Loughborough University
Browse
PCL-GelMA-chondrocytes manuscript - final author version.pdf (1.01 MB)

Multi-material 3D bioprinting of porous constructs for cartilage regeneration

Download (1.01 MB)
journal contribution
posted on 2020-02-18, 09:57 authored by Laura Ruiz-Cantu, Andy GleadallAndy Gleadall, Callum Faris, Joel Segal, Kevin Shakesheff, jing yangjing yang
© 2020 Elsevier B.V. The current gold standard for nasal reconstruction after rhinectomy or severe trauma includes transposition of autologous cartilage grafts in conjunction with coverage using an autologous skin flap. Harvesting autologous cartilage requires a major additional procedure that may create donor site morbidity. Major nasal reconstruction also requires sculpting autologous cartilages to form a cartilage framework, which is complex, highly skill-demanding and very time consuming. These limitations have prompted facial reconstructive surgeons to explore different techniques such as tissue engineered cartilage. This work explores the use of multi-material 3D bioprinting with chondrocyte-laden gelatin methacrylate (GelMA) and polycaprolactone (PCL) to fabricate constructs that can potentially be used for nasal reconstruction. In this study, we have investigated the effect of 3D manufacturing parameters including temperature, needle gauge, UV exposure time, and cell carrier formulation (GelMA) on the viability and functionality of chondrocytes in bioprinted constructs. Furthermore, we printed chondrocyte-laden GelMA and PCL into composite constructs to combine biological and mechanical properties. It was found that 20% w/v GelMA was the best concentration for the 3D bioprinting of the chondrocytes without comprising the scaffold's porous structure and cell functionality. In addition, the 3D bioprinted constructs showed neocartilage formation and similar mechanical properties to nasal alar cartilage after a 50-day culture period. Neocartilage formation was also observed in the composite constructs evidenced by the presence of glycosaminoglycans and collagen type II. This study shows the feasibility of manufacturing neocartilage using chondrocytes/GelMA/PCL 3D bioprinted porous constructs which could be applied as a method for fabricating implants for nose reconstruction.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Materials Science and Engineering C

Volume

109

Publisher

Elsevier

Version

  • AM (Accepted Manuscript)

Rights holder

© Elsevier

Publisher statement

This paper was accepted for publication in the journal Dalton Transactions and the definitive published version is available at https://doi.org/10.1016/j.msec.2019.110578

Acceptance date

2019-12-19

Publication date

2019-12-20

Copyright date

2020

ISSN

0928-4931

eISSN

1873-0191

Language

  • en

Depositor

Mr Andy Gleadall . Deposit date: 18 February 2020

Article number

110578

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC