Non-premixed swirl flame modelling using the open source CFD package openfoam

In this work the Sydney swirl stabilized burner for a hydrogen:methane fuel mixture is numerically modelled using the OpenFOAM C++ library package. A non-reacting high swirl test case (N29S159) and a reacting low swirl test case (SMH1) were investigated using Large Eddy Simulations and the Steady Laminar Flamelet concept. For the non-reacting case the velocity field components are in very good agreement with experimental results. For the reacting flow case the velocity components are also in excellent agreement with experimental values, however the scalar quantities exhibit some under prediction. Possible reasons for the under prediction are discussed.