r′|) dr dr′

+

∫
ρ(r)Φ(r) dr (15)

where V (r) is the pair potential in Eq. (3), Φ(r) is the
external potential and f is a local free energy per unit
area given by

f(ρ) = kBT [ρ ln (ρ) + (1− ρ) ln (1− ρ)]− χ

2
ρ2 . (16)

The first term is the free energy for a non-interacting
(ε = A = 0) lattice gas. The second term involving the
parameter χ is a term to correct for the effect of the map-
ping from the lattice to the continuum, so that the con-
tinuum model gives the same free energy for the uniform
fluid as the lattice model. The parameter χ is the fol-
lowing integrated difference between the continuum pair

potential and the lattice potential:

χ = 2π

∫ rc

σ

rV (r) dr −
∑

<i,j>

Vi,j . (17)

The reason for mapping to a continuum model is that
the following linear stability analysis is made somewhat
more simple. The aim of the linear stability analysis is to
determine where in the phase diagram the uniform fluid
state becomes unstable, i.e. we locate the region of the
phase diagram in which the microphase ordering occurs.

Consider a uniform fluid with density ρ0. We wish to
know whether any small amplitude density modulation
will grow over time (fluid is unstable) or whether the
amplitude will decrease (fluid is stable). Specifically we
consider a density fluctuation of the form [c.f. Eq. 13]

ρ = ρ0 + δρ(r, t)

= ρ0 + ξeik·r+ωt, (18)

where ξ is the initial amplitude of the sinusoidal pertur-
bation that has wavenumber k. The growth/decay rate
of this mode is given by the dispersion relation ω = ω(k),
where k = |k|.33

To determine the time evolution of this non-
equilibrium density profile, we require a theory for the
dynamics of the colloids. This is supplied by dynamical
density functional theory (DDFT), which shows that for
Brownian colloidal particles the time evolution of ρ(r, t)
is governed by1,33,34

∂ρ

∂t
= D∇ ·

[
ρ∇δβF

δρ

]
, (19)

where D is the diffusion coefficient of the colloids. Note
that for an equilibrium fluid, the chemical potential1,35,36

µ =
δF

δρ
(20)

is a constant. Thus, in Eq. (19), it is gradients in
the chemical potential of the non-equilibrium fluid that
drives the dynamics. Substituting Eq. (18) into Eq. (19)
together with Eq. (15) with the external potential Φ = 0,
and then linearising in δρ, we obtain the following expres-
sion for the dispersion relation33 [c.f. Eq. (14)]

ω = −Dk2

(
1

1− ρ0
− βχρ0 + βρ0V̂ (k)

)
, (21)

where V̂ (k) is the 2D Fourier Transform of the pair po-
tential

V̂ (k) = 2π

∫ ∞

0

rV (r)J0(kr) dr, (22)

where J0(x) is the Bessel function of order 0. In Fig. 14
we display the dispersion relation for the uniform fluid
with density ρσ2 = 0.5, for various values of ε.
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FIG. 14: The dispersion relation (21) for varying attraction
strength ε, for the uniform fluid with density ρσ2 = 0.5, for
fixed βA = 1.5, z1 = 2 and z2 = 0.2.

From the dispersion relation, we can find the linear in-
stability threshold line. Since we know that the system
becomes unstable when ω > 0, the instability line is cal-
culated for values of ε and ρ0, where ω(kc) = 0, where kc
is the value at which ω(k) is a maximum, i.e.

dω(k)

dk

∣∣∣∣
k=kc

= 0. (23)

The linear instability line is thus easily obtained from
the dispersion relation and is displayed in Fig. 15. In
this figure, we also display the linear instability line for
the original lattice DFT model.
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FIG. 15: Phase diagram showing the linear instability thresh-
old line for the lattice DFT (blue solid line) and also the
instability line for the continuum DFT (red dashed line), cal-
culated from dispersion relation in Eq. (21).

Comparing the two instability lines in Fig. 15 shows
that the maximum value of (βε)−1 where the system
is linearly unstable is predicted to be a little higher in
the continuum theory, compared to the lattice model.
Comparing with Fig. 2 and Fig. 10, we see that this

simple calculation does indeed identify the region of the
phase diagram where microphase separation is observed.
Of course, it does not specify which structures (cluster,
stripe or bubble) are formed, but it does allow one to nar-
row down to the relevant region of the phase diagram.

We find the above analysis rather instructive: map-
ping from a lattice to continuum theory or vice-versa is
a “trick” that is often performed to aid the analysis of a
system. This procedure is clearly an approximation, but
the fact that the two curves in Fig. 15 are reasonably
close to one another gives confidence that in the present
situation the mapping is justified.

VI. CONCLUSION

In this paper we have studied a lattice model for 2D
colloidal fluids where the colloids have attractive inter-
actions at short separations, but repel at longer range.
We model this by using a double-Yukawa pair potential
between the particles. This SALR system self assembles
to form different microphase separated structures. Using
MC computer simulations and by calculating the heat
capacity of the system as the chemical potential µ and
the attraction strength coefficient ε are varied, we deter-
mine where in the phase diagram the different morphol-
ogy changes occur. At lower values of (βε)−1, the heat
capacity exhibits peaks at the transitions between the
different structures. The height of the peaks decrease as
we increased (βε)−1, eventually disappearing. The peak
at the transition from the gas to the cluster state and
also for the bubble to liquid shows no system size depen-
dence for systems greater than or equal to 40σ × 40σ in
size. However, the peaks for the transitions to the stripe
phase do change with system size, for the system sizes
we were able to consider. By calculating how the num-
ber of lone particles and the static structure factor varies
through the transition between the gas and the cluster
phase, we conclude that this transition is a structural
transition entirely akin to micellisation. The transition
from the cluster to the stripe phase is very similar, ex-
cept here occurring on a larger scale, by the gathering
together of clusters to form stripes. This behaviour is
also observed in living polymerisation, where a peak in
the heat capacity is also observed.37–39

Due to the fact that the pair potential (2) between the
particles is fairly long ranged, the MC simulations can
be computationally expensive. Recall that we cut-off our
slowly decaying potential at a range of rc = 16σ, which is
much longer ranged than the potentials considered e.g. in
Refs. 10–14. We only implemented the simple Metropo-
lis MC algorithm, so correctly sampling for system sizes
greater than 60σ × 60σ and for many state points was
not feasible. To simulate efficiently for larger systems, a
more sophisticated MC incorporating e.g. cluster moves
is required. This simple MC also limited what temper-
atures (i.e. values of (βε)−1) we could go down to. For
(βε)−1 = 0.18 we are confident that our MC simulations
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are correctly sampling the system. However, for lower
temperatures, the algorithm struggles to sample a rep-
resentative set of states in the time available. The low
temperature properties of the model are interesting as it
may be the case that at very low temperatures the struc-
tural transitions we observe become genuine phase tran-
sitions. It is certainly the case that other lattice models
with competing interactions11–14 do exhibit phase tran-
sitions at low temperatures. We leave investigating this
aspect to future work.

We also used a simple lattice DFT to calculate density
profiles for the system. Comparing Figs. 2 and 10, the
agreement between simulation and the mean-field DFT
is rather good. The pair potential (2), with the param-
eter values that we use, is fairly long ranged and slowly
varying – see Fig. 1. In the case of purely attractive
systems, when the pair potentials are long ranged and
slowly varying (the classic mean-field situation) then one
would not be surprised to find that mean-field DFT is ac-
curate. However, given that the present system exhibits
microphase ordering and is strongly fluctuating, it was
not a-priori clear that the agreement between the DFT
and the MC is as good as it is.

We also used the DFT to calculate the phase diagram
and found that the heat capacity peaks in the MC simu-
lations are close to the transition lines predicted by the
DFT for the gas to cluster transition and the bubble to
liquid transition. For the cluster to stripe and stripe
to bubble transitions, they are somewhat further away.

One aspect of the DFT is that at lower values of (βε)−1,
the model exhibits many local free energy minima. This
means that to use the DFT to calculate the phase dia-
gram one needs to ensure one has a good choice of initial
density profile. Starting from a density profile that is not
good approximation, the iteration can go to a local min-
imum with a free energy value above that of the global
minimum. Such behaviour is often observed in pattern
forming systems. Thus, great care is required to deter-
mine the system sizes in which the system arranges in
a state that is close in free energy value to the global
minimum value.

Mapping the lattice model onto a continuum DFT
yields a theory from which determining the linear in-
stability threshold line using the dispersion relation is
straightforward, enabling us to easily and rapidly deter-
mine the range of parameter values where the microphase
ordering occurs. This provides a useful starting point if
future analysis of the behaviour of systems with different
pair potential parameter values is required.
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Chapter 9

Final Remarks

Two different statistical mechanics based models for simulating the evaporation of nanopar-

ticle suspensions have been developed and the simulation results have been compared. Both

models are relatively simple in that they are lattice based and the code to simulate only uses

basic mathematics. The two models take different approaches: MC works with the coarse

grained particle configurations on the lattice, DDFT works with ensemble average density

profiles. The power of DDFT is that thermodynamic quantities like surface tensions and the

phase diagram can be obtained easily. When we compare quantities like the contact angle

between the two approaches, we see good agreement at the temperatures of interest.

Treating the fluid via a simple Ising model with nearest neighbour interactions usually

leads to blocky droplets but our choice of coefficients in the interaction matrix for neigh-

bouring sites in the Hamiltonian minimises the effect of the grid and leads to hemispherical

droplets for both the MC and DDFT models. This is an important aspect of our model and

we believe future researchers may want to adopt this approach.

Both models used a similar methodology to model surface roughness. Roughening the

surface by making the surface height a random variable on the scale of the grid does not work

well because the scale is too coarse. However, we found that changing the mobility matrix in

the layer of lattice sites at the surface to prevent fluid motion parallel to the surface in the

108



Chapter 9. Final Remarks 109

lattice sites touching the surface gives a good approximation for the effect of rough surfaces

on droplet motion. The choice of the parameter v in Eq. (7.5.3) determines the receding

contact angle. This parameter can be chosen to match experimental results.

The MC simulations were able to run for systems sizes up to 256 × 256 × 128, taking

normally only several hours to a few days. Our MC model is versatile enough to allow

multiple kinds of surface and dynamical rules to be added to change the behaviour of the

system so many more effects related to the size/shape of the nanoparticles and surface

structure/chemistry could be added if desired. Currently there are no hydrodynamic effects

in the MC model so it is desirable for this aspect to be addressed.

As noted, the advantage of the DDFT is that within this theory thermodynamic quan-

tities like the free energy can be calculated. However, the DDFT used also neglects the

Hydrodynamics. This could be remedied by using the DDFT of Refs. [79, 80] that incorpo-

rates the hydrodynamic interactions between the colloids, for describing the nanoparticles

and the DDFT of Refs. [36, 6] for the solvent. However, one striking result of our work is

that we observe what appears to be a coffee stain effect, a phenomena previously thought to

be dependent on the advective hydrodynamics within the droplet, even though this in not

in our theory.

Another possible future development is to extent the DDFT simulations into 3D space.

For the 3D version of Fig. 7.14 we would expect concentric circles of deposit on the surface;

it would be nice to confirm this with simulation results.
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