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Abstract 

Firms worldwide are taking major initiatives to reduce the carbon footprint of their supply chains 

in response to the growing governmental and consumer pressures. In real life, these supply 

chains face stochastic and non-stationary demand but most of the studies on inventory lot-sizing 

problem with emission concerns consider deterministic demand. In this paper, we study the 

inventory lot-sizing problem under non-stationary stochastic demand condition with emission 

and cycle service level constraints considering carbon cap-and-trade regulatory mechanism. 

Using a mixed integer linear programming model, this paper aims to investigate the effects of 

emission parameters, product- and system-related features on the supply chain performance 

through extensive computational experiments to cover general type business settings and not a 

specific scenario.  Results show that cycle service level and demand coefficient of variation have 

significant impacts on total cost and emission irrespective of level of demand variability while 

the impact of product’s demand pattern is significant only at lower level of demand variability. 

Finally, results also show that increasing value of carbon price reduces total cost, total emission 

and total inventory and the scope of emission reduction by increasing carbon price is greater at 

higher levels of cycle service level and demand coefficient of variation.The analysis of results 

helps supply chain managers to take right decision in different demand and service level 

situations. 

……………………………………………………………………………………………………… 
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1. Introduction 

Across the world, firms are under intense pressure from their major stakeholders including 

governments and customers, to cut carbon emissions generated during conduct of their business. 

Considering the detrimental impacts of carbon emission such as global warming and climate 

change, many countries are enforcing different carbon regulatory mechanisms such as carbon 

cap-and-trade and carbon tax or environmental standards such as ISO 14000, to control the 

carbon emission. Employing more energy efficient machines/equipments and facilities, and using 

energy generated by renewable sources are also commonly used but costlier solutions to reduce 

emissions.But, given the impact of supply chain decisions on carbon emissions, a potential 

solution could be achieved by incorporating emission concerns in the models to optimize these 

decisions (Huisingh et al., 2015; Govindan et al., 2014; Toptal et al., 2014; Benjaafar et al., 

2013).In addition, modeling of these supply chains considering of stochasticity and dynamic 

nature of demand process would provide results applicable to more realistic situations. 

This paper deals with the inventory lot-sizing problem of a firm under non-stationary stochastic 

demand with carbon emission constraints. We consider cycle service level as customer service 

measure since the demand process is not deterministic. With the help of a mixed integer linear 

programming model we determine the optimal replenishment schedule that minimizes the 

system-wide cost, in advance of the planning horizon. The model explicitly accounts for the 

emissions generated due to purchasing, ordering and storage activities along with corresponding 

costs. Under the carbon cap-and-trade regulatory mechanism, the present study analyses the 

impacts of emission parameters such as ordering emission, carbon price and carbon cap, and 

product- and system- related features such as cycle service level, ordering cost, demand pattern, 

level of demand variability and demand coefficient of variation through extensive computational 

experimentations on the model. We consider carbon emission cap-and-trade policy since it is a 

market-based mechanism and generally accepted as an effective solution in curbing emission 

(Hua et al., 2011). Moreover, the other regulatory mechanisms such as carbon tax or 

environmental standard are not market controlled, but government controlled (Dobos, 2005). The 

European Union Emissions Trading System (EU-ETS) is one of the first and biggest emission 

trading systems which may lower carbon emissions by 21% than the 2005 levels by 2020 (Jaber 

et al., 2013). The results of the study cover general type business settings and not a specific 

scenario. Furthermore, we analyze the results to help supply chain manager to take right decision 

under a given business setting. 
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The rest of the paper is organized as follows. In Section 2 we present the extant literature review 

followed by Section 3 in which we give details of methodology, problem statement and 

mathematical formulation. In Section 4 we present experimental design followed by detailed 

analysis of experimental results. Finally we discuss the results in Section 5 and conclude the 

paper with future research scopein Section 6. 

2. Literature Review 

The extant literature on sustainable supply chain management mostly focuses on product 

recycling or re-use. The issue of sustainability has been addressed in several studies in the 

context of reverse or closed-loop supply chain, but only few papers apply the sustainability 

concerns in forward supply chains using quantitative modeling (Seuring, 2013; Gonzalez et al., 

2013).Many studies in this area conclude that supply chain decisions have significant impact on 

carbon emissions(Huisingh et al., 2015; Govindan et al., 2014; Toptal et al., 2014; Benjaafar et 

al., 2013). The study of Plambeck (2012) suggests that tremendous changes in supply chain 

design and operation are required to avert climate change and explains through case studies that 

how carbon emissions can be reduced profitably in supply chains. Furthermore, a few studies 

integrate carbon emissions concerns in forward supply chain problems such as network design, 

production planning, product mix and supplier selection(Jin et al., 2014; Zhang and Xu, 2013; 

Chaabane et al., 2012; Shaw et al., 2012; Bai and Sarkis, 2010; Letmathe and Balakrishnan, 

2005; Gong and Zhou, 2013) and others investigate its impact on supply chain structures and 

transportation mode selection (Cachon, 2011; Hoen et al., 2014). Some studies incorporate 

emission concerns in inventory lot-sizing decision whichnot only influences total system-wide 

cost,customer service levels and carbon emissions significantly, but also affects other decisions 

such as packaging, waste and location (Bonney and Jaber, 2011). 

Most of the studies in the area of inventory lot-sizing with carbon emissions concerns, consider 

continuous demand (He et al., 2014; Hua et al., 2011; Wahab et al., 2011; Arslan and Turkay, 

2010; Bouchery et al., 2012; Toptal et al., 2013; Chen et al., 2013; Battini et. al., 2014) or time-

varying deterministic demand (Kantas et al., 2015; Absi et al., 2013; Helmrich et al., 2012). Only 

the work of Song and Leng, (2011) considers stochastic continuous demand. In real life, demand 

process is non-stationary stochastic type due to shrinking product life cycles, frequent new 

product launches and use of promotion schemes (Martel et al., 1995; Neale and Willems, 2009; 

Choudhary and Shankar, 2014; Choudhary and Shankar, 2015). But it has been ignored while 

addressing the emission concerns in inventory lot-sizing decision. 
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In this line, our research aims to model the inventory lot-sizing problem with emission and cycle 

service level constraints. Unlike Benjaafar et al. (2013) who address a simple lot-sizing problem 

with deterministic demand, this paper attempts to address single item inventory lot-sizing 

problem under non-stationary stochastic demand.   

3. Methodology 

3.1 Problem statement 

We consider a supply chain as shown in Figure 1, in which a buyer firm fulfills the dynamic and 

uncertain demands of a single product over a planning horizon of T periods with a cycle service 

level of α. The planning horizon with all possible order cycles has been depicted in Figure 1 

(inside the box) where time line shows starting and ending of adjacent periods with thick dark 

circles. An arc represents an order cycle where starting of the first period is connected to the 

ending of last period of the cycle. The random demands di in discrete time periods i∈ {1, 

…,T}aremutually independent and normal distributed with known means and standard 

deviationsthat may vary over time.  We assume that these quantities are the outcome of a 

forecasting procedure. Moreover, we account for carbon emissions generated by different 

activities of the firm such as ordering (e.g. transportation emission), holding (emissions due to 

energy spent on storage) and purchasing (emissions due to handling). We consider a carbon cap-

and-trade emission regulatory mechanism in which the total emissions due to all activities over 

the planning horizon cannot exceed a carbon cap as imposed by the regulator. The firm can buy 

or sell the balance carbon credits from the open carbon trade market at a given carbon price if the 

generated emissions are greater or less than the carbon cap. 

[Insert Figure 1] 

The firm needs to decide the replenishment schedule that minimizes the total costs which include 

ordering and holding costs along with the cost (revenue) of purchasing (selling) balance carbon 

credits. As the quantification of shortage penalty cost is very difficult, we assume that the firm 

meets target cycle service level and backorders the unfilled demand. The cycle service level 

specifies a minimum probability α which ensures that at the end of every period the net inventory 

will not be negative. The near optimal solution for stochastic dynamic lot-size problem has been 

given in Bookbinder and Tan (1988). They consider three strategies of lot-sizing decision, named 

“static uncertainty”, “dynamic uncertainty” and “static-dynamic uncertainty”. The replenishment 

timings and order sizes are decided at the beginning of the planning horizon in case of “static 

uncertainty” strategy whereas these decisions are taken in every period in case of “dynamic 
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uncertainty”.  We assume “static-dynamic uncertainty” strategy in this paper where 

replenishment timings and corresponding stock levels are fixed at beginning of the planning 

horizon and the order sizes for coming periods are determined after realization of the demands of 

previous periods. The replenishment timings and order sizes are crucial in achieving desired 

cycle service level and determining the total costs and emissions generated. 

Following the mixed integer programming formulation proposed by Tarim and Kingsman (2004) 

we develop the non-stationary stochastic lot-sizing model by integrating carbon emission and 

cycle service level constraints, as described in the following section. The model selects the series 

of those order cycles from all possible 2/)1( +TT  order cycles in a T periods planning horizon 

problem which minimizes the total cost and satisfies the carbon emission constraint.Furthermore, 

we use full factorial experimental design considering emission parameters such as ordering 

emission, carbon price and carbon cap, and product- and system- related features such as cycle 

service level, ordering cost, demand pattern, level of demand variability and demand coefficient 

of variation. Through extensive computational experimentations using the developed model, we 

produce results for all experimental settings. For each experimental set-up, it is also required to 

calculate some quantities offline, as described later in the illustration section. The results are 

further analyzed to identify the impacts of problem parameters on supply chain performance in 

terms of costs and emissions. 

3.2 Model development 

In the following paragraphs, we explain the details of objective function and constraints of the 

model. The model determines the optimum replenishment schedule, defined by a series of 

adjacent replenishment order cycles which minimizes the total cost.  

1. Objective function 

The objective function in Equation (1) minimizes the total cost over the planning horizon of T 

periods. The first term represents the ordering cost where o is ordering cost per order and Zi is a 

binary variable indicating whether the order in period iis placed or not. The second term 

indicates holding cost of the expected net inventory E(Ii) in each period where h is holding cost 

per item per period. The purchasing cost is calculated in the third term where v and E(Xi) are unit 

purchasing costand expected lot-size ordered in period i, respectively.  The fourth term 

represents cost or revenue related to carbon credit purchased (𝑒𝑒𝑖𝑖
𝑝𝑝) orsold (𝑒𝑒𝑖𝑖𝑛𝑛) at a carbon price p 

in the open carbon trade market. 
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2. Inventory balance constraints 

The Equations (2) calculate expected end-period inventory by subtracting expected demand from 

the expected order-up-to-levelE(Ri) of the period i. The Equations (3) calculate expected lot-

sizeE(Xi)  in any period i which is the difference of order-up-to-level of the present period and 

net inventory level of the previous period. The Constraints (4) ensure that the expected order-up-

to-level of a period must be greater than the ending inventory of previous periods. 
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3. Ordering cost charging constraints 

The Constraints (5) ensure charging of ordering cost if an order is placed in period i where M is a 

large number. 
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4.Cycle service level constraints 

The Constraints (6) ensure achieving a cycle service level (α) in every order cycle, ending in 

period i and has a cycle length of j periods. The term )(1
...21

α−
+++ +−+− ijiji dddG  is the inverse of 

cumulative probability distribution function and represents order-up-to-level at the beginning of 

the order cycle. The binary variable Pij equals one if the order cycle ending in period i and 

having a cycle length of j periods is carried out, otherwise it is zero.
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5. Constraints to uniquely identify optimum replenishment schedule 

With the help of Equations (7) and Constraints (8), the binary variables Pij identify the optimum 

replenishment schedule uniquely. They select the adjacent order cycles from 2/)1( +TT number 

of possible order cycles for a T periods planning horizon so that total costs are minimized. The 

Equations (7) ensure termination of only one replenishment cycle in a period i while it may start 

from any period before period i. 
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6. Emission constraints 

Constraint (9) controls carbon emissions under carbon cap-and-trade regulatory mechanism 

applied over the planning horizon. The first term in Constraint (9) accounts for carbon emissions 

produced due to ordering where oe is the ordering related emission per order.The second and 

third terms account for variable and storage related emissions where ve and hedenote variable 

emission per item and holding emission per item per period respectively. On the right hand side 

of the Constraint (9), the first term denotes carbon cap CAPhorizon applied over the horizon 

whereas the second term includes 𝑒𝑒𝑖𝑖
𝑝𝑝 and 𝑒𝑒𝑖𝑖𝑛𝑛 denoting the amount of carbon credits the 

organization buys or sells, respectively in any period. Buying or selling carbon credits help in 

relaxing the carbon cap imposed over the horizon. Constraints (10) correspond to binary and 

non-negativity constraints 
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Pij, Zi ϵ {0, 1},  E(Ii), E(Ri), E(Xi) ≥ 0  iϵ [1, T], jϵ [1, i],  (10) 

3.3An illustration 

The solution of integer linear programming model, as described by expressions (1) - (10), 

requires offline calculation ofinverse cumulative distribution function )(1
...21

α−
+++ +−+− ijiji dddG for all 

possible order cycles. In this section, this offline calculation procedure is explained. Through a 

numerical example, as detailed in next paragraph, we also explain the steps involved in solving 

the integer linear programming model along with its theoretical framework. 

A buyer firm faces random demands of a product over a planning horizon of six periods and 

wants to fulfill it with a cycle service level of 90%. The demand in each period is assumed to be 

mutually independent and normally distributed with mean di and a coefficient of variation (CV) 

of 0.3. Table 1 shows the expected mean demand and its standard deviation in each period. We 

assume holding cost and ordering cost to be 1 and200respectively. Replenishment lead time and 

unit purchasing cost are ignored. Let emission parameter such as ordering emission, holding 
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emission and unitary carbon emission are 400, 1 and 2 respectively. We also assume carbon 

price to be 5 and carbon cap to be 3000. 

[Insert Table1] 

Let an order cycle ending in period i and having a cycle length of j periods is carried out, 

therefore it starts in period (i – j + 1), as shown in Figure 1. It is required to find the order-up-to-

level Ri – j + 1 at the beginning of the cycle so as to achieve targeted cycle service level of α. As 

suggested in Tarim and Kingsman (2004), the order-up-to-level Ri – j + 1 is given by theinverse 

cumulative distribution function )(1
...21

α−
+++ +−+− ijiji dddG which ensure that α≥
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probability of having order-up-to-level Ri – j + 1 greater than expected total demand in the cycle, to 

be greater than cycle service level α. This implies that the cumulative probability of having total 

expected demand of the cycle less than the starting order-up-to-level, is greater than cycle 

service level, i.e. α≥+−+++ +−+−
)( 1...21 jiddd RG

ijiji
. With the help of following steps, we can calculate 

inverse cumulative distribution function )(1
...21

α−
+++ +−+− ijiji dddG for all possible cycles. 

Step 1: The inverse cumulative distribution function is given as, 
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For an order cycle covering the demands of periods 2 to 5, the value of i = 5 and the length of 
cycle j = 4. Therefore, 
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For all possible cycles the )(1
...21

α−
+++ +−+− ijiji dddG values are shown in Table 2. 

[Insert Table2] 

Step 2: Based on )(1
...21

α−
+++ +−+− ijiji dddG values calculated offlineand the parameters values assumed 

earlier, the optimum replenishment schedule can be determined by solving the model as defined 

in Equations (1) – (10) on any commercial solver. For the given example, we obtain order up-to-
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levels𝑅𝑅1 = 413, 𝑅𝑅3 = 490 and 𝑅𝑅5 = 566 with total expected costs equal to 11728 and total 

emission equal to 4980, as detailed in Table 3. 

[Insert Table3] 

Expected total emission over the planning horizon = Ordering emission + Holding emission + 

Unitary emission = 4980 

Carbon credit purchased = 4980 – 3000 = 1980 

Expected total cost = Total order cost + Expected total holding cost + cost of carbon credits 

purchased = 3*200 + 1*1228+ 5*1980 = 11728 

4. Numerical Experiments 

In this section, we conduct extensive computational experiments to investigate the impacts 

ofemission parameters, product- and system-related features on supply chain performance 

measures such as reduction in emissions, costs and inventory levels. The emission parameters 

include ordering emission, carbon price and carbon cap whereas product- and system- related 

features include cycle service level, ordering cost, demand pattern, level of demand variability 

and demand coefficient of variation. 

4.1 Experimental design 

To cover general type business settings and not a specific scenario, we design a test set involving 

a variety of demand patterns, system-and emission- related parameters. We carry out full 

factorial experimentsusing the model described in Section 2.3 and the following sets of 

parameters: demand patterns DP ϵ {STAT, RAND, SIN1, SIN2, LCY1, LCY2}, ordering cost o 

ϵ {200, 400, 900},  cycle service level α ϵ {0.9, 0.95, 0.99}, demand coefficient of variation CV ϵ 

{0.1, 0.4, 0.7}, ordering emission oeϵ {200, 400, 900},  carbon cap CAPhorizon ϵ {10000, 25000} 

and carbon price p ϵ {1, 5}. In all the experiments, we set inventory holding cost h = 1 and 

holding related emission he= 1. We assume zero initial inventory and unit purchasing cost, as 

these values do not affect the solution. The planning horizon consists of 18 periods of equal time 

duration.  

Figure2 describes the demand patterns, where each point represents the mean demand of a period 

for which the actual demand may assume different values for different planning horizons. The 

demand patterns considered include stationary (STAT),random (RAND), sinusoidal (SIN) and 

life cycle (LCY) patterns as different kind of products exhibit different demand patterns. While 

the STAT and the RAND patterns are the extremes of stationary and dynamic dichotomy, the 
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SIN1 and SIN2 patterns as well as the LCY1 and LCY2 patterns are at lower and higher levels of 

demand variability coefficient respectively. Demand variability coefficient is a measure of the 

variability of a demand pattern and defined as the ratio of variance of demand per period to the 

square of average demand per period.The demand patterns are so designed that the average 

demand is same for each pattern thus avoiding any effect that may occur because of variation in 

total demand. The total mean demand is 3600 for each demand pattern. 

[Insert Figure 2] 

4.2 Analyzing the impact of variation in problem parameters 

With the help of full-factorial experimental design we create 1944 test instances by varying 

problem parameters such as DP, o, α, CV, oe, CAPhorizon and p. The results produced after 

conducting experiments on these test instances are shown in Figure 3-6. 

[Insert Figure 3]     [Insert Figure 4] 

Figure 3-4 reveal that the demand pattern strongly influences the amount of emission produced 

and total cost in a supply chain. Under the RANDOM demand pattern, the emissions and costs 

are always higher as compared to SIN and LCY patterns. Moreover, at a lower level of demand 

variability, the LCY pattern gives the lowest value of emission and costs while at higher levels, 

the SIN pattern gives minimum costs and emissions. With the increase in demand variability, the 

gap in the values of total emissions and total costs among different demand patterns would go on 

decreasing. Meaning thereby, a product’s demand pattern plays a significant role in determining 

total cost and emission when demand variability is low. 

[Insert Figure 5] 

In Figure 5, it is evident that the cycle service level also has significant impacts on both the costs 

and emissions. The increase in cycle service level would increase the required level of inventory 

in the system accompanied with an increase in frequency of replenishment as shown in Figure 7. 

It results in increase in ordering costs and emissions as well as increase in inventory holding 

costs and emissions. Therefore, when cycle service level increases from 0.90 to 0.95 total cost, 

total inventory and total emission would increase significantly. Moreover, these increments are 

even steeper when cycle service level increases from 0.95 to 0.99 as the rate of increase in 

inventory levels is higher. 
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[Insert Figure 6] 

 [Insert Figure 7] 

 [Insert Figure 8] 

Likewise, the demand coefficient of variation influences total costs and emissions significantly. 

The variations in total inventory and order frequency with demand coefficient of variation are 

shown in Figure 8. It reveals that total inventory as well as order frequency increase with 

increase in coefficient of variation. Therefore, total costs and emissions would also increase with 

the increase in demand coefficient of variation since the costs and emissions related to inventory 

holding would increase at a higher level of demand uncertainty. But at a lower level of demand 

uncertainty, the required inventory is low and the firm would make revenue by selling extra 

emission credits especially when the emission cap is higher. Therefore, total costs are shown 

negative in Figure 6. 

[Insert Figure 9]     [Insert Figure 10] 

The impacts of ordering cost and ordering emission are shown in Figure 9 and Figure 10. The 

total cost increases with both the ordering parameters, though the rate of increase is higher at 

higher values of ordering cost and emission. But the change in total emission is not 

unidirectional with the change in ordering cost, though it keeps on increasing with ordering 

emission. The results show that the variation in carbon cap has no effect on total emission and 

inventory level but it affects total cost significantly. This result is in line with Benjaafar et al. 

(2013). 

4.3 Analyzing effects of carbon price 

The experimental results are summarized in Table 4 for the cases when carbon price is increased 

from p=1 to p=5. The average reduction in total cost, total inventory and total emission are 

2493.98, 88.16 and 202.28 respectively as shown in the last row of Table 4. In order to minimize 

cost, the firm tends to save carbon emission with the increase in carbon price by reducing the 

required inventory level. Though it increases ordering frequency, but the corresponding increase 

in ordering cost and ordering emission is lesser than the savings achieved. The decrease in total 

holding cost and reduction in total emissionand corresponding cost result into net decrease in 

total cost. The saving of emission credits achieved by increasing carbon price at the higher 

carbon cap can be sold in the open carbon trade marketto earn revenue.  

[Insert Table4]  
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The increase in carbon price would reduce total cost, inventory level and emission, but its impact 

on these reductions varies while having interaction with other problem parameters. The 

reductions in performance measures along with interaction with other problem parameters are 

shown in Table 4. For example, when cycle service level (α)or demandCVincreases along with 

rise in carbon price, the reduction in total cost would go on decreasing and becomes negative, but 

the reduction in emission behaves contrary i.e. it increases with cycle service level (α) /demand 

CV. Total cost is -2083 at α=0.99and -8157 at demand CV=0.70. Therefore, total cost increases 

with an increase in carbon price at higher levels of cyclic service level or demand CV but it 

decreases in their lower levels. The scope of emission reduction by increasing carbon price is 

greater at higher levels of cycle service level (α) and demand CV. Moreover, the impact of 

carbon price rise on total cost reduction is greater when the cycle service level (α) and demand 

CV are at lower levels. Furthermore, the reduction in total inventory decreases with increasing 

value of cycle service level (α) but it is not unidirectional with demand CV variation. The carbon 

price rise would achieve greater total inventory reduction at higher level of α and mid range 

values of demand CV. 

We observe from Table 4 that the variation in total cost reduction with carbon price rise is more 

sensible to variation in ordering emission than to ordering cost. It decreases with increasing 

values of ordering cost/emission and even becomes negative when ordering emission is 900. The 

reduction in total emission keeps decreasing with increase in ordering emission but it is not 

unidirectional in case of increase in ordering cost. The total cost reduction as well as total 

emission reduction with the rise in carbon price is greater at lower levels of ordering 

cost/emission.The reduction in inventory with an increase in carbon price keeps decreasing with 

increase in ordering emission level, but keeps increasing with increase in ordering cost. Even at 

the highest level of ordering emission (= 900) or at the lowest level of ordering cost (=200), the 

inventory level increases with carbon price as extra emissions generated by increased inventory 

are lesser than the saved emission due to less frequent ordering. 

The demand patterns also have significant impacts on performance measures with the rise in 

carbon price. As shown in Table 4, at low demand variability when carbon price increases , the 

stationary demand pattern gives lowest reductions in both total cost and total emission while 

these reductions are highest for life cycle demand pattern. Furthermore, at higher demand 

variability these reductions are lowest for random demand pattern whereashighestreduction in 

total cost happens for life cycle demand pattern and highest reduction in total emission 

happensfor sinusoidal demand pattern, as shown in Table 4. 
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5. Discussion 

The results of a detailed numerical study suggest that at a lower level of demand variability 

coefficientthe demand pattern factor has greater impact. Total costs and emission are lower for 

life cycle (LCY) demand pattern at low level of demand variabilitybut are lower for sinusoidal 

pattern at higher level. However, random (RAND) demand pattern results in higher costs and 

emissions for both the levels. The results also show that both cycle service level and demand 

coefficient of variation affect total cost and emission significantly. But the changes are even 

steeper for their higher levels.We also observe that the increasing value of carbon price reduces 

total cost, total emission and total inventory. But the increasing value of carbon price along with 

an increase in cycle service level (α) or demand CV would decrease the total cost reduction and 

increase the total emission reduction. The scope of emission reduction by increasing carbon price 

is greater at higher levels of cycle service level (α) and demand CV. The effect of carbon cap on 

total emission reduction is negligible, which is in line with Benjaafar et al. (2013). The results 

also show that the variation in total cost reduction with carbon price rise is more sensible to 

variation in ordering emission than to ordering cost. 

6. Conclusions 

The increasing pressure of governments and other stakeholders has been forcing the firms 

worldwide to review the supply chain decisions and incorporate emission concerns. This study 

addresses the inventory lot-sizing problem under non-stationary stochastic demand with emission 

and cycle service level constraints. It explicitly accounts for emissions due to ordering and 

storage activities along with emissionper unit purchased.We aim to investigate the impacts of 

product features, system- and emission-related parameters on the emissions, costs and inventory 

levels of a supply chain. In practice, firms need to achieve several objectives such as service 

level, total cost and total emissions. Our study would help managers as it establishes how 

problem parameters affect the performance measures and it would be easier to make decisions 

according to their specific business environment. 

This paper evaluatesthe impacts of different problem parameters on costs and emissions. The 

results of this study are applicabe to general type business settings not to any specific scenario. It 

is evident in the analysis that the demand pattern of a product has a significant impact on costs 

and emissions generatedwhen demand variability is low. Moreover, a product with random 

demand pattern would always have higher costs and emissions as compared to a productwith 

sinusoidal or life cycle demand pattern. Likewise, if a firm raises its service level, it would incur 

higher costs and emissions but the rate of increase are higher at higher cycle service levels. 
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Therefore, it is required to strike a trade-off among service level, total costs and emissions. 

Similarly, the analysis alsoreveals that meeting demand of a product with higher demand 

uncertainty is costlier and more emission intensive as compared to meeting demand of a product 

with stable demand. The increase in carbon price always motivates firms to reduce emissions as 

reflected in the results.  The scope of emission reduction is greater for those organizations who 

keeps very high servicelevel or deal with products with high demand uncertainty. Except for 

such organizations or for those which incur high ordering emission, the rise in carbon price 

would also get reduction in total cost. Similarly, the products with life cycle demand pattern 

would have greater reduction in total costs with increasing carbon price whereas the items with 

sinusoidal or life cycle demand pattern would seehigher reduction in total emissions. 

The present study assumes carbon price to be constant. Future research may consider variation in 

carbon price with other factors to investigate its impact on emission and cost reduction. 

Additional research, based on empirical data drawn from real life cases, is worthwhile. Future 

studies with different supply chain structures may further help in understanding the impact of 

system parameters on cost and emission reduction objectives.  
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Figure 1 System at a glance with graphical representation of all possible order cycles 

 

 

 

Figure 2 End-customer demand patterns 

  

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

D
em

an
d 

Time Period 

STAT RAND SIN1 SIN2 LCY1 LCY2

CARBON CAP 

CPRICE 

α 
CV 
DP 

DEMAND 
N ̴ (µ, σ) 

SU
PP

LI
ER

S 

REGULATOR 

C
U

ST
O

M
ER

S BUYER FIRM 

 

 

T 

 

1 

 

2 

 

i – j + 1 

 

i 

 

CARBON MARKET 



18 
 

16200

16400

16600

16800

17000

17200

17400

RAND SIN LCY

To
ta

l e
m

is
si

on
 

Demand patterns 

LOW HIGH

 

 

Figure 3 Variation in total emission with demand 
variability and demand pattern 

  

Figure 4 Variation in total cost with demand 
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Figure 5 Effect of cycle service level on total cost and total emission 

 

 

Figure 6 Effect of coefficient of variation on total cost and total emission 
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Figure 7 Effects of cycle service level on total 
inventory and order frequency 

Figure 8 Effects of demand CV on total 
inventory and order frequency 
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Figure 10 Effects of ordering emission on total cost 
and emission 
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Table 1 Demand data for the numerical example 

Period (i)  1 2 3 4 5 6 
Demand (di) 155 170 185 200 215 230 
σi = CV*di 46.5 51 55.5 60 64.5 69 
 

Table 2 Inverse cumulative distribution function )(1
...21

α−
+++ +−+− ijiji dddG  

i/j 1 2 3 4 5 6 
1 215 

     2 235 413 
    3 256 452 623 

   4 277 490 678 847 
  5 298 528 733 919 1085 

 6 318 566 788 990 1173 1338 
 

Table 3 Optimal replenishment schedule 

Period (i) 1 2 3 4 5 6 
Replenishment-up-to level 413 

 
490 

 
566   

Expected opening inventory 413 258 490 305 566 351 
Expected demand 155 170 185 200 215 230 
Expected closing inventory 258 88 305 105 351 121 
Expected order quantity 413 

 
402 

 
461   

Ordering emission 400  400  400  
Holding emission 258 88 305 105 351 121 
Unitary emission 826  804  922  
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Table 4 Summary of experimental results when the carbon price increases from p=1 to p=5 

Independent 
Variables 

Total cost 
reduction 

Total inventory 
reduction 

Order frequency 
reduction 

Total emissions 
reduction 

Cycle service level (α) 
0.90 6156.8 131.5 -0.43 183 
0.95 3401.9 85 -0.32 198 
0.99 -2083.0 48.7 -0.33 225 
Demand coefficient of variation 
(CV)    
0.10 13453.6 -40.8 -0.2 156 
0.40 2180.1 166.3 -0.49 187 
0.70 -8157.0 139.6 -0.44 263 
Ordering emission    
200 15277.4 681.3 -1.87 325 
400 4711.5 86.6 0.04 118 
900 -12514.0 -502.8 0.76 165 
Ordering cost     
200 2778.3 -464.5 0.99 150 
400 2571.8 -53.3 -0.3 98 
900 2162 776.9 -1.77 360 
Demand Pattern 
(DP)     
STAT 1774.6 6.1 -0.2 186 
RAND 1573.7 -2.7 -0.19 173 
SIN1 3614.1 56.8 -0.28 218 
SIN2 1795 160.6 -0.48 209 
LCY1 3943.4 160.7 -0.44 225 
LCY2 2251.5 150.9 -0.54 202 
Average 2493.98 88.16 -0.36 202.28 
 

 

 

 


