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The equations governing anti-self-dual and Einstein-Weyl conformal geometries
can be regarded as “master dispersionless systems” in four and three dimensions,
respectively. Their integrability by twistor methods has been established by Penrose
and Hitchin. In this note, we present, in specially adapted coordinate systems, explicit
forms of the corresponding equations and their Lax pairs. In particular, we demon-
strate that any Lorentzian Einstein-Weyl structure is locally given by a solution to
the Manakov-Santini system, and we find a system of two coupled third-order scalar
partial differential equations for a general anti-self-dual conformal structure in neutral
signature. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927251]

I. INTRODUCTION

There exist two key “integrable” conformal geometries, namely, Einstein-Weyl (EW) geom-
etry in three dimensions and anti-self-dual (ASD) geometry in four dimensions (see Ref. 7 for a
comprehensive overview). In spite of their fundamental role in twistor theory, general relativity, and
the theory of dispersionless integrable systems, these geometries remain largely unknown to the
integrable system community due to a lack of explicit coordinate formulas for the underlying PDEs
and Lax pairs. The aim of this paper is to present them in their simplest possible forms, in specially
adapted coordinates.

In Section II, we discuss EW structures in three dimensions. Recall that an EW geometry on a
three-dimensional manifold M3 consists of a conformal structure [g] and a symmetric connection D
compatible with [g] in the sense that, for any g ∈ [g],

Dg = ω ⊗ g

for some covector ω, and such that the trace-free part of the symmetrized Ricci tensor of D van-
ishes. Using Cartan’s approach relating EW structures to a special class of third-order ODEs, we
shall demonstrate the following.

Theorem 1. There exists a local coordinate system (x, y, t) on M3 such that any Lorentzian
Einstein–Weyl structure is locally of the form

g = −(dy − vxdt)2 + 4(dx − (u − vy)dt)dt, ω = −vxxdy + (4ux − 2vxy + vxvxx)dt, (1)

where the functions u and v on M3 satisfy a coupled system of second-order PDEs,

P(u) + u2
x = 0, P(v) = 0, (2)
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where

P = ∂x∂t − ∂2
y + (u − vy)∂x2 + vx∂x∂y.

System (2) is known as the Manakov-Santini system and was originally derived in Ref. 30 as a
two-component generalization of the dispersionless Kadomtsev-Petviashvili (KP) equation. It was
shown in Ref. 16 that any solution to (2) gives rise to an EW structure of form (1), but the question
whether all EW structures arise in that way has remained open. System (2) possesses the Lax
representation [X1,X2] = 0 where

X1 = ∂y − (λ + vx)∂x − ux∂λ, X2 = ∂t − (λ2 + vxλ − u + vy)∂x − (uxλ + uy)∂λ
are vector fields on the correspondence space M3 × RP1, where λ ∈ RP1. Projecting integral sur-
faces of the distribution spanned by X1,X2 from M × RP1 to M3 yields a two-parameter family of
surfaces in M3 which are null with respect to the conformal structure [g] and totally geodesic in the
Weyl connection D (the existence of such surfaces is equivalent to the EW property).9 System (2)
consists of 2 second-order PDEs for 2 functions of 3 independent variables, and its general solution
in real-analytic category depends on 4 arbitrary functions of 2 variables: this confirms Cartan’s
count.9

The relation between EW geometry and dispersionless integrable systems in three dimensions
has been known since.38,17,16 It was observed recently in Ref. 21 that the dispersionless integrability
of various classes of second-order PDEs is equivalent to the EW property of conformal structures
defined by their principal symbols. Moreover, in many examples, the covector ω is expressed in
terms of g ∈ [g] by the universal explicit formula

ωk = 2gk jDxs(g j s) +Dxk(ln det gi j). (3)

Here, Dxs denotes total derivative with respect to xs and (x1, x2, x3) = (x, y, t). In three dimensions,
this formula is invariant under the transformation,

g → ϕ2g, ω → ω + 2d ln ϕ, where ϕ : M3 → R+, (4)

that keeps the Einstein-Weyl equations invariant. The Manakov-Santini system fits into this frame-
work: the covector in (1) is given by formula (3), and the principal symbol of system (2) equals P2

(it is doubly degenerate) where P, viewed as a symmetric bivector, gives rise to the EW metric g
given by (1).

In Section III, we study ASD conformal structures in four dimensions. Recall that a conformal
structure [g] is called anti-self-dual if the self-dual (SD) part of the Weyl tensor of any g ∈ [g]
vanishes: W+ = 1

2 (W + ∗W ) = 0. We shall establish the following.

Theorem 2. There exist local coordinates (w, z, x, y) such that any ASD conformal structure in
signature (2,2) is locally represented by a metric,

g = dwdx + dzdy + Fydw2 − (Fx + Gy)dwdz + Gxdz2, (5)

where the functions F,G : M4 → R satisfy a coupled system of third-order PDEs,

∂x(Q(F)) − ∂y(Q(G)) = 0, (∂w − Fy∂x + Gy∂y)Q(G) + (∂z + Fx∂x − Gx∂y)Q(F) = 0, (6)

where

Q = ∂w∂x + ∂z∂y − Fy∂x
2 − Gx∂y

2 + (Fx + Gy)∂x∂y.
System (6) arises as [X1,X2] = 0 from the dispersionless Lax pair,

X1 = ∂w − Fy∂x + Gy∂y + λ∂y +Q(F)∂λ, X2 = ∂z + Fx∂x − Gx∂y − λ∂x −Q(G)∂λ. (7)

Projecting integral surfaces of the distribution spanned by X1,X2 in the correspondence space
M4 × RP1 to M4 gives a 3-parameter family of totally null surfaces with self-dual tangent bi-vector.
These are the α-surfaces of the corresponding conformal structure [g]. The existence of such sur-
faces is equivalent to the ASD property.33 System (6) consists of 2 third-order PDEs for 2 functions
of 4 independent variables, and its general solution depends on 6 arbitrary functions of 3 variables:
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this agrees with the count of Ref. 24 based on the Cartan-Kähler theory. Lax pair (7) has appeared
in Ref. 1, where the Riemann–Hilbert problem associated to (7) has been formulated. The fact that
the system of 3 second order PDEs derived in Refs. 1 and 2 leads to system (6) has been recently
pointed out in Ref. 40.

ASD equations and their reductions provide a number of key examples of dispersionless inte-
grable systems in four dimensions.34,15,19,39 It was conjectured in Ref. 21 that the dispersionless
integrability of some four-dimensional PDEs is equivalent to the requirement that the principal sym-
bol of the equation defines a conformal structure that must be ASD on every solution. In Ref. 21,
this was demonstrated to be the case for integrable symplectic Monge-Ampère equations.14 The
example of ASD equations fits into this scheme: the principal symbol of system (6) equals Q3 (it is
triply degenerate), and the symmetric bivector Q gives rise to the ASD metric g given by (5).

Reality conditions. If all coordinates and functions in Theorems 1 and 2 are assumed to be
real, then the corresponding conformal structures in three and four dimensions have Lorentzian or
(2,2) (also called neutral or Kleinian) signatures, respectively. Alternatively, one can assume real
analyticity and work in the complexified settings where all structures are assumed to be holomor-
phic. We shall make this additional assumption whenever we rely on the Cauchy–Kovalevskaya
theorem to assert that a general solution depends on m functions of n variables.

II. EINSTEIN-WEYL GEOMETRY

The twistor integrability of EW equations was established in Ref. 25. It was demonstrated
in Ref. 17 that EW equations possess a Lax pair given by two vector fields that form an integrable
distribution and may contain derivatives with respect to the spectral parameter. Integral manifolds
of this distribution provide the 2-parameter family of null totally geodesic surfaces, and as shown
by Cartan,9 the EW property is equivalent to the existence of such family. However, the explicit
coordinate form of the Lax pair has not been exhibited in the general case. Below, we list various
forms of EW equations, as well as their Lax pairs, in specially adapted coordinates.

A. Einstein-Weyl equations in Cartan’s approach

Our proof of Theorem 1 builds on Cartan’s approach to Einstein-Weyl geometry via special
third-order ordinary differential equations (ODEs).10 We shall briefly review it following the paper
of Tod.37 Consider an equivalence class of third-order ODEs,

Y ′′′ = F(X,Y,Y ′,Y ′′), (8)

modulo point transformations (X,Y ) → (X̄(X,Y ),Ȳ (X,Y )). Here, ′ = d/dX . Let the general solution
of (8) be of the form

Y = Z(X, x j), (9)

where x j are coordinates on the three-dimensional solution space M3. The necessary and sufficient
conditions for the solution space M3 to carry an Einstein–Weyl structure such that the 2-parameter
family of surfaces in M3 corresponding to fixing (X,Y ) in (9) is null and totally geodesic are given
by the vanishing of the Wunshmann and Cartan invariants W and C. These invariants are given by

W = 1
6D

2FQ − 1
3 FQDFQ − 1

2DFP +
2

27 F3
Q +

1
3 FQFP + FY ,

C = ( 1
3DFQ − 1

9 F2
Q − FP)FQQ +

2
3 FQFQP − 2FQY + FPP + 2WQ,

whereD = ∂X + P∂Y +Q∂P + F∂Q is the total derivative.
The above W is actually a relative contact invariant, while C is a relative point invariant (so

their vanishing is an invariant condition for respective pseudogroups).
Following the approach of Tod37 (see Refs. 31 and 29 for other approaches), the conformal

structure and the covector are given by

g = 2 dY dQ − 2
3 FQ dY dP + ( 1

3DFQ − 2
9 F2

Q − FP) dY 2 − dP2,

ω = 2
3 (FQP − DFQQ) dY + 2

3 FQQdP,
(10)
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where in these expressions X is fixed. Both g and ω depend on X explicitly, but a change in
X corresponds to a gauge transformation of form (4). Thus, as long as W = C = 0, the resulting
Einstein-Weyl structure is independent of X .

In this approach, the EW equations, W = C = 0, constitute an overdetermined system of two
PDEs for a scalar function F of four variables. One can show that this system is compatible
(formally integrable), which follows from the vanishing of the Mayer bracket [W,C] = 0.27 In other
words, this system of third- and second-order PDEs is in involution (after three prolongations). The
characteristic variety is a complete intersection, so the general solution is parametrized by 6 = 3 · 2
functions of 2 variables (we refer to Refs. 11, 6, and 28 for the general dimension theory of solution
spaces). However, the system is point invariant, so the diffeomorphism freedom is 2 functions of
2 variables, and henceforth, the actual solution space is parametrized by 4 = 6 − 2 functions of 2
variables. This re-proves Cartan’s count.

Proof of Theorem 1. Setting A = − 2
3 FQ, B = 1

3DFQ − 2
9 F2

Q − FP, one can rewrite (10) in the
form

g = 2 dY dQ + A dY dP + B dY 2 − dP2,

ω = (AP − 2BQ −
1
2

AAQ) dY − AQdP.

To bring the corresponding EW equations to the desired form, we fix X = 0 and set the variables
as follows: Q(0) = x, P(0) = y, Y (0) = 2t, A|X=0 = a, B|X=0 = −b − 1

4 a2, where now (x, y, t) are
local coordinates on M3 and a,b : M3 → R. This results in

g = 4dt dx + 2a dt dy − (a2 + 4b) dt2 − dy2,

ω = (aax + 2ay + 4bx) dt − axdy.
(11)

The EW equations reduce to a pair of second-order conservative PDEs,

(at + aay + bax)x = (ay)y, (bt + bbx − aby)x = (by − 2abx)y, (12)

which coincide with Manakov-Santini system (2) upon substitution a = vx, b = u − vy, see also
Ref. 32. Note that system (12) allows one to uniquely reconstruct g and ω in (11): the conformal
structure g comes from the principal symbol of system (12), and ω is given by formula (3). Since
the construction directly follows from Cartan’s approach, we can conclude that the Manakov-
Santini system gives all EW structures. The general solution of system (12) depends on 4 arbitrary
functions of 2 variables which agrees with Cartan’s result. �

The Lax representation of (12) has the form [X1,X2] = 0, where

X1 = ∂t − (λ2 − aλ − b) ∂x + m ∂λ, X2 = ∂y − λ ∂x + n ∂λ,

and

m = −axλ
2 + (aax − ay − bx)λ + (abx − by), n = −axλ − bx.

We point out that this Lax pair transforms to the one of the Manakov-Santini system presented in
the Introduction via the change of variables a = vx, b = u − vy, λ = λ̃ + vx. Taking a linear trans-
formation of the Lax vector fields results in a Lax pair linear in the parameter λ. A further affine
translation of λ with non–constant coefficients can be used to bring the Lax pair to the canonical
form used in Refs. 17 and 16.

Projecting integral surfaces of the distribution spanned by X1 and X2 in the 4D space with
coordinates (x, y, t, λ) to the space M3 with coordinates (x, y, t), one obtains a 2-parameter family
of null totally geodesic surfaces of the corresponding EW structure. There is an RP1–worth of such
surfaces through any point in M3.

The constraint a = 0, b = u reduces system (12) to the dispersionless KP equation, (ut +

uux)x = uy y, while the corresponding EW structure reduces to the one from17

g = 4dt dx − 4u dt2 − dy2, ω = 4ux dt .
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Any EW structure which admits a parallel vector field can locally be put in this form. Another possible
reduction is u = 0. This corresponds to the most general hyper-CR Einstein–Weyl structure.18

1. Translationally non-invariant version of the Manakov-Santini system

Here, our starting point is the general ansatz for a metric in the conformal class and a cov-
ector.16 Using the diffeomorphism and conformal freedom, the representative metric can be put
in form (11). Set ω = ω1 dt + ω2 dx + ω3 dy . Imposing the Einstein-Weyl conditions, we obtain a
system of 5 PDEs for a,b,ωi, which is not presented here due to its complexity. The corresponding
Lax pair has the form [X1,X2] = 0, where

X1 = ∂t − (λ2 − aλ − b) ∂x + m ∂λ, X2 = ∂y − λ ∂x + n ∂λ,

and m and n are the following cubic and quadratic polynomials in λ:

m = −1
2
ω2λ

3 +
1
4
(aω2 + 4ω3)λ2 − 1

2
(ω1 + bω2 + 2aω3 − aax − 2bx)λ

+
1
4
(aω1 + abω2 + a2ω3 − 2aay − 4by),

n = −1
4
ω2λ

2 +
1
2
(ω3 − ax)λ − 1

4
(ω1 + bω2 + aω3 − 2ay).

One of the five EW equations has the simple form (ω2)x + ω2
2/2 = 0. This leads to the natural

branching.
Case 1: ω2 = 0. Up to further elementary integration and changes of variables, this case can be
reduced to form (11), with Manakov-Santini system (12) for a,b.
Case 2: ω2 = 2/x (strictly speaking, ω2 = 2/(x + f (y, t)), however, f (y, t) can be removed by
a transformation x → x + f (y, t), which preserves the form of the metric after appropriate re-
definition of a and b). This branch can be viewed as a translationally non-invariant (x-dependent)
version of the Manakov-Santini system.

In view of Theorem 1, both branches are equivalent, but we have been unable to find a combi-
nation of a conformal rescaling and a coordinate transformation which reduces Case 2 to Case 1.

B. Einstein-Weyl equations via Bogdanov’s system

The following system was proposed by Bogdanov3 as a two-component generalization of the
dispersionless Toda equation,

(e−φ)t t = mtφxy − mxφy t, mt te−φ = mxmy t − mtmxy.

It possesses a Lax representation [X1,X2] = 0, where

X1 = ∂x −
(
λ +

mx

mt

)
∂t + λ

(
φt

mx

mt
− φx

)
∂λ, X2 = ∂y +

1
λ

e−φ

mt
∂t +

(e−φ)t
mt

∂λ.

It was observed in Ref. 21 that, for any solution of the Bogdanov system, the metric

g = (mxdx + mtdt)2 + 4e−φmtdxdy

and the covector

ω =

(
mt t

m2
t

− 2
φt

mt

)
(mx dx + mt dt) + 2

my t

mt
dy

satisfy the EW equations. Note that g comes from the principal symbol of the system, and ω is given
by formula (3). The general solution of the Bogdanov system depends on 4 arbitrary functions of 2
variables. It is natural to expect that this gives (locally) a generic EW structure.

Setting m = t, one obtains the SU(∞) Toda equation,4,39 (e−φ)t t = φxy, while the corresponding
EW structure reduces to the one from38

g = dt2 + 4e−φdxdy, ω = −2φtdt .
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C. Einstein-Weyl equations in diagonal coordinates

Note that any three-dimensional metric possesses diagonal coordinates depending locally on
3 arbitrary functions of 2 variables.11,13 We can therefore use conformal freedom g → ϕg, ω →
ω + d ln ϕ to set

g = a2dt2 − dx2 + b2dy2, ω = ω1dx + ω2dy + ω3dt.

In this case, the EW equations give rise to a system of five PDEs for the five functions a,b,ωi,
which are second-order in a,b and first-order in ωi (this system is not presented explicitly due to its
complexity). It possesses the Lax pair [X1,X2] = 0,

X1 = ∂t − a cos λ ∂x + m ∂λ, X2 = ∂y − b sin λ ∂x + n ∂λ,

where

m = − a
2b

ω2sin2λ − 1
2
ω3 sin λ cos λ + (1

2
aω1 − ax) sin λ +

ay

b
,

n = b
2aω3cos2λ + 1

2ω2 sin λ cos λ − ( 1
2 bω1 − bx) cos λ − bt

a
.

The general solution of the system for a,b,ωi depends locally on 7 = 2 · 2 + 3 · 1 arbitrary functions
of 2 variables (recall the order of PDEs). Since diagonal coordinates exist with the freedom of
3 arbitrary functions of 2 variables, this again confirms that EW structures depend on 4 = 7 − 3
arbitrary functions of 2 variables.

The above system possesses a reduction,21

g = (1 − e−u)dt2 − dx2 + (eu − 1)dy2, ω =
eu + 1
eu − 1

uxdx − uydy + utdt,

for which the EW equations reduce to the scalar second-order PDE,

uxx + uy y − (ln(eu − 1))y y − (ln(eu − 1))t t = 0.

This is the dispersionless limit of the “gauge-invariant” Hirota equation.20

III. ANTI-SELF-DUALITY EQUATIONS

A conformal structure g on a four-dimensional manifold is called ASD if the SD part of its
conformal Weyl tensor vanishes: W+ = 1

2 (W + ∗W ) = 0. The twistor-theoretic integrability of the
ASD condition was established in Ref. 33. It was shown in Ref. 24 that generic ASD structure
depends on 6 arbitrary functions of 3 variables. The existence of a Lax pair is implicitly built in the
fact that any ASD structure possesses a 3-parameter family of totally null α-surfaces. Below, we
present several forms of ASD equations and their Lax pairs in specially adapted coordinates.

A. Anti-self-duality equations in Plebański-Robinson coordinates

Here, we present explicit formulas, including the corresponding Lax pair, in Plebański-
Robinson coordinates (w, z, x, y) where the metric g in the ASD conformal class on an open set
M4 ⊂ R4 takes the hyper-heavenly form,

g = dwdx + dzdy + pdw2 + 2qdwdz + rdz2, (13)

where p,q,r are functions of all four variables. We assume that all coordinates are real, so that the
signature of g is (2,2).

Proposition 3.1. Metric (13) has ASD Weyl tensor if the functions p,q,r satisfy the system of
three second order PDEs,

pxx + 2qxy + ry y = 0,

mx + ny = 0,

mz − qmx − rmy + (qx + ry)m = nw − pnx − qny + (px + qy)n,
(14)
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where

m B pz − qw + pqx − qpx + qqy − rpy, n B qz − rw + qry − rqy + prx − qqx. (15)

Conversely, any ASD conformal structure is locally of form (13), where (p,q,r) satisfy system (14).

Proof. We will make use of the isomorphisms Λ2
+ = S′ ⊙ S′ and T M4 = S ⊗ S′, where S and S′

are real rank-two symplectic vector bundles (spin bundles), Λ2
+ is the rank-three bundle of self-dual

two-forms on M4, and ⊙ is the symmetrized tensor product. The seminal result of Penrose33 asserts
that the ASD condition is equivalent to the existence of a 3-parameter family of α-surfaces (totally
null surfaces in M4 with SD tangent bi-vector). This means that any section of S′ corresponds to
a SD two-form defining a 2D distribution integrable in the Frobenius sense. To arrive at canonical
form (13), we select a 2-parameter family of α-surfaces corresponding to a section ι ∈ Γ(S′). Let
Σ ∈ Γ(Λ2

+) be a SD two-form corresponding to this section. It is Frobenius-integrable so there exist
independent functions x and y on M4 such that Ker(Σ) = Span(∂/∂x, ∂/∂ y). We can moreover
rescale the spinor ι so that the corresponding two-form Σ is closed and proportional to dw ∧ dz.
Therefore, w and z are constant on each α-surface in the 2-parameter family, and (x, y) are coordi-
nates on the surface. The α-surfaces are totally null so that the conformal structure is represented
by

g = e00′e11′ − e01′e10′, (16)

where

e00′ = adz, e10′ = bdw, e01′ = −dx − pdw − qdz, e11′ = dy + qdw + rdz; (17)

here, (a,b,p,q,r) are so far unspecified functions (we have set the dzdx and dwdy coefficients in g
to 0 by exploiting the coordinate freedom in the choice of (x, y)). To examine the ASD condition,
we choose a basis of S′ consisting of two spinors (o, ι). The self-dual Weyl spinor W ′ is a section of
Sym4(S′) given by

W ′ = W0 o o o o + 4W1 o o o ι + 6W2 o o ι ι + 4W3 o ι ι ι +W4 ι ι ι ι,

where the symmetrised tensor product is implicit in this formula. We find that W4 vanishes identically
and that W3 =

1
4∂x∂y ln(a/b). Therefore, a = b exp(α + β), where α = α(x, w, z), β = β(y,w, z).

Now we make a coordinate transformation x → x̃(x, w, z), y → ỹ(y,w, z) such that ∂ ỹ/∂ y =
exp(−β) and ∂ x̃/∂x = exp(α). Finally, we redefine (p,q,r) and conformally rescale the resulting
metric by b−1 exp(−α). This puts the metric in form (13), with the corresponding null tetrad given
by (17) with a = b = 1. So far our proof has more or less followed the construction of Plebański and
Robinson,35 but now we shall proceed differently. Instead of imposing the Einstein equations, we
shall assume that the remaining three components of W ′ vanish. This gives coupled system (14). �

System (14) possesses the Lax pair [X1,X2] = 0, where X1 and X2 are λ-dependent vector
fields,

X1 = ∂w − p∂x − q∂y + λ∂y + [m − λ(px + qy)]∂λ, (18)
X2 = ∂z − q∂x − r∂y − λ∂x + [n − λ(qx + ry)]∂λ,

where m,n are given by expressions (15). This Lax pair is a coordinate realization of the general
twistor distribution LA = (X1,X2) on the projectivized spin bundle S′ given by

LA = πA′eAA′ − πA′πB′πC
′
ΓAA′B′C′

∂

∂λ
, (19)

where the indices A,B, A′,B′, . . . take values 0 or 1, the vector fields eAA′ are dual to one forms (17),
ΓAA′B′C′ are components of the spin connection, and πA′ = (1, λ) are homogeneous coordinates on
the fibres of PS′. Projecting integral surfaces of the distribution spanned by X1 and X2 from the
correspondence space M4 × RP1 with coordinates (w, z, x, y, λ) to M4, we obtain a 3-parameter
family of null surfaces (α-surfaces) of the conformal structure g. The spectral parameter λ on RP1

is a coordinate on the circle of α-surfaces at each point of M4. Conformal structure (13) can be read
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off the principal symbol of system (14). Indeed, the principal symbol of (14) equals Q3, where

Q = ∂w∂x + ∂z∂y − p ∂2
x − 2q ∂x∂y − r ∂2

y,

and the inverse matrix of the symmetric bivector Q defines conformal structure (13).
Theorem 2 states that a further simplification is possible, so that ASD conditions reduce to

a system of 2 third-order PDEs for 2 functions. The proof below uses one of the equations from
Proposition 3.1 as integrability conditions.

Proof of Theorem 2. Rewrite the first equation in (14) as (px + qy)x + (qx + ry)y = 0, which
implies the existence of a function s such that px = sy − qy and ry = −sx − qx. These two equations
can again be regarded as the integrability conditions for the existence of two functions F and G on
M4 such that

p = Fy, q = −(Fx + Gy)/2, r = Gx.

The remaining two equations in (14) now yield (6).
To exhibit a simple Lax pair for (6), we shall make a linear transformation (null rotation) of the

frame of S′which does not change metric (16)

e11′ → e11′ + γe10′ = dy − Gydw + Gxdz, e01′ → e01′ + γe00′ = −dx − Fydw + Fxdz,

where γ = (Fx − Gy)/2. In this spin frame, Lax pair (19) gives (7). �

B. Anti-self-duality equations and torsion-free ODE systems

In the spirit of Cartan, it was shown by Grossman24 that there is a one-to-one correspondence
between ASD conformal structures in signature (2,2) and systems of second-order ODEs with
vanishing generalized Wilczynski invariants (torsion-free systems in his terminology). In particular,
Grossman has shown that a generic torsion-free system depends on 6 arbitrary functions of 3 vari-
ables. Canonical form (5) of the ASD metric can be directly derived from Grossman’s approach:8 if
a torsion-free system of 2 ODEs is of the form

W ′′ = G(X,W, Z,W ′, Z ′), Z ′′ = F(X,W, Z,W ′, Z ′),
(here prime denotes differentiation by X), then the solution space M4 can be parametrized by
fixing X , say, X = 0, and defining (w, z, x, y) to be the initial conditions: w = W (0), z = Z(0), y =
W ′(0), x = −Z ′(0). The conformal ASD structure on M4 is then defined by demanding that points in
the (X,W, Z) space correspond to totally null α-surfaces in M4. In the chosen coordinates, this leads
to formula (5), where F,G are evaluated at X = 0, see Ref. 8 for details of this construction.

C. Anti-self-duality equations in doubly biorthogonal coordinates

It was demonstrated in Ref. 23 that any (analytic) four-dimensional metric can be brought into
block-diagonal form,

g =

*.....
,

a1 a2 0 0
a2 a3 0 0
0 0 b1 b2

0 0 b2 b3

+/////
-

.

Coordinates of this type are known as doubly biorthogonal. They depend locally on 4 arbitrary func-
tions of 3 variables. Using the conformal freedom to set det g = 1, one can show that the equations
of self-duality reduce to a (complicated) system of 5 second-order PDEs for the 5 (independent)
functions among ai and bi. The general solution of this system depends locally on 10 arbitrary func-
tions of 3 variables. Since biorthogonal coordinates exist with the freedom of 4 arbitrary functions
of 3 variables, this is again in agreement with the fact that self-dual structures depend locally on
10 − 4 = 6 arbitrary functions of 3 variables.
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D. Reductions of self-duality equations

ASD equations possess several geometric reductions of interest.
Hyper-Hermitian case: this case is characterized by the existence of a Lax pair that does not
contain derivatives with respect to the spectral parameter.15,7 Taking into account (7), this leads to a
pair of second-order PDEs,

Q(F) = 0, Q(G) = 0. (20)

This system was first derived in Ref. 22, where the corresponding conformal structures were
referred to as “weak heavenly spaces.” The dispersionless Lax pair for system (20) is

X1 = ∂w − Fy∂x + Gy∂y + λ∂y, X2 = ∂z + Fx∂x − Gx∂y − λ∂x.

In Ref. 15, it was shown that all (pseudo) hyper-Hermitian conformal structures locally arise from
solutions to (20). The general solution to this system depends on 4 arbitrary functions of 3 variables.
In the special case where F = θy,G = θx, the hyper-Hermitian system reduces to Plebanski’s 2nd
heavenly equation,

θyz + θxw + θ
2
xy − θxxθy y = 0, (21)

and the metric g is Ricci–flat. It depends on 2 arbitrary functions of 3 variables.
Null Kähler case: the ansatz F = θy,G = θx reduces ASD equations (6) to a single fourth-order
PDE for θ,19

Q( f ) = 0, f = θyz + θxw + θ
2
xy − θxxθy y,

where Q = ∂w∂x + ∂z∂y − θy y∂x2 − θxx∂y2 + 2θxy∂x∂y.
(22)

In this case, the self-dual two form Σ = dw ∧ dz corresponding to the two-parameter family of
α-surfaces from the proof of Theorem 3.1 is covariantly constant. Conversely, it was demonstrated
in Ref. 19 that any ASD metric g that admits a self-dual covariantly constant two-form Σ such that
Σ ∧ Σ = 0 is locally given by a solution to (22). The dispersionless Lax pair for (22) is

X1 = ∂w − θy y∂x + θxy∂y + λ∂y + f y∂λ,

X2 = ∂z + θxy∂x − θxx∂y − λ∂x − f x∂λ.

In the special case f = 0, we recover second heavenly equation (21).
Other reductions: The coordinate system introduced in Proposition 3.1 is adapted to a choice
of a preferred two-parameter family of α-surfaces determined by a section ι ∈ Γ(S′) or equiva-
lently by a Frobenius-integrable simple two form Σ. There are other possibilities which single
out a non-degenerate two form Σ such that Σ ∧ Σ , 0. This requires a choice of two independent
sections of S′ and leads to PDEs generalising Plebanski’s 1st heavenly equation.34,5 In particular,
the Przanowski equation36 describing all ASD Einstein metrics with non-vanishing cosmological
constant is written down in such coordinates. A Lax pair for this equation has recently been found
in Ref. 26. Its 2nd heavenly form analogous to (21) has been given in Ref. 12.
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