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Modelling the Location and Consequences of Aircraft Accidents1. 

Manuel Ayres Jr2., Hamid Shirazi∗, Regis Carvalho*, Jim Hall, * Richard Speir*, Edith 
Arambula*, Robert David3, John Gadzinski4, Robert Caves5, Derek Wong5, David 
Pitfield5.  

 

Following the completion of two projects funded by the UK EPSRC and two for the 

Airports Cooperative Research Program, ACRP (2008, 2011),  this paper aims to 

summarise the work on the location and consequence models6. The projects overall 

focused on the development of an improved airport risk assessment methodology 

aimed at assessing risks related to aircraft accidents at and in the vicinity of airports 

and managing Runway Safety Areas (RSAs) as a risk mitigation measure.   The 

improved methodology is more quantitative, risk-sensitive, flexible and transparent 

than traditional risk assessment approaches.   As such, it contributes to the 

implementation of Safety Management Systems at airports, as stipulated by the 

International Civil Aviation Organisation. The innovative elements of this research 

are two-fold. First, an accident database covering undershoots, overruns, and veer-

off crashes close to runways at airports has been compiled and data on incidents 

has been added. Second, accident frequency models have been developed, for 

example, identifying the contribution of influencing factors such as variations in 

meteorological conditions. To allow airport risk to then be calculated entails 

comparing these cases with those contained in a ‘normal operations database’ 

where no accidents have been recorded but where the influencing factors are also 

known. Subsequent models have examined the location of the accidents and their 
                                            
1 This paper is based on ACRP(2011) 
2 Airport Safety Management (ASM) Consultants, FLA., http://www.asmcons.com/ 
∗ Applied Research Associates, Inc.,MD., http://www.ara.com/Projects/p_runaway_safety.htm 
3 Robert E.David & Associates, Inc.,VA., http://www.robertedavid.com/Home.html 
4 For Winds Consulting,VA., http://fourwinds-safety.com/ 
5 Transport Studies Group, Loughborough University, U.K. 
6 The expertise for implementing these models rests with Airport Safety Management Consultants. 
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consequences. It is this work that is the focus of this paper. Future work will focus on 

improving these aspects of the modelling and the consequences of crashes more 

than 2000 ft. but less than 10 miles from a runway end as well as impacts on third 

parties. 

 

1 Introduction 

 

Landing and takeoff overruns, landing undershoots, and landing and takeoff veer-

offs account for most of the accidents that occur on or in the immediate vicinity of the 

runway. Accident statistics show that, from 1959 to 2009, 55% of the world‘s jet fatal 

aircraft accidents occurred during landing and takeoff phases of the flight and 

accounted for 51% of all onboard fatalities (Boeing, 2010). 

 

The previous research in Wong (2007), which is also reported in Wong et al (2006a, 

2006b) and Wong et al (2009a, 2009b) as well as ACRP (2008), aimed to develop a 

risk assessment tool that could be used to evaluate alternatives for RSAs. This work 

was developed in ACRP (2011).  Five sets of models were developed: landing 

overruns, landing veer-offs, landing undershoots, takeoff veer-offs, and takeoff 

overruns. Each set included an accident and incident frequency model and this 

paper adds location models and consequence models. Recommendations can follow 

from these models to modify the RSA. 
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2 Data 

 

Accident and incident data were collected from a variety of sources and these are 

listed below: 

• FAA Accident/Incident Data System (AIDS). 

• FAA/National Aeronautics & Space Administration (NASA) Aviation Safety 

• Reporting System (ASRS). 

• National Transportation Safety Board (NTSB) Accident Database & 

Synopses. MITRE Corporation Runway Excursion Events Database V.4 

(2008). Transportation Safety Board of Canada (TSB). 

• International Civil Aviation Organization (ICAO) Accident/Incident Data 

• Reporting (ADREP) system. 

• Australian Transport Safety Bureau (ATSB). 

• Bureau d'Enquêtes et d'Analyses pour la Sécurité de l'Aviation Civile 

(BEA). UK Air Accidents Investigation Branch (AAIB). 

• New Zealand Transport Accident Investigation Commission (TAIC). Air 

Accident Investigation Bureau of Singapore. 

• Ireland Air Accident Investigation Unit (AAIU). 

• Spain Comisión de Investigación de Accidentes e Incidentes de Aviación 

Civil (CIAIAC). 

• Indonesia National Transportation Safety Committee (NTSC). Netherlands 

Aviation Safety Board (NASB). 
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More than 260,000 aviation accident and incident reports were screened from 11 

countries to identify the cases relevant to this study. Out of those, more than 140,000 

events were screened from U.S. databases.  

 

A list of accidents and incidents containing the cases used for model development is 

presented in Appendix B of ACRP (2011). The list includes the accidents that 

occurred within 2000 ft. of the runway ends and within 1000 ft. of the runway 

centreline. The criteria represents the area where the overwhelming majority of 

runway excursions and undershoots occur, and are similar to those used in ACRP 

(2008) and by David (1990) for the FAA. Using such criteria, 1414 accidents and 

incidents were identified to provide the information used to develop the frequency 

and location models. Events that took place since 1980 and for which reports were 

available were included in the database. 

 

3 Preliminary Statistics 

 

Figure 1 presents the summary of accidents and incidents by type, and Figure 2 

shows the relative percentages for each type. Landing events accounted for 83% of 

the events. Overruns (landing and takeoffs) accounted for 44% of accidents and 

incidents; veer-offs accounted for 48%; and undershoots accounted for only 8% of 

the total number of events. 
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Figure 1: Summary of accidents and incident by type 

 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 2: Percentage of accidents and incidents by type 
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Figure 3. Number of reported accidents and incidents from 1978 to 2008 

Figure 3 presents the number of incidents and accidents by year from 1978 to 2008. 

The number of events reported in the 1970‘s was relatively low, most likely due to 

underreporting and lower volumes of traffic. The number of events increased slowly, 

and there is a sharp drop during the past 3 years. It is possible that some events are 

still undergoing the investigation and that reports were not available by the time data 

collection was completed. 

 

 

 

 

Figures 4 to 8 show the distribution of accidents and incidents according to their 

location. For overruns and undershoots, the locations refer to the longitudinal 

distance from the runway end, that is the threshold. For veer-offs, it is the lateral 

distance from the runway longitudinal edge. 
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501 landing overrun events were identified. In approximately 95% of the events, the 

aircraft stopped within 1000 feet after overrunning the runway, and close to 77% 

stopped within 500 feet. 
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111 landing undershoot events were identified, and in approximately 94% of the 

cases, the aircraft touched the terrain within 1000 feet of the runway arrival end. 

Approximately 85% touched down within 600 feet and 80% within 500 feet. 

 

 

 

 

 

 

 

 

 

 

 

Veer-off distances were measured from the runway edge. Of the 559 cases of 

landing veer-off identified, in approximately 80% of the cases the fuselage of the 

aircraft deviated less than 175 feet from the runway edge. For 88% of the events, the 

aircraft was within 250 feet of the runway edge. 
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A total of 123 takeoff overrun accidents and incidents were identified. For 

approximately 83% of the cases, the stop location was within 1000 feet of the 

runway departure end, and for 56%, the aircraft stopped within 500 feet 
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Of the 120 takeoff veer-off accidents and incidents, in approximately 76% of the 

cases the fuselage of the aircraft deviated less than 175 feet from the runway edge. 

In 85% of the events, the aircraft was within 250 feet of the runway edge. 

 

4 Modelling Aircraft Accidents 

 

The first component in the modelling, the frequency model is used to estimate the 

probability that an event will occur given certain operational conditions. This 

probability does not address the likelihood that the aircraft may strike an obstacle or 

will stop beyond a certain distance. The model uses independent variables 

associated with causal and contributing factors for the incident. For example, under 

tailwind conditions it is more likely that an overrun will occur, and this is one of the 

factors used in the models for overruns. The aircraft performance is represented by 

the interaction between the runway distance required by the aircraft for the given 

conditions and the runway distance available at the airport. Although human and 

organisational factors are among the most important causes of aircraft accidents, it 

was not possible to directly incorporate these factors into the risk models. Since this 

model is specific for the event type, five different models are required, one for each 

accident type. 

 

The second component is the location model. The analyst usually is interested in 

evaluating the likelihood that an aircraft will depart the runway and stop beyond the 

RSA or strike an obstacle. The location model is used to estimate the probability that 

the aircraft stops beyond a certain distance from the runway. As pointed out in ACRP 

(2008) and by Wong (2007), the probability of an accident is not equal for all 
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locations around the airport. The probability of an accident in the proximity of the 

runways is higher than at larger distances from the runway. Since this model is 

specific for the event type, five different models are again required. 

 

The last component is the consequence model which was first addressed by 

Kirkland et al (2004). This model uses the location models to assess the likelihood 

that an aircraft will strike an obstacle or depart the RSA and fall into a drop in the 

terrain or into a water body adjacent to the RSA. In addition, it takes into 

consideration the type of obstacle and the estimated collision speed to cause severe 

consequences. For example, an aircraft colliding with a brick building may result in 

severe consequences even at low speeds; however, the aircraft must be at a higher 

speed when striking a Localiser antenna mounted on a frangible structure for a 

similar level of severity. The collision speed is evaluated based on the location of the 

obstacle and the typical aircraft deceleration for the type of RSA terrain.  

 

5 Location Models 

 

The accident location models are based on historical accident data for aircraft 

overruns, veer-offs, and undershoots. The accident location for overruns depends on 

the type of terrain (paved or unpaved) and if an Engineered Materials Arrestor 

System (EMAS) is installed in the RSA. When EMAS is available, during landing and 

takeoff overruns, the aircraft will stop at shorter distances, and typical deceleration 

for the type of aircraft should include this factor in determining the location probability. 

Worldwide data on accidents and incidents were used to develop the location 

models. The model structure is similar to the one used by Eddowes (2001). Based 
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on the accident/incident location data, five sets of complementary cumulative 

probability distribution (CCPD) models were developed. With CCPD‘s, the fraction of 

accidents involving locations exceeding a given distance from the runway end or 

threshold can be estimated. When the CCPD is multiplied by the frequency of 

accident occurrence, a complementary cumulative frequency distribution (CCFD) is 

obtained and is described in detail in Wong et al (2009b). The latter quantifies the 

overall frequency of accidents involving locations exceeding a given distance from 

the runway boundaries. 

 

Figures 9 to 11 show the axis locations used to represent each type of incident. The 

reference location of the aircraft is its nose wheel. For overruns and undershoots, the 

x-y origin is the centreline at the runway end. For veer-offs, the y-axis origin is the 

edge of the runway, not necessarily the edge of the paved area when the runway 

has shoulders. 

 

 

 

 

 

Figure 9: X-Y origin for aircraft  
 
 
 

 
 
 
 

 
 

Figure 10: X-Y origin for aircraft undershoots overruns 
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Figure 11: Y origin for aircraft veer-offs 

 

For the longitudinal distribution, the basic model is: 

   P{Location>x}=𝑒−𝑎𝑥𝑛 

Where 

• P{Location > x} is the probability the overrun/undershoot distance along 

the runway centreline beyond the runway end is greater than x 

• x is a given location or distance beyond the runway end  

• a, n are regression coefficients 

A typical longitudinal location distribution is presented in Figure 12. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Typical model for aircraft overruns. 
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The model for the transverse distribution can be represented by the following 

equation: 

P{Location>y}=𝑒−𝑏𝑦𝑚 

where 

• P{Location>y} is the probability the overrun/undershoot distance from 

the runway border (veer-offs) or centreline (overruns and undershoots) 

is greater than y 

• y is a given location or distance from the extended runway centreline or 

runway border 

• b, m are regression coefficients 

A typical transverse location distribution is presented in Figure 13, and the model 

parameters are presented in Table 1 

 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 13. Typical model for aircraft veer-offs 
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Type of 
Accident 

Coefficients  a      Coefficients n             R2                N 

LDOR   0.00321   0.98494          0.998              305 
LDUS   0.00148   0.75150          0.987                83 
TOOR   0.00109   1.06764          0.992                89 

  Table 1a.  Location Models, Longitudinal X Models 

 

 

Type of 
Accident 

Coefficients  b Coefficients m             R2              N 

LDOR   0.20983   0.48620         0.939             225 
LDUS   0.02159   0.77390         0.986               86 
LDVO   0.02568   0.80395         0.915             126 
TOOR   0.04282   0.65957         0.987               90 
TOVO   0.01639   0.86346         0.942               39 

  Table 1b. Location Models, Transverse Y Models 

 
Table 1. Summary of location models 

 
 

The models are illustrated in Figures 14-21. 

 

 

 

 

 

 

 

 

 
Figure 14: Longitudinal location model for landing overruns 
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Figure 15: Transverse location model for landing overruns 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 16: Longitudinal location model for landing undershoots 
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Figure 17: Transverse location model for landing undershoots 

 

 

 

 

 

 

 

 
 

 
Figure 18. Lateral location model for landing veer-offs 
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Figure 19. Longitudinal location model for takeoff overruns 

 

 

 

 

 

 

 

 

 
Figure 20. Transverse location model for takeoff overruns 
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Figure 21. Lateral location model for takeoff veer-offs 

 

 

 

6 Consequence Models 

 

Risk is the likelihood of the worst credible consequence for a hazard. Many overruns, 

veer-offs and undershoots have resulted in aircraft hull loss and multiple fatalities, 

and therefore, the worst credible level of consequences may be assumed to be 

catastrophic, according to the severity classification defined by the FAA and 

presented in Appendix F of ACRP(2011). 

 

In some situations, a pilot may lose control of the aircraft, resulting in the destruction 

of the equipment with possible fatalities, even when the aircraft accident takes place 
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inside the RSA or the runway; however, in the majority of accidents, the RSA will 

offer some protection to mitigate consequences. Consequences will depend on the 

type of structures and the level of energy during the aircraft collision. Possible 

obstacles may include buildings, ditches, highways, fences, pronounced drops in 

terrain, unprepared rough terrain, trees, and even NAVAID structures, like approach 

lighting system (ALS) towers and Localiser antennas, particularly if mounted on 

sturdy structures. 

 

The energy of the aircraft during the collision is related to its speed when it strikes 

the obstacle, i.e. the greater speeds are expected to result in more severe 

consequences. Also, the consequences will depend on the type of obstacle. An 

aircraft striking a brick building at 40 mph may be destroyed whereas if the obstacle 

is a perimeter fence less severe consequences are expected to occur. 

 

The variables assumed to have an impact on consequences resulting from overruns, 

veer- offs, and undershoots are: 

• Obstacle type, size and location 

• Aircraft Size (wingspan) and speed 

 

The basic approach is that presented in ACRP (2008), as summarised in the ensuing 

sections. The approach described in ACRP (2008) was intended to model accident 

and incident consequences so that they could be combined with the probability of 

aircraft overruns and undershoots for an assessment of risk. The approach is 

rational because it is based on physical and mathematical principles. 
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The basic idea was to assess the effect of different obstacles at various locations in 

the vicinity or inside the RSA.  The approach integrates the probability distributions 

defined by the location models with the location, size, and characteristics of existing 

obstacles in the runway RSA and its vicinity.  The implementation of the approach 

required some simplifying assumptions so that it could be integrated with the 

frequency and location models.  The following are the assumptions used: 

 

1. Aircraft overrunning, undershooting, or veering off the runway will strike the 

obstacle in paths parallel to the runway direction. This assumption is necessary 

to define the area of influence of the obstacle. 

 

2. Four categories of obstacles are defined as a function of the maximum speed 

that an aircraft may collide with an obstacle, with small chances of causing hull 

loss and injuries to its occupants: 

 a. Category 1: Maximum speed is nil (e.g., cliff at the RSA border, concrete 

wall). 

 b. Category 2: Maximum speed is 5 knots (e.g., brick buildings). 

 c. Category 3: Maximum speed is 20 knots (e.g. ditches, fences). 

 d. Category 4: Maximum speed is 40 knots (e.g., frangible structures, ALS). 

 

3. Severe damage and injuries are expected only if the aircraft collides within the 

central third of the wingspan and with a speed higher than the maximum for 

that obstacle category.  
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4. The lateral distribution is random and does not depend on the presence of 

obstacles. This is a conservative assumption because there are events when 

the pilot will avoid the obstacles given by ILS and Approach Lighting System 

(ALS) structures in the RSA if he has some directional control of the aircraft.  

 

The main purpose of modelling consequences of aircraft accidents is to obtain an 

assessment of risk based on the likelihood for the worst credible consequence. 

It was not deemed necessary to develop a consequence model for each type of  

accident, as was done to model frequency and location. The approach used can be  

used to address any of the five types of incidents included in the analysis. 

 

The basic idea is to use the location models to estimate the incident occurrences for  

which the aircraft will have high energy when striking an obstacle, thus resulting in  

serious consequences. It should be noted that neither of the models used in the  

approach provides an estimate of the aircraft speed; however, using the location  

model and the average aircraft deceleration during a runway excursion, it is possible  

to infer the probability that the speed is above a certain level when reaching the  

obstacle. Figure 22 is used to illustrate the case for overruns and help understand  
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the principle. This approach was introduced in ACRP Report 3 (2008). 

 

 

 
 
 
 
 

 

 

 

 

The x-axis represents the longitudinal location of the wreckage relative to the runway 

departure end. The y-axis is the probability that the wreckage location exceeds a 

given distance, x. 

 

In this example, an obstacle is located at a distance D0 from the departure end, and 

the example scenario being analysed is an aircraft landing overrun incident. Figure 

14 shows an exponential decay model developed for the specific accident scenario, 

in this case, landing overruns. 

 

There are three distinct regions in this plot in Figure 22. The first region represents 

overruns where the aircraft departed the runway but the exit speed was relatively low 

and the aircraft came to a stop before reaching the existing obstacle. The 

consequences for such incidents associated with that specific obstacle are expected 

to be none if the x-location is smaller than D0. 
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The rest of the curve represents events that the aircraft exited the runway at speeds 

high enough for the wreckage path to extend beyond the obstacle location. However, 

a portion of these accidents will have relatively higher energy and should result in 

more severe consequences, while for some cases the aircraft will be relatively slow 

when hitting the obstacle so that catastrophic consequences are less likely to 

happen. Using the location model, if x-location is between D0 and D0+ ∆, it may be 

assumed that no major consequences are expected if the obstacle is present. 

 

The value of ∆ is ideally estimated based on aircraft deceleration over different types 

of terrain (paved, unpaved, or EMAS), crashworthiness speed criteria for aircraft type 

and size and the type of obstacle. Frangible objects in the RSA are less prone to 

causing severe consequences. It also should be noted that lighter aircraft may stop 

faster and the landing gear configuration also may have an effect on the aircraft 

deceleration in soft terrain, but most of these factors are not accounted for in this 

approach. 

 

Using this approach, it is possible to assign three scenarios: the probability that the 

aircraft will not hit the obstacle; the probability that the aircraft will hit the obstacle 

with low speed and energy; and the probability that the aircraft will hit the obstacle 

with high energy. 

 

For those events with low energy when impacting the obstacle, it is possible to 

assume that, if no obstacle was present, the aircraft would stop within a distance 

from the location of the obstacle. The problem is then to evaluate the rate of these 

accidents having low speeds at the obstacle location, and this is possible based on 
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the same location model. This probability can be estimated by excluding the cases 

when the speed is high and the final wreckage location is significantly beyond the 

obstacle location. 

 

To complement the approach it is necessary to combine the longitudinal and 

transverse location distribution with the presence, type, and dimensions of existing 

obstacles. The basic approach is represented in Figure 23 for a single and simple 

obstacle. 

 

 

 

 

 

 

 

 

Laterally, if part of the obstacle is within the yellow zone, as shown in Figure 24a, 

medium consequences are expected; however, if any part of the obstacle is within 

the orange zone, as shown in Figure 24b, and the speed is high, severe 

consequences are expected. If the obstacle is off the orange and yellow zones, no 

consequences related to that obstacle are expected. 
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In Figure 25, Obstacle 1 is located at a distance x1, y1 from the threshold and has 

dimensions W1 x L1.  When evaluating the possibility of severe consequences, it is 

possible to assume this will be the case if the aircraft fuselage or a section of the 

wing close to the fuselage strikes the obstacle at high speed.  Thus, it is possible to 

assume the accident will have severe consequences if the y location is between yc 

and yf, as shown in the figure.  Based on the location models for lateral distance, the 

probability the aircraft axis is within this range can be calculated as follows: 

 

 

where: 

• Psc is the probability of high consequences 



27 
 

• b, m are regression coefficients for the y-location model 

• yc  is the critical aircraft location, relative to the obstacle, closest to the 

extended runway axis 

• yf  is the critical aircraft location, relative to the obstacle, farther from 

the extended runway axis 

 

 

 

 

 

 

 

 

 

 

Combining this approach with the longitudinal distribution approach and the 

possibility of multiple obstacles, the risk for accidents with severe consequences can 

be estimated using the following model:  

 

where 
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• N is the number of existing obstacles 

• a, n are regression coefficients for the x-model 

• ∆i is the location parameter for obstacle i 

 

7   An Example Implementation of Approach 

 

The implementation of the proposed approach is best explained using an example. 

Figure 26 depicts an area adjacent to the runway end with two obstacles.  The area 

isn‘t necessarily the official airport RSA but any available area that can be used by 

an aircraft overrunning the runway end. The example shows the safety area 

surrounded by a cliff limiting its boundaries. Obstacle 1 is not frangible and is 

classified as a Category 2 obstacle (e.g. building), maximum collision speed of 5 

knots, located at distance x1 from the runway end. For this obstacle, the maximum 

speed without severe consequences is estimated to be 5 knots. A second obstacle is 

a small size tree classified as Category 4, maximum speed of 40 knots, and located 

at distance x2 from the runway end. The remaining safety area is defined by the cliff 

surrounding the RSA and such boundary is classified as Category 1, maximum 

speed of 0 knots. 
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The typical aircraft deceleration in unpaved surfaces is 0.22g, where g is the 

acceleration due to gravity (32.2 ft./s2). Using the relationship between acceleration, 

velocity, and distance,  ∆, can be calculated as shown in Table 2. 

 

Table 2 Obstacle categories 

Obstacle 
Category 

Max 
Speed 

 
 

 ∆(ft) 
 

1 0 0 
2 5 20 
3 20 80 
4 40 320 

 

The values presented will be used to reduce the safety area so that only the effective 

portion where the aircraft may stop without severe damage is considered in the 

analysis. To perform the analysis, the frequency and location models are combined 

in a manner similar to that for the analysis without obstacles; however, the safety 

area is transformed to account for the presence of the obstacles, as shown in Figure 

27.  
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The analysis will provide the probability that the aircraft will overrun the runway and 

the incident will have severe consequences, thus providing an estimate of risk. 

 

8 Conclusions 

 

It has been demonstrated in the work at Loughborough, continued by ACRP, that the 

framework of modelling aircraft accident frequency, location and consequence has 

merit. Location models could be improved if greater attention was paid to causality 

but data difficulties exist, for example, on meteorological influences on distance and 

that y is often mis-recorded in accident dockets so lateral deviations are more 

difficult to model. The influence of excess distance (difference between runway 

length and required distance for the operation) on location should also be accounted 

for. 

 

Consequence modelling is bound to have particular local elements and is perhaps 

best dealt with in the ad hoc manner described here. But variation in aircraft type, 

wingspan and speed ought to be included as well as pavement type variations that 

will affect deceleration. In addition, previous modelling attempts have isolated the 

importance of modelling the number of obstacles encountered by one crashing 

aircraft and suggested the importance of having a predictive model of runway exit 

speed. Another two areas that deserve attention in accident modelling are accidents 

that occur over 2000 ft. but within 10 miles of the runway and accident impacts on 

third parties. 
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