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Abstract 

This study describes a modification to Tricine-SDS-PAGE to make it more effective for the 

separation of low molecular mass proteins and for coupling to inductively-coupled plasma 

mass spectrometry (ICP-MS). The modified method employs low percentage polyacrylamide 

gels (7-10%) (w/v) and low reagent concentrations that provide efficient separations, good 

quantitation and low matrix levels that are compatible with ICP-MS. Using phosphopeptides 

as a model system, and off-line analysis, recoveries of 73% (w/v) were obtained in a 9% gel 

compared with 55% in a conventional 16% gel. On-line coupling was achieved by modification 

of a standard commercially available gel electroelution apparatus and casting of the gel into a 

7.3 cm long tube. On-line separation of a digest of β-casein was demonstrated with recovery 

of the mono- and tetra-phosphopeptides that were identified by comparison with peptide 

standards. A mass balance study with the standards yielded recoveries of 95% for tetra-

phosphopeptides and 48% for mono-phosphopeptide. The factors affecting the separations 

and recoveries are discussed in detail. The detection limits for 10 µL samples of the mono- 

and tetra-phosphopeptides were 0.7 M (7 pmol) and 0.2 M (2 pmol) respectively. 
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Introduction 

Reversible protein phosphorylation is a key event in the post-translational regulation of cells 

that alters the shape and functions of proteins and involves a wide range of cellular activities 

such as cell cycle, differentiation, apoptosis, metabolism and the cell growth division [1]. An 

abnormal phosphorylation may be a factor in several neurodegenerative disorders leading to 

Alzheimer’s, Parkinson’s and Huntington’s diseases [2-3]. Thus there is much interest in 

obtaining qualitative and quantitative information about phosphorylation. 
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ICP-MS, when coupled to an appropriate separation technique, is a very sensitive and 

selective detector for identifying and quantifying low and high molecular mass bio-molecules. 

Quantitation performed by ICP-MS has several advantages: (a) ICP-MS can detect the 

analyte of interest at very low concentration, (b) mass balance can be established because 

the response is independent of structure and (c) calibration is straightforward usually being 

carried out with inorganic salts. In quantitative phosphoproteomics, the use of ICP-MS 

provides a different approach compared to more traditional methods. The phosphorus to 

sulphur (P/S) ratio can be experimentally determined and converted into the degree of 

phosphorylation using the information available from the sequence [4-6], but a major 

drawback is that it only applies to those phosphoproteins containing methionine (Met) and 

cysteine (Cys) residues (sulphur containing amino acids) [6]. Wind et al. reported that any 

peptide sequence exceeding 20 amino acids in length can be expected to have at least one 

Met or Cys residue [7].  However, several phosphorylated peptides, such as the tetra-

phosphopeptides obtained from the tryptic digestion of β-casein, have a polypeptide 

sequence of more than 20 amino acids, but do not contain these residues [8] and are 

therefore outside the scope of this methodology. 

 

The classical strategy for the determination of the specific sites of phosphorylation is the 

enzymatic digestion of the proteins followed by ESI-MS or MALDI-TOF analysis of the protein 

fractions. ICP-MS has several advantages over molecular MS, but the separation of the 

phosphopeptides from other phosphorylated or non-phosphorylated peptides, prior to their 

identification either by molecular MS or ICP-MS, is essential and has been discussed in detail 

in several literature reviews [9-11]. In the last few decades, several on-line and off-line 

separation techniques have been used for protein separation such as immobilized metal 

affinity chromatography (IMAC) [12], reversed phase chromatography [13], size exclusion 

chromatography (SEC) [14], capillary zone electrophoresis (CZE) [15] etc. However, Slab GE 

remains a bench mark for protein analysis and is the most widely used because of its high 

reproducibility and resolving power. The major advantages of using slab GE methods are: (a) 

molecular weight determination of unknown proteins is accomplished easily using mass 

standards, (b) low to high molecular weight proteins can be separated in a single gel and (c) a 

number of protein samples, including standards, can be run simultaneously in a single gel 

under identical conditions and can be compared using the band patterns.  

 

For obtaining enhanced quantitative information, a low percent gel is ideal because (a) the 

analyte can be transferred more effectively onto a membrane during the electroblotting 

procedure, particularly those proteins with a high molecular mass and hydrophobic character 

which do not properly transfer using high percentage acrylamide gels and show poor recovery 

[16]; (b) Laser Ablation (LA)-ICP-MS can be performed effectively directly on the gel; (c) a 

lower voltage and shorter time is required for separation and electroelution so there is less 
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chance of degrading the phosphorus-containing molecules with consequent band distortion 

[17]. 

 

Tris-glycine or Laemmli [18] SDS-PAGE is one of the most widely used methods for the 

electrophoretic separation of proteins. However, this method has very poor resolving 

efficiency for separating 1-30 kDa proteins in a low percentage polyacrylamide gel [16]. 

Therefore, in order to resolve low mass proteins in a low percentage gel, several 

modifications of this system have been reported. One way is decreasing the pore size of the 

gel [19-20] by increasing the cross-linking (%C) or by adding urea to the gel [17, 21]. However 

by adding a greater quantity of the cross-linker, the gel becomes more brittle. The addition of 

urea is useful for the analysis of low mass proteins, but it crystallizes at low temperature and 

sometimes decomposes during sample preparation [22]. Urea can also modify proteins by 

forming a carbamoylate derivative of lysine and other residues [23]. Another possible 

modification is the use of gradient gels [24], which provide good separation of low mass 

proteins, but they also have several deficiencies including irreproducibility of separation 

(especially in mini-gels), a time consuming cast, a tendency to break during the run, and they 

are difficult to store [22]. Moreover, they are not good for resolving peptides lower than 10 

kDa [17].   

 

In another development, Schägger and von Jagow [24] introduced the Tricine-SDS-PAGE 

method. Compared with glycine, tricine migrates much faster in a stacking gel at usual pH 

values and shifts the stacking limit from high to low molecular mass range proteins, which 

allows good separation of the smaller SDS-peptide complexes [17]. Tricine-SDS-PAGE is a 

further improvement because it enables the separation of low mass proteins in a low-

percentage polyacrylamide gel. Usually, a 10% gel (with pH 8.45) in Tricine-SDS-PAGE can 

separate proteins in the range of 1-100 kDa using two running buffers: a cathode buffer e.g. 

100 mM Tris, 100 mM tricine and 0.1% (w/v) SDS, pH 8.25, in the cathode chamber and an 

anode buffer e.g.100 mM Tris, pH 8.9, in the anode chamber. However, to obtain highly 

resolved bands, this method needs three gels (stacking, spacer and resolving gel) [16, 24-25] 

and addition of urea [16] in the resolving gel. The use of three gels is tedious, potentially 

troublesome and requires a freshly prepared gel mixture [25]. Addition of the urea may also 

create problems in amino acid sequencing [17]. 

         

The coupling of separation techniques to ICP-MS, such as capillary gel electrophoresis (CGE) 

[26], GE-LA [27-29] and micro liquid chromatography (µLC) [4, 30-31] were important 

developments in proteomics and genomics studies. The µLC-ICP-MS (pioneering work 

described by Lehmann and co-workers [32] for phosphopeptide analysis) is a selective and a 

very powerful approach for the detection and quantification of phosphopeptides. The system 

has a number of advantages over other separation techniques: (a) smaller ID columns 
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require low flow rates (µL min-1 or nL min-1) which provide positive economic and 

environmental benefits and help to overcome the organic solvent problem in ICP-MS analysis 

[33] yielding solvent compatibility with the ICP, low backgrounds and good resolution; and (b) 

sensitivity is improved and a reduced amount of the analytical sample is needed. On the other 

hand, there are drawbacks of using µLC-ICP-MS such as: (a) the low flow rates limit the 

choice of the nebulizer and spray; (b) miniaturization may reduce robustness of the system 

[34]; and (c) it may not be very useful in analyzing large bio-molecules.  

 

The recently introduced on-line coupling of GE to ICP-MS is a further development and was 

first described by Brüchert and Bettmer [35] for the determination of dsDNA fragments. More 

recently, it has been reported for several applications including: size characterization of gold 

nano particles [36], detection of iron in metalloproteins [37], determination of the degree of 

phosphorylation in casein [38], and for iodide and iodate determination in aerosols [39]. 

However, there appear to be no previous reports of this technique being applied to 

phosphopeptide analysis. GE-ICP-MS coupling also enjoys a wide range of benefits over the 

conventional RP-LC-ICP-MS technique including: (a) the cost of the gel is much cheaper than 

the cost of the column used in LC-ICP-MS and is readily replaceable in case of damage; (b) 

the flow rate is flexible ( µL min-1 to mL min-1) and conventional nebulizers are usually 

satisfactory; (c) non-volatile buffers used are more tolerable than the volatile buffers used in 

most RP-HPLC-ICP-MS separations; and (d) a wider range of sizes of bio-molecules can be 

analyzed. This approach also has some limitations and further investigation is required to 

overcome them, e.g. (a) broader peaks are obtained than for µLC-ICP-MS; (b) 

protein/peptides can be fragmented into the gel; (c) contamination from the gel and buffers 

may cause poor detection limits; and (d) acrylamide/bis-acrylamide is a neurotoxin and 

suspected carcinogen so extra care is required when using these gels. Whilst it is possible to 

compare in an absolute sense the merits of GE and LC methods, in practice they are not 

competitive, but complementary. GE is usually used for prospective analysis and is then 

followed by LC after a sub-set of analytes has been identified and purified. 

 

The main objectives of this study were (a) to develop a simplified GE method employing low 

percentage gels and low reagent concentration Tricine-SDS-PAGE system for the separation 

of peptides and proteins (b) to use this modified system to enhance the quantitation of 

phosphopeptides/phosphoproteins in off-line and on-line coupling analysis with ICP-MS. In 

GE-ICP-MS on-line coupling, the protein of interest can be eluted for detection by ICP-MS by 

adopting one of two strategies: (a) using running buffer as the elution buffer or (b) using an 

elution buffer from a separate buffer chamber. Both strategies are effective and purely 

depend on the instrumentation used. Here, the first strategy was employed as it is simple and 

required less modification to the original gel separation unit.  
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Experimental 

Chemicals 

The following chemicals were purchased from Sigma-Aldrich, Poole, Dorset, United Kingdom. 

Anionic detergent SDS and ultra-pure tricine as the components of the running buffer; α and 

β-casein as model proteins; 30% (w/v) solution of acrylamide/bis-acrylamide (29:1) for the 

preparation of the polyacrylamide gel; ultra-pure tris (hydroxymethyl)-amino methane (Tris) for 

the preparation of the buffer solutions; N,N,N’,N’- tetramethylethylenediamine (TEMED) to 

catalyse the polymerization reaction, ammonium persulphate (APS) to initiate the 

polymerization reaction; 2 x sample buffer to prepare the protein sample before loading onto 

the gel; 1,4-dithio-DL-threitol (DTT) as a reducing agent, iodoacetamide (IAA) as an alkylating 

agent and ammonium bicarbonate (NH4HCO3) as a buffer for protein digestion; Coomassie 

Brilliant Blue to prepare the staining solution and as a protein tracking dye and 25% (v/v) 

glutaraldehyde solution for fixing the proteins in the gel. Sequencing grade modified trypsin 

for the digestion of β-casein was purchased from Promega Corporation UK. 

All the solutions were prepared in ultra-pure water (18 M-Ω, from a Milli-Q water purification 

system, Millipore Corporation, Bedford, MA).  

 

Protein standards 

A protein standard (1) with a mass range of 2.5-200 kDa was purchased from Invitrogen 

Corporation UK. Ultra-Low Range Molecular Weight Marker™  (2) with a range of 1-26.6 kDa 

was purchased from Sigma Aldrich UK. The detail of these protein standards is described in 

Table 1. Mono- [T6 (1P)] and tetra- [T1-2 (4P)] phosphopeptide standards [(M+H) = 2061.8 

and 3122.2 respectively] were also purchased from Sigma Aldrich UK. 

 

Protein digestion 

Protein digestion in solution for a comparative study was performed according to the following 

method. 10 µL of 1 mg/mL β-casein solution was dissolved in 15 µL of 50 mM NH4HCO3 and 

1.5 µL of 100 mM DTT solution and incubated at 90 ºC for 5-10 min. After cooling to room 

temperature, 3 µL of 100 mM IAA was added to this solution and incubated for 25 minutes in 

the dark. 1 µL of 0.1 µg/µL sequencing grade modified trypsin was then added and incubated 

at 37 ºC for 4 hours. Finally, an additional 1 µL of this trypsin was added and incubated 

overnight at 30 ºC. Next day, the digest mixture was dried to 10 µL using vacuum. 
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Tricine-SDS-PAGE  

Buffer system 

To prepare the stacking and resolving gels, 2.5 M Tris-buffer with a pH of 8.8 for the modified 

system and with a pH of 8.45 for the conventional system was prepared. The pH of the gel 

buffers were adjusted using HCl. Running buffers with 25 mM concentration of Tris-tricine and 

0.05% SDS for the modified method and 100 mM Tris-tricine and 0.1% SDS for the original 

method were prepared. (Note: only one running buffer was employed in both methods). 

2 x sample buffer was purchased from Sigma Aldrich, containing 100 mM Tris-HCl (pH 6.8), 

1% (w/v) SDS, 4% (v/v) 2-mercaptoethanol, 0.02% (w/v) Coomassie Brilliant Blue and 24% 

(w/v) glycerol. 

 

Sample preparation 

For the slab gels, 10 µL of the sample buffer were mixed with (a) 10 µL of 1 mg/mL β-casein 

and (b) 10 µL of the digest mixture. For on-line coupling, 10 µL of the sample buffer were 

mixed with one of the following: (a) 10 µL of the digest mixture, (b) 10 µL α- and β-casein 

(final concentration 0.10 nM each), or (c) 10 µL mixture of mono and tetra-phosphopeptide 

standards giving final concentrations of 20.2 µM of [T6 (1P)] and 16.3 µM of [T1-2 (4P)].  

 

Gel casting 

Stacking and resolving gels were cast for both the modified and original method as described 

in Table 2. Urea, SDS and glycerol were not included in any of the gels. For slab gels, a mini-

gel casting apparatus was purchased from Bio-Rad UK (Mini-PROTEAN® 3 Cell) and all the 

gels were cast at 7.3 cm height x 8 cm width and 0.75 mm thickness. (Note: acrylamide is 

recognised as a neurotoxin, so gloves must be worn all the time and the work must be done 

in a properly ventilated area).  For on-line coupling (see Instrumentation section), 10, 10.5 

and 15% tube gels were also cast in a similar manner within a length of 7.3 cm and 1 cm 

internal diameter (ID) in a borosilicate glass tube.  
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Protein Loading 

7 µL of protein standard (1) and 5 µL of protein standard (2) were injected onto the slab gels. 

Similarly, 10 µL of β-casein solution for the mass balance study (by off-line analysis), and 10 

µL of the digest mixture were also loaded onto the slab gels. 10 µL of each of the mixtures of: 

0.10 nM α-casein and β-casein, the digest mixture of β-casein, and 20.2 and 16.3 µM mixture 

of [T6 (1P)] and [T1-2 (4P)] respectively were injected into the tube gel for on-line coupling. 

 

Gel fixing, staining and destaining 

A fixing solution of 5% (v/v) glutaraldehyde was prepared and each slab gel was fixed for 25 

minutes. A 0.025% (w/v) Coomassie Brilliant Blue solution was prepared in  

10% (v/v) acetic acid and each gel was stained for 20 minutes after washing with deionised 

water. For sharp bands, the staining was repeated by replenishing the staining solution. Gels 

were washed with deionized water and destaining was performed using 10% acetic acid for 

15-20 minutes. 

 

Whole Gel Elution (WGE) for off-line analysis  

β-casein (10 µg) was electrophoretically run through 9% and 16% modified slab gels. The 

tracks containing the protein bands were then cut from the gels using a sharp blade. These 

individual tracks (9% and 16% gels) were loaded into the electroeluter glass tubes separately 

and electroeluted using the Bio-Rad 422 electroeluter. Tricine-SDS-PAGE modified running 

buffer was used as an elution buffer for 2 hours at 0.01-0.02 A current applied to each tube. A 

blank gel of each of the 9 and 16% gels was also electroeluted following the same procedure 

to subtract the background signal intensity of the 31P. WGE was also performed for 

phosphorylated peptide band detection. Briefly, the β-casein digest (10 µL) was injected into a 

10% slab gel. After Coomassie staining each band was cut to equal size and electroeluted for 

2.5 hours by applying a 0.01-0.02 A current per tube. A blank gel was also electroeluted for 

the control. 

 

Instrumentation  

GE-ICP-MS on-line coupling  
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A schematic diagram of the GE-ICP-MS on-line coupling is shown in Fig. 1.  For this coupling, 

a Model 422 Electroeluter GE system was purchased from Bio-Rad UK. This electroeluter 

included a borosilicate glass tube of 1 cm ID x 6 cm length, but here this original elution tube 

was replaced by a glass tube of 1 cm ID x 7.3 cm length into which a capillary tube of the 

same length, with an ID of 1 mm was placed. Gels were cast into the outer tube (1 cm ID) and 

the capillary was used for pumping the buffer and eluted proteins to the ICP-MS nebulizer. (It 

is important to note that this inset capillary did not show any negative effect on separation. As 

stated above, a focus in this work was to minimize modification of the original device. Thus 

the capillary was taken from the upper reservoir, rather than a separate one, and this helped 

to balance the pressure and prevented displacement of the dialysis membrane). At the bottom 

end of the tube, a porous polypropylene frit was placed to filter the running buffer and reduce 

further the SDS concentration before introduction to the ICP-MS instrument. This tube was 

then placed into a silicone adapter with the outlet connected directly to a peristaltic pump via 

Teflon tubing. The other end of the pump was connected to an ICP-MS nebuliser. A dialysis 

membrane, made in-house with a molecular mass cut-off of ~1.5 kDa, was placed at the 

bottom end of the adapter to connect the electrodes to the buffer reservoirs. The total inner 

dead volume between polypropylene frit and dialysis membrane was only about 20 µL. The 

upper (cathode) and lower (anode) buffer chambers were filled with 200 mL and 600 mL of 

the running buffer respectively. The separation was carried out at 0.03 A current at a voltage 

of 80-90 V. When the dye front reached the bottom of the tube, the running buffer (from upper 

buffer chamber) was then pumped towards the nebulizer with a flow rate of 130 µL min-1 via 

the inset capillary tube until the proteins of interest were eluted. The current applied during 

this time was 0.04-0.05 A (150-200 V). The GE parameters are listed in Table 3. 

 

ICP-MS  

ICP-MS analysis for 31P was performed on an Element 2 XR Sector Field ICP-MS instrument 

(Thermo Finnigan Corporation, Bremen, Germany).  The instrument was operated at medium 

resolution (R=4000) to avoid interferences on the 31P signal at m/z=30.973 u from 15N16O 

(m/z=30.999 u) and 14N16O1H (m/z=31.005 u) signals. ICP-MS parameters are given in Table 

4. 
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Results and discussion 

Modified Tricine-SDS-PAGE method 

To increase the compatibility of the Tricine-SDS-PAGE system with ICP-MS, changes were 

made to the original method, decreasing the component concentrations of the running buffer 

and altering the pH of the gel buffer. Separations achieved on the slab gel by employing two 

different protein mass ladders are shown in Fig. 2. The effects of the modification are 

discussed in detail below. 

 

Effect of changing the running buffer concentration 

An important step in coupling ICP-MS to separation techniques is to optimize mobile phase 

composition. For example,  organic buffers, which contain a high concentration of carbon 

have several adverse effects on ICP-MS such as: (a) build up of carbon deposition leads to 

clogging of the interface cones and injector of the torch and, as a result, decreases the 

sensitivity of the ICP-MS instrument [40-42]; (b) a high level of carbon generates a number of 

polyatomic carbon based interferences for e.g., C2
+, CNH+, CO2

+ and 38Ar13C+ for Mg+, Al+, 

Ca+ and V+ respectively; and (c) volatile buffers increase plasma loading and may cause 

destabilization of the plasma. To use a high carbon concentration, it is usual to add oxygen to 

the nebulizer gas [40-42], however, the addition of oxygen may reduce cone life [43]. Non-

volatile buffers are better tolerated than volatile ones. However, where possible, low buffer 

concentrations are preferable, there are no negative effects and contamination is reduced 

which is important for ubiquitous elements such as phosphorus. For Tris-HCl Lobinski et al. 

reported up to 30 mM concentration is well tolerated by ICP-MS [44].  

 

Tricine-SDS-PAGE running buffer in the original method contains 100 mM Tris, 100 mM 

tricine and 0.1% SDS with the gel buffer pH at 8.45. It was found that by reducing this running 

buffer concentration down to 25 mM Tris, 25 mM tricine and 0.05% SDS and increasing the 

pH of the gel buffer to 8.8 there was no negative effect on the band resolution. Comparative 

results for the digest mixture of the β-casein were obtained after running the tricine original 

and modified SDS-PAGE method with the 10% gels as shown in Fig. 3. The molecular mass 

values of the bands were calculated using the protein ladder. The serine (S) residues of the 

amino acid sequence of β-casein are phosphorylated at positions 30, 32-34 and 50 (Swiss 

Prot).  Trypsin cleaves the amino acid sequence from arginine (R) and lysine (K) residues and 

gives the two phosphorylated fragments i.e., a mono-phosphopeptide [(M+H) = 2061.8] and a 

tetra-phosphopeptide [(M+H) = 2966.16] with the sequences FQ-Sp-EEQQQTEDELQDK 
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and ELEELNVPGEIVE-Sp-L-SpSpSp-EESITR respectively. Two further tetra-

phosphopeptides from β-casein digest i.e., [M+H = 2352.85] NVPGEIVE-Sp-LSpSpSp-

EESITR and [M+H = 3122.27] RELEELNVPGEIVE-Sp-L-SpSpSp-EESITR were also reported 

[8,45]. These phosphopeptides are usually obtained because of the mis-cleavages or 

chemotryptic activities of the trypsin enzyme [8]. It was previously reported that the molecular 

masses of phosphorylated peptides could not be determined in SDS-PAGE [17] as they do 

not properly form micelles with the SDS and therefore migrate slower. For the identification of 

the phosphorylated bands, WGE of each digested band was performed and 10 µL of each 

fraction was introduced to the ICP-MS instrument by flow injection using the modified running 

buffer stream. The 31P area of each peak was calculated and the bands containing the 

phosphopeptides were identified in the gel as the only peptide bands with a 31P peak area 

above the blank (Fig. 3). However, these bands were not well resolved most likely due to 

several peptide impurities. The 31P peak area of each band is listed in Table 5.              

 

Effect of changing the pH of the gel buffer 

In a gel electrophoresis procedure, the pH of the resolving gel plays an important role in 

protein separation. The effect of changing pH in a classical Laemmli system has been 

reported previously [46] and it was stated that by increasing the pH of the resolving gel, a 

slightly lower molecular mass band could be observed in a 10% gel. In an SDS-PAGE system 

a high pH in the separating gel is not only helpful in resolving the proteins, but it also 

increases the protein (wrapped with SDS) mobility in the gel and results in a low current that 

reduces heat generation. For quantitation, a low temperature in the gel is more likely to 

maximise the recovery of the proteins. The pH of the stacking and resolving gels is adjusted 

to 8.45 in conventional Tricine SDS-PAGE system. Here, it was shown that by increasing the 

pH of the resolving and stacking gels up to 8.8, the band resolution and separation of 

peptides/proteins was not degraded. By increasing the pH an additional band was observed 

in the 7, 9 and 10% gels (Fig. 4) compared to the original method. In previous studies 1-100 

kDa protein separation has been claimed in a 10% gel using the original method [16-17, 24]. 

This necessitated the use of two running buffers, urea, a three gel system or an increase in 

the cross linking to achieve such level of separation employing the original method. Hence 

increasing the pH up to 8.8 makes the system much easier and low molecular mass peptides 

separation was observed in 7, 9 and 10% polyacrylamide gels using a simplified procedure. 
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Off-line analysis for recovery studies 

In order to check the efficiency of the low and high percentage gels for protein recovery a 

mass balance study was carried out using WGE followed by ICP-MS. The total percentage 

recovery of the 31P was calculated as 73 + 2.1% and 55 + 1.6% (N=3) (after 2 hours 

electroelution) from the 9% and 16% gels respectively. Thus the quantitative recovery of the 

β-casein in the low percentage gel was shown to be higher. The major factors that may affect 

the recovery using high percentage gels are: (a) a high percentage gel increases the 

electrical resistance leading to more heat generation - this heat develops a temperature 

gradient from the centre of the gel to the gel surface due to the uneven heat loss and causes 

distorted bands [17]; and (b) a high percentage polyacrylamide gel increases the run time and 

running the sample for too long may cause protein fragmentation. These factors show that a 

high percentage gel is not an ideal choice to recover the maximum quantity of the protein 

from the gel.  

 

GE-ICP-MS on-line coupling 

A focus of this study was to investigate the efficiency of the modified Tricine-SDS-PAGE 

method for on-line coupling to ICP-MS. Previously described GE-ICP-MS on-line systems 

used a separate elution buffer from a separate buffer chamber and therefore require detailed 

modification of the system. The decrease in the running buffer concentration provides an 

additional benefit as it can be used as an elution buffer in the modified system. 200 mL of the 

running buffer from the upper buffer chamber (coupled to the outlet chamber by the 

embedded capillary) is enough for many hours running with a flow rate of 130 µL min.-1  

 

The initial testing of the effectiveness of this on-line system was performed by the successful 

online separation of a mixture of α-casein (22.97 kDa) and β-casein (23.58 kDa), as shown in 

Fig. 5. Very good signals were recorded at 0.10 nM concentration of each of α- and β-casein. 

The degrees of phosphorylation on α-casein and β-casein were reported previously as 9.1 

and 4.9 respectively [4, 38]. Therefore, enhanced 31P signal intensity of the first peak was 

observed compared to the second one, however the 31P signal intensity of β-casein was lower 

than expected as it was found to be contaminated with several proteins including α-casein, 

which was further enhancing the α-casein signal intensity (Fig. 5). The resolution was 

sufficient and after elution of the protein the 31P signals quickly reached the base line, which is 

an indication of a very low memory effect, although a slight tailing was still observed.  
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The role of the running buffer is important not only in protein separation, but also in GE-ICP-

MS coupling for peak shape, elution time, detection and quantification limits of the analytes, 

especially when it is also used as an elution buffer. The results show good peak shape and 

very low background signals. In a comparative study it was observed that the 31P buffer 

background signals of the modified system were 2 to 3 times lower than the original method. 

This indicates that an enhanced phosphopeptides detection limit can be achieved using this 

modified system. A blank sample was run using a 10% gel for the control measurement in the 

modified system and no 31P peak was observed. The use of SDS limits this system to 

identifying elements other than S, thus the P/S ratio for α- and β-casein could not be 

determined here.  

 

For the separation of mono- and tetra-phosphopeptides from the β-casein digest, initially a 

10% gel was employed to resolve the phosphorylated peaks (Fig. 6), but, as there was only 

one peak observed with comparatively high signal intensity, the gel percentage was gradually 

increased and a 15% gel was found to resolve the two 31P peaks (Fig. 7). Further increasing 

the gel percentage did not show any additional peaks. It was concluded that the mono and 

tetra-phosphopeptide peaks were not fully resolved (even in the 15% gel) due to the presence 

of several phosphorylated and non-phosphorylated peptide impurities in the digest. A low 

percentage (10%) tube gel was not able to separate these impurities and as a result all the 

peptides were eluting as a single unresolved band and one peak was observed in the 

electropherogram. This was confirmed by running the mixture of [T6 (1P)] and [T1-2 (4P)] 

respectively (Fig. 8), which were resolved in the 10.5% gel.  

   

It is important to note that significant peak tailing was observed from the digest mixture (Fig. 6 

and 7) so that baseline separation was not achieved. Several contributing factors to peak 

tailing in the electrophoretic peaks have been discussed in previous studies [47] including 

overloading of the analytes and weak efficiency of the column. Hence a large number of 

unresolved 31P peptide impurities were the major likely cause of peak tailing here. The main 

source for the phosphopeptide impurities could be mis-cleavages during the digestion [8] and 

α-casein contamination [48], which was also digested with the β-casein. Slow mass transfer 

to the detector is also an important factor in peak broadening [49]. So by increasing the gel 

percentage, protein transportation to the ICP-MS slowed down causing broader peaks as 

shown in Fig. 7. 

 

A mass balance study was carried out using [T6 (1P)] and [T1-2 (4P)] and recoveries of 

48+3.1% and 95+4.0% (N=3) respectively were obtained. The cut-off ~1.5 kDa of the dialysis 

membrane used here may well be the cause of low recovery of [T6 (1P)]. 
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Lower limits of detection (LLD) were achieved as 0.7 and 0.2 µM for [T6 (1P)] and [T1-2 (4P)] 

respectively using the criteria of three times the standard deviation of the blank. These 

correspond to 7 pmol and 2 pmol per 10 µL sample of the mono and tetra-phosphopeptide 

solutions.  

 

Conclusion 

In conclusion, an easy and rapid method for the separation of peptides in low percentage 

uniform acrylamide gels has been described. This was achieved by modifying the previously 

described Tricine-SDS-PAGE system. This modified system reduces by 3 to 4 times the cost 

of the consumables, and using standards, separation with very good resolution was achieved 

by slab GE. Using low percentage gels and very low reagent concentrations reduced 

contamination and improved performance for quantitative proteomics and 

phosphoproteomics. A GE-ICP-MS set-up for the on-line separation of 

phosphoproteins/phosphopeptides was also investigated using the modified Tricine-SDS-

PAGE system. Whilst several custom made GE-ICP-MS systems have been described 

previously, here a setup was employed that required only minor modification of the original 

commercial electroeluter device.  Using the modified Tricine-SDS-PAGE enables elemental 

detection in proteins/peptides such as those typically found in the tryptic digests of 

phosphorylated proteins. Here, very low 31P background signals were obtained and yielded 

good LLD values for the phosphopeptides. However, use of the large format tube gels, limited 

peak resolution and this approach may not be useful for the detection of several 

phosphorylated peptides in digest mixtures in comparison with µLC-ICP-MS systems. Future 

studies will investigate the use of smaller diameter tube gels, or slab gels, to improve peak 

resolution. 
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Table 1 Detail of protein standards 1 and 2 

Protein standard 1           Protein standard 2        Molecular mass 

                                                                                      kDa 

Myosin                                                    -                                     200.0  

β-galactosidase                                      -                                     116.3 

Phosphorylase B                                    -                                     97.4 

Bovine serum albumin (BSA)                 -                                     66.3 

Glutamic dehydrogenase                       -                                     55.4  

Lactate dehydrogenase                          -                                     36.5 

Carbonic anhydrase                               -                                     31.0 

        -                                      Triosephophate isomerase            26.6                    

Trpsin inhibitor                                        -                                     21.5                    

       -                                       Myoglobin (from horse heart)        17.0  

Lysozyme                                                -                                    14.4 

       -                                       α-lactalbumin (from bovine milk)   14.2 

       -                                       Aprotinin (from bovine lung)           6.5 

Aprotinin                                                  -                                     6.0                      

Insulin B chain                        Insulin B chain (oxidised bovine)   3.5           

Insulin A chain                                         -                                     2.5         

      -                                        Bradykinin                                     1.06                     
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Table 2 Tricine-SDS-PAGE protocol for the preparation of the polyacrylamide gels. 
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Table 3 GE parameters for on-line coupling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 ICP-MS parameters  

Voltage                                      80-90 V for initial separation and  
                                                  135-150 V for elution 
Running/Elution buffer               25 mM Tris, 25 mM tricine and 
                                                  0.05% SDS 
Flow rate                                   130 µL min-1

Gel length                                  7.3 cm 
Gel ID                                        1.0 cm 
pH of the gel                              8.8 
Gel material                               Polyacrylamide 
Percentage of acrylamide         10, 10.5 and 15% 
in separating gel 
Percentage of acrylamide          4% 
in stacking gel           
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Instrument (ICP-MS)                   Thermo Finnigan Element 2 XR, 
                                                    Bremen, Germany 
Cones                                          Ni sampler and Ni Skimmer  
Nebulizer                                     PFA micro flow LC (Elemental 
                                                    Scientific Omaha, USA) 
Flow rate                                     130 µL min-1

Spray chamber                            Cyclonic (Glass Expansion, 
                                                     Victoria Australia  
Analyte                                        31P 
Magnet mass                               30.973 
Mass range                                  30. 968-30.978 
Resolution                                    Medium  
Gas flows                                     Cool = 15.5 Lmin-1   
                                                     Auxiliary = 0.88 Lmin-1  
                                                     Nebulizer = 1.102 Lmin-1 
Forward Power                            1300 W 
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Table 5 31P peak area of the β-casein digested peptide bands using WGE-ICP-MS flow 

injection. 

                      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peptide Band                    31P Peak Area (103) 

                                                     (N=5) 

 Blank gel                                      50 + 2.0  
 2.0 kDa                                        51 + 4.0 
 4.0 kDa                                        49 + 2.3 
 5-6.0 kDa                                     50 + 2.2 
 Phosphopeptides                         83 + 5.4  



 

21

ICP-MS

Running/Elution
Buffer 130 µLmin-1

Running Buffer

Stacking Gel

Resolving Gel
7.3 cm Long Glass Tube 

(ID 1 cm)

Peristaltic 
Pump

Dialysis 
Membrane

Silicon
Adapter

Polypropylene Frit

Lower Buffer Chamber

Running Buffer

Sample Loading
Well

Upper Buffer Chamber

Anode

Cathode

Capillary Tube (ID 1mm)

+

-

ICP-MS

Running/Elution
Buffer 130 µLmin-1

Running Buffer

Stacking Gel

Resolving Gel
7.3 cm Long Glass Tube 

(ID 1 cm)

Peristaltic 
Pump

Dialysis 
Membrane

Silicon
Adapter

Polypropylene Frit

Lower Buffer Chamber

Running Buffer

Sample Loading
Well

Upper Buffer Chamber

Anode

Cathode

Capillary Tube (ID 1mm)

+

-

 
Fig. 1 Schematic diagram of GE-ICP-MS on-line coupling 
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Fig. 2 Modified Tricine SDS-PAGE separation of low mass proteins in the range of (a) 2.5 to 

200 kDa (b) 1.0 to 26.6 kDa in 7, 9 and 10 % gels. For proteins corresponding to the listed 

masses, see table 1. 
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Fig. 3 Head to head comparative results for the β-casein digest using a 10% polyacrylamide 

slab gel with the original and modified Tricine-SDS-PAGE system. 
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Fig. 4 By increasing the pH of the gel buffer an additional band was observed in 7, 9 and 10% 

modified gel.  
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Fig. 5 GE-ICP-MS on-line separation for α- and β-casein. 10 µL of the mixture of 0.10 nM α- 

and β-casein was injected into 10% tube gel. β-casein was contaminated with α-casein and 

some other proteins causing decrease in its signal intensity. β-casein impurities were also 

shown by injecting 10 µg/10 µL in 10% slab gel. 
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Fig. 6 Electropherogram for the β-casein digest. 10 µL of the digest mixture of β-casein was 

injected into the 10% tube gel and only one peak was observed with a significant tailing. 
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Fig. 7 GE-ICP-MS on-line separation of the peaks containing mono and tetra-phosphopeptide 

respectively from the digest mixture of β-casein. 10 µL of the β-casein digest was injected into 

a 15% tube gel. 
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Fig. 8 GE-ICP-MS on-line separation of the mono and tetra-phosphopeptide standards. 10 µL 

mixture of 20.2 µM [T6 (1P)] and 16.34 µM [T1-2 (4P)] was injected into 10.5% tube gel. 

 

 

 

 

 


