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Abstract. Recent experiments have shown that various structures may be formed

during the evaporative dewetting of thin films of colloidal suspensions. Nano-particle

deposits of strongly branched ‘flower-like’, labyrinthine and network structures are

observed. They are caused by the different transport processes and the rich phase

behaviour of the system. We develop a model for the system, based on a dynamical

density functional theory, which reproduces these structures. The model is employed to

determine the influences of the solvent evaporation and of the diffusion of the colloidal

particles and of the liquid over the surface. Finally, we investigate the conditions

needed for ‘liquid-particle’ phase separation to occur and discuss its effect on the self-

organised nano-structures.
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1. Introduction

Surface patterns resulting from structure formation occur naturally in many different

systems and are extensively studied in various scientific fields. A classic example are

branched patterns, e.g. found in river networks [1] or formed by bacterial colonies

[2], that sometimes form fractals. Other examples are the labyrinth patterns such as

those formed via calcification and mineralisation processes [3]. The spontaneous self-

assembly and self-organisation of atoms, molecules and nano-particles at interfaces is

a widely researched topic not only because the resulting structures are interesting but

also because they may be used in the manufacturing of nanostructures, e.g. assembling

colloids to form photonic bandgap crystals [4]. A large variety of intricate structures

can be formed even during the dewetting process of films of non-volatile fluids on solid

substrates. The dewetting process starts with the rupture of the initially homogeneous

film caused either by a surface instability (spinodal dewetting [5]) or by the nucleation

of holes which often occurs at surface defects [6, 7, 8, 9, 10, 11, 12]. The holes then grow

[13] and the rims meet to form a global network, drop or labyrinth pattern [14, 15, 16].

The evaporative dewetting of polymer/macromolecule solutions [17, 18, 19] and

colloidal (nanoparticle) suspensions [20, 21, 22, 23, 24] can produce a wide variety of

patterns and has been intensely studied in various experimental settings over recent

years. Although the motivation for the work presented here is mainly drawn from

the latter, we believe that our results also explain the basic features in the case of

evaporative dewetting of solutions. The particular experiments that directly motivate

our theoretical work presented here are those described in Refs. [22, 24, 25, 26, 23] that

use a suspension of thiol-passivated gold nano-particles dispersed in an organic solvent.

A drop of the suspension is spin-coated onto a flat silicon substrate to form a thin film

over the surface. The solvent evaporates during the spin-coating and leaves a nano-

particle pattern on the surface. In another experimental setup a drop of suspension

is placed on the surface within a teflon ring [27]. The evaporative dewetting is slower

than in the case of spin-coating and the structuring is observed using video-microscopy

[23]. What these experiments show is that branched structures are formed by transverse

instabilities of the receding mesoscopic contact line. However, more intriguing are the

patterns that are formed in an ultrathin layer that is left behind this contact line.

Three different types of structures have been observed: a labyrinth pattern formed

during spinodal dewetting, a two-scaled network structure formed via the nucleation

and growth of holes and a branched structure formed by a fingering instability that

occurs at the dewetting front of nucleated holes. The diffusive mobility of the nano-

particles and the interaction energies between the particles can be altered by changing

the thiol chain length. The fingering instability is found for relatively low nano-particle

mobilities. Because these structures form in the ultra-thin layer, the height of film is of

the same order of magnitude as the diameter of the colloids.

To model these processes, simple two-dimensional (2d) lattice kinetic Monte-Carlo

(KMC) models were proposed [28, 26, 23, 29]. Vancea et. al. [29] made a detailed
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investigation of the characteristics of the branched structures and their dependence

on the model parameters. They observed that as in the experiments the fingering

instability becomes stronger the smaller the nano-particle mobility gets. A pseudo

three-dimensional KMC model has also been considered [26, 30] which can reproduce

dual-scale network patterns.

An alternative approach that may be used for modelling such systems is based

on thin-film hydrodynamical models, which are derived by making a long-wave

approximation [31]. Recently, for example, line-pattern formation has been observed in

a simple long-wave model for a thin film of colloidal suspension evaporatively dewetting

from a surface [32]. Such thin film equation based models provide a good description

of the system on mesoscopic length scales and reproduce the experimental results

[33, 34, 35, 36]. However, they are unable to describe the dynamics of the system

at the microscopic (single particle) level. In Ref. [37] a more detailed account of

the different approaches that may be used for modelling the evaporative dewetting of

colloidal suspensions is given, so we do not re-review the subject here.

In the present work, we give a detailed account of an alternative model for this

system that has been briefly discussed before [37, 38]. It is based on Dynamical Density

Functional Theory (DDFT) [39, 40, 41, 42] and goes beyond the 2d KMC model by

also allowing us to investigate the influence of liquid diffusion over the surface. This

paper is laid out as follows: First, in Sec. 2, we present the coarse-grained model for the

Hamiltonian and the resulting approximation for the free energy used in our model. This

is followed in Sec. 3 by an introduction to the dynamical equations of the DDFT. In Sec. 4

we discuss the phase diagram and perform a linear stability analysis of homogeneous

steady films, whereas in Sec. 5 we present fully nonlinear simulation results. In Sec. 6

we summarise our findings and draw some conclusions.

2. Free Energy for the System

We consider a simplified coarse-grained two-dimensional model for the system. The

surface of the substrate is divided into a square array of discrete lattice sites. We

choose the cell size so that each cell may be occupied by at most one nano-particle,

i.e. the lattice spacing σ is roughly equal to the diameter of the nano-particles. As

a consequence, each lattice site must be in one of three possible states: (i) occupied

by a nano-particle, (ii) occupied by liquid or (iii) unoccupied (as displayed in Fig. 1).

To characterise the state of the system, we introduce two occupation numbers for each

lattice site i: ni for nano-particles and li for liquid. These occupation numbers are

binary values which describe the state of each site. The occupation numbers for (i) a

lattice site containing a nano-particle would be ni = 1, li = 0, for (ii) a site occupied by

a film of liquid we have ni = 0, li = 1 and for (iii) a vacant site we have ni = 0, li = 0.

This type of lattice model has the following Hamiltonian [28]:

E = − εl
∑
<ij>

lilj − εn
∑
<ij>

ninj − εnl
∑
<ij>

nilj
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Vacant

Nano-
Particle

Liquid

Figure 1. The sketch indicates how the substrate is divided into lattice sites and

shows the three possible states of each lattice site.

− µ
∑
i

li +
∑
i

φlili +
∑
i

φni ni , (1)

where
∑

<ij> denotes a sum over pairs of nearest neighbours. φli and φni are external

potentials acting on the liquid and nano-particles respectively, at lattice site i. Three

interaction terms are included which determine the strength of attraction between

neighbouring cells. εl is the interaction energy between two adjacent cells containing

films of liquid, εn is for adjacent cells which both contain nano-particles and εnl is

the energy between a cell containing a nano-particle and a cell containing liquid. The

amount of liquid on the surface is not a conserved quantity because it can evaporate to

and condense from a reservoir of vapour above the surface. µ is the chemical potential

of this reservoir.

From the Hamiltonian (1) we can derive an expression for the free energy of the

system. The probability that a lattice site i is covered by a liquid film in an equilibrium

configuration is given by the following integral over time t:

ρli = lim
τ→∞

1

τ

∫ τ

0

li(t)dt. (2)

Similarly, the probability that a lattice site i contains a nano-particle is given by the

following expression:

ρni = lim
τ→∞

1

τ

∫ τ

0

ni(t)dt. (3)

By choosing the grid spacing σ to be our unit of length, equal to one, these probabilities

are also equal to the local number densities for the liquid and nano-particles. Following
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the approach described in Refs. [43, 44], we make a Bragg-Williams mean field

approximation for the (semi-grand) free energy of the system:

F = kBT
∑
i

[ρli ln ρ
l
i + (1− ρli) ln(1− ρli) + ρni ln ρni

+ (1− ρni ) ln(1− ρni )]− εl
∑
<ij>

ρliρ
l
j − εn

∑
<ij>

ρni ρ
n
j

− εnl
∑
<ij>

ρni ρ
l
j − µ

∑
i

ρli +
∑
i

φliρ
l
i +
∑
i

φni ρ
n
i , (4)

where kB is Boltzmann’s constant and T is the temperature. This is a semi-grand

free energy because the liquid is treated in the grand canonical ensemble (the reservoir

of vapour fixes the chemical potential µ), whereas the number of nano-particles in the

system is a conserved quantity (so these are treated canonically). Eq. (4) is derived using

a ‘zeroth-order’ mean-field approximation and thus higher order terms are omitted (e.g.

the terms involving ln(1−ρni −ρli) which describe the excluded area correlations between

the nano-particles and the liquid). If we assume that the density values only vary on

length scales � σ, then we can define a gradient operator for this discrete system:

∇ρlx,y ≡
(
ρlx+1,y − ρlx,y, ρlx,y+1 − ρlx,y

)
,

∇ρnx,y ≡
(
ρnx+1,y − ρnx,y, ρnx,y+1 − ρnx,y

)
, (5)

where each lattice site i is now represented by the coordinates (x, y). Using the operators

(5) we can express the summation over pairs of nearest neighbours as∑
<ij>

ραi ρ
β
j = 4

∑
i

ραi ρ
β
i −

∑
i

(∇ραi ) · (∇ρβi ), (6)

where α, β = n, l. Substituting (6) into our lattice free energy (4) we obtain

F = kBT
∑
i

[ρli ln ρ
l
i + (1− ρli) ln(1− ρli) + ρni ln ρni

+ (1− ρni ) ln(1− ρni )]−
∑
i

[4

2
εl(ρ

l
i)

2 +
4

2
εn(ρni )2 + 4εnlρ

n
i ρ

l
i

]
+
∑
i

[εl
2

(∇ρli)2 +
εn
2

(∇ρni )2 + εnl(∇ρni ) · (∇ρli)
]

− µ
∑
i

ρli +
∑
i

φliρ
l
i +
∑
i

φni ρ
n
i , (7)

where the factor of 1
2

is included to avoid double counting. Taking the continuum limit,

so that
∑

i →
∫
dr, ρni → ρn(r), ρli → ρl(r), φni → φn(r) and φli → φl(r) where the

vector r = (x, y) is a continuous variable, we obtain for the free energy of the system:

F [ρl, ρn] =

∫
dr
[
f(ρl(r), ρn(r)) +

εl
2

(∇ρl(r))2

+
εn
2

(∇ρn(r))2 + εnl(∇ρn(r)) · (∇ρl(r))
]

+

∫
drρl(r)(φl(r)− µ) +

∫
drρn(r)φn(r), (8)
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where

f(ρl, ρn) = kBT [ρl ln ρl + (1− ρl) ln(1− ρl) + ρn ln ρn

+ (1− ρn) ln(1− ρn)]− 2εlρ
2
l − 2εnρ

2
n − 4εnlρnρl. (9)

This free energy functional may be employed to determine the phase diagram of the

system – i.e. the state of the system in the thermodynamic limit (see Section 4).

However, the observed patterns are often non-equilibrium structures that are ‘dried in’,

i.e., that evolve towards the equilibrium state on a time scale that is much longer than

the typical observation times. To model the non-equilibrium processes that result in the

observed self-organised structures, one needs kinetic equations for the time evolution of

the densities. They are developed in the following section.

3. Modelling the Dynamics of the System

The chemical potential of the nano-particles may be calculated using the following

functional derivative [45, 46, 47]:

µn =
δF [ρn, ρl]

δρn
. (10)

In equilibrium systems the chemical potentials take a uniform value throughout the

system. However, this is not the case for non-equilibrium configurations that the system

takes during its time evolution. There, the chemical potential varies temporally and

spatially over the surface. In particular, non-equilibrium density profiles ρl(r, t) and

ρn(r, t) give, via Eq. (10), a non-equilibrium chemical potential for the nano-particles

µn(r, t). Thus, the time-dependent densities are coarse-grained ‘average’ quantities.

Assuming that locally, the system is in equilibrium, we may define these non-equilibrium

density fields in a similar way as the equilibrium densities [see Eqs. (2) and (3)]:

ρli =
1

τM

∫ τM

0

li(t)dt, (11)

ρni =
1

τM

∫ τM

0

ni(t)dt, (12)

where τM is now a finite time that is large compared to the solvent molecular collision

time, but is small compared to the time scale for a nano-particle to move from one

lattice site to a neighbouring lattice site. If we now assume that the driving force which

causes a flux of the nano-particles over the surface of the substrate to be given by the

gradient of the chemical potential µn, then the nano-particle current is given by

jn = −Mn(r, t)∇δF [ρn, ρl]

δρn(r, t)
, (13)

where Mn(r, t) is a mobility coefficient which we assume to depend on the local densities

ρn(r, t) and ρl(r, t). Since the number of nano-particles in the system is conserved we

can combine Eq. (13) with the continuity equation to get

∂ρn(r, t)

∂t
= ∇ ·

[
Mn(ρn, ρl)∇

δF [ρn, ρl]

δρn(r, t)

]
. (14)
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We expect that when the liquid density is uniform throughout the system (ρl(r) = ρ)

and the density of the nano-particles is small everywhere (ρn(r) � 1) then the nano-

particle dynamics given by Eq. (14) must reduce to the diffusion equation (i.e. Eq. (13)

becomes Fick’s law). When we apply this to Eq. (10), for small ρn, we get the leading

order term:

µn(r) ≈ kBT ln ρn(r) + C +O(ρn), (15)

where C = C(ρl) represents constant terms. Substituting Eq. (15) into Eq. (14) we see

that in order for Eq. (14) to reduce to the diffusion equation the mobility Mn has to be

proportional to ρn(r, t). Therefore, we write the nano-particle mobility as:

Mn = ρn(r, t)m(ρl(r, t)), (16)

where m(ρl(r, t)) is a function of the local liquid density. We assume that the diffusion of

the nano-particles over the surface is caused by the Brownian ‘kicks’ from the molecules

in the liquid. Therefore when the liquid density is low (on the dry substrate) the nano-

particles are almost immobile. However, when the density of the liquid on the surface

is high (where the substrate is covered by the liquid film), the nano-particles are much

more mobile. We model this behaviour by a function m(ρl(r, t)) which switches between

a very small value, when ρl is small and α, which is the mobility coefficient for the nano-

particles in a liquid film, when ρl > 0.5. The precise form of m(ρl) has a negligible effect

on the qualitative behaviour of the system. Here we use

m(ρl) =
α

2
{1 + tanh[30(ρl −

1

2
)]}. (17)

Next we consider the time evolution of the liquid density ρl(r, t). The dominant process

governing the dynamics of the liquid is the evaporation and condensation of the liquid

between the surface and the vapour reservoir above the substrate. We define two

different chemical potentials: µ is the chemical potential of the liquid in the reservoir

(cf. Eq. (4)) and µS(r, t) = δF
δρl

+ µ denotes the local chemical potential of the liquid on

the substrate. We assume that the evaporative contribution to the time evolution of the

liquid density is proportional to the difference between µS(r, t) and µ. This gives us the

following expression:

∂ρl(r, t)

∂t
= −Mnc

l

δF [ρn, ρl]

δρl(r, t)
, (18)

where the dynamical coefficient Mnc
l is assumed to be a constant. The value of Mnc

l

determines the rate of the non-conserved (evaporation) dynamics of the liquid. We

should also allow for (conserved) diffusive motion of the liquid over the surface. We

assume from DDFT that the diffusion of the liquid takes a similar form as the diffusion

of the nano-particles given in Eq. (14). We therefore model the full liquid dynamics by

combining the diffusive and the evaporative terms

∂ρl(r, t)

∂t
= ∇ ·

[
M c

l ρl∇
δF [ρn, ρl]

δρl(r, t)

]
−Mnc

l

δF [ρn, ρl]

δρl(r, t)
. (19)

Preprint– – 23 June 2011



Modelling the evaporation of thin films of colloidal suspensions using DDFT 8

The mobility coefficient M c
l for the conserved part of the dynamics is assumed to be

constant. The ratio between the conserved and non-conserved mobility coefficients

determines the influence that the diffusive/evaporative terms have on the overall

dynamics of the liquid (i.e. Mnc
l /M

c
l � 1 corresponds to the case when the liquid

dynamics are strongly dominated by evaporation and Mnc
l /M

c
l � 1 corresponds to the

case when liquid diffusion plays an important role in the dynamics). Thus, equations

(8), (9), (14) and (19), taken together, define our model equations, which govern the

dynamics of the system.

Note that when the liquid density ρl(r, t) is a constant, the theory reduces to the

DDFT developed by Marconi and Tarazona [39], that may be obtained by approximating

the Fokker-Planck equation for a system of Brownian particles with overdamped

stochastic equations of motion [39, 40, 41, 42, 43]. Equations similar to (19) can also be

derived in the context of hydrodynamics. The resulting mesoscopic hydrodynamic thin

film equations contain different mobilities and local energies [48, 49]. The combination

of the diffusive and the evaporative terms can also be seen as a combination of a

conserved Cahn-Hillard-type dynamics with a non-conserved Allen-Cahn-type dynamics

[50, 51, 52].

4. Phase Behaviour

4.1. One-component fluid

It is important to understand the equilibrium behaviour of the fluid in our system as

this gives us some insight into how the system behaves when it is out of equilibrium. Of

particular importance is to determine what phases we may observe and the stability of

these phases. Since we are modelling the evaporative dewetting of the liquid we initially

seek parameter values which lead to a high density liquid phase (liquid film) coexisting

with a low density phase (‘dry’ substrate). Employing a linear stability analysis, we

calculate the spinodal curve, i.e., the limit of linear stability for an infinitely extended

system. The spinodal curve is defined as the locus of points where the curvature of

the free energy is zero, d2F
dρ2

= 0, which is equivalent to the isothermal compressibility

being zero [45]. Note that in this section we set ρl = ρ, for simplicity. We also calculate

the binodal curve, i.e., the coexisting density values for a system in equilibrium, by

equating the chemical potentials, temperature and pressure in each of the coexisting

phases. The area outside the binodal curve is a stable region where we see no phase

separation. Inside the binodal curve we have phase separation in the thermodynamic

limit. However, the linear stability of the fluid depends on whether the curvature of free

energy is positive or negative. When we have positive curvature (outside the spinodal

curve), the system at this state point rests within a local minimum of the free energy,

i.e., it is linearly but not absolutely stable. There is a free energy barrier that must be

traversed to cross into the (absolutely stable) equilibrium phase. This is known as the

metastable region, where local fluctuations in the density (if sufficient in size) create
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Figure 2. Phase diagrams showing the binodal (solid line) and spinodal (dotted

line) for the one component pure fluid. In (a) we plot the phase diagram in the

temperature T versus density ρ plane and in (b) we display the same phase diagram

in the temperature versus chemical potential µ plane.

nucleation points for the phase transition to occur. When the curvature of the free

energy is negative (inside the spinodal curve) there is no free energy barrier. This is the

unstable region where we have spontaneous phase separation, i.e. where fluctuations in

the densities spontaneously grow. One may also say that the homogenous fluid layer is

linearly unstable to harmonic perturbations with certain wave numbers.

We first consider the phase behaviour of the reduced case where we have a single

component fluid with no nano-particles (i.e. ρn = 0), as shown in Fig. 2. We set the

external potential φl(r) = 0 which results in a uniform fluid density ρl(r) = ρ = N
A

,

where N is the number of ‘particles’ of liquid (i.e. filled lattice sites) and A is the area

of the system. From Eq. (9) we find that the Helmholtz free energy per unit area of the

uniform system is

f =
F

A
= kBT [ρ ln ρ+ (1− ρ) ln(1− ρ)]− 2εlρ

2. (20)

We define the Helmholtz free energy per ‘particle’ as

a ≡ F

N
= kBT

[
ln ρ+

(1− ρ)

ρ
ln(1− ρ)

]
− 2εlρ. (21)

From this, we may calculate other thermodynamic quantities: the pressure P and

chemical potential µ, which are given by the following relations [45]:

P = ρ2

(
∂a

∂ρ

)
, (22)

µ = a+ ρ

(
∂a

∂ρ

)
. (23)

We can calculate the spinodal for the one component fluid from the free energy Eq. (20)

and the definition of the spinodal d2f
dρ2

= 0, giving us the following equation:

kBT

εl
= 4ρ(1− ρ). (24)
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Equations (21) and (22) give the following expression for the pressure in the system:

P = −kBT ln(1− ρ)− 2εlρ
2. (25)

In order to simplify the task of determining the phase diagram, we may use the symmetry

of the Hamiltonian (1). The Hamiltonian remains unchanged under the exchange

li → (1− li), i.e., it has a symmetry between ‘holes’ (nearly dry substrate) and ‘drops’

(liquid layer). This means that for the one component fluid, the phase diagram is

symmetric around the line ρ = 1
2
, i.e. for a phase on the binodal with a density of ρ = ρ1

the coexisting phase has a density of ρ2 = (1−ρ1). Using Eq. (25) and this symmetry of

the Hamiltonian, we obtain the following expression for the density along the binodal,

by equating the pressure in the two phases (P1 = P2):

kBT

εl
=

2(2ρ− 1)

ln[ρ/(1− ρ)]
(26)

The maximum on this curve is at ρ = 1
2

and corresponds to the critical temperature

kBT/εl = 1. Below the critical temperature there are two solutions; these are the

coexisting densities. The binodal and spinodal curves for the pure liquid are plotted in

Fig. 2(a). Fig. 2(b) shows the value of the chemical potential along these curves.

The spinodal region can also be calculated from the dynamical equations (14) and

(19) employing a linear stability analysis. This allows us to determine the typical

length scales of the density fluctuations in the liquid film which might exist during

the evaporation process. To perform the linear stability analysis we consider a liquid

density which varies in space and time ρl = ρ(r, t). The free energy for the single

component fluid (ρn = 0) is given by:

F =

∫
dr
[
f(ρ) +

ε

2
(∇ρ)2 − µρ

]
, (27)

where the subscript on the liquid interaction variable εl is dropped for simplicity. The

steady state solutions of the liquid dynamical equation Eq. (19) represent the equilibrium

density configurations. There are several steady states for this system, (e.g. a density

profile containing a free interface between two co-existing densities with µ = µcoex) but

here we consider the simplest steady state: a flat homogeneous film with a density ρ = ρ0

which is defined by:

δF

δρ

∣∣∣
ρ0

= 0. (28)

We consider small amplitude perturbations δρ from ρ0 of the form ρ = ρ0 + δρ =

ρ0 + φeik·reβt, where the amplitude φ � 1 is a small positive constant, k = |k| is

the wave number and β is the rate of growth/decay with time (for positive/negative

values) of the perturbation. We substitute this expression for ρ into the dynamical

equation (19) and expand in powers of δρ. Then taking just the leading order terms

allows us to derive a simple expression for β which can be solved analytically.

A Taylor series expansion of the functional derivative of the free energy (27) yields:

δF

δρ
=
∂f

∂ρ
− ε∇2ρ− µ

Preprint– – 23 June 2011



Modelling the evaporation of thin films of colloidal suspensions using DDFT 11

=
∂f

∂ρ

∣∣∣
ρ0

+
∂2f

∂ρ2

∣∣∣
ρ0
δρ+ εk2δρ− µ+O(δρ2). (29)

Substituting this approximation for the functional derivative (29) into the dynamical

equation (19) we obtain

βδρ = Mc∇ ·
[
ρ0(ik

∂2f

∂ρ2

∣∣∣
ρ0
δρ+ iεk3δρ)

]
−

Mnc

(∂f
∂ρ

∣∣∣
ρ0

+
∂2f

∂ρ2

∣∣∣
ρ0
δρ+ εk2δρ− µ

)
+O(δρ2). (30)

Using the definition of ρ0 [Eq. (28)] gives ∂f
∂ρ
|ρ0 − µ = 0 and neglecting second order

terms O(δρ2) we arrive at the expression for the growth rate

β = −
(
Mcρ0k

2 +Mnc

)(∂2f

∂ρ2

∣∣∣
ρ0

+ εk2
)
. (31)

When β is positive, small perturbations from the steady state ρ0 with the wave number

k grow in amplitude over time. Conversely, if β is negative then small perturbations

decay. Since Mc, ρ0, k2, Mnc and ε are all positive quantities, β is always negative

(i.e. the fluid is stable for all wave numbers k) when the second derivative ∂2f
∂ρ2
|ρ0 is

positive. However when ∂2f
∂ρ2
|ρ0 is negative, we find that β is positive for small values

of k and negative when k is large - i.e. the fluid is unstable against long wavelength

(small wave number) fluctuations in density. This corresponds to the thermodynamic

definition of the spinodal as previously discussed. We may define a critical wave number

kc, as the wave number at which β(kc) = 0. When Mnc 6= 0 and ∂2f
∂ρ2
|ρ0 < 0, the critical

wave number kc is given by:

kc = ±

√
−1

ε

∂2f

∂ρ2

∣∣∣
ρ0
. (32)

The real system we are modelling is very large (L� 2π/kc), which means fluctuations

can occur on the full spectrum of wave numbers. The mode with wave number k = km,

which has the largest positive value for β grow the fastest. The wave number km
corresponds to a typical length scale 2π/km that are visible during the early stages of

spinodal decomposition. However, at later stages (beyond the linear stage) the length

scale of the modulations is likely to deviate from this value as the pattern coarsens.

For the purely evaporative case when Mc = 0, the maximum value of β(k) occurs at

k = km = 0, which means there is no typical length scale in the early stages of the

evaporation process. However, in the purely diffusive case Mnc = 0 (and ∂2f
∂ρ2
|ρ0 < 0),

β(k = 0) = 0 due to mass conservation, and the maximum value of β(k) occurs

at a non-zero value of km, so the typical length scale 2π/km is visible during the

spinodal decomposition–evaporation. In all other cases the following expression is both

a necessary and sufficient condition for the existence of the typical length scale (i.e.

km 6= 0):

Mnc

Mc

< −ρ0

ε

∂2f

∂ρ2

∣∣∣
ρ0
. (33)
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Figure 3. There are three possible forms for β(k): (a) shows an example of each

form and (b) shows the regions in parameter space where these different types of β(k)

curves occur, for the case when Mnc/Mc = 1 and kBT = 1.

If a typical length scale does exist, then the corresponding wave number km is given by:

km =

√
−1

2

(1

ε

∂2f

∂ρ2

∣∣∣
ρ0

+
Mnc

ρ0Mc

)
. (34)

Figure 3 displays (a) typical β(k) curves for a one-component fluid and (b) the

values of 1/ε and ρ0 where each type of curve is found (for the case when Mnc/Mc = 1

and kBT = 1). Three distinct cases are displayed: Case (i) the solid line (red online)

in (a) and the striped area (red online) in (b) display the case when one observes the

growth of density fluctuations with a typical length scale. Case (ii), the dashed line

(blue online) in (a) and the hashed area (blue online) in (b) correspond to the situation

when the fluid is unstable for density fluctuations corresponding to small wave numbers

k but no typical length scale is observed, because the fastest growing mode is the k = 0

fluctuation. Case (iii), the dotted line (green online) in (a), corresponding to the (green)

solid area in (b), displays the situation when the liquid is linearly stable against density

fluctuations with all wave numbers k.

4.2. Binary mixture

To determine the binodal and spinodal curves for the binary mixture is more challenging

than for the one component system. There are many more parameters defining the

model. In particular, the behaviour of the system strongly depends on the ratios between

the different interaction strengths εl, εn and εnl. Ref. [53] gives a good overview of the

equilibrium bulk fluid phase behaviour for binary fluid mixtures and the different classes

of phase diagrams that may be observed. Here, we only describe the influence of the

chemical potential of the nano-particles µn on the densities in the coexisting phases and

on the critical point.

For two phases of a binary mixture to coexist in thermodynamic equilibrium, there

are four conditions that must be satisfied. We denote these two phases as (i) the
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Figure 4. Binodal curves for the binary mixture for varying fixed values of the

chemical potential of the nano-particles µn, for the case when εn/εl = 0.43 and

εnl/εl = 0.57.

low density phase (LDP) or ‘dry’ substrate and (ii) the high density phase (HDP) or

substrate covered by a colloidal film:

TLDP = THDP , (35)

µLDPl = µHDPl , (36)

µLDPn = µHDPn , (37)

PLDP = PHDP , (38)

where T is the temperature, µl and µn are the chemical potentials of the liquid and

nano-particles respectively, P is the pressure and the superscript denotes the phase.

The first of these equations is trivial to satisfy in our model. We may then fix the

chemical potential of the nano-particles, to some value η, and then solve equations (36),

(38), µLDPn = η and µHDPn = η for the four density values: ρLDPl , ρLDPn , ρHDPl and ρHDPn .

The curves of the coexisting density values (binodals) for the parameters εnl/εl = 0.57

and εn = 0.43 are displayed in Fig. 4. The density values calculated for the two phases

meet at a critical temperature to form binodal curves similar to the one found for the

one component system Fig. 2a. However, we find that the reflection symmetry w.r.t.

the liquid density ρl = 1/2 seen for the one component fluid is broken. In particular,

the critical point of the liquid is no longer at ρl = 1/2. The liquid binodal reduces to

the one for the pure liquid as µn → ±∞. The curves for µn → −∞ and µn → ∞ are

identical within our model due to the symmetry of the Hamiltonian (1). We observe that

the density of the nano-particles ρn → 0 becomes very small as the chemical potential

decreases µn → −∞. Conversely, the density becomes very large ρn → 1 as the chemical

potential increases µn →∞. The critical point on the nano-particle binodal curve shifts

in a similar manner to that of the liquid binodal.

We now consider the linear stability of the fluid for the two component case. There

are many different possible steady states for the binary system including some with
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interfaces between coexisting phases. However, here we limit ourselves to investigating

the linear stability of the simplest steady state: where both components have a uniform

constant density over the surface. The uniform density of the nano-particle film is

denoted by ρn = ρ0
n and the density of the liquid is given by ρl = ρ0

l where ρ0
l is

determined from the condition:

δF

δρl

∣∣∣
ρ0l

= 0. (39)

We consider small amplitude perturbations in the density of both components from this

steady state. We assume these perturbations to take the form:

ρl = ρ0
l + δρ = ρ0

l + φeik·reβt, (40)

ρn = ρ0
n + χδρ = ρ0

n + χφeik·reβt, (41)

where the amplitude |φ| � 1 and the parameter χ is the ratio between the perturbation

in the densities of the two components. The sign of χ determines whether any

instabilities are in-phase (positive) or anti-phase (negative) between the two coupled

density fields. From the magnitude of χ we can determine whether an instability is

driven by the liquid component (|χ| � 1), the nano-particles (|χ| � 1) or stems from

the interaction between the two components (|χ| = O(1)). Making a Taylor series

expansion of the functional derivative of the free energy with respect to the liquid

density δF
δρl

, keeping only terms linear in δρ and substituting this expression into the

liquid dynamical equation (19) we obtain

β = −(M l
cρ

0
l k

2 +M l
nc)
(∂2f

∂ρ2
l

∣∣∣
ρ0l ,ρ

0
n

+ χ
∂2f

∂ρl∂ρn

∣∣∣
ρ0l ,ρ

0
n

+ k2εl + k2χεnl

)
. (42)

Turning our attention now to the nano-particles: in order to linearise Eq. (14), we

must first examine the nano-particle mobility function Mn(ρl, ρn) = ρnm(ρl), given by

Eqs. (16) and (17) in our model. Making a Taylor series expansion of the function m(ρl)

we obtain
m

α
= γ0 + γ1δρ+O(δρ2), (43)

where γ0 ≈ 0 for small values of ρl (ρl < 0.45) and γ0 ≈ 1 for large values of ρl
(ρl > 0.55). Substituting a Taylor series expansion of the functional derivative, together

with Eq. (43), into the time evolution equation for the nano-particles Eq. (14) we find

χβ = −αρ0
nγ0k

2
(
χ
∂2f

∂ρ2
n

∣∣∣
ρ0l ,ρ

0
n

+
∂2f

∂ρn∂ρl

∣∣∣
ρ0l ,ρ

0
n

+ k2χεn + k2εl

)
. (44)

When ρl is small, γ0 ≈ 0. In consequence, χ = 0 and the Eqs. (42) and (44) reduce

to the one of the one-component fluid (with a local free energy that depends also on

ρ0
n). We now address the case when ρl > 0.55, and we therefore assume γ0 = 1. The

expressions for the time dependency of the amplitudes of the two density fields (Eq. (42)

and Eq. (44)) can be solved simultaneously to determine β and χ as a function of the

wave number k. This allows us to determine the stability of the fluid for different

values of the system parameters. A fact that simplifies the analysis is that these two
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equations may be written in matrix form (similar to the case of two coupled mesoscopic

hydrodynamic equations for dewetting two-layer films [54]):

β

(
χ

1

)
= M ·G

(
χ

1

)
, (45)

where,

M =

(
−αρ0

nk
2 0

0 −(M l
cρ

0
l k

2 +M l
nc)

)
,

G =

(
k2εn + fnn k2εnl + fnl
k2εnl + fnl k2εl + fll

)
,

and we have used the shorthand notation fij ≡ ∂2f
∂ρi∂ρj

|ρ0l ρ0n , where i, j = n, l and where

n denotes the nano-particles and l denotes the liquid. We can determine β(k) using the

following expression for the eigenvalues of a 2× 2 matrix:

β(k) =
Tr(M ·G)

2
±
√

Tr(M ·G)2

4
− |M ·G|. (46)

We define critical wave numbers k = kc for the density fluctuations in the two-component

fluid as the wave numbers at which one of the two solutions of Eq. (46) is equal to zero.

Below [Eqs. (49) and (50)] we derive explicit expressions for kc which can be used to

determine the conditions for the linear stability of the two component fluid (i.e. the fluid

is stable when there is no solution for kc and the function β(k) < 0 for all wave numbers

k). Since the matrix M is diagonal and all diagonal elements are non-zero the inverse

M−1 exists, allowing us to rewrite Eq. (45) as a generalised eigenvalue problem

(G−M−1β)

(
χ

1

)
= 0. (47)

Setting β = 0 in this equation in order to find the critical wave numbers kc, we find that

the determinant |G| = 0, implying that

k4
c (εnεl − ε2nl) + k2

c (εnfll + εlfnn − 2εnlfnl) + fnnfll − f 2
nl = 0. (48)

In the special case when εnεl = ε2nl, the critical wave number is given by:

kc =

√
f 2
nl − fnnfll

εnfll + εlfnn − 2εnlfnl
. (49)

However, more generally, when εnεl 6= ε2nl, we have

kc =

√
−b±

√
b2 − 4ac

2a
, (50)

where

a = εnεl − ε2nl,
b = εnfll + εlfnn − 2εnlfnl,

c = fnnfll − f 2
nl. (51)
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Figure 5. (a) - (f) Dispersion relations for the case when εnεl > ε2nl, εnfll + εlfnn −
2εnlfnl > 0 (i.e. in Eq. (51) a > 0, b > 0) and kBT = 1. The graphs in the top

row show β(k) and the graphs in the middle row show χ(k). In (a) and (d) the

parameters are: ρ0
l = 0.648, ρ0

n = 0.3, εl = 1.25, εn = 0.5, εnl = 0.6, µ = −3.35,Mn =

1,M l
c = 0 and M l

nc = 1. In (b) and (e) the parameters are: ρ0
l = 0.648, ρ0

n = 0.3, εl =

1.25, εn = 0.5, εnl = 0.6, µ = −3.35,Mn = 1,M l
c = 0 and M l

nc = 9. In (c) and (f) the

parameters are: ρ0
l = 0.901, ρ0

n = 0.3, εl = 1.4, εn = 0.6, εnl = 0.8, µ = −3.8,Mn =

1,M l
c = 0 and M l

nc = 1. (g) shows how the spinodal line shifts for increasing ρ0
n, where

εnεl − ε2nl = 0.25, εn = εl and kBT = 1. (h) shows how the spinodal line shifts as the

value of a = εnεl − ε2nl increases, when ρ0
n = 0.3, εn = εl and kBT = 1.

Note that the locus c = 0 is the spinodal curve [55, 56]. We categorise the linear

behaviour of the system by the signs of a and b in Eq. (51) as they have a profound

impact on the shape of the dispersion curves. In Fig. 5 we display for the case when

a > 0 and b > 0 all the different possible β(k) curves, together with the corresponding

χ(k). From Eq. (46) we see that there are two branches for β(k), which we denote

β+(k) and β−(k). The corresponding χ(k) curves are denoted χ+ and χ−, respectively.

The β+ branch (red solid lines in Fig. 5(a) - (c)) corresponds to the second term in

Eq. (46) being positive and the β− branch (dashed lines) corresponds to the second

term being negative. Due to mass conservation of the nano-particles, there is always

one β(k) branch that is zero at k = 0, and χ = 0 at k = 0 for the curve that corresponds

to the β(k) that is not zero at k = 0. If fll ≥ 0 then β+(k = 0) = 0 and χ−(k = 0) = 0.

Alternatively, if fll ≤ 0 then β−(k = 0) = 0 and χ+(k = 0) = 0.

Inspecting Fig. 5, we find that there are three possible forms for β(k), similar to
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the one component fluid case (Fig. 3). In Fig 5(a) there is a maximum in β+ at k 6= 0.

This indicates that the fluid is unstable and that one will observe the growth of density

fluctuations with a typical length scale 2π/k+
m during the early stages of the spinodal

process. Here k+
m refers to the wave number at the maximum of β+. In the second case

[Fig. 5(b)] the fluid is linearly unstable for density fluctuations with small wave numbers

k as in Fig. 5(a), but the maximum in β+(k) occurs at k+
m = 0, i.e. there is no typical

length scale visible in the density profiles. In the last case, shown in Fig. 5(c), the fluid

is stable for all wave numbers k. We can use Eq. (50) for the critical wave number kc to

determine the stability of the system. Since a > 0 and b > 0 we observe that there is at

most one positive root of β(k), which only exists if c < 0 (i.e. inside the spinodal). The

spinodal curve when a > 0 and b > 0 is plotted in Fig. 5(g) and (h). In (g) we show how

the spinodal line moves upwards in 1/εl as the nano-particle density ρ0
n is increased. In

(h) we show how the shape of the spinodal changes as the value of the parameter a is

increased. We find that larger values of a make the spinodal curve flatter.

In the reduced case when a = 0, one can determine from Eqs. (51) that b is

always be positive. We find the same three types of dispersion relations for this

reduced case as we do for the a > 0, b > 0 case. For the case when a > 0 and

b < 0 we observe that the fluid is unstable for all possible combinations of parameter

values. When we have a < 0 (where at least one of the components of the mixture

is more attracted to the other component than to itself), we find that b must be

positive. In this regime, we observe that as k → ∞, β+(k) → ∞ and β−(k) → −∞.

This indicates that the density fluctuations with an infinitesimally small typical length

scale will grow fastest. This behaviour corresponds to a mixture that exhibits micro-

phase separation. This behaviour is common in block copolymer systems, where

chemical bonding prevents macroscopic demixing and instead demixing on the nano-

scale is witnessed [57, 58]. Micro-phase separation is also observed in certain colloidal

suspensions [59, 60, 61, 62, 63].

An important consideration which must be made with the binary system is whether

‘liquid-particle’ phase separation can occur as well as the ‘liquid-gas’ (low density - high

density) phase separation that we have already discussed. The former corresponds to

the coexistence of two phases, both having a high density. In terms of our system this

would mean that we have coexisting phases with a high liquid density (i.e. ρl >∼ 0.6) in

each phase. The coexisting values depend upon the temperature T , chemical potential

µ and the interaction energies εl, εn and εnl. It is known that the following condition

must be satisfied for ‘liquid-particle’ demixing to occur [53]:

εnl <
εn + εl

2
. (52)

The existence of liquid-particle phase separation in addition to the gas-liquid phase

separation implies that for certain parameter values we may have three co-existing

phases. This situation has the potential to lead to dramatic consequences for the pattern

formation in our dynamical system. We return to this issue in Sec. 5.4 below.

Preprint– – 23 June 2011



Modelling the evaporation of thin films of colloidal suspensions using DDFT 18

5. Nonlinear Dynamics

We now go beyond the linear analysis presented above and discuss numerical results for

the fully non-linear time evolution.

5.1. Numerical setup

Recall that the dynamics of our model is governed by the coupled partial differential

equations (14) and (19), together with the free energy functional Eq. (8). We numerically

solve these non-linear partial differential equations using a finite difference scheme on

a square lattice with grid spacing ∆x = 1. The time step size ∆t varies between

simulations, as the stability of our numerical scheme depends strongly on the values of

the parameters in the model. Central difference approximations are made for the partial

derivatives with respect to space and forward difference approximations are made for the

partial derivatives with respect to time. The Laplacian terms (∇2) are approximated

using the eight-neighbour discretisation [64]:

∇2ρ =
1

2(∆x)2

(∑
ρNN +

1

2

∑
ρNNN − 6ρ

)
, (53)

where,
∑
ρNN denotes a sum over the nearest neighbour lattice sites and

∑
ρNNN

denotes a sum over the next nearest neighbour lattice sites. Alternative approximations

may be used [65]. However, the choice of Laplacian approximation has little effect on

the qualitative behaviour of the system.

Our numerical results show that as the various parameters in the model are varied,

several different patterns are formed. We begin in Sec. 5.2 by considering the effect

of changing the chemical potential µ of the vapour reservoir. We then focus on the

fingering instability. In Sec. 5.3 we discuss the effect of varying the parameter α in the

nano-particle mobility and also the role which the conserved part of the liquid dynamics

plays in the overall dynamics of the system, by varying the mobility coefficient M c
l .

Finally, in Sec. 5.4 we discuss the influence of ‘liquid-particle’ demixing at the receding

front and how this affects the fingering mechanism.

For the simulation results shown in Sec. 5.2 and Sec. 5.3 we set the interaction

energies to εl = 1.4, εn = 0.6 and εnl = 0.8. Using the linear stability analysis we have

shown that it is possible to obtain stable phases with these parameter values [Fig. 5(c),

a > 0 and b > 0 in Eq. (51)].

5.2. Influence of the vapour chemical potential µ

In section 4.1 we have discussed how changing the value of µ, the chemical potential of

the vapour reservoir above the surface, affects the structures displayed by the system

as the pure liquid evaporatively dewets from the surface. Recall that as µ is decreased

below its coexistence value µcoex, the dewetting mechanism is at first via the nucleation

of holes and then when µ is further decreased, via spinodal dewetting. This sequence

as µ is decreased is also observed when there are nano-particles dispersed in the liquid,
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although as previously discussed, the phase boundaries are shifted and there is the

possibility of other (liquid-particle) phase transitions. Choosing a binary mixture with

the parameter values kBT = 1.0, εn = 0.6, εl = 1.4 and εnl = 0.8 gives a phase with a

high liquid density coexisting with a low density of the liquid. We also set M c
l = 0 and

Mnc
l = 1 to allow us to initially focus on just the evaporative non-conserved dynamics of

the liquid. We set the initial density profiles corresponding to a (high density) uniform

film of liquid with density ρl(x, t = 0) = 1− 10−6 mixed with nano-particles having an

average density of ρavn = 0.3. In order to allow for the growth of density fluctuations

when the system is (linearly) unstable, we add a small amplitude random noise to

the density profile of the nano-particles. Thus the initial nano-particle density profile is

ρn(x, t = 0) = ρavn +2λ(Y −0.5), where Y is a random real number uniformly distributed

between 0 and 1 and λ is the magnitude of the noise. Without these random density

fluctuations the density profiles would remain uniform under the evolution of the DDFT

with a film of liquid remaining. Our boundary conditions are periodic in all directions.

The c = 0 spinodal curve (as calculated in the previous section, Fig. 5) defines the

limit of stability, i.e. inside this line the fluid becomes linearly unstable. Thus, the fluid

is unstable when βµ < −3.869, where β = 1/kBT . The speed of the process increases

with decreasing values of βµ. For very low values of βµ the evaporation process is so fast

that we do not see any pattern formation in the nano-particles - the liquid evaporates

too quickly for the nano-particles to diffuse. For the parameters εl = 1.4, εn = 0.6,

εnl = 0.8, α = 0.5, M c
l = 0 and Mnc

l = 1 this occurs when βµ <∼ −4.2. Fig. 6 shows the

Figure 6. Density profiles displaying evaporation via spinodal decomposition. The

top row shows the liquid density profiles and the bottom row shows the nano-particle

profiles at times t/tl = 7 (left), t/tl = 8 (centre) and t/tl = 9 (right), where tl ≡ β
Mnc

l
.

The system parameter values are: kBT = 1, εl = 1.4, εn = 0.6, εnl = 0.8, M c
l = 0,

Mnc
l = 1, α = 0.5, βµ = −4.08 and λ = 0.005.
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particular case when βµ = −4.08. We see that the liquid behaves in a similar manner

to that of a single component fluid by spontaneously dewetting everywhere. Now the

evaporation is slow enough for the nano-particles to move into areas with a high density

of liquid during this evaporative process which creates a fine network structure [as shown

in Fig. 6(e) and (f)]. However, this diffusion of the nano-particles is limited as it is still

a much slower process than the evaporation of the liquid. We observe that towards

the end of the process small heaps of nano-particles are formed, where the density is

significantly larger. This effect is enhanced by the attraction between the nano particles

(εn > 0). Increasing the value of µ, we move from the linearly unstable (spinodal) region

into the metastable region of the phase diagram (c.f. Fig. 2). Note however, that the

actual values of βµ on the binodal and spinodal now differ from those in Fig. 2 because

of the inclusion of nano-particles, c.f. Fig. 4.

On increasing the chemical potential into the range −3.869 < βµ <∼ −3.8, the

liquid film becomes metastable but may still evaporate through the nucleation and

growth of holes. Fig. 7 shows the case when βµ = −3.86. The nucleation is caused

by the random fluctuations in the density distributions (the initial density profiles

are defined in a similar manner to the previous case: ρl(x, t = 0) = 1 − 10−6,

ρn(x, t = 0) = ρavn + 0.4(Y − 0.5). The amount of noise used and the free energy

‘barrier’ for forming a hole determines the probability of a nucleation event occurring.

There is a critical hole radius Rc which can be determined from the free-energy of the

system. If a hole is smaller than this critical radius then it will shrink and the liquid

density will return to its bulk high density value in this region. However, if the size

Figure 7. Density profiles displaying nucleation and growth of holes which leads to

the development of a network pattern. The top row shows the liquid density profiles

and the bottom row shows the nano-particle profiles at times t/tl = 30 (left), t/tl = 200

(centre) and t/tl = 800 (right). The system parameter values are: kBT = 1, εl = 1.4,

εn = 0.6, εnl = 0.8, M c
l = 0, Mnc

l = 1, α = 0.5, βµ = −3.86 and λ = 0.2.
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Figure 8. The solid lines display the critical hole radius Rc in units of the lattice grid

spacing σ versus the chemical potential µ for different nano-particle densities ρn. The

lines start at the lowest value of µ for which the system is linearly stable. The dotted

lines show the value of the chemical potential at coexistence µcoex, which the curves

approach asymptotically. Here kBT = 1, εl = 1.4, εn = 0.6 and εnl = 0.8.

of the hole is larger than this critical value then this hole will begin to grow. We can

apply classical nucleation theory to calculate an estimate for the critical hole radius Rc

by determining the change in free energy ∆F when a low density (thin film) circular

‘hole’ with a radius of R is inserted into the metastable liquid film. The radius R which

corresponds to the maximum in ∆F is the critical hole radius Rc. We approximate the

change in free energy using the formula:

∆F = πR2∆P + 2πRγ, (54)

where ∆P is the pressure difference between the two phases (the hole and the fluid film).

γ is the interfacial tension (excess free energy) for creating a straight interface between

the two phases at coexistence µ = µcoex. It is important to note that the density values

at coexistence are different to the density values out of coexistence. The density of the

thin film of fluid inside the hole is such that its chemical potential is equal to that of

the bulk film of fluid surrounding the hole. The critical hole radius Rc is given by the

maximum of Eq. (54) - i.e. when ∂∆F
∂R

= 0. Thus, the critical hole radius is Rc = − γ
∆P

.

Fig. 8 shows how Rc depends on the chemical potential µ for different nano-particle

densities ρn = 0, 0.1 and 0.3. This analysis only applies to the metastable region of the

phase diagram (c.f. Fig. 2) and therefore the critical hole radius Rc curves are bounded

on the left by the spinodal curve and on the right by the binodal curve. Note that

classical nucleation theory incorrectly predicts a finite value for Rc at the spinodal, due

to the fact that the theory assumes a sharp interface as one approaches the spinodal. For

further discussion on this see e.g. Ref. [66]. The probability for a hole to be nucleated by

random thermal fluctuations is proportional to e−β∆F . The curves in Fig. 8 show that

as we approach µcoex the size of the critical hole increases. Hence, the probability of

nucleation is greater nearer the limit of stability (spinodal curve) and decreases greatly

as we approach coexistence (binodal curve). We observe that increasing the density of
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the nano-particles ρn shifts the metastable region to lower chemical potential values and

increases the range of the metastable region. This is due to the increase in the critical

temperature associated with the increase in the nano-particle density ρn, as previously

discussed.

In the case shown in Fig. 7, we are near the limit of stability where the critical

radius of a hole is very small. This results in many nucleation points where holes are

formed and begin to grow. The nano-particles are picked up by these growing holes

which creates a rim around each hole with a high density of nano-particles in the rim.

The holes in the liquid film continue to grow until their rims meet, creating a random

polygonal network pattern of nano-particles. The liquid wets the surface of the nano-

particles, which means the liquid remains on the surface in areas with a high density

of nano-particles. This is due to the positive interaction energy between the liquid and

the nano-particles (εnl > 0).

If we increase the chemical potential further into the metastable range −3.8 <∼
βµ < µcoex, then the probability of a hole being nucleated becomes much smaller. In an

experiment, in this parameter range, all holes that are formed are normally nucleated at

defects or impurities of the surface (heterogeneous nucleation). Any interfaces between

a high density liquid phase and a low liquid density phase will recede as the liquid

evaporates. The velocity of the receding front depends on the value of βµ. For small

values of βµ we have a fast front, but the speed of the front reduces as µ approaches

Figure 9. Density profiles displaying the growth of an artificially nucleated point

which develops branched structures. The top row shows the liquid density profiles

and the bottom row shows the nano-particle profiles at times t/tl = 2000 (left),

t/tl = 10000 (centre) and t/tl = 30000 (right). The system parameter values are:

kBT = 1, εl = 1.4, εn = 0.6, εnl = 0.8, M c
l = 0, Mnc

l = 1, α = 0.5, βµ = −3.8 and

λ = 0.1. Note that instead of using Eq. (53), here the Laplacian term is approximated

using: ∇2ρ = 1
6(∆x)2

(∑
4ρNN +

∑
ρNNN − 20ρ

)
.
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µcoex. If we choose µ = µcoex then any straight front remains stationary. On a

completely structureless substrate, one would usually expect such an interface to recede

homogeneously; this is certainly the case for the pure liquid, when ρn = 0. However,

in our system when ρn > 0 we see the formation of fingers as the front recedes, due to

the presence of the nano-particles. Fig. 9 shows a case when βµ = −3.8. The initial

density profiles in this situation differ slightly from the previous cases. Here we create

an artificial nucleation point by setting the density of the liquid and the nano-particles

to ρl = ρn = 10−6 in a central 2σ×2σ region. Without this seed nucleus the initial noise

on the density profiles slowly decays and the densities of the two species return to their

(metastable) equilibrium values. The liquid surrounding this nucleation point slowly

recedes creating a circular dewetting front. As the front recedes, it begins to collect the

nano-particles, as was also observed for the case in Fig. 7. However, here the growing

hole does not meet any other holes and there is time for an instability to develop at the

front which causes the liquid to evaporate faster in some regions and slower in others

creating a ‘wavy’ front, as seen in Fig. 9(a) and Fig. 9(d). The ‘bumps’ at the front

then appear to stop moving while the rest of the front continues to recede. As the front

recedes and the hole circumference increases, more fingers develop, leaving a branched

‘fingered’ nano-particle structure behind – Figs. 9(e) and (f). The time scale for this

dewetting process is rather long and so we also observe some long-time coarsening effects

on the finger structures.

Recall that one of the goals of our work is to develop an understanding of how

the different self-organised structures of nano-particles observed in the experiments

[22, 25, 26, 23] are formed. Distinct observed structures are a) network structures and

b) branched structures. Results from our model have shown how two different types

of network structures can develop: i) a fine network structure created by a spinodal

evaporation process (Fig. 6) in which the nano-particle density varies over a fairly small

range 0.27 <∼ ρn <∼ 0.45, ii) a large well defined network structure created by the

nucleation and growth of holes in the liquid (Fig. 7), in which the nano-particle density

varies over a large range 0.05 <∼ ρn <∼ 0.9. Our model also shows how instabilities at the

evaporative dewetting front can create branched structures for certain parameter values

(Fig. 9). Note that there is also evidence of early stages of the fingering instability in

the nucleation case shown in Fig. 7. There one can observe that small bumps begin

to develop in the edges of some of the larger holes. We now consider the formation of

the branched structures in more detail. In particular, we investigate the dependence of

these ‘fingered’ structures on the parameters of the model.

5.3. Influence of mobilities on the fingering

To make a detailed investigation of the branched finger structures it is important to

maximise the distance a front can recede. This allows us to obtain better statistics

which is important due to the fact that solving the DDFT in the fingering regime on

a large grid can be time consuming. To achieve this objective we create a straight
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Figure 10. Nano-particle density profiles for calculations with (a) α = 0.1, (b) α = 1,

(c) α = 2 and (d) α = 3. In (e) we display a plot showing the dependence of the

number of fingers on the parameter value α. The parameter values are: kBT = 1,

εl = 1.4, εn = 0.6, εnl = 0.8, M c
l = 0, Mnc

l = 1, βµ = −3.8, ∆x = 1 and λ = 0.1.

dewetting front along the bottom edge of the system (i.e. we set the two density values

to ρl = ρn = 10−6 for the first five horizontal lines). We also set no-flux boundary

conditions at the top and the bottom, to prevent a dewetting front forming at the

top. The periodic boundary conditions on the left and the right side of the system

domain remain. This set-up also allows for easier analysis of the branched structures

since we begin with an initially straight front. We define a measure for the average

number of fingers 〈f〉 to be the average number of branched structures per unit length

in the final density profile, after the dewetting front has reached the top of the system.

To calculate this quantity we implemented an algorithm which counts the number of

transitions between a high density of nano-particles and a low density of nano-particles

on each horizontal line of the system. We then determine the number of fingers on a

given horizontal line by dividing this value by two. We set a minimum and maximum

line for a given set of final density profiles and calculate the average number of fingers

between these two lines. This value is then divided by the size of the system to give a

value that is independent of the system size. We have investigated how this measure is

affected by the different parameters of the system.

We begin by discussing the effect that varying the parameter α has on 〈f〉 (recall

that α determines the mobility of the nano-particles in the liquid film). We use the

same parameter values as above, with βµ = −3.8 and α varying between 0.1 and 3.

Fig. 10 shows final nano-particle density profiles for several values of α and also a plot

of 〈f〉 versus α, which is calculated from the average of five runs. We see that the value

of α has a significant influence on the average finger number. Increasing the mobility

of the nano-particles results in fewer fingers being developed, which is in (qualitative)

agreement with the experiments [23] and the KMC model results [29]. The mobility of

the nano-particles directly influences the speed of the receding front, so evaporation is

much slower when α is small. When α is very small (α <∼ 0.002) we find that the two
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density fields become practically decoupled, with the liquid evaporating at high speed

leaving the nano-particles behind as a homogeneous film of the initial density ρavn .
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Figure 11. Nano-particle density profiles for (a) M c
l = 0, (b) M c

l = 5, (c) M c
l = 10

and (d) M c
l = 15. In (e) we display a plot showing how the number of fingers 〈f〉

depends on the value of M c
l . The parameter values are: kBT = 1, εl = 1.4, εn = 0.6,

εnl = 0.8, Mnc
l = 1, α = 1, βµ = −3.8 and λ = 0.1.

The effect of liquid diffusion over the surface has also been investigated by varying

the liquid conserved mobility M c
l . Using the same parameter values as above, and setting

α = 1, we display in Fig. 11 final nano-particle density profiles for varying M c
l from 0

to 15 and also the average finger number 〈f〉 versus M c
l averaged over five runs. We see

that the diffusive mobility of the liquid M c
l does affect the average number of fingers but

to a much smaller extent than the mobility of the nano-particles. The average finger

number generally increases as M c
l is increased.

5.4. Influence of liquid-particle demixing on the fingering

We now discuss the effect of possible liquid-particle phase separation on the front

instability. Such a phase separation may occur near the front even for nano-particle

concentrations inside the liquid film that are far smaller than the binodal value for

liquid-particle phase separation. This occurs because as a dewetting front recedes it

collects nano-particles (as previously discussed) and therefore increases the value of ρn
near the front. For certain parameter values we find that if ρn increases above a certain

threshold value, then liquid-particle phase separation occurs in the front region. The

liquid separates into two liquid phases, a mobile one poor in colloids and a less mobile

one rich in colloids. To investigate the resulting effects we set the interaction energies

to εl = 1.7, εnl = 1 and vary εn from 0 to 1.2. Eq. (52) indicates that we should observe

liquid-particle phase separation for εn > 0.3. We set the average nano-particle density

to be low, ρavn = 0.1, so that there is no liquid-particle phase separation in the bulk of
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the fluid film. For the value of the chemical potential that we use µ = −4, the fluid is

linearly stable for all values of εn and leads to a relatively fast dewetting front.
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Figure 12. Nano-particle density profiles for (a) εn = 0.3, (b) εn = 0.6, (c) εn = 0.8

and (d) εn = 1.1. In (e) we display a plot showing how the mean number of fingers

〈f〉 depends on the parameter εn. When εn > 0.6 we begin to observe droplets being

deposited along with the branched structures (as shown in (c)). The parameter values

for these calculations are: kBT = 1, εl = 1.7, εnl = 1.0, M c
l = 0, Mnc

l = 1, α = 0.5,

µ = −4, ρavn = 0.1 and λ = 0.025.

In Fig. 12(a)-(d) we display typical final nano-particle density profiles for various εn
and the average finger number 〈f〉 versus εn, averaged over five runs. As εn is increased

from εn = 0, we initially see a linear increase in the average number of fingers 〈f〉. This

reaches a peak at εn ≈ 0.6, after which we begin to see the development of droplets.

When 0.6 <∼ εn <∼ 0.9 we observe separation between regions of high density of nano-

particles and low density of nano-particles occurring locally at the dewetting front. The

areas with a lower density of nano-particles form very thin fingers which quickly rupture

into a series of droplets, whereas the areas with a higher density form thicker fingers

which are much more stable as shown in Fig. 12(c). The sections of the front with a

lower density of nano-particles recede faster than the rest of the front. This results in

a ‘doublon’ pattern which has been observed in many different systems, e.g. in the

thin film directional solidification of a nonfaceted cubic crystal [67]. As we increase εn
further, for εn > 1 we observe that the dynamics at the front remains similar, however,

now all the finger structures are very thin and therefore quickly break up into droplets.

One also notices that the tendency to form side branches decreases with increasing

εn whereas the orientation of the branches becomes increasingly perpendicular to the

receding front. We also observe an increase in the density of the nano-particles within the

fingers/droplets as εn is increased. This is due to the increased attraction between the

nano-particles. These results agree qualitatively with the KMC model [29]. The KMC

results also show an initial increase in the number of fingers followed by a transition from

fingers to droplets as the interaction energy between the nano-particles εn is increased.

Fig. 17 of Ref. [29] displays a plot of 〈f〉 versus εn which shows a similar trend as the

Preprint– – 23 June 2011



Modelling the evaporation of thin films of colloidal suspensions using DDFT 27

DDFT results displayed in Fig. 12(e). However, as it is a discrete stochastic model, the

details of the transition in the way the branching occurs are less discernible than in the

present DDFT model.

6. Concluding remarks

We have presented a DDFT based model for the evaporative dewetting of an ultrathin

film of a colloidal suspension. We have derived an expression for the free energy of the

system using a mean-field approximation for a coarse-grained Hamiltonian model (1)

for the system. We have also derived dynamical equations which describe the diffusive

dynamics of the solvent and of the colloids as well as the evaporation of the solvent.

We have considered the equilibrium phase behaviour of the pure solvent and of the

two-component fluid and identified parameter ranges where unstable, metastable and

stable phases exist. We then solved the coupled dynamical equations numerically to

investigate the different dynamical pathways of the phase transition and the resulting

self-organised patterns of the nano-particles.

The model successfully describes the various self-organised structures found in

experiments [23] and is in qualitative agreement with the discrete stochastic KMC model

[29]. Our numerical results show how nano-particle network structures can form either

from a spinodal processes (Fig. 6) or through the nucleation and growth of holes (Fig. 7).

We have also observed how branched structures develop from a fingering instability of

the receding dewetting front (Fig. 9).

The transverse front instability results from a build-up of the nanoparticles close

to the front as the solvent evaporates, when diffusion is too slow to disperse them.

This slows down the front and renders it unstable. As a result, density fluctuations

along the front grow into an evolving fingering pattern. This transverse front instability

can be considered to be a self-optimisation process which maintains the mean front

velocity constant [29] (see also the discussion of this in the context of a similar front

instability occurring in the dewetting of non-volatile polymer films [68]). One may also

say that the constant average front velocity is maintained by depositing some of the

nano-particles onto the dry substrate creating the branched structures. Experimental

observations show that the branched structures found in the ultra-thin film behind the

mesoscopic dewetting front are initiated from random nucleation sites. The holes which

are nucleated then grow, initially creating circular dewetting fronts. We subsequently

observe that the fingering instabilities and the development of branched structures form

on the circular interfaces. Fig. 9 shows how these circular branched patterns develop

from a single nucleation point; our numerical results bare a striking resemblance to the

experimental AFM images of this phenomena [23].

We have studied the branched structures in greater detail using a planar geometry,

i.e., by creating initially straight dewetting fronts. We have considered how the different

mobilities affect the fingering. The nano-particle mobility in liquid films has a significant

effect on the average number of fingers in the branched structure (Fig. 10). The finger
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number decreases rapidly with increasing mobility in agreement with earlier KMC results

[29]. This behaviour can be attributed to the lower-mobility of the nano-particles

that hinders re-distribution by diffusion and also reduces the speed of the dewetting

front. For the system to attain a higher front speed it must deposit nano-particles onto

the surface at a greater rate. Therefore, if the mobility of the nano-particles is low

this leads to the creation of more fingers because in this case the average distance a

nano-particle has to travel to reach a finger is smaller. Increasing the mobility for the

conserved diffusive dynamics of the liquid has the opposite effect on the average number

of fingers (Fig. 11). The complex relationship between the diffusion of the liquid and

the average finger number is not yet fully understood. Our hypothesis is that increasing

the mobility of the liquid results in an effective increase in the speed of the dewetting

dynamics of the liquid for fixed nano-particle mobility. Thus, the mobility of the nano-

particles becomes lower in comparison. The increased finger number then results from

the increased mobility contrast, in agreement with the general instability mechanism

laid out above.

The basic front instability as described above is a purely dynamic effect and does

not depend on particle-liquid and particle-particle attractive interactions that favour

demixing of the liquid and the nanoparticles. However, beside this regime (that we

call the ‘transport regime’) we have investigated how interactions that favour demixing

influence the instability (Fig. 12). In general, when increasing the interaction energy

between the nano-particles one increases the tendency towards liquid-particle demixing.

However, this has no practical effect as long as the nano-particle concentration is low,

so that it is outside of the two-phase region. This is normally the case for our initial

densities. However, in the course of the evaporative dewetting the density increases

close to the receding front. Increasing the interaction energy between the nano-particles

causes demixing to occur close to the front (but not in the bulk film). The demixing

makes the fingering instability stronger (we call this the ‘demixing regime’). At first, one

finds a linear increase in the average finger number with increasing interaction energy.

At higher values of εn, when the localised phase separation sets in, the fingers become

straight with less side branches, before finally lines of drops are emitted directly at the

front. In this regime, the mean number of fingers is determined by the dynamics and

the energetics of the system.

The results we have obtained with our DDFT model confirm that jamming of

discrete particles (as already discussed in Ref. [37]) is not a necessary factor for the

fingering instability to occur. Our model is a continuum model with a diffusion constant

that is independent of the nanoparticle concentration. The present two-dimensional

DDFT model has several advantages over the two-dimensional KMC model [28, 29]: In

particular, the early instability stages are more easy to discern without the background

noise of the KMC. Furthermore, the underlying free energy may be employed to

analyse the equilibrium phase behaviour in detail, in a similar manner to Ref. [53].

Many standard tools for the analysis of partial differential equations can be applied

to the coupled evolution equations, such as, e.g., the linear stability analysis of the
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homogeneous films. In the future, one may perform a linear stability analysis for the

receding straight front and also investigate steady state solutions as has been done for

evaporating films of pure liquids [49]. There are many details that would merit further

investigations such as, for example, the doublon structure mentioned in Section 5.4 and

its relation to such structures formed in directional solidification [69].

The present DDFT model does not include the effect of surface forces, i.e.,

wettability effects (substrate-film interactions). Therefore, a non-volatile liquid film

would not dewet the substrate. This implies that an important avenue for future

improvement is to incorporate wettability effects into the model. This could be done

by making a mean-field approximation to derive an expression for the free energy for

a fully three-dimensional KMC model [70, 71] (after incorporating substrate-particle

and substrate-liquid interactions). The resulting three-dimensional DDFT could then

either be used directly or be averaged perpendicularly to the substrate employing e.g., a

long-wave approximation. Another possible option consists of combining a mesoscopic

hydrodynamic approach, e.g., a thin film evolution equation (see [31, 72, 49]) with

elements of DDFT. For a brief discussion of a similar approach see Ref. [73].

As a final remark, we recall that in the present work we have only considered

dewetting from homogeneous substrates. However, it is straightforward to include

surface heterogeneities in our model via the external potentials φi(r) in Eq. (8). As

future work, it would be interesting to study the influence of surface patterning on the

finger formation displayed by the present system.
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