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ABSTRACT 

 

The GDI engine has a number of practical advantages over the more traditional port-fuel 

injection strategy, however a number of challenges remain the subject of continued research 

in an attempt to fully exploit the advantages of the GDI engine. These include complex in-

cylinder flow fields and fuel-air mixing strategies, and significant temporal variation, both 

through an engine cycle and on a cycle-by-cycle basis. Despite advances in experimental 

techniques, the relative difficulty and cost of taking detailed measurements remains high, thus 

computational techniques are an integral part of research activities. 

The research work presented in this thesis has focused on the use of detailed 3D-CFD 

techniques for investigating physical phenomena of the in-cylinder flow field and fuel 

injection process in a single cylinder GDI engine with early injection event. A detailed 

validation of the numerical predictions of the in-cylinder flow field using both the RANS 

RNG k-ε turbulence model and the Smagorinsky LES SGS turbulence model was completed 

with both models showing good agreement against available experimental results. A detailed 

validation of the numerical predictions of the fuel injection process using a Lagrangian DDM 

and both RANS RNG k-ε turbulence model and Smagorinsky LES SGS turbulence model 

was completed with both models showing excellent agreement against experimental data. 

The model was then used to investigate the in-cylinder flow field and fuel injection process 

including research into: the three dimensional nature of the flow field; intake valve jet 

flapping, characterisation, causality and CCV, and whether it could account for CCV of the 

mixture field at spark timing; the anisotropic characteristics of the flow field using both the 

fluctuating velocity and turbulence intensity, including the increase in anisotropy due to the 

fuel injection event; the use of POD for quantitatively analysing the in-cylinder flow field; 

investigations into the intake valve, cylinder liner and piston crown spray plume 

impingement processes, including the use of a multi-component fuel surrogate and CCV of 

the formed liquid film; characterisation and CCV of the mixture field though the intake and 

compression strokes up to spark timing. Finally, the predicted turbulence characteristics were 

used to evaluate the resultant premixed turbulent combustion event using combustion regime 

diagrams. 
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GREEK SYMBOLS 

α Thermal diffusivity constant 

β Droplet spreading factor 

𝛾𝑐 Surface coverage ratio 

Δ Filter width 

δ Flame thickness or non-dimensional film thickness 
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CHAPTER 1  

INTRODUCTION 

 

 

“Restlessness is discontent and discontent is the first necessity of progress. Show me 

a thoroughly satisfied man and I will show you a failure.” 

– Thomas A. Edison 

 

 

 

1.1 RESEARCH BACKGROUND AND MOTIVATION 

 

1.1.1 Development Drivers 

 

The purpose of this section is to present the motivations and drivers behind the continual 

development of the automotive internal combustion engine and more specifically the gasoline 

direct injection (GDI) engine. 

The internal combustion engine has been a constant area of research and development since 

its inception in the 1860’s. Its’ exceptional power to weight ratio, simplicity and robustness 

have been key characteristics that have allowed it become very successful and find its’ way 

into a wide range of applications. Two forms of the internal combustion engine which have 

seen most success are the spark-ignition (SI) engine and compression-ignition (CI) engine. It 

is the spark-ignition engine that is of particular interest in this work (Heywood, 1988).  
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A significant driver in the development of the internal combustion engine has been 

increasingly stringent emissions legislation. Japan was one of the first countries to impose a 

regulation on all sources of air pollutants under the Japanese: Air Pollution Control Act in 

1968. Since then, regulatory bodies around the world have been legislating against pollutants 

produced by automotive vehicles. Table 1.1 illustrates the progression of emissions standards 

in the EU for passenger cars from Euro 1 in the year 1992, up to Euro 6 most recently 

implemented in September 2014. 

Pollutants regulated by the European Economic Community (EEC), U.S. Environmental 

Protection Agency (EPA), California Air Resources Board (CARB) and Japanese Ministry 

regulatory bodies primarily regulate carbon monoxide, nitrous oxides, hydrocarbons and 

particulate emissions due to their impact on the environment and human health. 

Carbon Monoxide (CO) is formed as an intermediate product of the oxidation of carbon in 

the fuel to carbon dioxide. This occurs due to insufficient availability of oxygen and hence is 

prevalent in combustion of stoichiometric or rich mixtures. Due to their typical combustion 

regimes, this is of particular concern for gasoline engines. Carbon monoxide is a highly toxic 

colourless and odourless gas that reduces the flow of oxygen in the blood stream. 

Nitrous oxides (NOx) primarily compose of nitric oxide and nitrogen dioxide. Other oxides 

of nitrogen are also present in final exhaust species composition (e.g. N2O) but in much 

smaller quantities and as such are not regulated. Nitrous oxides are formed in areas of high 

temperature involving chemical reactions of nitrogen and oxygen. As the temperature cools, 

the reaction chemistry freezes leaving significant concentrations of NOx, well above those 

seen than if the mixture was allowed to continue to equilibrium. Figure 1.1 illustrates the 

results from a nitrous oxides model proposed by Komiyama & Heywood (1973) for both 

early- and late-burning elements, illustrating the high temperature dependence of NOx 

formation and high levels present at the end of the cycle when compared to equilibrium 

values. Nitrous oxides act to participate in photochemical reactions which in turn lead to 

ozone (O3) formation and smog. It is also a contributor to acid rain formation. 
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Table 1.1 – EU emissions standards for passenger cars (TransportPolicy.net, 2016) 

Stage Date 
CO HC HC+NOx NOx PM PN 

[g/km] [#/km] 

Compression Ignition (Diesel) 

Euro 1 † 1992.07 2.72 (3.16) - 0.97 (1.13) - 0.14 (0.18)  

Euro 2, IDI 1996.01 1.0 - 0.7 - 0.08 - 

Euro 2, DI 1996.01a 1.0 - 0.9 - 0.10 - 

Euro 3 2000.01 0.64 - 0.56 0.50 0.05 - 

Euro 4 2005.01 0.50 - 0.30 0.25 0.025 - 

Euro 5a 2009.09b 0.50 - 0.23 0.18 0.005f - 

Euro 5b 2011.09c 0.50 - 0.23 0.18 0.005f 6.0×1011 

Euro 6 2014.09 0.50 - 0.17 0.08 0.005f 6.0×1011 

Positive Ignition (Gasoline) 

Euro 1 † 1992.07 2.72 (3.16) - 0.97 (1.13) - - - 

Euro 2 1996.01 2.2 - 0.5 - - - 

Euro 3 2000.01 2.30 0.20 - 0.15 - - 

Euro 4 2005.01 1.0 0.10 1 0.15 - - 

Euro 5 2009.09b 1.0 0.1d - 0.06 0.005e,f - 

Euro 6 2014.09 1.0 0.1d - 0.06 0.005e,f 6.0×1011 e,g 

Notes: 

 † Values in brackets are conformity of production (COP) limits 

 a. until 1999.09.30 (after that date DI engines must meet the IDI limits) 

 b. 2011.01 for all models 

 c. 2013.01 for all models 

 d. and NMHC = 0.068 g/km 

 e. applicable only to vehicles using DI engines 

 f. 0.0045 g/km using the PMP measurement procedure 

 g. 6.0×1012 1/km within first three years from Euro 6 effective dates 

 

Organic compounds, unburned or partially burned hydrocarbons (HC) emissions are 

regulated as either Total Hydrocarbons (THC), Non-Methane Hydrocarbons (NMHC) or 

Non-Methane Organic Gases (NMOG) and can arise from a number of sources including: 

 Flame quenching at the combustion chamber wall 

 Trapped mixture in crevice volumes later expelled during the exhaust process 

 Absorption and desorption of fuel hydrocarbon components into the thin oil film on 

the combustion chamber walls 

 Before and after the combustion process  

Hydrocarbons react in the presence of oxides of nitrogen in photochemical reactions in the 

formation of ozone and smog. They are also considered toxic and elements are carcinogenic. 
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Figure 1.1 – Illustration of SI engine NO formation: (top) measured cylinder pressure 

and calculated mass fraction burned; (middle) calculated temperature of unburned gas 

Tu and burned gas Tb in early- and late-burning elements; (bottom) calculated NO 

concentrations in early- and late-burning elements for rate-controlled model and at 

equilibrium, taken from Komiyama & Heywood (1973) 

 

Particulate matter (PM), generally consisting of combustion generated solid carbon particles, 

result from agglomeration or cracking and typically include a proportion of absorbed organic 

compound. Particulate matter pollution has been linked to harmful impact on both public 

health and public welfare. Environmental effects include visibility impairment due to fine 

particles, environmental damage due to particle settling causing increased acidity and 

changes in nutrient balance, aesthetic damage to stone and other materials through staining. 

The impact on human health is of particular concern for fine particles that are able to 

penetrate deep into the human lung. Numerous scientific studies have shown links between 

particulate matter pollution and premature death in people with heart or lung disease, nonfatal 



Chapter 1  Introduction 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

5 

 

heart attacks, irregular heartbeat, aggravated asthma, decreased lung function and increased 

respiratory symptoms. The introduction of direct injection to the gasoline engine and the 

increased flexibility of combustion strategy has meant their PM emissions are no longer 

insignificant (when compared to earlier Port Fuel Injection engines) and has led regulatory 

bodies to begin imposing emissions limits on particulate mass, and more recently particulate 

number, emissions (EPA, 2014b; DieselNet, 2007; USGPO, 2014b). 

Carbon dioxide (CO2) emissions are increasingly being placed in the global spotlight due to 

its contribution to greenhouse gases (GHG) and its association with global warming. The area 

of anthropogenic climate change is an area of continual research due to the tight connection 

between the remaining oil reserves, increases in oil demand, technology evolution and their 

impact on future CO2 concentration and global mean-temperature increase (Chiari & Zecca, 

2011; Höök & Tang, 2013). This has long been recognised by different governments and 

legislators worldwide and led to a number of legislations being enforced with a view to 

reducing vehicle emissions and stimulating technology development. The Corporate Average 

Fuel Economy (CAFE) regulations in the U.S., first enacted in 1975, require vehicle 

manufacturers to comply with fuel economy standards set by the Department of Transport. 

CAFE fuel economy valves are calculated using both city and highway test results and a 

weighted average of vehicle sales. In 2011, the CAFE standards were redefined, now as a 

function of the vehicle size (EPA, 2014a; ARB, 2012; USGPO, 2014a). In 2009 U.S. 

President Barack Obama proposed a new national fuel economy program to cover model year 

2012 to 2016 that would increase the required average fuel economy standard from 25 miles 

per US gallon to 35.5 miles per U.S. gallon. In 2011, U.S. President Barack Obama 

announced an agreement to cover model years 2017 to 2025 that would increase the required 

average fuel economy standard to 54.5 miles per U.S. gallon (NHTSA, 2011). In 2009, 

European Union legislation adopted mandatory CO2 emissions reduction targets. In this 

legislation, the maximum fleet average CO2 for all new cars is 130g/km, being phased in 

between 2012 and 2015. A further fleet average CO2 emission reduction to 95g/km is 

proposed for 2020 though this is yet to be approved through European Parliament and 

Council to become law. This European directive also provides additional credits for 

manufacturers producing vehicles with extremely low CO2 emissions (<50g/km) to assist 

them in reducing their fleet averages (EC, 2014). The impact of the increasingly stringent 

CO2 emissions standard across world markets is a significant development challenge for 

vehicle original equipment manufacturers (OEMs). 
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Another significant motivator in the development of next generation ICE’s is the growing 

consumer requirement for fuel to power vehicles, and as a consequence for highly fuel 

efficient vehicles. Figure 1.2 (a) taken from Brandt, Millard-Ball, Ganser, et al. (2013) 

highlights this point by showing a prediction for the rise in energy demand for transport 

energy split by sector. There is a consensus amongst geologists that world production of oil 

will peak at some point in the future but this point in time is still of much debate. Leder & 

Shapiro (2008) completed a study using data from International Energy Agency, the U.S. 

Department of Energy, the Association for the Study of Peak Oil and Gas, and petroleum 

industry sources and concluded that oil production will peak within the next 5 years. Other 

sources, including Tsoskounoglou, Ayerides & Tritopoulou (2008), Sorrell, Speirs, Bentley, 

et al. (2010) and Brandt, Millard-Ball, Ganser, et al. (2013) conclude that the world peak in 

oil production will peak before 2040 and likely much sooner. Sorrell, Speirs, Bentley, et al. 

(2012) discusses some of the difficulties associated with predicting peak oil production and 

attributes it in part to how initial estimates in recoverable resources from an individual field 

tend to grow over time. IMechE (2013) suggests that based on current estimates of the 

world’s main oil fields, reserves will be sufficient to meet present rates of consumption for 40 

years, but consumption rates are still rising and conventional oil demand is predicted to 

decline around the year 2035 as shown in Figure 1.2 (b) (Brandt, Millard-Ball, Ganser, et al., 

2013).  

 

  

(a) (b) 

Figure 1.2 – (a) Demand for transport energy and (b) Fuel consumption rate, taken 

from Brandt, Millard-Ball, Ganser, et al. (2013) 
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Of course, the effect of rising demand with increasing scarcity and cost of extraction of the 

remaining resources, acts to drive an increase in oil price and thus the cost of fuel for 

transportation. Based on the AA fuel price report TheAA (2014), the UK average cost of 

regular (95 octane) gasoline has increased from 89.4p/litre in January 2006 to 131.2p/litre in 

December 2013. This in turn has generated a large consumer demand for more fuel efficient 

vehicles. 

 

1.1.2 Advances in GDI Engine Development 

 

The purpose of this section is to present the development and progress of the GDI engine.  

The GDI engine started life in aircraft applications. Invented by the French inventor Leon 

Lavavasseur in 1902 and applied in one of the first V8 aero engines (Hartmann, 2007). Post 

First World War, the first example of a GDI engine was the Hesselman engine in 1925 where 

an ultra-lean late burn injection strategy was used, with the engine started on gasoline but 

then switched to diesel or kerosene (Olsson, 1987; Lindh, 1992). GDI engines were used 

extensively during the Second World War to power high output aircraft made in Germany, 

the Soviet Union and the US. The first automotive application of a GDI engine was 

developed by Bosch and introduced by Goliath and Gutbrod in 1952 which used a high 

pressure injection system from a diesel engine with an intake throttle for load control. These 

engines are classed as ‘first generation’ GDI engines. 

The energy crisis of the early 1970’s drove research into more fuel efficient engines and the 

development of ‘second generation’ GDI engines. One piece of research was conducted by 

the American Motors Corporation to develop a ‘Straticharge Continuous Fuel Injection’ 

(SCFI) system where the conventional SI ICE was modified to have two separate fuel 

systems with different injection pressures controlled as a function of the engines airflow but 

the engine lacked success due to mechanical fuel control problems (Peery, 1975; Weiss, 

1979). In the late 1970s, a number of GDI systems were proposed including the MAN-FM 

system which utilised jet-wall interaction and film evaporation to achieve charge 

stratification and the Ford Motor Company developed ‘PROCO’ engine, a stratified-charge 

GDI engine utilising a high-pressure pump and spark plug positioned in the fuel spray 

periphery to generate stratification. The latter design was unsuccessful for a number of 
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reasons: electronic control technology being too immature, fuel system components too 

expensive, the lean combustion regime generated by the stratified-charge strategy generated 

high NOx which was soon to be in-excess of the impending EPA regulations and Ford were 

cautious of committing to expensive technology in a V8 engine during economic instability – 

the late 1970s was the time of the second gas crisis in the U.S. (Time, 1979). Another 

development of note was the stratified charge concept that utilised a pre-chamber for 

injection and ignition in a relatively rich mixture where the flame then propagates into the 

lean mixture in the main chamber (Pischinger & Klocker, 1974). All developments up to this 

point had one common disadvantage; a lack of controllability of the injection strategy as a 

function of engine load. Unable to avoid significant piston or liner spray impingement at 

certain conditions, these concepts encountered significant problems including fuel dilution, 

increased engine out emissions and increased fuel consumption. These were unavoidable 

until improvements in fuel injection system technology were available. 

Since the early 1990’s, interest and development of the GDI engine has been reborn and with 

the new generation of GDI engines classed as ‘third generation’. The introduction of third 

generation GDI engines into production has largely been led by the Japanese manufacturers 

of Mitsubishi, Nissan and Toyota but there are now examples of GDI technology being 

applied by a large number of automotive manufacturers. 

Mitsubishi were the first to introduce a GDI engine into the Japanese market in 1996 in the 

form of a 1.8L inline-four. Figure 1.3 illustrates the three distinct combustion modes as a 

function of engine speed and load.  

A wall-guided injection strategy was used, with the spray being directed back up towards the 

spark plug by the rising piston and emphasised tumble charge motion. A dual catalyst was 

needed to control pollutant emissions: a conventional platinum catalyst for stoichiometric 

operation and pure iridium catalyst for lean operation. Mitsubishi reported significant fuel 

economy improvements when compared to their Port Fuel Injection (PFI) engine on Japanese 

urban test cycle with improved power, acceleration and volumetric efficiency as a 

consequence of improved port design, increased compression ratio and in-cylinder charge 

cooling due to spray atomisation effects  (Zhao, Lai & Harrington, 1999; Iwamoto, Noma, 

Nakayama, et al., 1997). 
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Figure 1.3 – The Mitsubishi GDI Control Map - taken from Iwamoto, Noma, Nakayama, 

et al. (1997) 

 

Nissan were the next manufacturer to bring a GDI engine to production in the Japanese 

market in 1997. Utilising a similar combustion strategy to the Mitsubishi engine but with a 

shallow combustion bowl and swirl dominated in-cylinder charge motion. This provided 

improved combustion efficiency during early injection homogeneous combustion operation 

however does compromise the accuracy of spray targeting during late injection stratified lean 

operation. This was reportedly mitigated through optimised injector spray design (Zhao, Lai 

& Harrington, 1999). 

Toyota brought a production GDI engine to the Japanese market in 1998 which was 

implemented in a number of vehicle models and is shown in Figure 1.4(a). Toyota also 

utilised a swirl dominated in-cylinder charge motion, actively controlled by a Swirl Control 

Valve (SCV) but employed a unique and complex piston bowl geometry for spray and 

mixture control. The piston bowl geometry, shown in Figure 1.4(c), comprised of three key 

features as depicted in Figure 1.4(b). First, an involute geometry to direct the vaporised fuel 

towards the spark plug. Second, an area designed as a mixture formation area positioned 

upstream of the spark plug. Third, a wider zone designed as the combustion space with 

geometry promoting rapid mixing enhanced by the port generated swirl motion. The engine 

also utilised variable cam phasing system on the intake valve to further enhance swirl motion 

at light loads (Zhao, Lai & Harrington, 1999). 
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Figure 1.4 – Combustion chamber configuration of the Toyota GDI – taken from 

Nohira (1997) 

 

In later years, GDI engines were brought to production by an increasing number of 

automotive manufacturers in Japanese, European and US markets. Companies such as 

Renault, VAG (including Volkswagen, Audi, and later Seat and Skoda), Ford, BMW, 

General Motors, Isuzu, Mazda, Mercedes-Benz, Ferrari and Jaguar Land Rover all releasing 

GDI engines into production in various markets and vehicle segments between 1998 to 

present. Technology developments have centred around injector spray characteristics 

(including spray pattern and injection pressure) and combustion chamber geometry and thus 

mixture control techniques.  

The combustion operating mode of GDI engines are typically defined by the degree of in-

cylinder charge stratification and the strategy used to achieve this.  

Homogeneous-charge direct-injection engines tend to use a centrally mounted spark plug 

with centrally or side mounted injector. Fuel is injected early in the intake stroke during high 

levels of in-cylinder charge motion to promote mixing and obtain an almost homogenous 

mixture within the combustion chamber at the point of spark timing. Advantages over 

traditional PFI homogeneous-charge engines include: 

 Eliminated transient dwell time and reduced unburned hydrocarbons as a consequence 

of over fuelling during transient events 
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 Reduced UHC during cold start due to injection into a higher pressure and 

temperature environment when compared to PFI where fuel is injected into low 

pressure and temperature environment of the intake port and back of the intake valve 

 Increased power and fuel economy and reduced knock propensity as a consequence of 

the charge cooling effect of injecting cold fuel into the high pressure high temperature 

combustion chamber. The reduction in knock propensity also allows higher 

compression ratios to be utilised for increased in-cylinder expansion ratios or 

increased boosting. 

Stratified-charge direct-injection engines involve creating a globally lean in-cylinder fuel-air 

mixture but with high levels of stratification around the spark plug at the point of ignition to 

ensure stable flame kernel development. To obtain charge stratification, three spray guiding 

methods have evolved as shown in Figure 1.5; wall-guided, air-guided and spray-guided, 

each driving a different combustion system design strategy. 

 

Figure 1.5 – Spray guiding strategies - taken from Ma (2006) 

Some of the first stratified-charge GDI engines used wall-guiding to produce the stratified 

charge around the spark plug at the point of ignition timing. A heavily contoured piston bowl 

was used to direct the spray up towards the spark plug, with injection late in the compression 

stroke. As fuelling increases with load requirements, heavy piston wetting and consequential 

soot emissions limit stratified-charge operation. Therefore maintaining power density 

currently requires switching to a homogeneous stoichiometric charge operating mode at 

higher engine loads. The addition of a ‘mixed mode’ or homogeneous lean mixture operating 

mode is also sometimes incorporated to improve combustion stability when switching 

between stratified lean and homogeneous stoichiometric modes. This also provides fuel 
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consumption benefits associated with globally lean in-cylinder mixtures for higher speed and 

load ranges within the engine duty cycle. 

Air-guided stratified-charge DI engines utilise a heavily induced tumble in-cylinder bulk air 

motion to guide the fuel spray up towards the spark plug. A contoured piston is often used, as 

seen in wall-guided systems, but intake port geometry tuning is also utilised to increased 

tumble motion and reduce fuel spray impingement on the piston. 

Spray-guided stratified-charge DI engines utilise a centrally mounted injector, closely 

mounted to the spark plug electrodes. In this method, the spray cloud is positioned such that 

the fuel-air mixture at the spark plug is close to stoichiometry but with high levels of 

stratification away from the spark plug position. The close proximity of injector and spark 

plug promote a compact spray cloud that can be designed with reduced penetration, reducing 

the opportunity for impingement, and improved combustion phasing promoting increased 

burn rates and reduced cyclic variability and soot and UHC emissions. Disadvantages of the 

close proximity of the injector and spark plug include: high in-cylinder flow velocities (and 

associated fluctuations) at the spark plug, fuel impingement on spark plug electrodes and 

potential ignition problems, large spatial fuel-air mixture gradients drive the need for high 

levels of spray and in-cylinder flow-field repeatability to avoid misfire events.  

The variety of spray guiding methods has also driven a number of different injector spray 

designs including; both inwardly and outwardly opening needle single exit pressure-swirl 

injectors, air-assisted pressure-swirl designs, multi-hole VCO (Valve Covered Orifice) nozzle 

injectors similar to those found in diesel injection systems and more recently piezo-

electrically actuated outwardly opening pintle injectors.  

Spray impingement in DI engines has typically been reduced by the use of increased injection 

pressure to produce finer, more atomised sprays. In contrast to PFI injection systems with 

SMD equivalent to ~120µm, GDI injectors are an order of magnitude lower in the region of 

~15µm. Whilst increased injection pressure increases atomisation and reduces droplet mass, 

it also increases droplet velocities and hence can cause a net increase in spray momentum and 

still cause impingement issues. The resultant penetration is dependent on injection timing, 

spray characteristics and in-cylinder conditions. Further progress in reducing spray 

impingement has been enabled with non-symmetric spray patterns, variable injection timing 

and multiple injections per cycle to reduce spray penetration of each injection event. 
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Improvements and optimisation of the fuel system has been critical to the progress of the GDI 

engine. 

The increasingly stringent fleet average CO2 legislation has also driven many manufacturers 

to investigate coupling GDI with other technologies for further fuel efficiency improvements. 

GDI engines coupled with a reduction of an engine’s swept volume (‘downsizing’) and 

forced induction to retain specific power output has been of significant development in 

Europe for a number of years now and is growing among automotive manufacturers in the 

US and Japanese markets. Lake, Stokes, Murphy, et al. (2004) of Ricardo plc produced a 

noteworthy paper  presenting a number of turbocharging concepts applied to a GDI engine as 

a means of meeting future fleet average CO2 requirements whilst controlling the octane 

requirement to avoid end gas autoignition or knock. The concepts included: lean operation at 

full load with high compression ratio (CR), cooled exhaust gas recirculation (EGR) for 

mixture dilution, miller cycling to reduce the effective compression ratio and dual injection 

strategies. Lotus Cars have also investigated spray-guided homogeneous GDI engines 

equipped with a fully variable valve train system as a means of reducing nitrous oxides to 

levels that would remove the need for a NOx trap, hence providing compatibility with high 

sulphur fuels (Drake & Haworth, 2007; Zhao, Lai & Harrington, 1999). 

 

1.1.3 Current GDI Engine Research Challenges 

 

As discussed previously, the homogeneous GDI engine offers a number of advantages over 

gasoline PFI engines but still a number of research and development challenges remain in 

order to further exploit their advantages. The remainder of this section will  provide an 

overview of some of the current research challenges that will be the subject of the research 

presented in this thesis. 

 

1.1.3.1 Cycle-to-Cycle Variability 

 

Cycle-to-cycle variability (CCV) in ICE’s has long been a topic of research interest. Ozdor, 

Dulger & Sher (1994) completed a literature survey of influences on cyclic variability and 
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suggested that up to 10% improvement in fuel consumption would be achievable if it was 

possible to eliminate cyclic variability entirely. There is also a significant indirect impact 

whereby manufacturers have to pursue sub-optimal engine design to ensure they meet certain 

design requirements including: retarded timing and reduced compression ratio to avoid 

abnormal combustion phenomenon, lower than limit emissions output or the use of additional 

after-treatment systems to ensure the engine meets emissions legislation, and less aggressive 

combustion strategies to meet consumer drivability needs. Thus a reduction in CCV would 

enable an engine to operate at average running conditions that are closer to the limits of 

emissions legislation, allowing reductions in fuel consumption, whilst meeting or exceeding 

driveability requirements. The challenge lies in that the origins and relative importance of the 

causes of CCV are not fully understood and many are strongly coupled which provides an 

added level of complexity to understanding them. Ozdor, Dulger & Sher (1994) proposed that 

cyclic variability could be split in to four main areas: 

 

 Mixture composition 

 Cyclic cylinder charging 

 Spark and spark plug 

 In-cylinder mixture motion 

The main causes of CCV due to the in-cylinder gas flow and mixture  field can be 

summarised as follows from the works of Ozdor, Dulger & Sher (1994), Vermorel, Richard, 

Colin, et al. (2009) and Heywood (1988): 

 

1.1.3.1.1 Variations in the In-Cylinder Gas Flow 

 

Since the flow within the cylinder of an ICE is fully turbulent, the stochastic nature of 

turbulence means that CCV is inevitable and likely to be one of the largest sources of CCV. 

This also means that by nature, CCV due to flow turbulence cannot be eliminated completely, 

though it can be understood and minimised through engine designs that control the flow 

structure as closely as possible. 

The turbulence intensity, particularly in the spark plug vicinity at the point of spark timing 

has a significant impact on the initial kernel growth rate and as a consequence the CCV (with 

larger time taken for kernel development exhibiting increased CCV). Increased turbulence 
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intensity acts to increase the kernel development due to stretching of the flame front up to a 

certain optimum value, dependent on the local in-cylinder conditions, whereby after 

excessive flame stretch causes flame quenching. The importance of the local flow scale is 

dependent on the mean flow conditions. With a small mean flow, any CCV in the large length 

scales will have a large effect on the direction of convection of the initial flame kernel. In 

contrast, if a significant mean flow is present and consistently convects the kernel in a 

particular direction, CCV in the large scale structures will have a much smaller impact and 

variations in the small scales will be the dominant factor in influencing the subsequent 

combustion process. 

The mean flow velocity in the spark plug vicinity has a significant impact on the early stages 

of flame development. It acts to lengthen the discharge channel and increase electrical energy 

transferred to the flame kernel during the spark breakdown phase. It acts to convect the flame 

kernel away from the electrodes during the flame kernel development stage which reduces 

heat losses and increases the rate of flame kernel growth (Pischinger & Heywood, 1990). 

Whilst the initial kernel development phase only accounts for 1-2% of the total MFB, the 

phase contributes significantly (approximately 30%) to the total combustion cycle duration 

and hence CCV in the mean flow velocity in the near spark plug region can contribute 

significantly to the overall CCV of the combustion process. The location of the centre of the 

initial flame kernel also impacts the flame speed, with kernel centres closer to the centre of 

the combustion chamber having faster burn rates later in the cycle and centres closer to a 

combustion chamber wall having slower burn rates later in the cycle. Hence variations of the 

initial flame kernel centre due to variations in the mean flow velocity also contribute to CCV 

in the overall combustion process. 

Since the large scale bulk gas motions are also turbulent, they are also subject to CCV and in 

particular, influence the breakup and atomisation processes and spatial variations in the fuel-

air mixture, along with the local flow conditions in the vicinity of the spark plug at the point 

of ignition. The large scale flow structures of tumble, swirl or squish, are predominantly a 

function of the engine design, specifically the intake manifold and port geometry, valve 

geometry and positioning, and combustion chamber geometry, and hence it can be inferred 

that engine design also has a large influence on the CCV present. 
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1.1.3.1.2 Variations in the In-Cylinder Mixture Field 

 

CCV due to variation in the in-cylinder mixture can be broken down into four different areas: 

 The overall mixture equivalence ratio is found to influence CCV through the laminar 

burning speed where the fastest laminar burn speed is seen with stoichiometric 

mixtures. Thus any variations in overall mixture equivalence ratio from stoichiometry 

yield a reduction in laminar burn velocity and a subsequent increase in CCV. This is 

due to the magnitude of CCV in the flame development and subsequent flame 

propagation processes, reducing as the burning rate increases.  

 Spatial variations in the local equivalence ratio, and subsequent mixture 

inhomogeneity, near the spark plug at the point of ignition timing will have a 

significant impact on initial kernel development, whereas spatial variations in mixture 

equivalence ratio further afield will impact the laminar flame speed during the flame 

propagation phase. 

 CCV in the droplet breakup mechanisms and subsequent atomisation process yielding 

variations in the overall and local mixture equivalence ratio. 

 Variations in the characteristics of fuel impingement, in terms of its likelihood, the 

impingement regime, and any subsequent re-introduction of droplets into the in-

cylinder flow field either via surface evaporation, scraping via the piston rings or 

breakup over a sharp edge. 

CCV in the in-cylinder mixture due to the above processes can predominantly be attributed to 

either variations in-cylinder flow field or in the fuel injection process itself, e.g. via variation 

in the level of cavitation or turbulence within the injector nozzle. 

CCV in both the filling and scavenging of the cylinder is also present and acts to vary the 

amount of trapped mass at the start of a cycle and the residual gases that remains for the 

subsequent cycle. Since residual gases act as a diluent, variations in mixture equivalence ratio 

cause a subsequent variation in laminar burn velocity and thus CCV. 
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1.1.3.2 Mixture Heterogeneity 

 

The use of mixture heterogeneity or stratified-charge DI engines have been of interest since 

the inception of GDI due to the potential fuel saving associated with overall lean operation 

and elimination of throttling losses. A number of issues with commercially viable stratified-

charge GDI engines have arisen due to the characteristics of this combustion mode (Drake & 

Haworth, 2007; Zhao, Lai & Harrington, 1999): 

 Stratified operation is typically limited to part load conditions due to increased 

combustion instability and smoke associated with operating at high loads and with a 

highly stratified mixture 

 Large increases in UHC and PM when utilising a wall- or air-guided injection strategy 

 High levels of combustion stability sensitivity and potential for intermittent misfires 

due to spray and in-cylinder flow field cyclic variability and spark plug-fuel spray 

geometric sensitivity. 

 Fuel spray piston impingement due to the proximity of the piston at the point of 

injection timing, requiring careful injection strategy management and use of fast 

actuating injectors for multiple injection events to provide sufficient fuel quantity for 

engine load requirements whilst minimising spray penetration and still maintaining 

adequate mixture stratification. 

 

1.2 RESEARCH OBJECTIVES 

 

The focus of this research was to validate and then use a detailed 3D-CFD model to 

investigate the physical phenomena of the in-cylinder flow field and fuel injection processes 

in a GDI engine, with a view to furthering scientific knowledge and providing a contribution 

towards the solution of the current challenges in these areas. 

The following bullet points provide the objectives of this research: 

 Using available experimental data, complete a detailed validation of the in-cylinder 

flow field in a GDI engine using a detailed 3D-CFD model with both a Reynolds-
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Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) turbulence 

modelling approach. 

 Using available experimental data, complete a detailed validation of the fuel injection 

process in a GDI engine modelled using a Lagrangian Discrete Droplet Model (DDM), 

using both a RANS and LES turbulence modelling approach. 

 Investigate the characteristics of the in-cylinder flow field, including its three-

dimensional nature and a number of highly transient flow structures including intake 

valve jet flapping. 

 Investigate and characterise the in-cylinder flow field anisotropy through the intake 

and compression strokes up to the point of spark timing. 

 Use the statistical technique of Proper Orthogonal Decomposition (POD) to 

quantitatively characterise the variation in turbulent flow structures through the cycle, 

quantify and investigate cyclic variability, and help assess the level of statistical 

convergence of the ensemble-average solution. 

 Complete a detailed investigation of spray plume impingement on the intake valve, 

cylinder liner and piston crown using both a single- and multi-component fuel 

surrogate to investigate how numerical models can be used to accurately assess spray 

plume impingement and liquid film formation. 

 Investigate cyclic variability of the impingement process due to continuous-phase 

turbulence using a DDM and LES turbulence modelling approach. 

 Investigate the use of numerically derived turbulence characteristics to infer the 

resultant premixed turbulent combustion process using combustion regime diagrams. 

 

1.3 THESIS STRUCTURE 

 

Chapter 1 has presented the research background and motivation, particularly with respect to 

the development drivers, technological advances and research challenges of the GDI engine. 

It has also presented the objectives of this research. 

Chapter 2 presents a literature review exploring the physical processes of the in-cylinder flow 

field and fuel injection processes, and the development and progression of multi-dimensional 
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computational fluid dynamics techniques and associated physical sub-models for modelling 

these processing within engines.  

Chapter 3 presents the engine and numerical model. First, the chapter introduces the 

experimental engine, a single cylinder optical research engine that was modelled for the 

purpose of this research, including details of the engine configuration and operating 

configuration. Second, the chapter presents the numerical model and its validation against 

experimental results acquired from a past experimental research project. First, the sub-section 

presents the computational domain and methodology, and then follows with the 

characterisation and validation of the numerical model which is divided into two sub-sections; 

1) validation with respect to the in-cylinder flow field and, 2) validation with respect to the 

fuel injection process. In this research both a RANS and a LES approach to modelling 

turbulence have been used. This allowed a decision to be made of the most appropriate 

modelling approach (predominantly a function of the compromise between computational 

fidelity and cost) for the physical process being investigated. Hence, sections on the 

validation of the in-cylinder flow field and the fuel injection process are further sub-divided 

into sections using either a RANS or LES turbulence model. 

The following three chapters, Chapters 4-6, present the results from a number of numerical 

analyses using the models presented in Chapter 3. 

Chapter 4 presents analyses into the in-cylinder flow field including investigations on flow 

three dimensionality, intake valve jet flapping, flow anisotropy, and the use of POD for 

characterising turbulent flow structures and cyclic variability. 

Chapter 5 presents analyses into the fuel injection process including investigations on fuel 

impingement and liquid film development, mixture field characteristics, and the interactions 

between in-cylinder turbulence and the fuel injection event.  

Chapter 6 presents analyses utilising the turbulence predictions from earlier chapters, along 

with turbulent premixed combustion regime diagrams, to investigate the characteristics of the 

resultant combustion event. 

Finally, Chapter 7 presents the conclusions from the research presented in this thesis, the 

contributions to scientific knowledge, and recommendations for further research in this area. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

“Imagination is more important that knowledge.” 

– Albert Einstein 

 

 

 

 

2.1 INTRODUCTION 

 

The GDI engine is comprised of a number of physical processes that are both complex and 

have high levels of interaction. The use of numerical methods to model the physical 

processes occurring within ICE’s has been prolific since the early 1970’s. Over this time, a 

large number of techniques have evolved, each with their own advantages and disadvantages 

but driven by the following factors: 

 Computational cost, i.e. what are the time demands of the associated modelling tasks 

including pre-processing, numerical solution and post-processing 

 Representativeness of the model to the physical process that is being modelled 

 Our understanding of, and capability to represent, the physical process itself 

For the development of models within the ICE environment, an understanding of the physical 

processes occurring is required. Figure 2.1 illustrates the key areas when modelling ICE’s. 
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Figure 2.1 – Physical processes important for numerical simulations of ICE's - 

reproduced from Merker, Schwarz & Teichmann (2012) 

 

This literature review will focus on the physical processes of the in-cylinder flow field and 

fuel injection processes, and the development and progression of multi-dimensional 

computational fluid dynamics techniques and associated physical sub-models, applied to 

numerically modelling them within the GDI engine.  

Computational Fluid Dynamics (CFD) simulation currently represents the highest order of 

fidelity of the numerical tools available for modelling internal combustion engines. CFD 

models are based on the governing equations of fluid flow that represent the fundamental 

conservation laws of physics, as described below for a compressible Newtonian fluid and 

omitting source terms. 

The mass continuity equation is defined by equation (2.1): 

 𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0 

(2.1) 

 

The use of Newton’s second law forms the momentum equations defined for each directional 

component by equation (2.2): 
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 𝜕(𝜌𝑢𝑖)

𝜕𝑡
+
𝜕(𝜌𝑢𝑗𝑢𝑖)

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
 (2.2) 

 

From the first law of thermodynamics, the energy equation is defined by equation (2.3): 

 𝜕(𝜌𝐸)

𝜕𝑡
+
𝜕(𝜌𝑢𝑗𝐸)

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
(𝑘

𝜕𝑇

𝜕𝑥𝑗
) +

𝜕(𝑢𝑖𝜏𝑖𝑗)

𝜕𝑥𝑗
 (2.3) 

Where 𝐸 is the sum of the internal energy and the kinetic energy. 

 

When combined with the equations of state, these governing equations, which are classified 

as partial differential equations (PDE’s), are able to define the seven physical attributes that 

fully define a single phase single component fluid: pressure, temperature, density, velocity 

(three components) and energy. 

In a viscous fluid, the momentum equations include terms to define the state of stress of a 

fluid element, which is defined in terms of the pressure and nine viscous stress components, 

six of which are independent in isotropic fluids (Schlichting, 1968). It is useful to introduce a 

model for the viscous stresses 𝜏𝑖𝑗 , relating the viscous stresses to the fluid motion as a 

function of the local deformation rate or strain rate. In three-dimensional flows the local rate 

of deformation is composed of the linear deformation rate and the volumetric deformation 

rate. The linear deformation rate is expressed as a function of the dynamic viscosity μ and 

volumetric deformation rate expressed as a function of the second viscosity λ. For Newtonian 

fluids, the viscous stress is assumed to vary linearly with rate of strain. Employing this 

simplification, nine equations for the viscous stresses are formed, but is shown in tensor 

notation in equation (2.4), and can be substituted back into the governing equations 

(equations (2.2) and (2.3)), providing the so-called Navier-Stokes (N-S) equations which are 

the foundations of all modern CFD codes.  

 
𝜏𝑖𝑗 = 2𝜇𝑆𝑖𝑗 + 𝜆 (

𝜕𝑢𝑘

𝜕𝑥𝑘
) 𝛿𝑖𝑗 = 2𝜇𝑆𝑖𝑗 −

2

3
𝜇 (
𝜕𝑢𝑘

𝜕𝑥𝑘
)𝛿𝑖𝑗  (2.4) 

Where: 

The Stoke’s hypothesis is used to relate 𝜆 to 𝜇:  𝜆 +
2

3
𝜇 = 0 
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𝑆𝑖𝑗  is the strain rate tensor, 𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

𝛿𝑖𝑗 is the Kronecker delta and can be equal to unity or zero as shown in equation (2.5): 

 
𝛿𝑖𝑗 = {

0 𝑖𝑓 𝑖 ≠ 𝑗
1 𝑖𝑓 𝑖 = 𝑗

 (2.5) 

 

The direct analytical solution to these PDE’s produces a continuous description of the flow in 

space and time but due to the difficulty of solving the PDE’s in this manner it is only applied 

to very simple flow problems. All numerical solutions rely on a grid to discretise the PDE’s 

at discrete points in the computational domain. Whilst there are many numerical methods for 

solving the PDE’s, three methods in particular have seen most use.  

The finite difference (FD) method is the oldest technique and was among the first techniques 

applied to the numerical solution of PDE’s, first being applied by Euler in 1968. The FD 

method is directly applied to the differential form of the governing equations, employing a 

Taylor series expansion for the discretisation of the derivatives of the flow variables. Whilst 

this method has obvious simplicity, it is difficult to apply to unstructured or non-Cartesian 

grids without introducing numerical errors and hence it is infrequently used in current 

applications of CFD techniques to complex geometries. 

The finite volume (FV) method employs the integral form of the N-S equations and was first 

employed by McDonald (1971) for the simulation of 2D inviscid flows. The FV method 

discretises the governing equations by dividing the computational domain into a number of 

arbitrary control volumes. The accuracy of the spatial discretisation depends on the scheme 

used to evaluate the fluxes across the volume surface. The advantages of this method include 

ease of ensuring satisfaction of the conservation principle (since flux out of one volume must 

be equivalent to the flux into another volume) and its ability to be applied to unstructured and 

complex grids without introduction of numerical errors. 

The finite element (FE) method was originally employed for structural analysis, introduced 

by Turner, Clough, Martin, et al. (1956) but it wasn’t until the early 90’s that the FE method 

begun to be used to solve the N-S equations. The FE method uses a triangular or tetrahedral 

grid and is thus unstructured in nature. Depending on the level of accuracy required, a 

number of points or nodes are defined, either at cell boundaries or within the cell itself, which 
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define where the PDE’s are solved. The FE method has the benefit of its integral formulation 

and use of unstructured grids, both of which are advantageous for more complex flow 

problems, but the disadvantage of having a very rigorous mathematical foundation which 

drives a much higher computational effort. This is ultimately the reason why the FV method 

has seen more success in the application of N-S equations to complex flows and geometries 

and is the methodology used by the majority of CFD codes available today.  

One of the first to develop a numerical code based on the solution of the N-S equations via 

the FV methods and apply it to in-cylinder conditions was Gosman and he contributed a 

number of papers in the late 70’s and early 80’s, such as Gosman & Johns (1978) and 

Gosman, Tsui & Watkins (1984), that are the back-bone of modern CFD codes today. 

A complete review of the available solution methods is out of scope for this review but the 

reader is referred to the substantial amount of literature available on the schemes available for 

the solution of the N-S equations via the FV method. 

 

2.2 TURBULENCE 

 

2.2.1 Turbulence Characteristics 

 

At low Reynolds numbers flows are quasi-laminar, but above a critical Reynolds number 

Recrit, a series of processes take place where the flow transitions to a turbulent flow and the 

flow is characterised as; unsteady, random, chaotic, three dimensional, non-repeatable, 

exhibit intermittency in both space and time, have high levels of vorticity, and have a wide 

range of energy and length scales. In ICE’s, the flow is highly turbulent and involves a 

combination of turbulent shear layers, recirculating regions and boundary layers.  

Inspection of the flow structures within a turbulent flow shows rotational flow structures 

called turbulent eddies that exhibit a wide range of length scales. The rotational nature of the 

eddies generated in turbulent flows also means that significant flow mixing occurs giving 

cause to high coefficients of diffusion for momentum, mass and heat transfer. 
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Another feature of turbulent flows is the so-called energy cascade. The largest turbulent 

eddies interact with the mean flow and extract energy by a process called vortex stretching 

which arises due to distortions, as a consequence of velocity gradients present in sheared 

flows.   

The largest eddies in the flow are limited by the size of the system boundaries itself. The 

characteristic velocity and length of the largest eddies are of the same order as the velocity 

scale and length scale of the mean flow and hence will have a similarly high Reynolds 

number as of the mean flow itself, indicating that large scale eddies are dominated by inertial 

effects and not viscous effects. The implication of this is that large eddies are effectively 

inviscid and angular momentum is conserved during vortex stretching. Since the angular 

momentum is conserved, this causes an increase in rotation rate and a reduction in cross-

sectional radius thus the process causes the generation of eddies with smaller length and 

velocity scales. This process of vortex stretching from the mean flow is the main mechanism 

by which energy is provided to maintain turbulence.  The smaller eddies continue to be 

stretched by the larger eddies and less by the mean flow and hence kinetic energy is passed 

down to smaller and smaller eddies, hence the term ‘the energy cascade’. Since the energy 

acquired by the turbulent flow is at its largest when acquired by the largest eddies from the 

mean flow, the kinetic energy can be shown to decrease or dissipate as the wavelength of the 

eddies reduces. This produces the so-called energy spectrum of turbulence. 

Within the energy spectrum, a number of length scales exist that characterise different aspects 

of the flow behaviour. Turbulent eddies responsible for the most turbulence production (and 

hence containing the highest energy) have a length scale called the integral length scale.  

As the eddy size reduces, so does its characteristic length and characteristic velocity and 

hence the Reynolds number of the smallest eddies is equal to 1, where inertial and viscous 

forces are equal and indicate that they are dominated by viscous stresses opposed to inertial 

stresses as seen in the largest eddies. Turbulence of these scales is named after the Russian 

scientist Kolmogorov (1941) who first introduced the idea  that the smallest scales of 

turbulence are only dependent on the fluid viscosity and the rate of dissipation. These 

turbulence scales dissipate energy only due to viscous effects and is converted to thermal 

internal energy. Turbulence at this energy level are defined by the Kolmogorov scales for 

length 𝑙𝑘 , time 𝜏𝑘 , and velocity 𝑣𝑘, as shown by equations (2.6)-(2.8).  
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𝑙𝑘 = (
𝑣3

휀
)

1
4⁄

 (2.6) 

 

 
𝜏𝑘 = (

𝑣

휀
)

1
2⁄

 (2.7) 

 

 𝑣𝑘 = (𝑣휀)
1
4⁄  (2.8) 

 

Where 𝑣 is the kinematic viscosity and 휀 is the rate of turbulence energy dissipation. 

Since the largest turbulence length scale is related to the turbulence producing process, the 

flow structure is highly anisotropic, i.e. fluctuations vary in all spatial directions and are 

highly dependent on the flow boundary conditions. Since the length scales for the smallest 

turbulence structures are only dependent on the rate of energy dissipation and viscous effects 

(kinematic viscosity of the fluid), any anisotropy is removed and can be considered to be 

isotropic, i.e. possess unity in all directions. This characteristic becomes more pronounced at 

high Reynolds numbers. 

A third scale is often defined for characterising turbulent flow called the microscale or Taylor 

scale which describes turbulent eddies of intermediate size; sufficiently large to be affected 

by viscous action but sufficiently small that their behaviour  can be expressed  as a function 

of the rate of dissipation. 

The turbulence kinetic energy per unit mass in the large scale eddies is proportional to the 

square of turbulence intensity. Large eddies lose a substantial fraction of energy in one 

turnover time lt/u’. Hence, for a system in equilibrium, energy is dissipated from the system 

at the same rate as production, as denoted by equation (2.9). 

 
휀 ≈

𝑢′3

𝑙𝑡
 (2.9) 

 

Where 𝑢′ is the velocity scale and 𝑙𝑡 is the integral length scale. 
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Thus all of the above scales of turbulence can be linked by the following equations:  

 𝑙𝑘

𝑙𝑡
≈ (

𝑢′𝑙𝑡

𝑣
)

−3 4⁄

≈ 𝑅𝑒𝑇
−3 4⁄

 (2.10) 

 

 𝜏𝑘

𝜏𝑡
≈ 𝑅𝑒𝑇

−1 2⁄
 (2.11) 

 

 𝑣𝑘

𝑣𝑡
≈ 𝑅𝑒𝑇

−1 4⁄
 (2.12) 

 

Where ReT is the turbulence Reynolds number 

And by applying restrictions of homogenous and isotropic turbulence, an energy budget can 

be performed to relate integral length scale lt and Taylor or micro length scale 𝑙𝑚 as shown in 

equation (2.13), where A is a constant of order 1. 

 𝑙𝑚

𝑙𝑡
= (

15

𝐴
)
1 2⁄

𝑅𝑒𝑇
−1 2⁄

 (2.13) 

 

With respect to engine flows, these approximations are reasonable at the end of compression 

but will not be satisfied through the intake and compression strokes. 

The random nature of turbulent flows typically drives the use of statistical methods to help 

define the flow field. The flow property 𝑢𝑖  is decomposed into a time-averaged mean 

component 𝑢�̅�, and a fluctuating component 𝑢𝑖′, and shown for velocity in equation (2.14). 

 𝑢𝑖(𝑡) =  �̅�𝑖 + 𝑢𝑖 ′(𝑡) (2.14) 

 

Where the mean flow property �̅�𝑖  is defined as shown in equation (2.15). 



Chapter 2  Literature Review 
_ __________________________________________________________________________________________________________________________________________________________________________________________________ _________________________________________________________________________________________________________  

28 

 

 

�̅�𝑖 = 
1

∆𝑡
∫ 𝑢𝑖(𝑡) 𝑑𝑡

∆𝑡

0

 (2.15) 

 

The mean flow property calculated over a number of identical experiments provides the 

‘ensemble-average’. The ensemble-average mean velocity in an engine environment is only a 

function of crank angle since it acts to average out the cyclic variation. 

The spread of the fluctuating component 𝑢𝑖′ is described using the variance (𝑢𝑖′)
2̅̅ ̅̅ ̅̅ ̅ and the 

root mean square (r.m.s.) 𝑢𝑖,𝑟𝑚𝑠
′  as shown in equations (2.16) and (2.17) respectively. These 

are of particular importance due to the r.m.s. being easily calculated from experimental data 

and the variance of velocity fluctuations are linked to the momentum fluxes induced by 

turbulent eddies. 

 

(𝑢𝑖′)
2̅̅ ̅̅ ̅̅ ̅ =

1

∆𝑡
∫ (𝑢𝑖 ′)

2𝑑𝑡

∆𝑡

0

 (2.16) 

 

 
𝑢𝑖,𝑟𝑚𝑠
′ = √(𝑢𝑖′)

2̅̅ ̅̅ ̅̅ ̅ (2.17) 

 

The variance is also known as the second moment of the fluctuations and important flow 

structure details are contained in moments containing pairs of flow variables, e.g. second 

moments of the velocity components, 𝑢′𝑣′̅̅ ̅̅ ̅, 𝑢′𝑤′̅̅ ̅̅ ̅̅ , 𝑣′𝑤′̅̅ ̅̅ ̅̅  are all non-zero due to the vortical 

flow structures present in turbulent flows, and the pressure-velocity moments  𝑝′𝑢′̅̅ ̅̅ ̅, 𝑝′𝑣′̅̅ ̅̅ ̅, 𝑝′𝑤′̅̅ ̅̅ ̅̅  

can be linked to the diffusion of turbulent energy. 

Using the variance of the velocity components, u, v, w, the kinetic energy per unit mass of the 

turbulence can be deduced as shown in equation (2.18) and the turbulence intensity 𝑇𝑖  is 

found by the average of the r.m.s. velocity divided by a reference mean flow velocity as 

shown in equation (2.19). 
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𝑘 =

1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2̅̅ ̅̅ + 𝑤′2̅̅ ̅̅̅) (2.18) 

 

 

𝑇𝑖 =
(
2
3
𝑘)

1
2⁄

𝑈𝑟𝑒𝑓
 (2.19) 

 

As mentioned above, the vortical eddy motion creates strong mixing and acts to exchange 

momentum and energy through the fluid. Momentum exchange causes slower moving fluid 

parcels to be accelerated and faster moving parcels to be decelerated which will cause 

additional turbulent shear stresses which are known as Reynolds stresses. The presence of 

other scalar gradients, e.g. temperature and species concentration, also generate fluxes across 

the fluid and these give rise to turbulent scalar fluxes. These additional stresses/fluxes are 

seen to be present when the Reynolds or velocity decomposition is applied in the Navier-

Stokes equations for incompressible flow as presented earlier in Chapter 2.2.2 (Heywood, 

1988; Versteeg & Malalasekera, 2007; Pope, 2000).  

 

2.2.2 Turbulence Modelling 

 

The modelling of turbulence within ICE’s is a difficult task. Key attributes of the flow field 

that will influence the choice of method used to model the in-cylinder turbulence are: 

 Highly anisotropic and non-homogeneous 

 High Reynolds number with a wide range of time and length scales that vary 

throughout the simulation due to varying domain characteristic dimensions 

 Highly wall bound flow field with complex boundary layer interactions with moving 

boundaries 

 Time dependent boundary conditions 

It is these attributes that are used to evaluate the suitability of a particular turbulence 

modelling methodology, along with computational expense and solver stability. 
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Flows within the laminar regime are completely described by the N-S equations but once 

turbulent, the flow can no longer be calculated deterministically since the minutest influence 

may have the largest effect; hence additional methods are required when needing to represent 

the effects of turbulence. 

When the velocity decomposition, as shown above in equation (2.14), is applied to the mass 

and momentum continuity equations, we obtain the following relations shown in equations 

(2.20) and (2.21):  

 𝜕(𝜌�̅�𝑖)

𝜕𝑥𝑖
= 0 

(2.20) 

 

 
𝜌
𝜕�̅�𝑖

𝜕𝑡
+ 𝜌

𝜕(�̅�𝑗�̅�𝑖)

𝜕𝑥𝑗
= −

𝜕�̅�

𝜕𝑥𝑖
+
𝜕Γ𝑖𝑗

𝜕𝑥𝑗
+ 𝜌

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
 (2.21) 

 

As can be seen, these equations are of very similar form to the N-S equations but with the 

exception of an additional term 𝜏𝑖𝑗 , which forms six additional terms and it is how these six 

terms are modelled which defines the methodology by which turbulence is modelled. In 

physical terms, these additional terms represent the additional stresses present in the flow as a 

consequence of velocity and scalar gradients caused by momentum exchange of the vertical 

eddy motion present in turbulent flows. 

Since the flow in an engine cycle is compressed and expanded, whilst the flow velocities are 

low enough that density fluctuations are typically negligible, the mean density variations are 

not, thus mass-weighted averaging (or Favre-averaging) is also introduced. Here the 

instantaneous density is decomposed into a mean and fluctuating component and introduced 

into the N-S equations, yielding the Favre-Averaged Navier-Stokes equations. 

 

2.2.2.1 RANS Turbulence Modelling 

 

When the velocity decomposition is applied to the N-S equations in a Reynolds-Averaged 

Navier-Stokes context, the �̅�𝑖  term is the mean velocity component and 𝑢𝑖 ′ is the fluctuating 
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velocity component and 𝜏𝑖𝑗  represents the six ‘Reynolds stresses’. In this class of models 

(with the exception of the Reynolds Stress Model – discussed briefly below), the Reynolds 

stresses are solved based on the assumption that there is a linear relationship between viscous 

stresses and Reynolds stresses, as proposed by Boussinesq in 1877 who suggested that the 

Reynolds stresses might be proportional to the mean rates of deformation, as shown by 

equation (2.22). 

 
𝜏𝑖𝑗 = 2𝜇𝑡𝑆�̅�𝑗 −

2

3
𝜌𝑘𝛿𝑖𝑗  (2.22) 

 

As can be seen in equation (2.22), a new term is present, the turbulence viscosity 𝜇𝑡, and it is 

the modelling of this term, often via the use of additional transport equations, that defines the 

approach taken by a RANS turbulence modelling approach. 

Table 2.1 identifies the most prevalent RANS turbulence models, classifying them based on 

the number of additional transport equations that are solved to resolve the turbulence 

viscosity term.  

 

Table 2.1 – Prevalent RANS turbulence models characterised by the number of 

additional transport equations – reproduced from Versteeg & Malalasekera (2007) 

Number of additional 

transport equations 
Model Name 

Zero Mixing length model 

One Spalart-Allmaras model 

Two k-ε model 

 k-ω model 

 Algebraic stress model 

Seven Reynolds stress model 

 

Of these models, it is the k-ε model (and its variants) that are the most widely used and 

validated within the CFD community. In the original k-ε model proposed by Launder & 

Spalding (1974), the turbulent viscosity 𝜇𝑇 is defined as shown in equation (2.23). 
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𝜇𝑇 = 𝐶𝜇𝜌

𝑘2

휀
 (2.23) 

 

Where 𝐶𝜇  is a constant,  𝑘  is the turbulence kinetic energy and 휀  is the turbulence kinetic 

energy dissipation rate, both defined by individual transport equations containing five 

constants that through significant validation, have been standardised across a wide range of 

turbulent flows. It is also possible to re-write equation (2.23) based on a physical 

interpretation via a dimensional analysis using a velocity scale v and length scale l as shown 

in equation (2.24): 

 𝜇𝑇 = 𝜌𝑣𝑙 (2.24) 

 

As can be seen from equation (2.24), the turbulence viscosity is based on a single length scale 

even though the flow turbulence is not homogeneous – a significant draw back of the closure 

approach used by the k-ε family of turbulence models. 

In general the standard k-ε model has been shown to predict turbulent flow fields with good 

success in thin shear layers and recirculating flows in confined domains where Reynolds 

shear stresses are important. In contrast, the model has been reported to perform badly in 

weak shear layers (far wakes and mixing layers) of unconfined flows due to the production of 

turbulence kinetic energy being much less than the rate of dissipation; the ε-transport 

equation for the standard k-ε model assumes that production and destruction terms are 

proportional to production and destruction terms of the k-transport equation. Payri, Benajes, 

Margot, et al. (2004) investigated the in-cylinder flow field in a diesel engine using the 

standard k-ε model and reported that whilst the model offered reasonably accurate turbulence 

predictions, in areas of high turbulence, particularly around squish zones, turbulence was 

under predicted and velocity fluctuations not adequately predicted which the author attributes 

to the k-ε models poor performance in the presence of strong shear stresses. 

The renormalisation group (RNG) originally proposed by Yakhot & Orszag (1986) and 

furthered by Yakhot, Orszag, Thangam, et al. (1992), extends the standard k-ε model by 

representing the effects of small scale turbulence by a random forcing function in the N-S 

equations. The RNG methodology then removes the small scales of motion from the N-S 

equations by expressing their effects as a function of larger scale motions and a modified 
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viscosity. The model also contains a strain-dependent correction term in the ε-equation which 

aims to represent the effect of mean flow distortion on the turbulence (Rodi, 1979).  

Good results have been reported with the model and it is included in many CFD codes as an 

alternative to the standard k-ε model as it more effectively accounts for the effects of 

compression/expansion/rapid strain on the turbulence scales. Non-positive experiences have 

been reported due to the strain parameter η sensitising the RNG model to the magnitude of 

the strain, therefore making the effect on the dissipation rate the same regardless of the sign 

of the strain. 

Bella, De Maio & Grimaldi (2003) evaluated the intake valve discharge coefficient at various 

lift values, comparing results using the standard k-ε model with the RNG k-ε model. The 

results showed better prediction of the discharge coefficient at low and medium lifts using the 

RNG k-ε model turbulence model but no comparison of turbulence quantities was offered so 

it is difficult to determine the reason for this. In contrast, Choi, Choi, Park, et al. (2003) 

compared the in-cylinder flow of an optical single cylinder diesel engine at 600rpm, 

measured using PIV, with numerical predictions using both the standard k-ε model and RNG 

k-ε model turbulence models and concluded that the standard k-ε model was better suited to 

low speed operation, though comparative results at high engine speeds to validate this 

suggestion were not present. 

Another common addition to CFD codes is the Realizable k-ε model, developed by Shih, 

Liou, Sabbir, et al. (1994). In this model, the eddy viscosity constant is defined algebraically 

based on realizability constraints that prevent unrealistic values of the Reynolds stresses. The 

model also includes a modification to the ε-equation based on the dynamic equation of the 

mean vorticity fluctuation at high Reynolds numbers. The authors present good results for the 

model in; rotating homogeneous shear flows, boundary-free shear flows, channel flows, flat 

plate boundary layers with and without a pressure gradient and a backward facing step when 

compared with the standard k-ε model. 

All models that are based on the Boussinesq assumption of isotropic eddy viscosity will 

poorly predict swirling flows and flows with large rapid strains that effect turbulence in a 

subtle manner. Secondary flows driven by anisotropic Reynolds stresses can also not be 

predicted adequately due to the assumptions of isotropy. This drives the consideration of 

more complex turbulence models in the form of: Reynolds Stress Models, Large Eddy 

Simulation and Detached Eddy Simulation for the modelling of in-cylinder flow fields. 
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The most complex of the so-called classical turbulence models is the Reynolds Stress Model 

(RSM); a second-moment closure model. This modelling strategy originates from Launder, 

Reece & Rodi (1975) where the Reynolds stresses are solved via exact transport equations, 

accounting for the directional effects of the Reynolds stress field. Additional work by Gibson 

& Launder, (1978), Speziale, Sarkar & Gatski (1991) and Craft, Launder & Suga (1996) has 

revolved around the modelling of the pressure-strain term due to its importance in the 

redistribution of energy among turbulence normal stresses and ensuring that as turbulence is 

driven to isotropy, the shear stresses decline. The benefits include significant improvements 

in the models ability to predict anisotropies in the turbulence structure but at the 

computational cost of needing to solve seven transport equations (rather than two as seen for 

the turbulence models discussed previously), greatly increasing solution run time. It is 

primarily this reason that has delayed the wide spread application of RSM to in-cylinder 

calculations. Lebrère & Dillies (1996) discusses the implementation of the RSM by Launder, 

Reece & Rodi (1975) into the research code KIVA-II for evaluation of the improvements in 

turbulence prediction against traditional two-equation turbulence models of the standard k-ε 

and RNG k-ε models. The author comments that while qualitatively all models provide 

similar results for mean quantities of turbulence through the cycle, large differences exist in 

turbulence anisotropy particularly during the intake stroke, in the near spark plug region 

towards the end of compression and in the near-wall regions. The authors also quote 30% 

increase in memory requirements and 50% increase in CPU time though no mention is made 

to the degree of parallelisation or computing technology used so in present times this 

information should be used carefully. 

Binjuwair & Ibrahim (2013) evaluated the in-cylinder flow field of an optical single cylinder 

engine using both realizable k-ε and RSM turbulence models against experimental PIV data. 

Their results indicated that the realizable k-ε turbulence model was able to predict the 

qualitative trends of the turbulence kinetic energy profiles but poorly predicted the magnitude 

of mean and RMS fluctuating velocities. The RSM turbulence model results showed much 

better agreement in terms of qualitative and quantitative prediction of turbulent quantities 

inside the combustion chamber. 

Based on the findings above, for the RANS portion of the research a variant of the RNG k-ε 

model will be used. This model combines the standard RNG k-ε model (Yakhot & Orszag, 

1986; Yakhot, Orszag, Thangam, et al., 1992) described in section 2.2.2, with additional 

terms not present in the standard RNG formulation to model compression and buoyancy 
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effects. This model was chosen due to it having a large body of research within the literature 

showing good predictions against experimental data, particularly in flow fields that are 

subject to the effects of rapid strain due to the compression and expansion of scales as seen in 

ICE’s (Bella, De Maio & Grimaldi, 2003) but without the large increase in computational 

expense when using a more complex classical model like the RSM.  

 

2.2.2.2 LES Turbulence Modelling 

 

A large problem with RANS turbulence models is their use of a single turbulence model to 

represent the behaviour of a large range of turbulent motions. The LES approach solves the 

N-S directly for the large eddies (due to their interaction with the mean flow and geometry, 

and anisotropic behaviour) using space-filtered equations and only the smaller eddies (that 

are almost isotropic at high Reynolds numbers) are modelled.  

When the velocity decomposition (equation (2.14)) is applied to the N-S equations, whilst the 

resultant equations take a very similar form to the RANS equations, conceptually the terms 

are different. In the LES context, �̅�𝑖  is the space-filtered velocity, 𝑢𝑖 ′ is the subgrid velocity 

and 𝜏𝑖𝑗  represents the sub-grid scale (SGS) stresses, which requires modelling and leads to 

the creation of a SGS model.  

The SGS stresses are typically resolved by being related to the strain rate tensor 𝑆�̅�𝑗  using a 

kinematic turbulence viscosity term 𝜐𝑇, via a Boussinesq or mean-gradient assumption, as 

shown in equation (2.25), where the isotropic portion 𝜏𝑘𝑘  is incorporated into the filtered 

pressure equation, leaving only the anisotropic portion to be modelled. 

 
𝜏𝑖𝑗 = −2𝜐𝑇𝑆�̅�𝑗 +

1

3
𝛿𝑖𝑗𝜏𝑘𝑘 (2.25) 

 

With the exception of using no SGS model at all and relying on grid and numerical 

dissipation, the simplest SGS model is based on the work of Smagorinsky (1963) where the 

turbulence viscosity is defined as shown in equation (2.26).  

 𝜐𝑇 = (𝐶𝑆Δ)
2|𝑆̅| (2.26) 
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Where CS is the Smagorinsky constant and Δ is the filter width defined by equation (2.27). 

  ∆ =  √𝑉
3

 (2.27) 

 

Where V is the cell volume of the computational grid. 

The benefit of the LES SGS Smagorinsky model is that, due to it not including any additional 

transport equations, it is less computationally expensive. Also, since it uses a turbulence 

viscosity closure similar to the RANS k-ε model, initialisation is simpler and the solution 

stability more robust. The disadvantages of the Smagorinsky model are that the turbulence 

viscosity closure approach is inherently overly dissipative and the Smagorinsky constant 

needs adjusting for each application, which may not be known a priori. 

An additional spatial filtering process originally suggested by Germano, Piomelli, Moin, et al. 

(1991) is often applied to the Smagorinsky SGS model where the Smagorinsky constant is 

obtained using the dynamic procedure, removing the need for selecting its value before 

starting the analysis and allowing the constant to spatially vary dependent on the local flow 

conditions. The disadvantages include additional computational expense incurred due to the 

extra filtering process and often additional averaging is needed to avoid solution instabilities. 

The k-equation model, originally developed by Yoshizawa & Horiuti (1985) but later applied 

to engineering flows in Kim & Menon (1995), is still based on a turbulence viscosity closure 

approach but here the turbulence viscosity is based on the SGS turbulence kinetic energy 

(TKE) as defined in equation (2.28). 

 
𝜐𝑇 = 𝐶𝑘Δ√𝑘𝑠𝑔𝑠 (2.28) 

 

The SGS kinetic energy is obtained using an additional transport equation which has a 

number of physical advantages including the modelling of additional physical processes 

(convection, production and dissipation of the SGS kinetic energy) and the SGS kinetic 

energy can be used in other sub-models including droplet modelling and combustion. The 

disadvantages are that the additional transport equation adds additional computational 
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expense and due to the different formulation of the TKE, can make initialisation from RANS 

predictions difficult with the potential for solution instability. 

More recently, the dynamic structure approach, or often called the dynamic structure model 

(DSM), was developed by Pomraning & Rutland (2002) and Chumakov & Rutland (2005), 

and instead of using a turbulence viscosity approach to resolve the SGS stresses as seen 

previously in equation (2.25), uses a tensor coefficient directly from the dynamic procedure 

as shown by equation (2.29). 

 𝜏𝑖𝑗
𝑠 = 𝐶𝑖𝑗𝑘𝑠𝑔𝑠 (2.29) 

 

The advantage of this approach is that it is not purely dissipative but a balance maintained 

between the velocity field TKE and the SGS k-equation, and SGS kinetic energy dissipated 

through molecular viscosity via a viscous dissipation term. This provides a good basis for 

modelling the SGS kinetic energy and its application within spray and combustion sub-

models but similar to the k-equation model, suffers additional computational cost due to the 

additional transport equation and potential for difficulties with solution initialisation. 

Figure 2.2 illustrates the potential improvement in mean and fluctuating velocity prediction 

when using a LES turbulence modelling approach versus the RANS k-ε model when 

compared to experimental results. 
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Figure 2.2 – Illustrating the improvement in mean and fluctuating velocity prediction 

using LES compared with a RANS technique for the same mesh and time step – 

reproduced from Gosman (2012) 

 

The use of LES in industrial applications with high Reynolds numbers has been significantly 

less extensive than RANS approaches due to the increased computational cost associated with 

direct computation of large scale turbulent motions. Recent advances in computing power 

and the addition of LES and SGS models in a number of commercial and research CFD codes, 

e.g. STAR-CD (Gosman, 2012), has seen LES beginning to be applied in research institutions 

for the purpose of model validation and investigation into in-cylinder physical processes. 

Since the turn of the century, there have been numerous examples of the application of LES 

to in-cylinder processes including; the investigation of in-cylinder flow fields, influences in 

direct injection fuel sprays, ignition and combustion cyclic variability. 

The work of Colin, Ducros, Veynante, et al. (2000) presents the adaptation of the Extended 

Coherent Flame Model (ECFM) to the LES methodology. This work is continued by Richard, 

Colin, Vermorel, et al. (2007), Vermorel, Richard, Colin, et al. (2009) and Enaux, Granet, 
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Vermorel, et al. 2011), where the use of LES and the ECFM is applied to investigate the 

influence of cyclic variation on combustion variability with good success against 

experimental data. 

Tatschl, Bogensperger, Pavlovic, et al. (2013), utilising commercial code AVL Fire, 

illustrates the application of LES to a GDI engine using the well-established Smagorinsky 

approach for the SGS model with a view of investigating cyclic variability and its impact on 

flame propagation and rate of heat release. More specifically, this example utilises a coupled 

1D-3D approach, where the intake and exhaust pipework are modelled via a 1D code and 

provide the unsteady boundary conditions to the 3D-CFD model but no mention is made how 

the fluctuating components are added to the inflow boundary conditions. The fuel injection 

model used is the Lagrangian Discrete Droplet Model (DDM – to be discussed further in the 

following section) where ‘the turbulent dispersion effects are assumed to be fully covered by 

the interaction of the droplets with the resolved LES flow field scales’. A variant of the 

Coherent Flame Model (CFM) adapted for use with LES is used to model combustion. The 

results indicate that the adopted LES approach is very capable of reflecting the degree of 

cyclic dispersion between different cycles. 

Som & Longman (2012) have shown the improvements, both qualitatively and quantitatively, 

in fuel spray modelling using an LES approach with the commercial code CONVERGE for 

the prediction of equivalence ratio, ignition delay and soot distribution in diesel combustion. 

Their results show a significant improvement in the characterisation of the spray structure 

and ignition delay predictions as a function of ambient temperature – a sample of results are 

shown in Figure 2.3. 

Disadvantages of the LES approach include its significant dependence on the grid size and 

quality and its implementation in the near wall regions where the quality of the SGS models 

are of significance and can be of lesser quality than a simpler RANS approach. A hybrid 

formulation combining both LES and RANS techniques called Detached Eddy Simulation 

(DES) has also been of significant interest in the CFD community. In this technique, LES is 

used in the main flow field but in areas where the grid size or quality is insufficient to resolve 

the large scale eddies the simulation switches to a RANS approach. This approach comes 

with its own challenges, including the effective switching between LES and RANS models 

but is seeing increased popularity. The application of DES to in-cylinder environment is still 

emerging with almost all examples of current application being to external aerodynamics. 
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Figure 2.3 – Images comparing the instantaneous equivalence ratio calculated using 

RANS and LES models, against experimental data from Sandia under non-reacting 

conditions – taken from Som & Longman (2012) 

 

Whilst the discussion above does not cover the extensive list of all LES SGS model variants 

within the literature, it does cover the most significant used within ICE research and those 

with a sufficient body of research to support their validity and capability of accurately 

predicting ICE flows. 

Based on the results discussed above, the Smagorinsky SGS turbulence model was chosen to 

be used in this research for the following reasons: 

 Well proven to provide reasonable results with adequate grid resolution and choice of 

Smagorinsky constant 

 Easily initiated from a RANS solution 

 Low computational cost due to not using an additional transport equation 

A final key step in the use of the Smagorinsky SGS model for this research was in the 

definition of the Smagorinsky constant 𝐶𝑆. A number of papers were reviewed to establish an 

appropriate value for the Smagorinsky constant based on the characteristics of the turbulence 
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expected within an ICE. The works of Moureau (2004), Dugue, Gauchet & Veynante (2006) 

and Habchi, Devassy & Kumar (2014) quote a range for 𝐶𝑆
2 of 0.1 to 0.2, hence based on this 

a value of 0.14 (or 𝐶𝑆 = 0.02) was chosen and considered appropriate for this research. 

 

2.3 FLOW IN ENGINES 

 

2.3.1 Intake Flow 

 

The flow through the intake port and valve is responsible for many of the flow features 

generated within the cylinder. 

The flow past a valve can be described by the equation for compressible flow past a 

restriction (derived from one-dimensional isentropic flow analysis) and real gas effects are 

accounted for by means of an experimentally determined discharge coefficient, CD. The 

effective flow area past the valve is calculated by the product of discharge coefficient and 

reference area. A number of different reference areas are used when specifying valve flow 

but the valve curtain area, defined by equation (2.29) is one of the mostly commonly used 

since it varies linearly with lift, where Dv is the valve head diameter and Lv is the valve lift. 

 𝐴𝐶 = 𝜋𝐷𝑣𝐿𝑣 (2.30) 

 

The flow past the intake valve can be broken down into three distinct regimes which correlate 

to the valve lift to diameter ratio. The different flow regions also correlate with changes in the 

discharge coefficient, AE/AC.  

At very low lifts the flow is attached to the valve head and seat. As the valve lift increases the 

flow separates from the valve head and causes a sharp reduction in discharge coefficient. The 

discharge coefficient then increases with increasing lift, since the size of the separated region 

remains almost constant while minimum flow area increases until at high lifts the flow 

separates from the valve seat as well and another abrupt reduction in discharge coefficient is 

seen. At high engine speeds, unless the inlet valve is of sufficient size, the flow past the inlet 
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valve will become choked where gas velocity is limited and volumetric efficiency decreases 

rapidly. 

Justham (2010) investigated the cyclic variability of intake valve flow using a HSDPIV 

system focussed on a small region along the top surface of the intake valve over a number of 

crank angle positions during the intake event. Results clearly show the flow initially attached 

to the valve head and detaching at larger lift values. It was also noted of the significant cyclic 

variation seen in the intake jet due to the level of turbulence present, impacting the valve lift 

at which the flow detaches from the valve head.  

Vortices are also generated either side of the valve jet, recirculating beneath the valve head 

and into the upper corners of the combustion chamber as a consequence of the shear layer 

created between in-cylinder gas and the turbulent fast moving intake jet. These rotating 

vortices contribute to bulk gas motion through the intake event but break down during the 

compression process increasing in-cylinder turbulence levels further. 

The intake valve provides the minimum area for the flow within an internal combustion 

engine and hence the gas velocities generated by flow through the intake valve are at their 

highest. It has been shown that the intake jet velocity is proportional to the mean piston speed 

and thus it follows that in-cylinder flow velocities at different engine speeds also scale with 

mean piston speed (Heywood, 1988). 

 

2.3.2 In-Cylinder Flow 

 

The charge motion within the cylinder of a GDI engine exhibits a number of characteristics: 

 Three-Dimensional 

 Compressible 

 Spatially and temporally varying 

 Fully turbulent; anisotropic and non-homogeneous 

 High levels of interaction with solid boundaries 
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In addition to this, the charge motion has a major influence on all of the processes that occur 

within the combustion chamber, including heat transfer, fuel injection, mixture preparation, 

near spark plug conditions at the point of ignition timing, the combustion event and 

subsequent pollutant formation. The in-cylinder charge motion can be loosely classified as 

either a bulk gas motion or small scale turbulence and both need characterisation. In-cylinder 

flow characteristics of significance are; the mean flow components, the stability of the mean 

flow, the temporal turbulence evolution during the compression stroke and the mean velocity 

in the vicinity of the spark plug around the point of ignition timing. In engines, the problem is 

further compounded by the impact of the moving geometry of valves and piston, changing 

the flow pattern throughout the engine cycle. In addition, the random nature of turbulent 

flows generate significant cyclic variability where large scale patterns may repeat but the 

small scale variations can cause significant changes in the flow field from one cycle to the 

next (Zhao, Lai & Harrington, 1999; Fansler & French, 1987; Rimmer, Long, Garner, et al., 

2009; Ozdor, Dulger & Sher, 1994). 

As noted previously, the in-cylinder bulk gas flow motion is significantly impacted by the 

intake valve jets during the intake process and is a key factor in all subsequent in-cylinder 

flow processes. 

Within the cylinder, a number of rotating flow structures exist and the instantaneous angle of 

inclination between the structures principal axis of rotation and the cylinder axis are often 

used to help describe the orientation of the flow structure. Structures which rotate parallel to 

the axis of the cylinder are commonly denoted as ‘swirl’ and structure which rotate 

perpendicular to the cylinder axis described as ‘tumble’. The magnitude of swirl and tumble 

flow components is highly dependent on intake port geometry and subsequent intake valve 

jets, and the in-cylinder flow field is often designed such that it provides characteristics that 

favour the chosen fuel injection and combustion strategy. 

Tumble dominated flow fields tend to generate large-scale rotating structures that generate a 

significant amount of in-cylinder mixing. This flow structure therefore tends to favour 

homogeneous mixture formation. The rising piston compresses the rotating flow structures 

causing deformation and energy dissipation into smaller flow structures until high levels of 

turbulence are generated by TDC. Tumble flow structures are typically generated using 

pronounced intake port geometry to cause the intake jet to travel down the cylinder wall and 

back up the exhaust side of the combustion chamber. Tumble flow fields are therefore very 
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effective at generating high velocities in the near wall region for promoting increased rates of 

wall film evaporation in the event of spray plume impingement. Due to the break down of 

flow structures by the rising piston and subsequent increases in turbulence levels, tumble 

dominated flow fields tend to suffer from increased cyclic variability. 

Swirl dominated flow fields are much less susceptible to degradation due to piston motion 

and hence flow structures are often preserved for longer into the compression stroke. This 

aspect can allow swirl dominated flow structures to better maintain mixture stratification later 

into the cycle. Swirl flow structures are seen to be much more engine speed dependent and 

this can lead to a limited region of adequate fuel-air mixing. 

A third significant flow structure which should be discussed is squish. Squish flow progresses 

radially inwards near TDC and is initiated as a consequence of the significantly reduced 

volumes between the piston and outer areas of the combustion chamber causing the flow to 

be forced towards the centre of the combustion chamber. Squish only acts to intensify the 

bulk flow of swirl or tumble and does not become significant until near TDC.  The amount of 

squish is often defined by the percentage squish area, i.e. the percentage of area where the 

piston closely approaches the cylinder head and its magnitude is also highly dependent on 

engine speed (Zhao, Lai & Harrington, 1999; Heywood, 1988; Ma, 2006). 

In addition to the three large-scale flow structures discussed above, the final in-cylinder flow 

field can be a complex combination of each flow type, and the flow structure is both non-

homogeneous (i.e. non-uniform) and anisotropic (i.e. highly directionally dependent). There 

is significant research available both experimental and numerical, that has reported on the 

large-scale flow structures within internal combustion engines and GDI variants including 

Auriemma, Corcione, Macchioni, et al. (1998), Binjuwair (2013), Chen (1994), Das (1996), 

Davis & Borgnakke (1982), Delhaye & Cousyn (1996), Fansler & French (1987), Faure, 

Sadler, Oversby, et al. (1998), Flowers, Aceves & Babajimopoulos (2006), Fukuda, Ghasemi, 

Barron, et al. (2012), Henson & Malalasekera (2000), Jarvis, Justham, Clarke, et al. (2006), 

Krishna, Mallikarjuna, Davinder, et al. (2013), Laget, Zaccardi, Gautrot, et al. (2013), Long 

(2010), Long, Rimmer, Justham, et al. (2008), Murad (2006), Osei-Owusu (2008), Ozdor, 

Dulger & Sher (1994), Rimmer (2011), Rimmer, Long, Garner, et al. (2009) and Gnana  

Sagaya Raj, Mallikarjuna & Venkitachalam (2013), but very few have attempted to 

quantitatively characterise the anisotropy present within the flow, including Petersen & 

Ghandhi (2010) and Lebrère & Dillies (1996).  
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Of particular interest are some of the flow variations apparent in the works by Justham (2010) 

that were measured in the GDI engine that will be the focus of this research. Figure 2.4 shows 

the flow past the intake valves generating a tumble motion down both intake and exhaust 

sides of the combustion chamber. The valve jet running down the intake side of the 

combustion chamber generates a counter clockwise tumble motion guided by the cylinder 

liner until it reaches the piston crown and a rotating vortex is generated. A clockwise tumble 

flow motion on the exhaust side of the combustion chamber is also present but due to the 

greater radial component of the flow structure, it reflects off the cylinder liner and creates 

another rotating vortex higher in the combustion chamber. These two flow structures act to 

create complex rotating flow structures within the combustion chamber interior that changes 

through the cycle as a consequence of the weakening valve jets and falling piston. 

A number of smaller-scale rotating structures are also present in the swirl plane as seen in 

Figure 2.5. This is as a consequence of the radial component of the intake valve jet 

interacting with the combustion chamber wall and interaction with the valve jet from the 

adjacent intake valve. This example helps to illustrate the bulk motions as discussed above 

but also the complexity of the in-cylinder flow field where the flow in not limited to just a 

radial or axial flow component as is the case in typical diagrams showing either a ‘tumble’ or 

‘swirl’ flow motion. 

 

  

Figure 2.4 – Mean low frequency velocity magnitude contours along the bore centreline 

in the tumble plane at 92°ATDC reproduced from Justham (2010) 
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Figure 2.5 – Mean low frequency velocity magnitude contours 10mm below the peak 

piston height in the swirl plane at 112°ATDC reproduced from Justham (2010) 

 

2.4 FUEL INJECTION 

 

The fuel injection process in a GDI engine involves the injection of liquid fuel into the 

combustion chamber and subsequent disintegration mechanisms, which constitute a number 

of complex physical processes: 

 Highly interacting two-phase flow 

 Complex multi-component fuels with condition specific properties 

 Highly transient in nozzle cavitation 

 Impacted by both fuel injection system and in-cylinder aerodynamics 

 Contains multiple break-up mechanisms 

 Atomisation 

 Droplet-to-droplet collisions and subsequent interactions 

 Variety of impingement which vary dependent on local droplet, flow and  surface 

conditions 
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 Liquid film formation and subsequent flow, evaporation and heat transfer processes 

The following is a discussion of the physical processes occurring during fuel injection in a 

GDI engine and some of the typical numerical methods and sub-model used for making 

predictions in this area. Note: Additional detail is included for certain sub-models and 

physical processes that will be used to support analysis and discussion later in this thesis. 

 

2.4.1 Fuel Spray Characteristics 

 

At a macro level, fuel sprays are typically characterised by a number of defining parameters. 

The spray penetration is often split into two different characteristics. The first being the 

break-up length which defines the axial penetration of the liquid core from the injector tip 

into the gaseous medium. This is an important parameter for engine development due to it 

providing an indication of the rate of fuel-air mixing, which is important due to the limited 

timescales available during an engine cycle. The second is the spray tip penetration defining 

the maximum axial spray penetration including liquid droplets that have broken up from the 

liquid core. The spray angle is also often used to characterise the fuel spray plume. These 

quantities are depicted in Figure 2.6. 

On a micro level, additional information is used to help characterise fuel sprays, including the 

mean droplet size and droplet size distribution.  

The use of mean droplet size was standardised by Mugele & Evans (1951) and some common 

mean diameters used today in various applications include; arithmetic mean diameter D10, 

surface mean diameter D20, volume mean diameter D30 and the sauter mean diameter D32. The 

sauter mean diameter (SMD) is the diameter of the droplet that has the same volume to 

surface area ratio as the entire spray. Due to the SMD relating the mean droplet diameter to 

the surface to volume ratio of the droplet, it is a commonly used measurement in engine 

sprays where the active surface area is an important characteristic in the breakup and 

atomisation processes. 
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Figure 2.6 – Schematic of spray characterisation, spray image reproduced from van 

Romunde (2011) 

 

Fuel injected ICE’s present a particularly difficult challenge for numerical modelling due to 

the complex physical processes as outlined above. Models which explicitly treat the two-

phase structure of the spray occur in two classes: continuum droplet models (CDM) and 

discrete droplet models (DDM). 

A droplet is typically described by eight variables; three spatial components, three velocity 

components, temperature and radius. The CDM approach attempts to represent the motion of 

all droplets via an Eulerian partial differential probability equation for all eight variables 

across the hundreds of millions of droplets that constitute a typical fuel spray. Obviously this 

approach requires enormous computational requirements and has led to the widespread use of 

the Lagrangian approach of a DDM. A DDM solves the conservation equations of mass, 

momentum and energy for each element, with one of the first documented applications 

present in Bracco (1985). For the sake of brevity, the conservation equations of the dispersed-

phased are not presented but can be found documented in CD-adapco (2014). 

Due to the large number of droplets present in a realistic engine spray, a statistical approach 

is taken to reduce the computational expense where the total population of droplets is 

represented by a finite number of ‘parcels’, each of which represents a group of droplets with 

the same properties. Ensuring adequate statistical convergence must be considered, especially 

during mesh refinement, as illustrated in Figure 2.7. The idea of reaching statistical 

Plume tip 

penetration

Liquid core 

penetration
θ

Plume angle, θ
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convergence must be sought by seeking: cell size approaches zero and parcels per cell 

approaches infinity, though this increases the number of parcels and hence computational 

requirements. Merker, Schwarz & Teichmann (2012) suggests that fifty parcels per cell 

should be considered a reasonable number, i.e. if N cells of edge length Δl (in the spray 

direction) are found at the nozzle opening and the injection velocity is v, then 50*N parcels in 

time Δt=Δl/v should be injected. Though ultimately, this requirement should be driven by the 

sub-models used and their individual need for statistical convergence. This is particularly true 

for inter-drop collision modelling. 

 

 

Figure 2.7 – Mesh refinement (parcel number remaining equal) leads to a diminishing 

number of parcels per cell and thus to poorer statistical resolution of the local droplet 

properties - taken from Merker, Schwarz & Teichmann (2012) 

 

2.4.2 Primary Breakup 
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The break-up of liquid sprays is of fundamental importance to GDI engine. The impact on the 

spatially and temporally varying fuel-air mixture and subsequent combustion is significant 

and the complexity increased by the time and space constraints of a high speed automotive 

GDI engine. 

The break-up process has been of significant interest for the past century and seen significant 

works including; Rayleigh mechanism, Weber theory, Castleman hypothesis, Ohnesorge 

criteria, Taylor mechanisms and instability theory (Sirignano & Mehring, 2000). The four 

forces acting on a liquid stream and that are important in break-up processes are summarised 

as: 

 Gravity force, ρL3g 

 Inertia force, ρL2V2
 

 Surface tension force, σL 

 Viscous force, µLV 

From these four forces, three independent non-dimensional numbers can be derived: 

 Reynolds number (ratio of inertia to viscous forces),  

 
𝑅𝑒𝑙 =

𝜌𝑙𝐿𝑉

𝜇𝑙
 (2.31) 

 Weber number (ratio of inertia to surface tension forces),  

 
𝑊𝑒 =

𝜌𝑙𝐿𝑉
2

𝜎
 (2.32) 

 Froude number (ratio of characteristic velocity to characteristic length),  

 
𝐹𝑟 =

𝑉2

𝑔𝐿
 (2.33) 

 

It was Ohnesorge in 1931 that first completed quantitative measurements to describe the 

liquid jet break-up process and found that the Reynolds number and Weber number could be 

combined to offer a description of the disintegration process including all the main fluid 

parameters and in so derived the Ohnesorge number 𝑂ℎ. 
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𝑂ℎ =

𝑊𝑒0.5

𝑅𝑒
=
𝜌𝑙𝑔𝐿

2

𝜎
 (2.34) 

 

Where, ρl is the liquid density, σ is the surface tension coefficient, µl is the liquid dynamic 

viscosity, V the characteristic velocity and L the characteristic length. In addition to the forces 

acting on the liquid jet, there are equivalent forces acting on the surrounding gas (denoted 

with a g subscript) which influence the break-up process and are not described by the above 

equations. This results in four additional non-dimensional parameters being defined; gas-

phase Reynolds number, gas-phase Weber number and gas-to-liquid density and viscosity 

ratios. The implication of this is that no single equation is able to characterise spray break-up 

behaviour and it is common to use a combination of the above parameters across a range of 

break-up behaviours. 

Regimes of primary liquid break-up were identified by Reitz & Bracco (1982) and were 

superimposed on a log(Oh)-log(Re) plot as shown in Figure 2.8 as proposed by Lefebvre 

(1989).  

 

Figure 2.8 – Ohnesorge diagram with liquid breakup regimes identified by Reitz & 

Bracco (1982) superimposed, taken from Baumgarten (2006) 

 

The first regime identified at low Re and Oh numbers was the Rayleigh capillary mechanism 

where aerodynamic interactions are less important and axisymmetric distortions occur as a 

result of hydrodynamic instabilities due to inertia and surface tension forces, with droplet 



Chapter 2  Literature Review 
_ __________________________________________________________________________________________________________________________________________________________________________________________________ _________________________________________________________________________________________________________  

52 

 

formation having radii of the same order as the radius of jet. With increasing Re and Oh 

number is the first wind induced regime where non-axisymmetric oscillations occur, again 

producing droplets of similar radii to the jet radius. There is an accompanying increase in 

both intact liquid jet length and jet break-up length. The third regime is the second wind 

induced regime where at higher Re numbers the flow becomes turbulent within the nozzle. 

The growth of shorter wavelength surface waves is initiated due to aerodynamic interactions 

with turbulence generated by the liquid-gas velocity gradient, producing droplets smaller than 

the jet radius. This regime sees a further increase in liquid jet length but a reduction in jet 

break-up length, with droplet formation now occurring closer to the nozzle exit. A further 

increase in Re number leads to an increasingly turbulent flow with chaotic break-up, droplet 

formation occurring at the nozzle exit and a reduction in liquid jet length. Images depicting 

the break-up regimes and the changes in liquid core length and break-up length are shown in 

Figure 2.9.  

 

Figure 2.9 – Jet breakup for the four characteristic primary breakup regimes of Reitz 

& Bracco (1982) 

 

Once the atomisation regime is reached, the concept of break-up length becomes complicated 

by the jet disintegration process, however attempts have been made to measure liquid 

penetration lengths within diesel sprays using macroscopic imaging. Changes in image 

gradient can provide an ‘intact liquid surface length’ which is shown to reduce with 

increasing jet velocity. Pertinent to GDI engines with small L/D nozzles and sprays within 
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the atomisation regime, whilst the liquid surface length may approach zero, the core length 

may actually increase due to the presence of large liquid fragments existing downstream of 

the nozzle. Due to being strongly influenced by in-nozzle conditions, this aspect of the 

atomisation regime is particularly difficult to define. 

During the same works, a relationship called the dispersion equation was developed for low 

speed liquid jets. It was based around the linear theory of hydrodynamic stability of Taylor, 

and related the wave growth rate of an initial perturbation of infinitesimal amplitude to its 

wavelength. The solution to this equation provides the maximum growth rate of the Kelvin-

Helmholtz wave that occurs at a particular wavelength. The maximum wave growth rate and 

the corresponding wavelength characterise the fastest growing waves on the liquid surface 

which are responsible for the liquid break-up. 

Reitz & Bracco (1982) also investigated the driving mechanisms for the initiation of 

distortions and break-up characteristics at the surface of a liquid jet. The mechanisms 

included; boundary layer velocity profile relaxation, turbulence, cavitation and growth of 

surface waves due to aerodynamic forces, as depicted in Figure 2.10. Their findings showed 

that atomisation could occur irrespective of which mechanism was removed. They also 

concluded that the break-up mechanism was dependent on gas density but not gas pressure. 

Due to the complexity of the measurement, investigations on the impact of cavitation in 

turbulent liquid jet break-up in modern GDI injection systems is limited but a detailed 

example of such work is by Serras-Pereira, Aleiferis & Richardson (2012) where optical 

nozzles were used to characterise the fuel spray in the near nozzle region and investigate the 

impact of cavitation and flash boiling effects on primary break-up. 
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Figure 2.10 – Mechanisms of primary breakup, reproduced from Baumgarten (2006) 

 

Due to the importance of nozzle effects on spray break-up characteristics, a number of efforts 

have been completed to provide dedicated sub-models to represent the primary break-up 

process occurring in the near-nozzle region. 

The ‘Huh’ model in particular was created by Huh & Gosman (1991) and is based on the 

premise that the two most significant mechanisms in spray atomisation are the gas inertia and 

internal turbulence stresses generated in the nozzle. The assumption is that turbulence 

generated in the nozzle produces initial perturbations on the fuel jet surface as it exits the 

nozzle, which then grown exponentially via interaction with the surrounding gas (surface 

wave growth) until they detach from the jet as droplets. The model estimates the initial 

perturbations from an analysis of the flow through the hole and then uses Taylor wave growth 

theory to represent the atomisation process. Figure 2.11 taken from the paper by Som, 

Ramirez, Aggarwal, et al. (2009) in developing the KH-ACT model certainly suggested that 

for diesel sprays at low pressures (21MPa), cavitation effects were small compared to 

turbulence and aerodynamic effects. This is obviously not all encompassing since increases in 

fuel spray and ambient gas conditions or changes in nozzle geometry will impact the balance 

between driving break-up mechanism so one needs to bear this in mind when defining the 

most appropriate break-up model for their situation. 
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Figure 2.11 – Effect of different spray models on spray penetration for 21MPa rail 

pressure – taken from Som, Ramirez, Aggarwal, et al. (2009) 

 

Campbell, Gosman, Hardy, et al. (2013) utilised the Huh primary break-up model with the 

Reitz-Diwakar break-up model for secondary break-up with grid refinement to model flame 

lift-off length in a multi-hole diesel injector at 150MPa (moderate injection pressures by 

today’s standards). The author shows reasonable predictions of vapour penetration lengths 

but ultimately shows under-prediction of vapour lengths due to the “well known shortcoming 

of eddy viscosity turbulence models in free shear flow” when using the standard k-ε. Small 

improvements were seen with the RNG k-ε for a short period but ultimately the same under-

prediction of penetration length was seen once the fuel spray was fully developed. The author 

concludes that considerable improvements could be made with improvements in turbulence 

predictions. 

The Linearized Instability Sheet Atomization (LISA) model was created by Schmidt, Nouar, 

Senecal, et al. (1999) and utilises the experimental work by Senecal, Schmidt, Nouar, et al. 

(1999) that was undertaken at a similar time. The model was developed in response to the 

increasing use of hollow-cone pressure-swirl injectors being used in GDI engines. The model 

assumes little knowledge is known of the internal details of the injector, but instead utilises 

available observations of external spray characteristics and in particular, theories on liquid 

sheet break-up regimes. The author presents results showing favourable predictions of drop 

size and penetration length when compared with experimental data though does suggest that 
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further work is needed to improve the injector exit velocity prediction and validate the 

assumed aerodynamic break-up process. 

The use of the KH model for primary break-up and KH-RT model for secondary break-up 

has been widely employed for diesel spray simulation due to it being computationally 

efficient and fairly effective at representing the global spray behaviour. However, this model 

does not account for the effects of cavitation and turbulence within the nozzle on the 

atomising spray, which has been shown to be significant in certain sprays. The work of Som, 

Ramirez, Aggarwal, et al. (2009) sought to modify the traditional KH model to include effect 

for nozzle turbulence and cavitation and was implemented in commercial code CONVERGE 

and called KH-ACT, an acronym for Kelvin Helmhotz-Aerodynamic Cavitation Turbulence. 

This, alongside subsequent reports by Som & Aggarwal (2010) and Som, D’Errico, Longman, 

et al. (2012), have shown this version of the model to show very reasonable improvements in 

ability to predict global spray structure of diesel sprays though as discussed previously, 

sprays with strong primary break-up characteristics would expect to be better modelled with 

more intensive modelling of the characteristics of the primary break-up regime. 

Finally, mathematical correlations have also been used to define the droplet size distribution 

following the primary breakup process. Correlation types including, upper-limit, log-normal, 

squared, chi-squared and normal distributions have all been applied to droplet size 

distributions but the Rosin-Rammler distribution is the most commonly used. This method 

can provide very realistic predictions of droplet sizes and breakup processes but requires 

prior knowledge of the expected droplet size distribution, usually through experimental PDA 

data, to correctly specify the initial distribution characteristics at some location downstream 

of the nozzle exit. 

 

2.4.3 Secondary Breakup 

 

After the liquid jet has undergone the primary break-up into liquid ligaments and large 

droplets, it undergoes a process of secondary atomisation as a result of the aerodynamic 

forces between the droplet and surrounding gas. The aerodynamic forces act to flatten the 

droplets and ligaments resulting in an unstable growth of surface waves which eventually 

lead to disintegration. 
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Experimental investigations have found that the break-up modes can be broken down into a 

number of different mechanisms which can be classified by the gaseous Weber number of the 

droplet as summarised in Figure 2.12. The progression of research in this area has been 

summarised by Guildenbecher, López-Rivera & Sojka (2009), where the authors have 

attempted to resolve some of the discrepancies between Weber number transitions that exists 

in the literature. A summary of the physical processes involved in each deformation 

mechanism is now provided. 

The first stage of all deformation mechanisms is the impact of aerodynamic forces on the 

droplet. Deformation is caused by an unequal static pressure distribution between the forward 

and rear of the drop periphery. This causes the drop to expand laterally and compress in the 

direction of motion. Vibrational breakup occurs when the aerodynamic forces are insufficient 

to overcome the droplet surface tension but cause the droplet to oscillate. If these oscillations 

are unstable then the droplet will break down into a few large fragments. 

 

Vibrational breakup 

 

We < ~11 

Bag breakup 

 

~11 < We < 35 

Bag-and-stamen 

breakup 

 

 

~35 < We < ~80 

Shear breakup 

 

We < ~80 

Sheet-thinning or 

sheet-stripping 

breakup 
 

~80 < We < ~350 
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Wave crest stripping 

breakup 

 

We > ~350 

Catastrophic breakup 

 

We > ~350 

Figure 2.12 – Droplet secondary breakup mechanisms 

 

The bag breakup mechanism occurs over four sub-stages; the evolution into an oblate 

spheroid due to aerodynamic deformation, bag growth where the centre of the drop gets 

blown downstream forming a hollow bag attached by a toroidal ring, breakup of the bag 

where the bag bursts forming a large number of small fragments, finally the toroidal ring 

breakup in which a number of larger fragments are formed. Due to the time (milliseconds) 

and length (micrometre) scales involved, experimental proof of this break-up mechanism is 

not yet available but Liu & Reitz (1993) have postulated that impurities within the droplet or 

disturbances in the flow field could be the initiation for bag breakup. 

This transition between bag breakup and sheet-thinning breakup mechanisms is often subject 

to variation within the literature. Pilch & Erdman (1987) document a variation on the bag 

breakup regime called bag-and-stamen breakup where a toroidal ring and hollow bag are 

formed but column of liquid (stamen) is also formed along the droplet axis where the bag 

bursts first and rim and stamen disintegration follows. Hsiang & Faeth (1992) use the term 

multimode, and describe a breakup mechanism where both aerodynamic effects and shear 

effects are important. Two theories exist to describe this mechanism; the “combined 

Rayleigh-Taylor/aerodynamic drag” mechanism and the “internal flow” mechanism, though 

the latter has been shown to be a better fit to experimental and numerical evidence. The 

internal flow theory hypothesises that drop deformation leads to internal flow from the poles 

to the equator. This flow causes a pressure difference across the drop which tends to result in 

bag breakup, whilst the effect of the rapid deformation at the drop periphery tends to result in 

sheet-thinning breakup, hence a dual mode of breakup can exist. Ranger & Nicholls (1969) 

proposed an additional breakup mechanism called shear breakup where breakup is 

predominantly shear driven and thus happens at Weber numbers at the upper range of the 

bag-and-stamen or multimode regime. 
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Sheet thinning or stripping breakup occurs at much higher initial velocities. Initial 

deformation due to aerodynamic forces progresses as seen for vibrational breakup and bag 

breakup but following, due to the higher relative velocities, ligaments are stripped from the 

periphery where they break into smaller fragments. This continues until the droplet is 

completely fragmented or so small that aerodynamic forces become negligible (Liu & Reitz, 

1997). 

The catastrophic breakup regime occurs at the highest relative velocities between droplet and 

surrounding gas. In this breakup mechanism, the unstable surface waves grow rapidly with 

time and eventually penetrate the droplet leading to fragmentation. Liu & Reitz (1993) have 

noted that the wave growth may be described by either a Rayleigh-Taylor instability where 

instabilities occur when a density discontinuity is accelerated towards a lower density or 

Kelvin-Helmholtz instability where instabilities occur when high relative velocities exist at 

an interface though most authors have assumed that R-T instabilities dominate this 

mechanism due to the extremely high velocities seen by the droplets (Guildenbecher, López-

Rivera & Sojka, 2009; Hwang, Liu & Reitz, 1996). Some researchers also include a wave 

crest stripping regime where the formation of small-wavelength surface waves (where 

catastrophic breakup would be initiated by long-wavelength surface waves) on the droplet 

surface allow the action of the flow field to strip the wave crests from the droplet surface. 

In an in-cylinder application, spray momentum quickly reduces following primary break-up 

hence it is clear that high velocities necessary for effective secondary atomisation must be 

provided by the in-cylinder flow field. In dense diesel sprays with strong primary break-up 

regimes, secondary break-up regimes are of less significance whereas in GDI sprays, internal 

turbulence and cavitation are reduced and hence secondary break-up processes can be 

dominant (Merker, Schwarz & Teichmann, 2012), hence the secondary evaporation process is 

critical to the gaseous mixture formation around the spark plug and the rest of cylinder at the 

point of ignition, which has a subsequent impact on spark kernel development, flame 

propagation and pollutant formation. 

A large number of models have been developed in support of modelling atomising fuel sprays. 

One of the earliest model proposed by Reitz & Diwakar (1986) is very similar to that 

proposed by Dukowicz (1980) where the Weber number is used to define one of two break-

up regimes, either ‘bag’ breakup or ‘stripping’ breakup, and dependent on the defined regime, 

the droplet radius is reduced by the rate of change equations. The model requires user input 
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through four constants, two to determine the onset of the breakup regime and two to 

determine the droplet characteristic timescale. 

In 1987, O'Rourke & Amsden (1987) proposed an alternative break-up model called TAB, 

standing for Taylor Analogy Break-up, based on the earlier work of Taylor (1963). In this 

model, Taylors analogy between an oscillating and thus distorting drop is made to that of a 

spring-mass system with the gas aerodynamics, droplet surface tension, viscosity is suggested 

to be analogous to the external force acting on the mass, spring force and damping force 

respectively. The TAB model has been shown to predict well at low to moderate injection 

pressures but under predict penetration liquid and vapour penetration at higher injection 

pressures due to move to higher Weber number break-up regimes not being represented by 

the Taylor analogy (Habchi, Verhoeven, Huu, et al., 1997). 

The breakup model proposed by Pilch & Erdman (1987) was developed around an extensive 

database of experimental data on hydrodynamic fragmentation. From this data, Pilch and 

Erdman were able to generate correlations for the critical Weber numbers, the velocity 

history of accelerated droplets and droplet total breakup time, linked by a maximum stable 

diameter, which could be applied to create sub-models to characterise five breakup regimes: 

vibration, bag, bag-and-stamen, sheet stripping, wave crest stripping. This breakup model, 

whilst not explicitly modelling the KH-RT behaviour of high Weber number drops, benefits 

from having no user tuneable constants. 

The WAVE break-up model is based on the work of Reitz & Diwakar (1987) and uses the 

theory of Kelvin-Helmholtz instability analysis as a consequence of pressure perturbations 

causing surface wave growth.  

Habchi, Verhoeven, Huu, et al. (1997) attempted to resolve some of the short comings of the 

WAVE model by coupling this model with a new break-up model (FIPA) which is based on 

the work of Pilch & Erdman (1987). In this example, the model utilises the WAVE model for 

primary break-up of the liquid phase and the FIPA model for subsequent atomisation based 

on the Weber number and five subsequent break-up regimes. The authors reported good 

predictions of liquid and vapour penetrations against experimental data. 

The KH-RT model proposed by Patterson & Reitz (1998) was a progression of the earlier 

model WAVE and considers both Kelvin-Helmholtz aerodynamic surface instabilities and 

Rayleigh-Taylor instabilities due to droplet deceleration as competing sub-models, with the 
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sub-model predicting droplet instability first determining the droplet breakup regime. This 

model again has four empirical constants, two for each sub-model. There are a number of 

examples in the literature of the KHRT model being applied to ICE sprays.  

Wang, Reitz & Yao (2012) utilised the KH-RT model for making mixture, temperature and 

emissions predictions for a number of heavy duty diesel engines with multi-hole injectors and 

various multiple injection strategies. The author cites the simplicity and good predictive 

accuracy of the KH-RT break-up model but does not directly show results comparing 

predictions with experimental fuel spray data. The paper does show good predictions for 

global combustion parameters (pressure histories and rate of heat release) and presents a 

sensitivity analysis of the predictions to KH-RT model to model tuning constants. The 

authors also completed a parametric study on the model constants used in the KH-RT 

breakup model, indicating the need to provide good estimates of the model constants to yield 

accurate predictions for droplet breakup and all subsequent processes.  

 

2.4.4 Impingement 

 

The process of liquid impingement has been of interest to researchers in the internal 

combustion engine community since the identification that the injection of liquid fuel sprays 

in direct injection engines can result in impingement of liquid fuel on various in-cylinder 

surfaces. The effect of liquid fuel impingement in DI engines has been attributed to: 

 Increases in fuel consumption and carbon dioxide production due to impinged fuel not 

contributing to effective piston work 

 A key contributor to soot formation due to pool fires burning as an uncontrolled 

diffusion flame 

 Increases in unburned hydrocarbons due film evaporation post flame extinction and 

gaseous hydrocarbons exiting the cylinder during scavenging 

A number of researchers including Montanaro, Malaguti & Alfuso (2012), Montanaro, 

Allocca, Ettorre, et al. (2011), Luijten, Adomeit, Brunn, et al. (2013), Yang & Ghandhi (2007) 

and Drake, Fansler, Solomon, et al. (2003) have conducted experiments to investigate fuel 

spray impingement in direct injection engines and the impact of various factors on the fuel 
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impingement process including injection timing, injection pressure, fuel type, fuel 

temperature, gas temperature, surface temperature and surface roughness. 

In GDI engines typical locations of potential fuel impingement are the intake valve, spark 

plug, cylinder liner and piston crown. Serras-Pereira (2010) operated a single cylinder optical 

GDI research engine over a number of injection timings and found that injection timing early 

in the intake stroke coincided with periods of high in-cylinder flow velocities and high intake 

valve lift which in turn caused significant intake valve impingement and adverse mixture 

preparation.  

As part of a publication by Bai & Gosman (1995) (also including the formation of a 

modelling methodology), the authors conducted a literature survey of current research 

findings on single droplet impingement processes. Their findings were that a droplet may 

undergo different regimes dependent on the specific conditions at the point of impingement 

and are summarised in Figure 2.13 and described as follows. 

1. ‘Stick’ or ‘adhere’ to the impingement surface in nearly spherical form. This occurs 

when the impact energy is low and the wall temperature is below the characteristic 

pure adhesion temperature. 

2. ‘Spread’ to form a liquid film on the surface if impacted with moderate velocity onto 

a dry wall, or merge with a pre-existing liquid film on a wetted wall. 

3. ‘Rebound’ where the droplet bounces off the wall after impact. This regime occurs 

under two conditions: on a dry wall when the wall temperature is greater than or equal 

to the characteristic pure rebound temperature where contact with the surface is 

prevented by the intervening vapour film, or on a wetted wall when the impact energy 

is low and the air film trapped between the impacting droplet and liquid film causes 

low energy loss and the droplet to rebound. 

4. ‘Rebound with breakup’ where the wall temperature is less than the characteristic 

pure rebound temperature and bounces off the hot surface but is accompanied by the 

breakup of the droplet into two or three smaller droplets. 

5. ‘Boiling induced breakup’ where the droplet breaks up due to rapid boiling on a hot 

wall with temperature near the Nukiyama temperature. This regime can exist even at 

very low impact energies. 
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6. ‘Breakup’ occurs when the wall temperature is greater than the pure rebound 

temperature and the droplet first undergoes a large deformation to form a radial film 

and then further liquid film fragmentation due to the thermo-induced instability. 

7. ‘Splash’ when very high impact energies are present, a crown is formed, unstable jets 

develop on the periphery of the crown and breakup into many fragments. 

The authors suggest that these regimes are governed by a number of characteristics that 

describe the impingement conditions: droplet velocity, size, temperature, incidence angle, 

fluid properties such as viscosity, surface tension, wall temperature surface roughness and 

if present, wall film thickness and gas boundary layer characteristics in the near-wall 

region. 

 

 

Figure 2.13 – Droplet impingement regimes as proposed by Bai & Gosman (1995) 
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In addition to Weber number (representing the relative importance of droplet kinetic energy 

to surface energy) as an important quantity in describing impinging flows, the authors also 

present the droplet Laplace number 𝐿𝑎 , a measure of the relative importance of surface 

tension to viscous forces, as an important characteristic of impinging droplets. The Laplace 

number is shown in equation (2.35). 

 
𝐿𝑎 =

𝜌𝑙𝜎𝐿

𝜇2
 (2.35) 

 

The authors summarise the effect of Weber number and wall temperature on the droplet 

impingement regime in Figure 2.14 but note that the final outcome is a function of each of the 

parameters noted previously and multi-dimensional, and not two-dimensional as presented in 

Figure 2.14. 
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Figure 2.14 – Droplet impingement regimes and transition criteria as proposed by Bai 

& Gosman (1995) 

 

The impingement model by Bai & Gosman (1995) utilises the results from their literature 

survey to develop a numerical model to represent the process. The model is based on mass, 

momentum and energy conservation constraints and the addition of a randomising procedure 

on the post-impingement characteristics to represent the stochastic nature of the impingement 

process. The model first evaluates whether the wall is ‘wetted’ or ‘dry’ and based on this 

determines the potential impingement and post-impingement regimes based on Weber 

number. The authors comment in several instances on the lack of available data to adequately 

characterise the influence of key parameters on the impingement regime, indicating the need 

for improvements. The model does have a number of limitations including conditions where 

wall temperatures are below the liquid boiling point and neglect the effects of neighbouring 

impinging droplets and the gas boundary layer on the impingement dynamics.  
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The work of Allocca, Andreassi & Ubertini (2007) compared the Bai & Gosman 

impingement model against a model by Lee & Ryou (2000) across a range of representative 

diesel like conditions. Their results suggested that whilst the Bai & Gosman model provided 

better predictions for secondary droplets due to the empirical relationship employed by the 

model from Lee & Ryou (2000), in their original form both models were inadequate of 

correctly predicting splash phenomena due to the number of secondary droplets generated by 

the spray-wall interactions and the tangential component of the splashed droplet velocity. 

The modelling approach of Bai & Gosman (1995) has been furthered by a number of 

researchers in an attempt to improve the spray-wall interaction predictions.  

The work by Rosa, Villedieu, Dewitte, et al. (2006) which only considers smooth dry walls 

but was based on a significant quantity of experimental data, was combined with the Bai & 

Gosman model described above to create the ‘Bai-ONERA’ model. Literature describing the 

predictive capability of this model under realistic operating conditions appears unavailable at 

this time. 

Another significant development was through a series of works by Prof. Senda, including 

Senda & Fujimoto (1999), Senda, Kanda, Al-Roub, et al. (1997), Ashida, Takahashi, Tanaka, 

et al. (2000), Senda, Kobayashi, Iwashita, et al. (1994) and Matsuda & Senda (2003).  

The results from these works are combined into a revised version of the original Bai & 

Gosman model with modifications made to the sub-models defining regime transition based 

on an extensive experimental dataset. 

The model defines three regimes based on Temperature T* which is defined by equation 

(2.36).  

 
𝑇∗ =

𝑇𝑊 − 𝑇𝑁

𝑇𝐿 − 𝑇𝑁
 (2.36) 

 

Where TW is the wall temperature, TL is the Leidenfrost temperature and TN is the Nukiyama 

temperature and is defined by equation (2.37). 

 𝑇𝑁 = 𝐵𝑆𝑇𝑠𝑎𝑡 (2.37) 
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Where BS is a user defined constant. Tsat is the liquid saturation temperature dependent on the 

liquid vapour pressure which can either be calculated via the Clausius-Clapeyron equation or 

by NIST tables, where the latter is used by the CFD code used in this research. 

The three droplet impingement regimes are defined as follows: 

Regime 1: Free convection and nucleate boiling regime, T*≤0.00 

This range is sub-divided into conditions for a dry surface and wetted surface, for which the 

following is a description of each sub-regime, and the free convection and nucleate boiling 

regime as a whole is summarised in Figure 2.15.  

Dry Surface: 

 Drop-drop interaction or deposition: We ≤ 400 

In this regime the interaction between droplets during impingement affects their 

residence time on the surface, spreading, and droplet and film stability. After 

impact, droplet interactions are defined based on collision (including any 

coalescence) and secondary breakup models. Droplet deposition occurs until the 

surface coverage ratio is exceeded and a liquid film is formed – discussed further 

below (Senda & Fujimoto, 1999). 

 Splash: We > 400 

Wetted Surface: 

 Drop-film interaction: We ≤ 300 

At low Weber numbers, three film breakup sub-regimes, 1) rim type, 2) cluster type, 

3) column type, are defined from the experimental works of Al-Roub, Farrell & Senda 

(1996) and Al-Roub (1996) as a function of the non-dimensional film thickness (δ) 

and consequently define the child droplet diameter ratio and Weber number (Senda & 

Fujimoto, 1999). 

 Deposition/joins existing film: 300 < We < Wecr 

 Splash: We ≥ Wecr 

The critical droplet Weber number, Wecr is defined by equation (2.38). 
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 𝑊𝑒𝑐𝑟 = (2164 + 7560𝛿1.78)𝐿𝑎−0.2 (2.38) 

 

Where δ is the non-dimensional film thickness defined by equation (2.39). 

 𝛿 = (2 3)/𝛽2⁄  (2.39) 

 

Where β is the droplet spreading factor defined by equation (2.40). 

 β = 0.87(𝑊𝑒 6⁄ + 2)0.5 (2.40) 

 

The droplet spreading factor is used to relate the impinging droplet Weber number to 

the child droplet outgoing Weber number and diameter, and in the calculation of the 

critical Weber number for determining if a high Weber number impinging droplet is 

deposited into the film or splashes (Senda & Fujimoto, 1999). 

Regime 2: Transition boiling regime, 0.00<T*≤1.00 

 Rebound: We ≤ 200 

 Spread/deposition: 200 < We ≤ Wecr 

 Splash: We > Wecr 

Regime 3: Film boiling regime, T*>1.00 

 Rebound: We ≤ 100 

 Rebound and breakup: 100 < We ≤ 200 

 Splash: We > 200 
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Figure 2.15 – Summary of Senda droplet-wall impingement model for regime 1, natural 

convection and nucleate boiling 

 

 

Figure 2.16 – Summary of all Senda droplet-wall impingement model regimes 

 



Chapter 2  Literature Review 
_ __________________________________________________________________________________________________________________________________________________________________________________________________ _________________________________________________________________________________________________________  

70 

 

This version of the Senda impingement model utilises the information and developments 

from each of the previously mentioned sources, and in particular provides a significant 

reduction in the number of user defined constants which is beneficial with limited 

experimental data for model validation. 

In spite of the significance of liquid impingement in ICE’s, its critical feature in fuel spray 

modelling and the numerous research efforts in this area, a general theory for impinging 

droplets on solid surfaces is still unavailable. The study of the interaction between impinging 

droplets and solid surfaces continues to be an area of active research in both experimental and 

numerical fields. 

 

2.4.5 Liquid Films 

 

A liquid film or droplet attached to a wall is subject to a number of physical phenomena, as 

listed below and depicted in Figure 2.17:  

 Weight of the liquid film or droplet 

 Surface tension  

 Liquid-gas and wall-liquid shear stress 

 Imparted momentum from impinging droplet and the surrounding gas phase and lost 

momentum due to splashing 

 Flow separation and sheet breakup 

 Heat transfer: convection to the surrounding gas, conduction to the solid surface 

 Evaporation to the surrounding gas 

 



Chapter 2  Literature Review 
_ __________________________________________________________________________________________________________________________________________________________________________________________________ _________________________________________________________________________________________________________  

71 

 

 

Figure 2.17 – Major Physical Phenomena Governing Film Flow – taken from (Stanton 

& Rutland, 1998) 

 

In a subsequent work, Bai & Gosman (1996) also defined a methodology for modelling the 

characteristics of liquid films using an Eulerian approach, where transport equations for mass, 

momentum and energy for the wall film are solved in the boundary-layer framework. 

This methodology is often furthered by considering a Lagrangian approach for individual 

impinged droplets up to a certain point, after which the code switches to the Eulerian 

approach as originally proposed by Bai & Gosman (1996). 

A typical approach for defining the switch between Lagrangian and Eulerian approach is to 

use a surface coverage ratio limit. After a droplet has been determined to be deposited, it is 

assumed to spread into a cylindrical form with diameter Ds. The surface coverage ratio 𝛾𝑐, 

defined by equation (2.41), is constantly evaluated as droplets impinge on the solid surface 

until exceeding a predefined value, after which the droplet parcels on the cell face merge into 

a liquid film and are subsequently treated under the Eulerian approach. A liquid film 

spreading into a new cell face will instantly absorb any individual impinged droplet parcels in 

the new cell face into the liquid film.  

 𝛾𝑐 =
𝜋

4𝐴𝐶
∑𝐷𝑠,𝑖

2

𝑖

𝑁𝑖  (2.41) 
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Where Ac is the area of the cell face where the droplet parcel is located, Ni is the number of 

droplets in the ith
 parcel. 

Film stripping has been investigated by a number of researchers (Maroteaux, Llory, Le Coz, 

et al., 2002; Maroteaux, Llory, le Coz, et al., 2003) and is defined by three different 

mechanisms: 

 Stripping due to wave instability generated by adjacent flow 

 Stripping due to body-force induced instability (e.g. gravity, piston acceleration) 

 Breakup caused by flow over a sharp edge 

The vaporisation rate of a liquid film is a function of both the wall temperature 𝑇𝑤, and the 

environmental gas pressure through a change in the vapour pressure of the liquid. Heat 

transfer from the solid surface to the liquid film is typically characterised by four regimes, 

separated by the saturation temperature 𝑇𝑠𝑎𝑡 , Nukiyama temperature 𝑇𝑁  and Leidenfrost 

temperature 𝑇𝐿 as characterised in the boiling curve and droplet evaporation curves shown in 

Figure 2.18 and described as follows:  

Regime 1: Liquid film evaporation, 𝑇𝑤 < 𝑇𝑠𝑎𝑡 

 The liquid film evaporates slowly and the evaporation rate is strongly dependent on 

the turbulence level within the surrounding gas. 

Regime 2: Nucleate boiling, 𝑇𝑠𝑎𝑡 < 𝑇𝑤 < 𝑇𝑁 

 The liquid in the thermal boundary layer is overheated forming vapour cavities. The 

process of phase change consumes heat flux from the wall and prevents the 

temperature of the main film from exceeding the saturation temperature. This occurs 

until heat transfer from the wall to the liquid reaches a maximum at the Nukiyama 

temperature, often called the Critical Heat Flux (CHF). 

Regime 3: Transition boiling, 𝑇𝑁 < 𝑇𝑤 < 𝑇𝐿  

 Small vapour cavities coalesce to form larger vapour columns and pockets with an 

increasing amount of heat flux between wall and liquid being transferred through a 

vapour. 

Regime 4: Film boiling or Leidenfrost,  𝑇𝑤 > 𝑇𝐿 
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 Formation of a vapour cushion prevents direct contact between the liquid and wall, 

reducing heat flux from wall to liquid. 

A typical method for modelling the film boiling characteristics is to use the pool boiling 

correlations from White (1988), where a graphical summary is shown in Figure 2.19. 

 

  

(a) (b) 

Figure 2.18 – (a) Boiling curve and (b) Sessile droplet evaporation curve and schematics 

illustrating the regimes of boiling, reproduced from Bernardin & Mudawar (1999) 

 



Chapter 2  Literature Review 
_ __________________________________________________________________________________________________________________________________________________________________________________________________ _________________________________________________________________________________________________________  

74 

 

 

Figure 2.19 – Summary of the liquid film boiling model 

 

2.4.6 Leidenfrost Temperature Determination  

 

Imposing a reasonable estimate of the Leidenfrost temperature (which is difficult to measure 

experimentally) is critical for accurate predictions of high temperature wall-wetting and in 

particular, is used in the determination of the droplet impingement regime (equation (2.36)). 

Habchi (2010) developed and validated a model for estimating the condition specific 

Leidenfrost temperature based on a number of experimental works and is defined by equation 

(2.42). 

 𝑇𝑐𝑟 = 𝑇𝑠𝑎𝑡 + Δ𝑇 (2.42) 

 

Where Tcr represents the pressure dependent Leidenfrost temperature TL, and Δ𝑇 is defined 

by equation (2.43). 

 

∆𝑇 =  

{
 
 

 
 

                 
𝑇𝑐𝑟|1 𝑏𝑎𝑟 − 𝑇𝑏                                                  ∶ 𝑖𝑓 (𝑝 ≤ 1 𝑏𝑎𝑟)

 
(𝑇𝑐𝑟|1 𝑏𝑎𝑟 − 𝑇𝑏 ) − 𝐴

𝑇𝑐 − 𝑇𝑏
(𝑇𝑐 − 𝑇𝑠𝑎𝑡) + 𝐴       ∶ 𝑖𝑓 (𝑝 > 1 𝑏𝑎𝑟)

 (2.43) 
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Where Tcr|1 bar is the Leidenfrost temperature at 1 bar gas pressure, Tb is the normal boiling 

temperature of the liquid at 1 bar gas pressure, Tc is the critical temperature of the liquid and 

A is a constant calculated via: A = Max(1, Tcr|1 bar – Tc). 

Hence the Habchi model assumes that the Leidenfrost temperature is static below 

atmospheric pressure, but at pressures greater than atmospheric it tends linearly towards A 

when the gas pressure tends towards the critical pressure. 

As mentioned previously, determining the Leidenfrost temperature experimentally is difficult 

and a great deal of variation is seen in published data. Also, Tcr|1 bar across a variety of fuels 

(required to determine  Δ𝑇 within equation (2.43)) may not be available. 

Spiegler, Hopenfeld, Silberberg, et al. (1963) suggest that at conditions where the gas 

pressure is significantly less than the critical pressure, the result of 
27

32
𝑇𝑐  provides a good 

approximation of the foam limit and hence the minimum of the heat flux versus temperature 

curve at standard conditions. Thus, using the critical temperature Tc of the fuel (which is 

often well known), Tcr|1 bar can be approximated as defined by equation (2.44). 

 
𝑇𝐿|1 𝑏𝑎𝑟 =

27

32
𝑇𝑐 (2.44) 

 

Where in a CFD code Tc is typically determined from NIST tables for the fuel. 

It is worth noting that in reality, the Leidenfrost temperature is a dynamic property also 

dependent on the impinging droplet conditions. This Leidenfrost temperature model is based 

on sessile droplets and does not account for the impact of droplet dynamics on Leidenfrost 

temperature. 

 

2.4.7 Droplet-Droplet Collisions 

 

In real developing sprays, droplets collide with each other and undergo subsequent processes. 

O’Rourke (1981) was the first to attempt to model inter-droplet collisions and the subsequent 

interactions, including coalescence, separation and bouncing. When separation or bouncing 

occurs only momentum is exchanged; in coalescence momentum, energy and mass are all 
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exchanged. The approach taken is statistical rather than deterministic to avoid significant 

computational cost.  

Extensions to O’Rourke’s model have come from Schmidt & Rutland (2000) via the use of a 

No-Time-Counter (NTC). The revised model evaluates the density of fuel drops within the 

cell to determine if a direct collision calculation via O’Rourke’s method is cheaper than the 

NTC method and proceeds by the cheapest methodology, shown to both reduce computation 

time and improve accuracy of the original model.  

Further revisions include addition of a coalescence time-step by Aamir & Watkins (1999), 

additional constraints for determining collision likelihood by Nordin (2001), and cell 

clustering routines that allows collisions between parcels in adjacent cells. This remains the 

standard methodology for inter-droplet collisions in fuel spray modelling but the difficultly 

and computational cost of trying to handle collision processes between parcels in a 

Lagrangian context has led some to believe that inter-droplet collisions should not be 

modelled at this time (Merker, Schwarz & Teichmann, 2012). 

 

2.4.8 Droplet-Turbulence Interactions 

 

The turbulent fluctuations within a high Reynolds number flow field mean a droplet 

experiences a randomly varying velocity field that affects all subsequent processes including 

its velocity, breakup, heat transfer and so on, i.e. the energy exchange from the continuous-

phase flow field to the discrete-phase liquid droplets. 

The droplet turbulence dispersion is typically modelled via a stochastic approach as proposed 

by Gosman & Ioannides (1983), whereby the droplet instantaneous velocity is equal to the 

sum of the mean velocity and the fluctuating velocity where it is assumed that the fluctuating 

velocity within an eddy is isotropic and follows a Gaussian probability density function (pdf)  

and that the interaction time is assumed sufficiently short that the fluid velocity in an eddy is 

effectively constant. The Gaussian pdf has a mean of zero and a standard deviation as defined 

by equation (2.45) where k is the turbulence kinetic energy. 



Chapter 2  Literature Review 
_ __________________________________________________________________________________________________________________________________________________________________________________________________ _________________________________________________________________________________________________________  

77 

 

 

𝜎 = √
2

3
𝑘 (2.45) 

 

When using the RANS k-ε turbulence modelling approach, the mean velocity is taken from 

the time-averaged local flow velocity from the turbulence model and the turbulence kinetic 

energy is the modelled turbulence kinetic energy taken from the k-equation. 

When using the LES turbulence modelling approach, the turbulent dispersion is used to 

represent turbulence effects at the SGS on the droplet position and velocity. Hence, in this 

context, the resultant droplet velocity uses the filter-velocity for the mean velocity component, 

and the standard deviation of the Gaussian pdf uses the SGS kinetic energy, either from a 

SGS kinetic energy equation (if it is present in the LES SGS model) or calculated from the 

SGS velocity. Thus the droplet relative velocity is now a function of the filtered-velocity and 

the turbulent fluctuations, imposed on the droplet from the continuous-phase as a function of 

the SGS velocity, including any anisotropic characteristics. Hence all droplet conservation 

equations (mass, momentum and energy) and subsequent sub-models (including break-up, 

droplet collision, impingement and liquid film) are also a function of both the filtered-

velocity and the SGS velocity. 

The above description considers the energy exchange from the continuous-phase to the 

dispersed phase but does not consider the converse where energy from the dispersed-phase is 

imparted on the continuous-phase. The droplets in this research have a diameter of the order 

of micrometres, whereas the smallest resolved scales of turbulence when using the LES 

approach are defined by the filter width, which is dependent on the cell size, hence are of the 

order of millimetres. Thus as the droplets lose momentum, much of their energy is transferred 

to the continuous-phase at the SGS. Since the SGS kinetic energy feeds back into the 

continuous-phase momentum equations and the droplet turbulent dispersion, modelling of 

this effect is of significance.  

When using a LES SGS model that utilises a separate transport equation to calculate the SGS 

turbulence kinetic energy 𝑘𝑠𝑔𝑠 , e.g. the k-equation or DSM SGS models, the dissipated 

turbulence kinetic energy from the droplets can be easily imparted on the continuous-phase 

via a source term. Bharadwaj, Rutland & Chang (2009) utilised a DSM and Lagrangian DDM 

both with and without the inclusion of a spray source term in the 𝑘𝑠𝑔𝑠-equation and found 
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that the absence of the source term had the effect of increasing the droplet turbulent 

dispersion and subsequently over predicting the liquid penetration length. 

A methodology for the exchange of energy from the discrete-phase to the continuous-phase at 

the SGS when using a LES SGS model that does not include a turbulence kinetic energy 

transport equation, e.g. Smagorinsky, is not yet available. This infidelity will feed back into 

the continuous-phase momentum equations and the droplet turbulent dispersion and cause a 

subsequent increase in droplet kinetic energy, and hence will be an inherent limitation on the 

accuracy of the predictions. 

 

2.5 CONCLUDING REMARKS 

 

This literature review has provided: 

 An overview of the physical processes within a GDI engine that are to be the subject 

of this research, specifically the in-cylinder flow field and fuel injection processes 

 A discussion of the numerical approaches to modelling these physical processes, 

including additional detailed information that will be used when either deciding on the 

most appropriate sub-model, evaluating the competency of the sub-model, or when 

using the sub-model to investigate the physical process itself 

The first section has focused on turbulence, starting with the characteristics of turbulence and 

how it is typically described, and following with a discussion on turbulence modelling 

approaches focusing on the RANS k-ε and LES modelling approaches. 

The second section follows from the first section by discussing the resultant flow field 

characteristics in the intake port and cylinder, with additional discussion being made on the 

flow structures relevant to the GDI engine that is the subject of this research. 

The final section has focused on the fuel injection process and numerical methods for 

modelling it. This includes discussion on the physical processes of: primary and secondary 

breakup, impingement and liquid films, Leidenfrost temperature, droplet collisions and 

droplet-turbulence interactions. 

 



    
___________________________________________________________________________ _________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

 

79 

 

CHAPTER 3 

THE ENGINE AND NUMERICAL 

MODEL 

 

 

“It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. 

If it doesn't agree with experiment, it's wrong.” 

– Richard P. Feynman 

 

 

 

 

3.1 INTRODUCTION 

 

This chapter is split into two main sections. The first section of the chapter introduces the 

experimental single cylinder optical research engine that was used in this research. Details of 

the engine configuration are presented including aspects of the experimental setup, fuel 

injection system and standardised operating condition.  

The second part of this chapter introduces the numerical model and presents results from a 

number of validation exercises, proving their capability to adequately predict the physical 

phenomena occurring and that they are suitable to be used for further studies investigating the 

physical processes within a GDI engine. 

First, section 3.3 starts by describing the computational domain and methodology.  
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Next the section will discuss the modelling of the in-cylinder flow field as a single-phase 

simulation via the use of two turbulence modelling approaches, namely the RANS and LES 

approaches. Sub-sections present a number of sensitivity studies, initial and boundary 

conditions, and the model validation results proving the capability of adequately modelling 

the in-cylinder flow field within their respective limitations. 

The next section will provide a similar structure but this time with the focus around 

modelling the fuel injection event and a two-phase flow. Again, the section will be split-up 

into two sections, modelling the fuel injection event using the RANS turbulence modelling 

approach, and second using the LES approach. The sub-sections will summarise the sub-

models used (described in detail previously in chapter 2), present the initial and boundary 

conditions used, sensitivity studies and finally results comparing model predictions to 

experimental results. 

 

3.2 THE SINGLE CYLINDER OPTICAL RESEARCH 

ENGINE 

 

3.2.1 Experimental Configuration 

 

The experimental engine that was the subject of the numerical modelling in this research was 

that of a single cylinder optical research engine developed by Jaguar Cars and built by Ford 

Research Laboratories in Dearborn, USA. The engine was originally operated between the 

years of 2003 and 2007 for a project entitled ‘Combustion Concepts for Sustainable Premium 

Vehicles (CCSPV) as part of a four university consortium, with financial and technical input 

from Jaguar Cars and Shell Global Solutions, and financial input from the EPSRC 

(GR/S58836/01, GR/S858850/01, GR/S58843/01, GR/S58829/01), to investigate the 

characteristics of cycle-to-cycle variations in the in-cylinder flow field, fuel injection process 

and combustion event. It was during this time that the data used to validate the results within 

this research was collected. 
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Figure 3.1 – Schematic drawing of the engine configuration taken from Justham (2010) 

 

The engine crank case was developed based on an in-line three cylinder engine, utilising two 

balancer shafts to replace the missing two pistons. The cylinder head was designed to 

represent a Jaguar 4.5L V8 prototype GDI engine and was a pent-roof design with 4-valves, 

centrally mounted fuel injector and spark plug.  

A schematic drawing of the engine is shown in Figure 3.1 and the in-cylinder layout is shown 

in Figure 3.2 and 3.3. The geometric parameters for the engine are summarised in Table 3.1. 
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Figure 3.2 - View through bowditch piston up into the combustion chamber taken from 

Justham (2010) 

 

 

Figure 3.3 - View through the pent-roof access window taken from Justham (2010) 
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Table 3.1 – Experimental engine configuration (Jarvis, Justham, Clarke, et al., 2006) 

Bore  89 mm 

Stroke 90.3 mm 

Conrod length 148.97 mm 

Capacity 0.562 l 

Compression ratio 10.5:1 nominal 

Piston bowl shape Flat 

Combustion chamber shape Pent-roof 

Fuel injection system 
DI, centrally mounted, 
Bosch 6-hole VCO 

Valves 2 Intake, 2 Exhaust 

Intake valve diameter 34.9 mm 

Exhaust valve diameter 29.0 mm 

Intake valve max lift 10.53 mm 

Exhaust valve max lift 9.36 mm 

Intake valve cam opening 24 °ATDC 

Intake valve cam closing 274 °ATDC 

Exhaust valve cam opening 224 °ATDC 

Exhaust valve cam closing 6 °ATDC 

 

The engine was optically accessible via a number of features: 

 Fused silica window in the pent-roof of the cylinder head 

 Bowditch piston arrangement with flat fused silica piston crown and 45° mirror 

 Full length fused silica liner 

 Rapid prototype clear resin intake runner, polished to provide an optically acceptable 

finish 

Figure 3.4 shows a photograph of the engine with the features providing optical access 

identified. The figure also shows the positioning of laser and camera to collect HSDPIV in 

the tumble plane. 
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Figure 3.4 - Photo of the single cylinder optical research engine with PIV laser activated 

and generating a light sheet in the tumble plane 

 

The in-cylinder pressure was measured using a piezo-capacitive pressure transducer mounted 

in the pent-roof of the cylinder head.  A piezo-resistive pressure transducer was mounted 

towards the bottom of the cylinder liner and used as a reference pressure to adjust the 

dynamic relative pressure measurement of the in-cylinder pressure. A piezo-resistive pressure 

transducer was also used in the intake runner to monitor intake system pressure. 

 

3.2.2 The World Wide Mapping Point 

 

The operating condition used for the majority of the data collection in the previous 

experimental works was a standardised condition called the World Wide Mapping Point 

(WWMP) which corresponds to a typical low speed inner city driving condition and the 

equivalent engine conditions are summarised in Table 3.2. 
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Table 3.2 – Experimental operating condition (WWMP) 

Engine Speed 1500 rpm 

Engine Load / BMEP 2.6 bar 

Injection timing 80°ATDCintake 

Spark timing 35°BTDCfiring 

Fuel-air equivalence ratio 1 

iEGR (internal via valve timing 
strategy) 

~15% 

Intake manifold pressure (abs) 0.5 bar 

Intake air temperature 301 K 

Exhaust back pressure (abs) 1.016 bar 

Exhaust temperature 784 K 

Coolant temperature 363 K 

 

3.2.3 Valve Events 

 

The valve lift profiles were derived by adjusting the valve cam profile to account for lash, 

due to thermal expansion and dimensional tolerances within the valvetrain system, using 

measured data provided by JLR. The intake valve lash was measured at the WWMP as 

0.29mm. The exhaust valve lash was calculated as 0.225mm via the sum of the thermal 

expansion of exhaust valve and aluminium cylinder head at the WWMP and set clearance. 

Figure 3.5 shows the effective intake and exhaust valve lift profiles in relation to the cam lift 

profiles and Table 3.3 shows the key positions within the profiles.  

Note, that the lift profiles are different to those published in previous CCSPV publications 

(e.g. Justham (2010), Rimmer (2011) and Serras-Pereira (2010)). At the point of publication 

of the previous studies, thermal expansion results were not available, thus valve opening and 

closing events were calculated based on the assumption that valve lift is zero during the 

opening and closing ramps of the cam profile. The adjustments made based on thermal 

expansion and set clearances should provide a much better estimation for effective valve lift 

and improve the quality of the numerical predictions. 
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When adjusting the cam profiles to provide effective valve lift, it is also becomes clear that 

whilst previous studies were under the impression that a degree of negative valve overlap was 

present under the current configuration (~18°c.a.), due to the actual valve lash being less than 

predicted previously, the current configuration actually produces neither negative nor positive 

valve overlap. 

 

Figure 3.5 - Comparison of cam lift and effective valve lift profiles 

 

Table 3.3 - Valve Events 

Intake valve opening 20°ATDC 

Intake valve max opening point 149°ATDC 

Intake valve closing 293°ATDC 

Exhaust valve opening 258°BTDC 

Exhaust valve max opening 
point 

126°BTDC 

Exhaust valve closing 20°ATDC 
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3.2.4 Fuel Injection System 

 

The injector was centrally mounted in the roof of the combustion chamber, in close proximity 

to the spark plug. The positioning of the spark plug, coupled with the designed spray angle, 

allows the engine to be operated in either an air-guided or spray-guided mixture control 

strategy. The spray plume orientation, as shown in Figure 3.6, was designed to be symmetric 

around the x-axis but asymmetric of the y-axis. Plumes 1/6 designed to penetrate around the 

spark plug at a shallower angle, avoiding impingement and subsequent wetting of the 

electrodes, but producing a rich mixture around the spark plug electrodes to avoid misfire and 

support stable combustion when utilising a spray-guided late injection strategy and stratified 

fuel-air mixture. Plumes 3/4 and 2/5 where designed with larger spray angles to penetrate 

further into the combustion chamber and be carried by a tumble flow motion generated by the 

intake port and runner geometry. The larger spray angles also prevent excessive liner 

impingement during early injection strategies. Whilst both early and late injection strategies 

were investigated in the previous experimental works, this research has focused on the 

WWMP which uses an early injection strategy, with injection at 80°ATDC. This strategy 

utilises the benefits of high turbulence levels and large length scales, particularly in the 

tumble x-z plane, to promote increased mixture homogeneity. The delay between the 

activation of the trigger signal and presence of first fuel at the injector tip consists of: the 

electrical delay between the activation of the trigger signal and the signal reaching the 

solenoid, the mechanical delay associated with the movement of the injector needle by the 

solenoid, and the hydraulic delay associated with the time for fuel to fill the injector sac 

volume and nozzles. This delay was found to be ~221.1μs, or 1.99°c.a. at 1500rpm, from 

spray tip penetration data taken  in a constant-volume chamber (van Romunde, 2011). Table 

3.4 characterises the key information pertinent to the fuel injection system. 

 

Table 3.4 – Fuel injection system configuration 

Injection timing (timing of 
electrical signal)  

80°ATDCintake 

Delay to first fuel 
(including electrical and 
hydraulic delays within the 
injection system) 

221.1 μs 
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Injection pressure 150 bar 

Pulse Width 0.78 ms 

Nozzle orifice outer 
diameter 

0.5 mm 

Nozzle orifice inner 
diameter 

0.2 mm 

 

 

Figure 3.6 - Spray plume orientation, reproduced from van Romunde (2011) 

 

3.2.5 Summary of In-Cylinder Events 

 

A summary of the in-cylinder events is shown in Figure 3.7. 
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Figure 3.7 – Summary of in-cylinder events 

 

3.3 THE NUMERICAL MODEL 

 

3.3.1 The Computational Domain 

 

A schematic of the computational domain is shown in Figure 3.8. The complete experimental 

geometry was included in the domain, including detailed meshing of the pent-roof access 

window, valve shrouds (that were significant on this engine due to the large exhaust valves) 

and spark plug electrodes. The intake plenum and intake runner were included to better 

model the dynamics of the intake system (discussed more in section 4.2.1.3). The exhaust 

runner was also included to ensure that there were no recirculation regions around the 

outflow that would cause solution instability. 
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The mesh was created using CD-adapco’s purpose built ‘es-ice’ software. es-ice is a ICE 

specific meshing and model configuration software that allows configuring of a 3D mesh for 

an ICE, definition of all the events including cell addition and deletion around moving 

boundaries (e.g. valves, and piston), and set up of boundary and initial conditions. 

The first stage of the mesh creation was to create a two-dimensional template as shown in 

Figure 3.9. The visual characteristics of the 2D template are as a consequence of the method 

used by the es-ice software to configure the moving mesh components. The typical cell size 

in the x-y plane of the cylinder interior was set at this point, primarily based on the number of 

cells used to mesh the valves. Particular attention was paid to minimising cell non-uniformity 

and orthogonality. 

 

 

Figure 3.8 – The computational domain 
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Figure 3.9 – A section view of the computational mesh in the x-y plane through the 

cylinder interior 

 

Figure 3.10 – A section view of the computational mesh, through the rear valves [0,-

19,0], zoomed in on the cylinder at 180°ATDC (i.e. BDC) through a x-z plane 
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In the next stage, the 2D template was trimmed around the cylinder geometry and 

extrapolated to include the entire cylinder down to BDC. A section view of the mesh in the x-

z plane through the rear valves is shown in Figure 3.10.  

Figure 3.11 shows a section view of the mesh through the x-z plane along the bore centreline 

and in particular, the intake and exhaust system mesh. The prime purpose of the intake 

plenum and runner and exhaust runner is to provide the cylinder with accurate boundary 

conditions with the least computational expense possible. For this reason, the intake plenum, 

intake runner and exhaust runner were meshed separately in STAR-CCM+. This allowed 

increased control over the variation in cell size through the component, with significantly 

larger cells than used in the cylinder interior due to the simpler flow structures present 

requiring less cell density to adequately represent the flow structures.  

 

 

Figure 3.11 – A section view along the bore centreline of the computational mesh at 

180°ATDC (i.e. BDC) through the x-z plane 

 

The final mesh had a total of approximately 2.2 million cells at BDC with an approximate 

cell size of 0.7-0.8 mm
3
 in the cylinder interior. Mesh size dependency studies were 

completed prior to flow field and spray model validation exercises to prove the mesh was 

acceptable for the requirements of this research. Results from these studies are discussed later.  
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3.3.2 The Computational Methodology 

 

The CFD code used in this research, STAR-CD ver4.22, uses the finite-volume method 

where the computational domain is discretised into control volumes. The partial differential 

equations are then integrated over each individual control volume and then approximated in 

terms of the cell-centred nodal values. The implicit method is used to solve the algebraic 

finite-volume equations. Temporal discretisation is achieved using the fully-implicit Euler 

algorithm PISO, or Pressure Implicit with Splitting of Operator (Issa, 1986; Issa, Gosman & 

Watkins, 1986; Issa, Ahmadi Befrui, Beshay, et al., 1991), which results in temporal 

accuracy of around second-order.  

Spatial discretisation is achieved by a combination of second-order schemes, dependent on 

the discretised scalar. Second-order schemes were used here to preserve steep gradients, 

reducing numerical diffusion, but at the potential cost of increased solution instability due to 

numerical dispersion. Density was discretised using the Central Differencing (CD) scheme 

which interpolates linearly on the nearest neighbour value, is second-order accurate but can 

suffer numerical dispersion. Turbulence kinetic energy, dissipation and temperature were 

discretised using the Monotone Advection and Reconstruction Scheme (MARS), a blending 

scheme that can help to reduce numerical dispersion and is second-order accurate.  

The computational timestep was set a priori based on ensuring adequate solution stability and 

an average Courant-Friedrichs-Lewy (CFL) number of less than one (Beavis, Ibrahim & 

Malalasekera, 2016).  

 

3.3.3 The In-Cylinder Flow Field: Model and Validation 

 

3.3.3.1 RANS Approach 

 

Table 3.5 summarises the turbulence models and model constants used during when the 

RANS turbulence modelling approach was used for in-cylinder flow predictions. 
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Table 3.5 – Summary of turbulence sub-model and constants used during RANS 

approach 

Turbulence (gas phase) 

RNG k-ε (Yakhot & Orszag, 1986; 

Yakhot, Orszag, Thangam, et al., 1992) 
[Cμ=0.085, Cε1=1.42, Cε2=1.68, Cε3=1.42, Cε4=-

0.387, κ=0.4, β=0.012, η0=4.38, σk=0.719, 

σε=0.719, σh=0.9, σm=0.9] 

Turbulence – Near Wall 
Angelberger (Angelberger, Poinsot & 

Delhay, 1997) [y+
sw=13.2, aw=2.075, bw=3.9] 

 

3.3.3.1.1 Sensitivity Studies 

 

Prior to model validation, a number of sensitivity studies were completed to understand the 

sensitivity of the model predictions to a number of key user inputs. Note: The sensitivity 

studies shown in this section were completed very early in the research and at an operating 

condition not the same as the WWMP (Table 3.2) used for model validation, hence the 

differences in peak pressure between Figure 3.13 and Figure 3.18, and Figure 3.23 and Figure 

3.37. 

 

Mesh Size  

Two dependency studies were completed to examine the sensitivity of the model solution to 

the mesh size and initial conditions. First the cell size was evaluated across six different 

meshes as summarised in Table 3.6. 

Table 3.6 – Different mesh sizes investigated in the mesh size dependency study 

Case 
Total number of 

cells at BDC [none] 

Approximate cell size in the 

cylinder interior [mm
3
] 

1 1.25m 1.6-1.8 

2 1.4m 1.5-1.7 

3 1.55m 1.4-1.6 

4 1.8m 1.1-1.3 

5 2.15m 0.7-0.8 

6 2.6m 0.6-0.7 
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Figure 3.12 shows a 2D section of the mesh for the smallest mesh size (1.25 million cells) 

and the largest mesh size (2.6 million cells), illustrating the increase in cell density. The mesh 

was also adjusted so that the cell length in the z-axis also reduced proportionally with 

increasing number of cells to maintain cell uniformity as best possible. 

  

(a) (b) 

Figure 3.12 – 2D slice of the mesh in the swirl plane for two different mesh sizes (a) 1.25 

million cells, (b) 2.6 million cells 

 

The results were first compared in terms of cylinder averaged values of pressure (Figure 

3.13), temperature (Figure 3.14), turbulence kinetic energy (Figure 3.15) and turbulence 

dissipation (Figure 3.16). As can be seen from these cylinder averaged results, the predictions 

begin to become mesh independent for the 2.15 million and 2.6 million cell meshes. 

 

Figure 3.13 – In-cylinder pressure averaged across all cells in the cylinder as a function 

of crank angle but zoomed in around TDC and peak cylinder pressure, for each mesh 

size 
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Figure 3.14 – In-cylinder temperature averaged across all cells in the cylinder as a 

function of crank angle but zoomed in around TDC and peak temperature, for each 

mesh size 

 

 

Figure 3.15 – Turbulence kinetic energy averaged across all cells in the cylinder as a 

function of crank angle through the intake and compression stroke, for each mesh size 
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Figure 3.16 – Turbulence dissipation averaged across all cells in the cylinder as a 

function of crank angle through the intake and compression stroke, for each mesh size 

 

To investigate the more subtle changes in model predictions with changes in cell size, 

contours of velocity magnitude were plotted across the tumble plane at 80°ATDC (~ half lift) 

as shown in Figure 3.17. Similarities are seen in flow structures in the 1.8, 2.15 and 2.2 

million cell meshes, particularly in the velocity magnitude of the flow through the intake 

valve curtain between the cylinder head and valve head and in the flow structures within the 

intake port around the intake valve stem. This confirms the findings above of the solution 

being approximately cell size independent at 2.15 million cells. 

The primary reason for the differences seen in Figure 3.13-Figure 3.17 is due to the 

differences in number of cells present in the intake valve curtain. As the number of cells 

changes, the trapped mass predicted by the model changes, affecting the pressure and 

temperature at TDC as seen in Figure 3.13and Figure 3.14, the resultant turbulence kinetic 

energy and turbulence dissipation as seen in Figure 3.15 and Figure 3.16, and the variation in 

the flow structures within the valve curtain and propagating valve jet as seen in Figure 3.17. 
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  Velocity 

magnitude 

[m/s]: 

 

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3.17 – Contours of velocity magnitude in the x-z tumble plane cutting through 

the intake and exhaust valves (y=19mm) at 80°ATDC for each mesh size (a) 1.25m cells, 

(b) 1.4m cells, (c) 1.55m cells, (d) 1.8m cells, (e) 2.15m cells, (f) 2.6m cells 

 

When the computational expense is examined, shown in Table 3.7, a significant increase in 

computational expense is seen when moving from the 2.15 million cell mesh to the 2.6 

million cell mesh. A reasonable jump in computational expense is also seen when the mesh 

size was increased from 1.55 million cells to 1.8 million cells due to the need to increase the 

pressure-correction under relaxation and reduce the size of the time step around the intake 

and exhaust opening and closing periods to maintain sufficient solution stability. 
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Table 3.7 – Computational expense in CPU-hrs for each of the meshes for a complete 

720° cycle 

Mesh Size 

Computational 

Expense 

(CPU-hrs) 

1.25m 967 

1.4m 1086 

1.55m 1100 

1.8m 1689 

2.15m 1730 

2.6m 3068 

 

Based on the results above, a mesh providing approximately 2.15 million cells, which 

provided an approximate cell size in the cylinder interior of 0.8mm
3
, was chosen as providing 

a solution that is approximately mesh size independent with acceptable computational 

expense. 

 

Initialisation Conditions 

The second dependency study was to evaluate the solution with respect to the initialisation 

conditions, and in particular the number of cycles needed to be completed to provide an 

initialisation condition independent solution. 

Figure 3.18, Figure 3.19 and Figure 3.20 show the in-cylinder cell averaged pressure, 

temperature and turbulence kinetic energy respectively as a function of crank angle for four 

consecutive cycles, i.e. each cycle is initialised by the final conditions of the preceding cycle. 

Some comments on the findings: 

 There appears little influence on the in-cylinder pressure with the exception of some 

effect during the intake stroke and around TDC-firing. 

 Both cylinder averaged temperature and turbulence kinetic energy largely show 

independency on the initial conditions after the second cycle. 
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Figure 3.18 – In-cylinder pressure averaged across all cells in the cylinder as a function 

of crank angle, for four consecutive cycles 

 

 

Figure 3.19 – In-cylinder temperature averaged across all cells in the cylinder as a 

function of crank angle, for four consecutive cycles 
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Figure 3.20 – In-cylinder turbulence kinetic energy averaged across all cells in the 

cylinder as a function of crank angle, for four consecutive cycles 

 

Figure 3.21 shows the intake port pressure as a function of crank angle across four 

consecutive cycles. Similar to the in-cylinder results, cycle 1 is seen to be highly dependent 

on the initial conditions but cycles 2 onwards show independency, implying that a minimum 

of one cycle is required to be run to establish convergent intake system wave dynamics. This 

is largely driven by the intake system pressure fluctuations not being damped out by the end 

of the cycle hence have a large impact on the following intake valve opening (IVO) and 

induction event. 

Figure 3.22 shows the exhaust port pressure as a function of crank angle across four 

consecutive cycles. Little initial condition dependency is seen in the results. This is due to 

any pressure fluctuations in the exhaust port that are created during the scavenging event 

having been dissipated by the point of the exhaust valve opening (422°ATDC) at the start of 

the next scavenging cycle. Thus whilst the pressure fluctuations oscillate at a much higher 

frequency than seen in the intake system, they also dissipate much more quickly in the 

exhaust port due to the significantly smaller runner length and volume between the port and 

boundary condition, when compared to the intake system.  
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Figure 3.21 – Intake port pressure as a function of crank angle for four consecutive 

cycles 

 

Thus in conclusion, it was established that a minimum of one complete cycle was needed to 

establish the correct initial conditions in the intake port and hence cylinder at the beginning 

of the cycle and hence provide an initial condition independent solution. 

 

Figure 3.22 – Exhaust port pressure as a function of crank angle for four consecutive 

cycles 
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3.3.3.1.2 Initial and Boundary Conditions 

 

The inflow at the intake plenum is specified as a constant-pressure constant-temperature 

environment in the absence of time varying experimental data. The inflow pressure was 

reduced by 7% from the experimental intake pressure to better match the in-cylinder intake 

stroke pressure-volume profile. The optical research engine had significant heat losses and 

blow-by past the piston rings due to the poor sealing of the piston rings against the quartz 

cylinder liner used to provide optical access. Hence reducing the inflow pressure in the 

numerical model acted to reduce the trapped mass and hence the pressure at TDC and provide 

a better prediction of the in-cylinder pressure in lieu of modelling the realities of high blow-

by and wall heat transfer. 

The outflow at the exhaust port-manifold interface was also specified as a constant-pressure 

constant-temperature boundary condition. In this instance, the pressure distribution profile 

from the domain interior is applied where the mean of this profile is equal to the supplied 

outflow pressure. 

A turbulence intensity of 10% (0.1) was imposed at both the inflow and outflow and the 

turbulence length scale as 10% of the hydraulic diameter. The numerical boundary conditions 

are summarised in Table 3.8. 

 

Table 3.8 – Numerical boundary conditions 

Engine Speed  1500 (rpm) 

Inflow Pressure 0.453 (bar) 

Inflow Temperature  301 (K) 

Inflow Turbulence  Intensity: 0.1 (none) 

Length scale: 0.0048 (m) 

Outflow Pressure  1.023 (bar) 

Outflow Temperature 784 (K) 

Outflow Turbulence Intensity: 0.1 (none) 

Length scale: 0.001 (m) 

Wall Temperatures Adiabatic 
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The model was run through one completed cycle and then used to initialise the second cycle 

before predictions were used for analysis to ensure the solution was independent of the 

initialisation settings. 

 

3.3.3.1.3 Model Validation 

 

The model is validated against published experimental data at a standardised motored 

condition also known as the WWMP (as shown earlier in Table 3.2). 

Before beginning an in-depth evaluation of the predicted flow field, the model was compared 

against experimental indicating data, specifically pressure-crank angle (Figure 3.23) and 

pressure-volume (Figure 3.24). 

One difference between experimental results and numerical predictions is the point of re-

compression around TDCintake, visible in the experimental results but not present within the 

numerical predictions. Due to this characteristic typically being very difficult to model 

accurately (due to the flow interactions during the negative valve overlap period) and the 

discrepancy not affecting the final flow predictions between intake valve closing and spark 

timing (which was the final purpose of this work), extensive efforts weren’t spent trying to 

improve this further. Overall the model shows good agreement to experimental results. 

The model was validated with respect to its ability to predict the conditions within the intake 

runner. This part of the model validation was performed at 700mbar intake manifold pressure, 

due to differences in the experimental operating conditions for this data set.  

First the predicted intake runner velocity is compared against the available experimental 

velocity data at discrete crank angles as shown in Figure 3.25. Following this, the 

experimental intake runner momentum, calculated from the PIV profiles, was compared 

against model intake valve curtain flux, as shown in Figure 3.26. Whilst these two datasets 

are not directly comparable, a qualitative comparison provides useful insight into how 

accurately the model is predicting changes in flow momentum as a consequence of wave 

dynamics. Figure 3.25 and  Figure 3.26 indicate that the model is well suited to predicting the 

intake system flow field. 
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Figure 3.23 – In-cylinder pressure as a function of crank angle, comparing the RANS 

model and experimental data 

 

 

Figure 3.24 – In-cylinder pressure as a function of volume on a log-log scale, comparing 

the RANS model and experimental data, including a slope curve at n=-1.4 
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Both experimental datasets in Figure 3.25 and  Figure 3.26 are taken from Justham, Jarvis, 

Garner, et al. (2006) where a complete description of the experimental setup and post-

processing techniques used are given. Note that data was only available at four different 

crank angles within the intake stroke, hence the limited number of experimental data points 

presented in Figure 3.25. 

 

Figure 3.25 – Intake runner velocity as a function of crank angle, comparing the RANS 

model and experimental data (Justham, Jarvis, Garner, et al., 2006) 

 

Figure 3.26 – Experimental intake runner momentum (Justham, Jarvis, Garner, et al., 

2006) and RANS model valve curtain mass flux as a function of crank angle 
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Next, experimental PIV data in the pent roof region focussed on the intake valve jet was used 

to validate the model flow field predictions for flow entering the cylinder past the intake 

valve. Experimental data was used from Justham (2010) and Justham & Jarvis (2006). A 

schematic of the measurement location within the combustion chamber is shown in Figure 

3.27. Due to the large degree of cyclic variability seen in this flow structure, the experimental 

PIV data used to support model validation is a combination of both mean low frequency flow 

fields and raw flow field data. Whilst the mean low frequency flow fields offer a more direct 

comparison to RANS model predictions, the raw flow fields also provide details on some of 

the cycle-to-cycle variations in the flow field and offer the potential for providing insight into 

differences between predictions and experiments. 

Figure 3.28 shows a comparison between the mean low frequency flow field from 

experimental data and the predicted flow field for the intake valve jet. The figures show that 

the flow field structure is well predicted, with the positioning of recirculation zones and valve 

jet angle well predicted. The velocity profile is reasonably well predicted over the crank 

angles shown with a slight over prediction of valve jet velocity later in the cycle as shown by 

the images at 100°ATDC. 

Figure 3.29 provides a comparison of the model predictions against experimental data from a 

single cycle. The results also indicate that the model is predicting the valve jet well with 

respect to the overall structure and position of recirculation zones above and below the valve 

jet. Based on the velocity contour data, the model also appears predict the velocity magnitude 

well but due to the rather coarse scale used for the velocity magnitude early in the intake 

valve jet development period (circa 70°ATDC to 75°ATDC), it is difficult to say with 

confidence that the predicted velocities predicted at this part in the cycle are reasonable.  

It can also be seen from Figure 3.29 and Figure 3.30 that the model predicts that the intake 

valve jet detaches from the cylinder head earlier in the cycle and at lower valve lifts than seen 

in the experimental data. This will act to drive differences between the predicted discharge 

coefficient and that of the experiments. It is well known that the valve discharge coefficient is 

intrinsically linked to the flow field past the valve and hence changes in flow field as a 

consequence of flow detaching from a particular surface, causes a subsequent change in 

discharge coefficient. In this case, the model predicts the valve jet to detach from the cylinder 

head earlier in the cycle thus it could be theorised that this will act to lower the discharge 

coefficient, reduce the effective flow area and cause an over prediction of valve jet velocity in 



Chapter 3  The Engine and Numerical Model 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

108 

 

comparison to experimental data. Unfortunately, experimental data is not available to validate 

this theory.  

Additional experimental data was reviewed from Justham & Jarvis (2006) (though not shown 

here) for a number of engine cycles at 70°ATDC and 97°ATDC. The data illustrates the 

difficulty of validating a CFD model using time-averaged turbulence modelling for highly 

unstable flow fields with strong shear flows that are present in the intake valve jet. The data 

indicates that a high degree of cyclic variability is present early in the intake valve jet 

development period with some cycles showing the valve jet still attached to the cylinder head 

whereas other cycles show varying levels of detachment. By 97°ATDC the data shows that 

the valve jet exhibits significantly less cycle-by-cycle variation in flow structure indicating 

that the valve jet is more stable by this point in the cycle. 

The model predictions also appear to show the valve jet to be much more susceptible to the 

influence of wave dynamics in the intake system. Between 75°ATDC and 80°ATDC the 

model shows a clear weakening of the valve jet which can be linked with the drop in intake 

valve curtain flux (refer Figure 3.26).  

 

 

Figure 3.27 – Schematic showing the measurement location of the intake valve jet PIV 

velocity fields, taken from Justham (2010) 
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Experimental – Mean Low Frequency PIV 

Flow Fields 

RANS – Velocity Magnitude Contours and 

Vectors 

 

 

 

Figure 3.28 – A comparison of mean low frequency PIV flow fields (Justham, 2010) and 

CFD model predicted flow fields for the intake valve jet 
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Experimental – Raw PIV Flow Fields for One 

Arbitrary Cycle 

RANS – Velocity Magnitude Contours 

and Vectors 

 

 

 

Figure 3.29 – A comparison of raw PIV flow fields for one arbitrary cycle (Justham & 

Jarvis, 2006) and CFD model predicted flow fields for the intake valve jet at 70, 75° and 

80°ASOI 
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Experimental – Raw PIV Flow Fields for One 

Arbitrary Cycle 

RANS – Velocity Magnitude Contours 

and Vectors 

 

 

Figure 3.30 – A comparison of raw PIV flow fields for one arbitrary cycle (Justham & 

Jarvis, 2006) and CFD model predicted flow fields for the intake valve jet at 85° and 

90°ASOI 

The in-cylinder flow field was validated using experimental PIV data from Justham (2010) 

along the bore centreline in the tumble plane and comparative figures are presented in Figure 

3.31 and Figure 3.32. 

The engine presented here has a fairly weak tumble ratio due to the intake port and valve 

geometry and as a consequence, the flow structures generated by the flow past the intake 

valve and subsequent interactions with cylinder walls are also weaker in comparison to an 

engine with a strong tumble ratio and well defined tumble motion. Weaker flow structures are 

inherently more challenging to model due to being more susceptible to the influence of cyclic 
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variations in turbulence. This particular engine was also configured to exhibit higher than 

normal levels of cyclic variation (since this was the original objective of the experimental 

research project) which also makes predicting the in-cylinder flow structure difficult with a 

Reynolds averaged turbulence model.  

It is clear from Figure 3.31 and Figure 3.32 that at 80°ATDC and 100°ATDC, the in-cylinder 

velocities are over predicted by the model when compared against the PIV data (note the 

difference in contour scales). As discussed previously, this is thought to be as a consequence 

of the over prediction of intake valve jet flow velocity due to differences in timing of flow 

detachment from the cylinder head. This is of particular note when modelling a homogeneous 

GDI engine where injection is early in the intake process, since the over predicted in-cylinder 

flow velocities have the potential to more strongly influence the fuel spray break-up and 

atomisation processes and mixture cloud distribution than would be expected in experiments.  

That said, in general the flow structures are fairly well predicted by the model considering its 

complexity. There are clear similarities in predicted and measured recirculation regions, 

though the exact positioning within the cylinder is sometimes not perfectly predicted. The 

model provides a good basis for understanding the in-cylinder flow structures occurring 

within a single cylinder optical GDI research engine and for making deductions on the impact 

of the spatial and temporal development of the flow structure on other in-cylinder processes 

including injection, combustion and pollutant formation. 

Experimental – Mean Low Frequency PIV 

Flow Fields 

RANS – Velocity Magnitude Contours and 

Vectors 

 
 

Figure 3.31 – Experimental PIV data (Justham, 2010) compared against CFD model 

predicted flow fields along the bore centre line in the tumble plane, with black arrows 

indicating similarities in flow structures between experiment and model at 80°ASOI 
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Experimental – Mean Low Frequency PIV 

Flow Fields 

RANS – Velocity Magnitude Contours and 

Vectors 

 
 

 
 

 

 

Figure 3.32 – Experimental PIV data (Justham, 2010) compared against CFD model 

predicted flow fields along the bore centre line in the tumble plane, with black arrows 

indicating similarities in flow structures between experiment and model at 100°, 155° 

and 170°ASOI 
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3.3.3.2 LES Approach 

 

Table 3.9 summaries the turbulence models and model constants used during when the LES 

turbulence modelling approach was used for in-cylinder flow predictions. 

 

Table 3.9 – Summary of turbulence sub-model and constants used during LES 

approach 

Turbulence (gas phase) Smagorinsky (1963) SGS model [CS=0.02] 

Turbulence – Near Wall 
Angelberger, Poinsot & Delhay (1997) 
[y

+
sw=13.2, aw=2.075, bw=3.9] 

 

3.3.3.2.1 Initial and Boundary Conditions 

 

The boundary conditions used are the same as previously described for the RANS predictions 

in section 3.3.3.1.2 and summarised in Table 3.8. 

Relevant to the unsteady nature of the LES approach, an unsteady turbulence perturbation at 

the inflow was not implemented in this particular study since it was considered that the 

inflow was sufficiently upstream of the cylinder for correct turbulence levels to form prior to 

the intake valves. 

The influence of model initialisation was briefly investigated. Due to the unsteady nature of 

the LES approach, the methodology used for initialising the model has a large influence on 

the resultant flow field and a flow field solution that is only a function of a physically 

appropriate variation in the cycle initialisation is desired. To ensure this, the LES model was 

first initialised by a RANS cycle, primarily for solution stability and the resultant 30 cycles 

were inspected with respect to their variation in pressure history and relation to the other 

cycles. Figure 3.33 shows a zoomed in view around TDC of the in-cylinder pressure history 

for all the LES cycles. As can be seen, cycle 1 (highlighted in the figure) appears to be 

uncharacteristically high when compared to all other cycles and therefore was discarded, and 

the remaining 29 cycles used to form the ensemble-average and all subsequent analyses of the 

single-phase LES results. 
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Figure 3.33 – In-cylinder pressure as a function of crank angle, comparing the LES 

predictions for the ensemble-average, cycle 1 and all other LES cycles 

 

Note that in this research, each subsequent LES cycle is initiated from the final conditions of 

the previously computed cycle so that any variability in the initial conditions is retained and 

used to initiate cyclic variability in the following cycle.  

 

3.3.3.2.2 Mesh Suitability 

 

Since the solution is dependent on the filter width, the mesh suitability to capture the length 

scales present within the flow field, and hence a sufficient quantity of the flow turbulence 

kinetic energy, is not known a priori with a non-solution adaptive gridding approach. Thus, 

the suitability of the mesh previously defined as suitable for RANS simulations in section 

3.3.3.1.1, was evaluated for its suitability for use in the LES studies using the turbulence 

resolution parameter. The turbulence resolution parameter, originally proposed by Pope 

(2000), evaluates the fraction of kinetic energy that is resolved 𝑘𝑟𝑒𝑠, against the fraction of 

kinetic energy that is modelled in the SGS 𝑘𝑠𝑔𝑠 and is defined by equation (3.1). 



Chapter 3  The Engine and Numerical Model 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

116 

 

 
𝑀𝑟𝑒𝑠(𝑥, 𝑡) =  

𝑘𝑟𝑒𝑠(𝑥, 𝑡)

𝑘𝑟𝑒𝑠(𝑥, 𝑡) + 𝑘𝑠𝑔𝑠(𝑥, 𝑡)
 (3.1) 

 

Thus as Mres(x,t) approaches zero the solution approaches that of RANS, and as Mres(x,t) 

approaches one the solution approaches that of a direct numerical simulation (DNS). Values 

of Mres(x,t) > 80% are considered as a requirement to be deemed a ‘Large’ eddy simulation 

(Pope, 2004), whereas values between 60%-80% are considered a ‘Very Large’ eddy 

simulation (Fontanesi, Paltrinieri & D’Adamo, 2013). 

In this research the turbulence resolution parameter has been evaluated at three different 

crank angles through the intake and compression strokes, along three swirl cutting planes (z-

axis) with the results being shown in Figure 3.34-Figure 3.36. 

The results show that generally turbulence resolution (M(x,t)) is greater than 80% with a 

small degree of deviation down to approximately 60% resolution at earlier crank angles due 

to insufficient resolution of the high shear regions around the intake valve jet. In the interests 

of maintaining a computational expense that is compatible within an engineering workflow, 

no further mesh refinement was completed. 

 

 

Figure 3.34 – Resolution of Turbulence Kinetic Energy as a function of X-axis Position 

at 150°ATDC (max lift) 
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Figure 3.35 – Resolution of Turbulence Kinetic Energy as a function of X-axis Position 

at 180°ATDC (BDC) 

 

 

Figure 3.36 – Resolution of Turbulence Kinetic Energy as a function of X-axis Position 

at 270°ATDC (mid-compression) 

 

As a caveat, it is known that the resolution of turbulence kinetic energy is dependent on both 

the filter width and the SGS model used. The Smagorinsky SGS model used in this research 

is a turbulent viscosity based approach and is well known for being overly dissipative of 
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kinetic energy, especially when used with a coarse mesh (Rutland, 2011). Hence results for 

turbulence resolution should be used with care since due to its dissipative nature and viscosity 

closure approach, the turbulence model can suggest that a greater amount of kinetic energy is 

being resolved than is reality. 

 

3.3.3.2.3 Model Validation 

 

As completed previously for the RANS predictions, first the in-cylinder pressure history from 

the LES predictions was compared against the experimental results with the pressure-crank 

angle curve shown in Figure 3.37 and the pressure-volume on a log-log scale is shown Figure 

3.38. As can be seen, LES predictions follow the experimental in-cylinder pressure history 

well with the only notable differences along the compression stroke as seen and discussed 

previously in section 3.3.3.1.3 when comparing the RANS predictions. 

 

Figure 3.37 – In-cylinder pressure as a function of crank angle, comparing the LES 

model and experimental data 
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Figure 3.38 – In-cylinder pressure as a function of volume on a log-log scale, comparing 

the LES model and experimental data, including a slope curve at n=-1.4 

 

The next part of the model validation was of the in-cylinder flow field. Due to a number of 

different methodologies being available in the literature for decomposing the instantaneous 

velocity field, first it is pertinent to review the definitions used in both the numerical and 

experimental works to ensure that the results are indeed comparable. 

Typically the instantaneous velocity field is decomposed by one of two methodologies:  

1. Ensemble-averaging – as used in the decomposition of the instantaneous velocity field 

for the LES predictions 

2. Cyclic-averaging – as used in the decomposition of the instantaneous velocity field by 

experimental results 

 

Ensemble-averaging is defined by equation (3.2). 

 𝑈(𝜃, 𝑐) = 𝑈𝐸̅̅̅̅ (𝜃) + 𝑢𝐸
′ (𝜃, 𝑐) (3.2) 
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Where: 𝑈 is the instantaneous velocity field, 𝑈𝐸̅̅̅̅  is the ensemble-average velocity and defined 

by equation (3.3), 𝑢𝐸
′  is the fluctuating velocity or turbulence velocity, 𝜃 the crank angle and 

𝑐 the cycle number. 

 
𝑈𝐸̅̅̅̅ (𝜃) =

1

𝑛
∑𝑈(𝜃, 𝑐)

𝑛

𝑐=1

 (3.3) 

 

Where 𝑛 is the total number of cycles. 

As can be seen, this methodology assumes that the mean cycle repeats each engine cycle, and 

the mean velocity or 𝑈𝐸̅̅̅̅  includes all scales of turbulence, not just low frequency scales. 

Cyclic-averaging can be shown generally in equation (3.4), decomposing the instantaneous 

flow velocity into the individual cycle mean velocity 𝑈𝐶̅̅̅̅  and the individual cycle turbulence 

velocities 𝑢𝐶
′ .  

 𝑈(𝜃, 𝑐) = 𝑈𝐶̅̅̅̅ (𝜃, 𝑐) + 𝑢𝐶
′ (𝜃, 𝑐) (3.4) 

 

The decomposition is achieved by first transferring the instantaneous velocity into the 

frequency domain using a Fast Fourier Transform and then filtering each cycle using a filter 

frequency to separate the velocity signal into a low frequency or ‘bulk flow’ component 𝑈𝐿𝐹 

and a high frequency or ‘turbulent fluctuation’ component 𝑈𝐻𝐹 as shown in equation (3.5). 

 𝑈(𝜃, 𝑐) = 𝑈𝐿𝐹(𝜃, 𝑐) + 𝑈𝐻𝐹(𝜃, 𝑐) (3.5) 

 

Here the low frequency component is typically further decomposed, as was the case of the 

experimental results in Justham (2010), into the mean cycle of the low frequency flow field 

𝑈𝐿𝐹̅̅ ̅̅ ̅  (defined in equation (3.7)) and the low frequency cyclic variation 𝑈𝐿𝐹
′  as shown in 

equation (3.6). 

 

 𝑈𝐿𝐹(𝜃, 𝑐) = 𝑈𝐿𝐹̅̅ ̅̅ ̅(𝜃) + 𝑈𝐿𝐹
′  (3.6) 
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𝑈𝐿𝐹̅̅ ̅̅ ̅(𝜃) =

1

𝑛
∑𝑈𝐿𝐹(𝜃, 𝑐)

𝑛

𝑐=1

 (3.7) 

 

Whilst this technique does include the arguable advantage of the mean low frequency flow 

field 𝑈𝐿𝐹̅̅ ̅̅ ̅ not including the high frequency turbulent fluctuations due to the pre-filtering, it 

does introduce an arbitrariness since the division between high and low frequency turbulence 

is far from clear cut. For the experimental results presented here, the filter frequency was 

defined in Justham (2010) as follows: “based on the size of the recirculation structures 

expected to occur within the low frequency ‘bulk’ flow motion”.  

Thus as is clear, the choice of decomposition methodology has a large effect on the 

interpretation of the flow field. In this case: 

 The ensemble-average velocity 𝑈𝐸̅̅̅̅  (calculated via ensemble-averaging) was 

considered qualitatively similar enough to the low frequency flow field 𝑈𝐿𝐹̅̅ ̅̅ ̅ 

(calculated via cyclic averaging) such that a comparison between experimental and 

numerical predictions was made and is shown below. 

 The fluctuating velocity 𝑢𝐸
′  from the LES predictions was not considered 

qualitatively similar enough to the low frequency cyclic variation 𝑈𝐿𝐹
′  experimental 

results presented within the reference to provide a fair comparison and unfortunately 

results for the high frequency component 𝑈𝐻𝐹 were not available. 

 

Thus, the LES predicted ensemble-average velocity (𝑈𝐸̅̅̅̅ ) is compared against experimental 

data extracted from Justham (2010) for 100 cycle averaged mean low frequency flow field 

𝑈𝐿𝐹̅̅ ̅̅ ̅.  

For the experimental results, the velocity magnitude data as a function of x-axis position had 

to be manually extracted from the velocity contour diagrams by importing them into 

MATLAB and relating the pixel intensity to velocity magnitude via the colour bar for 

discrete x-axis locations at the three z-axis planes, z = -8, -28 and -48mm. Note this 

methodology was used due unavailability of the raw PIV data and as such, whilst meticulous 

care was taken during the data extraction, the experimental results are expected to have a 

measurement uncertainty due to the extraction method of approximately ±1m/s. 
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The ensemble-average velocity predictions from the LES results were calculated over 29 

individual LES cycles, with both the ensemble-average results shown as a bold black line 

series and individual cycle results shown in the background of the figures as light grey line 

series to illustrate the level of CCV present. Predictions using the RNG k-ε turbulence model 

are also shown for completeness.  

The following is a discussion about the relative differences in mean velocity field between 

experimental results and LES predictions at the three crank angles investigated. 

Figure 3.39 shows the velocity magnitude contours and velocity vectors for both 

experimental and LES results along the bore centreline at 80°ATDC and Figure 3.40 velocity 

magnitude as a function of x-axis position for the two z-axis cutting planes. Similarly to the 

RANS predictions shown earlier in Figure 3.31, the LES predictions do a good job of 

predicting the complex recirculation regions within the centre of the combustion chamber but 

does fail to correctly place them within the combustion chamber. A good example of this is 

shown by the red circles in either diagram; the experimental data shows a large recirculation 

region near -8mm>z>-20mm highlighted by the solid red circle, whereas in the LES 

predictions the same recirculation region is predicted to be lower in the cylinder around -

20mm>z>-30mm and further into the centre of the combustion chamber (shown by the 

dashed red circle). This is also evident in Figure 3.40(a). Inspection of Figure 3.40(b) appears 

to show the model correctly predict a recirculation region at z=-28mm x=-15mm (purple 

circle) but upon inspection of the velocity magnitude contours, the equivalent recirculation 

region is again predicted lower in the cylinder around z=-45mm x=-5mm. Inspection of the 

valve jet velocity predictions in Figure 3.40(a) x=-25 suggests the LES model to over predict 

the valve jet velocities as seen in the RANS predictions but since the experimental results 

were extracted from the velocity magnitude contour plots and the maximum velocity contour 

is 25m/s, it is not possible to know if the valve jet predictions are in fact a reasonable 

prediction of the physical flow field. 

Figure 3.41 shows the equivalent velocity magnitude contours for experimental and LES 

results at 100°ATDC and Figure 3.42 velocity magnitude as a function of x-axis position for 

the three z-axis cutting planes. Similarly to as seen at 80°ATDC, inspection of the velocity 

magnitude contours shows that, whilst the LES predictions correctly capture the flow 

structures within the combustion chamber, the positioning of the centre of the recirculation 

regions are not well captured. An examples of this is the large recirculation region shown in 



Chapter 3  The Engine and Numerical Model 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

123 

 

the LES predictions in Figure 3.41(b) around z=-28mm, highlighted by a red circle, and the 

equivalent recirculation region in the experimental predictions is seen around z=-15mm; seen 

similarly is the recirculation region highlighted by the purple circles in each diagram. 

Figure 3.43 shows the equivalent velocity magnitude contours for experimental and LES 

results at 150°ATDC and Figure 3.44 velocity magnitude as a function of x-axis position for 

the three z-axis cutting planes. Interestingly, later in the intake stroke the in-cylinder flow 

structures are much better predicted by the LES results with much better predictions of both 

the magnitude and positioning of the flow structures within the cylinder. 

Despite these observed differences, it is felt that the LES model does a good job of correctly 

predicting the complex in-cylinder flow structures and their magnitude, and in most cases 

provides better agreement than the RANS predictions, thus is considered an acceptable model 

for further investigations into the physical processes of the in-cylinder flow field and 

turbulence induced CCV. 

 

 

 

 

 

(a) (b) 

Figure 3.39 – Velocity magnitude contours and vectors along the bore centreline at 

80°ATDC for (a) Experiments (Justham, 2010) and (b) LES predictions 
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(a) (b) 

Figure 3.40 – Ensemble-average velocity magnitude as a function of x-position for 

experimental (Justham, 2010) and LES results along the bore centreline at 80°ATDC, at 

two cutting planes (a) z=-8mm and (b) z=-28mm 

 

 

 

 

(a) (b) 

Figure 3.41 – Velocity magnitude contours and vectors along the bore centreline at 

100°ATDC for (a) Experiments (Justham, 2010) and (b) LES predictions 

   

(a) (b) (b) 

Figure 3.42 – Ensemble-average velocity magnitude as a function of x-position for 

experimental (Justham, 2010) and LES results along the bore centreline at 100°ATDC, 

at three cutting planes (a) z=-8mm, (b) z=-28mm and (c) z=-48mm 
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(a) (b) 

Figure 3.43 – Velocity magnitude contours and vectors along the bore centreline at 

150°ATDC for (a) Experiments (Justham, 2010) and (b) LES predictions 

 

   

(a) (b) (c) 

Figure 3.44 – Ensemble-average velocity magnitude as a function of x-position for 

experimental (Justham, 2010) and LES results along the bore centreline at 150°ATDC, 

at three cutting planes (a) z=-8mm, (b) z=-28mm and (c) z=-48mm 

 

3.3.4 Fuel Injection: Model and Validation 

 

3.3.4.1 RANS Approach 

 

Table 3.10 summarises the fuel injection sub-models and model constants used for fuel 

injection predictions when the RANS turbulence modelling approach was used for in-

cylinder flow. 
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Table 3.10 – Summary of fuel injection sub-models and constants used during LES 

approach 

Turbulence Dispersion 

Gaussian pdf  (Gosman & Ioannides, 

1983) where mean velocity is taken from 

the time-averaged local flow velocity and 
k is taken from the k-equation 

Secondary Breakup Model 
Pilch & Erdman (1987a) [B1=0.375, 

B2=0.2274] 

Flash Boiling None – see discussion below 

Collision Model 

O’Rourke (1981) (called ‘Standard’ in 

STAR-CD), with addition sub-models for 

algorithm speed-up (Schmidt & Rutland, 

2000), automatic coalescence timestep 

adjustment (Aamir & Watkins, 1999) and 

additional geometric constraints (Nordin, 
2001) [Krm=1] 

Droplet-Wall Interaction Model 

Senda et al. (Senda & Fujimoto, 1999; 

Senda, Kanda, Al-Roub, et al., 1997; 

Ashida, Takahashi, Tanaka, et al., 2000; 

Senda, Kobayashi, Iwashita, et al., 1994; 

Matsuda & Senda, 2003), Bai & Gosman 

(1995), Rosa, Villedieu, Dewitte, et al. 
(2006) [cf=0.7] 

Leidenfrost temperature determination 
Habchi (2010) & Spiegler, Hopenfeld, 

Silberberg, et al. (1963) 

Liquid Film Model Bai & Gosman (1996) [γc=0.8] 

Liquid Film Model – Boiling Model 
White (1988) [Csf=0.06, n=3, CS=1.2, cmax=0.15, 

cmin=0.09] 

Liquid Film Model – Film Stripping due to 

Flow Over Edge  
Friedrich, Lan, Wegener, et al. (2008) 
[θmin=45°, FRc=1, c1=3.78, q=1.5] 

Liquid Film Model – Film Stripping due to 

Wave & Body-Force Induced Instability 
Foucart, Habchi, Coz, et al. (1998) 

Liquid Film Model – Effect of Contact 

Angle 
Foucart, Habchi, Coz, et al. (1998) [θc=35°, 

c=1] 

 

Table 3.10 shows how a dedicated flash boiling model was not used during this research. The 

below is a short discussion of why this was considered an acceptable omission. 
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Flash boiling is a rapid evaporation of injected fuel at the nozzle exit occurring in direct 

injection engines as a consequence of a rapid reduction in the fuels boiling point as high 

pressure fuel is injected into the low pressure cylinder environment. The rapid evaporation 

associated with flash boiling typically causes significant distortion of the spray structure, with 

the in-cylinder flow field now able to easily influence the smaller fuel droplets and in many 

cases cause individual spray plumes to collapse towards each other, destroying any initial 

plume directionality initially imparted by the nozzle geometry (Serras-Pereira, 2010; van 

Romunde, 2011). 

Application of the Clausius-Clapeyrun equation in the form as shown in equation (3.8), re-

arranged to evaluate the fuel saturation temperature at the start and end of injection was 

applied to understand the degree of superheating of the fuel at the conditions present in this 

research. 

 
𝑙𝑛 (

𝑝1

𝑝2
) =

Δ𝐻𝑣𝑎𝑝

𝑅
(
1

𝑇2
−
1

𝑇1
) (3.8) 

 

Where, Δ𝐻𝑣𝑎𝑝  is the enthalpy of vaporisation, 𝑅  is the specific gas constant equal to 

8.314J/K-mol. 

Table 3.11 shows the change in saturation temperatures for each fuel component between the 

start and end of injection due to in-cylinder pressure change. The injected fuel temperature 

was Tf = 363K, thus showing that both iso-pentane and iso-octane fuel components are in a 

state of superheat and would exhibit characteristics of flash boiling upon entering the cylinder.  

Table 3.11 – Saturation temperatures calculated for each fuel component at the start of 

injection (SOI) and end of injection (EOI) to determine the degree of superheating 

 Iso-pentane Iso-octane n-decane 

 SOI EOI SOI EOI SOI EOI 

T0 (Tb) [K] 301.1 372.2 447.2 

P0 [Bar] 1 1 1 

P [bar] 0.474 0.450 0.474 0.450 0.474 0.450 

ΔHvap [kJ/mol] 25.0 35.1 47.4 

T (Tsat) [K] 280.1 278.8 349.2 347.7 422.5 420.9 
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In spite of this, no additional sub-model was used to model this phenomenon. Experimental 

results from Aleiferis & van Romunde (2013) for a constant-volume chamber at the same 

experimental conditions, show that both a single-component surrogate of iso-octane and a 

pump grade gasoline are only just beginning to show changes in plume structure at T f = 363K 

and p = 0.5 bar. Figure 3.45 shows experimental spray images from a quiescent chamber for 

iso-octane and gasoline at 363K, showing that only a small amount of plume distortion is 

visible. Comparative images at 293K are also shown as an example where flash boiling 

would not be present in iso-octane and very mildly present in gasoline. In addition to this, 

results from the same publication shows almost negligible differences in plume tip 

penetration for iso-octane and gasoline at 293K and 363K. Thus it was felt that, whilst a 

separate sub-model to model the effects of flash boiling could improve the quality of the 

predictions, at 363K (the standardised condition for this research) a single-component 

surrogate fuel of iso-octane and multi-component surrogate containing fractions of iso-

pentane, iso-octane and n-decane could be adequately modelled without the use of an 

additional flash boiling sub-model, whilst still capturing a considerable portion of the spray 

development process and not suffer additional increases in computation time. 

 

 Iso-octane Gasoline 

293K 

  

363K 

  

Figure 3.45 – Spray images from a quiescent chamber for iso-octane and gasoline at 

777μs ASOI, reproduced from Aleiferis & van Romunde (2013) 
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3.3.4.1.1 Sensitivity Studies 

 

Prior to model validation a number of sensitivity studies were completed to understand the 

sensitivity of the solution to the inputs chosen.  

 

Mesh Size Dependency 

For the mesh size dependency study, three different cases were investigated, with the total 

number of cells at BDC and the approximate cell size in the cylinder interior shown in Table 

3.12. Case 2 represents the same mesh size as documented previously in section 4.2. A fourth 

mesh of 8.5m cells and an approximate cell size of 0.3-0.4mm
3
 was developed but due to the 

meshing procedure and the cell addition and deletion method used to model boundary 

movement within the software, it was not possible to create a mesh that didn’t suffer 

significant cell uniformity and orthogonality issues that then caused the solution to be 

unstable. Note: This study was completed with a total number of parcels per spray plume of 

1’000’000. This was significantly more than was known to be needed for parcel number 

independency, which ensured that any effect that the number of parcels may have on the 

solution was minimised. 

 

Table 3.12 – Different mesh sizes investigated in the mesh size dependency study 

Case 
Total number of 

cells at BDC [none] 

Approximate cell size in the 

cylinder interior [mm
3
] 

1 1.7m 1.25-1.4 

2 2.2m 0.7-0.8 

3 3.6m 0.4-0.6 

 

The plume tip penetration for plumes 2/5 and plumes 1/6 were investigated first. Figure 3.46 

shows the spray plume numbering system used. The results are shown in Figure 3.47 and 

Figure 3.48. Whilst the difference in penetration between the three meshes is not significant, 

neither of the results appeared to show the results trending towards an insensitive solution 

with an increasing number of cells. 
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Figure 3.46 – Image of spray penetrating in y-z plane, indicating the spray plume 

numbering system 

 

 

Figure 3.47 – Plume tip penetration for plumes 1/6 for three different mesh sizes 
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Figure 3.48 – Plume tip penetration for plumes 2/5 for three different mesh sizes 

 

Next, Figure 3.49 shows contours of fuel mass fraction plotted in the tumble plane, 

intersecting plumes 2/5, for each mesh size to provide a qualitative comparison between cases.  

The results indicate a number of differences particularly between the coarse mesh in case 1 

and the finer meshes used in cases 2 and 3; whilst the magnitude of fuel mass fraction is 

similar between each of the meshes, the spatial variation in the fuel vapour cloud is quite 

different with the coarse mesh not depicting the correct shape of the plume head and trailing 

vapour cloud. In general, both case 2 (2.2m) and case 3 (3.6m) show similar spatial variations 

in the fuel mass fraction. 
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Figure 3.49 – Fuel mass fraction contours along the tumble plane intersecting plumes 

2/5 for the three different mesh sizes 

 

To provide a more quantitative comparison and to support the above fuel mass fraction result, 

fuel mass fraction as a function of x-plane position was plotted for different z-plane cutting 

planes at a specific y-plane location for four crank angles and the results are shown in Figure 

3.50. 
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(a) (b) 

  

(c) (d) 

Figure 3.50 – Plots of fuel mass fraction as a function of x-plane position at y=4.57mm 

z=-30mm at four crank angles, (a) 12°ASOI, (b) 14°ASOI, (c) 16°ASOI, (d) 18°ASOI 

 

Similarly to seen above in the fuel mass fraction contours, generally the predictions for case 2 

(2.2m) and case 3 (3.6m) as comparatively similar, thus implying the predictions with respect 

to spatial and temporal variation in fuel mass fraction is relatively insensitive by 2.2m cells.  

Finally, the distribution of droplet diameter calculated across the cylinder for each mesh size, 

was compared at 14°ASOI at three different z-plane cutting planes and the results are shown 

in Figure 3.51. 

 



Chapter 3  The Engine and Numerical Model 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

134 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3.51 – A comparison of droplet diameter distribution across the cylinder for the 

three different mesh sizes at 14°ASOI for three separate z-plane cutting planes, (a) z=-

10mm, (b) z=-30mm, (c) z=-50mm 
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Again, generally the predictions for case 2 (2.2m) and case 3 (3.6m) are comparatively 

similar, thus implying the predictions with respect to spatial and temporal variation in droplet 

size distribution is relatively insensitive by 2.2m cells. 

Finally the computational expense between three mesh sizes was compared and the results for 

the number of CPU-hrs for a simulation between SOI and ASOI+20° are shown in Table 3.13. 

As is shown, a relatively large increase in computational expense is seen between case 2 

(2.2m) and case 3 (3.6m). 

 

Table 3.13 – A comparison of the sensitivity of computational expense with respect to 

the number of CPU-hrs required for a simulation between SOI and SOI+20° for the 

three mesh sizes 

Case 
Total number of 

cells at BDC [none] 

CPU-hrs for SOI to 

ASOI+20° [CPU-hr] 

1 1.7m 289 

2 2.2m 328 

3 3.6m 462 

 

In conclusion, the mesh with 2.2m cells (case 2) was seen to provide predictions that are 

relatively insensitive to the size of mesh and chosen for the following reasons: 

 Variation in plume tip penetration was small between all three cases though none 

appeared to suggest reaching the point of being insensitive 

 Results for fuel vapour mass fraction and droplet size distribution both saw 

predictions becoming relatively insensitive to mesh size with case 2 (2.2m) 

 The computational cost for each cycle was considered acceptable with the computing 

resources available to this research 

 

Secondary Break-up Model 

To assess the sensitivity of the earlier decision to use the Pilch & Erdman (1987) secondary 

break-up model, the variation in arithmetic mean or D10 droplet diameter was compared 
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against the Reitz & Diwakar (1986) and KHRT (Patterson & Reitz, 1998) breakup models  

for three separate z-plane cutting planes and the results are shown in Figure 3.52. 

To understand the reason for the differences in average droplet D10 diameter between the 

three breakup models, the Reynolds number and Weber number at 18°ASOI was calculated 

for the droplets at two z-cutting planes, z=-5mm and z=-25mm, corresponding to a time and 

location of difference in droplet D10 diameters seen in Figure 3.52(a) and (c) and the results 

are presented in Table 3.14 and Table 3.15. Inspection of Figure 3.52(a) (z=-5mm) and Table 

3.14 shows both the Reitz-Diwakar and KHRT models to have similar average Reynolds 

numbers and Weber numbers and the Pilch Erdman to have droplets with a comparatively 

lower average Reynolds number and Weber number. Similarly, in Figure 3.52(c) (z=-25mm) 

and Table 3.15, both the Reitz-Diwakar and Pilch and Erdman models have similar average 

Reynolds numbers and Weber numbers thus predict similar droplet D10 diameters. 

 

Table 3.14 – A comparison of Reynolds number and Weber number for three secondary 

breakup models at 18°ASOI and z=-5mm 

 Reitz-Diwakar Pilch-Erdman KHRT 

Re  

[none] 
178 154 172 

We  

[none] 
66 57 62 

 

Table 3.15 – A comparison of Reynolds number and Weber number for three secondary 

breakup models at 18°ASOI and z=-25mm 

 Reitz-Diwakar Pilch-Erdman KHRT 

Re  

[none] 
137 135 124 

We  

[none] 
76 74 70 
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(a) 

 

(b) 

 

(c) 

Figure 3.52 – A comparison of droplet D10 diameter for three different secondary break-

up models at three different z-plane locations, (a) z=-5mm, (b) z=-15mm, (c) z=-25mm 
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In general though, the variation in D10 droplet diameter appears to vary little between the 

proposed breakup models, particularly between the Pilch and Erdman model and the Reitz-

Diwakar model. The relative insensitivity is thought to be due to imposing a pre-defined 

droplet diameter distribution at the nozzle exit (via the Rosin Rammler distribution) to model 

the result of the primary breakup process, thus reducing the amount of droplet breakup 

performed by the secondary breakup model before droplet evaporation and hence the reduced 

prediction sensitivity to the imposed secondary breakup model. This insensitivity and the 

absence of empirical constants is the reason for this research using the Pilch and Erdman 

secondary breakup model. 

 

Number of Injected Parcels 

Once the mesh size was defined based on the above dependency study (due to the effect of 

the number of parcel within a given cell size), the dependency of the solution on the number 

of injected parcels was investigated via: plume tip penetration, cylinder averaged droplet 

sauter mean diameter (D32) and computational expense. 

Five different parcel number configurations were investigated as shown in Table 3.16. 

Note: This study was completed on the mesh of 3.6m cells, i.e. the largest number of cells 

tested. This helped to ensure that any effect on the solution due to the size of mesh used was 

minimised. 

 

Table 3.16 – Configurations tested in number of injected parcels sensitivity study 

Case 

Total number of 

parcels injected 

per jet/plume 

Number of 

parcels injected 

per jet/plume per 

second 

1 4’000 5.13x10
6 

2 8’000 1.01x10
7 

3 50’000 6.41x10
7 

4 100’000 1.28x10
8 

5 1’000’000 1.28x10
9 
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The plume tip penetration was first compared across each case for plumes 1/6 (Figure 3.53) 

and plumes 2/5 (Figure 3.54) and to provide a more quantitative comparison, the difference in 

plume tip penetration at 12.3°ASOI (i.e. close to the point of cylinder liner impingement) for 

plumes 2/5 between cases 1-4 and case 5, with the assumption that case 5 would provide a 

prediction that was least sensitive to the number of injected parcels due to the large number 

of parcels used, shown in Table 3.17. The results show that case 4 (100’000) and case 3 

(50’000) predict an approximately 2% difference in plume tip penetration, and case 2 (8’000) 

and case 1 (4’000) predict an approximately 5% difference in plume tip penetration when 

compared to case 6 (1’000’000). 

Table 3.17 – Percentage difference in plume tip penetration for plume 2/5 when 

compared to case 6 at 12.3°ASOI 

Case 
Total number of parcels 

injected per jet/plume 

Plume 2/5 tip 

penetration at 

12.3°ASOI [mm] 

Percentage difference in 

penetration to case 5 

[%] 

1 4’000 67.1 5.4 

2 8’000 67.7 4.6 

3 50’000 69.6 1.8 

4 100’000 69.7 1.7 

5 1’000’000 70.9 - 

 

Figure 3.53 – Plume tip penetration for plumes 1/6 with a varying number of parcels 

injected per jet 
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Figure 3.54 – Plume tip penetration for plumes 2/5 with a varying number of parcels 

injected per jet 

 

The cylinder averaged droplet sauter mean diameter (𝐷32), as defined by equation (3.9), was 

next compared across the 6 cases and the result as a function of time shown in Figure 3.55. 

 
𝐷32 =

∑ 𝑚𝑝𝑑𝑝
3

𝑖

∑ 𝑚𝑝𝑑𝑝
2

𝑖

 (3.9) 

 

Where 𝑚𝑝 is the mass of the droplet parcel, 𝑑𝑝 is the diameter of the droplet parcel and 𝑖 is 

the total number of droplet parcels. 

Figure 3.55 shows that cases with 50’000, 100’000 and 1’000’000 injected parcels per jet all 

have comparative trends of cylinder averaged D32 diameter with time, thus the cylinder 

averaged D32 diameter is considered relatively insensitive at 50’000 parcels. 
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Figure 3.55 – Droplet 𝑫𝟑𝟐 diameter as a function of time in °ASOI for the 6 cases in the 

number of injected parcels sensitivity study 

 

Finally, the computational expense between each 6 cases was investigated by examining the 

variation in the average time taken for each timestep and CPU-hrs required to simulate 

between SOI and ASOI+20°. The result from this is shown in Figure 3.56 and summarised in 

Table 3.18, with a significant increase in the computational expense seen between case 4  

(100’000) which has an average time per timestep of 12.5s, and case 5 (1’000’000) which has 

an average time per timestep of 316.5s. The difference between case 1 (4’000) and case 4 

(100’000) is a very modest 6s. 

Table 3.18 – A comparison of average time taken per timestep and CPU-hrs required 

for simulating between SOI and ASOI+20° 

Case 
Total number of parcels 

injected per jet/plume 

Average time taken 

per timestep [s] 

CPU-hrs for SOI to 

ASOI+20° [CPU-hr] 

1 4’000 6.6 243 

2 8’000 6.7 248 

3 50’000 8.5 314 

4 100’000 12.5 463 

5 1’000’000 316.5 11693 
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Figure 3.56 – A comparison of the time in seconds per timestep as a function of the 

number of injected parcels per jet 

 

In conclusion, for this mesh size and physical sub-models, 50’000 parcels per jet was 

considered to provide a prediction that is mostly insensitive to the number of injected parcels 

for the following reasons: 

 Penetration results showed little sensitivity above 50’000 injected parcels per jet. 

 Average D32 drop diameter results showed little sensitivity above 50’000 injected 

parcels per jet. 

 A computational expense of up to 12s/timestep during the injection process was 

acceptable with the computational resources available to this research. 

 

Cell Clustering 

An additional sub-model called ‘Cell Clustering’ is imposed within the droplet-droplet 

collision model of the CFD code where a pre-set number of ‘levels’ affects the ability of 

droplets to collide with droplets in adjacent cells. i.e. a ‘cell clustering level’ equal to zero 

means that droplets can only collide with other droplets within the same computational cell 

within a given timestep. A ‘cell clustering level’ equal to one means that droplets can collide 
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with other droplets within the same computational cell and droplets within adjacent 

computational cells within a given timestep. The theory being that it is possible that droplets 

could collide with droplets outside of a given cell within a given timestep, where this is 

particularly probable with large timesteps, small cell sizes and/or large droplet velocities. 

Obviously, increasing the amount of cell clustering allows droplets to collide with a greater 

number of other droplets and in theory increases the ability of the collision model to represent 

the physical process. The disadvantage of this is the significant increase in computational 

expense required to compute the probability of a collision occurring. 

To investigate this effect, cell clustering levels of zero, one and two were investigated with 

respect to the impact on plume tip penetration, D10 droplet diameter and computational 

expense. Negligible sensitivity was seen in the predictions of penetration and droplet 

diameter but significant increase in computational expense compared with zero clustering 

levels, with a 50% and 104% increase in CPU-hrs for one and two levels respectively. This 

result implies that the combined result of the timestep, cell size and droplet velocities sees 

only a very small number of droplet collisions outside of the same computational cell and 

thus no cell clustering is necessary in this example. 

 

3.3.4.1.2 Initial and Boundary Conditions 

 

The simulation was initialised at 80°ATDC using the results from a cold-flow single-phase 

simulation. Numerical wall temperatures were set based on the experimental conditions or 

approximated based on surrounding material and gas temperatures. The boundary conditions 

are summarised in Table 3.19. 

A summary of the fuel injection model inputs is shown in Table 3.20 and items included 

within this table are discussed in more detail below. 
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Table 3.19 – Numerical boundary conditions for the fuel injection model specific 

predictions 

Intake Plenum and Port Wall 

Temperatures 
Adiabatic 

Intake Valve Temperatures 323 K 

Exhaust Valve Temperatures 363 K  

Cylinder Head Temperature 363 K 

Liner Temperature 293 K  

Piston Temperature 301 K 

Intake Gas Pressure 528 mbar 

Intake Gas Temperature 301 K 

 

Table 3.20 – Summary of the fuel injection model inputs 

Droplet Distribution 
Rosin-Rammler: 

X = 14×10
-6

 m, q = 2.3 

Fuel Temperature 363 K 

Number of Injected Parcels 50’000 parcels per jet 

Droplet Initial Velocity Shown in Figure 3.57 

Injection Rate Shown in Figure 3.57 

Total Injected Fuel Mass 13.8 mg 

 

A Rosin-Rammler distribution was used to provide an initial droplet size distribution for the 

injected parcels due to the required information to configure dedicated primary breakup sub-

model not being available. The constant ‘q’ (the ‘shape’ parameter) was set to 2.3 based on 

the experimental works of Keller, Knorsch, Wensing, et al. (2015) which used a similar 

injector configuration and experimental conditions. The constant ‘X’ (the ‘scale’ parameter) 

was set to 14×10
-6

m which provided the best match against experimental PDA droplet size 

data. 
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The steady-state injection mass flow rate was measured during a previous experimental study 

by Serras-Pereira, van Romunde, Aleiferis, et al. (2010) as 16.68g/s but the time varying 

mass flow rate profile for the injector was not available. To ensure a reasonable rate profile 

was supplied to the model, the opening and closing injection rate characteristics from a 

similar injector were combined with the known steady-state flow rate to create a realistic 

injection profile. The final profile is shown in Figure 3.57. 

The droplet velocity at the injector nozzle was imposed via a time-dependent profile as 

shown in Figure 3.57, with an increase in initial droplet velocity used around the needle 

opening and closing to provide the best match against experimental plume tip velocity data – 

results shown below. 

 

 

Figure 3.57 – Computational injection rate profile and initial droplet velocity 

 

In this research both a single-component fuel and a multi-component fuel are modelled. The 

fuel component and respective initial mass fraction is defined in Table 3.21. The individual 

components of the multi-component fuel were chosen based on being a reasonable 

representation of the light, medium and heavy components of gasoline. The multi-component 

fuel is modelled as a miscible mixture where the evaporation of each component is dependent 

on the concentration and vapour pressure of the other components in the mixture. Since the 
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components modelled in this research have a similar molecular structure (i.e. are all Alkanes), 

the application of Raoult’s law to obtain the vapour mole fraction at the droplet/liquid surface 

was deemed an acceptable approximation. A comparison of the vapour pressures for each 

fuel component and the multi-component fuel (calculated by the sum of the partial pressures 

for each component) against a typical gasoline fuel (Aleiferis & Van Romunde, 2013) is 

provided in Figure 3.58. All fuel properties required by the CFD code are extracted from 

NIST tables for the respective component but a sample of key fuel properties are shown in  

Table 3.22. 

 

Table 3.21 – Mass fraction and boiling point of fuel components used within the single- 

and multi-component surrogate fuels used in this research 

Single-Component Surrogate Fuel Multi-Component Surrogate Fuel 

Component 

Fuel 
Mass fraction 

Boiling Point, 

Tb (K) 

Component 

Fuel 
Mass fraction 

Boiling Point, 

Tb (K) 

Iso-Octane 1 372.2 

Iso-Pentane 0.33 301.1 

Iso-Octane 0.34 372.2 

n-Decane 0.33 447.2 

 

 

Figure 3.58 – Comparison of fuel vapour pressures, including the multi-component fuel 

against a typical gasoline fuel (Aleiferis & van Romunde, 2013) 

 



Chapter 3  The Engine and Numerical Model 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

147 

 

Table 3.22 – Summary of properties for fuels used within this research 

Fuel Property Iso-Pentane Iso-Octane n-Decane Gasoline 

Density (20°C) [kg/m3] 616 691.9 730 719 

Dynamic Viscosity (20°C) 

[g/m-s]  
0.233 0.5 0.92 0.3-0.8 

Surface Tension (20°C) [mN/m] 16.05 18.77 23.83 25.8 

Boiling Point [K] 301.1 372.2 447.2 303-463 

Critical Temperature [K] 460.4 543.9 617.7 544-562 

Critical Pressure [Bar] 33.76 23.88 21.03 25.7-32.6 

Enthalpy of Vaporisation 

[kJ/mol] 
25.0 35.1 47.4 35.4-37.3 

 

3.3.4.1.3 Model Validation 

 

Experimental results to validate the fuel injection model were available in the form of plume 

tip penetration, plume tip velocity and D10 droplet diameter. 

Plume tip penetration was extracted from Aleiferis & van Romunde (2013) and compared 

against the predicted plume tip penetration for iso-octane (single-component fuel) as shown 

in Figure 3.59, showing good agreement between experimental results and numerical 

predictions. Also of note is that when fuel is injected into a non-quiescent chamber, like that 

of an ICE, the spray will break up faster due to spray-flow interactions which will act to 

reduce plume tip penetration. Thus the slightly lower plume tip penetration predicted by the 

engine model when compared against the experimental bomb result, is very much in line with 

expectations of the actual process. 

Spray plume tip velocity was calculated from the derivative of the plume tip penetration data 

presented previously and is shown in Figure 3.60. Numerical predictions show good 

agreement with experimental plume tip velocity and well capture the steep rise in plume tip 

velocity soon after the start of injection. As a consequence, this provides excellent agreement 

between experimental and numerical results for tip penetration during the early stages of 

injection. 
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Figure 3.59 – A comparison of experimental and predicted plume tip penetration 

(Plume 1/6) for iso-octane with a RANS turbulence model 

 

Experimental PDA data was extracted from Aleiferis & van Romunde (2013) where the D10 

droplet diameter was measured in a quiescent chamber for plume 2 at z=-25mm from the 

injector nozzle tip across a range of temperature and pressure conditions and compared 

against the numerical results and is shown in Figure 3.61. Unfortunately, experimental results 

were not available at the standardised condition of Tf=363K and 0.5bar gas pressure but the 

results suggest that the droplet diameter is within the expected range and the change in 

droplet diameter over time closely matches the experimental results providing increased 

confidence in the capability of the droplet breakup model to satisfactorily predict the 

secondary breakup processes. 
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Figure 3.60 – A comparison of experimental and predicted plume tip velocity (Plume 1/6) 

for iso-octane 

 

Figure 3.61 – A comparison of experimental and predicted D10 droplet diameter at z=-

25mm from the injector tip for iso-octane 

 

Of note are two caveats related to the comparison of these numerical predictions to the 

experimental results. 

The first caveat exists in the differences between the experimental and numerical results with 

respect to the number of droplets and area over which the D10 droplet diameter is calculated. 
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The PDA measurement system is focused on a very small area in the centre of the spray 

plume with the elliptical volume having a long axis of approximately 2.7mm. Due to the 

exact location of the PDA laser interference volume within the spray not being known, it was 

not possible to validate the numerical predictions against the same area and location as the 

experimental results. This implies that the numerical results would include a significant 

number of smaller droplets at the periphery of the spray (lowering the D10 droplet diameter), 

that would not have been captured in the experimental PDA data. It was not possible to 

isolate plume 2 within the numerical results and perform a more comparative positional 

comparison to experimental data due to plume 2 being strongly distorted in the x-y (swirl) 

plane by the intake valve jet in the numerical engine model which is not present in the 

experimental data from the quiescent chamber.  

The second caveat arises due to each plume pair having a different y-z axis injected plume 

angle. The average droplet diameter is seen to vary along the length of the plume, with the 

plume tip consisting of larger droplets with higher momentum and the tail of the spray plume 

consisting of smaller droplets with lower momentum. As mentioned previously, the D10 

droplet diameter for the numerical results is calculated across all droplets at a fixed z-axis 

position, but due to the plume pairs having different plume angles, the averaging plane will 

intersect each plume pair at a different axial position, thus contributing to another source of 

variation of numerical D10 droplet diameter. 

In spite of these caveats, the differences are not expected to be significant enough to indicate 

a false conclusion and are still likely within the variation and measurement uncertainty of 

experimental results. 

As a means of validating the numerical predictions for spatial mixture variation, fuel-air 

equivalence ratio contours when using the single-component fuel at 60°BTDC (Figure 3.62) 

was compared against QPLIF results from Williams, Ewart, Wang, et al. (2010) (Figure 3.63).  

Williams, Ewart, Wang, et al. (2010) used three different tracers to match the evaporation 

characteristics and hence track the light, medium and heavy components of a typical gasoline 

fuel: 

 Acetone: designed to match the evaporation characteristics of the light fractions of 

gasoline, predominantly butanes and iso-pentanes fractions 
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 Toluene: designed to match the evaporation characteristics of the medium fractions of 

gasoline, predominantly iso-octane and n-octane fractions 

 1,2,4 Tri-methyl benzene (TMB): designed to match the evaporation characteristics of 

the heavy fractions of gasoline, predominantly iso-dodecane and n-decane fractions 

As can be seen from Figure 3.63, some stratification is seen with a slightly richer mixture 

towards the exhaust side of the combustion chamber when using a toluene tracer and richer 

fuel-air mixture up either side of the combustion chamber when using the TMB tracer but 

neither of the tracers show a rich fuel-air mixture propagating up the intake side of the 

combustion chamber as seen in the numerical predictions, perhaps suggesting that the 

clockwise rotating vortex seen in the velocity field in the numerical predictions is more 

pronounced than seen in experiments. 

 

Figure 3.62 – Contours of fuel-air equivalence ratio for the single-component fuel 

surrogate and RANS turbulence modelling approach, along the bore centreline at 

60°BTDC 

 

Figure 3.63 – Fractional equivalence ratio distribution along the bore centreline at 

60°BTDC for three different tracers, QPLIF results taken from Williams, Ewart, Wang, 

et al. (2010) 



Chapter 3  The Engine and Numerical Model 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

152 

 

To test this theory, experimental PIV data in both the tumble plane and swirl plane was 

compared to the predicted velocity field from the numerical model to see if any differences in 

flow structures were predicted that could help explain the differences in mixture field 

stratification between model and experiments. 

When comparing the velocity fields in the tumble plane, the experimental results (Figure 

3.64(a)) suggest a slightly more uniform upward flow field than seen in the numerical 

predictions (Figure 3.64(b)) but still a propensity to have higher flow velocities on the intake 

side of the combustion chamber as seen in the numerical predictions, due to large scale 

tumble motion. Also of note is the difference in gas velocities near the piston crown. A 

simple calculation of the instantaneous piston speed 𝑆𝑝 at this crank angle can be completed 

using equation (3.10) and thus yielding an instantaneous piston speed of approximately 

7.1m/s at this engine condition. It is expected that the gas velocity near the piston will be 

approximately equivalent to the instantaneous piston speed thus the experimental results are 

perhaps showing gas velocities slightly below reality and the numerical results showing gas 

velocities slightly higher than reality (expected to be due to the effect of the rising piston on 

the gas combining with the upward momentum generated due to the flow field rebounding off 

the piston crown). 

 
𝑆𝑝 = 𝑆�̅� {

𝜋

2
sin 𝜃 [1 +

cos𝜃

(𝑅2 − sin2𝜃)1 2⁄
]} (3.10) 

 

Where 𝑆�̅� is the mean piston speed, 𝜃 is the crank angle and 𝑅 is the ratio of connecting rod 

length to crank radius. 

Inspection of the swirl plane velocity fields indicates some differences between experimental 

and predicted flow fields. The experimental results (Figure 3.65(a)) show two dominant flow 

structures moving from the intake side of the combustion chamber, generated as a 

consequence of the two intake valve jets that have tumbled down the exhaust side of the 

combustion chamber, reflected off the piston crown and the recirculated back up the intake 

side and across the top of the combustion chamber. The symmetrical flow features lending to 

increased homogeneity of the fuel-air mixture in the x-y plane. The numerical results (Figure 

3.65(b)) show slow moving flow progressing from the intake to the exhaust side of the 

combustion chamber but being initiated by strong flow structures around the periphery of the 

combustion chamber, colliding on the intake side of the combustion chamber. The limited 
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field of view in the experimental results does not allow one to say for sure if similar rotating 

flow structures exist in reality but this could contribute to some of the observed differences in 

mixture stratification between experimental and numerical results observed above. 

Experimental PIV Numerical Predictions 

 

 

 

 

(a) (b) 

Figure 3.64 – (a) Experimental PIV (Justham, 2010) and (b) numerical velocity 

magnitude contours and vectors, in the tumble plane along the bore centreline at 

60°BTDC 

 

Experimental PIV Numerical Predictions 

 

 

 

 

(a) (b) 

Figure 3.65 – (a) Experimental PIV (Justham, 2010) and (b) numerical velocity 

magnitude contours and vectors, in the swirl plane 10mm below peak height of the 

piston (~12mm below the head gasket plane) at 60°BTDC 
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Another consideration for the differences between experimental and numerical flow 

structures could also be attributed to the capability of a RANS turbulence modelling approach 

to accurately model the effects of turbulence within the flow field through both the intake and 

compression strokes.  

 

3.3.4.2 LES Approach 

 

The fuel injection sub-models used during the LES approach are the same as shown above in 

Table 3.10, with the exception of the turbulence dispersion sub-model which differs as shown 

in Table 3.23, thus meaning that the droplet relative velocity is now a function of the filtered-

velocity and the modelled turbulent fluctuations. No model is included for energy exchange 

from the discrete-phase to the continuous phase, as discussed in earlier in section 2.4.8. 

 

Table 3.23 – LES specific sub-models used in fuel injection sub-models 

Turbulence Dispersion 

Gaussian pdf  (Gosman & Ioannides, 

1983) where mean velocity is the sum of 

the local filtered-velocity velocity from 

the momentum equation and SGS velocity 

from SGS model, and k is calculated from 
the SGS velocity 

 

3.3.4.2.1 Initial and Boundary Conditions and Model Configuration 

 

The turbulence model and all associated boundary and initial conditions are the same as 

described previously in section 3.3.3.2. 

Similarly to the single-phase LES model described in section 3.3.3.2, the model was first 

initialised by running a RANS cycle and a subsequent LES cycle that was discarded, before 

running a further 15 cycles. Again, each subsequent LES cycle was initiated from the final 

conditions of the previously computed cycle so that any variability in the initial conditions is 

retained and used to initiate cyclic variability in the following cycle. 
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The spray model, all associated sub-models (with exception of the differences noted above) 

and all boundary and initial conditions are the same as described previously in section 3.3.4.1 

with the exception that only a single-component surrogate fuel was modelled with the LES 

turbulence model due to computational limitations.  

 

3.3.4.2.2 Model Validation 

 

First, Figure 3.66 shows the plume tip penetration compared against experimental results. 

Upon first inspection the LES plume tip penetration is clearly lower than both the RANS 

predictions and experimental results. The expectation would be for the droplet penetration to 

be greater due to the model not including a contribution of kinetic energy from the disperse 

phase to the SGS turbulence kinetic energy of the continuous phase as seen from the work on 

Banerjee, Liang, Rutland, et al. (2010). The likely cause of this is due to a difference in 

turbulence conditions. Banerjee et al. modelled a case in a quiescent chamber where the only 

turbulence generated was as a consequence of the dispersed-phase imparting energy on the 

continuous-phase. In the case simulated here, the fuel was injected into a highly turbulent 

combustion chamber, with a large range of length and velocity scales, hence the energy 

imparted from the continuous-phase on the dispersed phase is much more significant. Hence 

it would be expected that plume tip penetration could be either increased or reduced 

depending on the local flow conditions and flow-spray momentum exchange. 

The increase in standard deviation with increasing penetration is also evident; as the spray 

momentum reduces with time due to drag and momentum exchange, it becomes more and 

more influenced by variations in the flow field.  

The LES results were only ensemble-averaged up to 16°ASOI since beyond this time some 

cycles had already impinged on the piston crown and/or the plume tip had become so 

distorted by the in-cylinder flow field that the uncertainty of deducing the plume tip became 

excessively large. Encouragingly, the LES predictions still well capture the change in 

penetration profile during the early part of the injection process. 

Whilst the LES predictions do not match the experimental predictions quite as accurately as 

seen in the RANS predictions, they are still believed to be representative and behaving in a 
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physically correct nature, and hence are sufficient to be used for further investigations into 

CCV and other fuel injection processes. 

 

 

Figure 3.66 – A comparison of experimental and LES predicted plume tip penetration 

(Plume 1/6) for iso-octane, showing LES ensemble-average with error bars for cycle 

standard deviation, individual LES cycles and RANS predictions 

 

It was also possible to plot the variation in plume tip position in the X-Z plane for both the 

RANS and LES cases as shown in Figure 3.67. The effect of flow field inhomogeneities on 

the injected droplets is apparent, with plumes 2 and 3 showing higher levels of CCV when 

compared with plumes 4 and 5 due to the CCV of the flow field. 

Similarly to completed in section 4.3.1.3 the predicted plume tip velocity was calculated and 

compared against experimental results and is shown in Figure 3.68. Largely the LES 

predictions well match the RANS predictions and experimental results, again with an 

increase in CCV later during the cycle due to increased interaction with the in-cylinder flow 

field. 
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Figure 3.67 – Plume tip position as a function of z-axis and x-axis position from the 

injector tip for RANS and individual LES cycles, with each marker representing 2°c.a. 

 

 

Figure 3.68 – A comparison of experimental and LES predicted plume tip velocity 

(Plume 1/6) for iso-octane, showing LES ensemble-average with error bars for cycle 

standard deviation, individual LES cycles and RANS predictions 



Chapter 3  The Engine and Numerical Model 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

158 

 

The variation in droplet diameter as a function of time was also compared to the experimental 

PDA data as presented previously in section 3.3.4.1.3 and is shown in Figure 3.69. As seen 

previously with the RANS turbulence model, the predictions using the LES turbulence model 

fall within the range of experimental data available and hence it is believed the model is well 

predicting the change in droplet diameter due to breakup and atomisation processes. 

 

 

Figure 3.69 – A Comparison of experimental and LES predicted D10 droplet diameter at 

z=-25mm from the injector tip for iso-octane, showing LES ensemble-average with 

error bars for cycle standard deviation, individual LES cycles and RANS predictions 

 

It is also interesting to investigate how the temporal variation in droplet diameter, with 

respect to cycle-to-cycle variations and crank angle-to-crank angle variations, vary with the 

turbulence modelling technique used. It was also decided to investigate the variation in 

droplet diameter at z=-50mm to investigate if the higher levels of CCV are present when 

further from the injector tip, the result of which is shown in Figure 3.70. Unfortunately 

experimental data on the cyclic variation of the droplet diameter was not available.  
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Figure 3.70 – A Comparison of LES and RANS predicted D10 droplet diameter at z=-

50mm from the injector tip for iso-octane, including the LES ensemble-average with 

error bars for cycle standard deviation 

 

First, examining the variation in D10 diameter through the crank angle range presented here 

(SOI to SOI+20°), shown in Figure 3.71 and Figure 3.72. The ‘D10 standard deviation’ is 

calculated as follows: 

First, the arithmetic mean droplet diameter 𝐷𝑐̅̅ ̅ is calculated for a given cycle: 

 
𝐷10,𝑐 = 𝐷𝑐̅̅ ̅(𝜃, 𝑧) =

1

𝑥
∑𝐷𝑖(𝜃, 𝑧, 𝑐)

𝑥

𝑖=1

 (3.11) 

 

Where D is the droplet diameter, x is the total number of droplets, i individual 

droplets, at a θ crank angle, z cutting plane and cycle c. 

Then obtain the ensemble-average arithmetic mean droplet diameter �̅�: 

 
𝐷10 = �̅�(𝜃, 𝑧) =

1

𝑛
∑𝐷𝑐̅̅ ̅(𝜃, 𝑧)

𝑛

𝑐=1

 (3.12) 
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Where n is the total number of cycles. 

Then the standard deviation of the cycle average droplet diameter 𝑆 is defined below 

as the square root of the variance: 

 

𝑆(𝜃, 𝑧) = √
1

𝑛
∑[𝐷𝑐̅̅ ̅(𝜃, 𝑧) − �̅�(𝜃, 𝑧)]

2

𝑛

𝑐=1

 (3.13) 

 

The CCV is seen to be small with the exception of 10°ASOI at z=-50mm (Figure 3.72). This 

is due to the plume tip just reaching the cutting plane at this crank angle. Thus there is a 

combined effect of significant droplet size stratification present in the plume head with 

variations in plume tip penetration and the positioning of the cutting plane through the plume 

head, causes a large variation in the mean droplet diameter. 

 

 

Figure 3.71 – Standard deviation of the droplet D10 diameter at z=-25mm across all LES 

cycles 
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Figure 3.72 – Standard deviation of the droplet D10 diameter at z=-50mm across all LES 

cycles 

 

Next, the variation in droplet diameter, for all droplets, rather than the variation in D10 

diameter as shown above, on a cycle-by-cycle basis was investigated. The ‘droplet diameter 

standard deviation’ is defined as follows: 

Here the standard deviation is not of the mean droplet diameter but the standard 

deviation of all droplets at the defined z-cutting plane and crank angle: 

 
𝐷10,𝑐 = 𝐷𝑐̅̅ ̅(𝜃, 𝑧) =

1

𝑥
∑𝐷𝑖(𝜃, 𝑧, 𝑐)

𝑥

𝑖=1

 (3.14) 

 

Then calculate the standard deviation based on the cycle mean 𝑆𝑐: 

 

𝑆𝑐(𝜃, 𝑧, 𝑐) = √
1

𝑥
∑[𝐷𝑛(𝜃, 𝑧, 𝑐) − 𝐷𝑐̅̅ ̅(𝜃, 𝑧)]

2

𝑥

𝑐=1

 (3.15) 

 

Where D is the droplet diameter, x is the total number of droplets, n individual 

droplets, at a θ crank angle, z cutting plane and cycle c. 
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The average of the standard deviation based on the cycle mean 𝑆̅ is calculated via: 

 
𝑆̅(𝜃, 𝑧) =) =

1

𝑛
∑𝑆𝑐(𝜃, 𝑧, 𝑐)

𝑛

𝑐=1

 (3.16) 

 

When comparing the RANS and LES predictions (Figure 3.73 and Figure 3.74), it is seen that 

when using the RANS turbulence model a comparatively greater variation in droplet diameter 

is seen than when compared to the LES predictions – this is in spite of the droplet D10 

diameter predictions being very similar between the RANS and LES predictions (Figure 3.69 

and Figure 3.70), implying that the RANS turbulence model generates a greater spread of 

droplet diameters. It is also possible to deduce that not only is the LES cycle mean droplet 

diameter standard deviation lower (solid black series), but it is consistently lower on a cycle-

by-cycle basis (grey series), hence it is reasonable to assume that this difference is driven by 

the inherent differences between a RANS time-filtered approach where flow anisotropic 

effects are not modelled and a LES space-filtered approach directly resolving a large 

proportion of the scales of turbulence. 

 

 

Figure 3.73 – Standard deviation of the diameter of all droplets at z=-25mm for each 

LES cycle, the LES mean and RANS 
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Figure 3.74 – Standard deviation of the diameter of all droplets at z=-50mm for each 

LES cycle, the LES mean and RANS 

In the LES SGS model used in this research, whilst the droplet instantaneous velocity and 

turbulent dispersion are affected by the instantaneous velocity field (which is a function of 

both the resolved and model velocity field), the lack of a sink/source term in the SGS model 

to account for momentum transfer-to-from the dispersed-phase and the SGS velocity field 

will mean that droplets retain a higher amount of energy than is expected to be realistic which 

will influence droplet breakup and evaporation rates, and hence the variation in droplet 

diameter. Without further work to evaluate the impact of droplet energy dissipation on the 

SGS TKE, and the subsequent variation in droplet diameter, and additional experimental data 

for validation, it is unclear whether the variation in droplet diameter predicted by either the 

LES or RANS predictions are reasonable. 

Finally, the fuel-air equivalence ratio was evaluated along the bore centreline at 60°BTDC, 

shown in Figure 3.75 for comparison against previously presented experimental results and 

RANS predictions. When compared to the RANS predictions (Figure 3.62) and experimental 

results (Figure 3.63), a significant reduction in the amount of stratification is seen. The 

degree of stratification on the intake side of the combustion chamber has reduced, and a 

greater quantity of fuel is present on the exhaust side which is not seen in the RANS 

predictions but is present in the toluene and TMB fractions of the experimental QPLIF results. 

Whilst it is not possible to quantitatively compare the numerical predictions to the 

experimental QPLIF results, the fuel-air equivalence ratio predictions with the LES SGS 

model show a qualitative improvement in the spatial distribution of fuel-air mixture. 
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Figure 3.75 – Contours of ensemble-average fuel-air equivalence ratio with the LES 

turbulence modelling approach, along the bore centreline at 60°BTDC 

 

3.4 CONCLUDING REMARKS 

 

This chapter started by presenting the experimental test case that is the subject of the 

numerical modelling for this research. This has included details of the GDI single cylinder 

optical research engine configuration, the operating condition, valve events and the fuel 

injection system and strategy used by this engine. 

Next this chapter presented the numerical models used within this research. The 

computational domain and methodology used was presented first. The rest of the chapter was 

largely split into two sections:  

1. The description and validation of the model used to investigate the in-cylinder flow 

field using single-phase flow simulations; 

2. The description and validation of the model used to investigate the fuel injection 

process of two-phase flow simulations using a Lagrangian DDM. 

Within each of these two sections, they were further sub-divided into sections presenting the 

model using either the RANS or LES turbulence modelling approaches. 

Conclusions from the sensitivity studies and model validation when using the RANS RNG k-

ε turbulence model to model the in-cylinder flow field: 

 Six different mesh sizes were investigated, ranging from 1.25m cells upto 2.6m cells 

and results from both cylinder averaged quantities and contours of turbulence kinetic 
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energy indicated that the solution was mostly independent of the mesh size with a 

mesh of 2.15million cells or a cell size of approximately 0.7-0.8mm
3
 in the cylinder 

interior. 

 An initialisation sensitivity study showed that a minimum of one cycle must be used 

to initialise a solution to ensure that intake system wave dynamics, and their effect on 

the resultant in-cylinder flow field, are adequately modelled. 

 Model validation results showed that: the in-cylinder pressure history well matched 

the experimental results; intake system velocity and flow momentum were well 

matched to experiments; differences in the intake valve jet were seen with respect to 

the timing of jet detachment from the cylinder head acting to reduce the effective area 

and consequently caused valve jet velocities to be over predicted; comparison to 

experimental in-cylinder PIV velocity magnitude contours showed general flow 

structures to be well predicted but with some discrepancies in the location of certain 

recirculation regions. 

Conclusions from the mesh suitability study and model validation when using the LES 

Smagorinsky SGS model run over 29 engine cycles to model the in-cylinder flow field: 

 The mesh suitability was evaluated by the use of the turbulence resolution parameter 

which showed the mesh to generally allow over 80% of the turbulence kinetic energy 

to be resolved, with the exception of certain areas around the high shear regions of the 

intake valve jet where upward of 60% was resolved. 

 When compared to experimental results: the in-cylinder pressure history was again 

well matched; velocity magnitude contours and ensemble-average velocity line charts 

at a number of cutting planes and crank angles were presented, and similarly to the 

RANS predictions, show the model to well represent the complex flow structures but 

mis-predict the location of certain recirculation regions; the LES results were also 

seen to generally provide better agreement than the RANS predictions. 

Conclusions from the dependency studies and model validation when using the DDM model 

with a single-component surrogate of iso-octane to model the fuel injection process, with the 

RANS RNG k-ε turbulence model: 

 A mesh size sensitivity study was completed using three different meshes ranging 

from 1.7m cells to 3.6m cells with respect to predictions of plume tip penetration, fuel 



Chapter 3  The Engine and Numerical Model 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

166 

 

mass fraction and droplet diameter distribution profiles. The results showed that with 

respect to the parameters investigated here, the solution was largely insensitive to the 

mesh size by 2.2m cells. 

 The effect of secondary breakup model on droplet D10 diameter was investigated at 

three separate z-plane positions and showed the predictions to be largely insensitive to 

the chosen breakup model, expected to be due to the use of a prescribed droplet 

diameter distribution as part of the model boundary conditions. 

 The sensitivity of the prediction of plume tip penetration, cylinder averaged droplet 

diameter and computational expense due to the number of injected parcels was 

investigated and showed the predictions to be largely insensitive to the number of 

injected parcels per jet by 50’000 parcels, with an acceptable computational expense.  

 The model was validated against plume tip penetration, plume tip velocity and droplet 

diameter and was seen to well match the experimental results. The predicted fuel-air 

equivalence ratio was also compared to experimental QPLIF results and showed 

additional stratification in the model predictions that does not appear present in the 

experimental results. Inspection of PIV data for flow field velocity magnitude 

suggested potential differences in flow feature symmetry between experimental and 

RANS predictions could be the cause of the additional mixture stratification in the 

RANS predictions but this will be a subject for further investigation in the following 

chapter.  

Conclusions from the validation of the DDM model with a single-component surrogate of 

iso-octane to model the fuel injection process, when using the LES Smagorinsky SGS 

turbulence model run over 15 engine cycles: 

 The model was validated against plume tip penetration, plume tip velocity and droplet 

diameter and similarly to the RANS predictions, was seen to well match the 

experimental results. Additional analysis was presented, investigating the variation in 

droplet diameter and comparisons against RANS predictions with a reduction in 

spatial variation of droplet diameter noted between predictions using the LES model 

when compared to the RANS model. The contours of the ensemble-average fuel-air 

equivalence ratio showed increased homogeneity and a qualitative improvement in the 

predicted spatial equivalence ratio variation when compared against experimental 

results. 
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CHAPTER 4 

INVESTIGATIONS INTO THE IN-

CYLINDER FLOW FIELD 

 

 

“When written in Chinese, the word ‘crisis’ is composed of two characters – one 

represents danger, and the other represents opportunity.” 

– John F. Kennedy 

 

 

 

4.1 INTRODUCTION 

 

This chapter presents the results from a number of numerical analyses, looking at the physical 

processes of the in-cylinder flow field occurring inside the GDI engine under study in this 

research. The physical processes investigated use a combination of both the RANS and LES 

turbulence modelling approaches as described and validated in Chapter 4, where the 

modelling approach selected for a particular analysis was chosen based on the required 

outcome.  

The first section investigates a number of different aspects of the in-cylinder flow field 

including: the identification of transient flow structures and the evolution of flow features due 

to the movement of solid boundaries within the combustion chamber, the effect of the pent-

roof optical access geometry on the in-cylinder flow field, a look into flow three-

dimensionality often not captured during experimental research and a phenomenon called 

intake valve jet flapping.  
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The second section investigates flow anisotropy within the combustion chamber by 

evaluating the fluctuating velocity component and turbulence intensity at a number of cutting 

planes and key crank angles within the intake and compression strokes up to the point of 

spark timing. This also includes a detailed look at the impact of turbulent fluctuations and 

CCV of the flow field in the near spark plug region with suggestions on the expected impact 

on initial kernel development and subsequent flame propagation.  

The final section presents the use of POD as a method for decomposing the spatially and 

temporally (both through a cycle and cycle-by-cycle) varying flow field to quantify and 

characterise turbulent flow structures, assess the amount of small scale turbulence at the point 

of spark timing, quantify the level of cyclic variability within the flow field and assess the 

degree of statistical convergence of the ensemble-average based on the number of numerical 

cycles completed and cyclic variability present in the flow field. 

 

4.2 IN-CYLINDER FLOW STRUCTURES 

 

4.2.1 Identification of Transient Flow Structures  

 

This section presents the results from a short analysis of a number of flow structures, 

underneath the intake valve and early in the intake stroke, as an introduction into the 

prevalent flow structures found within this experimental test case. The results presented in 

this section were generated using the RNG k-ε turbulence model and computational setup as 

defined in section 3.3.3.1. 

As stated earlier, the engine under study here exhibits a relatively weak tumble flow structure 

(tumble ratio of approximately 0.5). Valve jets of similar velocity magnitude are formed 

down both the cylinder wall closest to the intake valve and down the opposite wall 

underneath the exhaust valve, as a consequence of the relatively straight intake port geometry.  

Figure 4.1 shows the velocity magnitude contours and vectors at 70°ATDC and 80°ATDC in 

the tumble plane, cutting through one of the intake valves. Intake valve jets propagating from 

both the front and back of the valve head are visible, reflecting off the liner and piston crown 
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and meeting in the centre of the combustion chamber, where they generate a highly turbulent 

recirculating region. Due to prominent valve jets being formed on both sides of the intake 

valve, and the obvious axis asymmetry due to the intake valve being positioned on one side 

of the cylinder, a number of complex flow structures are generated through the intake and 

compression strokes. 

One such flow structure is seen at 70°ATDC, where a small recirculation region on the liner 

wall is generated as a consequence the intake valve jet interacting with flow reflecting off the 

piston crown, which at this crank angle is still relatively high in the combustion chamber. By 

85°ATDC the flow structure is largely dissipated due to the falling piston and weakening 

valve jet, illustrated by black annotations in Figure 4.1. 

 

Figure 4.1 – Velocity magnitude contours and velocity vectors at 70°ATDC and 

85°ATDC, illustrating the transient nature of a recirculation zone close to the cylinder 

wall 

 

The reduced impact of the piston crown on in-cylinder flow structures later in the intake 

stroke is highlighted by Figure 4.2. Earlier in the cycle the flow field is heavily influenced by 

tumble flow rebounding off the piston crown as seen at 85°ATDC, in this case causing the 

rotating vortices formed underneath the intake valve to be displaced. By 110°ATDC the 

piston is significantly lower in the cylinder. This reduces the likelihood of flow reflecting off 

the piston surface and interacting with flow structures in the centre and upper portions of the 

combustion chamber, allowing more symmetrical recirculation regions to be formed 

underneath the intake valves.  
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Figure 4.2 – Velocity magnitude contours and velocity vectors at 85°ATDC and 

110°ATDC, illustrating the impact of solid boundaries on re-circulating flow structures 

at different points in the intake stroke 

 

5.2.2 Effects of the Optical Access Window 

 

This section presents the results from an analysis on the impact of the pent-roof optical access 

window on the in-cylinder flow field, including a number of considerations for 

experimentalists when using an optical access window of this type. The results presented in 

this section were generated using the RNG k-ε turbulence model and computational setup as 

defined in section 3.3.3.1. 

Another appropriate use of this model is to study the impact of the pent-roof optical access 

window on the in-cylinder flow structures. This is of particular interest to experimentalists 

looking to compare experimental results from an optical research engine with pent-roof 

window against the results from an engine without optical access. 

Figure 4.3 shows velocity magnitude contours and vectors along a swirl cutting plane in the 

pent-roof region, intersecting the optical access window. Immediately apparent is the 

presence of two additional turbulent eddies on the front side of the cylinder as a consequence 

of the abrupt geometry of the optical access window. This has the effect of generating flow 

asymmetry from front-to-rear of the combustion chamber. 
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Figure 4.3 – Velocity magnitude contours and vectors along a swirl plane intersecting 

the optical access window, with black arrows indicating rotating vortices generated as a 

consequence of the optical access window 

 

Figure 4.4 is in the head gasket plane and again illustrates flow asymmetry generated by the 

optical access window. The flow field from the rear of the combustion chamber is seen to be 

more dominant due to the rounded cylinder wall causing less obstruction than the optical 

access window at the front of the combustion chamber. The intersection of flow fields from 

front-to-rear of the combustion chamber also occurs in a different plane, generating 

additional recirculation regions highlighted by the annotated black arrows on the figure.  

From these results, a number of considerations can be proposed for experimentalists using a 

pent-roof access window as a consequence of the predicted flow asymmetry: 

 The flow field is less representative of the flow field generated in an engine without 

the pent-roof window 

 The choice of experimental measurement location is of greater significance due to the 

added asymmetry 

 There will potentially be an impact on fuel spray symmetry and fuel-air mixture in the 

near spark plug region at the point of ignition timing 
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Results suggest that the influence of the optical access window on the in-cylinder flow field 

is largely limited to the pent-roof region and does not appear to significantly influence the 

flow field within the cylinder interior. 

 

 

Figure 4.4 – Velocity magnitude contours and velocity vectors along the head gasket 

plane, with black arrows indicating flow asymmetry as a consequence of the optical 

access window 

 

Figure 4.5 shows velocity magnitude contours and vectors across the surface of the 

combustion chamber with recirculation regions in the sharp corners of the optical access 

window clearly visible. The presence of these recirculation zones in the pent-roof window 

provides additional considerations including: 

 An opportunity for increased mixture inhomogeneity which will influence flame front 

propagation and pollutant formation, particularly UHC and PM, in the optical access 

window 

 An increased opportunity for end gas autoignition due to reduced flame speed in this 

region and the development of ignition sites or ‘hot-spots’ due to deposits 
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Figure 4.5 – Velocity magnitude contours and vectors across the surface of the domain 

focussed on the optical access window, with a black circle indicating the presence of a 

recirculation zone in the corner of the optical access window 

 

4.2.3 Flow Three-Dimensionality 

 

This section presents results investigating the three-dimensionality of the flow field. The 

results were generated using the Smagorinsky SGS model and computational setup as defined 

in section 3.3.3.2. 

As discussed earlier in this thesis, the use of experimental techniques to measure flow fields 

in three-dimensions has limited examples in literature and even fewer when applied to ICE’s. 

Numerical techniques, utilising the increases in computational resources over the past 

decades, offer a unique advantage to be able to provide detailed information on the in-

cylinder flow field across all three planes. In this section, the three-dimensional nature of the 

flow field is investigated, with particular focus on the flow structures setup during the intake 

stroke.  

The LES approach was used in preference to a RANS approach due to it providing an 

increased number of flow structures represented on the computational grid. This allows 



Chapter 4  Investigations into the In-Cylinder Flow Field 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

174 

 

additional insight into the characteristics of the flow structures present. This study has used 

the result from a single arbitrary cycle since, whilst it doesn’t provide a representation of the 

average flow field (as is the case for an ensemble-average result), it does provide information 

on the actual flow field that occurred within a particular cycle.  

First, velocity magnitude contours for four different cutting planes through the tumble plane 

(shown in Figure 4.6) were used to investigate the variation of in-cylinder flow field and 

intake valve jet through the combustion chamber at 70°ATDC, i.e. early in the induction 

process, and the results are shown in Figure 4.7. 

 

 

Figure 4.6 – Images shows cutting planes used for investigating three-dimensional 

nature of the intake valve jet 
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Figure 4.7 – Velocity magnitude contours for an arbitrary cycle at 70°ATDC, at 

successive cutting planes in the X-Z (tumble) plane, illustrating the variations in flow 

structures and intake valve jet through the combustion chamber 
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A variety of turbulent flow structures can be seen in the cylinder interior, with no one 

dominant flow direction, that varies across all four cutting planes. 

The intake valve jet also is subject to variation across the combustion chamber. Inspection of 

the valve jet that propagates down the cylinder wall show the jet to penetrate almost to the 

piston crown in the y=-25mm cutting plane, but closer to the centre of the combustion 

chamber at y=-21mm and y=-9mm, the penetration is significantly reduced. This is thought to 

be as a consequence of its interaction with flow structures generated between the two valve 

jets. The valve jet that passes over the top of the valve head and across the top of the 

combustion chamber also varies in penetration depth and jet strength across the cutting planes 

shown here. At the periphery of the valve, at y=-9mm and y=-29mm, increased penetration is 

seen with the valve jet almost impinging the cylinder liner underneath the exhaust valve. 

Closer to the centre of the valve, at y=-21mm and y=-25mm, reduced jet penetration is seen 

and thought to as a consequence of the valve stem disrupting the flow as it travels past the 

valve and into the cylinder. 

To further investigate the three-dimensional nature of the flow field the vorticity (ω), or ‘curl’ 

of the velocity vector field, was calculated as defined by equation (4.1). The vorticity defines 

the rotation of each cell’s three-dimensional velocity vector and thus when plotted on a 2D 

contour plot, provides information on three-dimensional rotating flow structures or flow 

structures with movement in the hidden dimension.  

 
ω = ∇ × 𝑢𝑖 = (

𝜕𝑢𝑧

𝜕𝑦
−
𝜕𝑢𝑦

𝜕𝑧
) 𝒊 + (

𝜕𝑢𝑥

𝜕𝑧
−
𝜕𝑢𝑧

𝜕𝑥
) 𝒋 + (

𝜕𝑢𝑦

𝜕𝑥
−
𝜕𝑢𝑥

𝜕𝑦
)𝒌 (4.1) 

 

Figure 4.8 shows velocity magnitude and vorticity contours for two cutting planes at y=-1mm 

(approximately the centre of the combustion chamber) and y=-19mm (through the middle of 

the rear intake valve). 

The following comments can be made on the flow structures observed in Figure 4.8: 

 At y=-1mm, an area of high vorticity is present to the left of the centre of the 

combustion chamber in line with the intake valve, due to interactions between the two 

valve jets.  

 High vorticity is present in areas of high shear. This effect is visible either side of the 

intake valve jet in the images at y=-19mm where the high velocity valve jet impinges 
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the slow moving flow of the cylinder interior, and in locations where high velocity 

flow meets a solid boundary, e.g. piston crown, combustion chamber and intake port 

wall, intake valve head, due to the velocity gradient between the freestream and the 

boundary layer. 

 Areas of high vorticity are also visible within the cylinder interior, indicating regions 

of strongly rotating turbulent vortices. 
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Figure 4.8 – Velocity magnitude contours and vorticity contours for an arbitrary cycle 

at 70°ATDC, at two cutting planes in the X-Z (tumble) plane 
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To investigate areas of high vorticity around the intake valve jet in more detail, Figure 4.9 

provides a zoomed in view. Regions of high vorticity are clearly visible around the intake 

valve jet, across the top of the valve head and in the valve curtain where the flow detaches 

from the cylinder head, as a consequence of the high velocity valve jet causing regions of 

high shear as it moves past regions of lower velocity flow. A number of regions with high 

vorticity are also visible within the cylinder interior. This indicates turbulent flow structures 

in the dimension not plotted (i.e. into or out of the page) as a consequence of recirculating 

eddies generating highly three-dimensional flow structures. 
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 (a) (b) 

Figure 4.9 – (a) Velocity magnitude contours and vectors, (b) Vorticity contours and 

velocity vectors, zoomed in around the intake valve jet, for an arbitrary cycle at 

70°ATDC, in the X-Z (tumble) plane 
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As observed above, areas of vorticity are generated due to either a shear induced flow field or 

a swirling flow field, thus vorticity cannot be used to distinguish between the two flow types.  

 

4.2.4 Intake Valve Jet Flapping 

 

In the previous section, interactions between the two intake valve jets were observed, 

particularly with respect to the generation of vorticity where the two jets collide in the region 

between the two valves. This section focuses on the interaction between the two valve jets 

and the specific phenomenon of intake valve jet instability or ‘flapping’.  

Intake valve jet flapping describes the sinusoidal flow motion generated between the two 

intake valves during the intake stroke where examples are given in Figure 4.10 and Figure 

4.11. Jet flapping has been observed both experimentally and numerically in both detailed 

and simplified engine geometries (e.g. Hasse, Sohm & Durst (2009), Hasse (2016) and  Borée, 

Maurel & Bazile (2002)) and suggested as a potential source of cycle-to-cycle variability, due 

to the instability of the flow structure leading to significant differences in the resultant large 

scale tumbling motion (Hasse, 2016; St Hill, Asadamongkon, Lee, et al., 2000). In spite of 

this very little research exists where valve jet flapping has been characterised or attempts 

made to determine causality. This section aims to investigate the characteristics of intake 

valve jet flapping, establish causality and investigate the cyclic variability of this 

phenomenon. 

The results in this section were generated using the Smagorinsky SGS model and 

computational setup as defined in section 3.3.3.2. 

In the research presented here, individual cycles were investigated for evidence of intake 

valve jet flapping. Velocity magnitude contours at 5°CA intervals were used in the y-z 

cutting plane, intersecting through both intake valves. During early observations it became 

apparent that prior to an intake valve jet flapping event, a stronger velocity field was present 

in one of the intake valve curtains as a consequence of turbulent fluctuations. The difference 

in valve curtain flux between the two intake valves was compared to consecutive images of 

velocity magnitude contours and a relationship found between the temporal variation in valve 
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curtain mass flux and valve jet flapping. The results from cycle 10 are shown in Figure 4.12 

and Figure 4.13 and the following is a supporting commentary.  

 

Figure 4.10 – Velocity magnitude contours illustrating of intake valve jet flapping in the 

cross-cylinder plane taken from results from this research 

 

 

Figure 4.11 – Velocity magnitude contours providing an example of intake valve jet 

flapping in the swirl plane, taken from Hasse (2016) 
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Early in the intake stroke, between 30-70°ATDC, variations in mass flux past the intake 

valve curtains are small and this is reflected in a fairly constant jet propagating down the 

centre of the combustion chamber (Figure 4.13(a)). 

At around 75°ATDC a significant variation in valve curtain mass flux occurs between the 

two intake valves, observed as a weakening of the flow through the left valve curtain (Figure 

4.13(b)). 

This imbalance in valve curtain flux causes a momentary strengthening of the valve jet from 

the right hand valve and a resultant instability in the combined vertical jet, causing it to 

propagate more diagonally under the left intake valve. 

5°CA later at 80°ATDC, the difference in valve curtain flux has returned to similar values but 

this oscillation in the relative strength of each valve jet causes the resulting jet to begin to 

‘flap’ in a sinusoidal motion (Figure 4.13(c)). 

A further 5°CA later at 85°ATDC, since the valve curtain flux had stabilised 5°CA earlier, 

any flapping has been dissipated but a weakening of the flow past the left valve prompts the 

initiation of further valve jet flapping, which is visible at 90°ATDC (Figure 4.13(d) & Figure 

4.13(e)). 

This process continues until approximately 140°ATDC where any difference in valve curtain 

flux between the two intake valves is minimal as a consequence of much lower valve jet 

velocities at large valve lifts. 

 

Figure 4.12 – Difference in valve curtain flux between the intake valves for cycle 10 with 

red markers used to highlight crank angles for images in Fig.4 
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Figure 4.13 – Velocity magnitude contours with black circles highlighting valve curtain 

flow imbalance and black arrows highlighting valve jet flapping 

  

(a) 70°ATDC (b) 75°ATDC 

  
(c) 80°ATDC (d) 85°ATDC 

 
(e) 90°ATDC 
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It has also been observed that all engine cycles show cycle-to-cycle variations in valve 

curtain flux through the intake stroke. As seen in Figure 4.14 where all engine cycles are 

overlaid, all cycles exhibit variation in the intake valve curtain flux with the magnitude and 

phasing of the variation changing on a cycle-by-cycle basis. 

 

 

Figure 4.14 – Highlighting the variation in phase and magnitude of difference in intake 

valve curtain flux across all cycles 

 

As an example of the cyclic variations present, Figure 4.15 shows the difference in intake 

valve curtain flux and velocity magnitude contours at 100°ATDC for cycle 23. Here the 

flapping intake valve jet can be seen to have lower penetration into combustion chamber but 

oscillate at a higher frequency when compared to cycle 10. Figure 4.16 shows results for 

cycle 12 at 75°ATDC where the flapping valve jet oscillates at a lower frequency but 

penetrates all the way to the piston crown surface. 
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(a) (b) 

Figure 4.15 – Cycle 23 (a) Difference in intake valve curtain flux, (b) Velocity magnitude 

contours at 100°ATDC 

 

 

 

(a) (b) 

Figure 4.16 – Cycle 12 (a) Difference in intake valve curtain flux, (b) Velocity magnitude 

contours at 75°ATDC 

 

Due to the variation in magnitude and phase of the intake valve jet flapping that occurs on a 

cycle-by-cycle basis, when an ensemble-averaging process is applied to the velocity field, 

most of the information associated with jet flapping is lost and the results largely show a 

steady valve jet penetrating directly down into the combustion chamber, as shown by Figure 

4.17(a). Interestingly, contrary to the findings of Hasse (2016), when compared to a RANS 

solution of the same geometry (using the RNG k-ε turbulence model and computational setup 

as defined in section 3.3.3.1), jet flapping is visible but due to the time-averaging of the N-S 

equations, does not capture any of the cyclic-variability present in the LES predictions, 
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Figure 4.17(b). This finding becomes clear when the difference in valve curtain mass flux is 

calculated for the LES ensemble-average and RANS results, shown in Figure 4.18. The 

averaging effect on the perturbation, and then on the resultant valve jet instability in the LES  

ensemble-average trace is clear with a significant reduction in amplitude of the oscillatory 

trend. The difference in valve curtain flux for the RANS simulation shows a similar trend to 

that of the previously presented LES cycle 10 (Figure 4.12) and explains the presence of 

valve jet flapping in the predicted velocity field in the RANS predictions. 

  

(a) LES Ensemble-Average (b) RANS 

Figure 4.17 – Comparison of velocity magnitude contours at 100°ATDC for (a) LES 29 

cycle ensemble-average and (b) RANS predictions 

 

 

Figure 4.18 – Difference in valve curtain mass flux as a function of crank angle for the 

LES ensemble-average and for a RNG k-ε turbulence model 
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4.3 CHARACTERISATION OF FLOW ANISOTROPY 

 

As discussed in section 3.3.1.1 on turbulence, the large turbulent eddies can be assumed to be 

independent of viscous forces (i.e. dominated by inertial effects) and predominantly defined 

by the mean flow characteristics. The length scales are related to the geometry of the system 

boundaries, boundary layer thickness and boundary surface roughness. Thus the structure of 

the largest eddies are highly anisotropic and characterising the flow field with respect to its 

anisotropic nature is of interest to engine researchers for improved understanding and to 

numerical modellers for improving turbulence modelling techniques and their application to 

ICE flows. 

Whilst some examples of the application of experimental techniques for producing velocity 

field results in three-dimensions within an ICE are available, e.g. Peterson, Regaard, 

Heinemann, et al. (2012) and Peterson, Ding, Baum, et al. (2015), it is still very much 

emergent within the engine research community due to the difficultly of both the 

experimental technique and optical access into the combustion chamber. Due to 

computational limitations, traditional turbulence modelling techniques (to be discussed 

further below) have typically not allowed anisotropic affects to be accurately modelled, but 

the constant progression in computing resources is allowing the use of more computationally 

expensive turbulence modelling approaches, providing some unique opportunities to 

investigate the unique nature of flow anisotropy in ICE’s. 

This section begins with a brief discussion of turbulence modelling and relative advantages 

and disadvantages of RANS and LES turbulence modelling approaches with respect to 

modelling the anisotropic effects of the flow field. It will then follow with the methodology 

behind the results within this section and finish by presenting the findings from the evaluation 

of velocity fluctuations and turbulence intensity with respect to the overall flow field and 

characteristics of anisotropy in this single cylinder optical research engine. The LES 

predictions in this section were generated using the Smagorinsky SGS model and 

computational setup as defined in section 3.3.3.2, and the RANS predictions generated using 

the RNG k-ε turbulence model and computational setup as defined in section 3.3.3.1. Note 

that whilst the results are discussed with respect to a fuel injection event, this is a cold 

flow/single-phase analysis and an investigation into flow anisotropy when an injection event 

is simulated is presented in Chapter 6.  
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In a classical RANS formulation the viscous stresses are assumed to be proportional to the 

rate of deformation for a fluid element and thus the turbulence viscosity is assumed isotropic. 

Thus each of the fluctuating components are assumed to have an equal 1/3 contribution to the 

turbulence kinetic energy, making the Reynolds stresses equal in all directions, or isotropic. 

This is known to be highly inaccurate in even the simplest of turbulent flows. 

When using the LES turbulence modelling approach, flow structures greater than the filter 

width, or the cell size as is the case in this research, are solved directly using the N-S 

equations and only the flow structures smaller than the filter width are modelled, thus 

resolving the anisotropic behaviour for a significant proportion of the flow field. 

In this research, the fluctuating velocity component and turbulence intensity were evaluated 

across a number of cutting planes and at a number of crank angles through the intake and 

compression strokes up to the point of spark timing, using the LES turbulence modelling 

approach, in order to evaluate the anisotropic characteristics of the flow field. The equivalent 

results from a RANS RNG k-ε turbulence model were also calculated and compared. 

The fluctuating or sub-grid velocity 𝑢𝑖
′, and turbulence intensity 𝑇𝑖  for the LES results were 

calculated via the following methodology: 

1. Calculate the ensemble-average velocity (or filtered-velocity) for each velocity 

component �̅�𝑖: 

 
�̅�𝑖(𝜃) =

1

𝑛
∑𝑢𝑖(𝜃, 𝑐)

𝑛

𝑐=1

 (4.2) 

Where 𝑐 is cycle number, 𝑛 is the total number of cycles and 𝜃 the crank angle 

 

2. Calculate the fluctuating velocity component (or sub-grid velocity) 𝑢𝑖
′: 

 𝑢𝑖
′(𝜃, 𝑐) = 𝑢𝑖(𝜃, 𝑐) − �̅�𝑖(𝜃) (4.3) 

Where 𝑢𝑖  is the instantaneous velocity. 

 

3. Calculate the RMS (or standard deviation) of each fluctuating velocity component 

𝑢𝑖,𝑟𝑚𝑠
′ : 
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𝑢𝑖,𝑟𝑚𝑠
′ (𝜃) = √

1

𝑛
∑𝑢𝑖

′(𝜃, 𝑐)2
𝑛

𝑐=1

 (4.4) 

 

4. Calculate the turbulence intensity 𝑇𝑖: 

 
𝑇𝑖(𝜃) =

𝑢𝑖,𝑟𝑚𝑠
′ (𝜃)

�̅�𝑖(𝜃)
 (4.5) 

 

When looking at the velocity fluctuations in isolation, whilst they provide an indication of the 

magnitude and relative anisotropy of the turbulent fluctuations, the result does not indicate 

the relative significance of the flow fluctuations in relation to the mean velocity. The 

turbulence intensity calculates the ratio of fluctuating component to the mean or ensemble-

average flow field, thus providing a direct indication of their relative significance in 

comparison to the mean flow. 

The fluctuating velocity component 𝑢𝑖
′, and turbulence intensity 𝑇𝑖  for the RANS results were 

calculated via the following methodology: 

1. Starting with the equation for the extended Boussinesq assumption as shown earlier in 

equation (2.22), the normal stresses are calculated by setting 𝛿𝑖𝑗 = 1, 𝑖 = 𝑗 and thus: 

 
𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ = −

𝜇𝑡

𝜌
(
𝜕�̅�𝑖

𝜕𝑥𝑗
+
𝜕�̅�𝑗

𝜕𝑥𝑖
) −

2

3
𝜌𝑘𝛿𝑖𝑗 = −

2

3
𝑘 (4.6) 

 

2. Thus the fluctuating velocity component can be calculated from the (modelled) 

turbulence kinetic energy via the following equation: 

 

𝑢𝑖
′ = √

2

3
𝑘 (4.7) 

 

3. The turbulence intensity 𝑇𝑖  can be calculated via equation (4.5) as defined previously, 

but in the RANS context �̅�𝑖  is the mean velocity rather than the ensemble-average 

velocity. 
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The fluctuating velocity and turbulence intensity components were calculated: 

 Across three separate tumble cutting planes; mid bore, through the centre of each 

intake valve (shown by red tumble cutting planes in Figure 4.19) in the x-z plane to 

evaluate differences in anisotropy as a consequence of the interactions between the 

intake valve jets and the rest of the in-cylinder flow field,  and an additional cutting 

plane at spark timing in the y-z plane that cut through the spark plug to investigate 

anisotropy around the spark plug electrodes at the point of spark timing (shown by the 

blue cutting plane in Figure 4.19). 

 For each x-z tumble plane, the fluctuating velocity and turbulence intensity was 

evaluated at different z-locations across the cylinder bore to capture differences in 

turbulence characteristics through the combustion chamber. 

 Results were evaluated at 80°ATDC (point of fuel injection), 100°ATDC (10° after 

end of injection), 180°ATDC (BDC, start of compression), 90°BTDC (mid-

compression), 35°BTDC (spark timing). 

 

 

Figure 4.19 – Computational domain and a graphical representation of the cutting 

planes used for investigating flow anisotropy 
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The following is a discussion of the key findings from this analysis and the graphical results 

follow. 

At 80°ATDC (Figure 4.20) the injection process is started, fuel is injected into the centre of 

the combustion chamber, close to the valve jets from both intake valves, which then 

propagates into the centre of the combustion chamber interior. Away from the stronger flow 

structures at the periphery of the combustion chamber and along the combustion chamber 

walls due, a number of weaker, highly three-dimensional, recirculation regions are present in 

the centre of the combustion chamber are visible in the velocity magnitude contour plots and 

also indicated by the more oscillatory nature of the fluctuating velocity components. A good 

example of this is the increase in x-plane velocity fluctuations (red line series) (relative to 

near the cylinder walls) around the centre of the combustion chamber (x=0mm) at z=-28mm 

for both y=-19mm and y=19mm cutting planes. The rise in fluctuations will act to increase 

normal and shear stresses which will help distort and diffuse the droplets and subsequent 

vapour cloud in this region. 

By 100°ATDC (Figure 4.21) the injection process is complete and a significant portion of the 

early injected droplets will have been through the secondary breakup process and be 

contributing to a fuel-rich vapour cloud. One anisotropic characteristic of note is the 

relatively high y-plane velocity fluctuation (blue line series) in the y=0mm cutting plane at 

z=-8mm and around x=-30mm when compared to x- (red line series) and z-plane (green lines 

series) velocity fluctuations. This feature can be attributed to the intake valve jet flapping 

phenomenon where, whilst the mean flow direction is down and into the combustion chamber, 

due to CCV in the valve jet (as discussed earlier in Chapter 5.2.5), large velocity fluctuations 

are seen in the y-plane. 

At 180°ATDC (BDC) (Figure 4.22) the flow field is least wall bounded allowing turbulent 

structures with the largest length scales to form. As is seen in this engine, the tumble motion 

generates a large recirculating flow structure around the periphery of the combustion chamber. 

Whilst the magnitude of the velocity fluctuations have reduced, it is not proportional to the 

reduction in mean flow velocities, thus an increase in the number of fluctuations in 

turbulence intensity is seen when compared to earlier in the cycle. 

At 90°BTDC firing (mid-compression) (Figure 4.23) a significant anisotropic feature is seen 

in the z-plane velocity fluctuations (green line series) at y=-19mm, z=-28mm and z=-48mm 

around x=30mm (and to a lesser extent at y=19mm, z=-48mm, x=35mm). This rise in z-plane 
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velocity fluctuations and subsequent anisotropy is caused by the rising piston generating an 

upward flow that meets the clockwise rotating tumble flow set up by the intake system. This 

characteristic of the flow field is completely missed by the RANS predictions (dashed black 

line series) due to the use of the aforementioned Boussinesq mean-gradient assumption to 

solve the Reynolds stresses. Inspection of the velocity magnitude contour plots reveals that 

large differences in the mean flow structures now exist from the front to the rear of the 

combustion chamber that were not present through the intake stroke. The impact of the rising 

piston and subsequent compression of the turbulent length scales has increased the velocity 

fluctuations and mean flow in the y-plane (cross cylinder) creating additional rotating 

structures in the swirl plane and subsequent differences in the mean flow field across the 

cylinder. Also of note are the very low levels of turbulence intensity near the piston surface. 

This is due to the rising piston driving the flow upward, damping out turbulent fluctuations 

and thus reducing small scale turbulence close to the piston surface. 

35°BTDC is the point of spark ignition at this operating condition and by this point in the 

compression stroke, the rising piston and reducing combustion chamber volume has caused 

most of the large scale structures to be dissipated into small scale turbulence (Figure 4.24). A 

strong clockwise rotating mean flow structure of between 5-8m/s is visible in all x-z planes 

which will act to convect the flame kernel primarily in the positive x-plane direction away 

from the intake valves and towards the exhaust valves. A RMS fluctuating velocity 

component of order 2.5m/s means the instantaneous velocity is expected to of the order 

10m/s which is below the 15m/s suggested by (Heywood, 1988) as the point where increased 

restrike frequency occurs.  

Inspection of the flow structure in the y-z plane (cutting through the spark plug electrodes) 

(Figure 4.25), shows strong counter rotating vortices that meet at the top of the combustion 

chamber by the spark plug electrodes. The x-plane fluctuating velocity component is seen to 

be large relative to y- and z-plane components in the near spark plug region as a consequence 

of variations in the strength of the counter-rotating vortices in the y-z plane and subsequent 

motion in the x-plane. Also of note is the rise in x-plane velocity fluctuations at y=-2.5mm 

due to the flow field interacting with the geometry of the spark plug electrodes. These 

turbulent fluctuations will cause variations in the degree of flame kernel stretch during the 

initial kernel development phase and contribute to the overall CCV of the combustion process. 

The turbulent fluctuations in the x- and y-planes are almost equal to 50% of the mean flow 
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velocity which also indicates that turbulence will be a significant contributor to CCV in the 

combustion process at this engine condition. 

A general observation of the results through the intake and compression stroke, fluctuations 

in the y-plane turbulence intensity (blue line series) are generally seen to be more dominant 

than turbulence intensity fluctuations in the x- and z-planes; whilst the y-plane fluctuating 

velocity is seen to be of the same magnitude as the other fluctuating velocity components. 

This indicates that whilst velocity fluctuations are present in all planes, the mean flow field is 

not dominant in the y-plane. This is as expected since the intake runner and port geometry set 

up a dominant tumble flow structure but also that, whilst the bulk flow will generate 

significant momentum in the x-z (tumble) plane, the turbulent fluctuations in the y-plane 

(cross cylinder) will also act to promote diffusion and mixing across the cylinder; of 

particular significance for its impact on the fuel-air mixing process and minimising 

stratification within the cylinder.  
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Figure 4.20 – 80°ATDC; top row are ensemble-averaged velocity magnitude contours 

and velocity vectors �̅�; middle row are 𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are 𝑻𝒊 
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Figure 4.21 – 100°ATDC; top row are ensemble-averaged velocity magnitude contours 

and velocity vectors �̅�; middle row are 𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are 𝑻𝒊 
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Figure 4.22 – 180°ATDC; top row are ensemble-averaged velocity magnitude contours 

and velocity vectors �̅�; middle row are 𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are 𝑻𝒊 
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Figure 4.23 – 90°BTDC; top row are ensemble-averaged velocity magnitude contours 

and velocity vectors �̅�; middle row are 𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are 𝑻𝒊 



Chapter 4  Investigations into the In-Cylinder Flow Field 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

197 

 

 Y = -19mm Y = 0mm Y = 19mm 

 

   

Z
=

0
m

m
 

   Z
=

-8
m

m
 

Z
=

0
m

m
 

   Z
=

-8
m

m
 

Velocity 
Magnitude 

Contours 
[m/s]: 

 

RMS 
Fluctuating 

Vel Legend: 
 

Turb 
Intensity 
Legend: 

 

Figure 4.24 – 35°BTDC; top row are ensemble-averaged velocity magnitude contours 

and velocity vectors �̅�; middle row are 𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are 𝑻𝒊 
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Figure 4.25 – 35°BTDC in the spark plug Y-Z plane; solid black line indicates spark 

plug y-location; top row are ensemble-averaged velocity magnitude contours and 

velocity vectors �̅�; middle row are 𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are 𝑻𝒊 
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Figure 4.26 – Fluctuating velocity magnitude contours and fluctuating velocity vectors 

𝒖′, in the tumble plane, through the spark plug, at spark timing 

 

To further investigate the CCV in the fluctuating velocity around the spark plug at the point 

of spark timing, contour plots of the magnitude of the fluctuating velocity components 𝒖𝒊
′, 

were plotted and cycles exhibiting low and high velocity fluctuations around the spark plug 

are shown in Figure 4.26. Based on these results a number of observations were made: 

 Generally a clockwise rotating tumble motion remains from the intake event but 

significant spatial variability exists in the small scale flow structures. 

 Significant small scale turbulence is visible in the vicinity of the spark plug electrodes 

as a consequence of the compression of turbulent length scales with the rising of the 

piston. 

 Up 5 m/s variation in the fluctuating velocity from one cycle to the next which 

equates to an instantaneous velocity near the spark plug between 5-10m/s at the point 

of spark timing. 

 Variations in the small scale flow structures near the spark plug will cause variations 

in the direction of the stretched flame kernel and the presence of small recirculation 
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regions on the exhaust (right) side of the spark plug electrodes will act to slow the 

propagating flame kernel. For example, cycle 11 shows a recirculation region that 

would divert the flame kernel up towards the roof of the combustion chamber and 

exhaust valves, increasing the distance for the flame to travel (and subsequently CCV) 

and suffer additional conduction from the flame kernel to the cylinder walls.  

 

4.4 ANALYSIS USING PROPER ORTHOGONAL 

DECOMPOSITION 

 

Traditionally, in both numerical and experimental analyses of ICE flows, results are often 

limited to ensemble-average and averaged-mean quantities. But as has already been seen 

through this chapter, the in-cylinder flow field is highly turbulent and a function of complex 

and highly dynamic phenomenon that vary on a cycle-by-cycle basis. Thus the use of 

ensemble-averaged or averaged-mean quantities, whilst convenient, does not provide a true 

representation of the in-cylinder flow field that occurs on a cycle-by-cycle basis and most of 

the information associated with cyclic variations is lost. Proper Orthogonal Decomposition 

(POD) has been suggested as tool for resolving the inherent problem of how to conveniently 

represent the data from many cycles of an in-cylinder flow field, whilst still preserving the 

information associated with cyclic phenomenon.  

In this research, the POD technique is applied to the predicted velocity field from the LES 

results to:  

 investigate the use of POD for quantitatively characterising the turbulent flow 

structures through the engine cycle,  

 illustrate it as a method for quantifying the level of cyclic variability within the flow 

field, 

 and as a means of assessing the level of statistical convergence of the ensemble-

average solution based on the number of numerical cycles completed and cyclic 

variability present in the flow field.  

The results in this section were generated using the Smagorinsky SGS model and 

computational setup as defined in section 3.3.3.2. 
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The POD methodology was first applied to turbulent flows by Lumley (1967) but the 

‘method of snapshots’ was introduced later by Sirovich (1987) and was found to be less 

computationally expensive than other POD methods when applied in the context of ICE’s. A 

brief summary of the ‘method of snapshots’ is now provided. 

POD is the decomposition of a time dependent velocity field u(x,t) (or scalar distribution) 

into a linear combination of M spatial basis functions; POD modes denoted by ψ(k)(x) and 

time-dependent coefficients a(k)(t), as defined in equation (4.8). 

 

𝑢(𝒙, 𝑡) =  ∑(𝑎(𝑘)(𝑡) ∙ 𝜓(𝑘)(𝒙))

𝑀

𝑘=1

 (4.8) 

Where k = 1, 2, …, M. 

Using the ‘method of snapshots’, where M is the number of instantaneous velocity fields or 

snapshots (and equates to the total number of engine cycles in this case) and N is the spatial 

position within the domain, a matrix C can be formed as defined by equation (4.9). 

 
𝐶𝑀𝑁 = [

𝐶11 … 𝐶1𝑁
⋮ ⋱ ⋮
𝐶𝑀1 … 𝐶𝑀𝑁

] (4.9) 

 

A MxM the covariance matrix C is formed via C = CC
T
. Thus the following eigenvalue 

equation can be solved: 

 𝐶 ∙ 𝐴(𝑘) = 𝜆(𝑘) ∙ 𝐴(𝑘) (4.10) 

 

Equation (4.10) is solved for the M eigenvalues λ(k)
 and M eigenvectors A(k)

 and typically 

ordered in descending order to indicate the modes containing the largest fraction of the total 

flow field energy, where the energy content present in a particular mode is defined as the 

square of the modal eigenvalue.  

Finally, M POD modes ψ(k)(x) are formed via equation (4.11), where each mode has the same 

structure as each of the snapshots of the original velocity field, and time-varying coefficients 

𝑎(𝑘)(𝑡) are solved via equation (4.12). 
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𝜓𝑑
(𝑘)(𝑥𝑛) =  ∑(𝐴𝑚

(𝑘)
∙ 𝒖𝑑

(𝑘)
(𝑥𝑛))

𝑀

𝑘=1

 (4.11) 

 

 

𝑎(𝑘)(𝑡) = (𝑢(𝑖), 𝜓(𝑘)) = ∑ [∑(𝑢𝑑
(𝑖)
(𝑥𝑛) ∙ 𝜓𝑑

(𝑗)
(𝑥𝑛))

𝐷

𝑑=1

]

𝑁

𝑛=1

 (4.12) 

 

Where d is the number of dimensions and index i plays the role of the temporal index. 

The eigenvalues (or kinetic energy) associated with each mode gives an indication of the 

structural complexity of the flow.  When the modes are ordered by quantity of energy 

contained: 

 A rapid decrease in eigenvalue magnitude where the majority of flow energy is 

contained within the first few modes characterises a flow field with large scale 

dominant flow structures 

 A gradual decrease in eigenvalue magnitude where the majority of the flow energy is 

spread across many modes characterises a flow field with many weak and smaller 

scale flow structures. 

Note that due to the temporal variation in computational domain size through an engine cycle, 

a ‘phase-dependent’ POD analysis has been applied in this research, where a new POD 

analysis is performed for each crank angle of interest. ‘Phase-independent’ POD analyses 

have been completed by Fogleman, Lumley, Rempfer, et al. (2004) but are not the subject of 

this study. 

The POD ‘method of snapshots’ approach, as presented above, was applied across the 29 

LES cycles through the intake and compression stroke, up to and including spark timing. 

Initially the number of modes required to capture 90% of the total kinetic energy is plotted 

for each velocity component at specific crank angles and shown in Figure 4.27.  
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Figure 4.27 – Number of modes required to capture 90% of the flow kinetic energy for 

each velocity component at discrete crank angles 

 

From Figure 4.27 it is clear that a significantly lower number of modes are required to 

capture the majority of the kinetic energy in the x-axis (u-velocity component); the intake 

port geometry and valve positioning generate a strong cross-cylinder flow field. Conversely, 

relatively weak flow structures are generated in the y-axis (v-velocity component) and 

consequently require a larger number of modes to capture the bulk of the kinetic energy. 

Early in the intake stroke a tumble charge motion is generated in the z-axis (w-velocity 

component) but this large scale flow motion is compressed and dissipated into smaller eddy 

length scales and less dominant flow structures during the compression stroke. 

Correspondingly, a lower number of modes are required to capture the majority of the kinetic 

energy for the W-velocity component during the intake stroke but increasing through the 

compression stroke up to spark timing. 

In Figure 4.28, the energy captured against POD mode is shown in more detail. When 

examining the eigenvalue data in this manner, it is possible to deduce additional information 

about the structure of the in-cylinder flow field. When eigenvalue/energy data is examined in 

this format it is pertinent to evaluate the shape of the decay of eigenvalue/energy by POD 

mode; a steep gradient indicating that the majority of the energy is contained in the first mode 

and a strong or highly organised flow field is present, whereas a gradual gradient indicates 
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that the flow energy is spread across a number of modes and hence a weak or disorganised 

flow field is present. Based on this, it is possible to evaluate the previous conclusions with 

regard to strength of the flow field in each plane. 

Based on Figure 4.27, it was suggested that the v-velocity component (y-axis) exhibited a 

weak and disorganised flow field throughout the intake and compression stroke due to the 

large number of modes required to capture the majority of the flow kinetic energy but upon 

inspection of Figure 4.28 it is clear that the flow field is perhaps more organised than 

originally suggested. Examining the v-component at 430°c.a. shows that whilst it does 

require a large number of modes to capture the majority of the flow energy, early in the 

intake stroke it still has a significant quantity of energy contained in the first mode, and only 

requires several more mode to capture 90% of the energy due to the following modes 

containing very little of the flow energy. Comparing the energy profile at 430°c.a. with that at 

685°c.a. (spark timing), a very different energy profile can be seen. Significantly less energy 

is present in the first mode, with a greater quantity spread across the first seven modes. This 

observation suggests that the choice of fraction to define the majority of flow kinetic energy 

(90% in this research) can influence the conclusions drawn about the strength of the flow 

field and that additional information gleaned from review of the eigenvalue/energy data by 

mode is also useful for evaluating the in-cylinder flow field. 

It is clear that the eigenvalue/energy data that is available from a POD analysis can be used to 

provide quantitative information about the characteristics of the in-cylinder flow field 

throughout the engine cycle and it is expected that this could be a useful method for 

quantitatively comparing an engine design: 

 The expected level of charge mixing through large scale charge motion, i.e. high 

tumble levels could be deduced via a small number of modes to capture the majority 

of the flow energy and a steep drop in energy captured against POD for x- and z-axis 

velocity components 

 The level of small scale turbulence present at the point of spark timing, i.e. high 

turbulence levels deduced via a large number of modes is required to capture the 

majority of the flow energy and gradual drop in energy capture against POD in all 

velocity components. 

If it is assumed that at the limit where there is no CCV present in the original velocity field, 

the standard deviation of the time varying coefficients (a(k)(t)) for each POD mode would 
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tend to zero. Hence the cycle-by-cycle variation of the time varying coefficients can be used 

to directly assess the CCV present within the in-cylinder flow structures. 

First, the time coefficient results for velocity in the x-axis (u-velocity component) are 

examined, Figure 4.29(a) and (b). Early in the cycle the time coefficient for Mode 1 appears 

to have relatively high magnitude variation and with low standard deviation, but later in the 

compression stroke (around 600°c.a.) the time coefficients exhibits a significant rise in 

standard deviation. Mode 2 on the other hand shows significant magnitude and standard 

deviation most of the way through the intake stroke, rising quickly after TDC (360°c.a.) but 

damping out by BDC (540°c.a.) and then showing a small rise again through the mid portion 

of the compression stroke. Modes 3 and 4 show very similar characteristics where moderate 

levels of dispersion both early in the intake stroke and mid compression stroke are observed. 
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Figure 4.28 – Comparison of energy captured as a function of POD mode for each 

velocity component at discrete crank angles 
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Figure 4.29 – Time varying coefficients for each velocity component: (a) (c) (e) showing 

the time varying coefficients, (b) (d) (f) showing the standard deviation of the time 

varying coefficients 
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When the intake valve lift profile is overlaid (shown in Figure 4.30), it is clear that that the 

intake valve opening and closing event is a significant driver for CCV. During the early 

opening period when the intake valve effective area is small, orifice discharge coefficient low 

and expansion ratio across the valve high, flow velocities rise quickly as the valve jet forms 

and begins to stabilise. As can be seen from the POD analysis, this generates significant CCV, 

particularly within the smaller and less dominant flow structures. This is evident from the 

dispersion within modes 2-4 being more significant than mode 1. During the intake valve 

closing period, high levels of CCV in the small scale structures becomes present again but a 

high level of dispersion, and hence CCV, is also seen in the larger scale flow structures 

(mode 1). 

The coefficient dispersion in the v- (Figure 4.29 c-d) and w-velocity components (Figure 4.29 

e-f) is seen to be of significantly smaller magnitude and in particular, coefficient dispersion 

of Mode 1 is seen to be lower than all other modes. Examining the energy content of each 

mode for v- and w-velocity components against crank angle (Figure 4.31 b-c), shows that 

mode 1 contains a significantly greater fraction of the energy content in the v- and w-velocity 

components than is seen in the u-velocity component (Figure 4.31 a). This agrees with 

previous discussions; higher modes are related to larger scale flow structures that will exhibit 

lower levels of CCV, hence a greater fraction of energy being present in mode 1 will 

contribute to overall lower levels of CCV. 

 

 

 

Figure 4.30 – Standard deviation of the time varying coefficients for U-velocity 

component with intake valve lift profile overlaid 
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Figure 4.31 – Energy content as a function of crank angle for each velocity component 
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Using the time varying coefficients directly to assess the total level of CCV present must be 

done cautiously since the level of CCV present in each mode is a function of both the 

magnitude of time varying coefficient and the total fraction of energy present in that 

particular mode. 

Fontanesi, Paltrinieri & Cantore (2014) proposed the use of the of a ‘CCV RMS Index’ as a 

method of examining the variation in CCV through an engine cycle by summing the root 

mean square of the energy weighted time varying coefficients. This approach has been 

applied to the data presented here and the method used for calculating individual modes 

‘CCVindex_rms,M’ and the overall ‘CCVindex_rms,Overall’ is shown in equations (4.13) and (4.14), 

the results of which are shown for each velocity component in Figure 4.32.  

 

𝐶𝐶𝑉𝑖𝑛𝑑𝑒𝑥𝑟𝑚𝑠,𝑀 = √
1

𝑘
∑(𝑎(𝑘)(𝑡) − 〈𝑎(𝑘)(𝑡)〉)2
𝑀

𝑘=1

∙
𝜆(𝑘)

∑ 𝜆(𝑘)𝑀
𝑘=1

 (4.13) 

 

 

𝐶𝐶𝑉𝑖𝑛𝑑𝑒𝑥𝑟𝑚𝑠,𝑂𝑣𝑒𝑟𝑎𝑙𝑙 = ∑

[
 
 
 
√
1

𝑘
∑(𝑎(𝑘)(𝑡) − 〈𝑎(𝑘)(𝑡)〉)2
𝑀

𝑘=1

∙
𝜆(𝑘)

∑ 𝜆(𝑘)𝑀
𝑘=1

]
 
 
 𝑀

𝑘=1

 (4.14) 

 

The results again indicate that a greater level of CCV is present in the u-velocity component 

(x-axis) and, similarly to previous findings and expectation: 

 CCV is highest around TDC when length scales are most wall bounded and during the 

intake valve opening and closing event when large changes in effective flow area 

generate valve jet CCV 

 CCV is lowest around BDC when flow structures are least wall bounded and large 

scale structure less susceptible to CCV are able to form 
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Figure 4.32 – CCV RMS index as a function of crank angle for each velocity component. 

Note: different y-axis scales used to improve figure clarity 
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In Liu & Haworth (2011) it was proposed that the eigenvalue/energy data could be used as a 

means to deduce the level of statistical convergence of the ensemble-average solution by 

comparing the eigenvalue/energy content by mode for a varying number of snapshots. Once 

the curves for a certain number of snapshots overlaid, it could be deduced that there were 

sufficient snapshots/cycles to provide a statistically representative ensemble-average of the 

in-cylinder flow field. This approach has been applied in this research at:  

 460°c.a. – intake stroke, many large scale turbulent structures, less CCV present 

 685°c.a. - spark timing, predominantly small scale structures, high CCV present 

As seen in Figure 4.33, the results indicate that the dominant flow structures present in the x-

axis (u-velocity component) require a smaller number of cycles to achieve statistical 

convergence, with 25 and 29 snapshots having effectively converged at both crank angles 

examined here. Due to the weaker and smaller length scale structures present in the y- and z-

axes, greater dispersion is present between the series and none appear to converge for the 

number of snapshots presented here. This is not surprising since the engine in question was 

known to exhibit high levels of CCV and the experimental procedure typically included 

capturing 100-120 engine cycles to better ensure statistical convergence, and other 

experimental studies have even indicated the need for 600-1200 cycles to capture the full 

range of the CCV. 
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Figure 4.33 – Comparison of energy captured as a function of POD mode with a varying 

number of snapshots for each velocity component at 460°c.a. and 685°c.a. 
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4.5 CONCLUDING REMARKS 

 

This chapter has presented the results from a number of numerical investigations into the 

physical processes occurring in the in-cylinder flow field in the single cylinder optical 

research engine, using both the RANS and LES turbulence modelling techniques. 

The chapter begins by presenting the identification of a number of in-cylinder flow structures 

present within the intake stroke that are highly transient and heavily influenced by their 

interaction with the moving solid boundaries within the combustion chamber.  

Following this was the investigation of the effect of the pent-roof optical access window on 

the in-cylinder flow field. A number of flow asymmetries and the presence of additional 

recirculation zones were identified as a consequence of the geometry, and considerations 

presented for the use of a pent-roof optical access window in experimental research. 

The highly three-dimensional nature of the in-cylinder flow field was investigated via the use 

of multiple cutting planes and vorticity contours. The intake valve jet was found to spatially 

vary significantly, with variations in penetration and velocity at different points in the 

combustion chamber. Areas of highly three-dimensional flow were also identified via areas 

of high vorticity; within the cylinder interior due to swirling flow structures, and around the 

intake valve jets and solid boundaries due to shear flows. 

Intake valve jet flapping was investigated and found to be due to a transient valve curtain 

mass flux imbalance that initiates valve jet instability and the subsequent sinusoidal motion 

called flapping. Significant cyclic variability was observed in both the magnitude and phasing 

of the valve curtain mass flux imbalance, which results in variations in both frequency and 

penetration of the resultant flapping valve jet. Due to the significant cyclic variability, the 

impact of using an ensemble-averaging procedure was seen to cause most of the information 

associated with the phenomenon to be lost. A RANS solution was shown to capture the 

phenomenon, but due to the time-averaging process used in the RANS turbulence modelling 

approach, all cyclic variability associated with the phenomenon is lost. 

The fluctuating velocity and turbulence intensity was compared to the mean flow field at 

multiple cutting planes through the intake and compression strokes up to the point of spark 
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timing, to investigate the development of the flow field and turbulence characteristics. A 

number of anisotropic effects were observed from the turbulent fluctuations, including:  

 Comparatively high fluctuations in the y-plane as a consequence of intake valve jet 

flapping 

 Increased fluctuations in the z-plane close to the piston crown due to the rising piston 

crown causing flow to impinge on a tumbling flow structure setup by the preceding 

intake event 

 A rise in turbulent fluctuations as a consequence of the spark plug electrode geometry 

was observed which is expected to be a contributor to the overall CCV of the 

combustion process. 

Turbulence intensity was used due to it providing information on the relative significance of 

the turbulent fluctuations in relation to the mean flow field. In particular, whilst the mean 

flow in the y-plane was small in comparison to the x- and z-planes due to the predominant 

tumble motion, fluctuations in all three planes produces areas of turbulence intensity in the y-

plane that would also promote diffusion and mixing across the cylinder. 

Proper Orthogonal Decomposition was applied to the velocity field to investigate its ability to 

quantitatively characterise the turbulent flow field. The energy spread across modes was seen 

to be capable of providing details of the characteristics of the flow structures, relative 

dominance of flow structures in each plane and thus their susceptibility to CCV. The modal 

energy data was combined with the time-dependent coefficients and found as a very effective 

method of quantitatively evaluating CCV through the engine cycle and the intake valve 

opening and closing event was seen as a key driver for CCV. It was also seen how the 

number of snapshots could be varied as a means of evaluating the level of statistical 

convergence of the ensemble-average result, based on the number of cycles compared and 

level of CCV present within the flow field. 
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CHAPTER 5 

INVESTIGATIONS INTO THE FUEL 

INJECTION PROCESS 

 

 

“I am not discouraged, because every wrong attempt discarded is another step 

forward.” 

–Thomas A. Edison 

 

 

 

5.1 INTRODUCTION 

 

This chapter presents the results from a number of numerical analyses investigating the fuel 

injection process. The analyses use a combination of both the RANS and LES turbulence 

modelling approaches, and the use of single- and multi-component fuel surrogates, as 

described earlier and validated in Chapter 3. 

The first section shows results for the fuel impingement and liquid film development 

processes for the impingement of the intake valve, cylinder liner and piston crown, including 

analyses into the cycle-to-cycle variations. 

The second section shows results for the characteristics of the fuel-air mixture field, focusing 

on the evolution through the intake and compression strokes up to the point of spark timing, 

differences in the predicted mixture field when modelling either a single- and multi-

component surrogate fuel, CCV of the mixture field at spark timing and potential causes for 
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the variability, and intake valve jet flapping as a precursor to CCV of the mixture field at 

spark timing. 

In the final section, results on the interactions between the fuel injection event and the in-

cylinder turbulence characteristics are presented and discussed, showing the impact of the 

fuel injection event on in-cylinder turbulence characteristics and limitations of using the 

Boussinesq assumption for correctly predicting turbulence characteristics up to spark timing..  

 

5.2 FUEL IMPINGEMENT AND LIQUID FILM 

DEVELOPMENT 

 

The impingement of liquid fuel on solid surfaces in ICE’s is an important research interest 

due to its effect on the resultant mixture characteristics, and hence combustion efficiency and 

pollutant formation. In port fuel injected (PFI) gasoline engines, research has focused on the 

impingement of the liquid fuel on the intake port and back of the intake valve head, 

particularly with respect to the transient control of the combustion system  (Stanton & 

Rutland, 1998; O’Rourke & Amsden, 1996). In direct injection diesel engines, high fuel 

injection pressures to improve fuel atomisation can lead to high levels of impingement and 

the formation of liquid films on the piston and cylinder wall, leading to reduced efficiency 

and increased emissions, particularly during cold start conditions (Senda, Kobayashi, 

Iwashita, et al., 1994; Senda & Fujimoto, 1999; Yang & Ghandhi, 2007). The increasing use 

of GDI engines over PFI engines for improvements in efficiency, pollutant formation and 

transient control, has led to further research in this area. Similarly due to its important role in 

pollutant formation in the form of PM and UHC, but also due to its influence on the spatial 

and temporal variation in the mixture field evolution which becomes increasingly important 

as the complexity of mixture control strategies increases, with stratified mixtures within GDI 

engines being pursued for further improvements in engine efficiency and reduced pollutants 

(Serras-pereira, Aleiferis, Richardson, et al., 2007; Malaguti, Cantore, Fontanesi, et al., 2009; 

Drake, Fansler, Solomon, et al., 2003; Schulz, Schmidt, Kufferath, et al., 2014; Stevens & 

Steeper, 2001). But due to the differences in injection pressures, spray patterns and fuel 

atomisation characteristics between diesel engines and GDI engines, further research is 

required to characterise the impingement process in GDI engines so that improvements in 
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engine design can be realised to eliminate or mitigate the negative consequences of liquid 

fuel impingement. 

The section presents results for: (1) impingement characteristics and liquid film development 

and (2) the CCV of impingement and film formation. 

 

5.2.1 Impingement and Liquid Film Development 

 

Through the experimental studies of Serras-pereira, Aleiferis, Richardson, et al. (2007), 

Serras-Pereira, Aleiferis & Richardson (2012) and Rimmer (2011) and the current research, 

three spray impingement locations have been identified for the engine that is the subject of 

this research: intake valve, cylinder liner and piston crown, as shown by Figure 5.1. 

. 

  
 

 

(a) (b) (c)  

Figure 5.1 – Predicted spray plumes at 14°ASOI in (a) tumble plane (x-z), (b) front-to-

rear plane (y-z), (c) swirl plane (x-y), with droplets coloured by diameter and intake 

valve, cylinder liner and piston crown impingement locations highlighted by red circles  

 

In this section, two instances of impingement are discussed in detail; impingement of plume 1 

on the intake valve and impingement of plume 6 on the cylinder liner. Before evaluating each 

impingement location in detail, it is useful to evaluate the expected impingement regime 

within the impingement model.  
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The regime within the impingement model is defined based on parameter T
*
 (equation (4.18)), 

which was calculated for the different fuel components and surfaces within the combustion 

chamber and shown in Table 5.1. 

 

Table 5.1 – Calculated values of T* for each fuel component impinging on the different 

solid surfaces within the combustion chamber 

Fuel 

component 

TW 

[K] 
T

* 
TW 

[K] 
T

* 
TW 

[K] 
T

* 
TW 

[K] 
T

* 

Iso-Pentane 363 

(Exhaust 

Valve 

and 

Head) 

0.953 

323 

(Intake 
Valve) 

0.485 

301 

(Piston) 

0.228 

293 

(Cylinder 
Liner) 

0.134 

Iso-Octane 0.141 -0.32 -0.574 -0.666 

n-Decane -0.809 -1.338 -1.629 -1.735 

 

Upon inspection of Table 5.1, it is clear that for a single-component fuel of iso-octane, 

droplets will be in the free convection and nucleate boiling regime (T*<0) for impingement 

on the intake valve and cylinder liner (surface temperatures, Tw of 323K and 293K 

respectively).  

For the multi-component fuel the situation is more complex since each droplet is made up of 

a fraction of three components. Unfortunately, due to restrictions in the code used, there is no 

method for determining the instantaneous fraction of a given component in each droplet and 

hence deduce the T* value of impinging droplets. That being said, it is expected that by 

6°ASOI (the point of intake valve impingement) a significant fraction of iso-pentane will 

have evaporated from the injected droplets, and since the iso-pentane fraction accounts for 

only 1/3 of the total mass fraction at the inception of each injected droplet, the majority of the 

droplets impinging on the intake valve will also fall within the free convection and nucleate 

boiling regime (T*<0). Impingement on the cylinder liner is far later in the injection process 

hence an even smaller quantity of the iso-pentane fraction is expected to remain and the 

majority of impinging droplets will also be within the free convection and nucleate boiling 

regime (T*<0). 

Based on the range of values for T*, it is clear that no droplet in either the single- or multi-

component fuel cases will impinge in the film boiling range (T*>1). 
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5.2.1.1 Intake Valve Impingement 

 

From results shown in Figure 5.2 and using equations 4.20, 4.21 and 4.22, it is possible to 

calculate the critical Weber number (Wecr) at a number of key points within the impingement 

process, shown in Table 5.2. Due to the impinging droplets covering a range of Weber 

numbers and Laplace numbers, the critical Weber number was calculated at approximate 

upper and lower values to provide an expected range of Wecr. 

 

Table 5.2 – Table shows the range of droplet Weber and Laplace numbers and 

calculated Wecr through the intake valve impingement process for droplets from the 

multi-component surrogate 

Time 

[°ASOI] 
Comments 

We La Wecr 

Upper Lower Upper Lower Upper Lower 

5 Pre-impingement 5000 1200 524 

6 
Immediately post initial 

impingement 
3000 2000 1000 500 624 544 

9 
Immediately prior to film 

formation 
1200 600 900 600 602 555 

10 
First crank angle of film 

formation 
1000 600 800 400 653 569 

13 

Splitting of plume due to 

impingement on top of 
valve head 

1200 600 700 400 653 584 

 

Figure 5.2 shows the spatial development of plume 1 impingement on the intake valve with 

the multi-component fuel surrogate and the following is a discussion of the observations 

made. 

At 5° and 6°ASOI the Weber number of the impinging droplets are all significantly greater 

than the Weber number needed for the generation of a liquid film (We≤400) hence splash 

off the surface. 
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By 9°ASOI, the Weber number of the impinging droplets has reduced considerably. The table 

above shows a lower Weber number of 600 but based on a velocity of 50m/s, any droplet of 

~4μm or less will have a Weber number less than 400 and hence be deposited on the surface.  

By 10°ASOI there are sufficient deposited droplets that the surface coverage ratio is 

exceeded and a liquid film has formed. Once a film has formed, the regime for splashing or 

deposition is defined based on the critical Weber number Wecr which, based on Table 5.2, 

will be in the region of 570<Wecr<650. Thus once a liquid film has formed, it will quickly 

grow due to the larger Weber number criteria and greater proportion of smaller, lower Weber 

number droplets. 

At 13°ASOI the descending intake valve causes the plume to be split by the edge of the valve 

head and droplets be deflected beneath and above onto the top surface of the valve head. As a 

consequence of the sudden reduction in velocity of droplets impinging the top surface, a 

liquid film is rapidly formed. Movement of the film across the surface also occurs due to 

imparted momentum by the spray. 

There is evidence of a large number of droplets being stripped from the liquid film due to 

charge motion over the valve head edge, indicated by the large slow moving droplets shown 

in Figure 5.3 at 19°ASOI. This process is of significance due to the size and velocity of the 

new droplets; most in the region of 100-300μm but some >500μm. Figure 5.4 shows droplets 

still being stripped from the intake valve head much later in the cycle at 115°BTDC, i .e. late 

into the compression stroke which, due to the reducing turbulence, will take a significant 

period of time to evaporate and likely become a source of UHC and PM emissions. 
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 (a) (b) 

Figure 5.2 – Spatial development of plume 1 intake valve impingement with the multi-

component surrogate, (a) Droplets coloured by droplet Weber number and the intake 

valve geometry is not shown for clarity, (b) Contours of liquid film thickness with the 

droplet size significantly reduced to improve clarity 
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 (a) (b) 

Figure 5.3 – Images illustrate the presence of very large and slow moving droplets 

formed underneath the valve head due to film stripping over the sharp edge of the 

intake valve head at 19°ASOI with multi-component surrogate. Droplets in (a) are 

coloured by droplet diameter and in (b) are coloured by droplet velocity magnitude 

with the valve head outline shown in grey 

 

 

Droplet 

Diameter [m]:

 

Figure 5.4 – Image illustrates droplets being formed due to film stripping from the 

intake valve head in the compression stroke at 115°BTDC for the multi-component 

surrogate, droplets coloured by droplet diameter 

 

When comparing predictions between the single- and multi-component fuel predictions, a 

difference of note is the larger predicted film thickness for the multi-component fuel case. As 

shown in Figure 5.5 at 14°ASOI, the film thickness formed on the side of the intake valve in 

the single-component fuel case is predicted to be ~20 microns but is predicted to be ~50 

microns with the multi-component fuel. This is due to the presence of the heavier n-decane 
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fraction in the multi-component fuel reducing the number of droplets that have evaporated 

prior to impingement, thus increasing the number of droplets reaching and impinging on the 

intake valve and available to contribute to the liquid film. 

 

Single-Component Fuel Multi-Component Fuel  

 

(a) 

 

(b)  

 

(c) 

 

(d) 

Liquid Film 

Thickness 

[m] 

 

Figure 5.5 – Figure compares the intake valve impingement location and liquid film 

thickness for single- and multi-component fuel at 14°ASOI. In upper images droplets 

are coloured by droplet Weber number and lower images show contours of liquid film 

thickness 

 

Another observed difference between the predictions for the multi- and single-component 

fuel cases is the location of impingement. Figure 5.5(a) and (b) compare the impinging 

droplets at 14°ASOI. Recall Figure 5.2 at 6°ASOI for the multi-component fuel, the spray 

plume enters the visualised domain at approximately z=-7.2mm whereas by 14°ASOI (Figure 

5.5(b)) the plume enters the domain at approximately z=-6.8mm, displaced towards the 
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cylinder head by the in-cylinder charge motion. This is thought to be due to the presence of 

the lighter iso-pentane fraction within the multi-component fuel, allowing the droplets to be 

more easily influenced by the momentum of the in-cylinder flow field. The single-component 

fuel (Figure 5.5(a)) in contrast, due to only containing a single component of iso-octane, is 

less influenced by charge motion. The onset from this is that towards the end of injection 

process the multi-component fuel predicts a greater proportion of fuel to be injected directly 

onto the back on the intake valve head, causing a difference in film formation between the 

two cases. Figure 5.5(c) and (d) show the film thickness for single- and multi-component 

fuels. It is clear that in the case of the multi-component fuel, a larger and thicker liquid film is 

formed on the top of the valve head compared with the single-component fuel. Thus the 

prevalent film stripping and child droplet formation processes will be different for the single- 

and multi-component fuel cases; predominantly stripping over a sharp edge for the single-

component fuel and a greater number of child droplets formed via flow induced wave 

instabilities over the valve head surface for the multi-component fuel. This impacts the 

droplet size distribution and subsequent fuel-air mixture through the remainder of the intake 

and compression strokes. 

 

5.2.1.2 Cylinder Liner and Piston Crown Impingement 

 

Prior to investigating the cylinder liner liquid film development, an additional validation 

exercise was completed on the cylinder liner impingement process. 

Three different pieces of experimental data were used to support this validation exercise: (1) 

quantitative data from a heat flux sensor study and (2) qualitative mean spray images were 

used to validate the timing and location of impingement, and (3) a high resolution 

instantaneous spray image was used to help validate the subsequent plume tip motion 

following liner impingement.  

Figure 5.6 reproduces the pertinent results from the heat flux sensor study by Serras-pereira, 

Aleiferis, Richardson, et al. (2007) where a heat flux sensor was placed at consecutive 

positions around the periphery of the cylinder bore at approximately 17mm below the head 

gasket plane. The resultant data from the heat flux sensor provides information on the 

predominant impingement location and timing for plume 6. Upon inspection of these 
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experimental results, it is clear that with iso-octane and for a fuel temperature (Tf) of both 

363K and 293K, plume 6 predominantly impinges the liner between 30°-50° to the horizontal 

and at approximately 15°ASOI.  

Note: Data at Tf=293K was included in Figure 5.6 since it indicates that the impingement 

location and timing varies little between Tf=293K and Tf=363K which allows comparison of 

the predicted results with the second and third experimental images with more confidence, 

since these images are only available at Tf=293K. 

 

  

(a) (b) 

Figure 5.6 – (a) Indicates the peripheral sensor locations for the heat flux sensor taken 

from4 (b) Shows peak heat flux and the equivalent crank angle at various peripheral 

locations for iso-octane and Tf=363K and Tf=293K, reproduced using results from 

Serras-pereira, Aleiferis, Richardson, et al. (2007). 

 

The second piece of experimental data taken from Serras-Pereira, Aleiferis & Richardson 

(2012) used to support model validation is shown in Figure 5.7(a & c) and are the mean spray 

images along the swirl plane at z=-15mm from the head gasket plane, at 13°ASOI (identified 

as the timing of first impingement) and 15°ASOI. Figure 5.7(b & d) show results from the 

numerical simulations for single-component fuel iso-octane at the same crank angles and 

cutting plane. The numerical results are shown to agree well with experimental data sets in 

Figure 5.6 and Figure 5.7 (a & c), correctly predicting plume 6 to impinge the cylinder liner 

at 30° to 50° to the horizontal and having just impinged the liner by 13°ASOI. 
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Figure 5.7 – Figure compares the location of liner impingement for plume 6 with iso-

octane. (a & c) Experimental images (Serras-Pereira, Aleiferis & Richardson, 2012) 

show mean (60 cycle ensemble-average) spray development with iso-octane at Tf=293K, 

0.5bar intake pressure, 1500rpm, illuminated by an applied laser sheet due to Mie-

scattering and the pixel intensity coloured for improved visualisation. An overlay is 

applied to more easily compare the impingement locations with numerical results. Red 

arrows in the experimental images indicate the spray plume crossing the laser sheet and 

impingement on the liner. (b & d) Predicted droplets for the single-component fuel, 

coloured by droplet velocity magnitude and the cylinder liner indicated by a black circle 

 

The third piece of experimental data is extracted from Serras-Pereira, Aleiferis & Richardson 

(2012) and shown in Figure 5.8. Here a comparison is made between an instantaneous swirl 

plane experimental image and the single-component fuel predictions to evaluate the post 

impingement droplet trajectory. This comparison also indicates good representation of the 
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impingement characteristics of the spray and subsequent circumferential motion of the spray 

around the liner.  

More complex impingement regimes were also identified in the experimental data, including 

multiple roll up vortices of order 5mm diameter interacting with the spray just behind the 

plume tip. Predicted results were found not to capture the spray dynamics at this level of 

detail and would need very high resolution of the turbulent flow structures only possible with 

significant localised mesh refinement. 

  
(a) (b) 

Figure 5.8 – Figure compares liner impingement dynamics for plume 6 at 15°ASOI. (a) 

Experimental image (Serras-Pereira, Aleiferis & Richardson, 2012) is an instantaneous 

spray image for iso-octane at Tf=293K, 0.5bar intake pressure, 1500rpm, illuminated by 

an applied laser sheet due to Mie-scattering, indicating radial droplet motion post-liner 

impingement (b) Predicted droplets for the single-component fuel, coloured by droplet 

velocity magnitude and with x-y plane velocity vector arrows, the cylinder liner 

indicated by a black circle. Note: images are not of equal scale 

 

Very similar impingement timing and location was seen between the single- and multi-

component fuels hence the remainder of the analysis on cylinder liner impingement will be 

using the results from the multi-component fuel. 

Figure 5.9 illustrates the development of a fuel film on the liner surface between 18 and 

19°ASOI for the multi-component fuel. Performing the same analysis as completed for the 

intake valve impingement, the droplet Weber number and Laplace number can be calculated 

and compared against the critical Weber number for film formation within the free 

convection and nucleate boiling regime of the impingement model. The results are shown in 

Table 5.3 and it is clear that most impinging droplets upto 18°ASOI are above the critical 
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Weber number for deposition but by 19°ASOI the Weber number of impinging droplets has 

reduced sufficiently that a large proportion of impinging droplets are beneath the critical 

Weber number and are deposited, with the coverage ratio limit quickly exceeded and a liquid 

film formed. 

The predictions indicate that a film thickness of the order of 5μm is formed on the liner 

surface. Drake, Fansler, Solomon, et al. (2003) completed a number of experimental  tests 

using a refractive-index-matching approach to evaluate continuous cycle-by-cycle piston film 

development using both a pressure-swirl and multi-hole fuel injector. Their results for the 

multi-hole injector showed an area-averaged film height of up to 1μm, with images indicating 

a peak film thickness of 1-2.5μm, providing additional confidence that the liquid film 

predictions presented here are of the correct magnitude. 

18°ASOI 19°ASOI Liquid Film 

Thickness [m] 

  

 

Figure 5.9 – Development of a liquid film on the cylinder liner as a consequence of spray 

impingement with a multi-component fuel at 18° and 19°ASOI 

 

Table 5.3 – The range of droplet Weber and Laplace numbers and calculated Wecr for 

two crank angles at the point of liner liquid film formation for the multi-component fuel 

Time 

[°ASOI] 
Comments 

We La Wecr 

Upper Lower Upper Lower Upper Lower 

18 Pre-liquid film formation 1600 400 1000 500 544 625 

19 
Immediately post initial 

film formation 
800 300 500 300 625 693 
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As seen during liquid film formation in intake valve impingement, a thicker liquid film is 

predicted with the multi-component fuel due to less droplets having evaporated prior to the 

spray reaching the cylinder liner. Figure 5.10 shows droplets coloured by the wall fuel mass-

fraction later in the cycle at 35°ASOI or 65°BBDC, allowing one to deduce the differences in 

impingement location and relative differences in quantity of fuel impinged between the either 

the single-component surrogate or for each component of the multi-component surrogate. The 

following observations were made: 

 Both fuel surrogates see significant piston crown impingement of the medium fraction 

iso-octane in plume 5 (1), but due to the reduced quantity of fuel in the multi-

component surrogate, the total quantity impinged at this location is smaller with the 

multi-component surrogate. 

 The multi-component surrogate fuel sees a greater percentage of its drops impinge on 

the cylinder liner than is seen when using the iso-octane single-component surrogate. 

This is visible in the quantity of lighter fraction C5H12 of plume 6 (2) and plume 2 (3) 

and of the heavy fraction C10H22 in plume 6 (4). 

 Plume one cylinder liner impingement (5) is seen to be more significant when using 

the single-component surrogate than in the case of the multi-component surrogate. 

The use of a multi-component surrogate provides improved predictions of droplet 

evaporation and liquid film formation and evaporation. This is particularly true when 

modelling firing cycles, where the elevated wall temperatures would still be below the 

saturation temperature of the heavier components of a multi-component fuel allowing 

deposition, whereas the wall temperatures would be above the saturation temperature of a 

typical single component surrogate like iso-octane, thus not providing realistic liquid film 

predictions. This will also allow improvements in the modelling of subsequent processes such 

as pool-fires, oil dilution and entrainment of large particles that can contribute to UHC and 

PM emissions. 
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Figure 5.10 – Droplets coloured by wall fuel mass-fraction indicating the quantity of 

fuel impinging a solid surface and the relative differences in impingement locations 

between the single-component and multi-component fuel surrogates at 35°ASOI 
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5.2.2 Cycle-to-Cycle Variations of the Impingement Process 

 

Whilst the previous section has focused on characterising the process of liquid fuel 

impingement and the subsequent development of a liquid film on the intake valve, cylinder 

liner and piston crown using a time-averaged RANS based approach to turbulence modelling, 

this section will use the LES approach to turbulence modelling to investigate the cyclic 

variations in the impingement process on the internal surfaces of the combustion chamber. 

First the section will look at the CCV of plume 1 impinging on the intake valve head, 

identifying variations in total film mass and film thickness and establishing causality. The 

second part of this section will look into CCV of plume impingement on the cylinder liner 

and piston crown, again with a view to identifying variations in total film mass and 

establishing causality, but in particular the quantity and location of any remaining film at the 

point of spark timing, thus allowing one to deduce the impact of cyclic variations in the 

impingement process on the subsequent combustion process. 

 

5.2.2.1 Cyclic Variability of Intake Valve Impingement 

 

The variation in liquid film mass present on the intake valve was used as a means of 

differentiating between anomalous cycles and is presented in Figure 5.11 with cycles 

identified as either ‘high’ or ‘low’ separately coloured and all other engine cycles coloured in 

grey. Cycle 1 was identified as a characteristically ‘low’ cycle and cycle 7 identified as a 

characteristically ‘high’ cycle and both were investigated in further detail by reviewing the 

droplet trajectories and liquid film formed due to plume 1 impingement.  

Inspection of Figure 5.12(a) for cycle 1 shows a thinner film formed on the top surface of the 

intake valve head when compared to cycle 7 in Figure 5.13(a) and a corresponding increase 

in liquid film formed on the side and underside of the valve head in cycle 1 when compared 

to cycle 7 as shown in Figure 5.12(b) and 6.13(b) respectively.  

Figure 5.12(c) and Figure 5.13(c) show droplets coloured by Weber number impinging the 

intake valve for cycles 1 and 7 respectively. Figure 5.12(c) for cycle 1 shows a clear increase 

in the number of droplets deflected over the top surface rather than contribute to film 
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formation on the top surface of the valve head when compared to cycle 7. Conversely, cycle 7 

in Figure 5.13(c) shows an increase in the number of droplets being deflected underneath the 

valve head rather than contribute to film formation on the side and underneath the valve head. 

This implies that cycle-by-cycle variations in the flow field can have subtle differences in the 

droplet impingement location, impinging droplet Weber number and flow field surrounding 

the intake valve head. Note that it is fair to assume that momentum transfer has occurred 

from the droplets to the continuous-phase, rather than the opposite way around, since the 

impinging droplet velocity is approximately 50-75m/s and the valve jet velocity is of the 

order 25-50m/s based on findings from the in-cylinder flow field investigations in Chapter 4.  

 

 

Figure 5.11 – Intake valve film mass as a function of crank angle from SOI (80°ATDC) 

to spark timing (325°ATDC) 
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(c) 

Figure 5.12 – LES Cycle 1 predictions at 13°ASOI, (a) Droplets impinging the top 

surface of the intake valve head with colour scale indicating liquid film thickness, (b) 

Droplets impinging the bottom surface of the intake valve head with colour scale 

indicating liquid film thickness, (c) Droplets coloured by Weber number impinging the 

intake valve head with the valve head geometry hidden to improve visibility of the 

impinging and rebounding droplets 
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Film Thickness [m]:
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(c) 

Figure 5.13 – LES Cycle 7 predictions at 13°ASOI, (a) Droplets impinging the top 

surface of the intake valve head with colour scale indicating liquid film thickness, (b) 

Droplets impinging the bottom surface of the intake valve head with colour scale 

indicating liquid film thickness, (c) Droplets coloured by Weber number impinging the 

intake valve head with the valve head geometry hidden to improve visibility of the 

impinging and rebounding droplets 
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Upon inspection of the variation in the intake valve peak film thickness with time as shown in  

Figure 5.14, a difference in the variation of peak film thickness with time is visible; cycle 7 

showing an initially high peak film thickness that reduces with time, cycle 1 shows a similar 

maximum peak film thickness but with its peak one crank angle degree later. This difference 

is characteristic of a difference in impingement mechanism; cycle 1 and 2 generating their 

peak film thickness on the underside of the valve head and all other cycles generating their 

peak film thickness on the top of the valve head, due to cycle-by-cycle differences in the in-

cylinder flow field as discussed above. Cycle 3 is highlighted as an example of a cycle that 

has a low total film mass similar to cycle 1 and 2 but with an impingement mechanism 

similar to the cycle 7. 

 

 

Figure 5.14 – Intake valve peak film thickness as a function of time 

 

This result also indicates that whilst the total mass of fuel impinged in cycle 7 is over twice 

that seen in cycle 1 (Figure 5.11), both cycle 1 and cycle 7 have similar peak film thicknesses. 

When the cycle-to-cycle variability of total mass of impinged fuel is combined with the 

cyclic differences in the predominant location of the deposited fuel (i.e. cycle 7 

predominantly on the top surface of the valve head and cycle 1 on the side and underside of 
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the valve head), cyclic variations will also be seen in the secondary droplets formed and 

resultant vapour cloud due to film evaporation: 

 Secondary droplets stripped from a film formed on the top surface of the valve head 

will include droplets formed due to wave induced instability and droplets formed due 

to stripping over a sharp edge, whereas a film formed on the side of the valve head 

and underneath the valve head will predominantly see secondary droplets formed due 

to film stripping over a sharp edge.  

 Fuel vapour formation due to liquid film evaporation will vary as a function of the 

quantity of liquid film formed (which as presented above, is a function of flow field 

affects) and heat transfer to the wall and continuous-phase throughout the cycle. 

Both effects contributing to the overall CCV of the in-cylinder fuel-air mixture at the point of 

spark timing, and resultant combustion and pollutant formation processes. 

One suggestion for the differences in impingement mechanism between cycles 1 and 2 and 

the following cycles would be due to the simulation initialisation method. Typically the first 

cycle and sometimes up to the first five LES cycles (Fontanesi, Paltrinieri & Cantore, 2014) 

are discarded prior to analysis of results to avoid dependency of the solution on the 

initialisation conditions. In this research, the model was initialised using a RANS cycle and 

then a single LES cycle (which was discarded) before using the results for the following 15 

cycles. A single LES cycle was considered sufficient upon analysis of the in-cylinder 

pressure trace which showed the following cycles within the general population (Figure 4.27) 

but it is conceivable that more subtle uncharacteristic variations in the in-cylinder flow field 

are still present within the first few LES cycles, thus making the differences in impingement 

characteristics seen here in cycles 1 and 2 as a consequence of the numerics rather than the 

physical process itself. To better understand whether the variation in impingement 

characteristics is a function of the numerics or a reality of the CCV in the physical process 

would either require additional cycles to be simulated or experimental results to be gathered 

and would form further work from this research. 
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Figure 5.15 – RANS predictions at 13°ASOI for the single-component surrogate, (a) 

Droplets impinging the top surface of the intake valve head with colour scale indicating 

liquid film thickness, (b) Droplets impinging the bottom surface of the intake valve head 

with colour scale indicating liquid film thickness, (c) Droplets coloured by Weber 

number impinging the intake valve head with the valve head geometry hidden to 

improve visibility of the impinging and rebounding droplets 
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Of final note are the observed differences in impingement characteristics predicted using a 

RANS RNG k-ε turbulence model and a LES Smagorinsky SGS turbulence model. Figure 

5.15 shows the equivalent impingement images when using the RNG k-ε turbulence model 

and a similar impingement mechanism is predicted as seen in cycle 1 and 2 of the LES 

predictions where plume 1 impingement predominantly causes a liquid film to be formed on 

the side and underside of the valve head. Contrary to the LES predictions, a smaller peak film 

thickness is predicted as shown in Figure 5.14, and a significant reduction in total film mass 

is predicted as seen in Figure 5.11.  

Interrogation of Figure 5.15(c) suggests that when using the RNG k-ε turbulence model, the 

droplets impinge at significantly higher velocity and hence Weber number, thus significantly 

more droplets rebound from the valve surface rather than stick or deposit, reducing the total 

amount of liquid film formed. The results from Figure 3.68 confirm that the LES turbulence 

model does not modify the droplet D10 diameter considerably in comparison to the RANS 

predictions, thus the difference in Weber number can predominantly be attributed to a 

reduction in the impingement velocity. The implication from this observation is that there has 

been increased momentum transfer between the droplets and the continuous-phase when 

using the LES SGS turbulence model, thus reducing the droplet velocity and hence Weber 

number prior to impingement.  

A greater number of droplets within the cylinder interior and a reduced liquid film on the 

intake valve head (as is the case in the RANS predictions when compared with the LES 

predictions) will act to cause differences in the spatial distribution of fuel vapour through the 

cylinder and temporally through the engine cycle. 

 

5.2.2.2 Cyclic Variability of Cylinder Liner and Piston Crown 

Impingement 

 

When comparing the impingement locations for the LES predictions in the same manner as 

completed previously in Figure 5.10, due to the additional turbulent structures predicted by 

the LES model, a significant increase in the amount of plume distortion and movement of the 

droplets is visible. A comparative example is shown in Figure 5.16. The onset from this is 

that it is much more difficult to discern the CCV in impingement positions via this method. 
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As a consequence, the impinged liquid film mass as a function of time for both the cylinder 

liner and piston crown were evaluated to identify anomalous cycles and then film thickness 

contours used to investigate the causes of such anomalous cycles. 

  

Droplets 

coloured by 

wall fuel 

mass-

fraction  

[no unit]: 

 

 
(a) (b) 

Figure 5.16 – Droplets coloured by wall fuel mass-fraction indicating the quantity of 

fuel impinging a solid surface within the combustion chamber at 35°ASOI for (a) RANS, 

(b) LES Cycle 5 

 

Figure 5.17 and Figure 5.18 show the piston crown film mass and the cylinder liner film mass 

respectively as a function of crank angle between the start of injection and spark timing with 

cycles of interest coloured separately for further discussion. From inspection, there is almost 

100% variation across the maximum and minimum cycles in both piston and liner film mass: 

 At 110°ATDC or 30°ASOI, piston liquid film mass ranges from 1 × 10−6kg for cycle 

15 with a peak film thickness of approximately 7μm, to 1.8 × 10−6kg for cycle 2 with 

a peak film thickness of 25μm 

 At 110°ATDC or 30°ASOI, cylinder liner film mass ranges from 0.85 × 10−6kg for 

cycle 15 with a peak film thickness of approximately 1μm,  to 1.5 × 10−6kg for cycle 

5 with a peak film thickness of 1μm 

 



Chapter 5  Investigations into the Fuel Injection Process 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

241 

 

 

Figure 5.17 – Piston crown film mass as a function of crank angle from SOI (80°ATDC) 

to spark timing (325°ATDC) 

 

 

Figure 5.18 – Cylinder liner film mass as a function of crank angle from SOI (80°ATDC) 

to spark timing (325°ATDC) 
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Figure 5.19 shows contours of liquid film thickness for the cylinder liner and piston crown 

impingement locations for cycle 2 at 110°ATDC, indicating significant impingement of 

plumes 2/3/4/5 on the piston crown when compared to the same impingement locations for 

cycle 15 in Figure 5.20. The cause of this can be seen when comparing plume tip penetration 

in Figure 5.23 for plume 3 and Figure 5.24 for plume 5, where cycle 15 shows reduced plume 

penetration compared with cycle 2 leading to reduced quantities of fuel impinging on the 

piston crown. This is as a consequence of variations in the in-cylinder flow field causing 

increased interaction between the droplets and the continuous-phase, creating greater 

momentum exchange and slowing the rate of plume tip penetration. Reduced penetration rate 

allows more time for droplet breakup and evaporation and hence less fuel available to 

contribute to a liquid film once the plume impinges on a solid surface. It also means that a 

greater number of droplets don’t penetrate far enough to even reach the solid surface. 

Also of interest is a comparison between cylinder liner impingement characteristics between 

cycles 15 and 5. As noted above, whilst both cycles have very similar peak film thickness, 

they have significantly different total film masses. Inspection of the liquid film thickness 

contours for cycle 5 in Figure 5.21 shows that due to continuous-phase interactions with the 

plume tip, plume tips 3 and 4 suffer increased displacement towards the cylinder liner when 

compared to other cycles and thus impinge more significantly on the cylinder liner first, 

before reaching the piston crown, increasing the total film mass on the cylinder liner for that 

particular cycle. This characteristic is also present in cycle 6, as seen in Figure 5.22 where 

most of plume 3 and 4 impinge on the cylinder liner and not the piston crown causing 

comparatively low piston film mass but the rising of the piston later in the compression 

stroke scrapes the film off the cylinder liner and onto the piston surface, contributing to the 

large change in piston film mass during the compression stroke as seen in Figure 5.17. 

Figure 5.25 shows plume tip penetration as a function of time for plumes 1/6, with far less 

CCV visible in tip penetration. This is due to the smaller distances travelled by plumes 1/6 

before they impinge on the cylinder liner and as a consequence there is less time available for 

interaction with the continuous-phase and hence exhibit lower CCV. This is evident in the 

images of film thickness contours for plumes 1/6 which show very similar film thickness 

contour characteristics across all cycles. 

All the cycles show a quantity of liquid film remaining on the piston surface up to the point 

of spark timing which would burn as uncontrolled diffusion flames or ‘pool-fires’ on the 
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piston surface and are known as a large source of PM and UHC emissions when found within 

GDI engines (Drake, Fansler, Solomon, et al., 2003). 

The computational domain in this research did not include the top land of the ring pack due to 

the very small cells required to adequately resolve the gas flow and provide sufficient 

solution stability that in turn would create a model that was too computationally expensive 

for the number of cycles intended to be run. Thus whilst in this numerical model, the rising 

piston scrapes any remaining film on the cylinder liner onto the piston crown, in reality any 

liquid film remaining on the cylinder liner would be forced into the ring pack and be a 

potential cause of a number of concerns including: 

 Ring pack coking: increased temperatures during the compression stroke causing 

pyrolysis of the fuel trapped in the ring pack, which can lead to premature ring 

breakage and a mechanism for the release of solid carbon particles which can create 

spikes in engine out PM or act as ignition sites for autoignition events. 

 Increased UHC’s: trapped fuel being released from the ring pack as the cylinder 

depressurises during scavenging, increasing engine out UHC. 

 Oil dilution: trapped fuel being absorbed into the oil film leading to a need for 

reduced oil change intervals and increased engine wear. 
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Figure 5.19 – Contours of liquid film thickness for cycle 2 at 30°ASOI or 110°ATDC for 

(a) front of the combustion chamber and (b) rear of the combustion chamber 
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Figure 5.20 – Contours of liquid film thickness for cycle 15 at 30°ASOI or 110°ATDC 

for (a) front of the combustion chamber and (b) rear of the combustion chamber 
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Figure 5.21 – Contours of liquid film thickness for cycle 5 at 30°ASOI or 110°ATDC for 

(a) front of the combustion chamber and (b) rear of the combustion chamber 
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Figure 5.22 – Contours of liquid film thickness for cycle 6 at 30°ASOI or 110°ATDC for 

(a) front of the combustion chamber and (b) rear of the combustion chamber 
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Figure 5.23 – Plume 3 tip penetration, for all LES cycles but highlighting the cycles of 

interest 

 

 

Figure 5.24 – Plume 5 tip penetration, for all LES cycles but highlighting the cycles of 

interest 
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Figure 5.25 – Plume 1/6 tip penetration, for all LES cycles but highlighting the cycles of 

interest 

 

5.3 MIXTURE FIELD CHARACTERISTICS 

 

Precise control of the fuel-air mixture in ICE’s is fundamental to all subsequent processes 

within the combustion chamber, including desirable affects such as stable kernel development 

and flame front propagation, and undesirable affects such as abnormal combustion regimes 

(e.g. knock phenomena, pool fires), hydrocarbon absorption into crevice volumes and oil 

films, and the subsequent impact on pollutant formation. For a GDI engine utilising an early 

injection homogeneous charge strategy, perfect mixing and avoiding excessive fuel 

impingement on internal surfaces is sought, whereas accurate control of a rich fuel-air 

mixture around the spark plug at the point of spark timing is the primary objective with a late 

injection stratified charge strategy. This is particularly challenging in a commercial context 

where product life cycle variability and robustness further increase the design solution 

complexity. 

The use of detailed numerical techniques to model the fuel injection and subsequent mixing 

process has been common place for a number of year but studies typically utilise a single-

component surrogate fuel to represent the reality of a complex multi-fractional fuel, largely 
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due to computational restrictions. Advantages to modelling multiple components of the fuel 

include: improvements in the modelling of droplet evaporation due to it being dependent on 

the different volatilities of the individual components within the fuel, and the ability to 

evaluate the variation in mixing between the charge and different fuel fractions.  

This section aims to complete a number of investigations into the mixture field characteristics 

of the GDI engine that is the subject of this research:  

 Understand the physical processes involved in generating the spatial and temporal 

mixture field evolution within this GDI engine.  

 Investigate differences in the predicted mixture field evolution when using a single-

component surrogate and a multi-component surrogate. 

 Explore the CCV of the mixture field at spark timing, and look for causality. 

 Continuing from the research in section 5.2.4, consider if intake valve jet flapping can 

be attributed as a source of mixture field variation at spark timing. 

 

5.3.1 Mixture Field Development 

 

5.3.1.1 Mixture Field Evolution 

 

Upon inspection of the in-cylinder fuel-air equivalence ratio at spark timing (35°BTDC), 

shown in Figure 5.26, it is apparent that despite using an early injection strategy to promote 

relatively high levels of mixture homogeneity, the predicted mixture field still contains a fair 

degree of stratification at this engine conditions. 

The following is a discussion and evidence for the evolution of the aforementioned mixture 

inhomogeneity. Figure 5.28 presents contours of the fuel-air equivalence ratio and velocity 

magnitude at three crank angles: 115°ATDC (approximately 25°AEOI), 5°ABDC (early 

compression) and 35°BTDC (spark timing), in a cutting plane intersecting plumes 2 and 5, as 

shown in Figure 5.27. 
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Figure 5.26 – Contours of fuel-air equivalence ratio for the single-component fuel 

surrogate, along the bore centreline at 35°BTDC (spark timing) 

 

Figure 5.27 – Tumble cutting plane in the x-z plane that intersects plume 2 and 5, plane 

coordinates:[0,5,0] 

 

Shortly after the end of the injection event at 115°ATDC (Figure 5.28(a & b)), due to the 

relative strength of the intake flow and valve jets, the mixture cloud is moved and distorted 

by the valve jets, pushing the atomised fuel cloud either side of the jet, forming a rich mixture 

in the centre of the combustion chamber and underneath the intake valve head. 

By 5°ABDC (Figure 5.28(c & d)), the dominant counter-clockwise tumble motion has driven 

a significant portion of the mixture towards the bottom of the intake side of the combustion 

chamber. Due to the recirculation region formed at the piston-liner interface on the exhaust 

side of the combustion chamber, some of the fuel-air mixture is also forced against the piston 

crown, a precursor for liquid film formation on the piston crown. 
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Figure 5.28 – Diagram shows contour plots of (a) fuel-air equivalence ratio using the 

single-component fuel surrogate (see Figure 5.26 for colour bar), and (b) velocity 

magnitude (colour bar provided), in the plume 2-5 cutting plane, to illustrate the impact 

of the dominant flow structures on the final equivalence ratio at spark timing 

The rising piston acts to maintain the counter-clockwise tumble motion and carry the rich 

fuel-air mixture up the intake side of the combustion chamber to form the stratified mixture 

distribution of richer mixture under the intake valve head and weaker mixture at the piston-

liner intersection on the exhaust side of the combustion chamber seen at spark timing (Figure 

5.28(e & f)). 

INTAKE 
EXHAUST 
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But as seen previously in the preceding chapter, the in-cylinder flow field is fully turbulent 

and highly three-dimensional thus one would also expect any mixture stratification to also 

exist across all planes. Figure 5.29 shows the cylinder geometry and an iso-surface of fuel-air 

equivalence ratio Φ=0.8 at spark timing, indicating that substantial mixture stratification 

exists through the cylinder with a preference for a rich mixture cloud to be concentrated near 

the front of the combustion chamber. 

 

Figure 5.29 – Iso-surface of fuel-air equivalence ratio at Φ=0.8 illustrating mixture 

stratification through the cylinder at spark timing (35°BDTC) for the single-component 

fuel 

The following is a commentary of the evolution of this mixture cloud structure due to the in-

cylinder flow field. 

Figure 5.30 shows an iso-surface at a fuel-air equivalence ratio Φ=0.8, soon after the end of 

the injection process. At 95°ATDC (~5°AEOI), the droplet trajectory is dominated by its 

inertia, imparted from the pressure difference across the injector nozzle, and is sufficiently 

high that the penetrating droplets and surrounding vapour cloud largely follow the shape of 

the intended shape of the spray plume geometry (Figure 5.30(a)). This is with the exception 

of any droplets or fuel-air mixture that intersect the intake valve jet which has sufficiently 

high momentum to deflect the passing spray plume, as seen earlier in Figure 5.28(a). 

By 105°ATDC (~15°AEOI) (Figure 5.30(b)) the drag due to the surrounding environment is 

beginning to dissipate the droplet momentum initially imparted by the injector such that the 

droplets and resultant vapour cloud begin to be more heavily influenced by the in-cylinder 

flow field, visible by the more distorted equivalence ratio iso-surface. 
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By 115°ATDC (~25°AEOI) (Figure 5.31(a & b)) most of the initial droplet momentum has 

been dissipated to the surrounding gas and the influence of the flow field is much more 

pronounced with flow structures around the cylinder periphery seen to be shaping and 

moving the vapour cloud. 

Upon inspection of the velocity field at the periphery of the combustion chamber close to 

BDC (shown at 15°BBDC in Figure 5.31(d)), two counter rotating vortices in the swirl plane 

can be seen to collide and be driven downwards towards the piston crown due to the tumble 

motion set up by the intake system. As the cycle progresses, a preferential direction of 

rotation is found (likely due to a difference in velocity magnitude of a particular flow 

structure) and a clockwise rotating vortex is formed close to the combustion chamber wall 

and piston crown (Figure 5.31(f)), creating a semi-circular profile of the fuel-air equivalence 

ratio iso-surface (Figure 5.31(e)). The clockwise rotating vortex contains upward momentum 

due to it being reflected off the liner and piston crown with its earlier tumble motion and due 

to the momentum imparted from the rising piston crown. The onset from this is a helical flow 

structure formed around the cylinder periphery, generating the fuel-air equivalence ratio iso-

surface with the equivalent structure. 

The resultant flow structure causes fuel vapour to be directed up towards the open intake 

valve (IVC is 67°BTDC due to a relatively late IVC strategy) at the rear of the cylinder where 

fuel vapour enters the intake port. This will lead to atomised fuel vapour being a fraction of 

the fresh air entering the cylinder for the next cycle and the potential for increases in UHC. 

The formation of the large scale clockwise rotating flow structure seen in Figure 5.31(f) is 

seen to be the dominant mechanism for the rich fuel-air mixture being formed towards the 

front of the combustion chamber at spark timing as seen earlier in Figure 5.29. 

  

(a) 95°ATDC/~5°AEOI (b) 105°ATDC/~15°AEOI 

Figure 5.30 – Iso-surface of fuel-air equivalence ratio at Φ=0.8, at 95° and 105°ATDC 
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Figure 5.31 – (a,c,e) Fuel-air equivalence ratio iso-surface at Φ=0.8 and (b,d,f) Surface 

velocity magnitude contours and vectors 
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5.3.1.2 Differences in Mixture Field Evolution when using a 

Single- and Multi-Component Fuel Surrogate 

 

The following section presents the observed differences in mixture field evolution between 

numerical predictions when using a single- and multi-component fuel surrogate, with 

explanation for the observed differences and some of the implications for subsequent 

processes including combustion.  

First, the spatial differences between single- and multi-component surrogate are investigated 

by figures of fuel component mass fraction, fuel droplets and charge motion at four different 

crank angles between the start of injection (SOI) and 18°ASOI in the x-z (tumble) plane 

intersecting the plume pair of 2/5 (Figure 5.27); plume 2 is injected into the intake side of the 

cylinder and plume 5 the exhaust side of the cylinder. Figure 5.32 shows the spatial 

progression of the mixture fraction for each fuel component in both single- and multi-

component fuel cases. Different colour bar scales have been used for each fuel component to 

allow easier analysis of the results. Figure 5.33 shows the liquid droplets coloured by 

diameter and contours of velocity magnitude. 

Examination of the multi-component fuel case shows faster breakup of the lighter iso-pentane 

fraction with the majority of the vapour fraction situated in the upper portion of the 

combustion chamber. Delayed breakup of the heavier fractions of iso-octane and n-decane is 

also apparent with increased penetration into the combustion chamber.  

It is also interesting to compare the difference in mixture fraction predicted for iso-octane 

between the single- and multi-component cases. In the single-component surrogate 

predictions, a greater quantity of the mixture fraction remains in the upper portion of the 

combustion chamber near the spark plug whereas it is more detached and penetrates further 

into the combustion chamber in the multi-component fuel predictions, see Figure 5.32(m & 

o). This is due to the impact of the iso-pentane and n-decane fractions within the droplets on 

the evaporation rate of the iso-octane fraction. Slower breakup is also supported by the 

presence of a greater number of droplets in the near spark plug region that have yet to 

breakup and contribute to the vapour mass fraction, see Figure 5.33(m & o). The presence of 

a larger number of droplets is also visible in the velocity field plot Figure 5.33(p), where 

higher velocities in the region indicate an increased contribution from droplet momentum. 
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Figure 5.32 – A comparison of the fuel mass fraction for the single- and multi-

component surrogate fuels in the tumble plane intersecting plume 2 and 5 
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Figure 5.33 – A comparison of the droplet and velocity field for the single- and multi-

component surrogate fuels in the tumble plane intersecting plume 2 and 5 
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When comparing the differences in spatial positioning of the droplets within the combustion 

chamber between single- and multi-component surrogate cases (Figure 5.33), it is apparent 

that an increased number of smaller droplets remain in the upper part of the combustion 

chamber with the multi-component surrogate. The lighter iso-pentane component may cause 

some droplets with a higher iso-pentane fraction to have reduced momentum and thus be 

more easily influenced by charge motion. This increases the probability for droplets to 

impinge onto hard surfaces; visible in Figure 5.33(m & o) where a larger number of droplets 

have impinged and stuck on the upper part of the combustion chamber in the multi-

component fuel case than in the single-component fuel case. This effect also causes an 

increase in plume dispersion, evident with the multi-component fuel. This is particularly 

noticeable in plume 2 at 14°ASOI (Figure 5.33(i & k)) and 18°ASOI (Figure 5.33(m & o)).  

It is clear from the velocity magnitude images that the charge motion is strongly influenced 

by the spray momentum; the charge motion follows the trajectory of the spray plumes with 

higher spray induced charge velocities around the plume tips as a consequence of the plume 

tip containing larger droplets that better maintain their momentum across the combustion 

chamber. 

The next stage of the investigation was to review the differences in mixture field predicted by 

a single- and multi-component surrogate fuel at spark timing, and establish causality for any 

observed differences. 

Upon inspection of the iso-surface diagrams at spark timing (35°BTDC) and slightly earlier 

(85°BTDC) as shown in Figure 5.34, a characteristic difference in the predictions with the 

multi-component surrogate is the increased quantity of fuel vapour present in the rear intake 

port when compared to predictions using a single-component surrogate. This is not 

attributable to differences in the in-cylinder flow field, thus must be due to differences in the 

relative evaporation rates between the two surrogate fuels. 

Figure 5.36 shows the fuel-air equivalence ratio contours in the tumble plane, cutting through 

the rear intake valve (see Figure 5.35 for orientation of cutting plane), illustrating a key 

difference in the spatial distribution of fuel vapour between the two fuel surrogates. In the 

multi-component case, a large quantity of fuel is situated around the top of the combustion 

chamber underneath the open intake valve whereas in case of the single-component surrogate, 

an additional pocket of rich mixture has remained on the exhaust side of the combustion 

chamber, coinciding with the evaporation of a liquid film formed from the impingement of 
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plume 6. A rich pocket of mixture is also visible along the back of the combustion chamber, 

coinciding with the evaporation of the liquid film formed from the impingement of plume 1, 

visible in Figure 5.34(a).  
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Figure 5.34 – Fuel-air equivalence ratio iso-surface at Φ=0.8 for (a) single-component 

fuel surrogate at 85°BTDC, (b) multi-component fuel surrogate at 85°BTDC, (c) single-

component fuel surrogate at 35°BTDC and (d) multi-component fuel surrogate at 

35°BTDC 

 

Figure 5.37 shows the liquid fuel droplets coloured by wall film thickness, hence any droplets 

indicating a film thickness greater than zero have impinged a solid surface and are 

contributing to a liquid film. Inspection of Figure 5.37(a) for the single-component surrogate 

shows that earlier in the cycle a significant quantity of fuel has contributed to liquid film 

formation on the rear of the cylinder, corresponding to liner impingement from plumes 1 and 

6, which are later available to evaporate and be entrained into the flow field, generating the 

rich mixture pockets seen in the equivalent locations on the iso-surface plot (Figure 5.34(a)) 

and equivalence ratio contour plot (Figure 5.36(c)).  
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The equivalent figure for the multi-component fuel surrogate (Figure 5.37(b) and Figure 5.37 

(d)) shows that a smaller quantity of the fuel that impinges the cylinder liner forms a liquid 

film thus a greater quantity of liquid fuel will be available to atomise and be carried by the 

dominant flow structures to contribute to the rich pockets of fuel vapour found at the top of 

the combustion chamber and in the intake port at the point of spark timing. 

The differences noted above indicate the potential inaccuracies associated with using a 

single-component surrogate when trying to predict the mixture field of a real fuel, when 

compared to a multi-component surrogate. 

In the case of the multi-component surrogate predictions, less fuel is available in the cylinder 

at the point of spark timing to contribute to useful work due to more fuel being trapped in the 

intake ports. The fuel trapped in the intake port will be available to enter the cylinder on the 

next induction cycle but, unlike injected fuel where the resultant mixture field can be 

controlled by the design of the injector nozzle and timing of the injector event, it will be 

entirely governed by the in-cylinder flow field from the point of the intake valve opening.  

When using a single-component fuel, increased liquid film mass would see a greater number 

of large droplets remaining in the cylinder at the point of spark timing due to the film 

stripping process, contributing to increases in PM and UHC pollutant formation. 

 

 

Figure 5.35 – Tumble cutting plane in the x-z plane that intersects the rear valves, plane 

coordinates:[0,-17.5,0] 
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Figure 5.36 – Contours of equivalent fuel-air equivalence ratio, in the tumble plane 

through the rear intake valve, for (a) single-component fuel surrogate at 115°BTDC, (b) 

multi-component fuel surrogate at 115°BTDC, (c) single-component fuel surrogate at 

85°BTDC and (d) multi-component fuel surrogate at 85°BTDC 
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Figure 5.37 – Figure show droplets coloured by liquid film thickness for (a) single-

component fuel surrogate at 115°BTDC, (b) multi-component fuel surrogate at 

115°BTDC, (c) single-component fuel surrogate at 85°BTDC and (d) multi-component 

fuel surrogate at 85°BTDC 

 

Thus correctly predicting and hence understanding the evolution of the fuel-air mixture is 

important for making improvements in engine design. E.g. in this case, the degree of late 
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intake valve closure and acceptable quantity of mixture trapped in the intake port at the end 

of the cycle, and its potential contribution to fuel mass in the following cycle and increased 

pollutants (UHC and PM), could be understood and mitigated as necessary. 

In addition to the findings above related to fuel-air mixture transport into the intake port, the 

additional fuel situated towards the top of the combustion chamber in the multi-component 

surrogate predictions acts to create a richer mixture around the spark plug at spark timing. 

Figure 5.39 shows the fuel-air equivalence ratio for both the single-component surrogate and 

the multi-component surrogate at spark timing in the y-z plane spark plug cutting plane (see 

Figure 5.38 for orientation of cutting plane), with a richer mixture present around the spark 

plug in the multi-component surrogate predictions whereas a greater quantity of fuel is 

situated at the periphery of the combustion chamber close to the piston crown in the single-

component surrogate case, which will impact the laminar flame speed and hence any 

subsequent predictions of the combustion process. 

 

 

Figure 5.38 – Spark plug cutting plane in the y-z plane, plane coordinates:[-4,0,0] 
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Fuel-Air Equivalence Ratio [no units]: 

 

 

Figure 5.39 – Contours of fuel-air equivalence ratio along the spark plug cutting plane 

at 35°BTDC (spark timing) for (a) single-component surrogate, (b) multi-component 

surrogate 

 

5.3.2 Spray and Mixture Field CCV at Spark Timing 

 

The cycle-to-cycle variations of the mixture field at spark timing are known to have a large 

effect on the resultant combustion process, including variations in laminar flame speed, 

pollutant formation and abnormal combustion phenomenon including misfire and knocking 

events. The following section looks at the CCV in the mixture field at spark timing, both 

spatially and temporally, identifying both ‘high’ and ‘low’ cycles and their potential causes 

via the coefficient of variance of the fuel-air equivalence ratio. 

The coefficient of variance (CoV) of the fuel-air equivalence ratio, effectively defining the 

degree of homogeneity of the mixture, was calculated at spark timing to identify cycles with 

comparatively high or low mixture stratification using the following methodology: 

1) Calculate the mean fuel-air equivalence ratio �̅�: 

 

�̅�(𝜃, 𝑐) =
1

𝑁
∑𝜙(𝜃, 𝑐, 𝑖)

𝑁

𝑖=1

 (5.1) 
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2) Calculate the standard deviation of the fuel-air equivalence ratio 𝜙𝑆𝐷: 

 

𝜙𝑆𝐷(𝜃, 𝑐) = √
1

𝑁
∑[𝜙(𝜃, 𝑐, 𝑖) − �̅�(𝜃, 𝑐)]2
𝑁

𝑖=1

 (5.2) 

 

3) Calculate the coefficient of variance of the fuel-air equivalence ratio 𝜙𝐶𝑜𝑉: 

 
𝜙𝐶𝑜𝑉(𝜃, 𝑐) =

𝜙𝑆𝐷(𝜃, 𝑐)

�̅�(𝜃, 𝑐)
 (5.3) 

 

Where: 𝑁 is the total number of cells in the domain, 𝑖 is the cell number, 𝜃 is the crank angle 

and 𝑐 is the cycle number. 

Figure 5.40 shows the CoV of fuel-air equivalence ratio as a function of engine cycle at spark 

timing, and identifies cycles 3 and 6 with comparatively high CoV and cycle 12 with 

comparatively low CoV. 

 

 

Figure 5.40 – CoV of equivalence ratio as a function of cycle number at 35°BTDC 

(spark timing) 
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To analyse the spatial variation of the fuel-air equivalence ratio for cycles 3, 6 and 12, the 

fluctuating equivalence ratio (𝜙′), standard deviation of the equivalence ratio (𝜙𝑆𝐷 ) and 

coefficient of variance of the equivalence ratio (𝜙𝐶𝑜𝑉), were calculated via the following 

methodology and then plotted as contour plots in the y-z plane intersecting the spark plug 

electrodes (see Figure 5.38 for orientation of cutting plane). 

1) Calculate the ensemble-average of the fuel-air equivalence ratio �̅�: 

 
�̅�(𝜃) =

1

𝑛
∑𝜙(𝜃, 𝑐)

𝑛

𝑐=1

 (5.4) 

 

2) By applying the Reynolds decomposition to the variation in equivalence ratio, the 

fluctuating equivalence ratio 𝜙′can be found: 

 𝜙′(𝜃, 𝑐) = 𝜙(𝜃, 𝑐) − �̅�(𝜃) (5.5) 

 

3) Calculate the standard deviation of the equivalence ratio 𝜙𝑆𝐷:  

 

𝜙𝑆𝐷(𝜃) = √
1

𝑛
∑[𝜙(𝜃, 𝑐) − �̅�(𝜃)]2
𝑛

𝑐=1

= √
1

𝑛
∑𝜙′(𝜃, 𝑐)2
𝑛

𝑐=1

 (5.6) 

 

4) Calculate the coefficient of variance of the fuel-air equivalence ratio 𝜙𝐶𝑜𝑉: 

 
𝜙𝐶𝑜𝑉(𝜃) =

𝜙𝑆𝐷(𝜃)

�̅�(𝜃)
 (5.7) 

 

Where: 𝑛 is the total number of cycles, 𝑐 is the cycle number and 𝜃 is the crank angle. 

Figure 5.41(a) (c) (e) show the fuel-air equivalence ratio and Figure 5.41(b) (d) (f) show 

contours of the fluctuating equivalence ratio, indicating spatially where the cycles of interest 

(cycles 3, 6 and 12) differ from the ensemble-average spatial variation in equivalence ratio 

shown in Figure 5.42(a). 
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In cycles 3 and 6, a number of rich pockets of fuel-air mixture are identifiable when 

compared to the ensemble-average result, particularly around the periphery of the combustion 

chamber. This is due to either, poorer mixing through the intake and compression stroke due 

to differences in turbulence levels, or higher quantities of fuel impinged on the liner and 

piston that evaporate late in the compression stroke due to the elevated temperatures but do 

not mix sufficiently with the remaining charge due to the lower turbulence levels available. 

These variable pockets of rich fuel mixture will contribute to CCV towards the end of the 

combustion event due to the variation in equivalence ratio impacting the laminar flame speed. 

Interestingly, the RANS predicted equivalence ratio (Figure 5.42(b)) shows a similarly rich 

region along the front of the combustion chamber (to the right in the images) but does not 

capture the rich mixture at the rear of the combustion chamber (to the left in the images) as 

identified in the LES ensemble-average, indicating the impact of differences in predicted 

flow structures on the transport and diffusion of the fuel-air vapour cloud both temporally 

through the cycle and spatially through the cylinder. 

Cycle 12, previously identified with low equivalence ratio CoV in Figure 5.40, i.e. higher 

homogeneity, does not exhibit the same pockets of rich mixture around the periphery 

suggesting either a variation in in-cylinder flow structures and/or turbulence levels that have 

improved mixing, or a lower quantity of impinged fuel on the liner and piston crown again 

due to a variation in in-cylinder flow structures.  

Figure 5.43 shows the standard deviation of the fuel-air equivalence ratio 𝜙𝑆𝐷 and the CoV of 

the fuel-air equivalence ratio 𝜙𝐶𝑜𝑉 along the same cutting plane and Figure 5.44 shows an 

iso-surface of the coefficient of variance of equivalence ratio at 𝜙𝐶𝑜𝑉=0.5, thus indicating 

areas of high variability in mixture homogeneity, effectively providing a graphical 

representation of areas within the combustion chamber that see high levels of CCV of the 

fuel-air equivalence ratio. From these figures it is possible to identify areas of high 

equivalence ratio CCV around the front of the combustion chamber and in the rear intake 

valve port, both expected to be due to variations in the resultant strength and direction of the 

tumble flow structures through the end of the intake stroke and compression stroke. The CoV 

of the velocity magnitude 𝑢𝑖,𝐶𝑜𝑉, was calculated using the same procedure as documented for 

equivalence ratio above and an iso-surface plotted shown in Figure 5.45. A large area of high 

CCV flow is visible on the exhaust side of the combustion chamber between the two exhaust 

valves as a consequence of variability of the recirculation regions and tumble flow structures 
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(as observed previously in Figure 5.24), a driver for the observed CoV of equivalence ratio. 

Also of note from Figure 5.45 is the significant CCV present in the flow in the intake ports as 

a consequence of the high velocity, and as a consequence highly turbulent, flow generated 

during the intake valve closing event that occurred 33°c.a. earlier. 

 Fuel-Air Equivalence Ratio, 𝜙 [no units] 
Fluctuating Equivalence Ratio, 𝜙′  

[no units] 

Cycle 
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 (a) (b) 
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6 
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Figure 5.41 – (a) (c) (e) Contours of fuel-air equivalence ratio 𝝓, (b) (d) (f) Contours of 

fluctuating equivalence ratio 𝝓′, for cycles 3, 6 and 12 along the spark plug cutting 

plane 

 

Figure 5.43(b) does identify a region of increased equivalence ratio variability in the pent-

roof close to the spark plug which will act to increase CCV of the combustion process during 

the earlier stages of kernel development, a critical time for CCV of the overall process but 

based inspection of both Figure 5.43 and Figure 5.44, 𝜙𝐶𝑜𝑉 is mostly less than 0.5 throughout 
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the cylinder interior which will contribute to lower levels of CCV through the majority of the 

turbulent flame propagation phase. 

 

LES Ensemble-Average Equivalence Ratio, 

�̅� [no units] 
RANS Equivalence Ratio, 𝜙 [no units] 

  

  

(a) (b) 

Figure 5.42 – Contours of fuel-air equivalence ratio along the spark plug cutting plane 

for (a) LES ensemble-average, (b) RANS 

 

Standard Deviation of the Equivalence Ratio, 

𝜙𝑆𝐷 [no units] 

CoV of the Equivalence Ratio, 𝜙𝐶𝑜𝑉  

[no units] 

  

  

(a) (b) 

Figure 5.43 – (a) Contours of standard deviation of the equivalence ratio 𝝓𝑺𝑫 and (b) 

coefficient of variance of equivalence ratio 𝝓𝑪𝒐𝑽, along the spark plug cutting plane 
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Figure 5.44 – Iso-surface of the coefficient of variance of the equivalence ratio 𝝓𝑪𝒐𝑽=0.5, 

indicating areas of high equivalence ratio CCV in the cylinder and intake ports at 

35°BTDC (spark timing) 

 

 

Figure 5.45 – Iso-surface of the coefficient of variance of the velocity magnitude at 

𝒖𝒊,𝑪𝒐𝑽=2, indicating areas of high velocity magnitude CCV in the cylinder and intake 

ports at 35°BTDC (spark timing) 
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5.3.3 The Effect of Intake Valve Jet Flapping on Mixture Field 

Development 

 

As discussed earlier in section 4.2.4, intake valve jet flapping has been suggested as a 

potential source of CCV of the large scale flow structures within the intake and compression 

strokes. Thus it follows that the phenomenon has the potential to cause CCV in the spatial 

variation of fuel-air equivalence ratio at spark timing and resultant combustion process. The 

purpose of this section is to investigate the potential of intake valve jet flapping as a source of 

fuel-air equivalence ratio variation at spark timing. The results in this section were generated 

using the Smagorinsky SGS model and computational setup as defined in section 3.3.4.2. 

First, velocity magnitude contours for an arbitrary cycle exhibiting valve jet flapping are 

examined in conjunction with images showing fuel-air equivalence ratio contours along the 

same cutting plane to establish if the influence jet flapping on the mixture field evolution is 

evident.  

Figure 5.46(a) shows velocity magnitude contours in a cutting plane intersecting the two 

intake valves at 105°ATDC and intake valve jet flapping is seen to be present. In Figure 

5.46(b) fuel-air equivalence ratio contours are shown along the same cutting plane. At this 

crank angle it is only approximately 15°AEOI and as can be seen, much of the fuel-air 

mixture is still within the centre of the combustion chamber (note, mixture in this plane 

almost entirely air) and hence is not significantly affected by valve jet instability. This is seen 

to be the case up until approximately 130°ATDC. 

At 130°ATDC the fuel-air mixture has begun to diffuse across the cylinder sufficiently that 

the flapping valve jet is able to begin to influence the mixture variation. In Figure 5.47(b) it is 

possible to see the valve jet flapping between the two intake valves beginning to influence 

and displace the fuel-air mixture cloud. Due to this occurring later in the intake event, the 

flapping valve jet is propagating at lower velocity and hence has a relatively small influence 

on the vapour cloud. 
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Velocity Magnitude Contours [m/s] Equivalence Ratio Contours [no unit] 

 

 

 

 

(a) (b) 

Figure 5.46 – (a) Velocity magnitude contours and (b) fuel-air equivalence ratio 

contours, intersecting both intake valves at 105°ATDC 

 

Upon inspection of the difference in valve curtain mass flux as a function of crank angle, a 

difference is seen between the profile when the cycle includes an injection event (Figure 5.48) 

and during a single-phase analysis as previously presented in section 4.2.4 (Figure 5.49). 

After the injection event (SOI=80°ATDC) the difference in intake valve curtain mass flux 

rises much more significantly than seen in a cold flow analysis. This acts to reduce the 

magnitude of fluctuation in valve curtain mass flux between the two valves and hence the 

amplitude of the resultant flapping valve jet. The change in intake valve mass flux after fuel 

injection is believed to be due to changes in the in-cylinder flow field (due to momentum 

imparted on the flow field from the injected fuel droplets) effecting the valve jet and hence 

mass flux through each valve. 

Also of note from Figure 5.48 is that results from both RANS and LES show the same change 

in profile thus indicating that the influence of the injection event on the flow entering the 

cylinder is seen regardless of whether a time-filtered or space-filtered turbulence modelling 

approach is used.  

The impact of the vapour cloud on the intake valve jet is also evident upon inspection of the 

velocity magnitude contours later in the cycle. Figure 5.50 shows the velocity magnitude 

contours at 150°ATDC, where the jet velocities are reduced due to the intake valve being at 
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maximum lift (149°ATDC) and the increased density of the in-cylinder charge due to the 

entrainment of atomised fuel, causes any jet flapping to be dissipated.  

 

Velocity Magnitude Contours [m/s] Equivalence Ratio Contours [no unit] 

 

 

 

 

(a) (b) 

Figure 5.47 – (a) Velocity magnitude contours and (b) fuel-air equivalence ratio 

contours, intersecting both intake valves at 130°ATDC 

 

Figure 5.48 – Difference in intake valve curtain mass flux as a function of crank angle 

for LES and RANS two-phase simulations including an early injection event at 

80°ATDC 
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Figure 5.49 – Difference in intake valve curtain mass flux as a function of crank angle 

for LES and RANS single-phase/cold flow simulations (Figure 4.18, reprinted for 

convenience) 

 

Velocity Magnitude Contours [m/s] Equivalence Ratio Contours [no unit] 

 

 

 

 

(a) (b) 

Figure 5.50 – (a) Velocity magnitude contours and (b) fuel-air equivalence ratio 

contours, intersecting both intake valves at 150°ATDC 
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The above analysis was constrained to one two-dimensional cutting plane and it was 

considered feasible that intake valve jet instability could also be occurring in other planes (e.g. 

the swirl plane as identified in Hasse (2016)) and its CCV having a greater impact on the 

fuel-air equivalence ratio than observed.  

As previously identified in Figure 5.40, cycle 3 and 6 were identified as cycles with 

comparatively high CoV and cycle 12 with comparatively low CoV.  

To investigate if the observed CoV in the high and low cycles had occurred earlier in the 

cycle around the point when intake valve jet flapping is prominent, the CoV of the fuel-air 

equivalence ratio was calculated across the range of 80°ATDC to 160°ATDC where intake 

valve jet flapping had previously been identified to be present. Figure 5.51 shows the CoV of 

equivalence ratio at 90°ATDC (or 1°AEOI) and 160°ATDC (or approximately 70°AEOI). A 

clear increase in CoV is visible earlier in the cycle as expected due to the reduced time 

available for mixing but cycles 3 and 6 are not seen to have comparatively high CoV, nor 

cycle 12 seen to have comparatively low CoV, thus suggesting that the variability seen at 

spark timing cannot be entirely attributed to variability in the flow field earlier in the cycle 

due to intake valve jet flapping.  

In addition to the two crank angles presented here, the change in CoV as a function of crank 

angle from 100°ATDC to 160°ATDC was also investigated to see if any particular cycles 

showed a significant difference in how the CoV reduced with time but the data did not 

provide evidence as such. 

  

(a) (b) 

Figure 5.51 – CoV of equivalence ratio as a function of cycle number at (a) 

90°ATDC/1°AEOI and (b) 160°ATDC/~70°AEOI 
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The difference in intake valve curtain mass flux for cycles 3, 6 and 12 were also compared to 

the population, shown in Figure 5.52, to see if any differences existed between those cycles 

and the rest of the population that could be used to infer a difference in the resultant valve jet 

flapping and hence CoV of equivalence ratio at spark timing, but neither of the cycles 

identified appear as significant outliers that could be used to derive a conclusion that intake 

valve jet flapping has a significant influence on equivalence ratio CoV at spark timing. 

It could be hypothesised that since the magnitude of the jet flapping is more significant in the 

absence of a fuel injection event (as seen when comparing the single-phase and two-phase 

results described above), an injection event later in the intake stroke or even in the 

compression stroke, as used in a stratified mixture control strategy, would allow CCV of the 

intake valve jet flapping process more time to influence, and generate CCV in, the bulk flow 

structures and subsequently be a larger contributor to CCV of the final fuel-air equivalence 

ratio but to prove or disprove this hypothesis would require further numerical effort and is 

beyond the scope of this current research.  

 

 

Figure 5.52 – Difference in intake valve curtain mass flux as a function of crank angle 

for all LES cycles with cycles 3, 6 and 12 highlighted 
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5.4 INTERACTIONS BETWEEN IN-CYLINDER 

TURBULENCE AND THE FUEL INJECTION EVENT 

 

The previous sections within this thesis have investigated both the in-cylinder flow structures 

of the continuous-phase and the processes of the liquid-phase injection event. The purpose of 

the following section is to further investigate the interactions between the liquid-phase of the 

fuel injection event and the turbulent continuous-phase.  

 

5.4.1 Turbulence Characteristics Before Fuel Injection 

 

Before making comparisons of the turbulence characteristics between injecting (two-phase) 

and non-injecting cold flow (single-phase) cases, it is first pertinent to check that the 

turbulence characteristics prior to injection when only 15 cycles were simulated are similar to 

those at the equivalent point when 29 cycles were simulated, ensuring that any differences in 

turbulence characteristics post injection are due to the injection event and not due to 

differences in the total number of cycles. 

Figure 5.53 shows ensemble-average and RMS fluctuating velocity results (as calculated 

using the methodology presented in section 4.3) for the 29 cycle single-phase model as 

described in section 3.3.3.2 at 80°ATDC or 0°ASOI (i.e. the point of fuel injection), and 

Figure 5.54 presents equivalent results for the 15 cycle two-phase model as described in 

section 3.3.4.2. 

Comparing the fluctuating velocity components between the two cases shows very similar 

turbulence characteristics across the cylinder, picking up similar anisotropic characteristics as 

noted previously in section 5.3, e.g. increases in z-plane w’rms when compared to the other 

components at y=-19mm and y=0mm z=-28 x=-40mm and y=0mm z=-8mm x=-30mm. 

Note: cutting planes used in this section are the same as used in section 4.3 and shown 

previously in Figure 4.19. 
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There appears to be a slightly larger anisotropy predicted across the cylinder in the 15 cycle 

two-phase case at y=0mm z=-8mm when compared to the 29 cycle single-phase case; this is 

as a consequence of the more turbulent flow structures and less well defined recirculation 

regions present due to the reduced number of cycles available for averaging. Nevertheless, 

the predictions from both models are considered sufficiently similar and thus it deemed 

acceptable to compare the turbulence characteristics between 29 cycle single-phase results 

with the 15 cycle two-phase results to understand the interactions between the injection 

process and the continuous-phase turbulence. 

 

5.4.2 Comparison of Turbulence Characteristics between Single-

Phase and Two-Phase Predictions 

 

The next stage of the analysis was a comparison of the predicted turbulence characteristics 

between the single-phase and two-phase results to understand the impact of the injection 

event on in-cylinder turbulence levels. 

Figure 5.55 compares results from the continuous-phase only model over 29 cycles (model 

described in section 3.3.3.2) against two-phase results over 15 cycles (model described in 

section 3.3.4.2) in the tumble plane along the bore centreline at 100°ATDC or 20°ASOI, 

which intersects plumes 2 and 5 towards the bottom of the combustion chamber. The 

momentum exchange between spray plumes and continuous-phase is apparent in both the 

velocity magnitude contour plots and ensemble-average line charts, with an increase in z-

plane velocity magnitude, and to a lesser extent x-plane velocity magnitude. Inspection of the 

RMS fluctuating velocity line charts shows an increase in local anisotropy around the spray 

plumes, particularly noticeable in the z-plane component towards the bottom of the 

combustion chamber at z=-48mm where spikes in w’rms are present at x=-20mm and x=25mm 

due to the penetrating spray plumes. A small rise in x-plane fluctuations is also visible due to 

the trajectory imposed by the injector nozzle geometry on the spray plumes generating 

localised variations in anisotropy. 
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Figure 5.53 – 29 Cycle single-phase; 80°ATDC/0°ASOI; top row are ensemble-averaged 

velocity magnitude contours and velocity vectors �̅�; middle row are fluctuating velocity 

𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are ensemble-average velocity �̅�𝒊 
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Figure 5.54 – 15 Cycle two-phase; 80°ATDC/0°ASOI; top row are ensemble-averaged 

velocity magnitude contours and velocity vectors �̅�; middle row are fluctuating velocity 

𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are ensemble-average velocity �̅�𝒊 
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Figure 5.55 – Comparing single-phase and two-phase turbulence characteristics at 

100°ATDC/20°ASOI at y=0mm (bore centreline) in the tumble plane; top row are 

ensemble-averaged velocity magnitude contours and velocity vectors �̅�; middle row are 

fluctuating velocity 𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are ensemble-average velocity �̅�𝒊 
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 29 Cycle Single-Phase 15 Cycle Two-Phase 
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Figure 5.56 – Comparing single-phase and two-phase turbulence characteristics at 

90°BTDC/190°ASOI at y=19mm in the tumble plane; top row are ensemble-averaged 

velocity magnitude contours and velocity vectors �̅�; middle row are fluctuating velocity 

𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are ensemble-average velocity �̅�𝒊 
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29 Cycle Single-Phase 15 Cycle Two-Phase  

  

 

(a) (b)  

Figure 5.57 – Comparing single-phase and two-phase results at 35°BTDC/spark timing 

at y=19mm in the tumble plane, ensemble-averaged velocity magnitude contours and 

velocity vectors �̅� 

 

Comparison of the velocity magnitude contour plots also shows the modified flow field due 

to penetrating spray plumes has changed the bulk flow tumble motion travelling down both 

sides of the combustion chamber, modifying and reducing the large scale tumble motion. 

Thus it can be concluded that the injection event acts to modify the mean flow structures 

present during the induction event and generate localised anisotropy that is otherwise not 

present. 

Figure 5.56 provides the same graphical comparison but at 90°BTDC and y=19mm (tumble 

cutting plane intersecting the front intake valve), to investigate the impact of the injection 

event on the in-cylinder flow field much later in the cycle during the compression stroke. An 

interesting variation is the increase in y-plane ensemble-average velocity at z=-28mm 

x=10mm in the two-phase case, that is clearly visible in the velocity magnitude contour plots 

as an area of gas with increased velocity moving up towards the roof of the combustion 

chamber towards the exhaust side of the combustion chamber. This is due to the presence of 

higher density fuel vapour in the centre of the combustion chamber being forced upwards by 

the rising piston. Figure 5.60(c) shows the equivalent cutting plane but with fuel mass 

fraction contours and the annotated arrow illustrating the increased fuel mass fraction 

corresponding to an increase in gas velocity at this location. 
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Also of note from the velocity magnitude contours in Figure 5.56 are the noticeably lower gas 

velocities of the large scale tumble motion propagating upwards on the intake side of the 

combustion chamber due to momentum exchange between droplets and the continuous-phase. 

The impact of reduced mean flow velocities becomes of greater significance when 

considering the flow field at spark timing. Figure 5.57 shows velocity magnitude contours in 

the y=19mm tumble plane for both single-phase and two-phase results, similar to the findings 

at 90°BTDC, due to spray-flow momentum exchange, the two-phase results show a reduction 

in strength of the clockwise rotating tumble motion, accompanied by a weakening and 

subsequent increase in velocity magnitude of the recirculation regions. As seen in Figure 5.58, 

the y-z plane intersecting the spark plug electrodes, the weakened clockwise tumble motion 

results in lower velocity flow on one side of the spark plug electrodes. This suggests that 

without modelling of the momentum exchange between droplets and continuous-phase, there 

will be an over prediction of the mean velocity near the spark plug at the point of spark 

timing, affecting any subsequent modelling of the discharge channel deformation and initial 

kernel stretching due to the mean flow field. Whilst the mean flow field is lower, the 

fluctuating velocity components are of similar magnitude between both single-phase and two-

phase predictions, indicating that turbulent fluctuations, and thus CCV of the instantaneous 

flow field, are more significant near the spark plug electrodes at the point of spark timing in 

the two-phase predictions. 

Next, the predicted turbulence characteristics from a two-phase RANS simulation, were 

compared with the predictions from a two-phase LES simulation (which allows anisotropic 

turbulence) as a means of identifying the limitations of the assumptions made in the RANS 

turbulence model. 

One such example is seen in Figure 5.55 at 100°ATDC or 20°ASOI, where in the LES 

predictions a large rise in z-plane fluctuating velocity is seen at z=-48mm due to the 

penetrating spray plume. In comparison to the RANS prediction (dashed black line), a small 

rise in fluctuating velocity is seen at the same location but since fluctuations are equal in all 

directions, not only is the magnitude of turbulent fluctuation in the z-plane under predicted 

but the fluctuations in the x- and y-planes are over predicted which will lead to inaccurate 

momentum transfer between droplets and the continuous-phase, and inaccurate diffusion of 

the fuel-air vapour cloud across plane. Figure 5.59 shows images of contours of fuel mass 

fraction in both the tumble plane and swirl plane illustrating how the impact of differences in 
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momentum transfer between droplets and the continuous-phase causes large differences in 

the distortion and movement of the spray plumes as they penetrate into the combustion 

chamber. Figure 5.59(e) and (f) shows iso-surfaces of fuel mass fraction for the LES and 

RANS predictions respectively and a rather different profile is seen, with lower energy 

dissipation and hence increased turbulence energy present in a LES simulation acting to 

increase the rate at which fuel is atomised and mixed with the surrounding air. 

Figure 5.60 compares velocity magnitude contours and fuel mass fraction contours between 

the LES and RANS predictions at mid-compression 90°BTDC in the y=19mm tumble plane. 

The presence of rising flow towards the exhaust side of the combustion chamber in the LES 

two-phase results that is not present in the LES single-phase (Figure 5.56), is also not present 

in the RANS predictions, with Figure 5.60(b) showing a much more dominant clockwise 

rotating tumble flow and the fuel-air mixture predominantly being transported around the 

periphery as a consequence Figure 5.60(d). This indicates that the more uniform, less tumble 

dominated, flow feature in the LES two-phase results (Figure 5.60(a)) is only captured when 

modelling the injection event with a non-time-averaged turbulence modelling approach and 

based on findings from section 4.3.2 where the numerical predictions of the mixture field are 

compared against experimental QPLIF results, there is evidence to believe that this flow 

structure is a better match to reality due to it creating a more homogeneous mixture as a 

consequence.  

Comparison between the RANS and LES two-phase predictions at spark timing as shown in 

Figure 5.58 indicates the RANS turbulence model to predict higher mean velocities, 

particularly in the x-plane. This will increase the convection of the flame kernel towards the 

exhaust side of the combustion chamber to a greater extent than would be seen when using 

the LES model. RMS fluctuating velocities from the RANS and LES predictions are of 

similar magnitude but obviously the RANS predictions do not capture the anisotropy present, 

thus would not capture the cyclic variations in kernel stretching during the early stages of 

combustion due to flow turbulence fluctuations. 
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Figure 5.58 – Comparing single-phase and two-phase turbulence characteristics at 

35°BTDC/spark timing in the y-z plane intersecting the spark plug; top row are 

ensemble-averaged velocity magnitude contours and velocity vectors �̅�; middle row are 

fluctuating velocity 𝒖𝒊,𝒓𝒎𝒔
′ ; bottom row are ensemble-average velocity �̅�𝒊 
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LES - 15 Cycle Two-Phase RANS  

  

 

(a) (b)  

  
 

(c) (d)  

  

 

(e) (f)  

Figure 5.59 – Comparing LES ensemble-average and RANS results at 

100°ATDC/20°ASOI; top row fuel mass fraction contours in the tumble plane along the 

bore centreline for (a) LES (b) RANS; middle row fuel mass fraction contours in the 

swirl plane at z=-48mm for (c) LES (d) RANS; iso-surfaces of fuel mass fraction at 0.15 

in the tumble plane for (e) LES and (f) RANS 
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LES - 15 Cycle Two-Phase  RANS  

 

 

 

 

(a)  (b)  

 

 

 

 

(c)  (d)  

Figure 5.60 – Comparison of velocity magnitude contours for (a) LES and (b) RANS 

and fuel mass fraction for (c) LES and (d) RANS, at 90°BTDC at y=19mm, both two-

phase simulations 

 

5.5 CONCLUDING REMARKS 

 

This chapter presented the numerical results from a number of investigations looking into the 

fuel injection processes occurring within a GDI single cylinder optical research engine using 

both RANS and LES turbulence modelling techniques, and the use of both a single- and 

multi-component fuel surrogate. 

The chapter starts by investigating the impingement process and subsequent formation of 

liquid films on the solid surfaces inside the combustion chamber. 
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Examination of the fuel properties, wall surface temperatures and droplet properties allowed 

the calculation of key dimensionless droplet properties and the prediction of the droplet 

impingement regime and the onset of liquid film formation, with both single- and multi-

component surrogates predominantly impinging within the free convection and nucleate 

boiling regime of the impingement model. 

Evidence of film stripping was seen from the lower surface of the valve head with ejected 

droplets having very large diameters (100-500μm) and slow velocities. The stripping process 

was seen to continue through the intake stroke and into the compression stroke, ensuring that 

a number of large slow moving droplets will remain present up to spark timing, and be 

expected to form a source of UHC and PM emissions. 

The influence of the in-cylinder flow field on the spray plumes was seen to be significant. 

Greater plume distortion was seen when using the multi-component surrogate due to the 

lighter components within the fuel, acting to vary the intake valve head impingement location 

and subsequent film formation, film stripping and child droplet formation processes when 

compared to a single-component surrogate. Increased plume distortion was also seen when 

using a LES Smagorinsky SGS turbulence model than when using a RANS RNG k-ε model, 

with up to 100% variation in total intake valve film mass noted across the 15 LES cycles 

completed in this research. Similar to the differences in impingement location between 

single- and multi-component surrogates with a RANS model, CCV of the intake valve head 

impingement location also showed cycle-by-cycle variations in the quantity of fuel deposited 

on either the top surface or side and underside of the valve head, expected to contribute to 

differences in the secondary droplets and resultant vapour cloud due to film evaporation.  

Study of the cylinder liner and piston crown impingement process also showed significant 

cyclic variability in the total mass of fuel contributing to a liquid film. Variations in spray 

plume tip penetration due to variations in the in-cylinder flow field were linked with 

differences in total liquid film mass and film thickness for plumes 2/3/4/5. Due to the reduced 

penetration distances and subsequent reduced time available for the flow field to influence 

the spray plume, film formation due to plumes 1/6 cylinder liner impingement showed far 

less CCV in film thickness. At this operating condition, liquid films formed on the piston 

crown were seen to remain up to the point of spark timing, a precursor for pool-fires on the 

piston surface and scraping of liquid films remaining on the cylinder liner by the rising piston 

was prevalent which would contribute to ring pack coking, increased UHCs and oil dilution. 
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The second part of this chapter looked into the predicted mixture field characteristics. 

First, the mixture field evolution has been investigated through the intake and compression 

strokes up to the point of spark timing. Non-symmetrical flow features have been identified, 

including a large scale swirling vortex during the compression stroke, as the cause for the 

mixture stratification present within the cylinder. Differences in the mixture field when using 

a single- or multi-component surrogate were also presented and discussed. Variations in 

atomisation rate and fuel impingement were found to drive a richer fuel-air mixture in the 

roof of the combustion chamber at spark timing with the multi-component surrogate. 

The CCV of the mixture field at spark timing was quantified and investigated through the 

coefficient of variance of the fuel-air equivalence ratio, with cycles 3 and 6 identified as ‘high’ 

cycles and cycle 12 identified as a ‘low’ cycle. Contour plots of fuel-air equivalence ratio 

CoV and iso-surfaces of fuel-air equivalence ratio and velocity magnitude CoV were used to 

identify regions of high CCV and attribute the variation to variations in the in-cylinder flow 

structure and spray plume impingement. 

Using the findings from the previous chapter, the potential for CCV in the intake valve jet 

flapping process to influence CCV of the final mixture field was also investigated. The effect 

of the fuel injection event reducing the magnitude of valve jet flapping and the injector 

nozzle geometry meaning the spray plumes did not pass close to the valve jet during flapping, 

meant that no relation was found between valve jet CCV and CCV of the mixture field at 

spark timing. 

The final part of this chapter discussed the interactions between the in-cylinder flow field and 

the fuel injection event. Increased anisotropy identified around the penetrating spray plumes. 

The consequence of momentum transfer between the continuous-phase and the liquid-phase 

was seen with reduced in-cylinder velocities and modified flow structures around the spark 

plug at spark timing visible. The limitations of the Boussinesq assumption in the RANS RNG 

k-ε turbulence model were discussed and increased mixing was observed in mixture field due 

to the lower dissipation of the LES model.  
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CHAPTER 6 

REGIMES OF TURBULENT PREMIXED 

COMBUSTION  

 

 

“If we all did the things we are capable of doing, we would literally astound 

ourselves.” 

– Thomas A. Edison 

 

 

 

6.1 INTRODUCTION 

 

The results discussed thus far provide a large amount of information about the flow 

turbulence characteristics and in particular at the point of spark timing. This is of particular 

interest for the resultant premixed turbulent combustion process due to the impact of local 

turbulent flow on the propagation of the flame front. By using turbulent premixed combustion 

diagrams as proposed by Abraham, Williams & Bracco (1985) and Peters (1999), these 

diagrams can be used to indicate the nature of the flame front; whether the flows contains 

flamelets (thin reaction zones), pockets or distributed reaction zones. 

In this section, the turbulent flow characteristics in the cylinder at the point of spark timing 

derived in the previous section are used to examine the: 

 Characteristics of the subsequent flame front, 

 Differences in predicted combustion regime when using turbulence results from either 

the RANS or LES model, 
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 CCV of the position on a combustion regime diagram using the predictions from the 

LES model, and the implied differences in combustion regime and flame structure 

that could ensue as a consequence. 

 

6.2 BACKGROUND AND METHODOLOGY 

 

To identify the regimes of the in-cylinder premixed turbulent combustion using combustion 

regime diagrams, the Damköhler and the turbulence Reynolds numbers are require to be 

calculated. 

Since in most flames the Prandtl number (the ratio between kinematic viscosity and thermal 

diffusion) is close to unity, and the flame diffusivity is equal to flame thickness δl multiplied 

by the laminar burning velocity ul, the kinematic viscosity can be replaced and allows the 

turbulence Reynolds number to be a function of the combustion event as shown in equation  

(6.1). 

 
𝑅𝑒𝑇 =

𝑢′𝑙𝑙

𝑣
=
𝑢′𝑙𝑡

𝑢𝑙𝛿𝑙
 (6.1) 

 

This equation now represents the ratio of inertia of turbulence to the inertia of the 

propagating flame. The flame inertia has a dissipative effect on turbulent eddies and so 

represents a viscous action acting on the turbulence. 

The Damköhler number is the ratio of the characteristic flow time or characteristic eddy 

turnover time 𝜏𝑇, to the characteristic chemical time of reaction or laminar burning time 𝜏𝑙  

and defined in equation (6.2) (Heywood, 1988). 

 

𝐷𝑎 =
𝜏𝑇

𝜏𝑙
=

𝑙𝑡
𝑢′
⁄

𝛿𝑙
𝑢𝑙⁄
= (

𝑙𝑡

𝛿𝑙
) (
𝑢𝑙

𝑢′
) (6.2) 

 

Where the ratio of u’/ul is a measure of the relative strength of the turbulence. 
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Thus the key variables to be obtained are: 

 Laminar flame thickness, 𝛿𝑙 

 Laminar burning velocity, 𝑢𝑙  

 Turbulence intensity, 𝑢′ 

 Integral length scale of turbulence, 𝑙𝑡 

 

The laminar flame thickness was obtained from a number of  published experimental results 

at 0.2mm, which was considered a reasonable assumption for premixed combustion in a GDI 

engine (Peters, 1999; Poinsot & Veynante, 2005; Peters, 1991). 

The laminar burning velocity was approximated as 0.37m/s from the experimental works of 

Metghalchi & Keck (1982) and Marshall, Taylor, Stone, et al. (2011) for iso-octane at 

representative pressures, temperatures and equivalence ratio. 

The turbulence intensity was extracted from the numerical predictions, using the modelled 

kinetic energy in the case of the RANS RNG k-ε model, and using the sum of the resolved 

and SGS turbulence kinetic energy for the LES approach, using equation (6.3): 

 

𝑢′ = √
2

3
𝑘 (6.3) 

 

The integral length scale was first estimated via the predicted turbulence dissipation rate, 

based on the assumption that the rate of dissipation is related to the rate of turbulence 

production, which can be related to the largest length scales, the integral length scale, as 

shown in equation (6.4). 

 
𝑙𝑡 ≈

𝑢′3

휀
 (6.4) 

 

It was also of interest to calculate the Karlovitz number which is similar to the Damköhler 

number but is the inverse and uses the Kolmogorov time scale instead of the integral time 

scale, since calculation of δl/lk provides a measure on the impact of the smaller scales on the 

flame front due to flame stretch as defined by equation (6.5).  
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𝐾𝑎 =
𝜏𝑙

𝜏𝑘
=

𝛿𝑙
𝑢𝑙⁄

𝑙𝑘
𝑢′
⁄

= (
𝑢′

𝑙𝑘
) (
𝛿𝑙

𝑢𝑙
) (6.5) 

 

Both the Damköhler number and Karlovitz number can be related to the turbulent Reynolds 

number through the integral length scale and kinematic viscosity as shown by equation (6.6). 

 
𝑅𝑒𝑇 =

𝑢′𝑙𝑡

𝑣
= (

𝑢′

𝑢𝑙
)(
𝑙𝑡

𝛿𝑙
) = 𝐷𝑎2𝐾𝑎2 (6.6) 

 

Re-arranging the turbulence Reynolds number in equation (6.6) to calculate the Karlovitz 

number and then re-arranging the equation for Karlovitz number in equation (6.5), the 

Kolmogorov length scale 𝑙𝑘  can be found. 

A caveat here is that the characteristic velocity in the Karlovitz number should be defined by 

the turbulence intensity at the Kolmogorov scale, i.e. 𝑢′(𝑙𝑘), whereas the turbulence intensity 

here was approximated from the kinetic energy which is a function of all the scales of 

turbulence, thus meaning the Kolmogorov length scales calculated will be subject to an 

additional degree of inaccuracy. 

 

6.3 RESULTS AND DISCUSSION 

 

The turbulence characteristics for the LES and RANS model after an injection event and at 

the point of spark timing, were calculated and are summarised in Table 6.1 and plotted on 

both the Da-ReT diagram proposed by Abraham, Williams & Bracco (1985) in Figure 6.1 and 

the modified turbulent premixed combustion regimes diagram as proposed by Peters (1999) 

in Figure 6.2. 
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Table 6.1 – In-cylinder turbulence characteristics at spark timing (35°BTDC) with the 

integral length scale estimated from dissipation rate 

  
𝑢′ 

[m/s] 

휀 

[m
2
/s

3
] 

𝑙𝑡 

[mm] 

Da 

[none] 

ReT 

[none] 

𝑢′

𝑢𝑙
 

𝑙𝑡

𝛿𝑙
 

Ka 

[none] 

𝑙𝑘  

[mm] 

𝑙𝑘

𝛿𝑙
 

RANS 2.6 3138 5.4 3.9 190 7 27 3.5 0.4 2.0 

LES 

Cycle 

1 5.42 1110 143.4 48.9 10500 15 717 2.1 1.4 7.0 

2 4.48 1128 99.4 38.1 6477 13 497 2.1 1.2 6.2 

3 8.18 904 605.7 137.0 66973 22 3029 1.9 2.3 11.7 

4 7.89 1513 324.8 76.1 34641 21 1624 2.4 1.7 8.7 

5 7.89 946 519.4 121.8 55388 21 2597 1.9 2.2 11.0 

6 5.65 1287 140.2 45.9 10705 15 701 2.3 1.4 6.8 

7 5.83 1513 130.9 41.6 10312 16 655 2.4 1.3 6.4 

8 8.37 967 607.1 134.1 68708 23 3036 2.0 2.3 11.6 

9 8.91 1336 529.1 109.9 63686 24 2645 2.3 2.1 10.5 

10 7.23 1069 353.9 90.5 34588 20 1769 2.1 1.9 9.5 

11 6.25 1227 199.12 58.9 16827 17 996 2.2 1.5 7.7 

12 5.29 1263 117.1 41.0 8369 14 586 2.2 1.3 6.4 

13 5.34 1034 147.6 51.1 10662 14 738 2.0 1.4 7.1 

14 7.14 1424 256.0 66.3 24717 19 1280 2.4 1.6 8.1 

15 5.14 1235 109.9 39.6 7631 14 549 2.2 1.3 6.3 

LES 

Ensemble-

Average 

6.62 1197 242.8 67. 21740 18 1214 2.2 1.6 8.8 
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Figure 6.1 – Da-ReT diagram (Abraham, Williams & Bracco, 1985), with results added 

using turbulence characteristics from both LES and RANS predictions with LES 

integral length scale estimated from dissipation rate 
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Figure 6.2 – Modified turbulent combustion regimes diagram (Peters, 1999), with 

results added using turbulence characteristics from both LES and RANS predictions 

with LES integral length scale estimated from dissipation rate 

 

As can be seen from both combustion regime diagrams, a fair difference is seen between the 

LES and RANS turbulence characteristics at spark timing; LES predictions suggesting that 

both Damköhler number and turbulent Reynolds number are orders of magnitude greater than 

the RANS predictions but with a similar Karlovitz number. Both turbulence models predict 

the combustion regime to be within the ‘distributed reaction regime’ or ‘thickened wrinkled 

flame’ regime where the integral time scale is larger than the chemical time scale but the 

Kolmogorov scales are smaller than the flame thickness (i.e. 𝑙𝑘 𝛿𝑙 < 1⁄  on the Da-ReT 

diagram) and are able to modify the inner flame structure but in the case of the LES 

predictions, both Da and ReT are greater still, indicating that the level of distortion of the 

flame front would potentially lead to distributed reaction zones of fresh charge and burnt 

gases. 

These differences could be attributed to differences in the origins of certain parameters used 

to calculate the turbulence characteristics between the LES and RANS models: 
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 First lies in the definition of the turbulence intensity, 𝑢′. The RANS model calculates 

the turbulence intensity via the modelled turbulence kinetic energy from the k-

equation of the k-ε model and the Boussinesq assumption. The LES model calculates 

the turbulence intensity via the sum of the resolved kinetic energy (directly from the 

N-S equations) and the SGS kinetic energy (modelled via an eddy-viscosity closure 

approach). Thus, due to being less dissipative that a RANS model, the LES approach 

resolves a much greater quantity of turbulence kinetic energy and hence the calculated 

turbulence intensity and therefore turbulent Reynolds number and velocity scale are 

much greater in the LES case. 

 Second lies in the calculation of the integral length scale. Here the integral length 

scale has been approximated from the dissipation rate. Since the LES turbulence 

model is less dissipative than the RANS turbulence model due to using a smaller 

turbulent viscosity, the rate of dissipation is much lower in the LES model. Thus a 

smaller dissipation rate and greater turbulence intensity equates to a greater estimated 

integral length scale. 

Abraham, Williams & Bracco (1985) approximated the integral length scales based on 

equation (6.7). 

 𝑙𝑡 ≈ 0.21ℎ (6.7) 

 

Where h is the clearance height of the combustion chamber and stated that this would be 

equivalent to the length scale predictions from a RANS k-ε turbulence model. This 

approximation was based on a pancake combustion chamber with flat piston crown and 

cylinder head profile thus its application to a pent-roof combustion chamber is less obvious 

but the clearance height from the piston crown to the top of the pent-roof at the point of spark 

timing is ~30mm, thus equating to an integral length scale of 6.3mm, very similar to the 

integral length scale of 5.4mm for the RANS predictions calculated via the dissipation rate.  

The turbulence characteristics for the LES model were re-calculated using an integral length 

scale approximated from equation (6.7) and summarised in Table 6.2 and re-plotted on both 

the Da-ReT diagram in Figure 6.3 and the modified turbulent combustion regimes diagram in 

Figure 6.4. 
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Figure 6.3 and 6.64 now show the LES results lying within the expecting operating range for 

ICE’s, though still with a higher turbulent Reynolds number than the RANS predictions, thus 

the turbulence characteristics from the LES predictions suggest a more wrinkled and 

convoluted flame front than predicted by the RANS turbulence characteristics. This becomes 

a serious consideration for the modelling of the subsequent combustion process since the 

differences in turbulence characteristics predicted by the different turbulence modelling 

techniques of either a RANS or LES approach, will drive quite different combustion 

modelling approaches to accurately model the impact of turbulence on the rate of flame 

propagation. 

Whilst the above estimation of the integral length scale was identified as the most likely 

contributor to error in the positioning on the combustion regime diagrams, a caveat exits with 

respect to the turbulence kinetic energy and hence the turbulence intensity estimation. The 

apparent turbulent kinetic energy is not well defined, except when far from the influence of 

the flame front. In experiments, the turbulent kinetic energy is the RMS velocity in the fresh 

gases, with an implicit assumption between combustion speeds and RMS velocity. In 

numerical results, turbulent kinetic energy is a localised quantity thus using this value to 

obtain a turbulent scale is not the same as used to form the combustion regimes as presented 

in combustion regime diagrams. Nor do turbulence models take account of density variations 

induced by the flame front and the subsequent impact on local velocity fluctuations. Thus 

whilst using predicted turbulence characteristics to estimate the subsequent combustion 

regime provides an interesting application for the numerical results, differences in the 

assumptions used between experimental and numerical methodologies provides an element of 

uncertainty to the accuracy of the results (Poinsot & Veynante, 2005). 

Another application of the results is to inspect the variation in the position on the combustion 

regime diagram from cycle-to-cycle and the potential impact on CCV of the flame structure. 

When the integral length scale is estimated using the dissipation rate and turbulence intensity 

(Figure 6.1 and 6.62), the turbulent Reynolds number shows an order of magnitude variation 

across all cycles, whereas the Damköhler number shows less than one order of magnitude 

variation. This indicates that the CCV in the ratio of turbulence time scale to chemical time 

scale, and hence the predominant combustion regime, is not significant. By comparison, 

when the integral length scale is approximated based on the combustion chamber clearance 

height (Figure 6.3 and 6.64), the predicted CCV in turbulence characteristics, and hence 

combustion regime, is far smaller and almost negligible. Since the turbulence intensity is 
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equal between the two cases and the length scale constant, the outcome implies that the 

predicted rate of energy dissipation is a dominant factor in determining the magnitude of 

predicted CCV in turbulence characteristics and hence resultant combustion regime. 

 

Table 6.2 – In-cylinder turbulence characteristics at spark timing (35°BTDC) with the 

LES integral length scale estimated based on clearance height 

  
𝑢′ 

[m/s] 

휀 

[m
2
/s

3
] 

𝑙𝑡 

[mm] 

Da 

[none] 

ReT 

[none] 

𝑢′

𝑢𝑙
 

𝑙𝑡

𝛿𝑙
 

Ka 

[none] 

𝑙𝑘  

[mm] 

𝑙𝑘

𝛿𝑙
 

RANS 2.6 3138 5.4 3.9 190 7 27 3.5 0.4 2.0 

LES 

Cycle 

1 5.42 1110 6.3 2.2 461 15 32 10.0 0.3 1.5 

2 4.48 1128 6.3 2.4 411 13 32 8.4 0.3 1.6 

3 8.18 904 6.3 1.4 697 22 32 18.5 0.3 1.2 

4 7.89 1513 6.3 1.5 672 21 32 17.6 0.3 1.2 

5 7.89 946 6.3 1.5 672 21 32 17.6 0.3 1.2 

6 5.65 1287 6.3 2.1 481 15 32 10.6 0.3 1.4 

7 5.83 1513 6.3 2.0 496 16 32 11.1 0.3 1.4 

8 8.37 967 6.3 1.4 713 23 32 19.2 0.3 1.2 

9 8.91 1336 6.3 1.3 758 24 32 21.0 0.3 1.1 

10 7.23 1069 6.3 1.6 616 20 32 15.4 0.3 1.3 

11 6.25 1227 6.3 1.9 532 17 32 12.4 0.3 1.4 

12 5.29 1263 6.3 2.2 450 14 32 9.6 0.3 1.5 

13 5.34 1034 6.3 2.2 455 14 32 9.8 0.3 1.5 

14 7.14 1424 6.3 1.6 608 19 32 15.1 0.3 1.3 

15 5.14 1235 6.3 2.3 437 14 32 9.2 0.3 1.5 

LES 

Ensemble-

Average 

6.62 1197 6.3 1.8 564 18 32 13.5 0.3 1.3 
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Figure 6.3 – Da-ReT diagram (Abraham, Williams & Bracco, 1985), with results added 

using turbulence characteristics from both LES and RANS predictions with LES 

integral length scale estimated based on clearance height 
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Figure 6.4 – Modified turbulent combustion regimes diagram (Peters, 1999), with 

results added using turbulence characteristics from both LES and RANS predictions 

with LES integral length scale estimated based on clearance height 

 

6.5 CONCLUDING REMARKS  

 

This chapter has presented the use of predicted in-cylinder flow characteristics at spark 

timing to determine the regime of turbulent premixed combustion using combustion regime 

diagrams. 

Differences in the predicted combustion regime were seen when using turbulence predictions 

from RANS and LES approaches due to: 

 The definitions for turbulence intensity are different in both RANS and LES contexts, 

coming from the turbulence kinetic energy in the Boussinesq assumption in RANS 

predictions and from the sum of the resolved and SGS kinetic energy in LES 

predictions. 
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 The use of turbulence dissipation to estimate the integral length scale produces large 

differences in integral length scale predictions due to large differences in the levels of 

turbulence dissipation between turbulence modelling approaches. The use of an 

approximation for integral length scale as proposed by Abraham, Williams & Bracco 

(1985) provided combustion regimes more in line with expectation. 

The position on the combustion regime diagrams for each LES cycle was also plotted to 

provide an indication of the expected CCV of the combustion regime. The predictions 

suggest that CCV of the turbulence characteristics only has a small effect on the overall 

combustion regime but this obviously neglects localised variations through the cylinder 

which have the potential to be more significant as the flame progresses from spark plug to the 

far cylinder walls. 
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CHAPTER 7 

CONCLUSIONS AND 

RECOMMENDATIONS  

 

 

“The idea is to try to give all the information to help others to judge the value of 

your contribution; not just the information that leads to judgment in one particular 

direction or another.” 

– Richard P. Feynman 

 

 

 

The Gasoline Direct Injection (GDI) engine has a number of practical advantages over the 

more traditional port-fuel injection strategy. These include eliminated transient dwell time, 

improved fuel metering for reduced unburned hydrocarbon (UHC) emissions, reduced knock 

propensity due to the charge cooling effect and the potential for significant fuel economy 

improvements with stratified charge combustion strategies. However, since the sustained 

interest in GDI technology in the early 1990’s, a number of challenges remain the subject of 

continued research in an attempt to fully exploit the potential of GDI engines. 

Cycle-to-cycle variability (CCV) in SI engines has long been a topic of research interest with 

a number of studies conducted to better understand the factors influencing CCV and its 

origins. Abnormal combustion phenomenon is of particular interest to GDI engine 

researchers with the increased activity in downsizing and heavily boosted engines, and the 

increasing prevalence of super-knock. The reduced time available for mixing due to direct 

injection means GDI engines suffer from higher particulate matter (PM) formation than seen 

previously in port-fuel injected engines, particularly with increasingly stringent particle 
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number legislations meaning that many current GDI engines are incapable of meeting the 

new legislation. The use of mixture stratification for fuel consumption improvements was 

pursued from some of the earliest GDI engines but a number of challenges still remain before 

the advantages of this strategy can be fully realised, including reductions in PM and UHC 

emissions and acceptable combustion stability across all operating conditions through 

reductions in solid surface impingement and more accurate spatial mixture control at the 

point of spark timing. 

The internal combustion engine (ICE) is a hostile and difficult to access environment and 

although significant effort has been applied into the research and development of 

experimental methods, the use of computational techniques (validated by experimental data  

and direct numerical simulations) remains an integral part of research and development 

activities. This research has focused on the use of detailed 3D-CFD techniques for 

investigating physical phenomena of the in-cylinder flow field and fuel injection processes, 

contributing to the current scientific knowledge in this area and in support of continual 

progress towards solution of these engineering challenges. 

 

7.1 CONCLUSIONS 

 

The conclusions from this thesis are presented in the following three sections: the numerical 

model, and the three chapters investigating the physical processes of the in-cylinder flow 

field, fuel injection process and regimes of combustion. 

 

7.1.1 The Numerical Model 

 

Conclusions from the numerical model characterisation and validation using the RANS 

approach for modelling the in-cylinder flow field:  

 A mesh dependency study was completed with the RANS RNG k-ε turbulence model 

and a mesh size of 2.15million cells, or a cell size of approximately 0.7-0.8mm
3
 in the 

cylinder interior, was found to largely provide a solution independent of cell size. 
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 An initialisation dependency study showed the need to run at least one complete cycle 

for the solution to be independent of the initialisation conditions, highlighting the 

importance of supplying the cylinder with appropriate intake port boundary conditions.  

 The model predictions were validated against available experimental results of the in-

cylinder pressure history and intake plenum, intake valve jet and in-cylinder PIV data 

and generally well matched the experimental results. 

Conclusions from the numerical model characterisation and validation, using the LES 

approach run over 30 engine cycles, for modelling the in-cylinder flow field:  

 A turbulence resolution parameter was used to evaluate the mesh suitability for the in-

cylinder flow conditions and showed the mesh to generally resolve upward of 80% of 

the flow kinetic energy. 

 The model predictions using the Smagorinsky SGS turbulence model were validated 

against experimental results and showed the model to well represent the complex flow 

structures in the cylinder interior and generally provide better agreement than when 

using the RANS RNG k-ε turbulence model. This provides another example of the 

Smagorinsky SGS model applied to ICE flows, in a detailed engine geometry that has 

not yet been published in the literature. 

Conclusions from the numerical model characterisation and validation, using a Lagrangian 

DDM, single-component fuel surrogate of iso-octane and the RANS approach, for modelling 

the fuel injection process:  

 A number of sensitivity studies were completed to assess the sensitivity of the 

solution to the choice of sub-models and boundary conditions including mesh size, 

secondary breakup model, number of injected parcels and cell clustering, and the 

model solution was shown to be largely insensitive. 

 The model was validated against experimental results for: plume tip penetration, 

plume tip velocity and droplet diameter and showed to well match the experimental 

results. The predicted fuel-air equivalence ratio was also compared to experimental 

QPLIF results and showed additional stratification in the model predictions that does 

not appear present in the experimental results. This provides another example of a 

DDM validated in detail against experimental results. In particular, the use of the 

Pilch and Erdman secondary breakup model and details of appropriate user constants 
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for a Rosin-Rammler droplet size distribution with a production like GDI injector, 

both of which have limited validation in the literature. 

Conclusions from the numerical model characterisation and validation, using a Lagrangian 

DDM, single-component fuel surrogate of iso-octane and the LES approach run over 15 

engine cycles, for modelling the fuel injection process:  

 The differences in interactions between the LES SGS model and the DDM were 

presented, with the largest limitation of the current approach being noted as the 

absence of a source term in the LES SGS model to account for the transfer of energy 

from the droplets to the continuous-phase at the SGS level. 

 The model was again validated against experimental results for: plume tip penetration, 

plume tip velocity and droplet diameter and showed to well match the experimental 

results. Model predictions for fuel-air equivalence ratio showed increased 

homogeneity and a qualitative improvement over the RANS predictions when 

compared to experimental QPLIF results. This provides another example of a DDM 

with LES SGS model validated against detailed experimental results, which are 

currently very limited within the published literature. 

 

7.1.2 Investigations into the In-Cylinder Flow Field 

 

Chapter 4 presented numerical results from a number of investigations looking into the in-

cylinder flow field using both RANS and LES turbulence modelling techniques. 

 The influence of the solid boundaries on the in-cylinder flow structures was first 

investigated. The moving boundary of the piston was seen to influence the temporal 

development of the flow structures through the intake stroke and the presence of the 

pent-roof optical access window was seen to generate flow asymmetries within the 

flow field in the roof of the combustion chamber. 

 The three-dimensional nature of the in-cylinder flow field was investigated via a 

series of cutting planes and the use of velocity magnitude and vorticity contours. 

Significant three-dimensionality was seen in the intake valve jet with respect to 
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penetration and velocity through the combustion chamber and the flow field 

surrounding the valve jet as a consequence of the high shear flows. 

 Intake valve jet flapping was observed and seen to be as a consequence of valve 

curtain mass flux imbalance. CCV in the valve curtain mass flux for each valve was 

seen to cause subsequent CCV in the valve jet flapping process in terms of both 

flapping frequency and jet penetration. The cyclic variation in the process meant that 

use of an ensemble-averaging process caused most of the information associated with 

the phenomenon to be lost. Whilst there are examples of flapping flows within the 

literature, there is very little published work on intake valve jet flapping in ICE’s, and 

even less on the characterisation and potential causality, thus this research has 

contributed to the scientific knowledge within this area. 

 The fluctuating velocity and turbulence intensity were used to investigate the 

characteristics of flow anisotropy through the intake and compression strokes, up to 

the point of spark timing. Intake valve jet flapping during the intake stroke, the rising 

piston during the compression stroke and the spark plug electrode geometry at the 

point of spark timing were all observed to increase flow anisotropy. 

 Proper Orthogonal Decomposition was applied to the velocity field and it was shown 

how it can be used to quantitatively analyse the turbulent in-cylinder flow field. The 

modal energy data was combined with the time-dependent coefficients and found as a 

very effective method of quantitatively evaluating CCV through the engine cycle and 

the intake valve opening and closing event was seen as a key driver for CCV. 

 

7.1.3 Investigations into the Fuel Injection Process 

 

Chapter 5 presented the numerical results from a number of investigations looking into the 

fuel injection process using both RANS and LES turbulence modelling techniques, and with 

both a single- and multi-component fuel surrogate. 

 The characteristics of the impingement process of fuel onto the intake valve, cylinder 

liner and piston crown were investigated, using Weber number and Laplace number to 

approximate the change in dominant impingement regime and onset of liquid film 

formation.  
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 Film stripping was observed from the intake valve head producing large slow moving 

droplets that persisted late into the compression stroke.  

 When compared to a single-component surrogate fuel, the effect of multiple fuel 

components with varying density in the multi-component surrogate showed greater 

plume distortion, evident due to greater interactions with the in-cylinder flow field, 

acting to change the impingement location and subsequent film formation and film 

stripping processes. The use of multi-component fuel surrogates for modelling direct 

injection sprays in GDI engines is still relatively emergent hence this thesis will 

contribute to scientific understanding of the differences in numerical predictions when 

using a single- or multi-component surrogate fuel. 

 Increased plume distortion was seen when using the Smagorinsky SGS turbulence 

model with up to 100% variation seen in the total intake valve film mass. Significant 

CCV was also seen in the total film mass on both cylinder liner and piston crown 

surfaces, associated with the variation in plume tip penetration from cycle-to-cycle 

due to cyclic variations in the in-cylinder flow field. To the author’s knowledge, an 

example of CCV of impingement and liquid film formation in a GDI engine using 

numerical methods has yet to be published. 

 At this operating condition, liquid films on the piston crown were seen to persist up to 

the point of spark timing, a known precursor for pool-fires. Scraping of liquid films 

remaining on the cylinder liner by the rising piston was also prevalent, which would 

contribute to ring pack coking, increased UHCs and oil dilution. 

 Investigations into the mixture field identified a large asymmetrical swirling vortex 

during the compression stroke as the cause for the greater than expected fuel-air 

mixture stratification present at the point of spark timing. Differences in spatial and 

temporal mixture field development were also seen between single- and multi-

component surrogate fuels as a consequence of differences in atomisation rates and 

the fuel impingement process. 

 CCV of the mixture field at spark timing was quantified and investigated through the 

coefficient of variance (CoV) of the fuel-air equivalence ratio. Contour plots of fuel-

air equivalence ratio CoV and iso-surfaces of fuel-air equivalence ratio and velocity 

magnitude CoV were used to identify regions of high CCV and attribute it to 

variations in the in-cylinder flow structure and spray plume impingement. 
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 The potential for CCV in intake valve jet flapping as a driver for CCV in the mixture 

field at spark timing was also investigated. A combined effect of the fuel injection 

event reducing the magnitude of valve curtain mass flux imbalance and geometry of 

the spray plumes meant that in this example, no relation was observed between valve 

jet CCV and the CCV of the mixture field at spark timing. 

 The influence of the liquid-phase on continuous-phase turbulence was investigated, 

with increased anisotropy identified around the penetrating spray plumes and 

modified flow structures around the spark plug at spark timing visible. The 

quantification of flow anisotropy in ICE’s in all three dimensions is very limited in 

the literature due to the difficulty of experimental measurement in three planes and 

the computational expense of using turbulence models that directly resolve the large 

scale flow motions. The results presented in this thesis act to publish information on 

flow anisotropy through the intake and compression strokes, and also on the influence 

of the in-cylinder fuel injection event on flow anisotropy, both of which are limited 

within the current literature. 

 

7.1.4 Regimes of Turbulent Premixed Combustion 

 

Chapter 6 presented the application of predictions of the in-cylinder turbulence at spark 

timing, to predicting the turbulence premixed combustion regime using combustion regime 

diagrams. 

Differences in predicted combustion regime between when using a RANS and LES models 

were identified due to primary differences in the methodology by which turbulence is 

modelled.  

The predicted CCV of turbulence characteristics at the spark plug appeared to have little 

effect on the characteristics of the predicted overall flame structure but this neglects the 

potentially larger variations through the cylinder over the course of the flame history. 
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7.2 PRESENT CONTRIBUTIONS 

 

The following bullet points describe the main contributions from the research presented 

above: 

 A detailed validation of the model against available experimental data is presented 

with all necessary input information to help the author correctly interpret and use the 

validation results, providing another reference point for modellers looking to correctly 

model GDI engines using 3D-CFD techniques but who do not have the luxury of 

highly sought after experimental optical engine results.  

 The validation of Large Eddy Simulation (LES) turbulence models against 

experimental PIV results are still often limited to simplified geometries, e.g. Morse, 

Whitelaw & Yianneskis (1979), or already well documented optical geometries, e.g. 

the TCC-III engine of the University of Michigan (Schiffmann, Gupta, Reuss, et al., 

2016). Thus this research provides another experimental geometry and data point for 

the validation of a particular LES Sub Grid Scale (SGS) model and contributes to the 

growing literature in this area, used to support the development of best practices for 

the application of LES to ICE flows. 

 Validation of the spray event against a number of experimental results including 

penetration, plume tip velocity and Phase Doppler Anemometry (PDA) results for 

droplet arithmetic mean diameter, allowed the boundary conditions for the injection 

model, including droplet initial velocity and droplet diameter distribution, to be 

validated with confidence and provide an additional reference for appropriate ‘shape’ 

and ‘scale’ parameters for a Rosin-Rammler distribution of the droplet diameter for a 

typical GDI injector of this era.  

 The secondary breakup model selected for use in this research was that of Pilch & 

Erdman (1987) where, whilst it is formed from a significant quantity of experimental 

research and has the benefit of not using user adjustable constants, has seen very few 

applications to engine sprays. Thus the validation presented in this research provides 

evidence of its validity for use in a GDI injection context with relatively low injection 

pressures. 

 The use of a LES SGS model for turbulence modelling with Lagrangian parcel 

tracking for modelling fuel injection in ICE’s is still emerging. The framework for 
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correctly modelling the interaction between turbulence modelled by the SGS model 

and the injected parcels is still incomplete and often based on a Reynolds Averaged 

Navier-Stokes (RANS) methodology. There are also a limited number of publications 

present in the literature documenting the validation of different LES SGS models with 

a DDM. In this research, a relatively simple SGS model, as originally proposed by 

Smagorinsky (1963), is applied with a DDM to model the fuel injection process, and 

validated against experimental results and RANS predictions. The limitations of the 

modelling approach used here are discussed with respect to the models ability to 

correctly represent the physical processes present, but the reduced complexity of the 

SGS model and coupling to the DDM, means that investigations into the cyclic 

variability of the fuel injection process due to turbulence, is possible with reduced 

computational expense and instability (when compared with turbulence models using 

additional filtering or transport equations) and readily available in most commercial 

CFD codes used in industry. 

 Through the course of this research a highly transient sinusoidal flow motion was 

observed between the two intake valves. It was identified through the literature as 

valve jet flapping but very little published results were found on the phenomenon in 

ICE’s, particularly with respect to intake valve jet flapping and its potential impact on 

cyclic variability. Thus results presented here provide evidence of its existence in 

ICE’s, causality, CCV and the apparent negligible effect on the resultant mixture field 

in an early injection GDI engine.  

 A detailed investigation of spray plume impingement on the intake valve, cylinder 

liner and piston crown is provided, using an understanding of the impingement model 

to show how the impingement regime varies from a predominantly splash regime at 

high Weber numbers when the spray plume first impacts a surface, and transitions to a 

deposition regime and subsequent liquid film formation as impinging droplet 

velocities, and hence Weber numbers, reduce – within the literature, a study of this 

type, in this level of detail, is very limited within GDI engines.  

 The comparison of predictions when using either a single-component or multi-

component fuel surrogate provides additional information on the limitations in 

prediction fidelity due to using a single-component fuel to represent a complex multi-

component fuel, and provide information to support the results from other researchers 
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suggesting that between three and five components provides a good compromise 

between accuracy and computational cost. 

 The use of a LES turbulence model and DDM to investigate the cyclic variability of 

the impingement process and liquid film formation in a GDI engine due to 

continuous-phase turbulence is, to the best of the author’s knowledge, the first 

example to be published. 

 The quantification of turbulence characteristics in ICE’s has been a research interest 

for a number of decades but due to the limitations of typically only measuring in two-

dimensions and the limited number of data points in experimental works, and the loss 

of data associated with cyclic variability in time-averaged RANS numerical 

approaches, the quantification of flow anisotropy in ICE’s is still very limited. In this 

research, a LES SGS turbulence model is used to provide information on the 

anisotropic nature of the flow field through the intake and compression stroke up to 

the point of spark timing. This research also acts to further currently emerging 

research on the interactions between the continuous-phase (flow field) and discrete-

phase (fuel injection event), and resultant anisotropy within the flow. 

 An example is provided showing how the numerical predictions of the flow 

turbulence characteristics can be used to evaluate the resultant premixed turbulent 

combustion process using combustion regime diagrams, of which, to the best of the 

authors knowledge, is not present within the current literature. 

 

7.3 RECOMMENDATIONS FOR FUTURE WORK 

 

The following recommendations for future work are based around either: additional 

investigations into in-cylinder processes using the model presented here, or numerical sub-

models identified through this work that would benefit from additional effort to improve their 

predictive capability: 

 This thesis has included studies into cycle-to-cycle variability of both the in-cylinder 

flow field and the fuel injection process up to the point of spark timing. The next 

logical stage would be to simulate the combustion event. This would allow direct 

links to be made between variations in both large and small scale flow structures, 



Chapter 7  Conclusions and Recommendations 
_ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________  

312 

 

mixture field development, spray plume impingement and liquid film formation, and 

the subsequent CCV of the combustion process. In particular, through the use of a 

detailed ignition model, investigations into how the flow fluctuations at spark timing 

(already presented) effect the initial kernel development and subsequent flame 

propagation phase. Careful consideration would also need to be paid to the integration 

between combustion model and the LES SGS model which is of prime significance 

for correctly modelling turbulent flame propagation.  

 Through the course of this research, efforts were made to link cycles with high or low 

flow characteristics at the point of spark timing with certain flow characteristics 

earlier in the cycle in an attempt to establish causality for flow variations at spark 

timing, but none were found. Additional effort, potentially with the use of more 

statistical techniques, should be made to help draw conclusions around the precursors 

for high or low flow field CCV at spark timing. 

 The CCV of the injection event observed in the research presented here is only a 

function of the variations in the continuous-phase. In reality, there are also variations 

in the fuel injection pressure, timing, velocity and angle due to variations in fuel 

injection system pressure due to pressure fluctuations and wave dynamics, variations 

in turbulence and cavitation within the injector nozzle and variations in electrical 

signal supplied to the injector needle solenoid. An interesting, but challenging, 

subsequent step would be to experimentally characterise the CCV variations in the 

fuel injection event due to the injector and injector system only and then impose these 

variations within the same  model, either as individual effects or as a stochastic 

approach scaled by the variation seen in experiments, to investigate the relative 

magnitude of contribution between CCV of the fuel injection system and in-cylinder 

turbulence on the overall CCV of the fuel injection process. 

 In section 5.3.3, it was seen that the effect of the fuel injection event early in the 

intake stroke acted to reduce the variation in valve curtain mass flux between the two 

intake valves and hence reduce the magnitude of the resultant valve jet flapping event. 

This was seen to be part of the reason why CCV in valve jet flapping had no 

discernible impact on the CCV of the mixture field at spark timing. It was 

hypothesised that since the magnitude of the jet flapping is more significant in the 

absence of a fuel injection event, an injection event later in the intake stroke or even 

in the compression stroke, as used in a stratified mixture control strategy, would allow 
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CCV of the intake valve jet flapping process more time to influence, and generate 

CCV in, the bulk flow structures and subsequently be a larger contributor to CCV of 

the final fuel-air equivalence ratio. It would be interesting to test this hypothesis by 

completing additional analyses across a range of fuel injection timings, to see if under  

certain conditions intake valve jet flapping can be attributed to a significant cause of 

CCV of the mixture field at spark timing. 

 The use of the Lagrangian DDM and LES SGS models for modelling sprays in ICE’s 

is still very much emerging, with most of the research being led by academic 

institutions and industry looking for guidance on best practices within this area before 

integration within their workflows. An area with very little information thus far is 

around the sensitivity of the choice of sub-model(s) used within the DDM (e.g. 

droplet breakup, droplet-droplet interactions, solid surface impingement, liquid films) 

and the LES SGS model used. An understanding of the dependency of the solution to 

user input is critical for defining best practices within this area. 

 The use of a combined Eulerian-Lagrangian approach for modelling the fuel spray 

liquid core and dispersed droplets respectively, coupled with a LES SGS turbulence 

model would also allow additional information to be gathered with respect to the 

influence of the in-cylinder flow field on the fuel spray and the subsequent CCV, and 

again be an interesting progression of the current research. 

 As discussed in section 2.4.8, one of the limitations of the research presented here is 

the absence of a source term in the LES SGS model to account for the transfer of 

energy from the dispersed-phase to the continuous-phase at a SGS level. The more 

complex SGS models of the k-equation and dynamic structure models include the use 

of an additional transport equation for kinetic energy, where the addition of a droplet 

source term is easily applied. Additional analyses with a SGS model of this type 

would allow interesting comparisons into the relative effect of the absence of this 

feature. The absence of additional kinetic energy transport equation in the 

Smagorinsky SGS model used here, means accounting for energy transfer from the 

dispersed-phase to the continuous-phase is less straightforward but determining a 

method of achieving this would prove a useful avenue of research, allowing simpler 

LES SGS models (where an additional kinetic energy transport equation is not present) 

to be used and still incorporate this aspect of physical modelling. 
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 The models used for determining the Nukiyama and Leidenfrost temperatures (used 

as critical inputs into the models for film boiling and impingement regimes), are 

predominantly based on experimental results for sessile droplets though it is known 

that they are both a dynamic property also dependent on the droplet impingement 

characteristics. Yao & Cai (1988) proposed a model to determine the Leidenfrost 

temperature of impinging droplets as a function of the droplet impingement angle but 

the study had a number of limitations; the study was conducted with large water 

droplets, the model contained four user tuneable coefficients and was a function of 

saturation temperature rather than a corrected Leidenfrost temperature, as used in 

Habchi’s model. Further model developments in this area, including supporting 

experimental studies to investigate the sensitivity of Leidenfrost temperature to 

dynamic impingement conditions relevant to impinging sprays in engines, would 

further improve the accuracy of impingement and liquid film predictions in direct 

injection engines. 
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