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ABSTRACT 

The enhancement of the performance of frequency domain convolu­

tive blind source separation (FDCBSS) techniques when applied to the 

problem of separating audio sources recorded in a room environment 

is the focus of this thesis. This challenging application is termed the 

cocktail party problem and the ultimate aim would be to build a ma­

chine which matches the ability of a human being to solve this task. 

Human beings exploit both their eyes and their ears in solving this task 

and hence they adopt a multimodal approach, i.e. they exploit both 

audio and video modalities. New multimodal methods for blind source 

separation of audio sources are therefore proposed in this work as a 

step towards realizing such a machine. 

The geometry of the room environment is initially exploited to im­

prove the separation performance of a FDCBSS algorithm. The posi­

tions of the human speakers are monitored by video cameras and this 

information is incorporated within the FDCBSS algorithm in the form 

of constraints added to the underlying cross-power spectral density 

matrix-based cost function which measures separation performance. 

Both objective, signal-to-interference ratio and performance index, and 

subjective, mean opinion score, performance measures are used to con­

firm the improved separation performance achieved by this multimodal 

method. 
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Abstract iv 

Further improvement is next achieved through the adoption of a 

fast fixed-point independent component analysis (FastICA) algorithm 

carefully designed for complex signals within the multimodal FDCBSS 

framework. An intelligent initialization strategy is developed for the 

FastICA algorithm on the basis of the geometric information. This 

method is shown to yield more robust solutions for audio separation 

even when the human sources are moving with a step-wise motion. 

In the situation where there are more microphone measurements than 

human sources, it is also shown that it is possible to exploit multiple 

combinations of microphone sensors to improve the quality of separa­

tion. 

Finally, in the situation where the human sources are moving sig­

nificantly within the room environment, it is proposed that FDCBSS 

must be combined with beamforming to provide a new solution to audio 

moving source separation. A Markov Chain Monte Carlo particle filter 

is used for tracking the true three-dimensional position of the centre of 

the head of the target human speakers on the basis of a state evolution 

model of position and velocity. The improved separation performance 

of the schemes is confirmed through both objective and subjective mea­

sures. 
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Chapter 1 

INTRODUCTION 

1.1 The cocktail party problem 

The term cocktail party implies a gathering of people in a room where 

several people are participating in a conversation, some might be mov­

ing while talking and background music may also be being played. Colin 

Cherry, in 1953 [1], first defined the cocktail party problem and Cherry 

and Taylor in 1954 [2] further worked on this problem, which is defined 

as: 

"How do we recognise what one person is saying when others are 

speaking at the same time (the "cocktail party problem") 7" - Colin 

Cherry 1954 [2] 

Simon Haykin in [3] explained that tackling the cocktail party prob­

lem is underpinned by a psychoacoustic phenomenon which refers to 

the remarkable human ability to selectively attend and recognize one 

speech source amongst the many competing speech sources, all of which 

are usually assumed to be independent of each other. Over half a cen­

tury after the first definition of the cocktail party problem by Cherry, 

a complete understanding of the psychoacoustic phenomenon exploited 

by a human is still missing. 

The long term research aIm of scientists working on the cocktail 

1 
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party problem is, by exploiting adv8J1ced computing 8J1d signal-processing 

technologies, to build an intelligent machine which can mimic the abil-

ity of the human auditory system to solve the cocktail party problem. 

During th~ b~t t,:~ro dec?des, the i!!'2!e~~ i!! co!!!pu.ti!!g power has 

motivated researchers to attempt to produce a real time solution to the 

cocktail party problem as represented in Figure 1.1. 

Hie 4 
Cam 3 

Figure 1.1. Machine cocktail party problem: to build an intelligent 
machine which can duplicate some aspects of the human auditory sys­
tem to solve the cocktail party problem through microphones and video 
measurements. 

Attempts to solve the machine cocktail party problem have come 

from the signal processing community in the form of blind source sep­

aration (BSS) and generally from the computer science community in 

the form of computational auditory scene analysis [4]. The work in this 

thesis through exploiting geometric information is a combination of the 

two approaches. 

The purpose of BSS is to recover unobserved source signals from 

observed mixtures exploiting only the assumption of mutual indepen­

dence between the source signals [5], and this is next explained in more 

detail. 
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1.2 Blind source separation 

In the field of signal processing the most popular approach to solve 

the cocktail party problem is blind source separation (BSS). This is a 

statistical approach by which individual sources can be estimated from 

measurements containing mixtures of sources. The term "blind" refers 

to the fact that BSS relies on only weak assumptions on the sources and 

the mixing process. These weak assumptions enable the approach to be 

potentially used in a wide variety of applications, including teleconfer­

encing, bio-medicine, financial time series analysis, security surveillance 

or as a pre-processing step for speech recognition [6,7]. 

Many methods have been proposed to attempt to solve the BSS 

problem. Herault and Jutten in 1985 [8] seem to be the first who ad­

dressed the problem of blind source separation. In the standard BSS 

problem, the mixtures are assumed to be instantaneous. Instantaneous 

means that there is essentially no delay between the sources and the 

sensors i.e. the source takes a direct and zero delay path to the sensor. 

Common in 1994 [9] formulated the problem of separating measure­

ments formed from an instantaneous linear mixing model and clearly 

defined the term independent component analysis. He also presented 

an algorithm that measures independence by capturing higher-order 

statistics (HOS) of the sources. 

However, the instantaneous model is not useful for solving the cock­

tail party problem as it does not represent most real-world environ­

ments, where acoustic sources take mUltiple paths to the microphone 

sensor measurements. The convolutive model on the other hand is rep­

resentative of the practical situation. Two types of mixing model exiit 

in the convolutive case, anechoic and echoic. Anechoic mixing simply 
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represents the transmission delays between the sources and sensors, 

whereas echoic mixing as shown in Figure 1.2 represents the source to 

sensor delays and also reverberations (echoes) of the sources. The lit­

erature is generally concerned with the echoic mixture model as it is 

the most useful for representing a reverberant environment and it con­

tains the anechoic form as a special case. In echoic or convolutive BSS, 

each element of the mixing filter H is in fact a linear filter to simulate 

multipaths from sources to sensors. 

(]~§~~~:::::".....=:::~2:~~~~~ Microphone 2 Speaker 2 X2 (I) 
82(1) 

(] :::::::::::::=--=~~C---~ 

Figure 1.2. A convolutive mixing environment with two Sources, 
Speakers 1 & 2, and two Sensors, Microphones 1 & 2, together with 
other interferences. 

During the past decade there has been considerable research per­

formed in the field of convolutive blind source separation (CBSS) e.g. 

[1O-26J. Most existing CBSS algorithms, initially, assume that the 

sources are physically stationary i.e. the mixing filters are fixed, which 

is not always true in the cocktail party problem where sources may be 

moving and secondly, are uni-modal, relying solely on audio inform a-

tion. Fundamentally, it is very difficult to separate convolutive mixed 

signals by utilizing the statistical information only extracted from audio 

signals, and this is not the manner in which humans solve the prob-
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lem [3J since they generally use both their ears and eyes. These are the 

main motivations for the multimodal methods proposed in this thesis. 

1.3 Why multi modal methods? 

Colin Cherry, in 1953, mentioned that it is best to combine and ex­

ploit the information provided by audio and visual measurements to 

replicate the ability of a human to solve the machine cocktail party 

problem. In [27J it has been shown that a speaker's face in a noisy 

environment greatly improves the intelligibility of that person's voice. 

The McGurk [28J effect also highlights the relationship between the 

audio aDd visual aspects of speech and how humans perceive speech. 

Visual cues, for example, are used to determine who is being addressed. 

Human speech is inherently bimodal, with both audio and visual com­

ponents [4J. Colin Cherry observed that the human approach to solve 

the cocktail party problem exploits visual cues [1,2J and Simon Haykin 

in [3J also highlighted the importance of visual information to solve the 

machine cocktail party problem. 

There is no significant literature in the area of bi-modal or video 

assisted CBSS. However, audio-visual information is already used in 

speech acquisition, speaker tracking, source localization, and speech 

enhancement [29-40J. In the context of CBSS, in unimodal systems 

there are generally no priori assumptions on the source statistics or the 

mixing system. On the other hand, in a multimodal approach the video 

system can capture the positions of the speakers and the directions 

they face [41J. The video information can thereby help to estimate the 

mixing filters H more accurately and ultimately increase the separation 

performance. Following this idea, the first objective of this work is to 
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use efficiently such information in the enhancement of the separation 

of stationary sources. 

Most existing BSS algorithms are based on statistical information, 

second-order statistics (SOS) and/or higher-order statistics (HOS), ex­

tracted from the recorded data. Such methods are generally not appli­

cable in CBSS of moving sources. The challenge of CBSS for moving 

sources is that the mixing filters are time varying, thus the unmixing 

filters should also be time varying, which are difficult to calculate in 

real time on the basis of only audio information [34,42,43]. To fulfil the 

second and last objective, in the proposed methods, the visual modality 

is utilized to facilitate the separation for both stationary and moving 

sources. 

This thesis develops methods to answer the following important 

questions: 

• How can visual information be integrated in the existing CBSS 

algorithms with audio to improve the CBSS of stationary sources? 

• How can multiple moving sources be best detected and tracked 

by utilizing audio-visual information? 

• How can audio-visual information be incorporated to solve the 

BSS of multiple moving sources? 

The first question is answered in the initial part of this thesis. The 

last two questions are answered in detail, in the final part of this thesis. 

The organization of this thesis with brief overview of each chapter 

is presented next. 
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1.4 Organization of the thesis 

This thesis is organized as follows: 

• Chapter 2 lays the foundation of the thesis. The main objective 

of this chapter is to introduce the fundamentals of CBSS, limita­

tions of the key techniques in CBSS, and performance measures 

required for objective and subjective evaluation of CBSS. A key 

component of multimodal methods for CBSS of moving sources is 

tracking of speakers therefore an overview of nonlinear Bayesian 

filtering (particle filters) is also provided in this chapter. 

• Chapter 3 improves BSS based on SOS by a novel constrained 

multimodal approach for CBSS. Audio-visual information is inte­

grated through a penalty function-based formulation to solve the 

permutation problem and enhance the source separation. The 

separation is performed in the frequency domain and the geo­

metrical model which provides the geometrical positions of the 

sources and the sensors is also described in this chapter. 

• Chapter 4 presents a novel multimodal method for higher-order 

statistics (HOS) based independent component analysis (ICA) of 

complex valued frequency domain signals, which utilizes video in­

formation to provide geometrical description of both the speakers 

and the microphones. This geometric information is incorporated 

into the initialization of the complex FastlCA algorithm for each 

frequency bin, which not only solves the inherent permutation 

problem in the frequency domain CBSS (with complex valued sig­

nals) but also improves the rate of convergence for static sources. 

In this chapter, this multimodal method is also improved by ex-
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ploiting the permutation free unmixing matrix of the previous 

block together with the whitening matrix of the mixtures of the 

current block, to initialize intelligently FastICA for separation of 

step-wise moving sources . 

• Chapter 5, based on the multimodal method presented in Chapter 

4, provides a new approach to overdetermined frequency domain 

blind source separation (BSS) of speech signals which exploits 

all combhlations of observations and hence varying inter micro­

phone spacings. A conventional scheme using only one micro­

phone group and an existing overdetermined frequency domain 

BSS algorithm are also compared in this chapter. 

• Chapter 6, explains a novel multimodal solution for the prob­

lem of blind source separation (BSS) of moving sources. In the 

proposed method, the visual modality is utilized to facilitate the 

separation for both stationary and moving sources. To obtain the 

positions and velocities of the sources, a full 3-D visual tracker 

based on a Markov Chain Monte Carlo particle filter (MCMC­

PF) is implemented, which results in high sampling efficiency. 

The complete BSS solution is formed by integrating a frequency 

domain blind source separation algorithm and beamforming: on 

the basis of velocity obtained from the 3-D visual tracker, if the 

sources are identified as stationary for a certain minimum period, 

a frequency domain BSS algorithm is implemented. Once the 

sources are moving, a beamforming algorithm which requires no 

prior statistical knowledge is used to perform real time speech en­

hancement and provide separation of the sources. The proposed 



Section 1.4. Organization of the thesis 9 

method not only improves the performance of the BSS algorithm 

and mitigates the permutation problem for stationary sources, 

but also provides a good BSS performance for moving sources . 

• Chapter 7, concludes the thesis and includes suggestions for future 

work. 



Chapter 2 

FUNDAMENTALS OF BLIND 

SOURCE SEPARATION 

The main work presented in this thesis is based on blind source sepa­

ration (BSS) therefore the problem statement, techniques, limitations, 

and, performance measures of BSS are discussed. A key component of 

the proposed multimodal solution to BSS of moving sources is tracking 

of speakers therefore a brief overview of nonlinear Bayesian filtering 

(particle filters) is also presented in this chapter. 

2.1 Problem statement 

The BSS problem is to recover M unobserved source signals contained 

in s(t) from the N observed mixture signals contained in x(t) with 

minimum assumptions about the mixing medium and the underlying 

sources. 

A classical instantaneous generative model can be described as: 

M 

Xi(t) = I>ijSj(t) 
j=l 

i = 1, ... ,N (2.1.1) 

where Xi(t) denotes the i-th element of mixture column vector x(t) E 

JRN, Sj(t) denotes the j-th element of source column vector s(t) E jRM, 

10 
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t denotes the discrete time index, and h;j is the attenuation element of 

the mixing matrix H corresponding to its i-th row and j-th column. 

In convolutive blind source separation (CBSS) the sources are as­

sumed to be convolved with a linear model of the physical medium 

(mixing matrix) which can be represented in the form of a multichan­

nel (in the real world ~.g. a room, the speech signals recorded by the 

microphones are affected by reverberations [20,44]) FIR filter H(p), 

p = 0, ... , P - 1 to produce N sensor signals. In this thesis to demon-

strate the proposed methods the exactly determined CBSS problem i.e. 

N = M = 2, is considered except in Chapter 5 (here the noise free case 

is also assumed to simplify the formulation) 

M P-l 

x;(t) = ~ ~ h;j(p)Sj(t - p) i = 1, ... ,N (2.1.2) 
j=1 p=O 

where h;j(p), P = 0, ... , P - 1, is the P-tap impulse response from 

source j to microphone i and the p-th slice of the FIR filter H(p) is: 

H(p) = (2.1.3) 

In instantaneous BSS the sources are estimated by: 

N 

Yj(t) = ~ Wj;Xi(t) j= 1, ... ,M (2.1.4) 
i=l 

where Yj(t) denotes the j-th element of the estimated source column 

vector y(t), and Wji is the gain element of the so-called separating or 

unmixing matrix W corresponding to its j-th row and i-th column. 
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In time domain CBSS, the sources are estimated using a set of 

unmixing filters W(q), q = 0, ... , Q - 1 such that 

N Q-I 

Yj(t) = L L Wji(q)Xi(t - q) j= 1, ... ,M (2.1.5) 
i=l q=O 

where the q-th slice of the unmixing filter W(q) is: 

W(q) = (2.1.6) 

Using aT-point windowed discrete Fourier transformation (DFT), 

the time domain signals Xi (t), i = 1, ... , N, can be converted into time­

frequency domain signals Xi(W, tk) where w is a normalized frequency 

index and tk, k = 1, ... , K, is a discrete time index (K represents the 

total number of data blocks and is only required in Chapter 3 for second 

order statistics (SOS) based BSS discussed in the sequel). For each 

frequency bin it can be written as: 

(2.1.7) 

where s(w, tk) = [SI (w, tk)' ... , SN(W, tk)lH and x(w, tk) = [XI (w, tk)' 

... , XN(W, tk)lH, where (.)H denotes Hermitian transpose, are the time­

frequency representations of the source signals and the observed signals, 

H(w) is an N-by-M matrix composed of hij(w), which is the frequency 

representation for the mixing impulse response hij (p). It is assumed 

that H(w) is invertible when N = M, and does not depend on time 
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and can be represented as: 

hn(w) 

H(w) = (2.1.8) 

hN1(W) 

The separation can be completed by an M-by-N unmixing matrix 

W(w) at a frequency bin w 

(2.1.9) 

Wl1(W) 

W(w) = (2.1.10) 

where y(w, tk) = [Yl(W, tk)' ... , YM(W, tk)]H is the time-frequency repre­

sentation of the estimated source signals and W(w) is the frequency 

representation of the unmixing matrix. W(w) is determined so that 

Si(W, t k) = Yi(W, tk)' i = 1, ... , M, become as mutually independent as 

possible. 

The time domain separated signals Si(t) = Yi(t), i = 1, ... , M, can 

then be obtained by using an inverse DFT (IDFT) operation, provided 

the scale and permutation ambiguities (discussed in the sequel) are 

mitigated. 
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2.2 Techniques for BSS 

This section briefly overviews two techniques, second-order statistics 

(SOS) based BSS and higher-order statistics (HOS) based BSS known 

as independent component analysis (ICA). 

2.2.1 Second-order statistics based BSS 

In SOS based separation aIgorithms the sources are separated on the ba­

sis of decorrelation rather than independence. These methods assume 

that the sources are statistically non-stationary or have a minimum 

phase mixing system [45-52]. However, second order statistics are not 

sufficient for separation of stationary sources and the required condi­

tions are presented in [53,54]' but the main advantage of SOS is that 

they require shorter data lengths for accurate estimation [47,53,55,56]. 

Statistical non-stationarity 

For time scales beyond lOms speech signals can be considered statisti­

cally non-stationary [57,58]. The aIgorithms which exploits such non­

stationarity were proposed in [19,59]. Parra and Spence [19] proposed 

frequency domain aIgorithm which jointly diagonalizes the unmixing 

matrix W (w) for all frequency bins by minimizing the sum squared 

error (as the sum of off diagonal elements of the covariance matrix of 

the estimated sources) using the gradient descent aIgorithm [60]. Since 

the performance of this technique is improved in Chapter 3 by using a 

multimodal method it is important to overview the important concepts 

within [19] in this chapter. In [19] the unmixing matrix W(w) is found 
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across all frequency bins from 

Ry(w, tk) = W(W)Rx(W,tk)WH (W) 

= W(w)H(w)A,(w, tk)HH (W)WlI (W) 

where A,(w, tk) is a diagonal covariance matrix describing the source 

signals and is a different diagonal matrix for each time block tk, and 

Rx(w, tk) is the covariance matrix of X(w, tk)' The covariance matrices 

are estimated using an averaged cross-power spectrum 

1 
£-1 

- '" H Rx(w, tk) = L L. X(w, tk + nT)X (w, tk + nT) (2.2.1) 
'11.=1 

where T is the block length of the FFT. The cost function Jm based 

on the off-diagonal elements of Ry(w, tk) estimated at tk = kTL, k = 

1,2, ... ,K, with K being the number of matrices to diagonalize, is 

T K 

Jm = 2: 2: IIE(w, tk)J II} (2.2.2) 
w=l k=l 

squared Frobenius norm. To avoid the trivial W(w) = 0 I;/w solutions, 

the constant diag(W(w» = I I;/w is applied. To minimize (2.2.2) the 

method of steepest descent [60J is applied to yield 

(2.2.3) 

and the update equation for W(w) becomes 

K 

W j+1(w) = Wj(w) - J1, 2: E(w, tk)Wj(w)Rx(w, tk) (2.2.4) 
k=1 
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where j and p, are the iteration index and learning rate respectively. 

The unmixing filter matrix W(w) is updated for all the frequency bins. 

The source covariance matrix can be estimated at each iteration by 

As(w, tk) = diag{W(w)Rx(w, tk)WH (w)}. 

Another common approach to solving BSS problem is to use a par­

ticular kind of objective function in the context of independent compo­

nent analysis (lCA) [6,61J presented next. 

2.2.2 Independent component analysis 

leA is a statistical and computational technique for revealing hidden 

factors that underlie sets of random variables, measurements, or sig­

nals. leA defines a generative model for the observed multivariate 

data, which is typically given as a large database of samples. In the 

model, the data variables are assumed to be linear mixtures of some 

unknown latent variables, and the mixing system is also unknown. 

The latent variables are assumed non-Gaussian and mutually indepen­

dent, and they are called the independent components of the observed 

data. These independent components, also called sources or factors, 

can be found by leA. lCA is superficially related to principal compo­

nent analysis and factor analysis. leA is a much more powerful tech­

nique, however, capable of finding the underlying factors or sources 

when these classical methods fail completely. For leA to work some 

assumptions [6,61J must be taken. 

• The sources are assumed to be statistically independent of each 

other. Mathematically, independence implies that the joint prob­

ability density function p( s( t» of the sources can be factorized 
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as: 
m 

p(s(t)) = IIpj(Sj(t)) (2.2.5) 
j=l 

where Pj(Sj(t)) is the marginal distribution of the j-th source. 

• All but one of the sources must have non-Gaussian distributions. 

• The unknown mixing matrix is usually assumed to be square and 

invertible. In other words it is assumed that the number of sources 

is equal to the number of mixtures, i.e. an exactly determined 

problem. 

• Methods to realize ICA are more sensitive to data length than 

the methods based on SOS. 

In ICA the statistical independence of the sources implies the uncor­

relatedness of the sources, but the reverse is not necessarily true. As 

a pre-processing step, most ICA algorithms decorrelate (pre-whiten) 

the mixtures via spatial whitening, before optimizing their separating 

objective contrast or cost functions. This spatial whitening is achieved 

by employing the well-known principal component analysis (PCA). 

Principal component analysis 

In the context of BSS, principal component analysis (PCA) seeks to 

remove the cross-correlation between the observed signals, and ensures 

that they have unit variance [6]. PCA operates by finding the projec-

tions of the mixture data in orthogonal directions of maximum variance. 

A zero mean vector z containing observations from spatially distinct 10-

cations is said to be spatially white if 

(2.2.6) 



, 
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where E{.} is the statistical expectation operator, (.f is the transposed 

operator, and I is the identity matrix. The unmixing matrix, W, can 

be decomposed into two components as: 

W==UQ (2.2.7) 

where Q denotes the whitening matrix and U is the rotation matrix [6]. 

For m = n, there are n2 unknown parameters in W. PCA requires the 

n diagonal elements of the whitened data covariance matrix Cz to be 

unity, and due to the symmetry property of C., it suffices that only 

(n2 
- n)/2 of its off-diagonal terms be zero. Therefore, spatial white­

ness imposes n(n + 1)/2 constraints. This leaves n(n - 1)/2 unknown 

parameters. The whitening matrix Q can be formulated as: 

(2.2.8) 

where E is the matrix whose columns are the unit-norm eigenvectors 

of the covariance matrix C x = EDET and D is the diagonal matrix 

of the eigenvalues of Cx. D-k plays a vital role in E{ZZT} = I and 

it is also important to note that the whitening matrix Q is not unique 

because it can be pre-multiplied by an orthogonal matrix to obtain 

another version of Q. 

Actually, decorrelation or "no correlation" deals with only SOS and 

independence is a stronger concept because it deals with HaS. Cardoso 

in [5] explained that ''prewhitening only does half of the BSS job". 

Fundamentally, ICA relies on two factors: 1) A statistical criterion 

expressed in terms of a cost/contrast function J(y(t)) which requires to 

be either minimized or to be maximized, 2) An optimization technique 
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to carry out the minimization or maximization of the cost function. 

Independent components can be found by nonlinear, non-stationary, 

or time delay decorrelation. In depth studies of ICA theories conclude 

that the nonlinear decorrelation is a satisfactory way to separate the 

independent components and the algorithms are based on the mini­

mization of mutual information, maximization of non-Gaussianity, or 

maximization of likelihood. This class of ICA algorithms is derived 

from an information theoretic perspective in [62,63J. In most classical 

statistical theories random variables are assumed to have a Gaussian 

distribution. In the theory of ICA, as mentioned above, random vari­

ables are assumed to have a non-Gaussian distribution. Since generally 

speech has super-Gaussian distribution or is leptokurtic therefore it 

satisfies the ICA theory and independent components in this work are 

calculated on the basis of maximization of non-Gaussianity. 

2.3 limitations of SOS/leA 

During the past decade there has been considerable research performed 

in the field of convolutive blind source separation (CBSS) [10-26J. 

Initially, research was aimed at solutions based in the time domain 

[16,64,65J. As shown in Figure 1.2, recordings taken in a real room (con­

volutive environment) where the impulse response of the room is on the 

order of 1000's of samples in length, a time domain algorithm would be 

computationally very expensive to separate the sources [22J. To over­

come this problem, a solution in the frequency domain was proposed. 

As convolution in the time domain is equivalent to multiplication in the 

frequency domain, then transforming into the frequency domain sim­

plifies the convolutive mixing problem to that of independent complex 
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instantaneous mixing operations at each frequency bin. In realization, 

care is necessary to overcome circular convolution effects [6]. Trans-

ferring into the frequency domain provides two advantages. Initially, 

the computational complexity is reduced and secondly, reA can be ap­

plied at each frequency bin as an instantaneous BSS problem, but the 

two indeterminacies, namely the scaling and permutation ambiguities, 

inherent to BSS, become more severe. 

The main limitations of SOS/leA are as follows: 

• Permutation problem: The order in which the uncorrelated/inde-

pendent components are recovered cannot be determined due to 

the "blindness" of the problem, i.e. both the mixing matrix and 

the sources are unknown [11]. Thus, a change in the order of the 

recovered sources also implies a permutation of the corresponding 

colums of the mixing matrix. 

• Scaling ambiguity: It is not possible to determine the energy of 

the original uncorrelated/independent components e.g. 

(2.3.1) 

It is clear that the multiplying factor Ck to the kth source can be 

cancelled out by dividing the kth column of the mixing matrix 

H by the same factor Ck. This demonstrates that the sources 

can be estimated only up to a scaling constant. However, some 

researchers force the estimated sources to have unit variance [In 

• Data length sensitivity: Since SOS/leA methods are based on 

statistical information, they are sensitive to data length, and 
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therefore such approaches are unlikely to be applicable to solve 

the problem of BSS of moving sources. 

The first two ambiguities show that it is not necessary for the sep­

arating matrix W to extract exactly the inverse of the mixing matrix 

H. Instead, 

W = PAH-1 (2.3.2) 

where P is a permutation matrix and A is a diagonal matrix to convey 

the scaling ambiguity. 

In summary, in FDCBSS based on SOS/ICA, perfect separation 

cannot be achieved without additional information. This is another 

motivation for the proposed multimodal methods which not only mit­

igate the above problems but also provide BSS for moving sources, a 

substantial step forward towards the solution of the real cocktail party 

problem. 

In the next subsections several recent attempts to overcome the 

severe permutation problem in FDCBSS are discussed. 

2.3.1 Solutions to the permutation problem 

As already mentioned, by transferring the BSS problem from the time 

domain to the frequency domain results in more severe permutation am­

biguity. The amplitude (scale) ambiguity can be managed by matrix 

normalization [66J. As mentioned above a popular approach to FD­

eBSS problem is based on SOS. One of the more effective frequency 

domain BSS algorithms based on SOS by Parra and Spence is men­

tioned in Subsection 2.2.1. Parra and Spence utilized second order 

statistics by exploiting the non-stationarity of speech and provided a 
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solution to the permutation problem. They performed the separation 

in the frequency domain and used a multiple decorrelation approach 

based upon a gradient descent algorithm [60] to estimate the mix­

ing/unmixing matrix. The non-stationarity of speech is exploited to 

diagonalize simultaneously the covariance matrices estimated at each 

time interval. The solution to the permutation problem is proposed by 

imposing a smoothness constraint on the unmixing filters. The smooth­

ing essentially forces the frequency bins to align and is achieved by con­

straining the filter length in the time domain to be much less than the 

size of the DFT (discrete Fourier transform). Restricting the length of 

the filter in the time domain forces the solutions in the frequency do­

main to be continuous or smooth. However, it has been shown in [67,68] 

that Parra's method failed to align all the permutations when used in 

a realistic environment. 

Sawada et al.[69] proposed a method to solve the permutation prob­

lem by integrating two known approaches, direction of arrival (DOA) 

and inter-frequency correlation of signal envelopes. They used a combi­

nation of the natural gradient and information maximization algorithms 

to perform the initial speech separation then aligned the permutations 

in two stages; first to fix the permutations at those frequencies where 

the confidence of the DOA approach is high and secondly to decide the 

permutations for the remaining frequencies based on neighboring cor­

relations without changing those fixed by the DOA method. A method 

for DOA estimation for more than two sources is also proposed, and by 

exploiting the harmonic structure of the signal they were able to align 

the permutations at low frequencies where it is difficult to estimate the 

DOAs [69]. 
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Ikram and Morgan [68] provided an in-depth discussion of permuta­

tion inconsistency. They used prior knowledge of the mixing filters to 

derive ideal benchmarks of signal-to-interference ratio (SIR) improve­

ments by comparing the SIR of individual sources and decide whether 

or not to manually rearrange the permutations based on the compar­

ison. Based on the solution to the permutation problem suggested by 

Parra and Spence [19], Ikram and Morgan [68] show that as the length 

of the unmixing filter increases to represent real room conditions, the 

SIR becomes worse. A solution to overcome this drawback is proposed 

in the form of a multistage algorithm where the separation is carried 

out in multiple stages. The initial mixing stage is followed by several 

unmixing stages, with the length of the unmixing filter increasing at 

each stage, where the final values of the unmixing matrix obtained at 

the previous stage are used as initial values of the next stage. It was 

found that the majority of the permutations aligned in the early stages 

retained their order during later stages, and there was no overall sig­

nificant increase in computational complexity as the optimum number 

of stages was found to be two. 

In multimodal methods presented in this thesis, visual information 

is exploited not only to solve the permutation problem in SOS and ICA 

based BSS algorithms but also provide the BSS solution for moving 

sources. 

Now SOS and ICA based BSS methods, including the limitations 

with existing solutions, have been reviewed, objective and subjective 

performance measures employed to evaluate BSS in this thesis are de­

fined in the next section. 
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2.4 Performance measures used in this study 

Objective and subjective performance measures for evaluation of sepa-

ration are used in this work. In BSS, the objective evaluation is possible 

only if true system parameters are known. The performance index (PI) 

is a dominant performance measure in BSS. PI and its variants (also 

applicable to the under-determined case) measure the quality of either 

the estimated separating matrix or the estimated mixing matrix. The 

PI measure in FDCBSS provides the performance at each frequency bin 

level. Another classical measure is the mean square error (MSE) and 

can be employed to measure the quality of the separation in terms of 

the estimated sources. A lower value of these measures indicates good 

separation. 

In the context of audio BSS another recently proposed objective 

measure [70] is signal-to-interference ratio (SIR) and in contrast to 

other measures, increases proportionality with quality of source sepa-

ration. The main limitation of all the above objective evaluations is 

the requirement of the true system parameters; which fundamentally, 

are not available for use in real BSS applications. Therefore subjec­

tive measures are also proposed. Mean opinion score (MOS) tests for 

voice specified by the ITU-T recommendation P.800 provides such a 

subjective measure. 

2.4.1 Signal-to-interference ratio 

The SIR proposed by Vincent et al. [70] is considered as an objective 

evaluation measurement in this thesis. 

(2.4.1) 
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where 

" 2 Starge' = (Si, Si)sdllsdl2 

eint! = L(Si, Sj)sdIISjll~ 
i"j 
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(2.4.2) 

(2.4.3) 

and Starget and Sint! represent respectively the source of interest and 

interference introduced by the other sources, (Si, Sj) = L;=l Si(t)Sj(t). 

The above formulation can also be written as: 

(2.4.4) 

where Hii and Hij represent respectively the diagonal and off-diagonal 

elements of the frequency domain mixing filter, and Si(W) is the fre-

quency domain representation of the source of interest. It is important 

to be noted that if the sources are mutually orthogonal than it leads 

to a large value of SIR, provided good estimates of the sources can be 

achieved. 

2.4.2 Performance index 

The PI [11,71] as a function of the overall system matrix G = WH 

can be formulated as: 

(2.4.5) 

where Gik is the ik-th element of G. It is assumed that the number 

of sources equals to the number of mixtures. G can be utilized in a 

measure, which will be insensitive to permutations and scaling ambi-
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guities. The lower bound value for PI is zero, while the upper bound 

value depends on the normalization factor. The lower bound value of 

zero means best separation. The motivation for selecting this criterion 

is the evaluation of performance at each frequency bin that highlights 

the in depth evaluation of FDCBSS algorithms. All algorithms in this 

thesis are also evaluated with this criterion. 

2.4.3 Evaluation of permutation 

Since the performance index calculated by (2.4.5) is insensitive to per­

mutation, another criterion is introduced for the two sources case which 

is sensitive to permutation and shown for the real case for convenience, 

Le. in the case of no permutation, H = W = I or H = W = [0,1; 1, 0] 

thenG = I and in thecaseofpermutationifH = [0,1;1,0] then W = I 

and vice versa, therefore, G = [0,1; 1,0]. Hence for a permutation free 

FDCBSS [abs(Gn G22 ) - abs(G12G21 )] > O. It is highlighted that the 

criterion is only tested for the exactly determined case N=M=2. 

2.4.4 Mean opinion score 

In voice and video communication, whether the experience is a good 

or bad one is evaluated on the basis of perceived quality. There is a 

numerical method of expressing voice and video quality known as mean 

opinion score (MOS). Mean opinion score tests for voice is specified 

by the ITU-T recommendation P.800 and the listening-quality scale is 

shown in Table 2.1. 
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Table 2.1. Listening-quality scale. 
Quality of the speech Mean Opinion Score 

Excellent 5 
Good -4.----------1 

Fair 3 
L----,~----~r----­'Poor ~2~------~ 
f-------nB-ad,-----+------~l,-----~ 
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The scores do not need to be whole numbers. Certain thresholds and 

limits are often expressed in decimal values. For instance, a value of 4.5 

to 5.0 is referred to as a quality which provides complete satisfaction. 

To perform the measure a certain number of people hear the separation 

results. Each one of them gives a rating from within 1 to 5. Then an 

arithmetic mean (average) is calculated which provides Mean Opinion 

Score. 

A key component in the proposed multimodal solution to BSS of 

moving sources is tracking of speakers. Now a brief overview of nonlin-

ear Bayesian filtering (particle filtering) is presented next. 

2.5 Overview of nonlinear 8ayesian filtering (particle filters) 

A classical problem in nonlinear filtering theory is to estimate recur­

si vely the state sequence {Xk, k E K} of a system, from a noisy obser­

vation sequence {Zk, k E K} made on the system. 

Let Xk(t) evolve according to the dynamic model: 

(2.5.1 ) 

and the observation sequence Zk be related to the state sequence via 

the observation model: 

----------------------------------------------------- --_. --

I 

I 
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(2.5.2) 

where fk(') represents the state evolution function and hk(') is the ob-

servation function that represents the relationship between the state 

and observation sequences. The vectors Vk-l and rk are the system 

and observation noises respectively. 

The state sequence Xk is characterized by its probability density 

function estimated from a sequence of observations Zk. In the sequen-

tial Bayesian filtering framework, the conditional density of the state 

sequence given the observations is propagated through prediction and 

update stages; 

(2.5.3) 

The probabilistic model of the state evolution p(xklxk-l) is defined in 

(2.5.1) with noise vector Vk-l' With the availability of measurement Zk 

at time k, the prior p(xklzH-l) is corrected (updated) via Bayes' rule 

(2.5.4) 

with the normalization constant 

(2.5.5) 

Note the likelihood function p(zklxk) is defined by the measurement 

model (2.5.2) with noise vector rk' The measurement Zk is used for the 

modification of the prior density to obtain the required posterior density 

of the current state and the posterior density p(xklzl,k) enables the 
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computation of an optimal estimate by recursive relations (2.5.3) and 

(2.5.4). It is noteworthy, if the state-space formulation is non-Gaussian 

then Kalman filter with its general forms is not usually applicable and 

particle filters can provide the state estimation [72]. 

The basic idea of particle filtering is to estimate recursively the 

posterior distribution p(Xo,klzu-l) as in (2.5.3) by a set of samples 

(particles) {x~, n = 1, ... , Np}, and their associated weights {wk' n = 

1, ... , Np }. The posterior distribution of the state can be represented in 

a non-parametric way by using particles drawn from the distribution 

Np 

p(Xo'klzu) "" ~ L 8(Xo,k - X~k) 
p n=l 

(2.5.6) 

where (.)n refers to the nth particle, 8(.) is the Dirac delta function, 

Np is the number of particles, and have a discrete approximation of 

the true posterior. As Np approaches infinity, this discrete formula­

tion will converge to the true posterior distribution depending on the 

samples. However, practically this is impossible, since the posterior 

distribution p(xo'klzu) is to be estimated and hence is unknown. In 

practice, the particles are sampled from a known proposal distribution 

q(xo'klza) called the importance density and the concept is known as 

importance sampling [72] and then p(Xo'klzu) is estimated. The dis­

tribution p(xo'klzLk) can he formulated as: 

Np 

p(xo,klzl,k) "" L wk8(xo'k - ~'k) (2.5.7) 
n=l 

where 

(2.5.8) 
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and is normalized so that L:i wk = 1. 

Before state k, if P(xg,k_llzu-l) can be approximated from the 

available samples Zj\_l' then with the arrival of measurement Zk at 

state k, p(xg'klzu) can be approximated with a new set of samples. 

The importance density can be factorized as: 

(2.5.9) 

then new samples xg,k can be obtained from q(xg'klzu) by augmenting 

each of the old samples xgk_1 from q(xg,k_llzu-l) with the new state 

x~ from q(x~IXO'k-l' Zl:k). 

(2.5.10) 

By placing (2.5.9) and (2.5.10) in (2.5.8) and if q(xklxk_l,Zk) = 

q(xklxg,k_l' zu) the weight update equation can be written as: 

(2.5.11) 

The choice of importance density function is one of the critical issues 

in the design of a particle filter and plays a critical role in the perfor­

mance [72]. The function should have the same support as the prob-

ability distribution to be approximated, and the approximation will 

be better if the importance function is closer to the distribution. The 

above mentioned assumption q(xklxk_1 , Zk) = q(xklxo:k-l' Z1:k) means 

that the importance density depends only on the previous state xk_l 

and current measurement Zk, and the path xg,k-l and history of obser-
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vations ZU-l will be discarded. The most popular choice for the prior 

importance function is given by 

(2.5.12) 

and this particular importance density is applied at every time index 

to simplify the weight update equation to: 

(2.5.13) . 

The importance sampling weight indicates the level of importance of 

the corresponding particle. In the above mentioned sequential impor­

tance sampling algorithm, after a few iterations, all but one particle will 

have very small weight, this is known as the degeneracy phenomenon. 

With a relatively small weight mean the particle is ineffective in calcula­

tion of the posterior distribution. To overcome the degeneracy, residual 

resampling can be used for example, which is a scheme that eliminates 

the particles with small weights and replicates those with large weights 

accordingly [72). 

The implementation of the particle filter can then be divided into 

two steps: 

1. Sampling step: N particles are sampled from the proposal density 

formulated by (2.5.12) according to (2.5.1). 

2. Computing the particle weights according to (2.5.13), and re­

sampling the particles if necessary. 

Based on the weights the conditional mean of Xk can then be cal­

culated. 
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2.6 Summary 

In this chapter an overview of the main BSS techniques has been pro­

vided. Both the generic mixing and separating models have been pro­

vided to demonstrate instantaneous and convolutive BSS. Two main 

statistical techniques of BSS i.e. SOS and ICA has been discussed in 

Section 2.2. In Subsection 2.2.1 it has been highlighted that a SOS 

based bench marked algorithm [19] which exploits the non-stationarity 

of speech can be improved by adopting a multimodal approach. This is 

a subject of the next chapter. In Subsection 2.2.2 an HOS based tech­

nique, i.e. ICA has been discussed in detail and a preprocessing step 

for ICA has also formulated. Advantages of FDCBSS were mentioned 

in Section 2.3 and indeterminacies of SOS/ICA were also discussed 

in detail. The solution to the permutation ambiguity with improved 

convergence for ICA based FDCBSS, by using a multimodal method, 

was presented in Chapter 4. In Section 2.3 another limitation of the 

existing BSS techniques (SOS/ICA) i.e. data length requirement, to 

extract the statistical information from observed mixtures was high­

lighted. This limits SOS/ICA to solve the BSS for moving sources 

(real cocktail party problem). A multimodal method which overcomes 

the data length limitation of SOS/ICA and provides an acceptable level 

of separation for moving sources is presented in Chapter 6. A key com­

ponent of this method is a 3-D tracker and therefore an overview of 

nonlinear Bayesian filtering was provided in Section 2.5. 



Chapter 3 

A GEOMETRICALLY 

CONSTRAINED 

MULTIMODAL METHOD 

FOR FREQUENCY DOMAIN 

CONVOLUTIVE BLIND 

SOURCE SEPARATION 

In this chapter, a novel constrained multimodal method for convolutive 

blind source separation is presented which incorporates video infor­

mation related to geometrical position of both the speakers and the 

microphones, and the directionality of the speakers, into the separa­

tion algorithm. The separation is performed in the frequency domain 

and the constraints are incorporated through a penalty function-based 

formulation. The separation results show a considerable improvement 

over traditional frequency domain convolutive BSS systems such as that 

developed by Parra and Spence. Importantly, the inherent permutation 

problem in the frequency domain BSS is essentially solved. 

33 
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3.1 Introduction 

Many methods have been proposed for convolutive blind source separa- . 

tion (CBSS) [1O~26]. As mentioned in Chapter 2, in frequency domain 

CBSS (FDCBSS) the permutation problem [13, 67~69, 73] increases ex­

ponentially and is therefore more severe and destructive than for time 

domain schemes. In such systems there are generally no priori assump­

tions on the source statisti~s or the mixing system. On the other hand, 

in a multimodal method the video system can capture the positions of 

the speakers and the directions they face [41]. The video information 

can thereby help to estimate the mixing matrix more accurately and 

ultimately increase the separation performance. Following this idea, 

the objective of this work is to use efficiently such information in the 

enhancement of the separation results. 

The solution to the permutation problem in [19] is proposed by im­

posing a smoothness constraint on the unmixing filters in the frequency 

domain and is achieved by limiting the filter length in the time domain 

which is itself a constraint. This method has been found only to have 

limited success [19]; therefore, in order to solve the above mentioned 

problem and also improve the separation, spatial information is used 

in this work, indicating the positions and directions of the sources us­

ing the "data" acquired simultaneously by a number of video cameras. 

The comparison between the original Parra and Spence [19], Wang et 

al. algorithm [74], and the proposed multimodal constrained FDCBSS 

algorithms will be presented at the end of the chapter. In the proposed 

method the constraints are incorporated through a penalty function­

based formulation. 

The rest of the chapter is organized as: in Section 3.2 the geometri-
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cal model is presented, in Sections 3.3 & 3.4 the constrained FDCBSS 

method is formulated, in Section 3.5 experimental results are discussed, 

and in Section 3.6 the chapter is summarized. 

3.2 The geometrical model 

The geometrical model is based on visual information captured by the 

video cameras. The use of visual speech information is also popular 

in current research into speech recognition and speech enhancement 

methods [27,29]. In [27] it has been shown that a speaker's face in a 

noisy environment greatly improves the intelligibility of that person's 

voice. Visual cues, for example, are used to determine who is being 

addressed. Colin Cherry's observed that the human approach to sol~e 

the cocktail party problem exploits visual cues [1,2] and Simon Haykin 

in [3] also highlighted the importance of visual information to solve 

the cocktail party problem. The following procedure is used to find 

the visual information which will be used in the geometrical model 

explained in the sequel. 

3.2.1 Video camera calibration 

Two colour video cameras are used to determine the approximate posi­

tions of the speakers. Both static video cameras were calibrated off line 

by the Tsai calibration (non-coplanar) technique [75]. The method for 

camera calibration recovers the interior orientation (principle distance 

I), the exterior orientation (relationship between a scene-centered co­

ordinates system and a camera-centered coordinate system, the trans­

formation from scene to camera consists of a rotation matrix Rand 

translation vector t), the power series coefficients for lenes distortion 
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", and image scale factor p (uncertainty scale factor, due to TV cam­

era scanning and acquisition timing error, for more detail see [75]), 

The transformation from real world to image coordinates used in the 

calibration process is presented in the following section. 

Transformation of coordinates 

Real world coordinates z = [zx, Zy, zzjT can be projected into image 

coordinates L E ]R2. Initially, the corresponding vector in camera coor­

dinates c = [ex, cy, czjT is calculated as: 

c = R.z + t (3.2.1) 

where R is the rotation matrix and t [tx, ty, tz]T is a translation 

vector. 

Transformation from 3-D camera coordinates to ideal (undistorted) 

image coordinates u = lux, Uy]T using perspective projection with pin-

hole geometry is achieved with 

Ux = 
f 
-Cx 
Cz 

u y 
f -c C
z 

y (3.2.2) 

where f is the effective focal length in the appropriate units [75]. 

Real optical systems suffer from a number of inevitable geometric 

distortions. In optical systems made of spherical surfaces, with centers 

along the optical axis, a geometric distortion occurs in the radial di­

rection. Electro-optical systems typically have larger distortions than 

optical systems made of glass. They also suffer from tangential distor­

tion, which is at a right angle to the vector from the center of the image. 
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As for radial distortion, tangential distortion grows with distance from 

the center of distortion. For industrial machine vision application, only 

radial distortion needs to be considered [75]. 

The radial lens distortion terms Dx and Dy formulate the distorted 

coordinates in the following manner 

(3.2.3) 

where Xd and Yd are the distorted coordinates on the image plane, and 

termed as the true image coordinates in [75]. 

Where 

Dx = xd(Klr
2 + K2r4 + ... ) 

Dy = Yd(Klr
2 + K2r4 + ... ) 

r = VX~+YJ (3.2.4) 

as shown in [75]. 

In practice only one term is needed in the expansions of Dx and Dy, 

therefore only coefficient KI must be found as part of the calibration 

process, any more modeling would cause instability [75]. 

Finally, the 2-D image coordinates ~ = [ix, iyJT take the form: 

ix = XdP/Opx+xo 

iy = Xd/Opy + Yo (3.2.5) 

where Xo and Yo define the center of the video frame and opx, and opy 

define the physical size of the sensor element of the cameras. 
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The extracted face of each speaker in the images of both cameras is 

transformed to find the real world position of each speaker. The face 

extraction in an image is explained in the next subsection. 

3.2.2 Face extraction 

The face of each speaker is extracted in the images of both cameras 

to find the position of each speaker. In each image frame, the face is 

extracted on the basis of a skin pixel model and a face model, briefly 

the procedure is (for further detail see [76] and [77]) 

Off line formulation of the skin pixel model: 

• A training set of skin regions for different people with varying 

skin tones is obtained by manual extraction of the facial regions 

within a number of measured frames. 

• Each skin region is converted from the RGB colour space into 

the normalized r-g colour space r,g = R,G/(R+ G + E), and 

a corresponding pixel in r-g colour space, i.e. a two-dimensional 

vector, is denoted by D. 

• A two-dimensional histogram of all the D vectors from the train­

ing set of skin regions is produced. Parameters aj are calculated 

which correspond to the relative occurrence of each vector Dj 

within the training set. 

• Vectors which have a value of aj less than some threshold are 

considered to correspond to noisy pixels. Such pixels are removed 

from the training set. 
I 
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• The remaining unique vectors D 1 , .•• , Dl with their respective aj 

where j = 1, ... , I are next used to formulate a skin pixel model. 

• Skin pixel model: A skin pixel model <I> = (D; W, A) is defined as 

<I>(D) = [D - wf A -1[D - W] (3.2.6) 

where (. f denotes vector transpose and the parameters Wand A 

can be calculated as 

(3.2.7) 

(3.2.8) 

(3.2.9) 

• Given threshold ethresh and r-g vector D of a pixel, D is classified 

as skin chrominance if <I>(D) < ethre,h and as non-skin chromi-

nance otherwise. 

Face extraction 

• Given a measured frame converted to normalized r-g colour space 

all candidate face pixels are extracted according to the above skin 

pixel model on the basis of a threshold ethresh. 

• Each significant cluster of candidate face pixels is cross-correlated 

with a standard face (which is an averaging of front views of 16 

male and female faces wearing no glasses and having no facial 

hair), appropriate processing is used to align the relative sizes of 

the two images. 
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• The cross-correlation value between the standard face template 

and every skin region is calculated. The region which yields max-

imum cross-correlation is chosen as the desired face. 

The center of the resultant face region is determined as the approx-

imate position of the lips of the speaker in image coordinates t. The 

image coordinates of each speaker with the calibration parameters f, 

R, t, K., go of each camera are passed to the next section to calculate 

the position of the speakers in 3-D world coordinates. 

This relatively simple approach to face extraction is replaced by 

the state-of-the-art Viola-Jones [78J scheme in the final contribution 

contained in Chapter 6. In this chapter further details of this scheme 

are provided. 

3.2.3 Source position in the real world 

With the help of the above calibration parameters the approximated 2-

D image information of the same speaker in two different camera views 

t = [Lx, LyJT is transformed to true (distorted) sensor plane coordinates 

d = [Xd, XdJT as: 

(3.2.10) 

The ideal (undistorted) sensor plane coordinates u = lux, UyJT ~re 

calculated as: 

(3.2.11) 

In 3-D space each point in each camera frame defines a ray. In-

tersection of both rays is found by optimization methods. I3y having 

undistorted sensor plane coordinates u of each speaker in both cam-
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eras with calibration parameters of each camera, the positions of the 

speakers z are transformed into 3-D real world coordinates (for detail 

see [79]). 

Room 
Mic.! Mic. 2 

Speaker! Speaker 2 

Figure 3.1. A two-speaker two-microphone setup for recording within 
a reverberant (room) environment; only distances and angles between 
sources and microphones are shown. 

On the basis of the above calculated 3-D positions of the speakers 

and the microphones, the distances between the i-th microphone and 

the j-th speaker dij , and also the associated signal propagation times 

7ij, can be calculated (see Figure 3.1 for a simple two-speaker two­

microphone case). Accordingly, in a homogenous medium such as air, 

the attenuation is related to the distances via 

" a··--
ZJ - dfj (3.2.12) 

where" is a constant representing the attenuation per unit length in a 

homogenous medium. Similarly, tij in terms of the number of samples, 

is proportional to the sampling frequency iso sound velocity C in air, 

and the distance dij as: 

(3.2.13) 

which is independent of the directionality. Both is and Care consid- . 
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ered constant within each observation interval for a block-based BSS 

system. However, in practical situations the speakers' directions intro-

duce another variable into the attenuation measurement. In the case 

of electronic loudspeakers (not humans) the directionality pattern de­

pends on the type of loudspeaker. Here, this pattern is approximated 

as cos(eij/r) where r > 2, and has a smaller value for highly directional 

speakers and vice -versa (an accurate profile can be easily measured us-

ing a sound pressure level (SPL) meter). Therefore, the attenuation 

parameters become 

(3.2.14) 

If, for simplicity, only the direct path is considered the mixing filter is 

expected to have the form : 

(3.2.15) 

where (:) denotes that this is an estimate/approximation. In the fre­

quency domain and z-domain the above filter has the forms 

H(w) = [ Dne-'"'" ",,,~'" 1 (3.2.16) 
Ct:21e-JW'T21 a22e-JW'T22 

H(z) [ "n'-'" "",-", 1 (3.2.17) = 
a21 z -'T21 a22 z -'T22 

Although in reality the actual mixing matrix includes the reverber-

ation terms related to the reflection of sounds by the obstacles and 
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walls, in such a room environment it will generally contain the direct 

path components as in the above equations. Therefore, H(w) can be 

considered as a crude, albeit biased, estimate of the frequency domain 

mixing filter matrix. 

3.3 The constrained problem 

In order to improve separation performance the above visual informa­

tion is integrated into a BSS algorithm [19] in the form of a constraint, 

which represents the squared Frobenius norm distance between the un­

mixing filter W(w) and the permuted mixing filter H(w) , i.e. 

Jc = IIW(w)-P(w)H-1(w)ll} = Ilvec(W(w)-P(w)H-l(w))II~ (3.3.1) 

where II.II~ represent respectively, the squared Euclidean norm, vec(.) 

converts a matrix argument column-wise into a column vector, and 

P(w) is the permutation matrix. Ultimately, the cost function Jc has 

to be minimized with respect to both W(w) and P(w). 

3.4 The overall constrained BSS 

In order to achieve the above goal, it is required to minimize jointly Jm 

and Jc with respect to W(w), and also minimise Jc with respect to the 

permutation matrix P(w). The constrained optimization problem can 

be changed to an unconstrained one using a penalty function as in [74]. 

In this case 

J(W(w)) = Jm(W(w)) + AJc(W(w)) (3.4.1) 
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where A is a weighting parameter. W(w) and pew) are then found by 

minimizing the gradients of J and Je respectively with respect to W(w) 

and pew), i.e. 

and 

Pop'(w) = argmin{Je(W(w))} 
p 

(3.4.2) 

(3.4.3) 

Therefore, at each' frequency bin w the estimated sources will be 

aligned with the input source signals; as one of the major advantages 

of this algorithm there will not generally remain any permutation prob­

lem. Consequently, the update equations are obtained as: 

(3.4.4) 

(3.4.5) 

where j is the iteration index, Jl and 17 are the learning rates, and 

V'w·(J(W)) = V'w·(Jm(W)) + '\V'w.(Jc(W)) 
K 

= 2 L E(w, k)W(w)Rx(w, k) 

+2'\[W(w) - P(w)fI:-'(w)] (3.4.6) 

and 

(3.4.7) 
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Before starting the update process H- 1(w) is normalized once using 

H-l(w) <- H-l(W)/IIH-l(w)IIF where II.IIF denotes the Frobenius norm 

and after each iteration W(w) is also normalized. In the case of frac­

tional filters where the distances between the speakers and the micro­

phones are not integer multiples of the sampling interval then [80,81] 

can be used to estimate firstly the fractional delay and then perform 

the BSS process. 

Summary Table: Implementation steps for the proposed Multimodal 

FDCBSS Method 

1. Initialize parameters, N, M, k, T, Q, oX, "I, W 1(w), f" C, r, 

K, iter. count. 

2. Read input mixtures, i.e., time samples x(tk). 

3. Calculate the distances dij and angle of arrivals Bij between the 

speakers and the microphones on the basis of video information. 

4. Calculate the propagation time Tij using (3.2.13) and attenuation 

(Xij using (3.2.14), on the basis of dij , r, K, Bij , f" C. 

5. Find the estimate of mixing filter H(w) using (3.2.3). 

6. Normalized H(w) <- H(w)/IIH(w)IIF 

7. Calculate the cross-power spectrum matrix: 

- Convert X(tk) to x(w, tk)' 

- Calculate Rx(w, tk) using (2.2.1). 

8. Calculate the cost function and update gradient: 
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- FORi = 1 to iter. count. 

• Update Pi and 7]i using (3.5). 

• Update Wi+l(w) = Wi(w) - p;'Vw(J(Wi(w))) usmg 

(3·4.6) and Pi+1(W) = Pi(w) -7]i V'P(Jc(Wi(w))) using 

(3·4·7). 

• Update Ji(W(w)) = Jm(W(w))+AJc(W(w)) using (2.2.2) 

and (3.3.1). 

• if (Ji(W(w)) > Ji- 1(W(W))) break. 

- END FOR. 

9. Calculate y(w, tk) according to (2.1. g). 

10. Reconstruct the time domain signals y(tk) = IDFT(Y(w,tk)). 

11. Calculate Performance Index (PI) (2.4.2) and Evaluate Permu­

tation [abs(Gl1 G22 ) - abs(G12G21 )] > O. 

12. Calculate the Signal-ta-Interference Ratio (SIR) (2.4.4). 

13. End. 
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3.5 Experimental results and discussions 

The objective of this section is to evaluate the proposed method in 

terms of performance and solution to permutation. The main reason 

for the work in frequency domain blind source separation is the convo-

lutive nature of the real world problems. In the proposed method visual 

information, presented in the geometric model, is used which is limited 

to the direct path between the sensors and the sources. Therefore three 

experiments are performed with different positions of the microphones 

and the sensors to evaluate the effect of visual modality in the pro-

posed method. The proposed method is not only evaluated but also 

the comparison with two SOS based BSS algorithms [19] and [66] is 

also provided. The simulations are performed on speech signals gener­

ated for a room geometry as illustrated in Figure 3.2. In this chapter, 

initially, the algorithms are objectively evaluated based on the gen­

erated room impulse responses and the observed mixture signals are 

obtained by convolving the source signals with these room impulse re­

sponses. Finally, the performance on the real room recordings of the 

same room geometry are confirmed subjectively by listening tests and 

mean opinion score (MOS) is provided at the end of the section. 

The important variables were selected as: FFT length T = 1024 and 

filter length Q = 512 (half of T), r = 4, the sampling frequency was 

8kHz, size of the room was 5x5x5 m3
, and the room impulse duration 

was 130ms, A = 0.15 and the learning rates /1 and TI were gradually 

decreased with respect to the iteration index j 

/1j = Tlj = 'Y 1 _ (0.98)j 
0.02 

(3.5.1) 
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Figure 3.2. Plan view of a two-speaker two-microphone layout for 
recordings within a reverberant (room) environment. Height of the 
room = 5.0m. The objective evaluation of BSS requires the mixing 
filter therefore the audio signals are convolved with real room impulse 
responses recorded in the illustrated room geometry and real recordings 
of the same room geometry were also separated and evaluated subjec­
tively by listening tests. Room impulse response length is 130 ms. 

where I is a constant with I = 0.0l. 

In the first experiment the positions of the sensors and speak-

ers are Mic1 = [2.47,2.50,1.5]' Mic2 = [2.53,2.50,1.5], Speakerl = 

[1.0,2.0,1.5] and Speaker2 = [3.5,2.0,1.5]. The resulting performance 

indices are shown in Figure 3.3. At higher frequency bins there is less 

energy in the mixtures; therefore performance in those bins deterio-

rates. The results of calculating the criterion [abs( G11 G22 ) -abs( G,2G2d] > 

o for evaluation of permutation for the first experiment are shown in 

Figure 3.4. 
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Figure 3.3. Performance index at each frequency bin for the observed 
mixture signals obtained by convolving the source signals with the room 
impulse responses. (a) Parra and Spence algorithm [19J, (b) Wang et al. 
algorithm [74], and (c) multimodal FDCBSS algorithm [66J. A lower 
PI refers to a superior method. 
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Figure 3.4. Evaluation of permutation in each frequency bin for the 
observed mixture signals obtained by convolving the source signals with 
the room impulse responses. (a) Parra and Spence algorithm [19], (b) 
Wang et al. algorithm [74], and (c) multimodal FDCBSS algorithm [66J. 
[abs(GllG22 ) - abs(G12G21 )J > 0 means no permutation. 
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In the second experiment only the positions of the speakers are 

changed, the Euclidean distance between the speakers and the cen­

ter of the microphones is reduced. Mic1 = [2.47,2.50,1.5], Mic2 = 

[2.53,2.50,1.5], Speaker! = [2.00,1.20, 1.5J and Speaker2 = [3.25,1.20, 1.5J. 

The resulting performance indices are shown in Figure 3.5, and for this 

experiment the permutation is also evaluated on the basis of the crite­

rion mentioned above and the results are shown in Figure 3.6. 

(a) ,:~=" ~ .:.;1 
o 100 200 300 400 500 

(c) ,:L:iJlu .. '" I , 
o 100 200 300 400 500 

Frequency bin 

Figure 3.5. Performance index at each frequency bin for the observed 
mixture signals obtained by convolving the source signals with the room 
impulse responses. (a) Parra and Spence algorithm [19], (b) Wang et al. 
algorithm [74], and (c) multimodal FDCBSS algorithm [66J. A lower 
PI refers to a superior method. 
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Figure 3.6. Evaluation of permutation in each frequency bin for the 
observed mixture signals obtained by convolving the source signals with 
the room impulse responses. (a) Parra and Spence algorithm [19], (b) 
Wang et al. algorithm [74], and (c) multimodal FDCBSS algorithm [66J. 
[abs(GllG22 ) - abs(G12G21 )J > 0 means no permutation. 

In the third and last experiment the distance between the micro-

phones is reduced to 4cm. Mic1 = [2.48,2.50,1.5]' Mic2 = [2.52,2.50,1.5], 

Speakerl = [2.00,1.20, 1.5J and Speaker2 = [3.25,1.20, 1.5J. The result-

ing performance indices are shown in Figure 3.7, and the evaluation 

for permutation on the basis of the criterion mentioned above is shown 

in Figure 3.8. Justification for the experiment is that the distance be-

tween adjacent microphones should be as large as possible so as not to 

yield poor performance at low frequencies and should also be smaller 

than half of the minimum wavelength in order to avoid the spatial 

aliasing effect. The distance between adjacent microphones should be 

Tound(8.5/2) = 4cm, when the sampling frequency is 8kHz. In Fig-

ure 3.7 the effect of inter-element spacing is suppressed by the reduced 

energy in the recorded signals at higher frequency bins. 
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Figure 3.7. Performance index at each frequency bin for the observed 
mixture signals obtained by convolving the source signals with the room 
impulse responses. (a) Parra and Spence algorithm [19], (b) Wang et al. 
algorithm [74], and (c) multimodal FDCBSS algorithm [66J. A lower 
PI refers to a superior method. 

Figure 3.8. Evaluation of permutation in each frequency bin for the 
observed mixture signals obtained by convolving the source signals with 
the room impulse responses. (a) Parra and Spence algorithm [19], (b) 
Wang et al. algorithm [74], and (c) multimodal FDCBSS algorithm [66J. 
[abs(Gl1G22 ) - abs(G12G21 )J > 0 means no permutation. 
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Figures 3.3(c), 3.5(c) & 3.7(c) show good performance i.e. close 

to zero across the majority of the frequency bins since this is due to 

the multimodal method. Figures 3.4(c), 3.6(c) & 3.8(c) show that the 

multimodal FDCBSS method mitigates permutation. Actually, in uni­

modal BSS no prior assumptions are typically made on the source statis­

tics or the mixing system. On the other hand, in a multimodal method 

a video system can capture the approximate positions of the speak­

ers and the directions. Such video information helps to estimate the 

unmixing matrices more accurately and ultimately increases the sepa­

ration performance. It is highlighted that the convergence time of the 

proposed method and [74J is higher than [19], typically around 20-30% 

larger. 

In all the above simulation results it is obvious that by changing 

the inter-element spacing between sensors and the speakers can cause 

ill-conditioning in the mixing matrix; therefore for a certain frequency 

bin, the BSS performance is poor in one experiment and good in an­

other experiment, and is more obvious in the simulation results based 

on [19J and [74J. The proposed multimodal method provides better 

performance than [19J and [74J but the effect is still obvious in some 

frequency bins. Therefore an over-determined BSS method is proposed 

in Chapter 5 to enhance the separation. 

Finally, the SIR (2.4.4) is calculated and results are shown in Table-

3.1, and the results have been confirmed subjectively by listening tests. 

Six people participated in the listening tests and MOS results are shown 

in Table-3.2. 
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Table 3.1. Comparison of SIR-Improvement between algorithms for 
different sets of mixtures 

Algorithms SIR-Improvement/dB 
Parra's Method [19J 6.8 

Wang et al. Method [74J 9.2 
Multimodal FDCBSS Method 9.8 

Table 3.2. Subjective evaluation: Mean Opinion Score (MOS) for 
separation of real room recordings. 

Algorithms Mean Opinion Score 
Parra's Method [19J 3.6 

Wang et al. Method [74J 4.0 
Multimodal FDCBSS Method 4.1 

3.6 Summary 

In this chapter a key SOS based FDCBSS algorithm [19] has been 

modified by accommodating geometrical information about the sources 

in a multimodal BSS method. The location and direction information 

has been obtained using a number of cameras and the geometric model. 

Camera calibration, face detection, and 2-D image coordinates to 3-D 

real world coordinates transformation have been presented in Sections 

3.2 & 3.4.' The constrained problem has been partially changed to an 

unconstrained problem using Lagrange multipliers in Section 3.3. The 

results in Section 3.5 show that the modified CBSS system enhances 

the performance of the traditional FDCBSS system both objectively 

and subjectively. The outcome of this multimodal method paves the 

way for establishing a multimodal audio-video system for separation of 

speech and music signals. 



Chapter 4 

A MULTIMODAL METHOD 

FOR FREQUENCY DOMAIN 

INDEPENDENT 

COMPONENT ANALYSIS 

AND SEPARATION OF 

STATIONARY AND 

STEP-WISE MOVING 

SOURCES 

In this chapter, a novel multimodal method for independent component 

analysis (ICA) of complex valued frequency domain signals is presented 

which utilizes video information to provide geometrical description of 

both the speakers and the microphones. This geometric information is 

incorporated into the initialization of the complex ICA algorithm for 
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each frequency bin. The algorithm is also updated for stepwise moving 

sources which exploits the geometric information and permutation free 

unmixing matrix of the mixtures of the current block, to initialize Fas­

tICA for separation of stepwise moving sources. The advantages of this 

work are that no extra processing is required to solve the permutation 

problem separately in the frequency domain BSS nor is postprocessing 

required. The separation results show significant improvement in the 

performance of the resulting intelligently initialized FastICA method 

over conventional FastlCA, and also confirm that the proposed algo­

rithm is robust and potentially suitable for real time implementation 

for static and stepwise moving sources. It is also highlighted that cer­

tain fixed point algorithms proposed by Hyviirinen et al., or their con­

strained versions, are not valid for complex valued signals. 

4.1 Introduction 

BSS of moving sources is a more challenging aspect of solving the cock­

tail party problem [1 J and only a few papers have been presented in 

this area [82-84J. In [82J BSS for moving sources is performed by us­

ing frequency domain ICA as a blockwise batch algorithm in the first 

stage, and the separated signals are refined by post processing using 

crosstalk component estimation and non stationary spectral subtrac­

tion in the second stage. The permutation problem is solved by an al­

gorithm based on analytical calculation of null directions. Thus in [82J 

source separation is proposed in four stages 1) ICA based block wise 

batch algorithm, 2) analytical calculation to solve the permutation, 3) 

non stationary spectral SUbtraction, and 4) cross talk component es­

timation. Fundamentally, the algorithm is not applicable to moving 
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sources because ICA is based on fourth order statistics and requires 

sufficient data length to obtain accurate HOS estimates, which means 

the mixing filter should be approximately fixed in the batch of the data, 

therefore it is only applicable to stepwise moving sources. The proposed 

method is also applicable to step wise moving sources and has less com­

putational complexity and better performance. The proposed method 

does not require a separate process to solve the permutation problem 

or postprocessing for speech enhancement. The proposed method is 

justified theoretically as well as practically in this chapter. 

The major problem for the moving sources case is the time variant 

mixing model which becomes more complicated when the environment 

is reverberant. The established unimodal approaches are not suitable 

to solve the problem, therefore a more cognitive approach is required [3] 

and therefore a multimodal method is exploited in which FastICA is 

initialized in an intelligent way. The permutation problem inherent to 

frequency domain blind source separation (FDCBSS) is automatically 

solved. Video information can help to estimate the unmixing matrices 

more accurately. Following this idea, the objective of this chapter is 

to use efficiently such video information to mitigate the permutation 

problem and ultimately increase the separation performance. The scal­

ing problem in CBSS is easily solved by matrix normalization [66,85]. 

In this method BSS become semiblind by initially exploiting the above 

mentioned prior geometrical information in initialization of FastICA to 

make the process robust and permutation free, and later on with the 

help of the unmixing matrix of the previous time block and using the 

whitening matrix of the current time block again the FastlCA is ini­

tialized in an intelligent way to enhance the convergence properties of 
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BSS so that it is potentially suitable for real-time implementation for 

stepwise moving sources. As such, the separation matrix is updated for 

each time block B j = {t : (j - 1)7), :0: t < jTb)}, where Tb is the time 

block size, and j represent the block index (j 2': 1). This intelligent ini­

tialization based FastICA algorithm is more suitable when 7), is small, 

i.e. reduced change in the unmixing matrix will provide a less biased 

estimate for initialization, however reduction in Tb is limited by the 

data length required for FastICA to converge. Therefore this method 

is more robust in the case of stepwise moving sources because the mix­

ing filter will be fixed at each step and in this chapter the performance 

is presented when sources are moving stepwise in a teleconference-like 

scenario. 

In the following section a fast fixed-point algorithm for complex 

valued signals, for which the choice of contrast function is carefully 

motivated is discussed. In Section 4.3 the use of spatial information in­

dicating the positions and directions of the sources using data acquired 

by a number of video cameras is examined and the proposed intelligent 

initialization based FastICA algorithm is discussed. In Section 4.4 the 

simulation results, for stationary and stepwise moving sources, of real 

world data confirm the usefulness of the algorithm. Finally, in Section 

4.5 the chapter is summarized. 
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4.2 A fast fixed-point algorithm for ICA of complex valued signals 

Recently, ICA has become one of the central tools for BSS [6,11,86-92] 

(in Chapter 2 ICA is discussed in detail). Actually, in ICA a set of es­

timated source signals s(w) in (2.1.9) are retrieved from their mixtures 

based on the assumption of their mutual statistical independence [9,15]. 

It is important to mention that ICA algorithms are commonly limited 

to separate instantaneous linear mixtures but most real world prob­

lems have a convolutive nature. This limitation can be avoided in 

FDCBSS because aT-point windowed discrete Fourier transformation 

(DFT) converts the real value, broadband, time domain signal into a 

set of complex valued, narrowband, frequency domain signals. There­

fore at each frequency bin ICA is applicable. Hyvarinen and Oja [6,93] 

presented a fast fixed point algorithm (FastICA) for the separation of 

linearly mixed independent source signals. Unfortunately, these algo­

rithms are not suitable for complex valued signals. 

Algorithms for independent component analysis of complex valued 

signals are also presented in [94-96]; the first two algorithms are com­

putationally more intensive than the last, and no proofs of consistency 

are given in either of the references. The use of algorithm [96] in this 

work is due to four main reasons: its suitability for complex signals, the 

proof of the local consistency of the estimator, more robustness against 

outliers and capability of deflationary separation of the independent 

component signals. In deflationary separation the components tend to 

separate in the order of decreasing non-Gaussianity. In exactly deter­

mined separation, however, it is generally better to use a symmetric 

scheme rather than a deflationary approach. In [96] the basic concept 

of complex random variables is also provided and the fixed point algo-
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rithm for one unit is derived, and for ease of derivation the algorithm 

updates the real and imaginary parts of w(w) separately. The vector 

w(w) represents one row of W(w) used to extract a single source. , 
According to the Lagrange conditions [97], the optima of 

E{G(lwH(w)x(wJl2n under the constraint E{lwH (w)x(w)12} = Ilw(w) 112 

= 1 are obtained [96J at points where 

(4.2.1) 

where (J E JR, E{.} denotes the statistical expectation, (.)H Hermitian 

transpose, 11.11 Euclidian norm, 1.1 absolute value, G(.) is a nonlinear 

contrast function, and the gradient denoted by V', is computed with 

respect to the real and imaginary parts of w(w) separately. 

The Newton method is used to solve this equation for which the 

total approximate Jacobian is [96J 

J = 2(E{g(lwH (w)x(wW) + IwH(w)x(wWg(lwH (w)x(w)12)} - (J)I 

(4.2.2) 

which is diagonal and therefore easily invertible, where I denotes the 

identity matrix and g(.) and g(.) denote the first and second deriva­

tives of the contrast function. Bingham and Hyviirinen obtained the 

following approximate Newton iteration: 

w(w) +- w(w) 

w(w) <-

E{x(w)(wII (w)x(w))' g(lwH (w)x(wJl2)} - (Jw 
E{g(lwH(w)x(w)l2) + IwH (w)x(w)12g(lwH (w)x(wJl2)} - (J 
w(w) 

Ilw(w)11 (4.2.3) 



Section 4.2. A fast fixed-point algorithm for ICA of complex valued signals 61 

where (.)* denotes the complex conjugate. In the experiments the sta­

tistical expectation is realized as a sample average. 

4.2.1 Robustness of contrast function 

A good contrast function is one for which the estimator given by the 

contrast function is more robust to outliers in the sample values. This 

means that single highly erroneous observations do not have much in­

fluence on the estimator. Using a simple leA estimation method to 

measure non-Gaussianity by kurtosis has a drawback in practice. The 

main problem is that the kurtosis is very sensitive to outliers e.g. if 

a sample of 1000 values of a random variable, of zero mean and unit 

variance, even contains only one sample equal to 10, then the kurtosis 

of that sample will be at least 104/1000 - 3 = 7 which clearly indi­

cates the single value is likely to make kurtosis large [6]. For zero mean 

complex random variables the kurtosis in [95] is defined as: 

kurt(y(w)) = E{ly(wW} - E{y(w)y*(w)}E{y(w)y*(w)} 

- E{y(w )y(w)} E{y*(w )y*(w)} 

-E{y(w)y*(w)}E{y*(w)y(w)} (4.2.4) 

however there are in total 24 ways to define the kurtosis [98]. Kurtosis 

defined in [99] is used in the referred paper [96], which is defined as: 

kurt(y(w)) = E{ly(w)1 4
} - 2(E{ly(wWW -IE{y2(W)}12 

= E{ly(wW} - 3 (4.2.5) 
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under the condition that y(w) = wH(w)x(w) is white i.e. the real and 

imaginary parts are uncorrelated and their variances are equal. The 

contrast function defined in [96] is: 

JG(w(w» = E{G(ly(w)m (4.2.6) 

The function used in the experiments of the proposed-method G(y(w» 

= log (b + y(w)), is the same as that used in [96] and its derivative is 

g(y(w» = l/(b + y(w», where b in an arbitrary positive constant, em­

pirically b "'" 0.1 is a reasonable value. The robustness of the estimator 

is captured in the slow growth of G, as its argument increases [6]. 

4.3 Proposed intelligent initialization based FastlCA algorithm 

4.3.1 Initialization for stationary sources 

In the geometrical model (presented in Section 3.2) the actual mixing 

matrix H(w) should include the reverberation terms related to the re­

flection of sounds by the obstacles and walls, which are not possible to 

capture with the video system. However in such a room environment it 

will generally always contain the direct path components as in the equa­

tions in Section 3.2. Therefore, H(w) is considered as a crude biased 

estimate of the frequency domain mixing filter matrix, but one which 

provides the learning algorithm with a good initialization whilst impor­

tantly avoiding the bias in learning when used as a constraint within 

the FDCBSS algorithm as in Section 3.4. 

The position and direction information obtained from the video 

cameras equipped with a speaker tracking algorithm is automatically 

passed to (3.2.13) and (3.2.14) to estimate the H(w). At the starting 
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point or the point when speakers move greater than the maximum step 

size, HI(w) is used to initialize the fixed point algorithm [96] for each 

frequency bin 

(4.3.1) 

where QI(W) is the whitening matrix [6] of the mixtures and suffix 1 

stands for the starting point or the point when speakers move greater 

than the maximum step size. 

Before starting the process HI (w) is normalized once using HI (w) <­

HI(W)/IIHI(W)IIF where II.IIF denotes the Frobenius norm. 

The algorithm convergence depends on the estimate of H1(w), to 

improve accuracy. As will be shown by later simulations, an estimate 

of HI(w) obtained from Section 3.2 can result in a good performance 

for the proposed algorithm in a moderate reverberant environment. 

4.3.2 Initialization when sources are moving in short steps 

Since the unmixing matrix calculated by geometrically based initialized 

lCA (IIFastlCA, initialization described in the above section) is per­

mutation free, therefore H '" W-1
. Scaling is not a major issue, and 

normalization during learning [66] can mitigate its effect. 

For the real room recordings it is practically verified that when the 

sources move in small steps, then the inverse of the unmixing matrix 

obtained from IIFastlCA at previous step j can be considered as a 

crude, albeit biased, estimate i.e. Hj+1 '" Wjl, for current step j + 1, 

and with the whitening matrix calculated from the recorded mixtures 
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at current step will provide the intelligent initialization as 

(4.3.2) 

The equivalence between frequency domain blind source separation 

and frequency domain adaptive beamforming is already confirmed in 

[100]. It is highlighted that the whitening matrix Q(w) has strong 

impact in such smart initializations. 

The above initializations increase the separation performance to­

gether with mitigating the permutation problem. Crucially, in the pro­

posed Intelligently Initialized FastICA (IIFastICA) method, since the 

algorithm essentially fixes the permutation at each frequency bin, there 

will be no problem while aligning the estimated sources for reconstruc­

tion in the time domain. 

As an initial step, it is usual in ICA approaches to sphere or whiten 

the data 

z(w) = Q(w)x(w) 

Q(w) = D-t(w)EH(w) 

(4.3.3) 

(4.3.4) 

where E(w) = {el(w); ... ,el(w)} is the matrix whose columns are the 

unit-norm eigenvectors of the covariance matrix Cx(w) = E{x(w)xH (w)} = 

E(w)D(w)EH(w) and D(w) = diag(d1(w), ... ,dn (w)) is the diagonal 

matrix of the eigenvalues of CX' Since z is white, i.e., zero mean, 

unit variance and with uncorrelated real and imaginary parts of equal 

variances, therefore E{Z(W)ZT(W)} = 0 and E{Z(W)ZH(W)} = I, and 

D-t(w) plays a vital role in E{Z(W)ZH (w)} = I. 

Next, when sources are at the starting point or the point when 
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speakers move greater than the maximum step size, the row vectors 

of WI(w) obtained from (4.3.1) are used, one-by-one, to initialize the 

fixed point algorithm [96J for each frequency bin. Once the sources start 

moving within the limit of the maximum step size then similarly, the 

row vectors of Wj+1 (w), obtained from (4.3.2) are used, one-by-one, to 

initialize [96J for each frequency bin. 

The final update equation to be initialized by a row vector of W I (w) 

or W j +1(W) , for each vector of each frequency bin, by applying (4.3.3), 

and by multiplying both sides of (4.2.3) by (3 - E{g(lwHxI 2) + IwH xl 2 

glwH xI 2
)}, the fixed point algorithm simplifies as: 

Wi(w) <- E{Z(W)(WI(W)Hz(W))*g(lWI(W)Hz(w)l2)} 

-E{g(lwI(W)HZ(w)12) + IWI(W)HZ(WW 

g(lWI(w)H Z(W)12)}WI (w) 

wi(w) 
WI(W) <- Ilwi(w)11 

which importantly eliminates the need to calculate (3. 

(4.3.5) 

(4.3.6) 

Since there are M independent components, the other separating 

vectors, i.e. Wi(W), i = 2,··· ,M, are calculated in a similar manner 

and than decorrelated in a Gram-Schmidt-like [lOlJ decorrelation i.e. 

deflationary orthogonalization scheme. The deflationary orthogonaliza­

tion for the M-th separating vector [6J takes the form 

M-I 

WM(W) <- WM(W) - I: {wZ(W)Wj(W)}Wj(W) (4.3.7) 
;=1 

( 4.3.8) 
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and W(w) = [W1(W),··· , WM(W)]H is formulated after separating all 

vectors of each frequency bin. 

Generally, for determined BSS problem, M independent compo­

nents, i.e. Wi(W), i = 2,··· ,M, are calculated in parallel to obtain 

W(w) = [W1(W),··· , WM(W)]H for each frequency bin are decorrelated 

in a symmetric orthogonalization scheme which is more accurate than a 

deflationary orthogonalization in the exactly determined case addressed 

in this thesis. The symmetric orthogonalization takes the form [6] 

W(w) <- W(W){WH(W)W(wwt 

W(w) 
W(w) <- IIW(w)II 

(4.3.9) 

( 4.3.10) 

Summary Table: Implementation steps for the proposed IIFastICA al­

gorithm 

1. Initialize parameters, N, M, T, Q, 'I, f" C, r, ", b, 

Tb, maximum step size, maximum count. 

2. Read input mixtures, i.e., time samples x(t). 

3. Calculate the distances dij and angle of arrivals l1ij between the 

speakers and the microphones on the basis of video information. 

4. Calculate the propagation time Tij using (3.2.13) and attenuation 

aij using (3.2.14) on the basis of dij , r, ", l1ij , f" C. 

5. Find the estimate of mixing filter H(w) using (3.2.3). 

6. Normalized H(w) <- H(w)/IIH(w)IIF 
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7. Calculate the Intelligent Initialization: 

- Calculate W 1(w) using (4.3.1) when sources are at starting 

point or speaker move greater than the maximum step size. 

- Calculate Wj+l(W), j 2 1 using (4.3.2), when sources are mov­

ing in small steps. 

8. Whiten the data after conversion into the frequency domain: 

- Convert x(t) to x(w) using the DFT. 

- Whiten the data z(w) = Q(w)x(w) using (4.3.3), calculate Q(w) 

from (4.3.4). 

9. Define the non-linear junction G and calculate its first and second 

derivative 9 and g' respectively. 

10. Update unmixing matrix: 

- FOR i = 1 to M. 

- WHILE {min(abs(V'wi(w)) , maximum count - count) > 

O.OOOI} 

• Update each vector oj each frequency bin 

wt(w) = E{z(w)(wi(w)Hz (w))'g(lwi(w)H z (wJl2)} 

- E{g(lwi(w)H z(w) [2)+[Wi(W)H z(w) [2§([Wi(W)H z(w) [2) }Wi(W) 

using (4.3.2). 

• Normalize each vectorwi(w) = II:t~:;II' using (4·3.6). 

• Do the deflationary orthogonalization of the first vec­

tor (i > I) using (4.3.7) and normalize each vector 

() w;(w) . (4 38) Wi w = IIw;(w)II' uszng .. . 

• counter = counter + 1 
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- END WHILE. 

- END FOR. 

11. After Separation of all vectors of each frequency bin formulate the 

unmixing filter W(w) = [Wl(W),··. , WM(W)]H. 

12. Calculate W(w) = W(w)Q(w). 

13. Calculate y(w) according to (2.1.9). 

14- Reconstruct the time domain signals y(t) = IDFT(Y(w)). 

15. Calculate Performance Index (PI) (2.4.2) and Evaluate Permu­

tation [abs(Gll G22 ) - abs(G12G21 )] > o. 

16. Calculate the Signal-to-Interference Ratio (SIR) (2.4.4). 

17. End. 
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4.4 Experiments and results 

In this section the proposed method is evaluated in two parts, ini­

tially, when the sources are physically stationary and secondly, when 

the sources are physically moving stepwise. 

4.4.1 Stationary sources 

In the experiments which correspond to the environment in Figure 3.2, 

the Bingham and Hyviirinen [96J algorithm and the proposed algorithm 

were tested for real room recordings. The objective evaluation of BSS 

requires the mixing filter therefore the audio signals were convolved 

with real room impulse responses recorded in the room. The separation 

of the real recorded signals is also evaluated subjectively by listening 

tests and mean opinion score (MOS) is also provided. The length of the 

audio signals was 10sec. The other important variables were selected as: 

FFT length T = 1024 and filter length Q = 512 (half of T), r = 4, the 

sampling frequency for the recordings was 8KHz, size of the room was 

5x5x5 m3 and the room impulse duration was 130ms. In the proposed 

algorithm G(y) = log(b + y), with b = 0.1. 

First the performance is evaluated on the basis of performance in­

dex (PI) (2.4.2). The resulting performance indices are shown in Figure 

4.1 which show good performance for the proposed algorithm i.e. close 

to zero across the majority of the frequency bins. This is due to geo­

metrical information used in the initialization. Both algorithms were 

tested at a fixed iteration count of seven, as the proposed algorithm has 

converged in this number of iterations. The visual modality therefore 

renders the BSS algorithm semi blind and thereby much improves the 

resulting performance and rate of convergence. 



Section 4.4. Experiments and results 70 

~ 
x • ]l 
• 0 
c 
~ 0.5 
.g 
• "-

100 200 300 400 500 
Frequency bin 

[ 
x • ~ 
-" 
5 c 
§ 0.5 

.g 
• "-

100 200 300 400 500 
Frequency bin 

Figure 4.1. Performance index at each frequency bin for the Bingham 
and Hyviirinen algorithm on the top [96] and the proposed algorithm at 
the bottom, audio signals of length lOsec were convolved with recorded 
real room impulse responses, iteration count = 7 was fixed. A lower PI 
refers to a superior method. 

The permutation performance is also evaluated on the basis of the 

criterion mentioned in Subsection 2.4.3. In Figure 4.2 the results con­

firm that the proposed algorithm automatically mitigates the permuta­

tion at each frequency bin. Since in Figure 4.2 (bottom) [abs(Gll G22 )­

abs( G12G21 )] > 0 for all frequency bins therefore the multimodal method 

provides appropriate solution to the permutation problem. 
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Frequency bin 

Frequency bin 

Figure 4.2. Evaluation of permutation in each frequency bin for the 
Bingham and Hyviirinen algorithm at the top [96] and the proposed 
algorithm at the bottom, audio signals of length lOsec were convolved 
with recorded real room impulse responses, iteration count = 7 was 
fixed. [abs(Gl1 G22 ) - abs(G12G2!)] > 0 means no permutation. 

In contrast, the performance indices and evaluation of permutation 

by the original FastICA algorithm [96] (MATLAB code available on-

line) with random initialization, on the recorded mixtures are shown 

in Figure 4.3. It is highlighted that thirty-five iterations are required 

for the performance level achieved in Figure 4.3(a) with no solution for 

permutation as shown in Figure 4.3(b). The permutation problem in 

frequency domain BSS degraded the SIR to approximately zero on the 

recorded mixtures. 
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Figure 4.3. (a) Performance index at each frequency bin and (b) 
Evaluation of permutation in each frequency bin for Bingham and 
Hyviirinen FastICA algorithm [96], audio signals of length lOsec were 
convolvcd with recorded real room impulse responses, iteration count 
= 35 was fixed. A lower PI refers to a better separation and 
[abs(GllG22 ) - abs(G12G21 )] > 0 means no permutation. 

Figure 4.4 confirms the convergence of the underlying cost, i.e. 

E{ G(lwH xI2)}, within seven iterations for the proposed algorithm. The 

results are averaged over all frequency bins. The convergence within 

seven iterations with solution for permutation confirms that the pro­

posed algorithm is likely to be robust and suitable for real-time imple-

mentation. 
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Figure 4.4. The convergence graph of the cost function of the proposed 
algorithm for the audio signals of length 5sec convolved with recorded 
real room impulse responses, using contrast function G(y) = log(b+y); 
the results are averaged over all vectors of all frequency bins. 

The signal-to-interference ratio (SIR) (2.4.4) was calculated and 

comparison of SIR-Improvement between algorithms and the proposed 

method for different sets of mixtures is shown in Table 4.1. The pro-

posed IIFastICA provides 4.3dB and 5.1dB SIR-Improvement than the 

Wenwu et al. Method [74] and Parra's Method [19] respectively. 

Table 4.1. Comparison of SIR-Improvement between algorithms and 
the proposed method for different sets of mixtures. 

Algorithms SIR-Improvement/dB 
Parra's Method [19] 6.8 1 

FDCBSS [66] 9.4 
Wenwu et al. Method [74] 10.2 

IIFastICA 14.5 

Finally, the proposed method was also evaluated subjectively by 

listening, with eight people participated in the tests and MOS is 4.7, 

which is very high quality. 
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4.4.2 Stepwise moving sources 

In this section the proposed IIFastICA technique for moving sources 

is evaluated. The simulations were performed on real recorded speech 

signals generated for a room geometry as illustrated in Figure 4.5. The 

audio signals were recorded, the estimate of H1(w) was calculated on 

the basis of geometrical information obtained from video cameras, and 

real room impulse responses were also recorded, when speaker 1 was 

at position A and speaker 2 was at position C. The recorded mixtun;s 

were separated with intelligent initialization for starting point (4.3.1) 

and PI with solution to permutation was evaluated with the recorded 

impulse responses. When the speakers started movement then the posi­

tions of the speakers after each two second interval were marked (room 

impulse responses at marked points were calculated for PI) and the 

same procedure was repeated with the initialization for stepwise mov­

ing sources (4.3.2). The other important parameters were: block length 

Tb = 2sec, FFT length T = 1024, filter length Q = 512 half of T and 

50% overlapping was used. The room impulse response duration was 

130 ms. Speaker 1 moved from A to B i.e. 60 degrees counterclockwise 

and Speaker2 moved from C to E via D in a back and forth motion i.e. 

30 degrees in total at a speed of 5 deg/sec. The maximum step size was 

10 degrees. This could correspond to moving around a circular table 

in a tele-conferencing context. To reduce the complexity of the tracker 

circular motion is assumed in this work. In the proposed algorithm 

G(y) = log(b + y), with b = 0.1. 
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Figure 4.5. A two-speaker two-microphone layout for recording within 
a reverberant (room) environment. Speakers move with the speed of 5 
deg/sec. Room impulse response length is 130 ms. 

Initially, PI (2.4.2) was calculated and the resulting performance 

indices are shown in Figure 4.6. Figure 4.6( a) shows good performance 

i.e. close to zero across the majority of the frequency range, since this 

is due to the geometrical based initialization (4.3.1). In Figures 4.6(b) 

and 4.6( c) the performance is again good but slightly degraded because 

the estimates for initialization are slightly more biased as explained in 

Subsection 4.3.2. 
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Figure 4.6. Performance Index at each frequency bin when (a) Both 
sources are static Le. speaker 1 at position A and speaker 2 at position 
C, (b) One source moved Le. speaker 1 at position A and speaker 
2 moved 10 degrees counterclockwise from position C, and (c) Both 
sources moved Le. speaker 1 moved 10 degrees counterdockwise from 
position A and speaker 2 moved 5 degrees clockwise from position C. 
A lower PI refers to a better separation. 

Secondly, the permutation performance was also evaluated. Figure 

4.7 confirmed that the proposed algorithm automatically mitigates the 

permutations due to the intelligent initializations mentioned in Sections 

4.3.1 & 4.3.2, and therefore no additional processing is required. Figures 

4.7(a) and 4.7(b) show improved results over 4.7(c) because when both 

sources are moving there is more variation in the mixing environment, 

in spite of the strong impact of Q(w) as mentioned in section 4.3.2 the 

initialization is slightly more biased, therefore as explained in the next 

paragraph, the algorithm generally requires more iterations to converge 

when sources are moving. 
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Figure 4.7. Evaluation of permutation in each frequency bin when 
(a) Both sources are static i.e. speaker 1 at position A and speaker 2 
at position C, (b) One source moved i.e. speaker 1 at position A and 
speaker 2 moved 10 degrees counterclockwise from position C, and (c) 
Both sources moved i.e. speaker 1 moved 10 degrees counterclockwise 
from position A and speaker 2 moved 5 degrees clockwise from position 
C. [abs(Gl1G22 ) - abs(G12G21 )] > 0 means no permutation. 

Since the convergence rate of any algorithm has a vital rule for a real 

time system. The number of iterations required for the convergence of 

the underlying cost, in the proposed IIFastICA algorithm at different 

conditions of the sources is shown in Table 4.2. Algorithm [96] is not 

applicable for moving sources. The maximum of seven iterations when 

both sources are moving confirms that the proposed algorithm is more 

suitable for a real-time system. 

Finally, SIR (2.4.4) was calculated. The separation was performed 

at Tb = 2 sec, and average SIR-Improvement when both speakers 

were stationary was 14 dB, when one speaker was moving 13.5 dB 

and when both speakers were moving 12.8 dB. The minimum 12.8 dB 

SIR-Improvement again confirmed that no additional postprocessing is 
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Table 4.2. Number of iterations required for convergence in the pro­
posed IIFastICA algorithm averaged over all frequency bins under dif­
ferent conditions of the sources 

Sources Condition Iterations Iterations 
(IIFastICA) ( [96]) 

Both sources are static 7 35 
One source moved 9 -

Both sources moved 12 -

required which has been confirmed subjectively by listening tests, with 

six people participated in the tests and MOS is 4.2. 

4.5 Summary 

A new multimodal method for FDCBSS, with intelligent initialization 

for FastICA, for moving sources has been presented in this chapter. 

The advantage of the proposed algorithm was confirmed in simulations 

from a real room environment. The location and direction informa-

tion were obtained using a number of cameras and this information 

was used in the initialization of the proposed algorithm. The proposed 

multimodal method is block-based and the initialization is performed 

based on either the geometrical information obtained from tracking or 

the BSS results from the previous block. The separation was evaluated 

objectively by the performance indices with solution for permutation 

at frequency bin level and overall SIR-Improvement at different condi­

tions of sources, and also confirmed subjectively by listening tests. The 

outcome of this method is a step towards solving the cocktail party 

problem for moving sources by using a cognitive approach. 



Chapter 5 

EXPLOITING ALL 

COMBINATIONS OF 

MICROPHONE SENSORS IN 

OVERDETERMINED 

FREQUENCY DOMAIN 

BLIND SOURCE 

SEPARATION OF SPEECH 

SIGNALS 

In this chapter, based on the multimodal method presented in Chapter 

4, a new approach to overdetermined frequency domain blind source 

separation (BSS) of speech signals which exploits all combinations of 

observations and hence varying inter-microphone spacings is presented. 

The observations are divided into subgroups so that conventional fre-

79 
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quency domain BSS algorithms can be used. By evaluating the sepa­

ration performance obtained from each group on the basis of approx­

imately measuring the independence of separated signals, the output 

of the group that has the best performance amongst all groups on a 

frequency-by-frequency basis is chosen as the overall output. The sep­

arated signals of the overall system are then obtained by transforming 

their frequency domain representations into the time domain. Simula­

tion results based on speech signals confirm that the presented approach 

has better performance based on the performance index (PI) as com­

pared with a conventional scheme using only one microphone group and 

an existing overdetermined frequency domain BSS algorithm. 

5.1 Introduction 

BSS algorithms are designed to recover unobservable source signals 

from observed mixtures with the assumption that the sources are mu­

tually independent. Convolutive BSS algorithms have received much 

attention recently since they have more practical applications as com­

pared with instantaneous BSS algorithms [102J. Frequency domain ap­

proaches simplify the convolutive BSS problem into the instantaneous 

but complex BSS problem at each frequency bin, thus retaining the 

advantages of mathematical simplicity, reduction of the computational 

complexity, and fast convergence. 

For most classical frequency domain BSS algorithms, N observed 

mixture signals are required and sufficient to recover N source signals. 

For conventional convolutive frequency domain BSS algorithms, and it 

is also observed in the simulation results of Chapters 3, 4 & 6, in some 

frequency bins, the performance is not good, for example, due to the 
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ill-conditioning of the mixing matrix, which is related to the positions 

of the sources and inter-element microphone spacings (the problem is 

more obvious in the experiments of Chapter 3 when positions of the 

sources and the sensors were changed). Assuming that a microphone 

array which contains N microphones where M > N, i.e., the overde­

termined case, may want to use all these observed signals to attain 

a better BSS performance rather than only use N observed signals. 

Several overdetermined BSS algorithms have been proposed in recent 

years. It is shown in [103] that theunmixing filters of overdetermined 

BSS contain much simpler structure, thus are easier extract. Rather 

than utilizing all the observed signals simultaneously in the overdeter­

mined BSS algorithms, a principal component analysis (PCA) approach 

is performed as a preprocessing in [104] so that the output of PCA can 

then be used to extract the source signals by using conventional BSS 

algorithms. In the method proposed in [105] different sensors are uti­

lized for different frequency bins: sensors with wide sensor spacings are 

used for low frequency bins, and sensors with narrow sensor spacings are 

used for a high frequency range. As discussed in [106] for low frequency 

bins the methods proposed in [104] and [105] have similar performance, 

while the method proposed in [104] is preferred for high frequency bins. 

However, the technique proposed in [104] utilize~ the PCA preprocess­

ing which is not suitable for online BSS, while the method proposed 

in [105) needs carefully designed microphone arrays, which may limit 

their application. 

Another attractive overdetermined BSS algorithm can be seen in 

[107], in which the observations are divided into subgroups and each 

group contains N observed signals. Conventional BSS algorithms can 
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Figure 5.1. Illustration of the proposed grouping approach in overde­
termined frequency domain blind source separation. 

then be used for each group. The overall output of the algorithm is 

the average of outputs of all groups. In this chapter therefore a new 

overdetermined BSS approach is presented, where groups of observed 
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signals obtained from different microphones, with different positions 

and hence different inter-element spacings can be obtained for the BSS 

solution. Unlike the averaging operation performed in [107], an approx­

imate evaluation of the independence of the separated signals for each 

group is performed frequency-by-frequency, and the separated signals 

of the group with the best performance are chosen as the overall output 

of the system. The separated signals of the overall system are obtained 

by transforming their frequency domain representations into the time 

domain. The implementation of the presented approach is illustrated 

in Fig. 5.1, the elements of which will be explained further in the se­

quel. By utilizing such an approach, the ill-conditioning problem for an 

individual group of observed signals can be avoided. As will be shown 

in the later simulations, the proposed approach has better performance 

based on the measurement of the performance index (PI) as compared 

with a conventional scheme using only one microphone group and the 

averaging approach proposed in [107]. 

In the following section a fast fixed-point algorithm for complex val­

ued signals based on over determined BSS algorithms is presented. In 

Section 5.3 the simulation results confirm the usefulness of the algo­

rithm. Finally, in Section 5.4 the chapter is summarized. 

5.2 Algorithm formulation 

The time domain mixing (or generative) model and separation model. 

are shown in (2.1.2) and (2.1.5) respectively. Using aT-point windowed 

discrete Fourier transformation (DFT), the time domain signal can be 

converted into the frequency domain signal as shown in (2.1.7) and 

(2.1.9) respectively. 
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Many methods have been proposed to separate the observed signals 

in the frequency domain. In this chapter, the IIFastICA algorithm pre­

sented in Chapter 4 is used due to its robust convergence properties and 

solution to permutation. The update rule for the unmixing matrix and 

the separated signals is the same at each frequency bin. Initially, the 

mixtures are whitened for each frequency bin (4.3.3). In the IIFastICA 

algorithm vectors of the unmixing matrix W(w) are updated row by 

row as in (4.3.2) and after the first vector all other vectors are decorre­

lated by a deflation scheme based on a Gram-Schmidt-like decorrelation 

( 4.3.7). 

The nonlinear function G(y) = log(b+y) is used in this work due to 

its robust property [108], b is a small positive value and chosen as 0.1. 

Similar to all the other frequency domain convolutive BSS algorithms, 

the scale ambiguity problem appears at different frequency bins. This 

scale ambiguity problem is mitigated by the normalization approach as 

discussed in Chapter 3 & 4. In this chapter the performance index (PI) 

(2.4.2) which is a measurement of separatibn performance is also used. 

In the IIFastICA method, N source signals can be recovered from N 

observed signals, i.e., an exactly determined approach. If the observed 

signals satisfy M > N , i.e., an overdetermined problem, then C~ 

groups of observed signals can be obtained, which can all be utilized to 

recover the original source signals. The performance of BSS obtained 

from these groups may be different due to different positions and inter­

element spacings of the microphones. For a certain frequency bin, the 

BSS performance .obtained from some groups may be poor, and good 

for other groups. The idea of the proposed approach is to evaluate the 

BSS performance of each group at every frequency bin, and choose the 
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output of the group with the best performance at each frequency bin 

as the overall system output. Assuming K = C~ , i.e., K groups of 

observed signals are obtained, the assessment of the BSS performance 

of each group can be obtained by approximately measuring the inde­

pendence between the separated signals. Obviously, the measurement 

of the independence of the separated signals is a function of the sepa­

ration matrix W(w). By denoting the unmixing matrix obtained from 

the kth group of observed signals as W k(W) and J(W k(W)), k = 1, ... , K 

as the measures of independence, the group with the minimum value 

of J(Wk(w» can be identified as 

1= argminJ(Wk(w)) 
k 

(5.2.1 ) 

The output of the overall system at each frequency bin can then be 

described as 

( 5.2.2) 

where XI(W) is the input vector of the lth group. As an example, if there 

are two source signals to be recovered, an approximate assessment of the 

independence of two separated signals can be performed by measuring 

their coherence function. Assuming at frequency bin W two separated 

signal sequences are obtained Yl(W) and yz(w) 

(5.2.3) 

where On denotes the sample average over index n. Second order statis­

tics are used to approximately measure independence as it is robust to 

the small sample numbers available in frequency domain BSS. 

L-________________________________________________________________________________ _ 
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It is important to mention that for the proposed approach, the 

computational complexity will be high, especially for large number of 

sources and mixtures, since the number of observed signal groups will 

be large. For this case, all combinations of observations should not be 

used. A simple solution to reduce the computational complexity and 

retain the advantages of the proposed approach is to only choose the 

groups with different inter-microphone spacings. 

In the next section simulations will be performed based on a two 

source two observation BSS problem, and the proposed approach with 

the criterion formulated in (5.2.3) will be compared with the complex 

FastICA algorithm and the approach proposed in [107] to show its 

advantages. 

Summary Table: Implementation steps 101' the proposed algorithm 

1. Initialize parameters, N, M, T, Q, "I, I., C, 1', K, b, 

n, maximum count. 

2. Calculate the number of groups K = C/:t. 

3. Read input mixtures 101' each group k, k 

samples Xk(t). 

4. Calculate unmixing matrix for each group: 

- FOR i = 1 to K. 

• Calculate Wi(w) with IIFastICA. 

• Calculate Yi(W) according to (2.1.9). 

1, ... ,K i.e., time 

• Calculate J(Wi(W)) = I(Yt(w)y,(w))ln for each group V {IYI (w )I')n{ly,(w )I')n 

by using (5.2.3). 

- END FOR. 
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5. Find the group I with minimum value of J(Wk(W)) using (5.2.1). 

6. Calculate y(w) = Wl(W)Xl(W) according to (5.2.2). 

7. Reconstruct the time domain signals y(t) = IDFT(Y(w)). 

8. Calculate Performance Index (PI) according to (2.4.2). 
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5.3 Experiments and results 

Two simulations are performed in this section. In the first simulation, 

a simulated room and its impulse responses hij(p) between source j 

and sensor i are simulated by an image room [109J. The room size is 

set to be 5x5x5 meter3 and the reflection coefficient is set to be 0.7 

in approximate correspondence with the actual room. The reverbera­

tion time (UT) of this room is 130ms. Two anechoic 40 second male 

speech signals with a sampling frequency of 8kHz are utilized as source 

signals. Four sensors are utilized to show the advantages of the pro­

posed approach. The IIFastICA algorithm is used with a DFT length 

of T = 2048 to implement the BSS algorithm and the criterion formu­

lated in (5.2.3) is used to assess the BSS performance. The positions of 

these two sources are set to [4.00 3.50 1.50J and [4.00 1.00 1.50J. The 

positions of the four sensors are set to [2.002.00 1.50J, [2.00 2.04 1.50], 

[2.00 2.08 1.50J and [2.00 2.12 1.50J respectively, i.e., the distance be­

tween neighboring sensors is 4cm. The set up of the room can be seen 

in Fig 5.2. The setup of the second simulation is the same as that of 

the first simulation except the UT is increased to 300ms by changing 

the reflection coefficient to 0.9. To evaluate the performance of differ­

ent algorithms, the performance index (PI) (2.4.2) is measured at each 

frequency bin. 

According to the set up of the simulation, CJ, i.e., 6 groups of 

observed signals are used to run the IIFastICA algorithm independently. 

The iteration number of the IIFastICA algorithm is set to be 7. The 

average PI measurements over all frequency bins obtained from these 6 

groups for, the overdetermined BSS method in [107J and the proposed 

approach are shown in Table 1. To show clearly the advantages of 
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the proposed approach, PI for each frequency bin obtained from the 

overdetermined BSS method in [107J and from the proposed approach 

for both RT=130ms and RT=300ms room environments are plotted in 

Fig 5.3. 

Table 1 shows that the averaged PI measurements over all frequency 

bins obtained from the proposed approach for both room environments 

with 130ms RT and 300ms RT are much smaller (a smaller value of PI 

indicates a better performance) as compared with those obtained from 

individual implementation of the FastICA algorithm and the method 

formulated in [107J. The advantages of the proposed approach can also 

be seen in Figure 5.3, in that for both room environments, the proposed 

approach has a smaller PI at nearly all frequency bins as compared with 

the method formulated in [107J. The simulation results indicate that a 

better performance of BSS is obtained by using the proposed approach. 
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Table 5.1. Averaged PI measurements of the complex Fast! CA alga-
rithm, the method in [107] and the proposed approach 

Averaged PI(130ms) Averaged PI(300 ms) 

Group1(xl, X2) 0.146 0.208 

Group2(xl, X3) 0.164 0.184 

Group3(xl, X4) 0.142 0.209 

Group4(x2, X3) 0.190 0.222 

Group5(x2, X4) 0.164 0.204 

GroUp6(X3, X4) 0.153 0.178 

Approach in [107] 0.160 0.201 

Proposed approach 0.080 0.101 
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5.4 Summary 

A new frequency domain BSS approach exploiting non-uniform mi­

crophone spacings has been presented in this chapter. As has been 

shown by the simulation results, the proposed approach has better per­

formance from objective measures as compared with a conventional 

scheme using only one microphone group and an existing overdeter­

mined BSS method. This approach has the particular advantage that 

the best group is frequency dependent and therefore the best inter­

element spacing is likely to be chosen. 

Now that the initial part of the work on multimodal methods for 

BSS of physically stationary sources has been presented therefore the 

follo~ing questions remain: 

• How can multiple moving sources be best detected and tracked 

by utilizing audio-visual information? 

• How can audio-visual information be incorporated to solve the 

BSS of multiple moving sources? 

These are answered in the next chapter to form a full BSS solution for 

stationary and moving sources. 



Chapter 6 

A MULTIMODAL SOLUTION 

TO BLIND SOURCE 

SEPARATION OF MOVING 

SOURCES 

A novel multimodal solution is proposed for the problem of blind source 

separation (BSS) of moving sources. The challenge of BSS for moving 

sources is that the mixing filters are time varying, thus the unmix­

ing filters should also be time varying, which are difficult to calculate 

in real time. In the proposed method, the visual modality is utilized 

to facilitate the separation for both stationary and moving sources. 

The movement of the sources is detected by a 3-D tracker based on 

video cameras. Positions and velocities of the sources are obtained 

from the 3-D tracker based on a Markov Chain Monte Carlo particle 

filter (MCMC-PF), which results in high sampling efficiency. The full 

BSS solution is formed by integrating a frequency domain blind source 

separation algorithm and beamforming: if the sources are identified as 

stationary for a certain minimum period, a frequency domain BSS algo­

rithm is implemented with an initialization derived from the positions 
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of the source signals. Once the sources are moving, a beamforming al­

gorithm which requires no prior statistical knowledge is used to perform 

real time speech enhancement and provide separation of the sources. 

Experimental results confirm that by utilizing the visual modality, the 

proposed algorithm not only improves the performance of the BSS al­

gorithm and mitigates the permutation problem for stationary sources, 

but also provides a good BSS performance for moving sources in a low 

reverberant environment. 

6.1 Introduction 

Most existing BSS algorithms assume that the sources are physically 

stationary, i.e., the mixing filters are fixed. All these algorithms are 

based on statistical information extracted from the received mixed 

data [11,19,74]. However, in many real applications, the sources may 

be moving, for example, a presenter may walk around inside a room. In 

such applications, there will generally be insufficient data length avail­

able over which the sources are physically stationary, which limits the 

application of these algorithms. Thus BSS methods for moving sources 

are very important to solve the cocktail party problem in practice [1]. 

Only a few papers have been presented in this area [82-84,110-112]. 

In [82], sources are separated by employing frequency domain leA using 

a block-wise batch algorithm in the first stage, and the separated sig­

nals are refined by postprocessing in the second stage which constitutes 

crosstalk component estimation and spectral subtraction. In the case 

of [83], they used a framewise on-line algorithm in the time domain. 

However, both these two algorithms potentially assume that in a short 

period the sources are physically stationary, or the change of the mixing 
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filters is very slow, which are very strong constraints. In [84], BSS for 

time-variant mixing systems is performed by piecewise linear approxi­

mations. In [111], they used an online PCA algorithm to calculate the 

whitening matrix and another online algorithm to calculate the rotation 

matrix. However, both algorithms are designed only for instantaneous 

source separation, and cannot separate convolutive mixed signals. Fun­

damentally, it is very difficult to separate convolutively mixed signals 

by utilizing the statistical information only extracted from audio sig­

nals, and this is not the manner in which humans solve the problem [3) 

since they generally use both their ears and eyes. 

In this work, a multimodal method is therefore proposed by utilizing 

not only received linearly mixed signals, but also the video information 

obtained from cameras. A video system can capture the approximate 

positions and velocities of the speakers, from which the directions and 

motions, i.e., stationary or moving, of the speakers can be identified. A 

source is identified as stationary if its velocity is approximately zero for 

a certain minimum period, so that enough data length can be obtained 

for frequency domain BSS algorithms. Furthermore, the direction of 

the source signals can also be obtained from the video cameras, and 

a geometrically based initialization can then be performed to improve 

the performance of the frequency domain BSS algorithm and mitigate 

the permutation problem [113). If the velocity is larger than an upper 

bound value, the source is identified as moving. In this case, a beam­

forming method which does not need prior statistical information, in 

common with the fundamental assumptions in blind source separation, 

is used to enhance the signal from one source direction and reduce the 

energy received from another source direction, so that source separation 
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can be obtained. Although the beamforming approach can only reduce 

the signal from a certain direction and the reverberance of the interfer­

ence still exists, it can obtain an acceptable separation performance in a 

low reverberation environment. Note that the beamforming approach 

only depends on the direction of the source signals, and no received 

audio data are required, thus an online real time source separation can 

be obtained [114]. 

The chapter is organized as follows: Section 6.2 presents the related 

work, Section 6.3 provides the system model, Section 6.4 explains the 

tracking process. Section 6.5 describes the source separation by com­

bining frequency domain BSS and beamforming. Experimental results 

are provided in Section 6.6 based on real room recordings from our 

intelligent office. Finally, in Section 6.7 this chapter is summarized. 

6.2 Related work 

Most existing BSS algorithms are based on the statistical information, 

second order statistics (SOS) / higher order statistics (HOS), extracted 

from the recorded data. Such methods are generally not applicable in 

CBSS of moving sources due to data length limitations and are therefore 

not included in simulation studies with moving sources. In the context 

of CBSS of moving sources in a moderate reverberant environment, with 

a reverberation time (RT) < 130ms, it is believed that a multimodal 

method is necessary which exploits different processing techniques as 

a function of the velocity of the speakers. A key component in this 

method is the tracking of speakers. Many methods have been proposed 

for the tracking of speakers on the basis of audio information, visual 

information, or audio-visual fusion [32-40,42,43,115-121]. Broadly 
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speaking, the differences among the existing approaches arise on the 

basis of single-person or multi-person tracking and the type of the sen­

sor configuration used. In most of the works [32,35-37,40,115], on the 

basis of simple sensor configuration, either a single person is tracked in a 

single-person scene or the current active speaker is tracked in the multi­

person scene. Multi-person tracking has been studied in [42,118-121] 

on the basis of only a single modality, either audio or video. In more 

recent works [33,38,39,116] the multi-person tracking problem has been 

studied by using the audio-visual sensor configuration. To the best of 

my knowledge, the most recent work on tracking, near to the require­

ment in proposed method, is proposed by Gatica-Perez et al. [39]. In 

this work a detect before track technique is applied, and a small micro­

phone array with multiple uncalibrated cameras with non-overlapping 

field of view (FOY) is used for sensor configuration. For detection, au­

dio observations are derived from a source localization algorithm and 

visual observations are based on models of the shape and spatial struc­

ture of human heads. For tracking, a 2-D tracker in the image plane 

is implemented with an MCMC-PF. In this case, for source separation, 

3-D positions of the speakers are required to handle complicated human 

motions. Therefore, initially, video cameras should be calibrated [75] 

and have overlapping FOYs, because at least two cameras are required 

for conversion of 2-D image co-ordinates to 3-D real world coordinates. 

Secondly, it is computationally better to use one 3-D tracker rather 

than two 2-D trackers. Finally, audio localization is not effective due 

to the complexity in the case of multiple concurrent speakers. In [122] 

source localization based on binaural cues is proposed and cue selec­

tion is based on the results of a number of psychophysical studies. A 
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modeling mechanism is proposed and the implementation in real room 

environment is itself a task. Localization for a single active speaker 

based only on audio is also difficult because human speech is an inter­

mittent signal and contains much of its energy in the low-frequency bins 

where spatial discrimination is imprecise, and locations estimated only 

by audio are also affected by noise and room reverberations [29]. In [29] 

the tracker proposed in [39] is implemented for speech enhancement and 

the simulation results confirm that for stationary speakers and overlap­

ping speech utterances the audio-visual localization improves by 2cm 

and 3cm respectively as compared to using only visual information. 

McCowan in [30] proposed that any time when the distance between 

the tracked speaker location and the focus location of the beamformcr 

exceeds 5cm, the beamformer channel filters should be recalculated, so 

practically there is no significant improvement by integrating audio lo­

calization. In other recent works [42,43] only audio information is used. 

In [43] particle filtering is used for acoustic source localization and it is 

assumed that a single acoustic source with known speed of wave prop­

agation is present in a reverberant environment. In [42] time difference 

of arrival (TDOA) estimation and localization of moving speakers is 

proposed which distinguish individual speakers in a multi path environ­

ment by associating one TDOA per frame to the predominant speaker. 

In the situation when speakers are simultaneously speaking and mov­

ing, both the above methods have limitations. In [123] joint acoustic 

source localization and orientation estimation using sequential monte 

carlo is presented and it is also highlighted in the paper that in a sit­

uation where only one microphone pair (sensor configuration used in 

this work) provides measurements then the performance is predictably 
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poorer. Therefore, in the proposed method the speakers are tracked by 

using only visual information motivated by Colin Cherry's observation 

that the human approach to solve the cocktail party problem exploits 

visual cues [1, 2]. In the application environment, an intelligent of­

fice, the cameras also benefit from being mounted above the height of 

a human and thereby make it easier to discriminate sources in close 

spatial proximity. In the proposed method, the source localization is 

performed by using the state-of-the-art Viola-Jones face detector [78]. 

The 3-D visual tracker is implemented with an MCMC-PF which re­

sults in high sampling efficiency. It is stressed that the domain of the 

proposed method in this chapter lies in system integration and the main 

contribution is to provide the proof of the concept for CBSS of moving 

sources. The areas of detection and tracking are disciplines in their 

own rights and in this chapter recent results from these fields to pro­

vide geometric information to facilitate a novel multimodal method to 

CBSS are simply exploited. The output of the tracking is position and 

velocity information, on the basis of which source separation is divided 

into two parts to provide the full BSS solution. As will be shown in 

later simulations, the proposed method can provide a reasonable BSS 

performance for moving sources in a low reverberant environment in 

which the RT is 130ms. The system model is described next. 

6.3 The system model 

The proposed method can be divided into two stages: human tracking 

to obtain position and velocity information; and source separation by 

utilizing the position and velocity information based on frequency do­

main BSS or beamforming. The schematic diagram of the system is 
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shown in Figure 6.1. 

For the localization of the sources two fully calibrated colour video 

cameras are used to determine the approximate positions of the speak­

ers. Both cameras are calibrated by the Tsai calibration (non-coplanar) 

technique [75] and synchronized by the external hardware trigger mod­

ule and frames are captured at the rate of Iv = 25 frames/sec, which 

means Tv = 1/25sec. The face of each speaker is extracted in the im­

ages of both cameras to find the position of each speaker i at each state 

(time) k. In each image frame, the face can be extracted by the state­

of-the-art Viola-Jones face detector [78]. It is highlighted that for this 

proof of concept work it is assumed that the full face of a speaker is 

clearly visible and a simple geometric visual cue, i.e. the center of the 

face is available. The machine cocktail party problem is very challeng­

ing and this work is only to approach the ability of a human to solve 

this task. It is easy to contrive situations where a human would fail in 

this task and these are beyond the scope of this work. Further details 

are in Subsection 6.4.2. 

It is common in many science and engineering situations to estimate 

the hidden state of a system that changes over time using a sequence 

of noisy observations made on the system. Normally, the state-space 

approach, which focuses attention on the state vector of the system, 

is adopted for modeling a dynamic system. In this approach the 3-

D location of each speaker is estimated by using the Bayesian mul­

tispeaker state space approach. The 3-D multispeaker observation is 

defined as Zl,k = {ZI,U, ... , Zn,U} where Zi,U represents the observa­

tions of speaker i and the multispeaker state configuration is defined as 

Xu = {X1,u, ... , Xn,l,k}' The filtering distribution of states given ob-
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Figure 6.1. System block diagram: Video localization is based on 
state-of-the-art Viola-Jones face detector [78], two fully calibrated 
colour video cameras are used to determine the approximate 2-D po­
sitions of the speakers. The 2-D image information of the two video 
cameras is converted to 3-D world co-ordinates through the calibration 
parameters and optimization method. The approximated 3-D loca­
tions are fed to the visual-tracker, and on the basis of estimated 3-D 
real world position and velocity from the tracking, the sources are sepa­
rated either by beamforming or by intelligently initializing the FastICA 
algorithm. 
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servations P(Xk IZ1,k) is r€Cursively approximated using a Markov Chain 

Monte Carlo (MCMC) particle filter and the algorithm is explained in 

Section 6.4. 

After estimating the 3-D position of each speaker the velocity infor­

mation is extracted, if the sources are physically stationary for a certain 

period Tk , then the positions of the speakers are incorporated within 

the Intelligently Initialized FastICA (IIFastICA) algorithm otherwise 

they are used within the beamformer to obtain the source separation 

for stationary or moving sources. The details of the beamformer and 

IIFastICA are explained in Section 6.5. The 3-D visual tracker in­

cluding state model, measurement model and sampling mechanism is 

explained in the following section. 

6.4 3-D visual tracker 

The most suitable candidate for a 3-D mUltispeaker visual tracker is 

a particle filter because the probabilistic state-space formulation (non­

Gaussian) and the requirement for the update of information on receipt 

of new measurements are ideally suitable for the Bayesian approach, 

which provides a rigorous general framework for dynamic state estima­

tion problems. In the Bayesian approach to stochastic state estima­

tion, the idea is to construct the posterior probability density function 

(pdf) of the state based on all the available information, including the 

received observations. Since such a pdf contains all the available sta­

tistical information, it can be considered to be the complete solution 

to the estimation problem. 

For many problems, some sort of recursive processing is required in 

that at each time an observation is received, an estimate is required 
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based on that observation. This may be achieved by the use of a re­

cursive filter. Essentially, such a filter comprises prediction and update 

stages. During the prediction stage, the state pdf is predicted using 

the state model. Since the state is usually subject to some unknown 

disturbances (modelled as random noise), prediction generally deforms 

the state pdf. The predicted pdf, reSUlting from the prediction stage, is 

modified by the latest observation during the update stage. The update 

operation is achieved through Bayes' rule. The advantage of this re­

cursive filtering is that the received data can be processed sequentially 

rather than as a batch. The posterior density P(Xk\Z"k) is recursively 

calculated by Bayes' rule according to: 

where p(Xk\Xk_1) denotes the mUltispeaker state model and p(Zk\Xk) 

represents the multispeaker measurement model. In general, no closed-

form solution exists for (6.4.1) although these recursions can be ap­

proximated by Monte Carlo simulations of a set of particles having 

associated discrete probability mass and the generic particle filter is 

described in Section 2.5. A particle filter recursively approximates the 

filtering distribution p(Xk\Zlok) by a weighted set of Np particles at 

time k, {Xk,Wk}~:" by using the weighted particles at the previous 

time-step k -1, {Xk-l,Wk-d~:I' and the new update will be 

Np 

P(Xk\Zlok) "" K-1p(Zk\Xk) I:: Wk_1P(Xk\Xk_1) ( 6.4.2) 
n=l 

where K is a normalization constant, (.)n refers to the nth particle, 
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and Np is the number of particles, so that a discrete approximation of 

the true posterior can be calculated. As Np approaches infinity, this 

discrete approximation can converge to actual distribution depending 

on the sampling mechanism, discussed in the sequel. 

The three important items of the probabilistic multispeaker 3-D 

visual tracker, the state model, the measuement likelihood model and 

the MCMC-sampling mechanism are formulated in the following three 

subsections. 

6.4.1 State model 

There are several state models that can be used to represent the state 

transition. In [124] the random walk model is used, another model 

which is shown to work well, to represent the time-varying location of 

a speaker in a typical room [124,125]' is the Langevin model [126], also 

used in [34,40,43]. The motion of the speakers in each of the Cartesian 

coordinates is assumed to be independent in this state model. In the 

x-coordinate this motion is described as: 

ax =e-fJ,x6.T 

bx=vx\!l - a; (6.4.3) 

where the thermal excitation process Fx is a normally distributed ran­

dom variable Le. N(O, 1), and t:J.T = 1/ Iv. The other model param­

eters suggested by [34] are (3x = lOsec-1
, and Vx = 100cmsec-1• The 
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dynamics and parameters for the other Cartesian coordinates are the 

same. 

The above state model which includes independent single speaker 

dynamics is formulated for the multispeaker state model as: 

(6.4.4) 

where p(Xi,kIXi,k-l) denotes the dynamics for speaker i. It is highc 

lighted that p(XkIXk-l) can be factorized for individual speaker. 

6.4.2 Measurement model 

Visual measurements used in this work are based on the Viola-Jones 

face detector. The Viola-Jones face detector [78] yields good perfor­

mance and detects faces extremely rapidly, by using a boosted cascade 

of features. It is a cascade of strong classifiers, each slightly more com­

plex than the last. The input images are sub-sampled at multiple scales 

and locations to form the sub-windows for the faces to be detected. 

Face detection is performed in three stages. Initially, to minimize the 

effect of illuminations, the variance of all sub-windows are normalized. 

Secondly, the cascade of classifiers makes a decision based on the sub­

window. Finally, to merge the overlapping face candidates around each 

face and output the final results the post processing method is used. A 

sub-window is detected as a face if it successfully passed all strong clas­

sifiers. If any classifier fails a sub-window then no further processing is 

required on that window, detailed formulation is available in [78]. 

The center of the detected face is determined as the approximate 

position of the lips of the speaker in image coordinates ~i,k = [Xi,k, Y.i,k]T, 
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where c represents the number of cameras c = 1,2. In 3-D space each 

point in each camera frame defines a ray. Intersection of both rays is 

found by optimization methods, which finally help in calculation of the 

positions Zi,k of the speakers in 3-D real world coordinates [79]. 

The multispeaker measurement model can be factorized in terms of 

individual speakers as: 

( 6.4.5) 

where p(Zi.kIXi,k) is the observation model for speaker i and is calcu­

lated as: 

(6.4.6) 

where X;,k denotes a vector formed from the 3-D position components 

of the state vector and (7 is a standard deviation parameter chosen 

empirically, typically unity. 

6.4.3 MCMC-sampling mechanism 

In the 1990s MC MC-based methods attracted great attention among 

researchers in the Bayesian community [127]. The advantage over alter­

native approaches is in the capacity to work with a high-dimensional 

space and complex models. It is computationally infeasible to track 

multiple objects in the high dimensional space by using an impor-

tance sampling [72] based traditional particle filter [128]. In tracking 

the MCMC sampling is a methodology for generating samples from a 

Markov chain whose stationary distribution corresponds to a filtering 

distribution. In order to efficiently place samples as close as possible to 

regions of high likelihood and approximate p(XkIZ1,k) in (6.4.2) with 
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MCMC techniques, it is important to specifically design a Metropolis­

Hastings (MH) sampler (also known as MCMC sampler) at each time 

step [39,129,130]. After running the MCMC sampler for long enough 

at each time step the initial part of the run, called the burn in period, 

is discarded to achieve a stationary distribution [131]. The key to the 

efficiency of the MC MC algorithm rests in the proposal distribution 

(discussed in the sequel), in which the configuration of one single ob­

ject is modified at each step of the Markov chain, and each move in the 

chain is accepted or rejected by the so called acceptance ratio a. The 

MC MC-based tracking algorithm is summarized as follows: 

• Initialize the MC MO sampler: At time k predict the state of each 

speaker i for Np particles i.e. {Xi,d ::1 from the particle set 

at time k - 1 i.e. {Xi,k-I} ::1 based on the factorized dynamic 

• B + Np MCMC Sampling Steps: B and Np denote the number of 

particles in the burn-in period and fair sample sets respectively. 

- Randomly select a speaker i from all speakers. This will be 

. the speaker proposed to move. 

- Sample a new state Xi,k for only speaker i from the single 

speaker proposal density Q(Xi,kIXi,k). 

- Compute the acceptance ratio which involves (6.4.1) for the 

evaluation of likelihood for only speaker i: 

. {1 P--;(,;:;Z,,-i'k~1 X-;-,ic:;,k ),.,:Q",,(X;-;:c',:--' ,k7:-1 X::"i'~k )-=--p(7:-X::"i':.:.;.k I X~i,k,---I:.;.) } Q= m2n , 
P(Zi,kIXi,k)Q(Xi,kIXi,k)p(Xi,kIXf,k_l) 

(6.4.7) 

- Draw f1 ~ U(uIO, 1). 
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- If Cl< > J1 then accept the move for speaker i and change the 

X;,k into X k· Otherwise, reject the move, do not change X k 

and copy to the new sample set . 

• Discard the first B samples to form the particle set, {Xk}~:l' at 

time step k. 

The output of the 3-D tracker at each state k is the mean estimate 

for each speaker i and is calculated as the weighted sum over the as-
z=Np 11 n 

sociated particles as Xi,k = n~J,pWi~~Xi.k where in this work as in [39] 
2:n=1 t,k 

W~k = 1/ Np . The change in the position of a speaker with respect to 

the previous state k - 1 (known as velocity information) also plays a 

critical role to decide the method for source separation and is discussed 

next. 

Discussion on algorithm choice 

1. State model (6.4.4) and measurement model (6.4.5) are indepen-

dent in terms of the speakers and therefore can be factorized 

into the product of the marginal inodels for each speaker. In 

tele-conferencing applications within an intelligent office, physi­

cal separation in speakers is always likely to be possible as the 

speakers are unlikely to embrace each other and speakers are also 

clearly separable in the 3-D real world coordinates used in this 

thesis due in part to the height of the cameras. Therefore, in 

this work, there is no requirement to incorporate interaction cues 

in the state model. However, the state model could be extended 

with an interaction term in future work as in [129]. 

2. Independent particle filters for all speakers and an MCMC-PF 

~------------------------------------------------ -- --- -- - -
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are applicable for the requirement of the work in this thesis. In-

dependent SIR-PF for each speaker is the most optimal choice 

and is already used in our work [124]. Joint particle filtering suf­

fers from exponential complexity in the number of targets to be 

tracked [129]. In [130] it is also mentioned that the joint filter is 

not feasible in practice for more than three targets. 

3. Due to the limitation of importance sampling in high dimensional 

state space, Markov Chain Monte Carlo (MCMC) methods are 

used. The MCMC method used in this work is based on [129,130] 

and has the appealing property that "the filter behaves as a set 

of individual particle filters when the targets are not interacting, 

but efficiently deals with complicated interactions when targets ap­

proach each other". The design of proposal density plays an im-

portant role in the success of an MCMC algorithm. In [130] a 

"One target at a time" scheme is implemented. The proposal 

density used is also defined in [39] as 

(6.4.8) 
i" 

where a single speaker is first chosen with probability Q(i* = i) 

and a move is attempted on i (shown in the algorithm summary) 

and the rest of the multi-speaker configuration is left unchanged, 

where 

Q(X~IXk' i*) ex ~ L: p(X;"kIX~,k_l) IT J(X7,k - Xl,k) 
P n lEm-{i'} 

(6.4.9) 

and Xk represents the whole state for all speakers m, and Xi" ,k 
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denotes the sub state for one speaker. 

4. The proposal density used in [39J appears not to be properly for­

mulated since it is not properly normalized. This has thus been 

modified in (6.4.9). An alternative interpretation of the sampler 

using an auxiliary variables approach can fix the problem, and 

then does indeed lead to the acceptance ratio of (6.4.7). Further 

information can be found in Berzuini et al 1997, Golightly and 

Wilkinson 2005 and [132]. In realization of the MCMC-PF it is 

very important to avoid having degenerate sampling over the joint 

target distribution implied by the auxiliary variables approach. A 

simple additional Gibbs sampling step that moves just the pre­

vious state X k - 1 can be added at each iteration, as described 

in [133], to ensure that degeneracy is avoided. 

5. Tracking results for independent particle filters for all speakers 

and an MCMC-PF are provided in Section-6.6. The numbers of 

particles used are 1000 and 600+200 respectively for independent 

SIR-PFs and MCMC-PF. Results show no significant difference 

(based on Euclidean error) but MCMC-PF reduces the computa­

tional complexity in multispeaker tracking. More advanced algo­

rithms with detailed discussion are presented in [132,134J. 

6.5 Source separation 

The audio mixtures from the microphone sensor array are separated 

with the help of visual information from the 3-D tracker. On the basis 

of this visual information it is decided either the sources should be sep­

arated as moving or stationary. The pseudo code to issue the command 
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for selecting the source separation methods is as follows. 

Pseudo Code: Command for Selecting the Source Separation Methods 

• Reset the counter and set the threshold 

• FOR j = 2: k 

-Find d . = IIX - X-1 11 2 1,,) Z,J 1,,) 

• IF di,j < threshold 

-Update the counter 

*IF counter> Tk/Tv 

-Command for the FastICA based method 

*END IF 

-Set Xi,j = Xi,j-l 

• ELSE 

-Command for the beamforming based method 

-Reset the counter 

• END IF 

• END FOR 

THIS CODE WOULD BE USED FOR EACH SPEAKER i. 

where n represents the expected stationary period for the speakers, 

Tv = l/fv, 11.112 denotes Euclidean norm, and threshold is the mini­

mum distance required for the beamformer channel filters, which should 

be recalculated to separate the sources. 

When the sources are physically stationary for a certain period Tk 

the sources are separated with IIFastICA. By changing the value of n 
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the expected required stationary period for the sources can be changed. 

The other important parameter to be calculated before starting the 

source separation is the angle of arrival of each speaker to the sensor 

array. By having the position information of the microphones and the 

speakers at each state k from the 3-D visual tracker the angle of arrival 

(}i.k of speakers relative to the microphone sensor array can be easily 

calculated. 

With (}i,k and the control command from the above decision criterion 

at each state k, the sources are separated either by beamforming or by 

IIFastICA as discussed in the following subsections. 

6.5.1 Beamforming based separation 

A simple two set beamforming system configuration is shown in Figure 

6.2. The equivalence between frequency domain blind source separation 

and frequency domain adaptive beamforming (ABF) is already studied 

in [100]. In the case of a two microphone sensor array an ABF creates' 

only one null towards the jammer. Since the aim is to separate two 

source signals 81 and 82 therefore two sets of ABFs are presented in 

Figure 6.2. An ABF by using filter coefficients W21 and W22 forms a 

null directive patterns towards source 81 and by using filter coefficients 

Wll and W12 forms a null directive patterns towards source 82' If two 

speakers are located at the same direction with different distances, it 

is not possible to separate the sources by phase difference. One of the 

other limitation for the blind source separation is acoustic environment 

with the long reverberations, in this work the reverberation time in 

the intelligent office is 130msec which will be considered as a fairly 

moderate reverberant environment. 
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u, 

Figure 6.2. Two set beamforming system configuration: (a) Beam­
former for target 82 and jammer 81 (b) Beamformer for target 81 and 
jammer 82 

In the intelligent office where the recordings are taken the micro­

phones used are uni-directional. By using a short-time discrete F6urier 

transform (DFT) the mixing process can be formulated as follows: hav­

ing M statistically independent real sources sew) = [SI(W), ... , 8M(W)]H 

where w denotes discrete normalized frequency, a multichannel FIR fil­

ter H(w) producing N observed mixed signals u(w) = [UI(W), ... , UN(W)]H, 

where (.)H is Hermitian transpose, can be described as (it is assumed 

that there is no noise or noise can be deemed as a source signal in the 

model for simplicity) 

u(w) = H(w)s(w) (6.5.1) 

and the source separation can be described as 

yew) = W(w)u(w) (6.5.2) 

yew) = [YI(W), ... 'YN(W)]H contains the estimated sources, and W(w) 

is the unmixing filter matrix. An inverse short time Fourier transform 

is then used to find the estimated sources set) = yet). In this work to 
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demonstrate the proposed method the exactly determined convolutive 

BSS problem i.e. N = M = 2. 

Figure 6.3. Microphone and source layout 

The delay element between source I and sensor k i.e. hk1(W) is calcu­

lated by using the angle of arrival information obtained from tracking. 

h (w) - ej(k-l)dcos(Bllw/c k = 1 N I - 1 M 
kl - '"""' - ,.'" (6.5.3) 

where d is the distance between the sensors and c is the speed of sound 

in air. Then H(w) is formulated as: 

H(w) = (6.5.4) 

Ideally, hkl(W) should be the sum of all echo paths, but these cannot 

all be found, therefore an approximation is used by neglecting the room 

reverberations. 

The unmixing matrix W(w) for each frequency bin can be approxi-
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mated from beamforming methods. In recent years, many beamforming 

methods have been proposed, such as the linearly constrained minimum 

variance (LCMV) method and the minimum variance distortionless re­

sponse (MVDR) method [135]. A post filtering approach has also been 

utilized to improve these methods [136]. However, the LCMV method 

and the MVDR method need estimates of statistical information of the 

input or noise signals, which are not accessible in the context of BSS 

for moving sources' e.g. for signals with length equal to O.4sec, FFT 

block length T = 2048 and sampling frequency fa = 8KHz, only one 

sample would be available at each frequency bin round(O.4fa/T) = 1 

therefore it is not possible to calculate the covariance matrix required 

in MVDR method and LCMV method. Furthermore, a diffuse noise 

field assumption is used in [136], which is not valid in the context of 

BSS. The post filter method has been used in [29] to perform speech 

enhancement for both stationary and moving cases, however, the model 

used in that speech enhancement is a single-in put-single-output (SISO) 

model, which is different from the multi-input-multi-output (MIMO) 

model in the context of BSS, thus this post filtering approach is also 

not suitable for the solution of BSS. To the best of my knowledge, 

in the context of BSS, only the beamforming approach that is directly 

obtained from the inverse of the mixing matrix model has been success­

fully used in [137]. To compensate for noninvertibility of the mixing 

matrix, a regularization term is included in [18}, in which the beam 

pattern obtained from the geometric information is incorporated in the 

solution of I3SS. Similar to that in [18], the unmixing matrix in this 

method is calculated as: 
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(6.5.5) 

where W(w) = [Wl(W), ... , WN(W)], H(w) = [hl(W), ... , hM(W)], j3 is a 

small positive constant such as 0.01 in the simulations, and I represents 

the identity matrix. 

Finally, by placing W(w) in (6.5.2) the sources are estimated. Since 

the scaling is not a major issue [66J and there is no permutation prob­

lem, therefore the estimated sources can be aligned for reconstruction 

in the time domain. 

6.5.2 FastlCA based separation 

If the sources are stationary for at least two seconds, the sources are 

extracted with the help of the estimated H(w) from the above section 

and the whitening matrix for the mixtures, as an initialization of the 

FastICA algorithm [96J. This approach thereby improves the conver­

gence of the algorithm and also increases the separation performance 

whilst mitigating the permutation problem. Crucially, in the frequency 

domain convolutive BSS (FDCBSS) approach, since the algorithm es­

sentially fixes the permutation at each frequency bin, there will be no 

problem while aligning the estimated sources for reconstruction in the 

time domain. 

Each column of H(w) (6.5.1) is used to initialize the FastICA (pre­

sented in Chapter-4) for each frequency bin. 

Wi(W) = Q(w)hi(w) (6.5.6) 



Section 6,5, Source separation 117 

Summary Table: Implementation steps for the proposed method 

• Calibrate the video cameras and calculate calibration parameters. 

• Detect the face region in the synchronized frames of both cameras. 

• Find the positions of the lips of each speaker from the face regions 

in synchronized video frames and calculate the observation of each 

speakers Zi,k at each state k in 3-D real world coordinates. 

• Implement the 3-D visual tracker and find the estimated position 

of each speaker Xi,k at each state k. 

• Calculate angle of arrivals e;,k to the sensor array and check 

the sources are stationary or moving, important parameters are 

threshold, Tv and Tk . 

• Incorporate the visual information in (6.5.3) and separate the 

sources accordingly either by beamforming or by the Fast/CA, im­

portant parameters are N, M, d, c, e, b, Q, T. 
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6.6 Experiments and results 

6.6.1 Data collection 

The simulations are performed on real recorded audio-visual signals 

generated from a room geometry as illustrated in Figure 6.4. Data 

are collected in a 4.6 x 3.5 x 2.5 m3 intelligent office. Two out of 

eight calibrated colour video cameras (Cl and C2 shown in Figure 6.4) 

are utilized to collect the video data. Video cameras are fully syn­

chronized with an external hardware trigger module and frames are 

captured at fv = 25Hz with an image size of 640x480 pixels, frames 

were down-scaled if it was necessary, and reducing the resolution .by 

half was a good tradeoff between accuracy and resolution. Both video 

cameras have overlapping fields of view. The duration between consec­

utive states is Tv = 1/25sec. Audio recordings are taken at fa = 8kHz 

and are synchronized manually with video recordings. The distance 

between the audio-sensors is d = 4cm. The other important variables 

are selected as: number of sensors and speakers N = M = 2, number 

of particles Np = 600, B = 200, the number of images in the first and 

second experiment are k = 525 & 600, which respectively indicate 21 & 

24secs of data, n = 5sec, threshold = 0.04m, FFT length T = 2048 

and filter length Q = 1024, height of the cameras in .the intelligent 

office is 2.35m, and the room impulse duration is 130ms. In the pro­

posed algorithm the non-linearity for FastICA is G(y) = log(b+y), with 

b = 0.1. In the first experiment on tracking, speaker 2 is stationary and 

speaker 1 is moving and in the second experiment both speakers are 

moving around a table in a tele-conference scenario. 
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Figure 6.4. A two-speaker two-microphone layout for recording within 
a reverberant (room) environment. Room impulse response length is 
130 ms. 

6.6.2 Results and discussion 

3-D tracking results 

In this section the results obtained from tracking are discussed. Two 

experiments are performed to evaluate the 3-D visual tracker. The faces 

of the speakers are detected by using the Viola-Jones face detector [78] 

which efficiently detected the faces in the. frames shown in Figure 6.5. 

Since in the dense environment as shown in Figure 6.5 it is very hard 

to detect the lips directly, therefore the cent er of the detected face 

region as the position of the lips in each sequence is approximated. 

More sophisticated and computationally efficient schemes could also be 

proposed for detecting the face through a sequence of images but the 

approach adopted in this chapter is sufficient to verify the multimodal 

CBSS method, the target of this work. 
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Figure 6.5. 3-D Tracking results 1: frames of synchroni zed record ings , 
(a) fr ames of first camera and (b) frames of second camera; the Viola­
.lones face detector [78) efficiently detected the faces in the frames. 

T he approximate 2-D posit ion of the li ps of the speaker in both 

synchronized camera fr ames at each state is converted to 3-D world 

coordi nates by using the calibration parameters [75) and the opt imiza­

t ion met hod [79). Wi th this measurement the particle fil ter is updated. 

T he number of particles in both experiments [or MCMC-PF was the 
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same N" = 600, J] = 200, for SIR-PF was N" = 1000 and res ul ts were 

obtained using single runs. 

In the first experiment speaker 2 is stationary and spe~ker 1 is 

moving around the table so the tmcking results of the speaker 1 are 

discussed in deta il in this experimcnt . T he sampling importance re-

s~ mpling particle fi ler (Sm -PF) is also sui table for this case as used ill 

our wor k 11241· In the second experiment both speakers are simul tane-

ously mov ing and their motion is more cOlTl pl icated as they cross over. 

MCivIC- PF is suitab le for lTlultispea ker tracking because it improves 

the sam pling efficiency with approximately the same computat ion ~ l 

cost of the Generic-PP . In both cxperirncll ts SIR-PF and MClvIC-PF 

arc used. T he gait of the speakcrs is not smoo th a nd the speakers are 

also stationary for a while at some poi nts during walking around t he 

table which prov ides a good test for the evaluation of the 3-D t racker 

as well as for source septation methods , a nd th is is also clear in the 3-D 

t racking results shown in Figure;; 6.6 , 6.7.6.8 & 6.9. 
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F ig ure 6.6 . 3- D 1hcking re:ults 1: SIR-PF based 3-D tracking 
of speaker 1 while walking arou nd the table in the intelligent offi ce. 
Speaker 2 is physically stationary in this experiment . 
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Figure 6 .7. 3-D Track ing resu lts 1: ivICi\ IC-PF based 3-D tracking 
of speftker 1 wh ile walking around t lte table in the intell igent office. 
Speaker 2 is physically station ary in this experiment. 
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Figure 6.8. 3-D Tracking resul ts 2: SIR-PF based 3-D tracking of the 
speaker · while walking around the table in the intelligent offi ce. 

In order to vIew the tracking res ults in more detail. the tracking 

resul ts are plotted in the xy and z axes separately. Figures 6.10 , 6.10. 

6.12 & 6.13 clearly show that tracking result has removed much or the 

measurement uncertainty and later in t his .-ection the error in detection 

for the particle fi lter will be quantifi ed . T he benefit of the true 3-
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Figure 6.9. 3-D Tracki ng re~ll lt~ 2: MCMC-PF ba~ed 3-D tracki ng of 
the ~peakers while walking around the table in the intelligen t oAlce. 

o tracker is clearly shown in Figure 6. 13. In particular, a lthough the 

speaker~ would approximately coallesc in the 2-D image plane, they are 

clearly separable in the 3-D real wo rld coordinate~ due in part to the 

heigh t of the ca meras. In 2- D tracking in the image plane th i~ problem 

cannot be avoided. The error bars for particle filters at different states 

are a lso plotted in these results. It is high lighted that the error bars 

would appear as 3D surfaces in the pseudo-3D plots and wou ld make 

the plots cluttered if they were d isp layed. However, the behavior of the 

error ellipses on the 20 plots gives a clear ind ication as to how 3D error 

bar surfaces \Vou ld appear on the 3D plots. 
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F ig ure 6.10. 3-D Tracking results 1: Sm .-PF baEcd tracking of the 
speaker 1 in the x and y-axis, while walking around the table in the 
intelligent offi ce. Speaker 2 is physically stationary in this experiment . 
T he result provides rnore ill depth view in the x and y-axis. 
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Figure 6.11. 3-D Tracking resul ts 1: MCMC-PF based tracking of 
the speaker 1 in the x and y-ax is , wh ile walking around the table in the 
intelligent offi ce. Speaker 2 is physicall y stationary in this experiment. 
The result provides more in depth view in the x and y-a.xis. 
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Figure 6.12. 3- D ·n·~cking results 2: SIR-PP bal;ed tracking of the 
speakers in the x and y-ax is , wh ile walking around the Lable in the 
intelligent office. The result provides more in depth vielV in the x and 
y-axIS. 
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Figure 6.13. 3-D Tracking results 2: MCMC-PP based tracking of 
the speakers in the x and y-axis , while walki ng around the table in the 
intelligent offi ce. T he result provides more in depth view in the x and 
y-axis . 
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Actua lly, t he height of t he speakers is fixed and d uring wa lking only 

t he movement in the heads will produce minor cha nge which is clea r in 

Figures 6.14, 6.15 , 6 .1 6 & 6.17. Since t he speakers and microphones a rc 

approxima.tciy a t t he stune leve l therefore it is Hssumed tha.t effect ive 

movement is in the xy plane. 
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Figure 6.14. 3-D Tracking rc:;ults 1: SIR- PF based tracking of t he 
speaJ<er 1 in the z-a.xis, while walking around t he table in the in tellige nt 
offi ce. Speaker 2 is phys icH liy stationHry ill thi s ex periment. T he res lllt 
confirllls that there is very small change in the z-axis wi th res pect to 
the x and y- axis . 
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Figure 6.15. 3-D cl)-ack ing re~ul t~ 1: MClvlC-PF based t racking of the 
speaker 1 in the z- axis, while wa lking a round the table in the intelligenl 
offi ce. Speaker 2 is physically ~tatio rlflry in thi ~ experiment. The resu1l, 
confirm ~ that there is very ~ rn all change in the z-axis with re~pect to 
the x ancl .y-axis. 
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F igure 6.16. 3-D T\'acking resul ts 2: SIR-PF based tracking o f the 
speakers in the z-ax is, wh ile walking around the table in the intelligent 
offi ce. The result confirms that there is very small change in the z-axis 
with respect to the x and Y-3....,js. 
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F ig ure 6.17. 3-D Track ing re,ul t, 2: MClvIC-PF based tracking of the 
speaker, in t he z-ax is, wh ile walking around the ta ble in the in tel ligent 
offi ce. The result confirms that there is very slllall change in the z-fD, is 
wi Hl respect to the x and y-axis. 

In order to evaluate the performance of the tracker as in [29], t he 

Euclidean distance to the framo-based grou nd truth is generated at each 

state. To calculate the ground truth, t hi> t ime consuming manual task 

is performed by annotati ng the mouth pos ition of eaeh speaker in each 

camera frame. Figures 6.18, 6. 19 6.20 & 6.21 provide the Euclidean 

error at eaeh state for both experiments. In the first experiment the 

mea n error is 0.05711, and standard deviation is 0.03711,. In the second 

experimcnt the mean error is 0.055111 fmcl stand arcl deviation is 0.032111 

whid. confirm the good performance of thc tracker. 
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Figure 6.18. 3-D Tracking reoults 1: Sl ll-PF ba~ed tracking of the 
spcaker 1. Speakcr 2 is physically stationary. Euclidcan error is ca l­
culated against manually annotated fram c-based ground tru t hs in each 
ca ll1cra plane of speaker 1. 
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Figure 6.19. 3-D Tracking results 1: MeMO-PF based tracking of 
thc speaker 1. Speaker 2 is physically stationary. Euclidean error is 
calculated against manually annotated frame-based ground truths in 
each camera plane of speaker 1. 

Angle of arrival results 

T he calculated position of the center of the microphones in expcrimcnt 

1 is [-0.08, - 0.22, 1.62rm, thc posit ion of speaker 2 is 
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Figure 6.20. 3-D Tracki ng results 2: SIR-PF based tracking of t he 
speakers. Euclidean error is calculated aga inst manual ly annot(ttcd 
frame-based ground tru ths in each camera plane of the speakers. 
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0.3 

Number of frames (25 framefsecond) 

F ig ure 6.21. 3-D Tracking results 2: MCiVIC-PF based tracking of 
the speakers. Euclidean error is calculated against manually annotated 
fr ame-based ground trut hs in each camera plane of t he speakers. 

[0.94, 0.59, 1. 63rr 711 (the reference point in the room is under the ta ble, 

close to the microphones) and the tracked pos ition of speaker 1 in s tates 

k = 1 : 525 is shown in Figure 6.11. T he angle of arri va l of speaker 2 

is 128 degree and the angles of arri va ls of the speaker 1 me shown in 

Figure 6.22. The calcula ted position of the center of the rni crophones 
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in experiment 2 is [-0.50, - 0.94, 1.60j"'m. T he angle of arri vals of both 

speakers are shown in Figure 6.23. In the resul ts of both experiments it 

is found that the efrective movement of the speakers were in the x-ax is 

and y-axis therefore the effective cl1iUl gC in t he Hngle of arri va l was only 

111 t he xy plane. 
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F ig ure 6.22. Angle of arri va l resul ts 1: Angle of arri val of speaker 1 
relative to the sensor array. Speaker 2 is physica lly stationary in th is 
experiment . T he estimated angle before t racking and corrected angle 
by 1I1CII IC-PF are shown. T he change in ang le is not smooth because 
of t he gait of the speaker. 

Now a successful tracker is available to provide the required ge-

omet ric information to perform lllultimodal blind source sepaJ·ation. 

Therefo re simulations on BSS aJ'e discussed next. 
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Fig ure 6.23. Angle of arri val re~ u l ts: Angle of a rr ival of the ~ peakers 

to the ~ensor array. T he estimated a ngle before t racki ng and corrected 
angle by l\ ICMC-PF are ~hown . 

BSS results 

The objective evallWtion 0/ IJSS is limited by lhe requirem.ent 0/ the 

mi2ing filter there/m'e /07' such testing the a1t(Lio signals are convolved 

with real room impulse responses ,-ecorcled in cer·tain positions 0/ the 

7"00110. The sepo.ml;ion 0/ the "eal reco"ded sig,wls i.n the intelligent of-

lice is evaluated s" ~iectively by listening I.ests and mean opinion scores 

(MOSs) are provided at the end. In the conte"t of object ive evalua­

tio n, termed moving source test (MST), it is as~umed that the movi ng 

sources remain static over a particular t ime interval less than 0.5sec. 

T he justification is that over this interval no fr equency domai n CB SS 

algorithm could be used as there would be insufficient number of sam-

pies to achieve convergence, but the proposed beamforming is successfu l 

as it is independent of da ta length. 

vive s imu lations for comparison of t he proposed algori t hm are pre-

senteel 

• vasUCA [96](Ma Ll ab code avai la.ble onliue) baseel BSS with ran-
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dom ini t ia li zation and length of t he signals is 5sec. 

• Fas tTCA based BSS with intell igent inilialization and le ngth of 

tllO signals is 5sec. 

• FastICA based BSS with intelligent ini tialization but Icugth of 

t he signals is OAsec (the ~ IST case). 

• l3eamforming based BSS and the length of the signa ls is OAsec 

(the MST case). 

• l3eamfonning based BSS when both sources nre physicnll y close 

to each other. 

Ini tially. in the first simulat ion the recorded mixtures of length of 

5sec are separated by the o riginal FastICA algori thm . The pCl'for­

mance indices and evaluation of permutat ion by t he original FastlCA 

algori t hm [96J with random initializat ion arc shown in Figure 6.24. It is 

hi ghlighted that thirty-five iterations arc required for the performa nce 

level achieved in Figure 6.24{a) with no so lution for permuta tion as 

shown in Figure 6.24{b). T he permutat ion problem in frequency do­

main BSS degrades t he SIR to approximately zero for t he recorded 

mixtures. 

In the second simulation recorded mixtures of length of 5sec are 

again separated. In this simulation t he a ngle of arri val of both spea k­

ers obtained from the 3-D tracker is passed one-by-one to (6.5.3) and 

Fas tlCA is inteLligentl y in it ialized (as discussed in Section 6.5.2). The 

res ul ting perform ance indices arc shown in Figure 6.25{a) which show 

good performance i.e. closc to zero across the majo ri ty of the fr equency 

bins. This is due to visual information used in the ini tial ization, and the 
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F igure 6.24. BSS Resu lt!;: perform~nce index at each frequency bin 
for the original Bingham and Hyvii rinen ,dgorithm on the top [96] and 
eva luation of permu tation at the bottom, on the recorded ~ ignab of 
known room impulse re:; pon:;e with fi xed iterat ion count = 35, length 
of the s ignals is 5 seconds. A lower PT refers to a superior method aJ1cl 

[o.bS(G 11Gn ) - o.bS(G 12G21 )) > 0 means no permutation. 

a lgorithm also converges in six iterations. T he visual modali ty there-

fore render:; this BSS algori thl11 semibl ind and thereby much improves 

t he resulti ng performance and the rate of convergence. Permutation 

is evaluated on the ba:; is of the cri terion ment ioned above. In Figure 

6.25( b) the results confi rm that the proposed algo ri thm auto matica.ll y 

mitigates the permu tation at each frequency bin . Since there is no per-

mutat ion problem the sources arc therefo re fi nally aligned in the ti me 

domai n. In Figure 6.25(a) at higher freq uency bins there is less energy 

in the mixtures therefore performance in those bins is deteriorated . T he 

SIR is a lso calculated as in [66] and resul ts are shown in Table 6.1. 

In the third simulation the length of the mixtures is reduced to 

O.4sec i.e. the MST case, and the performance is shown in Figure 6.26. 

H is obvious in the results that the performance is poor because Fas-
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F igure 6.25 . BSS Results: performance index at each frequency bin 
for the proposed intelligent ly initi alized FastICA a lgorithm at t he top 
and eva luation of permu tation at t he bottom, on t he recorded signa ls 
of known room impulse res ponse with fixed iteration count = 6, length 
of the signals is 5 seconds. A lower PI refers to a superior method and 
[abs(GIlGn ) - abs(G I2 G21 )] > 0 means no permu tation. 

Table 6.1. BSS Results: compari son of SIR-Im provement between 
algori thms and the proposed method for different sets of 1l1ixtures. 

Algori thms SIR-Improvement (dD) 
Parra et al. Method [19] 68 

Wenwu et a l. Method [74] 10 .0 
IIFastlCA 12.9 

tICA is based on fourth order statistics and is li mited by the data length 

requirement. For signals with length equal to 0.48ec, given t he block 

length of t he FFT, only one sample would be available at each frequency 

bin 1·ound(0.4 !,, / T) = 1 and therefore batch-wise BSS a lgorithms can-

not separate the sources of short data length due to insufficient samples 

to converge, which is a com mon problem when the sources are moving. 

In the fourth simulati on t he angles of arriva.l of both speakers ob­

tained from the 3-D tracker a.re passed to (6.5 .3) and t he sources were 

separated by using beamforrning (discussed in section 6.5.1) and t he 
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Figure 6.26. BSS Results: performance index 11t each frequcll cy bin 
for the proposed in telligently initialized FastICA algorithm at the top 
and evaluation of permu tation a.t the bottom , on the recorded signals 
of known room impulse response, length of the s ignals is 0.4 seconds. A 
lower PI refers to a superior method and labs(G"G22)-abs(GI2G21)] > 
o means no permutation. 

resul ts are shown in Figure 6.27. The resulting performa nce indices 

are shown in Figure G.27(a) and confirm good performance and Figure 

6.27(b) also shows that the beamfonning mi tigates the permu tation. 

Since there is no permutation problem therefore the sources can be 

aligned in the time domain. For comparison the data length of the 

mixtures used in this simulation is O.4sec and SrR in this case is 9 .5dB. 

It is know that the ideal condition for beam forming is when there is 

no reverberation in the room (instantaneous case), but is not possible 

in a real envi ronment, however beamformer still works in a moderat:e 

reverberant environment as in this case (room impulse response length 

is 130 ms) . 

In the last simulation when both speakers are phys ically close to 

each other, i. e. at state k = 393 (where both speakers are close and sta-
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F igure 6.27. BSS R.esul ts: performance index at each frcqllcllCY iJin 
for 3-D t rack ing based angle of arri val information u:;ed in beHmforJ11ing 
at the top and eva lu ation of permutation at the bottom, on the recordecl 
signab of known room impui:;e respon:;c, beamformi ng based separat ion 
i:; independent of length of the signals. A lower PI refers to a snperior 
llIethod and [abs(G 11 G22 ) - abs(G l2 G2 IJl > 0 means no permutat ion. 

tionary for 0.48ec) t he position of the speaker 1 is [0.54 , - 1.10, 1.59F'm 

and the position of speaker 2 is [1.00, - 0.91 , 1.5Sj'rm , the angles of ar­

ri vals of both speakers i.e. SI & 91degrees respectively, obtained from 

the a bove estimated positions from the 3-D t racker a re pa5sed to (6.5.3) 

and the sources are separated by using beam form ing and the results arc 

shown in Figure 6.2S. In this case, t he performance reduces because of 

the limitations of the beamformer, i. c. it is unable to discriminate spa-

t ially one speaker from another due to the width of its mainlobe being 

greater than the separation of the speakers, which is part icularly c1em 

at lower freq uencies. For comparison the data length of the mix tures 

used in th is simu lation is also 0.4sec and SIR ill th is case is 8.2dB. 

In conclusion, beam forming prov ides the solu tion for 'Olu'ce separation 

of moving sources at an acceptable level because beam forming is inde-
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F igure 6 .28 . BSS Resul ts: performance index ilt each frequency bin 
for 3-D tracking based angle of arrival information used in beamforllling 
at the top and evaluation of permu tat ion at the bot tom, on the recorded 
signals of known room impulse response, beamforming based separation 
is independent of length of the signals. Speakers a re physically close 
to each other therefore performance is reduced. A lower PI refers to 
a superior method and [abs(G"GnJ - abs(G,2G2, ) ] > 0 means no 
permutation. 

pendent of the data length requi rement unlike second or fou rth order 

statistics based batch-wise BSS algori thms. 

Fina lly, separation of rea l room record ings were evaluated subjec-

t ively by listening tests, six people participa.ted in the listening tests 

and mean opinion score is provided in Table 6.2. 

Tab le 6.2. Subjective evaluation: MOS for separation of real room 
recordings, by IIFastICA when sources are stationary, and by beam­
form ing when sources are moving 

Algorithms !\Ilean opinion score 
IlFastICA 4.7 

Beam forming 3.8 
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6.7 Summary 

In this chapter a new lnultimodal BSS solution was proposed to solve 

the moving source separation problem. A full 3-D tracker based on 

MCMC-PF was implemented. Video information was utilized in the 3-

D tracker which provided velocity and direction information of sources. 

Based on the velocity of the source, a criterion for source separation 

was setup: a beamforming algorithm was used when sources are mov­

ing and a BSS algorithm was performed when sources are stationary. 

The direction information was then utilized to facilitate beamforming 

and source separ.ation. As shown by the simulation results, the pro­

posed method has a good performance for both stationary and moving 

sources, which was not previously possible. This work has provided an 

important step forward towards the solution of the real cocktail party 

problem. 



Chapter 7 

CONCLUSIONS AND 

FURTHER RESEARCH 

7.1 Conclusions 

This study has provided a substantial step towards the solution of the 

cocktail party problem, by presenting novel multimodal methods, lead­

ing to a complete solution to the problem of BSS for stationary sources 

and a foundation step to the solution of BSS for moving sources. The 

contributions can be summarized as follows: 

l. A novel geometrically constrained multimodal method for eBSS 

of stationary sources based on second-order statistics. 

2. A novel multimodal method based on higher-order statistics for 

eBSS of stationary and step-wise moving sources. 

3. A new approach to overdetermined frequency domain blind source 

separation. 

4. A 3-D visual tracker for tracking of multiple speakers in a room. 

5. A novel multimodal method for eBSS of stationary and moving 

sources by combining beamforming and leA. 

140 
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In the first contribution the visual modality of speech was exploited 

as a geometric constraint within a second-order statistics based CBSS 

which exploits the non-stationary of speech (audio modality). Audio­

visual information was integrated through a penalty function-based for­

mulation to improve the CBSS algorithm. Geometrical positions of 

speakers were localized by colour video cameras. The face region of 

each speaker in each image frame was extracted on the basis of a skin 

model and a face model, these 2-D image coordinates were transformed 

to 3-D real world coordinates. On the basis of this geometric informa­

tion the distances between sensors and speakers, and angles of arrivals 

of each speaker to each sensor were calculated. This visual information 

was passed to the geometrical model for estimation of the mixing fil­

ter matrix, which is integrated into a BSS algorithm in the form of a 

constraint and the overall SIR-Improvement was 9.8dB and MOS was 

4.0. 

The second contribution provided a multimodal method for BSS 

of stationary and step-wise moving sources for higher-order statistics 

based independent component analysis (lOA) of complex valued fre­

quency domain signals. The mixing filter matrix was estimated in a 

similar manner to the above contribution. This geometric information 

based mixing filter matrix with whitening matrix of observed mixtures 

data was incorporated into the initialization of the complex FastICA 

algorithm for each frequency bin, which not only solved the inherent 

permutation problem in the frequency domain CBSS (with complex 

valued signals) but also improved the rate of convergence for static 

sources. For the real room recordings it was practically verified that 

when the sources moved in small steps then the unmixing matrix of the 
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previous block with the whitening matrix of the current stage mixtures 

provided the intelligent initialization for FastICA to separate step-wise 

moving sources. The overall SIR-Improvement was 14.5dB and MOS 

was 4.7 for stationary sources and respectively 12.SdB and 4.1 for step­

wise moving sources. 

The third contribution tackled the problem of ill-conditioning of 

the mixing matrix, which is related to the positions of the sources and 

inter-element microphone spacings. To achieve this an overdetermined 

frequency domain blind source separation (BSS) of speech signals was 

developed which exploited all combinations of observations and hence 

varying inter microphone spacings. The observations were divided into 

subgroups and IIFastICA was used in each subgroup. The idea was 

to evaluate the BSS performance of each group at every frequency bin 

on the basis of approximately measuring the independence of separated 

signals, and choosing the output of the group with the best performance 

at each frequency bin as the overall system output. This provided the 

particular advantage that the best group was frequency dependent and 

therefore the best inter-element spacing was likely to be chosen. The 

separated signals of the overall system were then obtained by trans­

forming their frequency domain representations into the time domain. 

Averaged PI measurement achieved for RT = 130 and 300ms was O.OSO 

and 0.101 respectively, confirming good separation. 

In the fourth contribution a 3-D visual tracker based on Markov 

Chain Monte Carlo particle filters (MCMC-PF) to simultaneously track 

multiple speakers in a room was implemented. It was also evaluated 

that audio localization was not effective due to the complexity in the 

case of the multiple concurrent speakers BSS problem and therefore 
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video localization was applied, and two calibrated cameras with over­

lapping fields of view (FOV) were used for sensor configuration. Since 

the generic particle filter is not feasible for real time tracking of multi­

ple speakers therefore the MCMC-PF was implemented, which resulted 

in high sampling efficiency. The output of the tracker was position and 

velocity information which helped in BSS of stationary and moving 

sources. Two speakers in the intelligent office were tracked and the 

Euclidean error mean was O.055m and standard deviation was O.032m. 

The last major contribution presented was a multimodal solution 

to BSS of moving sources. To calculate the time varying mixing fil­

ters in the case of moving sources, the visual modality was utilized in 

this method. The positions and velocities of the sources were obtained 

from the 3-D visual tracker. The complete BSS solution was formed by 

integrating a frequency domain blind source separation algorithm and 

beamforming: on the basis of velocity obtained from the 3-D visual 

tracker, if the sources were identified as stationary for a certain min­

imum period, a frequency domain BSS algorithm was implemented. 

Once the sources are moving, a beamforming algorithm which requires 

no prior statistical knowledge was used to perform real time speech 

enhancement and provide separation of the sources. The overall SIR­

Improvement was 12.9dB and 8.2dB, and, MOS was 4.7 and 3.8 for 

frequency domain BSS and beamforming algorithms respectively. 

7.2 Future research 

The mixing filter matrix calculated in (3.2.3) includes only direct paths 

between sources and sensors, in reality, in a convolutive environment the 

actual mixing matrix should include the reverberation terms related to 
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the reflection of sounds by the obstacles and walls. Therefore a modal 

which can reflect some reflections in the mixing filter matrix can be a 

future work. 

In the tracking part for BSS of moving sources a more robust ap­

proach would entail considering a speaker localization method which 

includes different head postures and facial directions of speakers. More 

sophisticated and computationally efficient schemes could also be pro­

posed for detecting the face through a sequence of images. 

In BSS of moving sources, the proposed beamforming method is 

only valid in a low reverberant environment and further research is 

required in this aspect. 

The existing BSS technique to solve the cocktail party problem is a 

statistical approach and in general, is not valid for BSS of all moving 

sources therefore some more cognitive approach is required to solve 

the problem, thereby better mimicking a human, and mirroring Colin 

Cherry's Challenge. 
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