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This paper provides a generic analysis of the relationshigign, there are two control loops designed separately, i.e.
between time/frequency-domain DOB design methodolothye outer loop baseline controller addressing nominabperf
It is discovered that the traditional frequency-domain DXDBmance specifications and stability, and the inner loop Pistu
using a low pass filter with unity gain can only handle disturbance OBserver (DOB) rejecting disturbances and suppress-
bances satisfying matching condition, while the tradidibn ing uncertainties [2, 4, 7]. In the absence of disturbanoes a
time-domain DOBs always generate an observer with a higincertainties, the inner loop DOB is not activated and con-
order. A Functional Disturbance OBserver (FDOB) is prosequently the DOBC reduces to the baseline controller [2, 8]
posed to improve the existing results together with itsgtesiAs a result, unlike the worst-case robust control appraache
guideline, frequency analysis and existence conditiorm-Cowhere nominal control performance is sacrificed to achieve
pared with the existing frequency-domain DOBs, the prdetter robustness, the nominal performance can be preserve
posed FDOB can handle more classes of disturbances, whiteDOBC [7].
compared with the existing time-domain DOBs the proposed The key element in DOBC is the design of DOB to es-
FDOB can generate an observer with a lower order. Numetimate disturbances and uncertainties [2,4]. There are two
ical examples are presented to illustrate the main findingistinct approaches for linear systems including time-diom
of this paper including a rotary mechanical system of norl>OBs [9—-11] and frequency-domain DOBs [1,12,13]. The
minimum phase. time-domain DOB firstly appeared in the late 1960s when
) ) Johnson [9] first developed tHaisturbance Accommodat-
Keywords: Functlongl_Dlsturbance QBserver (FDOB); '®ng Control by proposingunknown Input Disturbance Ob-
duced order; non-minimum phase; time/frequency domaier (UIDO) Recently, from different prospects, Han [10]
design; ADRC. developedActive Disturbance Rejection Control (ADRC)
through the technique dExtended State Observer (ESO)
. The key idea is to firstly augment the plant with distur-
1 Introduction b /uncertainties and then construct an observer esti-
In industrial control systems, disturbances and unceﬁnFeS : . .

- X ) X . ating the augmented states including the disturbances.
tainties widely exist, which bring adverse effects on cons
trol performance or even affect system stability (see, [1-5
A large number of disturbance attenuation and robust ¢

requency-domain DOB was originally proposed by [12].

The original idea is to obtain disturbance estimate by filter

on: . . i

. ing the differences between control input and calculated in

trol methods have been proposed, among whidturbance . . . :

Ob Based Control (DOB® ed h att put using the inverse model of nominal plant. This approach
server Based Control ( s received much a ®Nhas been further developed to achieve robust stability3h [1

Sgggﬁ’g'tﬂled#:n:?nﬁﬁé?frgrﬁggégig&e&zlfgg::raptriisneg}msecently, much attention has been paid to embedding inter-
ciple” for the ease of control desigfd]. In DOBC de- nal model of disturbances (similar to internal model princi

ple) in DOBs such that a larger class of disturbances (e.g.,
sinusoidal) can be handled [14, 15].
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These two types of DOBs were developed from differ-
ent prospects with different design principles and tools. S
far, little literature is available to investigate the tedaship
between them except [1]. The authors of [1] pioneered the
study of the relationship between them by analysing their
structure and transfer functions. It was concluded that the
frequency-domain DOB is a generalization of time-domain
DOB, since there is less design freedom in time-domain
DOB in choosing the order and relative degree of the trans-
fer function from control input to disturbance estimated an
the time-domain DOB has a higher order in comparison with
frequency-domain DOB. However, it shall be highlighted
that both the system model and disturbance model are sup-
posed to be in an observable canonical forms in time-domain
DOB in [1]. Therefore it may not be easy to see how the dis-
turbance model is incorporated in the corresponding teansf
functions of the time-domain DOB. Consequently, as pointed Fig. 2. The diagram of a generic DOB structure.
out in [1], it becomes hard to select the equivalent low-pass

filter in frequency-domain DOB to handle generic distur- ) ) )
bances for non-minimum phase systems. mented in frequency-domain such that the frequency-domain

This paper first presents a generic analysis of the rel@OB can accommodate_ generic dlsturbances.. In Section 6,
tionship between time-domain and frequency-domain pogeveral exa_mples are given to illustrate the findings of the
design methods. The system and disturbance models of B@Per. Section 7 concludes the paper.
time-domain DOB in this paper are in a generic form. Asg Preliminaries
result, it is explicitly pointed out how the system model an Inthi " liminari f d iN1DOB
disturbance model are incorporated in the equivalent trans NS section, preliminaries onirequency-domain S
fer function realisation of the DOB designed in state-spaé% [1, 12] and time-domain DOBs in [9, 10] are briefly re-
approach. Itis also discovered that the traditional freqye viewed.
domain DOB employing a low pass filter with unity gain is?2-1 Frequency-domain DOBs
only able to handle a specific class of disturbances satigfyi ~ The frequency-domain DOBs were originally proposed
the matching condition [4, 16]. in [12]. Suppose the transfer function®s), the basic idea

As pointed outin [1]' Compared with frequency-domaiﬂﬁ to obtain disturbance estimate by filtering the diffeesnc
DOB, the existing time-domain DOB generates an observ@gtween control input and calculated input using the irevers
of a higher order. Consequently, this paper then proposédel of nominal planGn(s). Its basic diagram [1,12] is
a new type of time-domain DOB (termed Functional Disturdiven in Fig. 1, wher&)(s) is designed as a low-pass filter
bance OBserver (FDOB)). The FDOB is inspired by pioneeWith unity gain and the relative degree@fs) is no less than
ing work on reduced-order DOB [17—19], where the DOB ithat of the nominal plan®i(s) such thatQ(s)G,*(s) is im-
designed by estimating disturbances and state function plementable. The estimate of lumped disturbance in DOB
stead of all the states. However, our design methodologyfi#g- 1 is given by

quite different from them. The proposed FDOB reduces the d(s) = G(s)u(s) + Gy4(s)y(s),
observer order by combining the idea of augmenting system Y
states with disturbances and the functional observer yheor Gg(s) = —Q(9), Gyd(s) — G 1(9Q(9). 1)

in [20]. Detailed discussion on FDOB is given including ob-

server structure, transfer function implementation, atis-e However, the original structure in [12] can not effec-
tence conditionCompared with frequency-domain DOB, theively handle systems of non-minimum phase since the di-
proposed FDOB can directly handle more classes of distufect inverse of nominal plar@,(s) brings unstable poles in
bances (matched or mismatched, high-order, harmonic dig(s)G,*(s). An improved version of DOB is given in [1],
turbances, and their combinations), while compared with thyhich can be equivalently represented in Fig. 2, where M(s)
traditional time-domain DOB, the proposed FDOB can gerand N(s) take the following form

erate an observer with a lower order. . .
The rest of the paper is outlined as follows: In Section M(S) =Mn(s)/La(8), N(S) = Na($)/L1(9),

2, preliminaries on linear DOBs are given. In Section. JVNereGn(s) = Ma(s)/Nn(s), L1(s) is a stable polynomial,
the relationship between time-domain DOB (i.e., UIDO ik (S) = Kn(s)/Lz(s) is designed as a low-pass filter such that
DAC and ESO in ADRC) and frequency-domain DOB idV(S)K(s) is a low-pass filter with unity gain.

discussed, on which basis the motivations of the paper @@ Time-domain DOBs

presented. In Section 4, FDOB is proposed together with In this subsection, two typical types of time-domain
its transfer function realisation, existence conditiod @e- disturbance estimation approaches are presented ingludin
sign procedure. In Section. 5, the proposed FDOB is impleHDO in DAC [9] and ESO in ADRC [10].



2.2.1 UIDOinDAC 2.2.2 ESOin ADRC
The philosophy of time-domain DOB proposed in [9] is  Consider a SISO (possibly non-linear) system with dis-
that disturbance estimate can be obtained by simultangousirbance, depicted by
estimating the augmented states consisting of state dgsami (M (1) = f(y(t).y(t).-- .y D(t).d(t).t) + bult
and disturbance dynamics. The mathematical interpretatio YR = Ty, - YT, A, + bu(b),

| L
is as follows. Consider a Single-Input-Single-Output (3)S wherey! >_denotesjth_der|vat|ve of the outpuy, andu and
uncertain linear system d denote input and disturbance, respectively. To simplié th

notation, the time variable will be dropped if no confusien i
(2) caused. Lettings =y,x2 =Y, - , X, = Y™V, one has

{X_Ax+Bu+Dd
{)’(i_>q+l, i=1,---,n—1

y=Cx ’
wherex € R", ue R, d € Randy € R are system states,
control input, disturbance and measurement, respectivzl%/h _
A,B,C,D are the corresponding system matrices, which c&100S€ @ new stat@n1 = f(x1,%,---,Xn,d), then its
be considered as a state-space realization of the nomifiglivative is given by _
plant Gn(s) in Fig. 1. If disturbancel does not enter the Xn1 = h(t),with h(t) = f(x1,%2,- -+ ,Xn, d).
system as the same channel of inptend becomes a mis- g5 is designed to estimate all the states and lumped distur-

matched disturbance [8, 21]. bance ternt, given by [10]
The disturbance is supposed to be generated by a linear

exogenous system [22] { % =R+ By~ Ra) =10, ©
(:k): Sw. d=Hw (3) Xn+1 = Bn+1(y— X]_).

) ] Define the estimation error & = x; — Xi, one obtains the
wherew € R, the pair(S H) is known and observable, andg o, dynamics of ESO

the initial states are unknown. System (3) can accommodate

Xn = f(x1,%2,-+ ,Xn,d) +bu”

the vast majority of disturbances encountered in practical { &= Q_+1 —Biew, i :h 1,---,n,
gineering, such as constants, ramps, polynomials in tirze, e én1= —Pns1€1—h(D).
ponentials, sinusoids and their combinations. The gains shall be chosen such that the polynomial

To facilitate the discussion, a definition is given to cate- S B1S + -+ Bns+ Byt = O,
gorize different disturbance models.
Definition: If the matrixSin (3) satisfiedlet(S) = 0, then the
disturbance is defined as Type | disturbance; otherwise, tﬁ
disturbance is defined as Type Il disturbancedet(S) # 0.
Remark 1: It should be noted that the widely investi-
gatedhigh-order disturbancas a special case of Type |

disturbgnce, €.g., constant disturl:_)ancg wies 0 and 5 Relationship between time/frequency-domain
H =1 in [9, 10] andr-th polynomial disturbance when3 1 UIDO VS frequency-domain DOBs

s= [Cr-1xa 1 } andH = [1 Oy, (_1)], which is First the relationship between UIDO and frequency-

0 O . - : ' .
the case investigated by high order disturbance observerdfﬁmam DOB is discussed. To this end, frequency-domain

. , . . alysis is performed on time-domain DOB (5) to derive a
[1,23], generalized ESO in [24], Generalized Proportlonggt of transfer functions. Compared with [1], a generic sys-

IthegraI (GP1) observerin [25] Og tt;\e oth.er side, harmon %m model (2) and disturbance model (3) are considered in
disturbance represented bg = L)\ 0} with A # 0 and  this paper, which explicitly shows how they are incorpodate
dn the transfer functions.

From (5), we can obtain the transfer functions from con-

is Hurwitz. In ESO design, both the model dynamics and

lacertainties are estimated, where only the system relativ

egree is required. So the significant feature of ESO is that
it requires a minimum information about a dynamic system

(see [26] for various extensions).

H = [1 0] (e.g. [22]) is a special case of Type Il disturbanc
Combining system dynamics (2) and disturbance dynam-

ics (3), a composite system can be obtained trol inputu(s) and measurements) to disturbance estimate
’ ¢ AXLB d(s) using Laplace transformation, given by
X= u A
{y_éf( : () d(s) = ~Gyg(3)u(s) + Gyg(9y(9), (7)

wherex= [x",w'|", the system matrices are given by

~ A DH| 5 B =
A= {qun S }’B: {qul} =[Gl

G4(s) = —HC[sl - (A—KC)] !B, (8)

ey — HETel — (E — KEY-1K K — KT KT
Under the detectability condition of the matrix p&k, C), Cyi(s) = HCsI = (A= KO K. K =Ky K7 (9)

an observer for (4) can be designed as
5~z &8 The transfer function realisation of DOB (5) is given in Fig.
{)(;)—_Ag):(JrEELIEO(y &) ; (5) 3. To explicitly find out the relationship between transfer
. S _ . functionsG4(s), G,4(s) and the system/disturbance models
whereK is the observer gain matrix to be designed (e.g. pofg), (3), theoretical analysis is performed on (8) and (8} a
assignment of the matrix paiA,C)) andC = [On, 1]. the results are summarized in Theorem 1.



and the frequency-domain DOB in Fig. 2 reduces to the tra-
ditional one in Fig. 1. This can be obtained by selecting

L1(S) = Mn(s), K(s) = Q(S).

In Point iii, we prove thatG ; = 1 holds only for Type |
disturbance satisfying matching condition. Specificathg
high order disturbance/$" discussed in [1] is a special case
Fig. 3. Frequency-domain interpretation of time-domain DOBs. of matched Type | disturbance. Based on our results, the tra-
ditional frequency-domain DOBs using low pass fil(s)
with unity gain in Fig. 1 can only handle matched Type | dis-
Theorem 1. For linear system (2) with disturbance modeturbance and fail to handle mismatched disturbance or Type
(3), ifthe time-domain DOB is designed as (5), then its trang disturbance such as harmonic disturbance.

fer function realisation (7) is given by It has been pointed out in [1] it is not trivial to select
Had j(s! — S)KoMn(s) G,4 to handle generic disturbance .for.non-m.irllimum. phase
Gy(s) = det(sl — (A—K&)) ’ (10)  system, but our Theorem 1 and Point iv explicitly point out

how G 4 contains the unstable zerosMf, and I/ (1—- G )

~ Hadj(sl— SKoNq(s) includes the disturbance model informatiofdgt(sl — S).

G A(s) - A < ’ (11)
yd det(sl - (A—KC)) 3.2 ESO VS frequency-domain DOBs
whereMp(s) andNq(s) are the numerator and denominator __Second, itis of much interest to compare DOBC in Fig.
of the nominal planGn(s). 1[12] with the ADRC in [10]. Their major difference results
The proofis given in Appendix A. from different disturbance estimator, where DOBC utilizes

Remark 2: Different from [1], it can be explicitly seen from DOB while ADRC employs Extended State Observer (ESO).

(10) and (11) how system model (i.e., the system matricd¥e will elaborate the relationship/difference betweenthe
(A,B,D,C)) and disturbance model (i.e., the pé&H)) of PY comparing them using system (2).

the DOB (5) are incorporated into the transfer functions. Takingy andu as the inputs of ESO in (6), the ESO ob-

server dynamics for system (2) are gives b
3.1.1 Equivalence between UIDO and frequency- y . y @ g y

. X ~ R ~ ~
domain DOBs { ;} :A[{} +Byu+Byy. (14)
Comparison results between UIDO (5) and frequency- d d
domain DOB in Fig. 2 are summarized as follows. where the matrices are given by
i. The denominator of (10) can be factored imtet(s| — - {A D} B — {B} B L—LTLTT E—00...01
(A—KC)) = L1(s)L2(s). Consequently, (10) and (11) oo]> ™M o b Lol [T -
can be reformulated into the same format\vfs)K(s) R
andN(s)K(s) in Fig. 2 by treatingkn(s) := Had j(sl — Taking disturbance estimatkas the output of ESO, the
SKa; transfer function formulation of the ESO is
ii. One can obtain from Fig. 2 and 3 that they share a same d(s) = GL(9u(s) + Gyg(9y(9),
structure in transfer function form by treatiys)K(s) . L
asG,q andN(s)K(s) asGg; G4(s) =C(sl-A) 1By, (15)
iii. For Type I disturbance (see, Definition 1) under match- . -
ing condition (i.e., D=B), one can prove that Gy4(s) =C(sl—A)""By. (16)
G(0) =1, (12) Theorem 2. Consider a system described by (2) with-B
which meansG 4 is a low-pass filter with unity gain. D, and the ESO is designed by (14), if let
The proof is given in Appendix B. Q(s) = —C(sl— A) 1B, (17)
iv. One can obtain the following identity ) o
L then the following two facts hold: 1)(®) is a stable low-
1 det(sl — (A—KC))

= . (13) pass filter with a unity dc gain if the observer gains are
1-Gyy det(sl—A+K;C)det(sl—S) appropriately designed; 2) (15) and (16) becomg;(®) =
The proofis given in Appendix C. We can see from (13)—Q(s) and Gy&(s) = Ggl(s)Q(s), which are the same as
that 1/(1— G4) includes the disturbance model inforthose in (1) of frequency-domain DOB.

mation J/det(sl — S). The need of 1(1—- G ) includ- S _ o

ing the disturbance model has been identified in [1] but The proofis givenimppendix DTheorem 2 implies that

it is hard to choos€)(s) to implement it. the ESO (6) is equivalent to the frequency-domain DOB in
Fig. 1 for system (2) whe®(s) filter is chosen to have an
3.1.2 Relationship with the results in [1] order ofn+ 1 wheren is the order of the system.

Our results significantly extend the celebrated work in Remark 3: ADRC was developed as an alternative to the
[1]. First, the aforementioned Points i and ii reduce to thelassic PID so it aims at requiring minimum model informa-
results in [1] when the system dynamics (2) and disturbantien. Therefore, it can be applied to a wide variety of sys-
dynamics (3) take the special observable canonical sieictutems without requiring too much modelling effort, but this



very strength also brings its weakness: it does not explaibly need estimateX rather tharx,"whereL is designed in a
the modelling information even if it is available. DOBC pro-special structure L _[LoO (19)
vides a powerful approach to exploit modelling information O lg)’

Rather than representing the plant as an integrator chaingj,ere the gain matrito in L lies in the orthogonal com-

is able to use the available modelling information if it is lement space of measurement ma@iand so[LT CT}T

gvallable but treated as_the mlsmat.chmg betwegn the noErgs a full row-rank. WhehX is obtained, we can obtain the
inal model and the physical system if it is not available.

aa . _ disturbance estimatb= CL& with € = [O, I¢]. In the follow-
3.3 Motivations: gaps of time/frequency-domain DOBS jng part, we will introduce the FDOB in terms of observer

Although the frequency-domain DOB is equivalentto thetructure, transfer function realization, existence diorl
frequency-domainin terms of structure, there still exashe  and design procedure respectively.

gaps summarized in the following sections.

o i 4.1 Observer structure

3.3.1 Observer order and minimum relative degree To develop a FDOB, we combine the idea of augmenting
First, the observer order of time-domain DOB is highehe system state with disturbance state and the functidnal o

than that of frequency-domain DOB for plants with stablgeryer theory in [20]. After choosirigin the special form as

zeros (see, pp. 546 of [1]). Second, the minimum relatiyg (19), the FDOB for linear system (4) has the form,
degree ofG ; of time-domain DOB is higher than that of {

frequency-domain DOB. As pointed out in [1], the relative %: Fz+Gy+Tu, §=2z+Jy,
degree of equivaler@ ; is larger than or equal to the relative w=C¢, d=H ’
degree of the nominal plant, so the minimum relative degrgere the gain matrices are designed such that the following
of G4 in frequency-domain DOB as given in Fig. 2 can be,a+rix identities hold:

chosen to be equal to that Gi(s), i.e., n;. However, this ~ = R
observation does not hold in time-domain DOB results. We {\-f-vi;\/gwpﬁfsié\é\l/e_ =35 ;

can obtain from (10) that Und dition (21) hat th o
. ) nder condition , one can prove that the estimation er-
ggérﬂaéjsigsi}s_)ﬁz_) <a-L ror e = LX— & converges to zero and consequerdtlis the
e " estimate of the state functidrX (e.qg., [20]).

degdet(sl— (A—KC))) =n+q, _ o
whereq andn are the dimension of system mat&andA of 42 _Transfer functhn reahsapo_n
Frequency-domain analysis is performed on FDOB (20)

?é?;%;gagzzggdgga?(;n dh?é?eerrg rcvoh(lerldg&'H::jej(r::Tmu&ch that the relationship between FDOB and frequency-
SK») = q- 1, and ea%als to domain DOB can be investigated, upon which the FDOB in

time-domain can be implemented in frequency-domain using

(20)

(21)

n+gq—(q—1+n—n)=n+1, the transfer functions. We can obtain the transfer funstion
which is larger than that of frequency-domain DOB by 1. G4(S) andG,(s) based on Laplace transformation of (20),
3.3.2 Disturbance types given by )
In addition, from the proof of (12) (see Appendix B), we d(s) = —G4(s)u(s) + Gy&(s)y(s),
can see thab 4(0) = 1 holds only when c el - I s
D =B, anddet(S) =0, (18) ud(8) = —HC[sI = F]"°T, (22)
which means the frequency-domain DOB using a low-pass Gyi(s) = HE[(sl = F) G+ J]. (23)

filter Q(s) with unity dc gain in Fig. 1 can only effectively
handle matched Type | disturbances rather than generic dis-
turbance or mismatched disturbances. To explicitly find out the relationship between the trans-
So a new type of time-domain DOB (termed Functionder functions G4(s), G4(s) and the system/disturbance
Disturbance OBserver (FDOBY)) is proposed to reduce ttieodel (2), (3), theoretical analysis is performed on (22) an
observer order by combing the idea of augmenting syste(@3) and the results are summarized in Theorem 3.
states with disturbance states and functional observeryhe
in [18—20]. The frequency-domain DOBs can also be d 3
S|_gned to handle more typ.es of d|sturbanf:es (mismatc afunctions from input (s) and measurements) to distur-
disturbance and Type Il disturbances) using FDOB tech- . P .
. . : ance estimatd(s) are given by
nigues and its frequency-domain counterpart through {rans .
_ Hadj(sl — §1LMn(s)

‘heorem 3. For linear system (2) with disturbance model
, if the DOB is designed using FDOB (20), then the trans-

fer function realization. Gg(s) = delsi F) (24)
et(sl —
4 Functional Disturbance OBserver (FDOB) Gyi(s) = Had j(sl — S)J;Nn(s) (25)
The basic philosophy of FDOB is that since part of sys- v det(sl —F) '

tem states are directly available by measurenmentCX, o ) ) o

there is no need estimating that part of states and sometinfé proof is given in Appendix E. Similar to Theorem 1,
even part of the unmeasurable states do not need to betbs-disturbance model (i.e., the pas H)) is also explicitly
timated for the purpose of disturbance estimation [23]. Weflected in the transfer functions (24) and (25).



The comparison analysis between FDOB and the
frequency-domain DOB in Fig. 2 are performed in the fol-
lowing ways.

U=LAL" — LAy, (30)

_ _ +
i. First, similar to the case of the time-domain DOB, the V=(-21)W. (31)

denominator of (24) can also be factored idiet(sl —
F) = Li(s)Lz2(s), then (24) and (25) can be put into the PO CALt CA
same format asM(s)K(s) andN(9)K(s) in Fig. 2 by WhereA=A(l—L7L), ¥ = { éL+ } 2= [ é ] andz
treatingKn(s) := Had j(sl — §)&; being any compatible matrix.

ii. Second, the frequency-domain structure of FDOB is the From [20], one can obtain th& being Hurwitz (or the
same as that of the time-domain DOB in Fig. 3 angair (U,V) is detectable) is equivalent to

consequently the same as that of Fig. 2; sL— LA CA
ii. Third, we can also prove that rank( é:& ] ) = rank( { c ] ),¥s€C,Regs) > 0. (32)
G40 =1, (26) Cc L

under condition® = B anddet(S) = 0. The proof is To summarize, the existence conditions for the proposed

iv. Finally, the following identity can be established 4.4 Design procedure
1 det(sl — F) The design procedure of FDOB is based on the functional

1- Gy  detlsl— A+ Ay dets -’ (27)  observer design procedure in [20], given by

The proof is similar to that of (13) and so omitted i. MatricesU andV are firstly obtained from (30) and (31);
here. We can see from (27) that(1 — G4) includes ii. ZandF can be obtained from (29) based on pole assign-
the generic disturbance model informatiofdét(sl — ment ofU andV;

S), which is consistent with the conclusion of [1] foriii. The matrices] andK can be obtained froni,K] =

the purpose of generic disturbance estimation through LA+ +Z(1 — £31), andG can be obtained fror =
frequency-domain DOB. K+FJ;

Remark 4: ComparedG 4 of the time-domain DOB (10) iv. Matrix T can be obtained from = (L — JC)B.
with that of FDOB (24), we can see that the numerators
of them are the same, however, the denominator has begn applications of the results

changed frondet(sl — (A—KC)) todet(s| —F). The dimen- Based on the frequency-domain analysis results (see,
sion of F equals to the row rank of — | 29 ©| andLohasa Theorem 1 and Theorem 3), we can extend the applica-

oI tion scope (handling mismatched/Type Il disturbances) of

full row-rank and so the relative degree®f; of the FDOB i : : } : i
(24) is less than that of the time-domain DOB (10). Morfrequency domain DQBS. using the _frequency .domaln coun
erparts of FDOB, which is summarized below:

importantly, we can see that the observer order of FDOB; S ) . L .

: : ) tep I Design DOBs in time-domain (e.g., FDOB),

€., the row number of L is smaller than that of the tradig;, ., they can handle matched, mismatched and generic dis-

tional time-domain DOB, i.e., the order &f Consequently, b .

the proposed FDOB can reduce the DOB order, especia“i/r éamce;, Calcul fer f oG 4G

when multiple measurements are available. However, to re- tep alculate two transter unctl.o ud ANASByq
based on the results of Theorem 1 and 3;

duce the observer order of FDOB, one can not choode an Step 3 Implement the DOBs usina the diaaram in Fi

with an arbitrarily small row number. The should be se- 3 baseg on thg obtained two transfer f%nctionsg 9

lected such that the FDOB existence condition is satisfied, )

which is summarized below.

_ - 6 Examples

4.3 Existence condition In this section, two sets of examples are given to illus-
As we have transformed the disturbance observer desiggte the main findings of this paper. In the first example, a

problem into the functional observer design, the exist®g rnon-minimum phase system with different kinds of distur-

sults in [20] can be drawn to derive the existence conditigfhnces are considered including matched step disturbance,

of the proposed FDOB. mismatched step disturbance and matched harmonic distur-
The first condition is on unnecessary state (the states tahce This example is to illustrate the results in Sectibns

do not need to be estimated) decoupling, which is given b%md 5. Then the proposed FDOB is then applied to the dis-

|:'§ GA turbance estimation and rejection control (termed FDOBC)
rank( | & |) = rank([ é ]) (28) pLobIem for a rotary mechanical system of non-minimum
ase.
L L P

6.1 Numerical example

The second condition is on stability Bf Using geomet- Consider an unstable non-minimum phase system
ric analysisF can be represented by 5(s—9)
B G(s) = ) (33)
F=U-2V, (29) s(s—25)
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Fig. 4. Matched step disturbance estimation and its error. Fig. 5. Mismatched step disturbance estimation and its error.

Its sate-space model with disturbantis given by 8 2_2
] (017 [x 5 5 £ o—
[Xz =lo 25} [X2:| + [80] u+ [80} d, B25) e
y=1[10|x 0 0.5 K 15 2
Time (sec)
Suppose a state feedback contraller [ 20.67 —2.37] x has 10
been pre-designed with initial statg,(0) = [0;5). 5 5 N/
6.1.1 Matched disturbance Ho
We first consider the matched step disturbance based on 5 05 ] s )
the proposed FDOB, i.eS= 0,H = 1 in disturbance model Time (sec)

(3). Thelo in functional matrix (19) is chosen ag= [0 1],
based on which the conditions (28) and (32) are satisfied.
Then following the design procedure in Section 4.4, we can
calculateU,V. Choosing the poles df asp1 = —30,p2 = fer functions, given by
—40, we can calculate the correspondiig- and then the

Fig. 6. Harmonic disturbance estimation and its error.

155(s— 25)

rest of the matrices,G,T. The initial states of the FDOB Gyi(s) = 75(s—9) Gug(s) = _
(20) are chosen g5;0]. Simulation result of the disturbance ! (s+30)(s+40) " ¥ (s+30)(s+40)
estimate is shown in Fig. 4. One can verify thatG,j(s)/G(s) = G(s), G43(0) =

Wwe can see from F!g. 4 tha_\t the proposed '.:DOB CaD675/12007£ 1, which verifies the observation in Section
exponentially asymptotically estimate the step distudean
while the disturbance estimate is zero in the absence of dis-

turbance during the first 1 sec, i.e., normal control perfof-1.3 Harmonic disturbance _
mance recovery [2, 4, 7]. The matched harmonic disturbande= 2sin(10t), t >

Besides, we can calculate the transfer functions frod$€cis then considered. It can be put into the state space

control input and output to disturbance estimate, given by model (3) with S= fio 1(?} ,H =[10] and initial value
—400(s—9) —80(s— 25) _
Gui(®) = 33057261 O = T5 130 erag: | © 20
ud 3(s+30)(s+40)" ¥ 3(s+30)(s+40) The matrixLo is chosen aso = [0 1]. Choosing the

We can verify thaiG,,4(s)/G,4(s) = G(s) andG,4(0) = 1. poles ofF asp; = —30, p, = —40, p3 = —50 and the rest of
Besides, the relative degree@f(s) is 1, which is equal to the design procedure is the same as that of Section 6.1.1, the
that of the original system (33). Furthermore, the observeimulation result is shown in Fig. 6
order of FDOB equals to the dimension of original plant. We can see from Fig. 6 that the proposed FDOB can
That means there exists a disturbance observer in state;spaxponentially asymptotically estimate the harmonic distu
where the relative degree Gf ; and the order of the observerbance withunknown amplitude and phaseThe transfer
are equal to those of the frequency-domain DOB for this ufanctionsG (s) ande&(s) can be calculated. We can verify
stable, non-minimum phase system. thatG,4(s)/G,q(s) = G(s). HoweverG,4(0) = —0.0232#
6.1.2 Mismatched disturbance 1, which verifies the observation in Section 5. For the case of
We then consider mismatched step disturbance. The di¥Pe Il disturbance, the traditional frequency-domairigies
turbance distribution matrix is changedo= [0 80]" and Method for DOBs can not be applied, but we can implement
the matricesS,H, Lo are selected the same as that of Sectidh® FPOB in frequency-domain using the procedure givenin
6.1.1. The simulation result is shown in Fig. 5 Section 5.
We can see from Fig. 5 that the proposed FDOB ca&h2 Practical example
exponentially asymptotically estimate the mismatcheg ste In this section, the proposed FDOB is applied to the dis-
disturbance. We can also calculate the corresponding-trahgbance estimation and rejection control (termed FDOBC)
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frequency-domain DOB structure using a low pass filter with
unity gain can only effectively handle disturbances sgtisf
ing matching condition, while the time-domain DOB gen-
erates a higher order observer. A Functional Disturbance
OBserver (FDOB) is proposed to improve the time-domain
DOB. Compared with the frequency-domain DOBS, the pro-
posed FDOB can handle more types of disturbances, while
compared with the existing time-domain DOBs the proposed
FDOB generates an observer with lower order. Numeri-
cal examples including a rotary mechanical system of non-
minimum phase are presented to verify the findings. The
proposed FDOB has potentials in the fields of both distur-

Fig. 7. Biased harmonic disturbance estimation using FDOB.
bance rejection control and fault diagnosis [28].
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Appendix A: Proof of Theorem 1
We first consider transfer functidgy,;. From the identity

A1 =adj(A)/det(A), one can obtain:
—[0,H]adj(sl— (A—KC))B
det(sl — (A—KC))

Fig. 8. Position control with and without disturbance compensation.

: .. G,y=-HC[sI-(A-KC) 1B
problem for a rotary mechanical system of non-minimum

phase from [27]. The system is given by (34)
In addition, for SISO systenA,B,C), the following prop-
G(s) = 1.2024—s) _ erty holds,
s(s+9)(s? + 125+ 56.25) SI_AB
. . Cadj(sl—-A)B= ’ . (35)
A normal controller has been pre-designed in state space —-C 0

such that the closed-loop poles ar8, —2+15i, —4. A partitioning the gain matrix into K = [KJ,KJ]T in con-
step reference position with amplitude 5 is supposed to gghction with (35), the numerator of (34) is

on the system at 2 sec. At 10 sec, a harmonic disturbance . ~ N

with unknown amplitude, phase and bias is supposed to act —[OHJad s~ (A-KC)|B

on the system , which is given lay= 5+ 5sin(10t). o sl _QEch S_,BHS %
The proposed FDOB is used to estimate the disturbance, N (2) “H 0
where the poles of matrik is selected as-5,—10,—15, | _DH —K:|lsl—AO B (36)
—20,—-25,-30. We further reject its effect by direct feed- bt
. . o =—10sl-S—K; O IO
forward the disturbance estimate based on the principle of O -H 0 C 00

DOBC (see, [2,7,8]). The disturbance estimation perfor- . .
mance is shown in Fig. 7. The position control results with = Hadj(sI - S)KCad (sl - A)B.

and without disturbance compensation (i.e., under FDOB#e then consider transfer functi@)g. Similar to (34) and
and nominal control) are given in Fig. 8. (36), one can obtain the following two identities,

We can see from Fig. 7 that the proposed FDOB can [O,H]ad jsl — (A—KC)]K
asymptotically estimate the harmonic disturbance with un- detsl— (A—KC))
known amplitude, phase and bias. We can see from Fig. . . (37)
8 that the FDOBC can effectively remove the effect of un- [O,H]ad j[sl - (A—KC)]K
known disturbances (with preservation of the nominal con- sl—A+K;C —DH K;

Gyg = HC[sl - (A—KC)] 7K =

trol performance), while the nominal controller results in = KoC sI-Sk
control error. o -H 0 (38)
I —DH —K;||sI-A OO
7 Conclusions =—|0sl-S—-Ky O 10
This paper provides a generic analysis of the relation- O-H O —-C 01

ship between time/frequency-domain DOBs. The traditional =Had (sl — S)Kodet(sl — A).



Substituting (36) into (34), and (38) into (37) ends the firoo It can be derived from (15) and (17) that
Q(S) = _Gu(f(s)v (43)

Appendix B: Proof of (12) thusQ(s) is also a stable transfer function
To proveG;(0) = 1, we only need to prove the sub- . ; ; '
traction of the ltjzienominator and numerator of (34) is zero at Combining (41) with (43), yields

s= 0, which is given as follows: Q(s) = G gL C[sl— (A—L,C)] !B, (44)
—A+K;C —-DH B _A+K,C —DH _ Under the conditiorB = D, combining (40) with (44),
KoC -S O+ KoC S yields
O -HoO 2 - 0 =1
—A+KiC —DH B| |—-A+Ki;C —-DH O Q(0)=1.
=| KC -S O/+| KeC -S O
O -HWDO O -H1 It can be concluded th&(s) in (17) is a stable low-pass
B ’AK+C':<1C ’D: '(3) _ ’AK+C':<1C Osg filter with unity dc gain as long as the observer gains are
- (2) —_H 1 - (2) _O 1 appropriately selected.

=det(—A+K;C)det(—9),
where the identityD = B has been used in the third equalityProof of fact 2)

The proof ends sincget(S) = 0. The transfer function of system (2) is
Appendix C: Proof of (13) Pn(s) =C(sl—A)"1B. (45)
From (34), one can obtain the denominator gf1l— Combining (42) with (45), gives

G,4). given by

det(sl — (A—KE)) + [O,H]ad j(s! — (A— KC))B Crd(IPn(S
et(sl — (A— +[O,H]ad j(sl — (A— a1 A 1 x4
sl—A+KiC —DH O| [sl—A+KiC —DH B —{-¢ HLCIsl = (A LC L+ G Lo}
=| KC sl-SO/+| KC sl-SO xC(sl-A)""B
0 “H 1 0 “H 0 :—G*lLdLXc{[s|—(A—LXC)]*lLXC(sl_A)fl (46)
sl-A+KC -DH B| |sl-A+Ki,C O B _(sl-A)1}B
=| KC sl-SO =} KL sI-SO =G4l Clsl— (A- L) 'B
o) “H 1 o) o1 — 6,409
=det(sl — A+ K;C)det(sl - S uan
.( + ) .( ) Considering (43) and (46), the required result can be eas-
where in the third equalitip = B has been used. ily obtained.

Appendix D: Proof of Theorem 2
Using the well-known block matrix inversion, the follow-

ing equation is derived Appendix E: Proof of Theorem 3

Without loss of generality, we suppo€e= [1,01xn_1]

C(S| - '5\)71 1 (this assumption can always be satisfied for SISO system (2)
_ [Oll} {sl —(A- LXC)|—D] B through some non-singular linear transformation). Rartit
LaLC |*S |« (39) ing [J K] into [ji E] and taking the specific structure of
= [0[1] {—GlLdLXC [sl— (A— LXC)]1|(31] L into account, the matri¥ can be put into the following
= [-GlL4LC sl - (ALC) HE 1], form: .
where F = LALt — [J,K] [CCAI‘_'; l
G = s+LdLiC[sl - (A-LC)] 'D. (40) [LO][ADH][L O
“1O01]|]|]O S (oI
+
Combining Egs. (15), (16) with (39) yields _ [jl El %ALEO ch
-1 -1 2 12
Gui(s) = =G LaLC[sl - (A-LLC) "B, (41) _ [LoALE = JiICALE — K4CLY LoDH — J,CDH
- —JCALJ —KoCLg S—J,CDH
. . @4
Gyi(s) = =G "LaLxC[sl — (A—L,C)] "Lk (42) Noticing that Lo = [O,1] has a full-row rank and so
A1
+G Lk L = LT and matrixA, B can be partitioned intq ;. 4t
Az Ay
and {Bl], respectively, we can obtain the following matrix
Proof of fact 1) B2
Since the observer gairis andLq can be chosen such equalities:
that A is Hurwitz matrix, it follows from (15) that transfer LOALg =Ay, CALg = Ay,

functionG4(s) is stable. CLy =0, LoB=By, CB=B;. (48)



We first consideG 4. Similar to the proof of Theorem Then we give the proof of (53), which is based on the

1, we can obtain the following identity. Sylvester equation in (21). From the Sylvester equation, on
~ B —HCadj(sl—F)T can obtain
- _E)lT = . ~
Gud = HC(S| F) T= det(sl — F) . (49) GC =WA— EW. (55)
Based on (48) in conjunction with the definitionBfin
(47),~the numerator of (49) is governed by Taking the structure of andW into consideration, (55)
HCadjsl-F)T is equivalent to
sl— A4+ J1A> —LoDH + J:.CDH By, — J1B; GL0O0] (Lo— JC)A (Lo — J;C)DH
= — DA sl— S+ J,CDH —JoB; G2 ool —JZCA S— JZCDH
> —H o “[A1=31A (Lo—HC)DH] [Lo—HC O
Sl-AstdAe O Bp—JdiBy ~J3A; S—JCDH ~3C 1]
=— A2 sl—-S —JB1 L . . .
0 _H 0 based on which in conjunction withg — J;C] = [—J3,1], we
| —J 0] sl-A; O B, can obtain
=—|0-%—(sI-9)|| -A» O B (50) G1=As— A+ (As—hAz)d
OO0 H O -10 + (LoDH — J,CDH)J,,
B —(sI-9) O -A, B G2 = —hA1 — A1+ (S— J.CDH)J,
- 02 H ‘ O sl-A B2 FromK = G — FG, one can obtain
oo Sk {Kl—el—Flal—anz—Ae—Alal,
— (—1)2 (s1-9) %||° _A3l ol i4 Bl K2 = G2 —Fsdi—Fado = —JoAs.
B -H Of 0 02 This ends the proof. O
=Had (sl — S)J.,Cad (sl — A)B. Appendix F: Proof of Eg. (26)

To proveG4(0) = 1, we only need to prove the sub-
traction of the numerator and denominator of (49) is zero at
s= 0, which is given as follows:

Secondly, we considés, ;. Similar to the proof of The-
orem 1, we can obtain the following identity,

Gyf—i?: qu(T| _FFglekTé]\]]d e 51 From (50), the denominator minus the numerator is
adj(sl — efsl—
- det(J;—F)) * det(sI(—F) 2 At Ao O Bom By
A2 -S —J»B1
the numerator of which is as follows: 0] _H o)
HCad (sl — F)G+HCJde(sl - F) —A4+J1A2 —LoDH + JCDH O
_|s\-FG|_[sI-F O | _|sI-F G ‘ +| A -S+X2CDH O
| —-HC O —HC HCJ| | —HC HCJ @] —H |
_|sI-FsJ-FJ+G| [sl-FsJ+K ~Ar+ 1A, O By— 3By
| -HC o] “|-HC O = QA -S -1B;
sl — Aq+J1A2 —LoDH + J1.CDH sJ +Kj (52) o) -H O
= DA sl—S+JCDH s} +Kp> —As+1A O —LoD+3CD
(@] —H @] + JA -S JCD
sl—A4+3A2 O si+Kp o] —H I
= DA sI-Ss3+Kz|. When D = B and consequentlyl,CD = J,B; and
o —-H o —LoD + J1CD = —By + J1B;, the above equation can be fur-
At this stage, we suppose the following identities holther calculated as
(its proof will be given later): —A+3A O O | —A+3As O
K1 = —JiA1 + Aqg, (53) A2 SO = ‘ DAs —S’
Ko = —JA1. 0o —H I
Substituting (53) into (52) gives = det(—As+ JiAz)def(—S).
HEad (sl — F)G+HEJdel(sl —F) The proof ends sincget(S) = 0. O
Sl=AsthAy O si—Jihi+As References
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