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Abstract: A system for driver drowsiness monitoring is proposed, using multi-sensor data
acquisition and investigating two decision-making algorithms, namely a fuzzy inference system
(FIS) and an artificial neural network (ANN), to predict the drowsiness level of the driver.
Drowsiness indicator signals are selected allowing non-intrusive measurements. The experi-
mental set-up of a driver-drowsiness-monitoring system is designed on the basis of the sought-
after indicator signals. These selected signals are the eye closure via pupil area measurement,
gaze vector and head motion acquired by a monocular computer vision system, steering wheel
angle, vehicle speed, and force applied to the steering wheel by the driver. It is believed that, by
fusing these signals, driver drowsiness can be detected and drowsiness level can be predicted.
For validation of this hypothesis, 30 subjects, in normal and sleep-deprived conditions, are
involved in a standard highway simulation for 1.5 h, giving a data set of 30 pairs. For designing a
feature space to be used in decision making, several metrics are derived using histograms and
entropies of the signals. An FIS and an ANN are used for decision making on the drowsiness
level. To construct the rule base of the FIS, two different methods are employed and compared
in terms of performance: first, linguistic rules from experimental studies in literature and,
second, mathematically extracted rules by fuzzy subtractive clustering. The drowsiness levels
belonging to each session are determined by the participants before and after the experiment,
and videos of their faces are assessed to obtain the ground truth output for training the
systems. The FIS is able to predict correctly 98 per cent of determined drowsiness states
(training set) and 89 per cent of previously unknown test set states, while the ANN has a correct
classification rate of 90 per cent for the test data. No significant difference is observed between
the FIS and the ANN; however, the FIS might be considered better since the rule base can be
improved on the basis of new observations.
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1 INTRODUCTION

Monitoring the drowsiness of drivers is currently the

subject of active and preventative safety research.

The aim for monitoring is to provide a solution to the

drowsiness problem on roads from an engineering

perspective. Several studies have been conducted

in order to explain the phenomenon or to produce

a reliable measure for on-road driver monitoring

technologies [1–6]. One pragmatic study produced a

successful metric known as the percentage closure

of the eyelid (PERCLOS), obtainable by computer

vision (CV) techniques [7]. In order to employ

PERCLOS for monitoring in a non-intrusive manner,

real-time CV systems based on bright-pupil techni-

ques have been widely investigated [8]. However,

these systems are not able to infer the drowsiness

level of the driver all the time; they are prone to error

due to sensor failure, changing illumination condi-

tions, and limited field of view as addressed by

Bergasa et. al. [9].

In addition to PERCLOS, methods based on dif-

ferent metrics such as steering-wheel movements

have been widely investigated. Pilutti and Ulsoy [10]
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have studied lane-keeping performance of drivers by

taking the steering-wheel movements as the input

and the lane deviation as the output. Swingler and

Smith [11] and Sayed and Eskandarian [12] have dev-

eloped methods to monitor driver alertness by meas-

uring the steering actions and designing a neural

network to classify them as representing a drowsy or

alert driver state.

Although these metrics and signals themselves

indicate drowsiness with high performance, mon-

itoring systems relying on any single measure cannot

be considered as sufficiently robust. For this reason,

various researchers have conducted studies to

combine and correlate the signals to overcome the

deficiency of single-input systems. Bittner et al. [2]

correlated the symptoms from three different sig-

nals, namely steering-wheel adjustments, vertical

electro-oculography for eye movements, and several

parameters by independent assessors obtained by

watching the video of the driving simulations. In a

similar study, Brookhuis and De Waard [3] correla-

ted physiological signals such as electroencephalog-

raphy with vehicle-related performance measures,

namely car-following performance and number of

steering-wheel reversals. Different combinations of

these signals to obtain a more robust system have

been established by Gress-Hernandez et al. [13], Apo-

stoloff and Zelinsky [14] and Victor [15].

In this study, first, a reconsideration of previously

suggested metrics is offered as well as suggesting

new metrics. Second, a time window analysis is

performed on these metrics to assess how narrow

the processing time windows could be with a trade-

off between the update rate of the prediction and the

accuracy of the output. Finally, two different pattern

recognition methods are compared. In summary,

there are three different sources affecting the moni-

toring system performance:

(a) metric definition and how well they can capture

or extract the information in the signal;

(b) the time window over which the metrics are cal-

culated;

(c) the decision-making system using the metrics as

feature vectors.

All these three aspects are considered here as

a framework and first step for obtaining robust

drowsiness-monitoring systems.

2 EXPERIMENTAL TECHNIQUES

30 subjects participating in the experiments drive

the same simulated highway scenario for 1.5 h under

‘normal’ and ‘sleep-deprived’ conditions. For the

latter, subjects are asked to sleep at least 2 h less

to induce sleepiness and the ‘sleep-deprived’ data

collection is arranged to take place when a subject’s

circadian rhythm is in a low state (in the afternoon

between 2 and 4 pm). The data collection is per-

formed in alternate orders for sleep-deprived and

normal conditions in order to avoid undesirable

trends in data (i.e. the sleep-deprived session did

not always follow the normal session, for half of the

subjects the order was sleep deprived first and

normal second, and for the other half vice versa).

The highway scenario includes no events and is

deliberately designed to be monotonous, but a wind

gust effect is added to force the subjects to counter

the drift caused by this disturbance. For each ex-

periment, a sample from data is cropped to form

three segments, each of 12 min duration: start, mid-

term, and final. These segments are labelled to

indicate the corresponding time interval, for obser-

ving the temporal effect on task performance. Hence,

for each subject, there are six different sessions

in total; the first three sessions correspond to the

start, midterm, and final sections for the ‘normal’

driver and the last three correspond to start, midterm,

and final sections for the ‘sleep-deprived’ driver.

Although ‘normal’ condition data batches are obser-

ved to be significantly different from ‘sleep-dep-

rived’ data, gradual deterioration is also expected

within a ‘normal’ condition data batch when its start,

midterm, and final sections are compared.

The vehicle simulator is equipped with a CV sys-

tem for eye tracking, strain gauges for measuring

applied force on the steering wheel, and two en-

coders: one for measuring the longitudinal speed

of the car via the throttle angle and the other for

measuring the steering-wheel angle (SWA) (indicat-

ing lateral control for lane keeping). All the signals

obtained from this multi-sensor system are intui-

tively grouped under either visual or non-visual

channels, eye tracking comprising the visual channel

and the rest of the signals constituting the non-

visual channel. The multi-sensor system and derived

metrics are explained in greater detail in section 3.

However, the experimental geometry and overall

view of the system are given here to develop insight

into reasoning behind sensor selection and how

signals from these sensors are interpreted. Fig. 1

depicts the experimental geometry and the highway

image projected on to a screen at the front of the

vehicle simulator.

The CV system is placed just in front of the driver

to capture the eye gaze and closure. The measured
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eye gaze vector is directly related to where the

driver’s attention is focused on the road scene or the

speedometer. The x coordinate of the gaze vector is

related to left–right movement of the eyes, whereas

the y coordinate is related to vertical eye movement

(checking different regions of the road). If the driving

task is thought of as a combination of lateral and

longitudinal control of the car position (called here

lane keeping and speed control), the measured gaze

vector can be related to these task depending on

where the attention of the driver is. The x coordinate

of the gaze vector is expected to indicate whether a

driver’s attention is fixed on the left or the right,

whereas the y coordinate of the gaze vector is ex-

pected to indicate whether the driver is checking

the speedometer (down) or road scene (up). The aim

is to separate these two different tasks as much as

possible in order to track changes in gaze vector

distributions during the experiment. Driver models

in the literature support the assumption here that in

a simplistic way the driving task can be separated

into longitudinal and lateral control of the vehicle

[16]. Following the modelling approaches, the driver

subjects are instructed to keep a constant speed for

the longitudinal task and to keep the vehicle in the

correct lane position for the lateral task as much as

possible, allowing a separate examination of the two

important driving tasks and their related metrics.

Table 1 shows the separation between tasks and

related signals for each of them.

3 SUBSYSTEMS OF THE VIGILANCE
MONITORING UNIT AND INDICATIVE
SIGNALS

This study proposes a new approach that produces

a single reliable measure of drowsiness level by

deriving and combining several metrics with an

emphasis on trade-off between prediction accuracy

and update rate of system output. The monitoring

system consists of two integrated subsystems: first,

the visual channel, i.e. a CV system to measure eye

closure, gaze vector, and head motion, and, second,

a non-visual channel, i.e. a driver input measure-

ment unit consisting of strain gauges to measure

indirectly the applied force on the steering-wheel

column (SWC) and encoders to give the steering

angle and throttle angle indicating the longitudinal

speed. As these two channels are examined, the fea-

tures and metrics derived from the signals and their

indicative properties of metrics for drowsiness are

discussed.

Fig. 1 Experiment geometry and system overview

Table 1 Separation between tasks and related signals

Task Related signal

Longitudinal task 5 speed
regulation

Gaze vector y component,
speed

Lateral task 5 lane keeping Gaze vector x, y components,
SWA, force on steering wheel
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3.1 Computer vision system (visual information
channel)

The CV system is based on a bright-pupil technique

to facilitate eye detection and tracking. In this tech-

nique a near-infrared (NIR) light source is placed

coaxially with the optical axis of the camera. The

reflected light from the eye retina of the human

subject is caught by a camera as a result of this

alignment. In order to obtain this bright-pupil effect,

a monocular complementary metal–oxide–semicon-

ductor (CMOS) camera is used, with illumination

from a ring of light-emitting diodes aligned coaxially

with the camera lens and emitting NIR light at a

wavelength of 880 nm. A video stream of frontal

face images including eye regions with the bright-

pupil effect is continuously obtained and processed

frame by frame. The details of the hardware and

algorithms developed for the CV system is given in

Appendix 1.

The CV system can output five different measure-

ments: pupil area, and the vector components gaze

x, gaze y, head x, and head y as defined below. The

resultant segmented region of the driver’s eye, with

the associated NIR corneal reflection or ‘glint’ can

be seen in Fig. 2(a). The pupil area is measured to

obtain eye closure and number of blinks as functions

of time, which is a direct indicator of drowsiness. In

addition to eye closure, the attention of the driver

as a function of time can be obtained by measuring

the eye movement based on a vector between the

centres of glint and pupil in the segmented image.

The x and y components of this vector are called

here gaze x and gaze y. In addition to this, plotting

the coordinates of the centre of the pupil or glint

versus time gives the head motion in two dimen-

sions, called here head x and head y, representing

the horizontal and vertical movements respectively.

A sample of these signals and their interpretation

are given in Figs 2(a) and (b). All the signals are

normalized here, but in different intervals. A zero

value of gaze x represents the line between left and

right sections of the screen aligned with the optical

axis of the camera, and hence a ‘straight-ahead’ gaze

physically. For the gaze y vector, a zero value rep-

resents the vertical level of the speedometer and

negative values correspond to different vertical levels

on the screen. The negative sign occurs owing to the

use of a vector description, although the important

aspect is the magnitude of the measured gaze y

value, rather than its sign.

The raw signals from the CV system can be

summarized as a vector according to

CV raw

~ gaze x gaze y head x head y pupil area½ �
ð1Þ

The CV system signals are treated as ground truth,

i.e. the most representative signals for the actual

drowsiness level. A drowsy and an alert subject can

be clearly distinguished by the measurements from

the CV system, as shown in Fig. 3, which depicts the

histograms of the measurements arranged in three

successive time intervals for an ‘alert’ and a ‘drowsy’

driver.

The three rows show gaze y, gaze x, and pupil area

histograms for start, midterm, and final parts of the

driving sessions, each of 12 min duration. Quantita-

tively, a significant change is observed in the overall

gaze y distribution as well as decay of gaze y in the

interval [20.5, 21], indicating lack of attention to the

lane-keeping task as time passes.

To utilize the full potential of the CV system’s

output, three metrics are defined, based on the ob-

servations from histograms of measurements for

six sessions for 30 subjects, based on a 180-session

database of observations of the same phenomena;

they are the attention division ratio (ADR) defined by

ADR~
longitidunal task

lateral task

~
speed checking

road checking

~
Ngaze yw{0:5

Ngaze yv{0:5
ð2Þ

the first metric of eye closure (ECM1) defined by

ECM1~
pupil fully closed

pupil wide open

~

Pn
1 Npupil closed ið ÞPn

1 Npupil wide open ið Þ
ð3Þ

and the second metric of eye closure (ECM2) defined

by

ECM2~
wpupil area|0:9

vpupil area|0:9
ð4Þ

The metrics are observed to be powerful in predict-

ing the driver drowsiness level and they are believed

to be more enriched than an eye closure metric

alone (see Appendix 2). The ADR, for instance, gives

extra information about driver attention level by

2044 P Boyraz, M Acar, and D Kerr

Proc. IMechE Vol. 222 Part D: J. Automobile Engineering JAUTO513 F IMechE 2008



including the ratio of the speed-checking eye gaze

movements to the road-side-checking eye gaze

movements. The other two metrics ECM1 and

ECM2 exploit cumulative functions of eye closure

with respect to time. ECM1 emphasizes the number

of blinks by taking the proportion of fully closed to

fully open eye cases, while ignoring the cases in

between. ECM2 represents partially closed cases as

well as fully closed eye cases in the denominator of

the ratio and inversely related to drowsiness level. A

(a)

(b)

Fig. 2 (a) Sample outputs from the CV system: top left, low-level image features segmented;
pupil, glint, and gaze vector defined by the pixel distance between pupil and glint centres;
top right, pupil area; bottom left, a typical gaze x graph of a typical alert driver through
time; bottom right, head position through time. (b) Sample outputs from the CV system:
left, a typical gaze y graph of a drowsy subject, 0 . gaze y . 20.5 indicates speed checking
and 20.5 . gaze y . 21 indicates eye gaze for lane-keeping scene leading to a new metric
defined as the ADR; right, head motion in the y coordinate, i.e. head y
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(a)

(b)

Fig. 3 Typical histograms of (a) alert and (b) drowsy
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full analysis for comparison of traditional PERCLOS

to proposed metrics is given in Appendix 2. Besides

these newly defined metrics, the standard deviation

of gaze x (to indicate scatter), the mean of gaze x (to

show focusing on some particular point during the

session), and the scatter and entropies of the head

movement information in two dimensions are also

included in the analysis.

3.2 Driver inputs (non-visual channels)

The force exerted on the steering wheel by the driver,

and hence the bending of the SWC, is measured

by strain gauges. The gauges are placed most con-

veniently on the SWC of the vehicle simulator. The

signal is filtered to remove high-frequency noise

prior to further processing. The reason for collecting

this information is to identify its potential for

detecting microsleep lapses and to fuse these data

with the SWA to identify the mode of driving: re-

laxed, alert, etc. In the scope of this study, this signal

will only be considered for its potential in helping

to monitor the driver alertness level by using its com-

plexity via entropy and its scatter via the standard

deviation (Std). The meaningful information is ex-

pressed in the vector given by

Force feature~ Std entropy½ � ð5Þ

The inclusion of speed measurements in the analy-

sis helps to connect the attention distribution of the

driver for two specifically defined tasks in the stan-

dard highway scenario. These tasks are longitu-

dinal control of speed via the throttle and lateral

position control (lane keeping) via the steering SWA.

A sample output of non-visual information channels

can be seen in Fig. 4.

For the speed measurements, the deviation from

the reference speed that drivers are told to maintain

is measured by the integral of the steady state error,

which is known as the performance index in control

theory used for proportional–integral–derivative con-

trollers.

As can be seen from the simulator output in Fig. 4,

the speed-keeping behaviour of a driver resembles a

second-order system step response and steady state

error showing that the longitudinal control perfor-

mance of the driver, and hence the integral of stan-

dard error (ISE) and the integral of average error (IAE),

are of interest. These integrals are given by

ISE~

ðT

ts

e2 tð Þ dt ð6aÞ

IAE~

ðT

ts

e tð Þj j dt ð6bÞ

where ts is the settlement time and T is the time

window size.

The final metric definition combines these control

variables with the Std and entropies of the lane de-

viation and SWA completing the non-visual channel

sensor output according to

Driver input metrics

~ ISE IAE SWA Std SWA entropy½ � ð7Þ

4 METHODOLOGIES

4.1 Data Reduction

First, all the signals are normalized and baselines are

found; then the basic statistical features (i.e. mean

and Std) are calculated and any particular difference

between ‘normal’ and ‘sleep-deprived’ data batches

is sought. Second, entropies are calculated where

applicable. The entropy measure is defined as the

‘information content’ in the signal in telecommuni-

cation engineering and is a good indicator of system

response changes. The same concept is used here to

represent the complexity of a signal.

Finally, three different forms of feature vectors {F1,

F2, F3} are designed, as defined in Table 2. These are

intended to embody the same phenomena either by

visual cues only (F1), control performance index and

entropies (F2), and visual cues together with the Stds

(F3). This grouping is based on intuitive perspective

on metrics; no post-hoc analysis is performed at this

stage. However, after comparison of the classifica-

tion performance of each feature space, members

not positively contributing to the classification will

be eliminated.

The best of the feature vector space is formed by

combining the outperforming members from differ-

ent feature spaces. A typical change in feature vector

members for F3 can be seen in Fig. 5 for alert and

drowsy states of the same driver.

The reduction of the raw data into a meaningful

summary of the three different feature spaces can

be seen in the flow chart in Fig. 6. This process of

database preparation can be fully automated and the

system can thus be made adaptive, in that it updates

its own online database continuously.

After obtaining the feature vector spaces, available

metrics are used to train and test three different

systems for decision making on a drowsiness level.
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The methods are a fuzzy inference system (FIS) with

a linguistic rule base, an FIS with an extracted rule

base using subtractive clustering, and finally an arti-

ficial neural network (ANN). FISs are explained in

section 4.2 and ANNs in section 4.3. The results of

training and testing these systems are given in sec-

tion 5. Finally, a time-window analysis is performed

using only an FIS with the extracted rule base, to

observe how narrow the time window can be selected

safely without losing accuracy in the prediction per-

formance.

4.2 Fuzzy inference systems

The approach is to begin with the available relation-

ships from previous studies [3, 6, 7, 10, 11] as

linguistic rules, then to justify these rules and finally

to add new rules via signal processing and statistical

Fig. 4 Sample data from the non-visual information channel: speed (km/h), lane deviation (m),
SWA (deg) and force (normalized to the [21, +1] kgf interval); time (simulator time (s))

Table 2 Different feature vectors designed to investigate the best representation of the
phenomena

Visual cues (F1) Entropy and control (F2) Visual cues and Stds (F3)

ECM1 IAE SWA, Sd
ECM2 ISE Force on SWC, Sd
ADR SWA, entropy ECM1
Gaze x, mean Gaze x, entropy ECM2
Gaze x, Std Force on SWC, entropy ADR
Head Motion in x, Std Head motion x, entropy Gaze x, mean
Head Motion in y, Std Head motion y, entropy Gaze x, Std

Head Motion x, Std
Head Motion y, Std

2048 P Boyraz, M Acar, and D Kerr

Proc. IMechE Vol. 222 Part D: J. Automobile Engineering JAUTO513 F IMechE 2008



analysis. FISs are employed [9] using only visual cues

from a CV system as well; however, feature vector

members from both visual and non-visual channels

will here be incorporated. The ultimate aim is to

reach an algorithm that would predict the alertness

state of drivers well before they reach a dangerous

condition. Therefore, the rule base is designed by

two different approaches. The first approach uses

only linguistic rules defined by previous studies,

whereas the second approach aims to extract rules

as a set of mathematical relationships from the data

itself using fuzzy subtractive clustering. These two

(a)

(b)

Fig. 5 Change in the variables of F3 through three sessions for the same subject: (a) alert; (b)
drowsy. The x-axis labels 1, 2, and 3 stand for the sessions start, midterm, and final
sessions of the data collection
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approaches and three feature vector spaces are

compared. As a result of this comparison, the best

feature space with the best FIS is selected.

Initially, the rule base of the FIS is constructed as a

combination of the rules stated in the literature

using raw outputs from the sensors. However, it is

soon realized that the system responds too rapidly,

leading to false alarms and to failure to take into

account properly the measurement history. Such a

decision system should not behave as in an on–off

mode. For this reason, feature vector calculation

over a time window is employed, strengthening the

‘reasoning capacity’ of the fuzzy system from the

observed trends and changes in the data pool, cap-

turing previous and current measurements to-

gether. FISs designed using linguistic rules are of

the Mamdani (linguistic) type [17] and all the rules

are transparent to the designer. An example of such a

rule used in the first approach, in the form of a

linguistic statement, could be given as follows: ‘If

ECM1 is high and ECM2 is low, then the drowsiness

or risk level is high.’

In fact, this system is like a co-pilot observing the

changes in driver behaviour and yielding a predic-

tion on drowsiness level. The second rule base is

extracted by a fuzzy subtractive clustering algorithm

[18] utilizing the whole database and concluding in a

Sugeno–Takagi (S–T) [19] (constructing mathemati-

cal linear relationships between inputs and output)

FIS with a variable number of rules depending on

the distribution of the data. A subtractive clustering

method is used in deriving the S–T-based FIS.

The clustering algorithm is an iterative optimiza-

tion algorithm minimizing the cost function in

J~
Xn

k~1

Xc

i~1

mm
ik xk{nik k2 ð8Þ

where the degree of membership mik is given by

mik~
1Pc

j~1 xk{nik k
�

xk{nj

�� ��� �2= m{1ð Þ ð9Þ

n 5 number of data points

c 5 number of clusters

xk 5 kth data point

ni 5 ith cluster centre

mik 5 degree of membership of the kth datum in

the ith cluster

m 5 constant

When the input precisely matches the centre of the

cluster, this definition guarantees that the input will

have zero membership coefficients for other clusters.

It guarantees that the separate clusters are formed,

allowing the rules based on them to be defined. The

number of the clusters in this method is automati-

cally concluded by the time that all the data points

are attached by a membership function to very

dense clusters. Next, the mapping from the input

space to output space is then performed with a

linear equation using the clusters extracted by this

method.

4.3 Artificial neural networks

A robust ANN can be a powerful tool in applications

involving a complex classification or decision pro-

blem where the answer is required in a short time

and a convenient mathematical model is not avail-

able. The details of the ANN algorithms will not be

given here; however, a comprehensive coverage of

the topic can be found in reference [20]. The ANN

structure selected for this work is the feedforward

multiple-layer perception and trained by back pro-

pagation. The training algorithm is chosen as the

Levenberg–Marquardt algorithm because of its con-

venient properties. There are several strategies to

decide on the best topology of the network. Cross-

validation and statistical approaches are widely

known [21, 22]; however, as observed in reference

[21], the strategies give an insignificant alleviation in

finding the optimum topology. Therefore, starting

with the number of inputs as input layer and one

layer for output, ANNs with three-layer topology are

employed here since they are universal classifiers.

Fig. 6 Signal flow and data reduction (HIL, hardware
in the loop)
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The network structure is a family of networks with 9–

x–1 architecture with three layers; x will be changed

to observe the changes in the performance. The best

classification performance amongst the network

structures starting with an input layer having nine

nodes representing the best feature vectors taken

from the optimum feature space, which is derived in

section 5.2 and ending with a single node for the

output of drowsiness level.

5 RESULTS AND ANALYSIS

In order to train prediction and classification sys-

tems with supervised learning, a ground truth output

is needed. This output represents the true drowsi-

ness level of the driving sessions. This ground truth

risk level is obtained by averaging the following scores:

(a) the driver’s own assessments of his or her

condition;

(b) the independent grading from 20 assessors

watching the videos from the simulation;

(c) the experiment designer’s view from the NIR

frontal face videos of drivers.

The assessment is based on a scale from 1 to 5,

with 1 representing a fully alert and 5 a significantly

drowsy state.

5.1 Comparison of prediction performances

As two approaches are followed to design different

FIS systems, it is necessary to compare their per-

formances over three previously defined feature

vector spaces. The Mamdani system is built based

on a priori linguistic relationships besides being

transparent. This means that any rule can be added

or removed linguistically, making the system flexible.

However, the prediction of the system when tested

with unknown vectors gave the average drowsiness

level of 3. Hence, it is not able to predict extreme

cases with the available rule base, mostly outputting

scale 3 from the [1–5] interval indicating a moderate

level of drowsiness (Fig. 7).

On the other hand, the S–T FIS system depends

completely on the database and learns all the

mapping from the data via cluster analysis. Its

success is much higher than the Mamdani system

in correctly labelling the drowsy sessions on a [1–5]

scale; however, the system is highly data driven, and

the rules are not intuitive. It may output false clas-

sification results in some extreme cases. It is able

to follow the drowsiness level defined by average

of experimenter’s, independent assessors’, and sub-

ject’s own drowsiness gradings on the [1–5] scale.

An S–T FIS system based on the F1 (visual clues)

feature space gives reasonably good results when

18 completely unknown sessions were used as input

(Fig. 8).

The performances of the S–T FIS system over F2

(entropy and control) and F3 (visual clues and Std)

are given in Figs 9 and 10 respectively. As can be

seen in Fig. 9, F2 is not a good feature vector space

and F3 appears to be the best (Fig. 10). The results

are also filtered using heuristics to damp the over-

shoots of the system and to rescale it into a [1–5]

scale.

The total testing and validation session results are

summarized in Table 3, illustrating that F1 and F3 are

the best feature spaces amongst the heuristically

designed spaces; however, F3 did not perform as well

as expected. This can be explained by the fact that

some of the feature members are not following a

consistent trend in the database. These members

can be identified and a smaller weight factor can be

attached to them, so that the system performance is

not affected greatly.

5.2 Selecting outperforming members from
feature spaces

In statistics, correlation analysis helps experimenters

to find statistically correlated variables and their

dependences. The correlation value r shows how

the trend in two separate variables match, and the

p value or significance value indicates their linear

dependence. If the correlation analysis of two vari-

ables yields high correlation values and low signi-

ficance, it is concluded that the two variables are

linearly independent, however highly correlated.

The previously defined risk function is correlated

with each feature member over 150 sessions and

correlation coefficients with significance or p values

are calculated (Table 4) to identify the feature mem-

bers highly correlated to the drowsiness level.

If the members with p , 0.05 are included as

shown in Table 5, a significant improvement is ob-

served giving only two false classifications over

150 mixed sessions with test and training data. In

addition to this, there has been no post-processing

of results using heuristic filtering and rescaling. The

system is still able to detect the states correctly,

giving only one false alarm and one miss in test data

(Fig. 11).

Using nine members of the vector space F4, as

explained in section 4.2, an ANN from a family of 9–
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x–1 architecture is used to see whether there is any

difference in performance when a different algor-

ithm is used for classification. It was observed that,

while x has values in the [2, 8] interval the per-

formance of the ANN classification was found with

the 9–6–1 architecture. However, as can be seen in

Figs 12 and 13, there is no significant difference

between the ANN and the FIS in terms of perfor-

mance.

6 TIME WINDOW ANALYSIS

In this part, the quest is for the best time window

over which the feature vectors were calculated. The

best time window represents the following charac-

teristics:

(a) the ability to capture the trend and necessary

information content in the data, as it has to

Fig. 7 Output of the FIS–Mamdani system with linguistic rules versus subjective risk function
(F1 feature vector space)

Fig. 8 Output of the S–T FIS versus risk function over F1 space
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represent sufficient history of the signals so that

trends become more visible and distinguishable;

(b) the ability to allow a suitable update on driver

status, so that a preventative system can act

promptly.

In order to investigate the time window effect on

the system performance in decision making, four

different data batches were prepared on the basis of

the original reduced raw data. The time windows

were set at 12 min, 6 min, 3 min, and 1.5 min.

Fig. 9 Output of the S–T FIS system versus risk function over F2 space

Fig. 10 Output of the S–T FIS system versus risk function over F3 space

Table 3 Comparison of performances for two FIS systems utilizing the three chosen feature vectors

Performance
comparison

F1 F2 F3

Success (%) False alarm (%) Success (%) False alarm (%) Success (%) False alarm (%)

Mamdani 90 10 80 20 85 15
S–T 98 0 90 10 95 5
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In Fig. 14 the result for training a data batch using

a 6 min time window can be seen. As can be de-

duced, the prediction is highly accurate, missing

only two data points slightly amongst 270 data

points. However, when presented with completely

unknown feature vectors, the trained FIS gives a

reduced performance, as seen in Fig. 15.

The next two further steps of reduction in time

window size are 3 min and 1.5 min. The prediction

performances of these time windows on training

data and test data are given in Figs 16 and 17 res-

pectively for 3 min, and in Figs 18 and 19 respec-

tively for 1.5 min. It is concluded that 3 min or 1.5

min can be used to predict driver drowsiness level

with some acceptable false alarm rate, not exceed-

ing 10 per cent. For further reduction in the time

window the sensor reliability has to be increased.

Overall, the following observations are recorded

from time window analysis.

1. If the time window is narrowed too much as in

the case of 1.5 min, the response becomes noisy.

2. The fluctuating response of the narrower time

windowed fuzzy systems could be because of

output vector interpolation, resulting in quantiza-

tion error. Because the actual output values be-

tween two known output values is assumed to

change linearly, this may not be representing the

real case.

Table 4 Feature members and corresponding correl-
ation coefficients with significance values

Feature vector
member

Correlation
coefficient R

Significance
p

ECM1 0.5886 0.000
ECM2 20.3951 0.000
ADR 0.2642 0.002
Gaze x, mean 20.0384 0.658
Gaze x, Std 20.0383 0.659
Head motion x, Std 0.3256 0.001
SWA, Std 20.1310 0.130
Head motion y, Std 0.3991 0.000
IAE 0.201 0.0193
ISE 0.174 0.0429
SWA, entropy 20.227 0.0079
Gaze x, entropy 20.083 0.3300
Force, entropy 20.179 0.0360
Head motion x,

entropy
20.18 0.0342

Force, Std 0.196 0.0224
Head motion y,

entropy
20.198 0.0213

Table 5 Feature members with p , 0.05 defining best
feature space (F4)

Feature vector member Significance p

ECM1 0.000
ECM2 0.000
ADR 0.002
Head motion x, Std 0.001
Head motion y, Std 0.000
IAE 0.019
ISE 0.042
SWA, entropy 0.007
Force, entropy 0.036
Force, Std 0.022

Fig. 11 Test results of the best feature vector space
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7 CONCLUSIONS AND FURTHER RESEARCH
DIRECTIONS

It was shown that the proposed driver monitor-

ing system can predict drowsiness levels related to

drowsiness in 98 per cent of the cases previous-

ly examined manually and 89 per cent of the un-

known cases. The approach has a sound structure

beginning with the application of linguistic rules and

ending with the development of a mathematically

supported rule base with the best feature space

identified through correlation coefficient calcula-

tion. No significant improvements are observed when

an ANN was employed as a prediction algorithm.

The high correlation coefficients of selected (e.g.

eye closure) and designed (e.g. ADR) metrics, with

a subjectively defined risk function on a [1–5] scale,

provide a quantitative way of representing drowsi-

ness. The correct classification rate of the artificial

intelligence system described suggests a starting

Fig. 12 ANN output versus ground truth drowsiness level showing a good match training
goal 5 0.17

Fig. 13 ANN prediction results for a test data batch
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point for a robust driver monitoring system for

future automobiles. In its present form, the system is

capable of outputting the driver alertness level and

associated risk level every 12 min. In fact, with the

time window analysis, it is shown that this duration

can be as narrow as 1.5 min. If the time windows are

selected as overlapping time windows, a continuous

prediction of drowsiness level becomes possible.

The reliability of the system is found to be sig-

nificantly high, giving only one false alarm and one

miss over 150 sessions. This offers a good oppor-

tunity for applications in real conditions with high

reliability and low false alarm rate. The false alarm

rate increases as the time windows become narrow-

er; however, this can be solved by improving the reli-

ability in raw signals.

This study can be considered as a probe investiga-

tion to reconsider indicative metrics and to enhance

the prediction results of the monitoring algorithm.

However, several shortcomings of the system and

Fig. 14 Prediction results versus ground truth drowsiness level for training data with 6 min time
windows

Fig. 15 Prediction results versus ground truth drowsiness level for test data with 6 min time
windows
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proposed algorithms must be noted and improved

in further studies. Three directions are identified to

expand or enhance this work.

1. If the overlapping time windows are used to obtain

the continuous output from the system, to prevent

the undesired fluctuation in the response an

estimation filter needs to be applied. Since the

hidden Markov models are the most general case of

the estimators enclosing the derivation of the

Kalman filters as well, they can be employed to

smooth out the system output. If the Kalman filter

or its versions (unscented Kalman Filter and

extended/Kalman Filter) is to be used it is beneficial

to employ an analogy of the Kalman filter for sensor

fusion; the states can be selected as the inputs to the

decision system and the estimation result from an

FIS or an ANN can be considered as the sensor

Fig. 16 Prediction results versus ground truth drowsiness level for training data with 3 min time
windows

Fig. 17 Prediction results versus ground truth drowsiness level for test data with 3 min time
windows
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output whereas the ground truth represents the

actual measurement excluding the noise in estima-

tion introduced by the FIS or the actual sensors in

the monitoring system.

2. Another topic to explore more is enhancing the

CV system to be used in daylight conditions and

in real vehicles. As is widely known, eye trackers

using the NIR brightpupil technique are prone to

fail because the sunlight causes the pupil res-

ponse to become indistinguishable and often the

corneal reflection on the eyeball is hard to track. It

should be emphasized that, for the probe study,

the NIR technique is employed with partial

adaptation to lighting conditions using an evolu-

tionary approach. However, template matching

and recognition schemes are suggested for use in

daylight conditions to alleviate the sensor failure.

During night driving sessions the NIR system is

expected to give a better performance since there

is no interference from sunlight. Therefore, a dual

Fig. 18 Prediction results versus ground truth drowsiness level for training data with 1.5 min
time windows

Fig. 19 Prediction results versus ground truth drowsiness level for test data with 1.5 min time
windows
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mode in the CV is needed to monitor the driver’s

day and night with best available resolution and

false alarm rate. Alternatively, surrogate metrics

can be investigated to replace the visual metrics

when the sensors fail or the source become

unavailable.

3. The final efforts should be put into implementing

this monitoring system in real vehicles under real

road conditions. Since the nature of the experi-

ment involves a high risk to participants, a test-

track experiment closed to traffic will be the first

step to test the system. A sufficiently large,

demographically balanced group of participants

should be included in these experiments to

observe whether the observations on metrics

agree with real conditions. Since the system will

be applied in a real car, on-board digital signal-

processing systems will be appropriate to use in

the final version; however, a synchronized data

acquisition unit is enough for preliminary test-

track experiments. In terms of sensors, a dual-

mode CV system for eye tracking, Controller area

network bus signals from the on-board diagnos-

tics port, pressure measurements on the steering

wheel, brake, and accelerator pedal and a sepa-

rate CV system for lane tracking should be

included. For synchronization purposes the GPS

signal needs to be included.
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APPENDIX 1

Computer vision algorithm details

Here, the technical details of the CV system are given

as well as the algorithms designed for false-proof

operation of the system. Appendix 1 is divided into

hardware, image properties and algorithm develop-

ment parts.

Hardware

A CMOS camera giving a video stream of 30 frames/s

is selected. Since the bright-pupil technique is used,

camera selection also included the specific wave-

length used in NIR range. The human eye retina is

most responsive and the humorous liquid of the eye

is least absorbent at 880 nm wavelength; therefore

the camera’s sensor has to be the most efficient at

this particular wavelength as well. Furthermore, to

avoid the environmental interference at 880 nm, an

optical absorption filter was placed in front of the

camera lens. Finally, a circular illumination source

was arranged coaxially with the camera optical axis

to gather the light reflected from retina with the

most efficiency. The full hardware arrangement can

be seen in Fig. 20.

Image properties

Unprocessed grey-level images [0–255] from a video

stream had a resolution of 6406480 with a signal-to-

noise ratio (SNR) of 54.04 dB. Since the SNR caused

segmentation problems the images are pre-pro-

cessed using a Gaussian filter.

Algorithm development

An evolutionary spatial filter is proposed for auton-

omous eye tracking. ANNs are used to verify the eye

region after obtaining eye candidates by a simple

threshold exploiting corneal reflection of light source

on the eye ball. On the other hand, the pupil area is

accurately segmented from detected the eye region

using spatial filters optimized by genetic algorithms

(GAs). When closely examined, the system separates

the high-level supervisory algorithms from the low-

level segmentation and detection part. In this way,

high-level algorithms can supervise a low-level pro-

cess operation (in an ANN, verifying image thresh-

old candidates) and tune the parameters of the candid-

ates (in a GA, optimizing spatial filter parameters)

without disturbing their operation and affecting

their speed.

In addition to this hierarchical structure, evolu-

tionary spatial filters are used as the kernel of the

mean shift algorithm to improve their tracking capabi-

lity. Segmenting the pupil area by using the spatial

connectivity of pixels and gradients, the spatial filter

is the best way of representing empirical estimation

of the pixel distribution constituting the pupil area.

Therefore, the mean shift drift is not observed and

the algorithm tracked the eyes when there are avail-

able pupils. The signal flow of the algorithm is given in

Fig. 21.

APPENDIX 2

Perclos versus the proposed metrics and
cumulative results

In this analysis, a justification of the proposed

metrics is given as they were used instead of the

traditional PERCLOS. Correlation coefficients are

calculated in two separate sets: first, PERCLOS ver-

sus all proposed metrics (ECM1, ECM2, and ADR);

second, ground truth versus all visual metrics. The

results are given in Tables 6 and 7 respectively.

The full database including the drowsy and normal

condition data of 30 drivers is used except the cases

where data were corrupted or there was a sensor

failure. Each subject is given a number and ‘sub2’

represents subject two in normal conditions whereas

‘sub2d’ contains the same participant’s driving data

from drowsy sessions. Each driver normally has

12 min data selected from beginning, middle-term,

and final parts of the 1.5 h of total data. Visual

metrics are calculated over 1 min time windows;

therefore giving 12 (mins)63 (samples)62 (drowsy/

normal) min data. This analysis includes 1620 min of

simulator data, since the ground truth is known only

for the initial 12 min; the drowsiness level is assumed

to remain the same in between. This assumption

results in correlation coefficients lower than 0.9;

therefore Table 7 must be examined under this

assumption. With a ground-truth-obtaining method
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allowing assessments of drowsiness level with finer

and denser time intervals, the correlation coeffi-

cients may greatly improve.

To summarize the main observations, in eight

sessions, ECM2 and ADR are better correlated with

PERCLOS whereas, in 37 sessions, ECM1 is better cor-

related. In 21 sessions, PERCLOS is better correlated

with ground truth; in eight sessions ECM1, in 17

sessions ECM2, and in 15 sessions ADR are better cor-

related with ground truth. Taken into account as a

group, for 24 of 45 sessions the proposed metrics

had higher correlation coefficients with the ground

truth signal. If it is taken into account that ECM1

is highly correlated to PERCLOS from Table 6, the

proposed metrics can cover the cases where PER-

CLOS performed better as well. From Table 7 ECM1

Fig. 20 CV system hardware

Fig. 21 Signal flow of the CV system
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and PERCLOS are often very close in values as well. In

cumulative analysis, it was observed that ECM1 is

more sensitive to the changes in eye closure data,

which does not necessarily correlate with the ground

truth used in this study since they are obtained by

subjective assessments with coarsely distributed time

intervals. If the ground truth is obtained in finer time

intervals, ECM1 may give better correlation results

with the ground truth.

Table 6 Perclos versus all metrics correlation

Subject ECM1 ECM2 ADR

sub2 0.980 524 20.382 33 0.987 838 77
sub2d 0.993 855 20.504 81 0.889 215 64
sub3 0.902 02 20.912 41 0.884 195 42
sub3d 0.943 14 20.399 49 0.841 776 83
sub4d 0.985 319 20.153 27 20.183 138 53
sub5 0.994 491 20.486 54 20.152 021 03
sub5d 0.943 55 20.691 02 0.003 359 46
sub6 0.989 718 20.508 79 0.849 529 28
sub6d 0.991 583 20.168 04 0.653 796 18
sub7 0.934 496 20.627 16 0.205 337 51
sub7d 0.585 919 20.981 39 0.668 589 21
sub8 0.996 959 20.587 19 0.229 152 81
sub8d 0.994 227 20.438 51 0.154 246 65
sub9 0.996 641 20.526 95 0.526 517 95
sub9d 0.988 072 20.417 16 0.825 033 86
sub10 0.994 063 20.533 87 0.894 363 79
sub10d 0.138 654 20.282 96 0.683 060 6
sub11 0.939 854 0.365 411 0.078 704 57
sub11d 0.397 402 20.7888 0.767 512 29
sub12 0.978 28 20.380 74 0.183 483 96
sub12d 0.838 077 20.591 45 0.038 884 06
sub13 0.024 411 20.685 16 0.806 261 65
sub13d 0.971 27 20.497 11 0.812 001 85
sub14 0.994 478 20.875 55 0.613 558 28
sub14d 0.946 819 20.980 77 0.153 763 24
sub15d 0.910 81 20.893 51 20.210 069 43
sub16 0.943 23 20.4443 0.663 609 6
sub16d 0.994 345 20.486 19 20.404 355 47
sub17d 0.135 606 20.291 62 0.242 180 72
sub18 0.876 196 20.783 16 0.376 149 33
sub18d 0.953 211 20.487 55 0.888 537 01
sub19d 0.995 498 20.799 63 0.733 014 73
sub20 0.992 847 20.232 97 0.618 826 77
sub20d 0.996 482 20.638 23 20.072 231 38
sub21 0.996 75 20.651 53 0.065 888 49
sub21d 0.944 578 20.512 85 0.885 256 63
sub22 0.943 305 20.333 02 20.035 561 24
sub22d 0.974 358 20.496 69 0.358 078 89
sub23 0.515 884 20.903 32 0.582 222 11
sub24 0.987 734 20.824 85 0.163 920 85
sub24d 0.979 887 20.676 89 0.446 773 94
sub25 0.981 433 20.669 02 0.777 263 17
sub25d 0.922 291 20.547 61 0.903 852 25
sub26 0.995 652 20.5398 0.755 209 05
sub27 0.976 949 20.621 28 0.709 741 21
sub27d 0.976 306 0.168 388 0.157 887 52

Table 7 Ground truth versus all metrics correlation

Subject ECM1 ECM2 ADR PERCLOS

sub2 0.410 627 20.684 86 0.479 094 0.454 542
sub2d 0.909 71 20.531 52 0.795 466 0.945 582
sub3 0.530 127 20.837 84 0.633 444 0.834 281
sub3d 0.525 77 20.429 56 0.488 69 0.693 86
sub4d 0.575 896 0.280 905 20.330 95 0.557 009
sub5 0.459 407 20.457 59 20.169 16 0.488 035
sub5d 0.331 587 20.545 99 0.516 726 0.424 888
sub6 0.806 276 20.5112 0.579 716 0.843 57
sub6d 0.584 258 20.131 06 0.758 317 0.593 455
sub7 0.850 615 20.5712 0.340 076 0.964 156
sub7d 0.392 129 20.7328 0.614 343 0.754 581
sub8 0.578 167 20.457 83 0.636 02 0.589 824
sub8d 0.153 543 20.527 25 0.407 009 0.151 405
sub9 0.310 136 20.481 57 0.611 159 0.296 355
sub9d 0.437 94 20.719 03 0.238 004 0.498 495
sub10 0.781 63 20.414 28 0.768 09 0.767 773
sub10d 0.549 275 20.439 37 0.736 499 0.440 256
sub11 0.738 341 0.625 328 20.132 63 0.916 521
sub11d 0.328 863 20.449 42 0.291 788 20.000 78
sub12 0.612 578 20.4189 0.226 489 0.622 48
sub12d 0.031 191 20.413 03 0.650 728 0.198 691
sub13 0.351 321 20.579 75 0.495 724 0.590 363
sub13d 0.682 807 20.363 26 0.654 161 0.746 249
sub14 0.702 15 20.687 23 0.520 146 0.711 119
sub14d 0.188 708 20.3015 0.713 059 0.253 033
sub15d 0.268 09 20.3309 0.336 51 0.313 434
sub16 0.876 696 20.403 49 0.586 261 0.985 952
sub16d 0.110 277 0.532 723 20.573 91 0.107 976
sub17d 0.352 376 0.451 272 0.374 619 0.215 784
sub18 0.652 881 20.817 73 0.473 788 0.869 043
sub18d 0.713 266 20.438 89 0.756 445 0.819 25
sub19d 0.591 13 20.596 09 0.613 804 0.632 818
sub20 0.332 996 0.375 031 0.299 438 0.342 125
sub20d 0.680 254 20.810 45 20.124 74 0.685 347
sub21 0.199 827 20.263 48 0.543 029 0.217 966
sub21d 0.701 362 20.547 96 0.687 716 0.847 767
sub22 0.291 679 20.598 07 20.145 56 0.399 721
sub22d 0.103 12 20.367 32 20.095 04 0.183 055
sub23 20.147 96 20.295 75 20.306 18 0.258 917
sub24 0.353 832 20.362 14 0.395 705 0.365 81
sub24d 0.188 194 20.383 12 20.290 25 0.266 707
sub25 20.103 77 20.141 45 20.080 17 20.0384
sub25d 0.760 769 20.349 22 0.820 498 0.827 183
sub26 0.073 119 0.171 084 0.170 674 0.076 058
sub27 0.189 763 20.314 86 20.027 47 0.280 531
sub27d 0.659 194 0.652 39 0.123 129 0.732 024

2062 P Boyraz, M Acar, and D Kerr
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