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This paper provides a generic analysis of the relationship
between time/frequency-domain DOB design methodology.
It is discovered that the traditional frequency-domain DOBs
using a low pass filter with unity gain can only handle distur-
bances satisfying matching condition, while the traditional
time-domain DOBs always generate an observer with a high
order. A Functional Disturbance OBserver (FDOB) is pro-
posed to improve the existing results together with its design
guideline, frequency analysis and existence condition. Com-
pared with the existing frequency-domain DOBs, the pro-
posed FDOB can handle more classes of disturbances, while
compared with the existing time-domain DOBs the proposed
FDOB can generate an observer with a lower order. Numer-
ical examples are presented to illustrate the main findings
of this paper including a rotary mechanical system of non-
minimum phase.

Keywords: Functional Disturbance OBserver (FDOB); re-
duced order; non-minimum phase; time/frequency domain
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1 Introduction
In industrial control systems, disturbances and uncer-

tainties widely exist, which bring adverse effects on con-
trol performance or even affect system stability (see, [1–5]).
A large number of disturbance attenuation and robust con-
trol methods have been proposed, among whichDisturbance
Observer Based Control (DOBC)has received much atten-
tion [4,6,7] due to its promising features such asthe preser-
vation of the nominal performance and the “separation prin-
ciple” for the ease of control design[4]. In DOBC de-
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sign, there are two control loops designed separately, i.e.,
the outer loop baseline controller addressing nominal perfor-
mance specifications and stability, and the inner loop Distur-
bance OBserver (DOB) rejecting disturbances and suppress-
ing uncertainties [2,4,7]. In the absence of disturbances and
uncertainties, the inner loop DOB is not activated and con-
sequently the DOBC reduces to the baseline controller [2,8].
As a result, unlike the worst-case robust control approaches
where nominal control performance is sacrificed to achieve
better robustness, the nominal performance can be preserved
in DOBC [7].

The key element in DOBC is the design of DOB to es-
timate disturbances and uncertainties [2, 4]. There are two
distinct approaches for linear systems including time-domain
DOBs [9–11] and frequency-domain DOBs [1, 12, 13]. The
time-domain DOB firstly appeared in the late 1960s when
Johnson [9] first developed theDisturbance Accommodat-
ing Control by proposingUnknown Input Disturbance Ob-
server (UIDO). Recently, from different prospects, Han [10]
developedActive Disturbance Rejection Control (ADRC)
through the technique ofExtended State Observer (ESO).
The key idea is to firstly augment the plant with distur-
bances/uncertainties and then construct an observer esti-
mating the augmented states including the disturbances.
Frequency-domain DOB was originally proposed by [12].
The original idea is to obtain disturbance estimate by filter-
ing the differences between control input and calculated in-
put using the inverse model of nominal plant. This approach
has been further developed to achieve robust stability in [13].
Recently, much attention has been paid to embedding inter-
nal model of disturbances (similar to internal model princi-
ple) in DOBs such that a larger class of disturbances (e.g.,
sinusoidal) can be handled [14,15].



These two types of DOBs were developed from differ-
ent prospects with different design principles and tools. So
far, little literature is available to investigate the relationship
between them except [1]. The authors of [1] pioneered the
study of the relationship between them by analysing their
structure and transfer functions. It was concluded that the
frequency-domain DOB is a generalization of time-domain
DOB, since there is less design freedom in time-domain
DOB in choosing the order and relative degree of the trans-
fer function from control input to disturbance estimate, and
the time-domain DOB has a higher order in comparison with
frequency-domain DOB. However, it shall be highlighted
that both the system model and disturbance model are sup-
posed to be in an observable canonical forms in time-domain
DOB in [1]. Therefore it may not be easy to see how the dis-
turbance model is incorporated in the corresponding transfer
functions of the time-domain DOB. Consequently, as pointed
out in [1], it becomes hard to select the equivalent low-pass
filter in frequency-domain DOB to handle generic distur-
bances for non-minimum phase systems.

This paper first presents a generic analysis of the rela-
tionship between time-domain and frequency-domain DOB
design methods. The system and disturbance models of the
time-domain DOB in this paper are in a generic form. As a
result, it is explicitly pointed out how the system model and
disturbance model are incorporated in the equivalent trans-
fer function realisation of the DOB designed in state-space
approach. It is also discovered that the traditional frequency-
domain DOB employing a low pass filter with unity gain is
only able to handle a specific class of disturbances satisfying
the matching condition [4,16].

As pointed out in [1], compared with frequency-domain
DOB, the existing time-domain DOB generates an observer
of a higher order. Consequently, this paper then proposed
a new type of time-domain DOB (termed Functional Distur-
bance OBserver (FDOB)). The FDOB is inspired by pioneer-
ing work on reduced-order DOB [17–19], where the DOB is
designed by estimating disturbances and state function in-
stead of all the states. However, our design methodology is
quite different from them. The proposed FDOB reduces the
observer order by combining the idea of augmenting system
states with disturbances and the functional observer theory
in [20]. Detailed discussion on FDOB is given including ob-
server structure, transfer function implementation, and exis-
tence condition.Compared with frequency-domain DOB, the
proposed FDOB can directly handle more classes of distur-
bances (matched or mismatched, high-order, harmonic dis-
turbances, and their combinations), while compared with the
traditional time-domain DOB, the proposed FDOB can gen-
erate an observer with a lower order.

The rest of the paper is outlined as follows: In Section
2, preliminaries on linear DOBs are given. In Section. 3,
the relationship between time-domain DOB (i.e., UIDO in
DAC and ESO in ADRC) and frequency-domain DOB is
discussed, on which basis the motivations of the paper are
presented. In Section 4, FDOB is proposed together with
its transfer function realisation, existence condition and de-
sign procedure. In Section. 5, the proposed FDOB is imple-
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Fig. 1. The diagram of classic Q-filter based DOB in [12].
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Fig. 2. The diagram of a generic DOB structure.

mented in frequency-domainsuch that the frequency-domain
DOB can accommodate generic disturbances. In Section 6,
several examples are given to illustrate the findings of the
paper. Section 7 concludes the paper.

2 Preliminaries
In this section, preliminaries on frequency-domainDOBs

in [1, 12] and time-domain DOBs in [9, 10] are briefly re-
viewed.

2.1 Frequency-domain DOBs
The frequency-domain DOBs were originally proposed

in [12]. Suppose the transfer function isG(s), the basic idea
is to obtain disturbance estimate by filtering the differences
between control input and calculated input using the inverse
model of nominal plantGn(s). Its basic diagram [1, 12] is
given in Fig. 1, whereQ(s) is designed as a low-pass filter
with unity gain and the relative degree ofQ(s) is no less than
that of the nominal plantGn(s) such thatQ(s)G−1

n (s) is im-
plementable. The estimate of lumped disturbance in DOB
Fig. 1 is given by

d̂(s) = Gud̂(s)u(s)+Gyd̂(s)y(s),

Gud̂(s) =−Q(s), Gyd̂(s) = G−1
n (s)Q(s). (1)

However, the original structure in [12] can not effec-
tively handle systems of non-minimum phase since the di-
rect inverse of nominal plantGn(s) brings unstable poles in
Q(s)G−1

n (s). An improved version of DOB is given in [1],
which can be equivalently represented in Fig. 2, where M(s)
and N(s) take the following form

M(s) = Mn(s)/L1(s), N(s) = Nn(s)/L1(s),

whereGn(s) = Mn(s)/Nn(s), L1(s) is a stable polynomial,
K(s) = Kn(s)/L2(s) is designed as a low-pass filter such that
M(s)K(s) is a low-pass filter with unity gain.

2.2 Time-domain DOBs
In this subsection, two typical types of time-domain

disturbance estimation approaches are presented including
UIDO in DAC [9] and ESO in ADRC [10].



2.2.1 UIDO in DAC
The philosophy of time-domain DOB proposed in [9] is

that disturbance estimate can be obtained by simultaneously
estimating the augmented states consisting of state dynamics
and disturbance dynamics. The mathematical interpretation
is as follows. Consider a Single-Input-Single-Output (SISO)
uncertain linear system

{
ẋ= Ax+Bu+Dd
y=Cx

, (2)

wherex ∈ Rn, u ∈ R, d ∈ R and y ∈ R are system states,
control input, disturbance and measurement, respectively.
A,B,C,D are the corresponding system matrices, which can
be considered as a state-space realization of the nominal
plant Gn(s) in Fig. 1. If disturbanced does not enter the
system as the same channel of inputu thend becomes a mis-
matched disturbance [8,21].

The disturbance is supposed to be generated by a linear
exogenous system [22]

ω̇ = Sω, d = Hω, (3)

whereω ∈ Rq, the pair(S,H) is known and observable, and
the initial states are unknown. System (3) can accommodate
the vast majority of disturbances encountered in practicalen-
gineering, such as constants, ramps, polynomials in time, ex-
ponentials, sinusoids and their combinations.

To facilitate the discussion, a definition is given to cate-
gorize different disturbance models.
Definition: If the matrixSin (3) satisfiesdet(S)= 0, then the
disturbance is defined as Type I disturbance; otherwise, the
disturbance is defined as Type II disturbance fordet(S) 6= 0.
Remark 1: It should be noted that the widely investi-
gatedhigh-order disturbanceis a special case of Type I
disturbance, e.g., constant disturbance whenS = 0 and
H = 1 in [9, 10] and r-th polynomial disturbance when

S=

[
O(r−1)×1 Ir−1

0 O1×(r−1)

]

and H =
[

1 O1×(r−1)
]
, which is

the case investigated by high order disturbance observer in
[1, 23], generalized ESO in [24], Generalized Proportional
Integral (GPI) observer in [25]. On the other side, harmonic

disturbance represented byS=

[
0 λ
−λ 0

]

with λ 6= 0 and

H =
[

1 0
]

(e.g. [22]) is a special case of Type II disturbance.
Combining system dynamics (2) and disturbance dynam-

ics (3), a composite system can be obtained
{

˙̃x= Ãx̃+ B̃u
y= C̃x̃

, (4)

wherex̃= [xT ,ωT ]T , the system matrices are given by

Ã=

[
A DH

Oq×n S

]

, B̃=

[
B

Oq×1

]

,C̃ =
[
C O1×q

]
.

Under the detectability condition of the matrix pair(Ã,C̃),
an observer for (4) can be designed as

{ ˙̃̂x= Ã ˆ̃x+ B̃u+K(y−C̃ ˆ̃x)
ω̂ = C̃ ˆ̃x, d̂ = Hω̂

, (5)

whereK is the observer gain matrix to be designed (e.g. pole
assignment of the matrix pair(Ã,C̃)) andC̃= [On, I ].

2.2.2 ESO in ADRC
Consider a SISO (possibly non-linear) system with dis-

turbance, depicted by

y(n)(t) = f (y(t), ẏ(t), · · · ,y(n−1)(t),d(t), t)+bu(t),

wherey(l) denotesl th derivative of the outputy, andu and
d denote input and disturbance, respectively. To simplify the
notation, the time variable will be dropped if no confusion is
caused. Lettingx1 = y,x2 = ẏ, · · · ,xn = y(n−1), one has

{
ẋi = xi+1, i = 1, · · · ,n−1
ẋn = f (x1,x2, · · · ,xn,d)+bu

.

Choose a new statexn+1 = f (x1,x2, · · · ,xn,d), then its
derivative is given by

ẋn+1 = h(t),with h(t) = ḟ (x1,x2, · · · ,xn,d).

ESO is designed to estimate all the states and lumped distur-
bance termf , given by [10]

{
˙̂xi = x̂i+1+βi(y− x̂1), i = 1, · · · ,n,
˙̂xn+1 = βn+1(y− x̂1).

(6)

Define the estimation error asei = xi − x̂i , one obtains the
error dynamics of ESO

{
ėi = ei+1−βie1, i = 1, · · · ,n,
ėn+1 =−βn+1e1−h(t).

The gains shall be chosen such that the polynomial

sn+1+β1s
n+ · · ·+βns+βn+1 = 0,

is Hurwitz. In ESO design, both the model dynamics and
uncertainties are estimated, where only the system relative
degree is required. So the significant feature of ESO is that
it requires a minimum information about a dynamic system
(see [26] for various extensions).

3 Relationship between time/frequency-domain
3.1 UIDO VS frequency-domain DOBs

First the relationship between UIDO and frequency-
domain DOB is discussed. To this end, frequency-domain
analysis is performed on time-domain DOB (5) to derive a
set of transfer functions. Compared with [1], a generic sys-
tem model (2) and disturbance model (3) are considered in
this paper, which explicitly shows how they are incorporated
in the transfer functions.

From (5), we can obtain the transfer functions from con-
trol inputu(s) and measurementy(s) to disturbance estimate
d̂(s) using Laplace transformation, given by

d̂(s) =−Gud̂(s)u(s)+Gyd̂(s)y(s), (7)

Gud̂(s) =−HC̃[sI− (Ã−KC̃)]−1B̃, (8)

Gyd̂(s) = HC̃[sI− (Ã−KC̃)]−1K,K = [KT
1 KT

2 ]
T . (9)

The transfer function realisation of DOB (5) is given in Fig.
3. To explicitly find out the relationship between transfer
functionsGud̂(s), Gyd̂(s) and the system/disturbance models
(2), (3), theoretical analysis is performed on (8) and (9), and
the results are summarized in Theorem 1.
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Fig. 3. Frequency-domain interpretation of time-domain DOBs.

Theorem 1. For linear system (2) with disturbance model
(3), if the time-domain DOB is designed as (5), then its trans-
fer function realisation (7) is given by

Gud̂(s) =
Had j(sI−S)K2Mn(s)

det(sI− (Ã−KC̃))
, (10)

Gyd̂(s) =
Had j(sI−S)K2Nn(s)

det(sI− (Ã−KC̃))
, (11)

whereMn(s) andNn(s) are the numerator and denominator
of the nominal plantGn(s).

The proof is given in Appendix A.
Remark 2: Different from [1], it can be explicitly seen from
(10) and (11) how system model (i.e., the system matrices
(A,B,D,C)) and disturbance model (i.e., the pair(S,H)) of
the DOB (5) are incorporated into the transfer functions.

3.1.1 Equivalence between UIDO and frequency-
domain DOBs

Comparison results between UIDO (5) and frequency-
domain DOB in Fig. 2 are summarized as follows.

i. The denominator of (10) can be factored intodet(sI−
(Ã−KC̃)) = L1(s)L2(s). Consequently, (10) and (11)
can be reformulated into the same format ofM(s)K(s)
andN(s)K(s) in Fig. 2 by treatingKn(s) := Had j(sI−
S)K2;

ii. One can obtain from Fig. 2 and 3 that they share a same
structure in transfer function form by treatingM(s)K(s)
asGud̂ andN(s)K(s) asGyd̂;

iii. For Type I disturbance (see, Definition 1) under match-
ing condition (i.e., D=B), one can prove that

Gud̂(0) = 1, (12)

which meansGud̂ is a low-pass filter with unity gain.
The proof is given in Appendix B.

iv. One can obtain the following identity

1
1−Gud̂

=
det(sI− (Ã−KC̃))

det(sI−A+K1C)det(sI−S)
. (13)

The proof is given in Appendix C. We can see from (13)
that 1/(1−Gud̂) includes the disturbance model infor-
mation 1/det(sI−S). The need of 1/(1−Gud̂) includ-
ing the disturbance model has been identified in [1] but
it is hard to chooseQ(s) to implement it.

3.1.2 Relationship with the results in [1]
Our results significantly extend the celebrated work in

[1]. First, the aforementioned Points i and ii reduce to the
results in [1] when the system dynamics (2) and disturbance
dynamics (3) take the special observable canonical structure,

and the frequency-domain DOB in Fig. 2 reduces to the tra-
ditional one in Fig. 1. This can be obtained by selecting

L1(s) = Mn(s), K(s) = Q(s).

In Point iii, we prove thatGud̂ = 1 holds only for Type I
disturbance satisfying matching condition. Specifically,the
high order disturbance 1/sn discussed in [1] is a special case
of matched Type I disturbance. Based on our results, the tra-
ditional frequency-domain DOBs using low pass filterQ(s)
with unity gain in Fig. 1 can only handle matched Type I dis-
turbance and fail to handle mismatched disturbance or Type
II disturbance such as harmonic disturbance.

It has been pointed out in [1] it is not trivial to select
Gud̂ to handle generic disturbance for non-minimum phase
system, but our Theorem 1 and Point iv explicitly point out
how Gud̂ contains the unstable zeros ofMn and 1/(1−Gud̂)
includes the disturbance model information 1/det(sI−S).

3.2 ESO VS frequency-domain DOBs
Second, it is of much interest to compare DOBC in Fig.

1 [12] with the ADRC in [10]. Their major difference results
from different disturbance estimator, where DOBC utilizes
DOB while ADRC employs Extended State Observer (ESO).
We will elaborate the relationship/difference between them
by comparing them using system (2).

Takingy andu as the inputs of ESO in (6), the ESO ob-
server dynamics for system (2) are gives by

[ ˙̂x
˙̂d

]

= Ã

[
x̂
d̂

]

+ B̃uu+ B̃yy. (14)

where the matrices are given by

Ã=

[
A D
0 0

]

, B̃u =

[
B
0

]

, B̃y = L = [LT
x LT

d ]
T , C̃ = [0· · ·0

︸ ︷︷ ︸

n

1].

Taking disturbance estimatêd as the output of ESO, the
transfer function formulation of the ESO is

d̂(s) = Gud̂(s)u(s)+Gyd̂(s)y(s),

Gud̂(s) = C̃(sI− Ã)−1B̃u, (15)

Gyd̂(s) = C̃(sI− Ã)−1B̃y. (16)

Theorem 2. Consider a system described by (2) with B=
D, and the ESO is designed by (14), if let

Q(s) =−C̃(sI− Ã)−1B̃u, (17)

then the following two facts hold: 1) Q(s) is a stable low-
pass filter with a unity dc gain if the observer gains are
appropriately designed; 2) (15) and (16) become Gud̂(s) =
−Q(s) and Gyd̂(s) = G−1

n (s)Q(s), which are the same as
those in (1) of frequency-domain DOB.

The proof is given inAppendix D. Theorem 2 implies that
the ESO (6) is equivalent to the frequency-domain DOB in
Fig. 1 for system (2) whenQ(s) filter is chosen to have an
order ofn+1 wheren is the order of the system.

Remark 3: ADRC was developed as an alternative to the
classic PID so it aims at requiring minimum model informa-
tion. Therefore, it can be applied to a wide variety of sys-
tems without requiring too much modelling effort, but this



very strength also brings its weakness: it does not exploit
the modelling information even if it is available. DOBC pro-
vides a powerful approach to exploit modelling information.
Rather than representing the plant as an integrator chain, it
is able to use the available modelling information if it is
available but treated as the mismatching between the nom-
inal model and the physical system if it is not available.

3.3 Motivations: gaps of time/frequency-domain DOBs
Although the frequency-domainDOB is equivalent to the

frequency-domain in terms of structure, there still exist some
gaps summarized in the following sections.

3.3.1 Observer order and minimum relative degree
First, the observer order of time-domain DOB is higher

than that of frequency-domain DOB for plants with stable
zeros (see, pp. 546 of [1]). Second, the minimum relative
degree ofGud̂ of time-domain DOB is higher than that of
frequency-domain DOB. As pointed out in [1], the relative
degree of equivalentGud̂ is larger than or equal to the relative
degree of the nominal plant, so the minimum relative degree
of Gud̂ in frequency-domain DOB as given in Fig. 2 can be
chosen to be equal to that ofGn(s), i.e., nr . However, this
observation does not hold in time-domain DOB results. We
can obtain from (10) that

deg(Had j(sI−S)K2)≤ q−1;
deg(Mn(s)) = n−nr;
deg(det(sI− (Ã−KC̃))) = n+q,

whereq andn are the dimension of system matrixSandA of
disturbance model (3) and system model (2). The minimum
relative degree ofGud̂(s) happens whendeg(Had j(sI −
S)K2) = q−1, and equals to

n+q− (q−1+n−nr) = nr +1,

which is larger than that of frequency-domain DOB by 1.

3.3.2 Disturbance types
In addition, from the proof of (12) (see Appendix B), we

can see thatGud̂(0) = 1 holds only when

D = B, anddet(S) = 0, (18)

which means the frequency-domain DOB using a low-pass
filter Q(s) with unity dc gain in Fig. 1 can only effectively
handle matched Type I disturbances rather than generic dis-
turbance or mismatched disturbances.

So a new type of time-domain DOB (termed Functional
Disturbance OBserver (FDOB)) is proposed to reduce the
observer order by combing the idea of augmenting system
states with disturbance states and functional observer theory
in [18–20]. The frequency-domain DOBs can also be de-
signed to handle more types of disturbances (mismatched
disturbance and Type II disturbances) using FDOB tech-
niques and its frequency-domain counterpart through trans-
fer function realization.

4 Functional Disturbance OBserver (FDOB)
The basic philosophy of FDOB is that since part of sys-

tem states are directly available by measurementy = C̃x̃,
there is no need estimating that part of states and sometimes
even part of the unmeasurable states do not need to be es-
timated for the purpose of disturbance estimation [23]. We

only need estimateLx̃ rather than ˜x, whereL is designed in a
special structure

L =

[
L0 O
O Iq

]

, (19)

where the gain matrixL0 in L lies in the orthogonal com-
plement space of measurement matrixC and so

[
LT C̃T

]T

has a full row-rank. WhenLx̃ is obtained, we can obtain the
disturbance estimatêd= C̃Lx̃ with C̃= [O, Iq]. In the follow-
ing part, we will introduce the FDOB in terms of observer
structure, transfer function realization, existence condition
and design procedure respectively.

4.1 Observer structure
To develop a FDOB, we combine the idea of augmenting

the system state with disturbance state and the functional ob-
server theory in [20]. After choosingL in the special form as
in (19), the FDOB for linear system (4) has the form,

{

ż= Fz+Gy+Tu, ξ̂ = z+ Jy,
ω̂ = C̃ξ̂, d̂ = Hω̂

, (20)

where the gain matrices are designed such that the following
matrix identities hold:

{
WÃ= FW+GC̃, W = L− JC̃,
T =WB̃, F is stable

, (21)

Under condition (21), one can prove that the estimation er-
ror e= Lx̃− ξ̂ converges to zero and consequentlyξ̂ is the
estimate of the state functionLx̃ (e.g., [20]).

4.2 Transfer function realisation
Frequency-domain analysis is performed on FDOB (20)

such that the relationship between FDOB and frequency-
domain DOB can be investigated, upon which the FDOB in
time-domain can be implemented in frequency-domainusing
the transfer functions. We can obtain the transfer functions
Gud̂(s) andGyd̂(s) based on Laplace transformation of (20),
given by

d̂(s) =−Gud̂(s)u(s)+Gyd̂(s)y(s),

Gud̂(s) =−HC̃[sI−F]−1T, (22)

Gyd̂(s) = HC̃[(sI−F)−1G+ J]. (23)

To explicitly find out the relationship between the trans-
fer functions Gud̂(s), Gyd̂(s) and the system/disturbance
model (2), (3), theoretical analysis is performed on (22) and
(23) and the results are summarized in Theorem 3.

Theorem 3. For linear system (2) with disturbance model
(3), if the DOB is designed using FDOB (20), then the trans-
fer functions from input u(s) and measurement y(s) to distur-
bance estimatêd(s) are given by

Gud̂(s) =
Had j(sI−S)J2Mn(s)

det(sI−F)
, (24)

Gyd̂(s) =
Had j(sI−S)J2Nn(s)

det(sI−F)
. (25)

The proof is given in Appendix E. Similar to Theorem 1,
the disturbance model (i.e., the pair(S,H)) is also explicitly
reflected in the transfer functions (24) and (25).



The comparison analysis between FDOB and the
frequency-domain DOB in Fig. 2 are performed in the fol-
lowing ways.

i. First, similar to the case of the time-domain DOB, the
denominator of (24) can also be factored intodet(sI−
F) = L1(s)L2(s), then (24) and (25) can be put into the
same format asM(s)K(s) and N(s)K(s) in Fig. 2 by
treatingKn(s) := Had j(sI−S)J2;

ii. Second, the frequency-domain structure of FDOB is the
same as that of the time-domain DOB in Fig. 3 and
consequently the same as that of Fig. 2;

iii. Third, we can also prove that

Gud̂(0) = 1, (26)

under conditionsD = B anddet(S) = 0. The proof is
given in Appendix F.

iv. Finally, the following identity can be established

1
1−Gud̂

=
det(sI−F)

det(sI−A4+ J1A4)det(sI−S)
. (27)

The proof is similar to that of (13) and so omitted
here. We can see from (27) that 1/(1−Gud̂) includes
the generic disturbance model information 1/det(sI−
S), which is consistent with the conclusion of [1] for
the purpose of generic disturbance estimation through
frequency-domain DOB.

Remark 4: ComparedGud̂ of the time-domain DOB (10)
with that of FDOB (24), we can see that the numerators
of them are the same, however, the denominator has been
changed fromdet(sI−(Ã−KC̃)) to det(sI−F). The dimen-

sion ofF equals to the row rank ofL =

[
L0 O
O I

]

andL0 has a

full row-rank and so the relative degree ofGud̂ of the FDOB
(24) is less than that of the time-domain DOB (10). More
importantly, we can see that the observer order of FDOB,
i.e., the row number of L is smaller than that of the tradi-
tional time-domain DOB, i.e., the order ofÃ. Consequently,
the proposed FDOB can reduce the DOB order, especially
when multiple measurements are available. However, to re-
duce the observer order of FDOB, one can not choose anL
with an arbitrarily small row number. TheL should be se-
lected such that the FDOB existence condition is satisfied,
which is summarized below.

4.3 Existence condition
As we have transformed the disturbance observer design

problem into the functional observer design, the existing re-
sults in [20] can be drawn to derive the existence condition
of the proposed FDOB.

The first condition is on unnecessary state (the states that
do not need to be estimated) decoupling, which is given by

rank(







LÃ
C̃Ã
C̃
L






) = rank(





C̃Ã
C̃
L



), (28)

The second condition is on stability ofF . Using geomet-
ric analysis,F can be represented by

F =U −ZV, (29)

U = LÃL+−LÂΣ+Ψ, (30)

V = (I −ΣΣ+)Ψ. (31)

whereÂ = Ã(I − L+L), Ψ =

[
C̃ÃL+

C̃L+

]

, Σ =

[
C̃Â
Ĉ

]

, andZ

being any compatible matrix.
From [20], one can obtain thatF being Hurwitz (or the

pair (U,V) is detectable) is equivalent to

rank(





sL−LÃ
C̃Ã
C̃



) = rank(





C̃Ã
C̃
L



),∀s∈C,Re(s)≥ 0. (32)

To summarize, the existence conditions for the proposed
FDOB are (28) and (32).

4.4 Design procedure
The design procedure of FDOB is based on the functional

observer design procedure in [20], given by

i. MatricesU andV are firstly obtained from (30) and (31);
ii. Z andF can be obtained from (29) based on pole assign-

ment ofU andV;
iii. The matricesJ and K can be obtained from[J,K] =

LÂΣ++Z(I −ΣΣ+), andG can be obtained fromG =
K+FJ;

iv. Matrix T can be obtained fromT = (L− JC̃)B̃.

5 Applications of the results
Based on the frequency-domain analysis results (see,

Theorem 1 and Theorem 3), we can extend the applica-
tion scope (handling mismatched/Type II disturbances) of
frequency-domain DOBs using the frequency-domain coun-
terparts of FDOB, which is summarized below:

Step 1: Design DOBs in time-domain (e.g., FDOB),
since they can handle matched, mismatched and generic dis-
turbances;

Step 2: Calculate two transfer functionsGud̂ and Gyd̂
based on the results of Theorem 1 and 3;

Step 3: Implement the DOBs using the diagram in Fig.
3 based on the obtained two transfer functions.

6 Examples
In this section, two sets of examples are given to illus-

trate the main findings of this paper. In the first example, a
non-minimum phase system with different kinds of distur-
bances are considered including matched step disturbance,
mismatched step disturbance and matched harmonic distur-
bance. This example is to illustrate the results in Sections4
and 5. Then the proposed FDOB is then applied to the dis-
turbance estimation and rejection control (termed FDOBC)
problem for a rotary mechanical system of non-minimum
phase.

6.1 Numerical example
Consider an unstable non-minimum phase system

G(s) =
5(s−9)
s(s−25)

. (33)
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Fig. 4. Matched step disturbance estimation and its error.

Its sate-space model with disturbanced is given by






[
ẋ1

ẋ2

]

=

[
0 1
0 25

][
x1

x2

]

+

[
5
80

]

u+

[
5
80

]

d,

y=
[

1 0
]
x.

Suppose a state feedback controlleru=
[

20.67−2.37
]
x has

been pre-designed with initial statex1:2(0) = [0;5].

6.1.1 Matched disturbance
We first consider the matched step disturbance based on

the proposed FDOB, i.e.,S= 0,H = 1 in disturbance model
(3). TheL0 in functional matrix (19) is chosen asL0 =

[
0 1

]
,

based on which the conditions (28) and (32) are satisfied.
Then following the design procedure in Section 4.4, we can
calculateU,V. Choosing the poles ofF as p1 = −30, p2 =
−40, we can calculate the correspondingZ,F and then the
rest of the matricesJ,G,T. The initial states of the FDOB
(20) are chosen as[5;0]. Simulation result of the disturbance
estimate is shown in Fig. 4.

We can see from Fig. 4 that the proposed FDOB can
exponentially asymptotically estimate the step disturbance,
while the disturbance estimate is zero in the absence of dis-
turbance during the first 1 sec, i.e., normal control perfor-
mance recovery [2,4,7].

Besides, we can calculate the transfer functions from
control input and output to disturbance estimate, given by

Gud̂(s) =
−400(s−9)

3(s+30)(s+40)
,Gyd̂(s) =

−80(s−25)
3(s+30)(s+40)

.

We can verify thatGud̂(s)/Gyd̂(s) = G(s) andGud̂(0) = 1.
Besides, the relative degree ofGud̂(s) is 1, which is equal to
that of the original system (33). Furthermore, the observer
order of FDOB equals to the dimension of original plant.
That means there exists a disturbance observer in state-space,
where the relative degree ofGud̂ and the order of the observer
are equal to those of the frequency-domain DOB for this un-
stable, non-minimum phase system.

6.1.2 Mismatched disturbance
We then consider mismatched step disturbance. The dis-

turbance distribution matrix is changed toD =
[

0 80
]T

and
the matricesS,H,L0 are selected the same as that of Section
6.1.1. The simulation result is shown in Fig. 5

We can see from Fig. 5 that the proposed FDOB can
exponentially asymptotically estimate the mismatched step
disturbance. We can also calculate the corresponding trans-
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Fig. 5. Mismatched step disturbance estimation and its error.
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Fig. 6. Harmonic disturbance estimation and its error.

fer functions, given by

Gud̂(s) =
75(s−9)

(s+30)(s+40)
,Gyd̂(s) =

15s(s−25)
(s+30)(s+40)

.

One can verify thatGud̂(s)/Gyd̂(s) = G(s), Gud̂(0) =

−675/1200 6= 1, which verifies the observation in Section
5.

6.1.3 Harmonic disturbance
The matched harmonic disturbanced = 2sin(10t), t ≥

1sec is then considered. It can be put into the state space

model (3) with S=

[
0 10

−10 0

]

, H =
[

1 0
]

and initial value

ω0 =
[

2 0
]
.

The matrixL0 is chosen asL0 =
[

0 1
]
. Choosing the

poles ofF asp1 =−30, p2 =−40, p3 =−50 and the rest of
the design procedure is the same as that of Section 6.1.1, the
simulation result is shown in Fig. 6

We can see from Fig. 6 that the proposed FDOB can
exponentially asymptotically estimate the harmonic distur-
bance withunknown amplitude and phase. The transfer
functionsGud̂(s) andGyd̂(s) can be calculated. We can verify
thatGud̂(s)/Gyd̂(s) = G(s). HoweverGud̂(0) = −0.02326=
1, which verifies the observation in Section 5. For the case of
Type II disturbance, the traditional frequency-domain design
method for DOBs can not be applied, but we can implement
the FDOB in frequency-domain using the procedure given in
Section 5.

6.2 Practical example
In this section, the proposed FDOB is applied to the dis-

turbance estimation and rejection control (termed FDOBC)
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Fig. 7. Biased harmonic disturbance estimation using FDOB.
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problem for a rotary mechanical system of non-minimum
phase from [27]. The system is given by

G(s) =
1.202(4−s)

s(s+9)(s2+12s+56.25)
.

A normal controller has been pre-designed in state space
such that the closed-loop poles are−3, −2±1.5i, −4. A
step reference position with amplitude 5 is supposed to act
on the system at 2 sec. At 10 sec, a harmonic disturbance
with unknown amplitude, phase and bias is supposed to act
on the system , which is given byd = 5+5sin(10t).

The proposed FDOB is used to estimate the disturbance,
where the poles of matrixF is selected as−5,−10,−15,
−20,−25,−30. We further reject its effect by direct feed-
forward the disturbance estimate based on the principle of
DOBC (see, [2, 7, 8]). The disturbance estimation perfor-
mance is shown in Fig. 7. The position control results with
and without disturbance compensation (i.e., under FDOBC
and nominal control) are given in Fig. 8.

We can see from Fig. 7 that the proposed FDOB can
asymptotically estimate the harmonic disturbance with un-
known amplitude, phase and bias. We can see from Fig.
8 that the FDOBC can effectively remove the effect of un-
known disturbances (with preservation of the nominal con-
trol performance), while the nominal controller results in
control error.

7 Conclusions
This paper provides a generic analysis of the relation-

ship between time/frequency-domain DOBs. The traditional

frequency-domain DOB structure using a low pass filter with
unity gain can only effectively handle disturbances satisfy-
ing matching condition, while the time-domain DOB gen-
erates a higher order observer. A Functional Disturbance
OBserver (FDOB) is proposed to improve the time-domain
DOB. Compared with the frequency-domain DOBs, the pro-
posed FDOB can handle more types of disturbances, while
compared with the existing time-domain DOBs the proposed
FDOB generates an observer with lower order. Numeri-
cal examples including a rotary mechanical system of non-
minimum phase are presented to verify the findings. The
proposed FDOB has potentials in the fields of both distur-
bance rejection control and fault diagnosis [28].
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Appendix A: Proof of Theorem 1
We first consider transfer functionGud̂. From the identity

A−1 = ad j(A)/det(A), one can obtain:

Gud̂ =−HC̃[sI− (Ã−KC̃)]−1B̃=
−[O,H]ad j(sI− (Ã−KC̃))B̃

det(sI− (Ã−KC̃))
.

(34)
In addition, for SISO system(A,B,C), the following prop-
erty holds,

Cad j(sI−A)B=

∣
∣
∣
∣

sI−A B
−C 0

∣
∣
∣
∣
. (35)

Partitioning the gain matrixK into K = [KT
1 ,K

T
2 ]

T in con-
junction with (35), the numerator of (34) is

−[O,H]ad j[sI− (Ã−KC̃)]B̃

=−

∣
∣
∣
∣
∣
∣

sI−A+K1C −DH B
K2C sI−S O
O −H 0

∣
∣
∣
∣
∣
∣

=−

∣
∣
∣
∣
∣
∣

I −DH −K1

O sI−S−K2

O −H 0

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

sI−A O B
O I O
−C O 0

∣
∣
∣
∣
∣
∣

= Had j(sI−S)K2Cad j(sI−A)B.

(36)

We then consider transfer functionGyd̂. Similar to (34) and
(36), one can obtain the following two identities,

Gyd̂ = HC̃[sI− (Ã−KC̃)]−1K =
[O,H]ad j[sI− (Ã−KC̃)]K

det(sI− (Ã−KC̃))
.

(37)
[O,H]ad j[sI− (Ã−KC̃)]K

=

∣
∣
∣
∣
∣
∣

sI−A+K1C −DH K1

K2C sI−S K2

O −H 0

∣
∣
∣
∣
∣
∣

=−

∣
∣
∣
∣
∣
∣

I −DH −K1

O sI−S−K2

O −H 0

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

sI−A O O
O I O
−C O 1

∣
∣
∣
∣
∣
∣

= Had j(sI−S)K2det(sI−A).

(38)



Substituting (36) into (34), and (38) into (37) ends the proof.

Appendix B: Proof of (12)
To proveGud̂(0) = 1, we only need to prove the sub-

traction of the denominator and numerator of (34) is zero at
s= 0, which is given as follows:

∣
∣
∣
∣
∣
∣

−A+K1C −DH B
K2C −S O
O −H 0

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣

−A+K1C −DH
K2C −S

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

−A+K1C −DH B
K2C −S O
O −H 0

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

−A+K1C −DH O
K2C −S O
O −H 1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

−A+K1C −DH B
K2C −S O
O −H 1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

−A+K1C O D
K2C −S O
O O 1

∣
∣
∣
∣
∣
∣

= det(−A+K1C)det(−S),

where the identityD = B has been used in the third equality.
The proof ends sincedet(S) = 0.

Appendix C: Proof of (13)
From (34), one can obtain the denominator of 1/(1−

Gud̂), given by

det(sI− (Ã−KC̃))+ [O,H]ad j(sI− (Ã−KC̃))B̃

=

∣
∣
∣
∣
∣
∣

sI−A+K1C −DH O
K2C sI−S O
O −H 1

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

sI−A+K1C −DH B
K2C sI−S O
O −H 0

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

sI−A+K1C −DH B
K2C sI−S O
O −H 1

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

sI−A+K1C O B
K2C sI−S O
O O 1

∣
∣
∣
∣
∣
∣

= det(sI−A+K1C)det(sI−S),

where in the third equalityD = B has been used.

Appendix D: Proof of Theorem 2
Using the well-known block matrix inversion, the follow-

ing equation is derived

C̃(sI− Ã)−1

=
[

0 1
]
[

sI− (A−LxC) −D
LdLxC s

]−1

=
[

0 1
]
[

∗ ∗

−G̃−1LdLxC[sI− (A−LxC)]
−1 G̃−1

]

=
[

−G̃−1LdLxC[sI− (ALxC)]
−1 G̃−1

]
,

(39)

where

G̃= s+LdLxC[sI− (A−LxC)]
−1D. (40)

Combining Eqs. (15), (16) with (39) yields

Gud̂(s) =−G̃−1LdLxC[sI− (A−LxC)]
−1B, (41)

Gyd̂(s) =−G̃−1LdLxC[sI− (A−LxC)]
−1Lx

+ G̃−1LdLx.
(42)

Proof of fact 1)
Since the observer gainsLx andLd can be chosen such

that Ã is Hurwitz matrix, it follows from (15) that transfer
functionGud̂(s) is stable.

It can be derived from (15) and (17) that

Q(s) =−Gud̂(s), (43)

thusQ(s) is also a stable transfer function.
Combining (41) with (43), yields

Q(s) = G̃−1LdLxC[sI− (A−LxC)]
−1B, (44)

Under the conditionB = D, combining (40) with (44),
yields

Q(0) = 1.

It can be concluded thatQ(s) in (17) is a stable low-pass
filter with unity dc gain as long as the observer gains are
appropriately selected.

Proof of fact 2)
The transfer function of system (2) is

Pn(s) =C(sI−A)−1B. (45)

Combining (42) with (45), gives

Gyd̂(s)Pn(s)

=
{

−G̃−1LdLxC[sI− (A−LxC)]
−1Lx+ G̃−1LdLx

}

×C(sI−A)−1B

=−G̃−1LdLxC
{

[sI− (A−LxC)]
−1LxC(sI−A)−1

−(sI−A)−1
}

B
= G̃−1LdLxC[sI− (A−LxC)]

−1B
=−Gud̂(s).

(46)

Considering (43) and (46), the required result can be eas-
ily obtained.

Appendix E: Proof of Theorem 3
Without loss of generality, we supposeC = [1,O1×n−1]

(this assumption can always be satisfied for SISO system (2)
through some non-singular linear transformation). Partition-

ing
[

J K
]

into

[
J1 K1

J2 K2

]

and taking the specific structure of

L into account, the matrixF can be put into the following
form:

F = LÃL+− [J,K]

[
C̃ÃL+

C̃L+

]

=

[
L0 O
O I

][
A DH
O S

][
L+

0 O
O I

]

−

[
J1 K1

J2 K2

][
CAL+0 CDH
CL+0 O

]

=

[
L0AL+0 − J1CAL+0 −K1CL+0 L0DH − J1CDH

−J2CAL+0 −K2CL+0 S− J2CDH

]

.

(47)
Noticing that L0 = [O, I ] has a full-row rank and so

L+
0 = LT

0 and matrixA,B can be partitioned into

[
A1 A1

A3 A4

]

and

[
B1

B2

]

, respectively, we can obtain the following matrix

equalities:

L0AL+0 = A4, CAL+0 = A2,
CL+0 = 0, L0B= B2, CB= B1.

(48)



We first considerGud̂. Similar to the proof of Theorem
1, we can obtain the following identity.

Gud̂ =−HC̃(sI−F)−1T =
−HC̃ad j(sI−F)T

det(sI−F)
. (49)

Based on (48) in conjunction with the definition ofF in
(47), the numerator of (49) is governed by

HC̃ad j(sI−F)T

=−

∣
∣
∣
∣
∣
∣

sI−A4+ J1A2 −L0DH + J1CDH B2− J1B1

J2A2 sI−S+ J2CDH −J2B1

O −H O

∣
∣
∣
∣
∣
∣

=−

∣
∣
∣
∣
∣
∣

sI−A4+ J1A2 O B2− J1B1

J2A2 sI−S −J2B1

O −H O

∣
∣
∣
∣
∣
∣

=−

∣
∣
∣
∣
∣
∣

I −J1 O
O −J2 −(sI−S)
O O H

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

sI−A4 O B2

−A2 O B1

O −I O

∣
∣
∣
∣
∣
∣

=−

∣
∣
∣
∣

−J2 −(sI−S)
O H

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

O −A2 B1

O sI−A4 B2

−I O O

∣
∣
∣
∣
∣
∣

= (−1)2q

∣
∣
∣
∣

(sI−S) J2

−H O

∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

sI−A1 −A2 B1

−A3 sI−A4 B2

−I O O

∣
∣
∣
∣
∣
∣

= Had j(sI−S)J2Cad j(sI−A)B.

(50)

Secondly, we considerGyd̂. Similar to the proof of The-
orem 1, we can obtain the following identity,

Gyd̂ = HC̃[(sI−F)−1G+ J]

=
HC̃ad j(sI−F)G

det(sI−F)
+

HC̃Jdet(sI−F)
det(sI−F)

,
(51)

the numerator of which is as follows:
HC̃ad j(sI−F)G+HC̃Jdet(sI−F)

=

∣
∣
∣
∣

sI−F G
−HC̃ O

∣
∣
∣
∣
+

∣
∣
∣
∣

sI−F O
−HC̃ HC̃J

∣
∣
∣
∣
=

∣
∣
∣
∣

sI−F G
−HC̃ HC̃J

∣
∣
∣
∣

=

∣
∣
∣
∣

sI−F sJ−FJ+G
−HC̃ O

∣
∣
∣
∣
=

∣
∣
∣
∣

sI−F sJ+K
−HC̃ O

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

sI−A4+ J1A2 −L0DH + J1CDH sJ1+K1

J2A2 sI−S+ J2CDH sJ2+K2

O −H O

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

sI−A4+ J1A2 O sJ1+K1

J2A2 sI−S sJ2+K2

O −H O

∣
∣
∣
∣
∣
∣

.

(52)

At this stage, we suppose the following identities hold
(its proof will be given later):

{
K1 =−J1A1+A3,
K2 =−J2A1.

(53)

Substituting (53) into (52) gives

HC̃ad j(sI−F)G+HC̃Jdet(sI−F)

=

∣
∣
∣
∣
∣
∣

sI−A4+ J1A2 O sJ1− J1A1+A3

J2A2 sI−S sJ2+−J2A1

O −H O

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

I O −J1

O sI−S−J2

O −H O

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

sI−A4 O A3

O I O
−A2 O −sI+A1

∣
∣
∣
∣
∣
∣

= Had j(sI−S)J2det(sI−A).

(54)

Substituting (50) into (49), and (54) into (51) ends the proof.

Then we give the proof of (53), which is based on the
Sylvester equation in (21). From the Sylvester equation, one
can obtain

GC̃=WÃ−FW. (55)

Taking the structure of̃C andW into consideration, (55)
is equivalent to

[
G1 O O
G2 O O

]

=

[
(L0− J1C)A (L0− J1C)DH

−J2CA S− J2CDH

]

−

[
A4− J1A2 (L0− J1C)DH
−J2A2 S− J2CDH

][
L0− J1C O
−J2C I

]

,

based on which in conjunction with[L0−J1C] = [−J1, I ], we
can obtain







G1 = A3−A1J1+(A4− J1A2)J1

+(L0DH − J1CDH)J2,
G2 =−J2A1− J2A2J1+(S− J2CDH)J2

FromK = G−FG, one can obtain
{

K1 = G1−F1J1−F2J2 = A3−A1J1,
K2 = G2−F3J1−F4J2 =−J2A1.

This ends the proof. �

Appendix F: Proof of Eq. (26)
To proveGud̂(0) = 1, we only need to prove the sub-

traction of the numerator and denominator of (49) is zero at
s= 0, which is given as follows:

From (50), the denominator minus the numerator is
∣
∣
∣
∣
∣
∣

−A4+ J1A2 O B2− J1B1

J2A2 −S −J2B1

O −H O

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

−A4+ J1A2 −L0DH + J1CDH O
J2A2 −S+ J2CDH O

O −H I

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

−A4+ J1A2 O B2− J1B1

J2A2 −S −J2B1

O −H O

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

−A4+ J1A2 O −L0D+ J1CD
J2A2 −S J2CD

O −H I

∣
∣
∣
∣
∣
∣

.

When D = B and consequentlyJ2CD = J2B1 and
−L0D+J1CD=−B2+J1B1, the above equation can be fur-
ther calculated as

∣
∣
∣
∣
∣
∣

−A4+ J1A2 O O
J2A2 −S O

O −H I

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣

−A4+ J1A2 O
J2A2 −S

∣
∣
∣
∣

= det(−A4+ J1A2)det(−S).

The proof ends sincedet(S) = 0. �
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