
~ 
ji 

I 

Pilkington Library 

II!!I LO';lghhprough 
., Umverslty 

Author/Filing Title ...... . ~~.":".p~ '.:J> .0 ..... f.l\~f2.A ..... . 

T Vol. No. ............ Class Mark .......................... . 

Please note that fines are charged on ALL 
overdue items. 

0402693035 

~ ~III1 1111111111111111 11 11 11 11111 





ON THE DESIGN AND IMPLEMENTATION 

OFA 

CONTROL SYSTEM PROCESSOR 

by 

Rene Annando Cumplido Parra 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements 

for the award of 

Doctor of Philosophy 
of 

Loughborough University 

2001 

© by Rene Annando Cumplido Parra 



U ~-4'~!ghh,orough 
;'0 Ur:~~'f""":.tv 

Pi; :)~rary . ,"" .•.. 

D:!te ':k "'l .. , . '. 
Class 

~",,:;. :.. '.' .. ",. .... 
Ace 

6't ~ ?::-~j}~~L-~.' No, 



ABSTRACT 

Abstract 

In general digital control algorithms are multi-input multi-output (MIMO) recursive 

digital filters, but there are particular numerical requirements in control system 

processing for which standard processor devices are not well suited, in particular 

arising in systems with high sample rates. There is therefore a clear need to 

understand the numerical requirements properly, to identity optimised forms for 

implementing control laws, and to translate these into efficient processor 

architectures. By taking a considered view of the numerical and calculation 

requirements of control algorithms, it is possible to consider special purpose 

processors that provide well-targeted support of control laws. 

This thesis describes a compact, high-speed, special-purpose processor which offers 

a low-cost solution to implementing linear time invariant controllers. The overall 

approach involves re-formulating the controller into a particular discrete state-space 

representation, optimised for numerical efficiency using the 1i operator, then 

programming this into a custom Control System Processor (CSP) implemented 

using a 'programmable ASIC' device. 

The numerical optimisation means that the real-time processing is more accurate, 

thus the wordlength required to represent the variables and coefficients is reduced. 

These representations of coefficients and state variables are satisfactory for a wide­

range of controllers. This novel architecture, which incorporates a targeted 

multiplier-accumulator (MAC) unit optimised for calculating the sum of products, 

combined with the use of a small and specialised instruction set, presents cost and 



ABSTRACT· 

perfonnance benefits for control applications over traditional architectures. The 

esP's dedicated architecture and careful numerical fonnulation ensure that it will 

perfonn detenninistically in a real-time embedded control environment. 

The design of a simplified hardware multiply-and-accumulate unit resulted in a 

high-speed, low power, low cost numerically stable processor for embedded control. 

A comprehensive set of tests has shown that the esp operates correctly on a variety 

of filter types over a range of input conditions. The control system processor was 

successfully implemented and verified on a programmable device. The results of a 

benchmark indicate that the control system processor outperfonns some 

commercially available high-speed processors by a significant margin when 

implementing the example controllers. 

The esp is a compact, high-speed special purpose processor, which enables a low­

cost solution to a wide range of L TI control problems. It offers a very effective 

implementation for embedded control and it is applicable to any solution of HR 

filters. The modest gate count of the esp confers a number of advantages, namely 

reduced cost due to small die size and simpler packaging, and low power. 

11 



ACKNOWLEDGEMENTS 

Acknowledgements 

I wish to thank my supervisors Professors Simon Jones and Roger Goodall, for their 

support and guidance during my research. I also thank Professor Steve Bateman for 

his help and encouragement. I have been fortunate to have the opportunity to work 

with and learn from them. I owe them my deepest gratitude. 

For my financial support I thank the National Council for Science and Technology 

of Mexico (CONACyT), without whom this work would have not been possible. 

I sincerely thank all members of the Electronic Systems Design Group at 

Loughborough University, both past and present, for their friendship and for all 

those interesting discussions at lunchtime. 

By far the most important support came from my family. I thank my parents, Rene 

and Elba, for the education and encouragement I have always received at home. I 

also thank my wife, Claudia, for her love and support throughout these years. 

Finally, I must thank the rest of my family and friends. I am much indebted to all of 

them. 

iii 



TABLE OF CONTENTS 

Table of contents 

Chapter 1 Introduction 

1.1 Introduction 
1.2 Motivation 
1.3 Objectives of tbe researcb 
1.4 Structure of tbe tbesis 

Chapter 2 Digital Control Issues and 
Literature Survey 

2.1 Objectives of tbe cbapter 

2.2 Control systems 
2.2.1 Approaches to implement control systems 
2.2.2 Controller design 
2.2.3 State-space approach 

2.3 Desired cbaracteristic of a digital controller 
2.3.1 Fast multiply-accumulate operations 
2.3.2 Memory bandwidth 
2.3.3 Sample rate 
2.3.4 Calculation delay 
2.3.5 Predictable, repeatable behaviour 
2.3.6 Fixed-point and floating-point arithmetic 
2.3.7 Effects of finite word length and quantisation 

2.4 Hardware for digital controllers 
2.4.1 General purpose processors 
2.4.2 Digital signal processors 
2.4.3 Microcontrollers 
2.4.4 General purpose parallel processors 
2.4.5 Fuzzy logic controllers 
2.4.6 Special purpose processors 
2.4.7 Combined approaches 

v 

1 

1 
2 
4 
5 

7 

7 

7 
8 
9 

10 

11 
11 
11 
12 
13 
14 
14 
15 

16 
17 
18 
19 
20 
21 
21 
22 



2.5 Software issues 
2.5.1 Software structure 
2.5.2 Programming languages 
2.5.3 Numerical subroutines 

2.6 Literature survey 
2.6.1 General-purpose architectures 
2.6.2 Dedicated architectures 
2.6.3 Reconfigurable architectures 
2.6.4 Comments on the literature survey 
2.6.5 Selected approach to implement the CSP 

2.7 Summary and conclusions ofthe chapter 

Chapter 3 Research overview 

3.1 Objectives of the chapter 

3.2 Identification of investigations 

3.3 Methodology 

3.4 Experimental vehicle description 
3.4.1 Software simulation 
3.4.2 Technology 
3.4.3 Hardware design and simulation 
3.4.4 Hardware verification 

3.5 Design and experimental assumptions 

Chapter 4 Controller formulation 

4.1 Objectives of the chapter 

4.2 State-space description of control systems 

4.3 Digital operators 
4.3.1 z-operator 
4.3.2 1) -operator 

4.4 Modified controller formulation 
4.4.1 Formulation description 
4.4.2 Computation requirements 
4.4.2 Storage requirements 

VI 

TABLE OF CONTENTS 

23 
23 
23 
24 

25 
26 
27 
28 
30 
30 

31 

34 

34 

34 

35 

36 
37 
38 
40 
41 

42 

44 

44 

44 

47 
47 
49 

53 
53 
54 
56 



TABLE OF CONTENTS 

4.4.3 Summary of modified canonic 1) formulation 

4.5 Numerical representations 
4.5.1 Coefficient format 
4.5.2 State variable fonnat 

4.6 Summary of the chapter 

Chapter 5 CSP hardware implementation 

5.1 Objectives of the chapter 

5.2 Mapping the control algorithm into hardware 
5.2.1 Software model 
5.2.2 Mapping process 
5.2.3 Architecture options 

5.3 Processing element 
5.3.1 MAC unit 
5.3.2 Array multiplier 
5.3.3 Shifter 
5.3.4 Adder 
5.3.5 MAC unit simulation 

5.4 Memory system 
5.4.1 Memory architecture 
5.4.2 Data memory 
5.4.3 Program and initial data memories 
5.4.4 Mapping input values into data memory 
5.4.5 Data memory organisation 
5.4.6 Addressing mode 

5.5 Control 
5.5.1 Program counter 
5.5.2 Instruction handler 

5.6 CSP architecture 

5.7 Pipelining 

5.8 Hardware complexity and clock speed 
5.8.1 Parameters used for hardware implementation 
5.8.2 Synthesis results 
5.8.3 Hardware testing 

5.9 System interface 

vii 

58 

59 
60 
60 

62 

64 

64 

64 
65 
65 
66 

68 
68 
69 
70 
71 
71 

73 
73 
74 
75 
75 
76 
76 

77 
78 
79 

79 

81 

82 
82 
82 
92 

93 



TABLE OF CONTENTS 

5.10 Summary ofthe chapter 94 

Chapter 6 CSP software 96 

6.1 Objectives of the chapter 96 

6.2 Instruction set 96 
6.2.1 Description of the instructions 96 
6.2.2 MAC instruction 98 
6.2.3 READ instruction 99 
6.2.4 WRITE instruction 100 
6.2.5 WRITEPC instruction 100 

6.3 Software structure 101 
6.3.1 Program scheme 101 
6.3.2 Calculation schedule 102 
6.3.3 Data dependency 105 
6.3.4 CSP program size 106 

6.4 Software suite 106 
6.4.1 CSP model 106 
6.4.2 Signal generator 107 
6.4.3 Program generator 108 

6.5 Summary of the chapter 109 

Chapter 7 CSP system test and benchmark 110 

7.1 Objectives ofthe chapter 110 

7.2 Methodology 110 

7.3 Example controllers description 111 
7.3.1 Validation example III 
7.3.2 Example controllers 112 

7.4 Review of selected processors 117 
7.4.1 Texas Instruments' TMS320C31 117 
7.4.2 Texas instruments' TMS320C54 117. 
7.4.3 Infineon's CI67 117 
7.4.4 Intel's StrongARM SA-I 10 118 
7.4.5 Intel's Pentium III 118 

7.5 Benchmarking 119 
7.5.1 Assumptions and considerations for benchmarking 119 

viii 



7.5.2 Benchmark results 

7.6 Simulation results 

7.7 Summary of the chapter 

Chapter 8 Conclusions 

8.1 Objectives of the chapter 

8.2 Review of objectives and investigations 

8.3 Conclusions 

8.4 Analysis of results 
8.4.1 Achievements of this work 
8.4.2 Limitation of this work 

8.5 Future work 
8.5.1 Extension of current research 
8.5.2 Other investigations 

8.6 Summary 

Appendix A General CSP program 

Appendix B Sets of Coefficients used 
for simulations 

References 

Publications 

IX 

TABLE OF CONTENTS 

121 

127 

132 

134 

134 

134 

135 

137 
137 
137 

138 
l38 
139 

140 

141 

145 

153 

161 



LIST OF FIGURES 

List of figures 

Figure 2.1 Block diagram of a typical feedback control system 8 

Figure 2.2 Block diagram of a typical digital feedback control system 9 

Figure 2.3 Typical plot oflocation of instruction being executed 

versus time of a program that performs a control algorithm 25 

Figure 3.1 Summary of design methodology 37 

Figure 3.2 Actel ProASIC architecture 38 

Figure 3.3 Example of a 256x9 two read one write memory 39 

Figure 3.4 Testbench structure 40 

Figure 3.5 ProASIC design flow [ActeIOOa] 41 

Figure 3.6 Serial tester 42 

Figure 4.1 Direct form II 2nd order z-filter 48 

Figure 4.2 Operation I) -I expressed in terms of z-I 51 

Figure 4.3 Direct form II 2nd order I) -filter 52 

Figure 4.4 Modified form I) -filter 53 

Figure 4.5 Coefficient format 60 

Figure 4.6 State variable format 62 

Figure 5.1 Processing element 68 

Figure 5.2 MAC unit 69 

Figure 5.3 Block diagram of the array multiplier 70 

Figure 5.4 MAC unit simulation waveform 72 

Figure 5.5 Data memory organisation 74 

Figure 5.6 Mapping an input sample into state variable format 75 

Figure 5.7 Data memory organisation 77 

x 



LIST OF FIGURES 

Figure 5.8 Program counter algorithm 78 

Figure 5.9 Program counter hardware 79 

Figure 5.10 CSP block diagram 81 

Figure 5.11 Pipelined MAC unit 86 

Figure 5.12 CSP simulation waveform 88 

Figure 5.13 Pipelined MAC unit simulation waveform 89 

Figure 5.14 MAC unit layout 90 

Figure 5.15 CSP layout 91 

Figure 5.16 Parallel tester results for the CSP (Shmoo Plot) 92 

Figure 5.17 CSP interface 94 

Figure 6.1 MAC instruction format 98 

Figure 6.2 READ instruction format 99 

Figure 6.3 WRITE instruction format 100 

Figure 6.4 WRITEPC instruction format lOO 

Figure 6.5 CSP program scheme 102 

Figure 6.6 Calculation schedule within the algorithm loop 103 

Figure 6.7 Segment of a CSP program \04 

Figure 6.8 CSP program that implements a 2nd order SISO 

controller 108 

Figure 7.1 4th order SISO filter in modified canonic form 8 112 

Figure 7.2 7th order two-input two-output example controller 113 

Figure 7.3 13th order three-input one-output Maglev loop controller 115 

Figure 7.4 46th order twelve-input four-output Maglev Vehicle 

Controller 116 

Figure 7.5 C program for a 4th order SISO filter 119 

Figure 7.6 Segment of assembly code for the TMS320C31 DSP 124 

Figure 7.7 Segment of assembly code for the CI67 microcontroller 125 

Figure 7.8 Segment of assembly code for the Strong-ARM processor 126 

Figure 7.9 CSP instructions example 126 

Figure 7.10 Response of 4th order filter to step inputs of 10 and 100 127 

Figure 7.11 Response of 4th order filter to sinusoid input of 0.1 Hz 128 

Figure 7.12 Response of 4th order filter to sinusoid input of 1 Hz 128 

xi 



LIST OF FIGURES 

Figure 7.13 Response of 4th filter to step inputs of I and 2 sampled 

at 5 and 10kHz 129 

Figure 7.14 Response of 4th filter to step inputs of I and 2 sampled 

at 10kHz with 5 extra bits for underflow 130 

Figure 7.15 Response of the 13th order controller to step inputs 

of 512 sampled at I kHz applied simultaneously to the 

three inputs 131 

Figure 7.16 Response of the 13th order controller to a sinusoid input 

of 0.1 and I Hz sampled at I kHz applied to input I and 

step inputs of magnitude 512 applied to inputs 2 and 3 131 

Figure 7.17 Output I response of the 46th order controller to step 

inputs of 512 sampled at I kHz applied simultaneously 

to all three inputs 132 

xii 



LIST OF TABLES 

List of tables 

Table 4.1 Number of values in coefficient format 57 

Table 4.2 Number of values is state variable format 58 

Table 5.1 CSP complexity 83 

Table 5.2 CSP delay information 84 

Table 5.3 CSA adder delay information 85 

Table 5.4 CLA adder delay information 85 

Table 5.5 Multiplier delay information 85 

Table 5.6 Shifter delay information 86 

Table 5.7 MAC unit delay information 86 

Table 6.1 CSP instruction set 97 

Table 6.2 Operation code for the CSP instructions 97 

Table 6.3 Additional operations that can be implemented with 

the MAC instruction 99 

Table 6.4 Test signal generated by the data generator 107 

Table 7.1 Processors included in the benchmark III 

Table 7.2 Summary of processors' features 118 

Table 7.3 Data format used to represent the state variables and 

coefficients for each processor 120 

Table 7.4 Compilers used to generate the assembly code used to 

evaluate the processors' performance 120 

Table 7.5 Benchmark results for the 4th order filter 122 

Table 7.6 Benchmark results for the 7th order controller 122 

Table 7.7 Benchmark results for the 13th order controller 122 

xiii 



Table 7.8 

Table 7.9 

Table 7.10 

--------------------------------------

Benclunark results for the 46th order controller 

Nonnalised computation time (CSP = I) 

Complexity and power consumption comparison 

xiv 

LIST OF TABLES 

123 

123 

126 



CHAPTER ONE INTRODUCTION 

Chapter 1 

Introduction 

1.1 INTRODUCTION 

Rapid advances in electronics especially in the techniques used to manufacture 

integrated circuits, parallel to the development of new techniques and 

methodologies of modern control theory, have already had, and will continue to 

have a major impact on a number of industrial disciplines and applications. The 

need to provide cost-effective implementation of control systems becomes evident 

especially in high-performance electro-mechanical applications. Some examples can 

be found in industrial drives, automotive and aerospace control, where controllers 

are usually embedded into the system. Embedded real-time control is a particularly 

demanding application domain since the calculations must often be performed to 

meet hard time deadlines. To satisfy the demands of these applications, control 

systems must calculate complex recursive digital filters in real time. 

This thesis investigates a method and processor architecture for the construction of 

high-performance processors targeted at linear time-invariant (L TI) control. The 

overall methodology involves re-formulating the controller formulation into a 

particular discrete state-space representation, which is optimised for numerical 

efficiency, then programming this into a specially-designed Control System 

Processor (CSP) implemented using a 'programmable ASIC' device. 



CHAPTER ONE INTRODUCTION 

1.2 MOTIVATION 

Digital control systems are characterised by the algorithms used. The algorithms 

specify the arithmetic operations to be performed but do not specify how that 

arithmetic is to be implemented. The selection of a specific technology is affected in 

part by the required speed and arithmetic factors derived for the control algorithm, 

resulting in a variety of diff~rent combinations of algorithms, hardware, and 

software. The availability of control processing solutions, which are both efficient 

and straightforward to use, are key elements for the achievement of robust and cost­

effective solutions. 

The availability of cheap and powerful digital computing together with powerful 

tools for analysis, design and simulation, have dramatically transformed control 

engineering, with digital processors now used to perform a wide range of roles both 

in embedded processing and supervisory control [Irwin98]. 

As commercially available high-speed general-purpose processors have become 

faster and more complex, they have increased the competitiveness of digital 

implementations of control systems. Some processor architectures include a number 

of additional features that facilitate the implementation of digital control. Also, 

these processors allow new features to be added to an existing control system by 

modifying only the software that implements the control algorithm. This is possible 

due to the multitude of functions these processors are designed to perform and the 

powerful software development tools that take full advantage of those features. 

All the advantages of using general-purpose processors come with a cost. The 

control algorithm has to be artificially partitioned and constrained to meet the 

physical bus widths and mapped on the instruction set. Furthermore, any parallelism 

inherent in the algorithm will be lost when it is translated into the serial code 

performed by the processor. Operations such as multiplication, that are essential to 

perform digital control, are usually decomposed into a sequence of simpler 

operations performed by numerical routines. Additionally, the flexibility provided 

by the processor is not needed to implement many digital control applications, and 

2 



CHAPTER ONE INTRODUCTION 

for any given clock cycle, only a small portion of the logic elements on the device 

may be doing something associated with the control process. Furthermore, the 

execution time for control system software can be difficult to predict due to 

software complexity and resources like cache memory, pipelining, interruptions, etc. 

Other restrictions on the controller device such as power consumption and cost 

might prove to be difficult to overcome, and as a consequence these processors are 

often not considered when implementing low-cost systems. 

Real-time operation is critical in control applications, this means that even if a 

correct result is obtained, it will be useless if it appears too late. Thus, it is required 

that the controller processes data at a speed that is closely related to the sample rate 

of the system inputs. Also, because the loss of real-time operation is not tolerated, 

the controller behaviour must be predictable. 

Program control in digital controllers must be oriented towards fast execution of 

loops of code. While zero-overhead looping is a desired feature, branching is rarely 

needed [Martin98]. Precision and data types vary and compact data storage is 

important; normal byte boundaries may prove inadequate for some applications with 

special requirements of precision and dynamic range [Gooda1l92]. 

In almost any application special-purpose processors provide better performance 

than programmable processors due to their specialised nature. The possibility of 

designing a special-purpose processor for control systems offers potential benefits. 

It will substantially increase the processing capacity and reduce the size of the 

system and consequently power consumption. Additionally, by exploring the 

computational properties of the algorithm to be implemented and designing 

architectures that match the algorithm and not vice versa, special-purpose 

processors offer a reasonable approach when implementing applications with the 

high sampling rates needed in high-performance closed-loop control systems. 

Furthermore, for high-volume products, special-purpose processors may also be less 

expensive as only those functions needed by the application are implemented. 

3 



CHAPTER ONE INTRODUCTION 

Advances in system design capabilities and semiconductor technology have made 

possible to economically design custom architectures, so new innovative systems 

solutions for use in dedicated applications such as digital control can be explored. 

Modem programmable devices, such as Field Programmable Gate Arrays (FPGAs), 

offer many advantages when used as a prototype in systems design. They also offer 

a low cost alternative for fast experimental work and give the designer the 

opportunity to modify the design at the modelling and hardware stages. Efficient 

real-time implementation requires attention to both algorithm and architecture, and 

also a combination of control engineering and electronic system design skills 

Implementations using special-purpose processors and general-purpose processors 

are not mutually exclusive. In fact, they may be integrated to provide a more 

complex solution where the special-purpose processor performs the computationally 

demanding operations and the general-purpose processor performs the additional 

functions needed to implement real-time digital control. 

1.3 OBJECTIVES OF THE RESEARCH 

The aim of this research is to investigate whether by providing customised hardware 

support for control we can provide a low cost, high-performance embedded 

controller. The system must be efficient (low complexity and high speed), capable 

of handling most types of advanced L TI controllers and perform deterministically in 

a real-time embedded control environment. Also, it is desired that the system 

minimises computational delay and has large dynamic range. 

Digital control can be seen as the arithmetic processing of signals sampled at regular 

intervals to obtain desired signals at the output [Nekoogar99). These arithmetic 

operations are dictated by the control algorithm, thus, to implement an efficient 

digital controller we must understand the basic operations and functions contained 

within the control algorithms. 

4 



CHAPTER ONE INTRODUCTION 

By analysing strengths and shortcomings of current digital controllers and the 

system requirements, several issues regarding the type of architecture can be 

investigated. Some of most important issues are: general arithmetic architecture, 

instruction set, ability to perform arithmetic operations in one cycle, amount of 

storage space, bus architecture, and pipelining. 

We must select some example controllers to show that the proposed architecture can 

satisfy a range of high sample rate controller and to prove the numerical aspects of 

its operation, and to produce a benchmark comparison that includes some of the 

most popular processors used for control. Also, a method to implement the 

controllers using the knowledge gained from this research has to be proposed. This 

includes the development of software utilities to support the implementation of 

different control algorithms. 

1.4 STRUCTURE OF THE THESIS 

Chapter I presents an introduction, motivations and objectives of this research 

work. 

Chapter 2 provides a definition of a control system and presents a general brief 

review of the control theory concepts needed for the appreciation of this work. It 

includes a review of several processor devices used to implement digital controllers 

and highlights the potential benefits of using special-purpose architectures. It 

includes a section that describes software issues related to the implementation of 

digital control systems. Finally, a literature survey of related work is presented and 

analyses the direction to go. 

Chapter 3 further explains the objectives of this work. It identifies the investigations 

to be carried out and details the methodology and tools used to fulfil the objectives. 

Also, it describes the environment in which the experiments are carried out and the 

assumptions taken to perform the experiments. 

5 



CHAPTER ONE INTRODUCTION 

Chapter 4 presents the fundamentals of modern digital control systems design. It 

analyses the structure adopted to implement the control algorithm and highlight its 

advantages when compared to traditional approaches. Also, it identifies crucial 

aspects to be considered when implementing an efficient digital controller. 

Chapter 5 explains the implementation and essential components of the CSP 

architecture. It explains the mapping methodology used to create the architecture 

based on the selected control formulation. A detailed description of the CSP core, 

including the special-purpose multiply-accumulator unit is given. Finally, it presents 

the results of synthesising the architecture in terms of speed and complexity. 

Chapter 6 explains the software scheme adopted to create the CSP program. It 

describes the CSP instruction set and instruction format, and gives a brief 

description of the software suite that supports the CSP concept. 

Chapter 7 presents the results of benchmarking the CSP against other processors. It 

describes the controller examples and processors used in the benchmark. It explains 

the assumptions taken for the benchmarks. Finally, it shows and analyses some 

simulation results. 

Chapter 8 concludes this thesis and evaluates the results obtained in this work by 

discussing the strengths and shortcomings of the proposed architecture. Finally, a 

framework of potential future work is presented. 

6 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

Chapter 2 

Digital Control 
Survey 

2.1 OBJECTIVES OF THE CHAPTER 

Issues and Literature 

This chapter presents a review of the digital control systems issues related to this 

work. It discusses several approaches to implementing digital controllers and 

reviews relevant past work. The objectives are: 

• To review relevant background on digital control systems 

• To assess current approaches used to implement digital controllers 

• To review relevant past work on special-purpose architectures specially those 

applied to control systems 

2.2 CONTROL SYSTEMS 

A control system comprises subsystems and processes (or plants) assembled for the 

purpose of controlling the output of processes [NiseOO]. It provides an output or 

response for a given input or stimulus. Control systems are found in a wide range of 

applications, from home appliances to the aerospace industry. 

Control systems can be closed loop or open loop. Figure 2.1 shows a simplified 

block diagram of a typical closed loop or feedback control system. The plant is the 

7 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

process to be controlled, the input represents a desired response, and the output is 

the actual response. The feedback path feeds the plant output back to the input side 

of the system; thus the system can correct the output to compensate the effects of 

any disturbance. Open loop systems do not include the feedback path, making them 

unable to monitor or compensate any disturbances, although they are simpler and 

less expensive. 

Controller Plant "-_____ Output 

Feedback 

Figure 2.1 Block diagram of a typical feedback control system 

2.2.1 Approaches to implement control systems 

The controller shown in Figure 2.1 is usually an electronic circuit that operates on 

an analogue signal and outputs the same type of signal. In this case, the system is 

known as an analogue control system. Analogue systems operate in real time and 

are capable of a very high bandwidth, which is equivalent to having an infinite 

sampling frequency, so that the controller is effective at all times. However, their 

elements are usually hard-wired, so that their characteristics are fixed, making it 

more difficult to make design changes. Component ageing and sensitivity to 

environmental changes can be quite severe. Analogue components are also 

susceptible to noise problems. 

As Figure 2.2 indicates, digital controllers can replace analogue controllers in 

control system applications. A continuous input signal in sampled by an analogue­

to-digital (ND) converter to produce a sequence of pulses, which are then used as 

input to digital controller. Then, the outputs of the digital controller drive the plant 

after they are converted to analogue signals by the digital-to-analogue (01 A) 

converter. 

8 



CHAPTER TWO 

Input + 

DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

AID 
Digital 

Controller 

Feedback 

output 

Figure 2.2 Block diagram of a typical digital feedback control system 

2.2.2 Controller design 

Despite the contrasts described above between digital and analogue control systems, 

the techniques used to design and analyse both type of systems exhibit some 

similarities. When modelling controller for a physical system, the designer converts 

the description of the system into a mathematical model, which then can be 

implemented in several ways. 

Two approaches are available for the analysis and design of feedback control 

systems. The first is known as the classical, or frequency-domain, technique. This 

approach is based on converting a system's differential equation to a transfer 

function, thus generating a mathematical model that algebraically relates a 

representation of the output to a representation of the input. An advantage of these 

techniques is that they rapidly provide stability and transient response information. 

The primary disadvantage of the classical approach is its limited applicability: it can 

be applied only to linear, time-invariant systems or systems that can be 

approximated as such [NiseOO]. 

The digital and analogue control systems are usually expressed in terms or 

frequency-domain transfer functions that are ratios of Laplace transforms or z­

transforms [Middleton90j. These mathematical models describe the system's input­

output relationships. Design and analysis of such systems using techniques such 

root-locus, Nyquist and Bode, is known as classical control theory, which has 

existed for more that 50 years [Nekoogar99, NiseOO]. 

9 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

We can also represent digital and analogue control systems in the time domain by 

employing state-variable techniques and state-space models. These models also 

describe the input-output relationships, but additionally provide an internal 

description of the system. These models are especially useful when modelling 

mUltiple-input multiple-output (MIMO) systems. State-variable techniques and 

state-space models are included is modem control theory [NiseOO]. 

2.2.3 State-space approach 

The state-space approach is a unified method for modelling, analysing, and 

designing a wide range of systems [NiseOO]. Although this representation of the 

system still involves a relationship between the input and output signals, it also 

involves an additional set of variables, called state variables. The mathematical 

equations describing the system, its input, and its outputs are usually divided in two 

parts: 

• A set of mathematical equations relating the state variables to the input signal 

• A second set of mathematical equations relating the state variables and the 

current input to the output signal 

The essential matter when implementing a controller is performance and although 

they require more complex mathematics than transfer functions, state-space 

methods provide better performance than classical methods. The state variables 

provide information about all the internal signals in the system. As a result, the 

state-space description provides a more detailed description of the system than the 

input-output description. It can be used to represent non-linear systems. Also, it can 

handle, conveniently, systems with nonzero initial conditions. Time-variant systems 

can be represented in state-space. Many systems do not just have a single input and 

a single output. Multiple-input, multiple output systems can be compactly 

represented in state space ·with a model similar in form and complexity to that used 

for single-input, single-output systems. 

iO 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

2.3 DESIRED CHARACTERISTIC OF A DIGITAL CONTROLLER 

Nonnally, control algorithms are well defined and present many characteristics that 

can be exploited to achieve efficient execution. Some of the desired features of the 

digital controller are explained below. 

2.3.1 Fast multiply-accumulate operations 

The most common arithmetic operation to be perfonned is of the type 

N 

Y = ~::aiXi (2.1) 
i=1 

Here, a sequence of N signal values ai is multiplied by a corresponding sequence of 

signal values Xi, for i=l, 2, ... ,N. 

The number of input/output operation is relatively small when compared with the 

number of arithmetic operations. These features imply that the main load falls on 

the arithmetic unit (AU), and therefore it is essential to design an AV that executes 

operations on sum of products efficiently. 

2.3.2 Memory bandwidth 

An important consideration is the bandwidth of the data transfer between memory 

and the AV. It is crucial that the memory-AV bandwidth and the AV execution rate 

are balanced, otherwise one will be idle waiting for the other to finish its tasks. This 

means that the controller must complete several accesses to memory in a single 

instruction cycle, namely, fetching an instruction while simultaneously fetching 

operands for the instruction or storing the result of the previous instruction to 

memory. 

11 



---------- --

CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

2.3.3 Sample rate 

A key characteristic of a digital control system is the sample rate. It is the rate at 

which analogue input values at sampled or processed and combined with the 

algorithm complexity determines the required speed of the controller 

implementation. 

From signal processing theory [Proakis96], we know that the minimum sampling 

frequency has to be greater than twice the highest frequency component of the 

signal. However the filter required to perform the reconstruction is infinite 

dimensional and also, strictly, real signals do not have bandwidth limits (that is, 

there are still small frequency components outside the bandwidth) [Middleton90]. 

Thus, whilst there are some similarities between sampling for signal processing 

applications and control systems, when implementing a digital control systems it is 

often required to sample at a higher rate than the theoretical minimum [Feuer96] (at 

least 10 times). This has a direct effect in the processing power required by the 

digital controller. 

In the previous paragraph we discussed that slow sampling usually results in poorer 

control performance. On the other extreme, excessively fast sampling results in 

similar loss in performance due to the difficulty to represent the small signal values 

involved in the calculations [Middleton90]. This is further explained in Sections 

2.3.6 and 2.3.7. 

The sampling rate depends on many signal-processing and system performance 

factors. The minimum sampling period is sometimes limited by the conversion 

times of the analogue-to-digital converters. It is important that the sampler device 

samples at a sufficiently fast rate so that the information contained in the input 

signal is not lost during the conversion. However, in complex control systems, the 

sampling rates may also be limited by the characteristics of the digital controller that 

processes the data, especially when modest devices are used. 

12 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

The stability of a closed-loop digital control system is closely related to the 

sampling rate. The failure to maintain the necessary processing rates may result in a 

serious malfunction, this is because low sampling rates have a negative effect on the 

stability and as a consequence on the overall system performance. In such cases, the 

behaviour and output of the system would be impossible to predict. Therefore, the 

necessity of providing high sampling rate capability in control systems becomes 

evident. 

2.3.4 Calculation delay 

Independently of the technology selected to implement a digital controller, the 

computing time is nonzero. This situation is not important in many applications 

where real-time processing of data is not essential. However, real-time computation 

is necessary in control system applications, thus the time delays in handling the data 

and calculating the output response may have a significant effect on the system 

performance 

Two immediate problems may be identified. Firstly, if the time delay is too large, 

there would not be enough time to complete the necessary computation required to 

complete the algorithm cycle before the next input sample is produced, and 

secondly, the time delay has an adverse effect on the stability of closed-loop control 

systems. Thus, the time delays can not always be neglected when implementing a 

digital controller. 

In the case of programmable processors, the time delay may be obtained by 

analysing the program used to implement the control algorithm along with the 

subroutines that may be called. The number of instructions and the number of 

machine cycles required to execute them will determine the time delay for a 

particular algorithm. In general, it is possible to go through any program and with 

the information provided by the processor documentation, estimate the time 

necessary to complete the program or the time required to reach a particular point in 

the algorithm cycle. 

13 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

2.3.5 Predictable, repeatable behaviour 

To perfonn real-time control, the digital controller must have a predictable 

execution time. Also, it has to complete all the calculations and operations required 

for processing each sample before the next sample arrives. For instance, consider a 

system where the input is received at 20,000 samples per second, the controller must 

be able to maintain a sustained throughput of 20,000 samples per second. However, 

it is important not to make it faster than required. As speed increases, so does the 

cost, power consumption and design difficulty. 

2.3.6 Fixed-point and floating-point arithmetic 

Another important characteristic to detennine the suitability of a digital controller 

for a given application is the type of binary numeric representation used by the 

processor. The numeric representation and the type of arithmetic used can have a 

profound influence on the behaviour and perfonnance of the controller. One of the 

most important decisions taken by the control engineer when implementing an 

algorithm is between the use of fixed-point or floating-point arithmetic. Most 

microcontrollers and early-generation DSPs use fixed-point arithmetic in which 

only a finite amount of word length is available to represent the magnitude of the 

signal or coefficients. Thus, signals and coefficients must be scaled to fit the word 

length provided by the processor. Most of the devices currently used to implement 

digital control use fixed-point arithmetic, especially in cost-sensitive applications 

[BdtiOO, GoodallOO, Schlett98]. 

Fixed-point arithmetic represents the number in a fixed range with a finite number 

of bits of precision (word width). Any number outside of the specified range can not 

be represented. Floating-point arithmetic expands the available range of values. It 

represents the number in two parts: a mantissa and an exponent. The mantissa value 

lies between -\.O and +1.0, while the exponent scales (in tenns of powers of two) 

the mantissa value in order to create the actual value represented. 

14 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

I . 2 exponent va ue = mantIssa X 

One problem is when the width of the processor registers is not sufficient to hold the 

result of the filter arithmetic. This is similar to when the desired output of an 

analogue filter becomes larger than the supply. Thus, the choice of fixed-point or 

floating-point arithmetic is determined by the system requirements in terms of 

dynamic range and precision. The dynamic range is the ratio, usually expressed in 

dB, between the largest and smallest numbers that can be represented. Precision in a 

digital system is dependent upon the accuracy of the arithmetic used. 

Floating-point arithmetic offers an ease-of-use advantage due to the fact that in 

many cases dynamic range and precision are not concern. This increase of dynamic 

range also allows a designer to ignore scaling problems because it reduces the 

probability of overflow. In contrast, on fixed-point processors, sometimes it is 

necessary to scale signals at various stages of the program to ensure adequate 

numeric performance. Unfortunately, floating-point arithmetic is generally slower, 

more expensive and more difficult to implement in hardware. The increased cost 

results from the more complex circuitry required. In addition, the larger word sizes 

of floating-point processors often means that memory and buses are wider, raising 

the overall system cost. 

2.3.7 Effects of finite word length and quantisation 

In general, when implementing a digital controller using a general-purpose 

processor, the value of the input signals is quantised and the internal state variables 

are truncated when their next value is calculated. This is because of the finite word 

lengths used to represent the magnitude of the signals. Thus, it is necessary to scale 

the values of the signals, coefficients and state variables to fit the word length of the 

processor. This can have a profound influence on the behaviour and performance of 

the control system. 

15 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

To implement a digital controller, it is necessary to map the control algorithm into 

some kind of architecture that will actually perform the task. There are many 

alternatives, it might be implemented in software on general-purpose processors, 

microcontrollers, or digital signal processors, or it might be implemented in special­

purpose processors. Control applications may also take advantage of entire 

platforms built around general-purpose processors. Personal computers, 

workstations or stand-alone boards are among these platforms. 

2.4.1 General purpose processors 

In principle, all digital control algorithms can be implemented by programming 

general-purpose processor, but this solution is not cost effective in many 

applications, and often the performance requirements in terms of throughput, power 

consumption, and size cannot be met [BdtiOO, Irwin98]. The reason for this is the 

mismatch between general-purpose processor architectures and most control 

algorithms that require a large number of repeated arithmetic operations of a 

relatively simple nature and a low number ofinputloutput operations. 

General-purpose processors are designed to perform a multitude of functions to 

support applications such as word processing and similar programs that rely almost 

entirely on manipulation of data; this involves storing, organising, sorting and 

retrieving information. To perform those tasks, the processors provide a number of 

functions that allow wide-ranging mixtures of operations and control flow that can 

be data dependent, making large jumps from one area of the program memory to 

another. Thus, the ability to move data from one location to another and testing for 

inequalities (A=B, A<B, etc.) becomes essential [Lapsley97]. 

These processors were not originally designed for multiplication-intensive tasks, 

even some modern processors would require several instruction cycles to complete a 

multiplication because they do not have dedicated hardware for single-cycle 

multiplication, as a consequence they are not well suited to perform control 

algorithms [BdtiOO]. To solve this problem, high-end processors such as Pentiums 

17 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

and PowerPCs, have been enhanced to increase the computation of arithmetic­

intensive tasks. A common modification is the addition of SIMD-based instruction 

set extensions that take advantage of wide resources such as buses, registers and 

ALUs, which can be seen as multiple smaller resources. For example, a 64-bit data 

bus can handle 4 different l6-bit words simultaneously. However, despite the high 

performance operation offered by these processors, they are not widely used in 

embedded applications due mainly to their cost [EyreOO). 

2.4.2 Digital signal processors 

Digital signal processors (DSP) have been designed to overcome some of the 

limitations found general-purpose processors. DSPs introduce some architectural 

features that accelerate the execution of repetitive multiply-accumulate operations 

of digital control algorithms [Eyre98). 

Among the main DSP features are: 

• Hardware multipliers that can handle the multiplication and accumulate 

operations rapidly, generally in one instruction cycle. An instruction cycle is 

usually one or two clock cycles long (RISC-like architecture). 

• Several functional units that perform some sort of parallel processing. 

• Harvard bus architecture that provides high memory bandwidth to allow 

simultaneous processing of program instructions and data. 

• Internal memory organisation, usually involving more than one large on-chip 

memories that can be accessed once every instruction cycle and are used to store 

data, instructions, or look-up tables. 

• Specialised addressing modes such as circular addressing and pre- and post­

modification of address pointers. 

18 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

• Large number of internal registers. 

• Typically, a multiplication and addition, data fetch, instructions fetch and 

decode, and memory pointer increment can be done simultaneously. 

The high-speed capability of the DSP allows the device to be applied to adaptive 

control, in which case, the processor can simultaneously perform monitoring and 

control functions. DSPs can be used for controlling external digital hardware as well 

as processing the input signals and formulating appropriate output signals. Although 

most real-time digital control applications require large amount of data calculations, 

the programs that implement them are normally very simple. As a result, these 

programs can be stored in internal memory to reduce the transfer time. The design 

process involves mainly coding the control algorithm either using a high-level 

language or directly in assembly language. Then, the source code is compiled into 

an object code that can be executed by the processor. 

This approach allows rapid prototyping, but unfortunately it is not always possible 

to meet the requirements of power consumption, size, or cost. The main reason is 

that the standard DSP is designed to be flexible in order to support a wide range of 

digital signal processing algorithms while most algorithms use only a few of the 

instructions provided [Lapsley97). 

2.4.3 Microcontrollers 

Unlike general-purpose processors that are designed to support large word width 

and address spaces, a microcontroller design is focused on integrating the 

peripherals needed to provide control within an embedded environment. Commonly, 

a microcontroller incorporates in a single chip at least the necessary components of 

a complete computer system: CPU, memory, clock oscillator and input and output 

ports, plus some additional elements such as timers, serial units, and analogue­

digital and digital-analogue converters. These features allow them to be simply 

wired into a circuit with very little support requirements; usually, they only require 

19 



CHAPTER TVVO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

power and clocking. Maximum speeds for the different devices are typically in the 

lows tens of megahertz [Predk099, Cady97]. 

The primary role of microcontrollers is to provide inexpensive, programmable logic 

control and interfacing to external devices. Thus, they are not expected to provide 

arithmetic-intensive functions. When included within complex systems applications, 

they are used to interpret input (from a user or from the environment), communicate 

with other devices, and output data to a variety of different devices. 

Microcontrollers add a great deal of flexibility in the product development process 

as they can be used for a variety of applications. Another advantage is the fact that 

microcontrollers are member of families that present many different combinations 

of hardware features, so the most suitable device for a specific application can be 

selected. Some, especially those with 16- or 32-bit data paths, rely almost 

completely on external memory. The external memory contains program to be 

executed, usually in ROM, as well as the RAM required for the application. 

2.4.4 General purpose parallel processors 

Some multiprocessing approaches have been proposed to satisfy the demands of 

very complex control systems. These alternative strategies can be based in multi­

processor or multi-computer systems. The difference between these two categories 

lies in the way in which communication between the processors is organised. All the 

processing elements share the same memory in a multiprocessor system while in a 

multi-computer system, each processor has its own private memory space 

[Wanhammar99]. 

The main challenge of this approach is to distribute the computational load across 

the processing elements so the execution time is reduced to a minimum. Thus, it is 

necessary to match the computational requirements of the algorithm with the 

available hardware resources and minimise the communication among processing 

elements. Although any processor can potentially be used in a parallel processor 

design, it is desired that the selected processors include some additional features 

20 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

such as mUltiple external buses, bus-sharing logic, and multiple parallel dedicated 

ports designed to simplifY the interprocessor communication so the overall system 

performance is not affected [Lapsley97]. 

2.4.5 Fuzzy logic controllers 

Another approach to implement digital control involves the use of fuzzy logic 

controllers (FLC), which can be used together with both state-variable and classical 

techniques [Patyra96]. Fuzzy logic controllers can be applied to systems with 

undefined boundaries that are difficult to represent using explicit difference or 

differential equation descriptions. Most applications of fuzzy logic have low 

computational loads, so hardware designs implement fuzzy logic using general­

purpose controllers. However, as new applications emerge, traditional approaches 

may not cover all the systems needs and some dedicated architectures that specialise 

in fuzzy computation have been proposed. These new architectures support fuzzy 

logic applications efficiently, but their main drawback is the difficulty to adapt them 

to different applications [Costa97]. This is due to their fixed features, such as the 

number of input and outputs variables, the value resolution, and other fuzzy control 

parameters. 

2.4.6 Special purpose processors 

All the approaches to implement digital controllers discussed above use existing 

architectures to map the control algorithm, via programming, to fit the architecture. 

But it is also possible to change the architecture to better suit the algorithm. Special 

purpose processors, with a particular combination of registers, logic elements and 

interconnections, open the possibility of achieving in one clock cycle what a 

traditional programmable processors require tens or even hundreds of clock cycles. 

The term special-purpose processor has been used to define a wide range of degrees 

of dedication and specialisation. We can say that a special-purpose digital control 

21 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

processor is a dedicated hardware entity whose function is to perform a specific, 

well defined, set of digital control algorithms in real-time. Just as DSPs are more 

efficient and cost-effective than general-purpose processors to execute high-speed 

arithmetic operations, special-purpose processors have the potential of overpower 

DSPs due to its specialised nature. As only the required functions are placed in 

hardware, special-purpose processors can be less expensive than other processors, 

especially for high-volume products. 

There is not a single correct solution to the problem of designing a processing 

system that meets the needs of real-time control. Instead, the resulting system is 

defined by a series of trade-off decisions taken by the designer when mapping the 

algorithm to the final solution within the constraints imposed by the system 

requirements. 

The possibility of integrating a whole control system into one chip has several 

effects. It increases the processing capacity and simultaneously reduces the size of 

the system, power consumption, and pin restriction problems. Additionally, it 

improves system reliability and offers protection of intellectual property. Of course, 

developing special-purpose architectures presents some drawbacks. Among them 

are the effort and expense associated with custom hardware development, especially 

for custom chip design. However, the problems associated with custom hardware 

can be partially solved using high-level hardware design languages such as VHDL 

and logic synthesis CAD suites allied to large low-cost reprogrammable FPGAs. 

A major advantage of this approach is that the data word length can be adjusted to 

the systems requirements. Thus, the size of the architecture can be kept to a 

minimum. However, the performance improvements come with the cost of larger 

design effort. 

2.4.7 Combined approaches 

Digital signal processors are paired with microcontrollers in many applications. As 

some systems that utilise digital system processing in their operation also have 

22 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

digital control processing requirements, there are some devices that combine the 

features provided by both processors into a single solution. 

This approach looks into the integration of the DSP functionality with the 

microcontroller to offer the benefits of the two architectures. Using a single 

processor to implement both types of software is attractive, because it can 

potentially simplify the design task, save board space, reduce total power 

consumption and reduce overall system cost. In order to use these new devices, the 

system designer must evaluate what performance is needed to control the system 

and what performance is needed to perform the signal processing [EyreOO]. 

2.5 SOFTWARE ISSUES 

This section describes software Issues related to the implementation of digital 

control systems. 

2.5.1 Software structure 

Programs that implement control algorithms are different from traditional software 

applications in two main aspects. First, the programs are usually shorter, normally 

counted in tens or hundreds of lines versus tens of thousands lines [Lapsley97]. 

Second, the execution speed is often a critical part of the application. Typically, the 

overall structure of the software consists of a main program that performs an 

initialisation process and then executes one or more control loops that perform the 

operations defined by the control algorithm. 

2.5.2 Programming languages 

The traditional language to write programs that implement control algorithms is C, 

mainly because the programs are easier to develop and maintain that those 

23 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

programmed usmg assembly language. Another key advantage is that the 

programmer does need to understand the architecture of the processor being used. 

When execution speed is important, some critical programs or subroutines are 

programmed using assembly code, however, this requires that the programmer have 

deeper knowledge of the architecture. Thus, the choice of using assembly or C 

depends largely on what is more important for the application, performance or 

flexibility and fast development. Existing software modules can be reused to 

minimise the cost of developing new applications. This approach is effective when a 

library of optimised modules has been accumulated form past designs so new 

applications can be constructed with segments of existing modules. Other factors to 

be considered are the complexity of the control algorithm, compiler efficiency, team 

experience, and manpower. 

The programmmg of a processor usually reqUires knowledge of the specific 

processor assembler language. The support for a high-level computer language is 

usually via the compilation of the high-level language program into the target 

assembler. However, the efficiency of those programs is highly dependent on the 

compiler technology. Therefore, for the sake of exploiting the fullest possible 

processing power and memory efficiency, some processors programs are 

handcrafted with little emphasis on the programming structure. The design and 

debugging process may take months to complete and because the programming 

skills tend to be very specialised and take time to acquire, the resulting handcrafted 

programs tend to be not only device-specific but also programmer-specific. As a 

result, these programs are hard to maintain and even harder to modify. Therefore, it 

is essential to devise a design route that would allow algorithmic ideas to be 

implemented efficiently. 

2.5.3 Numerical subroutines 

Timing analysis of digital control algorithms programmed on a general-purpose 

processor may reveal bottlenecks, or small portions of code that contribute 

disproportionately to execution time. These bottlenecks may be repeated many 

24 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

times as the program progresses from start to finish. Figure 2.3 shows a typical 

execution profile [Ackenhusen99], or plot of instruction address versus time, of a 

program that performs a control algorithm. The algorithm begins at its initial 

instruction (a), normally an initialisation process that progress lineally for a small 

amount of instructions, then jumps to a subroutine at a higher address value where it 

executes a specific task (b). The program then exits the subroutine (c), progress a bit 

further within the program (d) and then it jumps again the subroutine and so on until 

the program completes (e) or starts a new execution loop (f). In addition, associated 

with each subroutine call is some time-consuming overhead. Data and control 

register values must be stored, usually in a stack, and a pointer must be set so that 

when the subroutine execution is completed, the main program may resume its 

execution at the point it was left before the subroutine was called. Also, input 

parameters and output results must be passed from/to the subroutine. 

---------- ----------- -------------- ----------Subroutine 
III ---- ----- ----- ---- -------- ----- -------------. i b'-

.• e 

f·· 
•..• '-"=--------\\---------

Time 

Figure 2.3 Typical plot of location of instruction being executed versus time of a 

program that performs a control algorithm 

2.6 LITERATURE SURVEY 

In the past there has been much work on architectures for control applications. For 

the purpose of this revision, the architectures are divided into the following 

categories: general-purpose, specialised and reconfigurable architectures. 

25 



------------------------------------------------------------------------------

CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

2.6.1 General-purpose architectnres 

General-purpose processors are designed to satisfy the requirements of control 

systems in general. The algorithms to be implemented using these devices are 

mapped, via programming, to fit the architecture. [Lang84] describes the design of a 

special-purpose digital processor targeted for control system implementations. It 

uses logarithmic arithmetic to improve the computational dynamic range, accuracy 

and speed. [Jaswa85] describes a reduced instruction set coprocessor that optimises 

the states transitions of the controller. It consists of continuous processing elements 

capable of performing the next-state update process and a discrete processing 

element for processing switch-based information. 

[AgrawaI95] presents a system design of an industrial controller that can be 

customised for specific tasks. The design is based on a commercially available 

controller that can be customised for any specific needs. The customised 

functionality is achieved in software and then ported into the controller. 

[Nadehara95] describes a 32-bit RISe microprocessor designed for software signal 

processing. The instruction set is oriented towards signal processing, it includes fast 

integer/fixed-point multiply/multiply-accumulate instructions. The processor 

integrates a 32-bit compact multiply-adder with a parallel overflow detector in its 

pipeline to achieve peak signal processing performance. Some designs are based on 

existing processor cores; [Furber99] describes an asynchronous controller for small 

embedded systems. The system chip incorporates a 32-bit asynchronous RISe 

processor core, a 4-Kb pipelined cache, a flexible memory interface, and assorted 

programmable control functions. 

Some parallel designs have been proposed to control demanding complex processes. 

[Tokhi95] presents an investigation into the utilisation of parallel digital signal 

processing devices for real-time control. It discusses the issues of algorithm 

parallelisation and hardware mapping. [Darbyshire95] describes the features of a 

DSP system designed for large-scale active control. The DSP system presented has 

a multiprocessor architecture integrated as a real-time processor with multiple 

26 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

analogue input and output channels. It incorporates commercial DSPs as basic 

processing elements. 

Other designs are based on fuzzy logic techniques; [Patyra96] discusses various 

aspects of digital fuzzy logic controller (FLC) design and implementation. It 

analyses classic and improved models of the single-input single-output (SISO), 

multiple-input single-output (MISO), and multiple-input multiple-output (MIMO) in 

terms of hardware cost and performance. It also illustrates the improved 

implementation of highly parallel FLC in digital technique. [Costa97] proposes an 

architecture dedicated mainly to medium-range applications that demand 

computational power combined with low cost for the resulting hardware system. 

The architecture is a 16-bit processor with dedicated instructions and hardware for 

support offuzzy logic. 

2.6.2 Dedicated architectures 

Dedicated architectures are designed to solve one specific task. In [Ling88] a VLSI 

robotics vector processor for real-time control is described. The processor has three 

floating-point processors, each with an adder, multiplier and register file, all 

operating in a SIMD fashion. It employs a RISC-like architecture with seven basic 

instructions. [Liu91] proposes an integrated solution to compute real-time robot 

control using a special-purpose VLSI array. The array is connected in asystolic 

manner using different types of basic processing elements. Also applied to robot 

control, Catthoor[91] describes the design of an application-specific architecture 

that consists of four execution units and a data RAM. The application is a six­

degree-of-freedom mechanical robot for industrial applications. 

[Garberg96] considers the use of an ASIC for a stand-alone controller. A control 

system that controls an inverted pendulum is designed using software tools and then 

mapped into hardware. The resulting controller estimates the process-states and 

controls the dynamic process. The same authors present a similar controller 

implemented in an FPGA [Garberg98]. [Samet98] presents a comparative study 

27 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

where a PID algorithm is mapped into three different hardware architectures, which 

perform the arithmetic operations for the PID controller in serial, parallel and mixed 

form. 

[Grout95] Describes an ASIC which the functionality of a digital proportional plus 

integral (PI) error actuated controller with auxiliary feedback. The controller 

provides discrete time control of a range of continuous time systems by receiving 

analogue inputs via a single multiplexed analogue to digital converter and providing 

an analogue output via a digital to analogue converter. It allows both proportional 

and integral gains to be adjustable using a digital control word. 

2.6.3 Reconfigurable architectures 

Reconfigurable architectures are those that can be adapted to satisfy the 

requirements of control algorithms. A number of these architectures have been 

proposed. [Fujioka96] proposes a reconfigurable parallel processor to reduce the 

delay time of multi-operand multiply-additions performed in the sensor feedback 

control of intelligent robots. In each PE, a switch circuit is used to change the 

connection between multipliers and adders. The multiply-adders can be 

reconfigured every clock cycle using a very-long-instruction-word (VLIW) control 

method. [Tsunekawa95] proposes a VLSI-oriented highly parallel architecture for 

state-space digital filters, where multiple processing elements (PE) are combined to 

implement the state-space equations. [Chen91] describes the design of 

Programmable Arithmetic Devices for DIgital signal processing (P ADDI). It is a 

programmable medium-grained device that supports the implementation of 

algorithmic specific data paths for real-time signal processing applications. It 

contains 32 16-bit execution units (EXU), each with its own instruction nano-store. 

The execution units are connected by a configurable hierarchical switch, which 

enables both pipelined and parallel operation. A similar device, programmable 

adaptive computing engine (PACE) is proposed in [Spray91]. It is a medium­

grained cellular automation-based architecture that supports regularly and 

irregularly structured functions within a regularly structured array. Example 

28 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

implementations of three irregularly structured algorithms including a PID 

controller are explained. 

Another fully reconfigurable approach is described in [HerpeI93]; it presents a 

custom computer together with a software envirorunent for implementation of 

algorithms for real-time control. The custom computer is based on FPGA boards 

embedded in programmable interconnection network. The transformation of an 

algorithmic system specification into a configuration file for the FPGAs is done 

through a set of high-level and structural synthesis tools. The software tools allow 

prototype implementation of algorithms on the reconfigurable hardware that is used 

to validate the design before an ASIC implementation. 

Fuzzy logic offers the possibility of dynamic configuration. In [Dettlof89] a 

general-purpose fuzzy logic inference engine for real-time control applications is 

presented. A TTL compatible host interface downloads the rules into the fuzzy 

memory at boot-time, and can also update the rules dynamically to reconfigure the 

controller. A similar approach is used in [Donald94]; it describes a custom designed 

hardware fuzzy logic controller (FLC) for high-speed real-time control applications. 

It has a pipelined architecture and its knowledge base can be updated at run time by 

a supervisory microprocessor that constantly monitors the FLC's performance and 

update the FLC's knowledge base at run time when dealing with changing 

envirorunent and plant characteristics. In both of the previous controllers, the 

functionality of the controller can be adapted to changes, although the hardware 

structure remains unaltered. 

Moving towards neural network approaches, [Liu99] presents a parallel learning 

neural network chip, which is used to perform real-time output feedback control of a 

nonlinear dynamic plant. The proposed hardware utilises parallelism to achieve 

speed independent of the size of the network, enabling real-time control. The on­

chip learning ability allows the hardware neural network to learn on-line as the plant 

is running and the plant parameters are changing. This adaptive controller does not 

-n~~d -an~ -pri~r -kn~~I~dge-Of the -system. [Palmer94] presents-an architecture. ~d 
development envirorunent for a family of neural network processors targeted at real-

29 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

data fonnats, word length requirements, and sample frequency is needed. The aim 

of this study is to design a custom architecture, which can meet the requirements of 

the control systems to be implemented. 

By adapting the processor architecture to the requirements of the control algorithm, 

we aim to achieve in I clock cycle what traditional programmable architectures 

requires tens, or more, clock cycles to complete (see Section 7.5.2). Also, taking 

into account the system requirements when designing the architecture should ensure 

that the architecture perfonns detenninistically in a real-time embedded control 

environment. Cost savings also motivate the use of a custom processor, as the 

resulting architecture is likely to be smaller when compared with general-purpose 

processors. The design of a custom architecture includes additional design decisions 

when compared with a dedicated architecture. One of the main issues involves the 

definition of an instruction set. 

2.7 SUMMARY AND CONCLUSIONS OF THE CHAPTER 

This chapter has introduced the current approaches to implement digital control 

systems, identifying their advantages and drawbacks. It also highlighted the 

potential benefits of using special-purpose architectures to implement such systems. 

Finally, related work on hardware architectures, especially those applied to control 

systems, has been reviewed. 

The rising popularity of signal processing applications has led designers to add 

signal processing capabilities to existing processors in order to support 

computation-intensive tasks. Thus, while the points explained in Section 2.4 

traditionally distinguish general-purpose processors, DSPs and microcontrollers, it 

is important to realise that the line that divides these devices is fading. It is now 

common to find general-purpose processors that include DSP features or DSPs with 

microcontroller's capabilities. 

31 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

Digital control systems have physical limitations due to the nature of the system 

components. For example, the sampling period is determined by the clock frequency 

and how fast the numerical operations and instructions are executed by the 

processor. Another important issue is that all numbers can be represented only with 

finite precision. 

The main advantage of using of general-purpose processors to implement control 

systems is that the algorithm can be modified relatively easy if required by changing 

the software program. General-purpose processor architectures often require several 

instructions to perform operations that can be performed with just one DSP 

processor instruction, but run at faster speeds. In general, general-purpose 

processors are a good option when implementing applications that require both, 

DSP and non-DSP processing. Furthermore, the most popular general-purpose 

processors are supported by a large variety of application development tools. 

However, when general-purpose processors are used only for computation-intensive 

tasks, they are rarely cost-effective compared with DSP processors [BdtiOO]. 

In its initial form, the control algorithms take full advantage of any inherent 

parallelism and have not regard to any potential implementation consideration. It is 

only when the algorithm has to be mapped into hardware that some trade-offs have 

to be made. When implementing control systems using standard programmable 

processors, the control algorithm has to be artificially partitioned and constrained to 

meet the physical bus widths and mapped on the instruction set, the system 

performance may be affected. 

Custom hardware normally offers the most efficient implementation because the 

hardware architecture is designed to match the algorithm [Wanhammar99]. It also 

offers the possibility of integrating many functions within a single device. However, 

it is generally time-consuming and expensive to develop, although the cost-per-unit 

is low when produced in volume. 

32 



CHAPTER TWO DIGITAL CONTROL ISSUES AND LITERATURE SURVEY 

From this chapter we can conclude that: 

• There is not a 'best' approach to implement real-time high performance control 

systems. No one processor or custom architecture can meet the needs of most 

applications. Several factors like cost, performance, integration, easy of 

development, power consumption, development tools, will determine which 

option is the most suitable to implement a specific control system. 

• If a standard processor can meet the requirements of a particular application, it 

is often the best approach. This allows a fast implementation and the system can 

be easily modified or new features can be added. 

• Custom architectures offer potential cost-performance benefits when used to 

implement complex control systems that require very high sample rates. 

33 



CHAPTER THREE RESEARCH OVERVIEW 

Chapter 3 

Research overview 

3.1 OBJECTIVES OF THE CHAPTER 

This chapter presents an overview of the investigations of this thesis. The objectives 

are: 

• To identify the areas that need to be investigated and introduce the experimental 

work to be carried out 

• To describe the ProASIC design flow and the design and verification tools used 

during the implementation of work 

• To establish the design and experimental assumptions when implementing and 

verifying the CSP 

3.2 IDENTIFICATION OF INVESTIGATIONS 

This section identifies the investigations needed to fulfil the objectives of this 

research. 

• Control algorithm: to identify a filter structure that performs the control 

algorithm, which may be exploited to reduce the number of required operations 

and is suitable for hardware implementation. This involves an analysis of the set 

34 



CHAPTER THREE RESEARCH OVERVIEW 

and sequence of arithmetic operations, the data set, numerical accuracy of the 

coefficients, word length for the internal variables, and numeric formats. 

• Architecture: a design strategy to implement the hardware architecture that will 

perform the control algorithm has to be selected. It is necessary to define a set of 

basic operations that can be executed on the processing elements, the data set to 

be stored in the storage elements, the interface and connections, and to define a 

control strategy to co-ordinate activities between the architectural components. 

The design area must be of a size that allows its implementation using the 

selected technology. A performance analysis of the system implementation may 

lead to proposed architecture modifications that reduce the hardware costs 

and/or processing time. 

• Program structure: An overall structure of the program that implements the 

control algorithm has to be defined. This structure will determine the order in 

which processes such as initialisation, control loops and input sampling have to 

be implemented. 

• System evaluation: this involves the identification of a comprehensive set of 

tests to prove the esP's operation for a variety of filter types over a range of 

input conditions. The results of these tests will be used to benchmark the esp 

performance against other processors. 

3.3 METHODOLOGY 

Figure 3.1 shows a diagram of the design methodology. Firstly, we identify a filter 

structure to perform the control algorithm, which may be exploited to reduce the 

number of required operations and is suitable for hardware implementation. This 

involves an analysis of the set and sequence of arithmetic operations, data set, 

numerical accuracy of the coefficients and internal variables, and numeric formats. 

35 



CHAPTER THREE RESEARCH OVERVIEW 

Once the filter characteristics and implementation requirements have been 

identified, a software model of the processor is created in Java; its purpose is to 

provide a a clear understanding of the algorithm and its numerical requirements, as 

well as a functional specification of the processor and test vectors to verify the 

hardware design. The CSP model architecture is modular; this modularity allows to 

replace processing elements to undertake performance comparisons and to explore 

new architectures. Furthermore, the model supports alternative algorithms, thus 

making it suitable for demonstration purposes in a range of control application 

environments. The results of the model running several control algorithms are 

compared against the results obtained from MATLAB programs that implement the 

same control algorithms using IEEE 32-bit floating-point format to represent the 

coefficients and state variables. 

When the simulation results of the software model are correct, the next step is to 

create a hardware model of the CSP using the hardware description language 

VHDL. The hardware model is simulated and verified using the information 

generated by the Java model 

The hardware model is simulated and verified using test vectors generated by the 

software model. Then, it is synthesised, and as a final verification before 

programming a device, the synthesised netlist is simulated and using the VHDL 

testbench and test vectors as before. Finally, the hardware implementation is 

verified using a hardware tester and the same test vectors. 

3.4 EXPERIMENTAL VEHICLE DESCRIPTION 

This section describes the environment in which the experiments are carried out and 

the assumptions made to perform the experiments. 

36 



CHAPTER THREE 

I Control algorithm I 

~ ~ 
CSP Java Matlab 

Model Program 

I 
+ 

Hardware 
Implementation 

VHDL Source files I 
Simulation I 
Synthesis I 

Place & Route I 
.. 

Device 
Programme S I 

Hardware 
Verification 

_J __ 
Analysis 
of results 

RESEARCH OVERVIEW 

Figure 3.1 Summary of design methodology 

3.4.1 Software simulation 

The software model was programmed and simulated in the high-level language Java 

using the programming environment provided by Microsoft Developer Studio. The 

advantages of using Java for software simulations are: 

• The language is robust and versatile 

• The source code is platform independent 

• It is easy to program and debug 

37 



CHAPTER THREE RESEARCH OVERVIEW 

3.4.2 Technology 

A ProASIC A500KI30 programmable device from Actel has been used to 

implement the hardware design [ActeIOOa]. The ProASIC device core consists of a 

Sea-of-Tiles (Figure 3.2). The basic logic unit consists of a programmable three 

input, one output cell or tile. Each logic tile can be configured into a 3-input logic 

function (e.g. NAND gate, D-Flip-Flop, etc.). The A500K130 has a total of 12,800 

tiles. 

Figure 3.2 Actel ProASIC architecture 

Basic RAM or 
FIFO Block 

256x9 

ProASIC devices provide two alternatives to implement memories: embedded and 

distributed memories [ActeIOOb]. Embedded memories use, as their name indicates, 

38 



--------------------------------------------------------------------------- - ---

CHAPTER THREE RESEARCH OVERVIEW 

dedicated embedded memory blocks; while distributed memories are implemented 

using core logic tiles. 

The devices contain embedded two-port SRAM memory blocks that have built in 

FIFOIRAM control logic. The memory blocks are located across the top of the 

device and depending upon the device, 6 to 28 blocks of memory are available. The 

A500KJ30 include 20 memory blocks (Figure 3.2). Each block can be configured 

independently and is 256 words deep and 9 bits wide. They have separated and 

independent read and write ports allowing simultaneous ports accesses. Embedded 

memories can be combined in parallel to form wider memories or stacked to form 

deeper memories. 

Embedded memories can also be used to form multiple-access memories. Figure 3.3 

shows an example of a 256-word x 9-bit multiported memory with two read and one 

write ports. For this example 2 memory blocks are required, with each block 

providing a read port. When a word is written into the memory, the incoming data is 

stored in both memory blocks. This means that each block will contain exactly the 

same data than the other, so that both read ports can access any word. Thus, the 

price paid for a multiport memory is a reduction in storage capability. Note that 

ProASIC devices do not support memory blocks with multiple writes. 

... 256x9 
Memory block Data out 1 

Data In 

256x9 Data out 2 .. 
Memory block 

Figure 3.3 Example of a 256x9 two read one write memory 

Distributed memories have independent asynchronous read and write ports, and are 

generally slower and larger compared to embedded memories. The maximum size 

of a distributed memory that can be implemented in a A500K130 device is 64 

39 



CHAPTER THREE RESEARCH OVERVIEW 

words, and each word comprising up to 78 bits. The manufacturer recommends that 

larger memories should be implemented using embedded memories. 

3.4.3 Hardware design and simulation 

The hardware model was programmed m VHDL usmg Computer Aided 

Engineering (CAE) tools from Veribest. With the purpose of verifying the 

functional correctness of the VHDL model, it is simulated together with a VHDL 

testbench which uses test vectors generated by the Java model to drive the inputs of 

the hardware model and then compares the actual outputs against the expected 

outputs (Figure 3.4). The testbench will indicate if the simulation was successful 

and in case of failure, will help to identify possible errors in code the in order to 

correct the design. 

VH D L testbench 

Test 
J Waveform I 

Reference vectors 
1 ! 

Pass/fail 
CSP Java vectors 

I 
Compare indication 

Model "I generation results I 
I CSP VHDL model T .......... or module 

Stimulus under test Output 
vectors vectors 

Figure 3.4 Testbench structure 

Once the results of the VHDL simulation are correct, this verified hardware model 

is synthesised using the Leonardo Sprectrum synthesiser from Exemplar Logic. The 

synthesiser produces a technology specific netlist in VHDL format. This VHDL 

netlist can be used to perform post-synthesis simulation to perform further 

verification of the design. The VHDL netlist is then used as input for the Actel's 

ASICmaster that performs timing-driven placed and route. The ASICmaster tool 

includes a power estimator and provides back annotated delay information for post­

place and route simulation and static timing analysis. A performance analysis of the 

40 



CHAPTER THREE RESEARCH OVERVIEW 

hardware design is done using the static analyser Flash Timer from Actel. Figure 3.5 

summarises the Actel's ProASIC design flow. 

3.4.4 Hardware verification 

The ASICmaster also produces a bitstream file that is used by the Silicon Sculptor 

to program a ProASIC device. The Silicon Sculptor is a single device programmer 

with stand alone software for the PC. 

Design Creatlon/Verlllcatlon 

Forward 
Design Implementation ConstralnlS 

Programming Data 

Hlgh·level 
Description 

(Vertlog or VHDlI 

ASlemalter 
(P&R Tool) 

NeUlsI 

Backannotatlon r-''-->-. 
SDF 

Timing and Simulation Timing 
File 

Timing 
Analrzer 

MEMDRYmlStilr 

Simulation 
(mlxed·level, 

Figure 3.5 ProASIC design flow [ActelOOaJ 

41 



CHAPTER THREE RESEARCH OVERVIEW 

When the device has been successfully programmed, a serial tester is used to verify 

the behaviour of the design on the ProASIC device (Figure 3.6). The serial tester 

uses the build-in JT AG circuitry of the ProASIC device to place the input signals to 

the input pins of the device and to read the output signals form the output pins. A set 

of inputs is used to drive the device on every clock cycle. The outputs are then 

compared against the expected outputs. The test vectors used in this process are the 

same vectors used to for the hardware simulation and were generated by the Java 

model. 

Figure 3.6 Serial tester 

3.5 DESIGN AND EXPERIMENTAL ASSUMPTIO S 

This section outlines the assumptions taken when design the CSP and performing 

the experiments. 

42 



CHAPTER THREE RESEARCH OVERVIEW 

• The number of bits per sample is determined by the of the analogue-digital and 

digital-analogue conversion hardware used. Between 8 and 12 bits are common 

for control applications, thus a word length of 12 bits has been adopted such that 

the controller can be used for general application. 

• As the processor is targeted towards linear time-invariant control, it is assumed 

that the controller's behaviour does not change over time. 

• Input and output values are synchronised with the same sample period. This 

means that a set of outputs will generated for each set of inputs. 

• The deadline to perform the operations is determined by the sampling period. 

43 



CHAPTER FOUR CONTROLLER FORMULATION 

Chapter 4 

Controller formulation 

4.1 OBJECTIVES OF THE CHAPTER 

This chapter introduces the controller formulation selected to implement the control 

algorithm. The objectives are: 

• To identify digital filter structures that minimise the number and complexity of 

operations needed to calculate the output values 

• To define a suitable format to represent the coefficients and state variables 

• To identify the properties of the selected filter structure that facilitate its 

hardware implementation 

4.2 STATE-SPACE DESCRIPTION OF CONTROL SYSTEMS 

For this research we use the modern approach [NiseOO], which utilises the state­

space formulation to represent a control system. Traditional approaches such as 

transfer functions, block diagrams, or signals flow graphs, involve a relationship 

between the input and output signals. Although the state-space representation of the 

system still involves such relationships, it also involves an additional set of 

variables, called state variables. The state variables provide information about the 

internal signals in the system. As a result, the state-space description provides a 

more convenient and powerful way of describing and dealing with systems than the 

input-output description. 

44 



CHAPTER FOUR CONTROLLER FORMULATION 

The state-space formulation is more commonly used to represent the whole system, 

but for this work we are using it just to represent the controller that is to be 

implemented. Both continuous-time and discrete-time formulations are possible, but 

of course it is the discrete time version which is of interest here. 

The mathematical equations describing the system, its inputs, and its outputs are 

usually divided in two parts: 

I. A set of mathematical equations relating the state variables to the input signal 

(the 'state equation'). 

2. A second set of mathematical equations relating the state variables and the 

current input to the output signal (the 'output equation'). 

The state and output signals of a discrete system are found from the inputs and 

initial state. The state-space description offers a number of advantages [NiseOO, 

Santina94] when compared to traditional approaches such as transfer functions, 

block diagrams, or signals flow graphs, including: 

• It is a standard representation with simple notation 

• It is an easy way of expressing equations for complex controllers 

• Matrix algebra can be applied directly 

• It allows a unified representation of multi-input and multi-output system models 

with similar form and complexity to that used for single-input, single-output 

systems 

• It can readily handle systems with nonzero initial conditions, as well as time­

variant, adaptive and non-linear systems 

45 



CHAPTER FOUR CONTROLLER FORMULATION 

Transforming other expreSSIOns, e.g. discrete transfer functions or continuous 

expressions, into this form is relatively straightforward. A nth-order linear time­

invariant system with a inputs and p outputs can be described by the next state and 

output equations as follows: 

X(k + I) = AX(k) + BU(k) (4.1) 

Y(k) = CX(k) + DU(k) (4.2) 

where k represents the k-th sample instant, X(k) is a n-dimensional state vector, Y(k) 

is a p-dimensional output vector, U(k) is a a-dimensional input vector, and A, B, C 

and D are n x n, n x a, p x n, and p x a real coefficient matrices that describe the 

controller's behaviour. 

In summary, equations 4.1 and 4.2 describe an iterative process that performs 

computation on a continuous stream of input data, i.e., input data arrive sequentially 

and the algorithm is executed once for every input sample and produces 

corresponding output values. The period between two consecutive iterations is 

determined by the sample rate. 

The complexity of the calculation is determined by the number of multiply­

accumulate (MAC) operations required to produce a new set of outputs. The number 

of MAC operations needed to calculate the new state variables and output values 

using equations 4.1 and 4.2 is: 

N MAC =(n+(1)(n+~) (4.3) 

The importance of the state-space approach is that, by defining a new set of states, 

any number of different representations can be generated with the same response. 

When used for digital controllers this flexibility can be exploited to optimise the 

numerical performance of the real-time equation. This point will be illustrated in the 

46 



CHAPTER FOUR CONTROLLER FORMULATION 

following section, in which different types and structures of digital filter will be 

converted into state-space equations. 

4.3 DIGITAL OPERATORS 

The analysis of digital controllers relies on discrete time versions of the continuous 

operators. The discrete version of the Laplace transform is either the Z-transform, 

which is associated with the shift operator 'z', or the y -transform, which is 

associated with the Delta operator '8' [GoodwinOI]. These operators allow 

continuous time differential equation models to be converted to discrete time 

difference models. Also, continuous time transfer or state space models can be 

converted to discrete time transfer or state space models in either the z or 8-

operators. The general formulation of equations 4.1 and 4.2 can be implemented 

using either operator. The choice of a particular operator is largely based on 

preference and experience. 

Despite all the advantages offered by digital controllers, there is an inherent 

limitation on their accuracy caused by the finite number of bits used to represent the 

signals. A particularly important issue when implementing a digital controller is that 

of the sensitivity on the filter properties to rounding errors in the representation the 

filter coefficients, this is known as coefficient sensitivity. Some filters are inherently 

sensitive to small changes in the coefficient values, and as a consequence, 

coefficient rounding errors may cause large errors in the implementation of the 

controller [Goodwin92]. 

4.3.1 z-operator 

The z-operator is the most commonly used in the literature and is the traditional 

choice for many engineers. It is defined as: 

(4.4) 

47 



CHAPTER FOUR CONTROLLER FORMULATION 

Using the z-operator, Equations 4.1 and 4.2 become: 

Xz (k + I) = AzXz (k)+ BzU(k) (4.5) 

(4.6) 

where the matrices Az, B" Cz and Dz describe the controller when the z-operator is 

used and X,(k) contains the controller states. 

The use of the z-operator generally leads to simple expressions and emphasises the 

sequential nature of sampled signals [GoodwinOl]. However, it presents numerical 

problems when used to implement digital controllers for high-speed high­

performance control systems. This problem is particularly critical in recursive filters 

in which the sample frequency is several orders of magnitude higher that the 

dominant frequencies of the filter [Gooda1l90]. 

To illustrate this problem, consider the direct form II 2nd order z-filter shown in 

Figure 4.1. 

.--------{ '2 )0-----, 

u 

y 

Figure 4.1 Direct form II 2nd order z-filter 

The corresponding state-space representation is: 

48 



CHAPTER FOUR CONTROLLER FORMULATION 

(4.7) 

(4.8) 

Note that in practice we need to use negative rather than positive powers of z, and 

the corresponding equation needed to calculate the internal variable v is: 

(4.9) 

for a real-time implementation this equation can be rewritten in the form 

(4.10) 

The equation needed to calculate the output y is: 

Yo = Povo + Plvl + P2 V2 (4.11) 

When high sampling frequencies are used, the difference between successive input 

samples can be very small. Thus, the values of the coefficients rl and r2 have to be 

chosen so that small differences between successive values of v can be combined to 

obtain the required value of y (see Equation 4.11). As a consequence, any small 

change in the value of any coefficient will result in a much larger change in the 

value ofy. 

4.3.2 I) -operator 

It is recognised that the use of an alternative operator, namely the 8 -operator, 

overcomes the numerical problems associated with the z-operator [Middleton90, 

Goodwin92]. 

AO 
~, 



-------------------------------------------------

CHAPTER FOUR CONTROLLER FORMULATION 

The 8 -operator is defined as 

(4.12) 

where T is the sample period. 

From Equations 4.4 and 4.12, we can extract the relation between both operators 

or 

z -I 
8=­

T 

z =8T+1 

(4.\3) 

(4.14) 

Thus, any system expressed in terms of z can be converted to a model in 8 and vice 

versa [Feuer96]. 

In this research we use an alternative simpler definition of the 8 -operator that is 

more relevant when the focus is upon implementation rather than theoretical 

analysis [Gooda1l93, Forsythe91, Gooda1l85]: 

8 = z-I (4.15) 

Just as the z-operator, this definition is not directly implementable for real-time 

applications because of the positive power ofz. Thus we use the inverse of 8, 8-1
, 

that is expressed in terms of Z·I: 

1 -I 
8-1 = __ =~z_ 

z-I I-z-I 
(4.16) 

The 8 -operator can be realised as shown in figure 4.2. The operation 8.1 is an 

accumulation, which means that the next value of w is the result of adding v to the 

50 



------------------------------------------------

CHAPTER FOUR CONTROLLER FORMULATION 

previous value of w. In other words, v is the difference between the current and the 

new value of W (Equation 4.17). 

(4.17) 

...................................................... ~ 

v: 1 11 W """::"-'ii---+l{V {2]1---1-i---~' 
: ............•......................................... i 

Figure 4.2 Operation 0 -I expressed in terms of z-I 

Equations 4.1 and 4.2 can also be used to represent the /) form with a different 

choice of controller states, and with corresponding changes in A, B, C and D 

matrices. Using the /) -operator, Equations 4.1 and 4.2 become: 

(4.18) 

(4.19) 

where Aa, 8a, Ca and Da describe the controller when the /) -operator is used, and 

Xa (k) contains the controller states. 

The /) -operator has the following characteristics: 

• It emphasises the link between continuous and discrete systems, as it resembles 

a differentiation [GoodwinOll 

• For high sample frequencies, the coefficients in As and Bs become almost 

independent of the sample period and the coefficient values closely resembles 

the coefficients of the corresponding continuous model [Middleton901_ 

51 



CHAPTER FOUR CONTROLLER FORMULATION 

• The high coefficient sensitivity problem which exists with the z-operator 

disappears completely, leaving 'normal' sensitivity in which the discrete 

coefficient simply need to have the same accuracy as is required for the overall 

performance (tipically 5% for control) [Forsythe91]. 

• The relation between 1) and z is algebraic, thus it offers the same flexibility in 

the modelling of discrete time systems as the z-operator. 

Figure 4.3 shows a diagrammatic representation of a direct form II 2nd order single­

input single-output (SISO) 0 -filter. 

r------I-r
2 )<----, 

,----, s1 s2 

l-r--->l 0" IIl-'!'O~·'J 
v u 

p 

y 

Figure 4.3 Direct form 11 2nd order 0 -filter 

The corresponding state-space representation is: 

(4.20) 

P2 -r2PO] [::J + Po u (4.21) 

The output y can be calculated using the following equations: 

52 



CHAPTER FOUR 

v = U -rl/i-lv-r2/i-2v 

=U-Ij s l- r2s2 

y = POV+ PI/i-IV+ P2/i-2V 

= POV+ PISI + P2 S2 

4.4 MODIFIED CONTROLLER FORMULATION 

4.4.1 Formulation description 

CONTROLLER FORMULATION 

(4.22) 

(4.23) 

Figure 4.4 shows a simple modification on the filter structure of Figure 4.3. In this 

modified form, the feedback coefficients are placed in the forward path of the filter. 

This modifications has the effect of scaling the state variables such as they are of 

similar magnitude to the input [Gooda1l85, Gooda1l93]. 

u 

y 

Figure 4.4 Modified form /i -filter 

The corresponding state equations are: 

(4.24) 

53 



CHAPTER FOUR CONTROLLER FORMULATION 

(4.25) 

The actual equations used for real-time implementation are as below; firstly the 

calculation of the output, then an update of the state variables so they are ready for 

the next sample: 

Y = CIXI +CZXz +du 

XI =xl-al(xl +xz)+alu 

Xz = Xz +azxl 

Using this modified formulation, Equations 4.1 and 4.2 can be rewritten as: 

(4.26) 

(4.27) 

(4.28) 

where AmodB, BmodB, CmodB and DmodB describe the controller when the modified 1> 

form is used, and XmodB (k) contains the controller states. 

4.4.2 Computation requirements 

The general form of the state-space equations using the modified 1> form is: 

54 



CHAPTER FOUR CONTROLLER FORMULATION 

XI I-an -al -a l -al -al XI 

X2 a 2 1 0 0 0 x 2 bl •1 bl •2 bl •a u I 

x) 0 a) 1 0 0 x) b2•1 b2•2 b2•a u 2 = + 

xn_1 0 0 0 1 0 xn_) bnl bn•2 bn•a u a 

xn 0 0 0 an 1 xn 

(4.29) 

YI CI•I CI•2 cI,n xI d ll d l •2 d l •a u I 

Y2 C2•1 C2•2 c 2,n x 2 d 2•1 d 2•2 d 2•a u 2 (4.30) = + 

Y~ C~.I c~.2 c~.n xn d~.1 d~.2 d~.a u a 

As Equation 4.29 shows, the modified 0 fonn affects the A and B matrices in the 

state-space equations. The structure of the matrix A for calculating the next state 

variables contains a large number of O's and 1 's and has a regular structure. This 

allows us to reduce the total calculation requirements, because a full matrix 

multiplication is not longer necessary. 

The number of multiply-accumulate (MAC) operations needed to calculate the new 

state variables and output values when Equations 4.29 and 4.30 are used is: 

(4.31) 

Note that the number of MAC operations required is significantly reduced when 

compared with the number required to perfonn full matrix multiplication operations 

needed in Equations 4.1 and 4.2. For example, using a modest 4th order S180 filter, 

the number of MAC operations is reduced from 20 to 17. This may not seem a 

significant reduction in the number of operations, but if a larger 20th order 4-input 

4-output controller is required, the number of MAC operations is reduced from 576 

to 216, which makes the benefits of this fonnulation more evident. 

55 



CHAPTER FOUR CONTROLLER FORMULATION 

4.4.2 Storage requirements 

To implement the state-space equations, it is necessary to store two sets of 

controller states, Xk and Xk+I. Once the new values have been calculated, they are 

used to replace the old values ready for the next sample period, but this can only be 

done when all values have been calculated. 

A simpler solution is to overwrite the old values with new values as they are 

calculated, which means that only one set of controller states needs to be stored. To 

achieve this, it is possible to reverse the order of calculating the states. 

XI I a l 0 0 0 XI 

Xz 0 1 az 0 0 Xz b ll b lz 

x3 0 0 0 0 X3 bz,1 bz,z 
= + 

xn_ 1 0 0 0 1 a n_1 xn_1 bn I b n.z 

xn -an -an -an -an 1- an xn 

The corresponding real-time equations are: 

u 

XI,k+1 = XI,k + a l x 2,k + Ibl,juj,k 
;=1 

u 

XZ,k+1 = XZ,k +aZx 3,k + Ibz,jUj,k 
;=) 

u 

X 3,k+1 = X3,k + a 3x 4,k + Ib3,juj,k 
;=1 

u 

xn,k+1 = xn,k - an (XI,k + X2,k + X3,k + ... + Xn,k)+ IbnJuj,k 
i=l 

56 

blu u I 

bz,u Uz 

bn,u Uu 

(4,32) 

(4.33) 



CHAPTER FOUR CONTROLLER FORMULATION 

By inspection it can be seen that the old values of the controller states are only 

needed to update the value of Xn. Thus, if a new variable cr is used to store the sum 

of the old values of XI to Xn, as soon as the are available, it is possible to avoid 

retaining old values for the states while the new values are calculated. 

The equation used to update the value of Xn can be rewritten as: 

" 
x n,k+l = xn,k + ana k + Lbn,jUi,k (4.34) 

i=1 

where cr k is defined as: 

(4.35) 

Thus, in practice we only need to store one set of state variables X, which both 

reduces the overall space requirements for the CSP and simplifies the operation 

because it is not necessary to transfer the values in Xk+1 to Xk and the end of each 

algorithm cycle. It is interesting to consider that the reversed order formulation 

preserves a regular structure and no modification to the coefficient values are 

required. 

From Equations 4.29 and 4.30 it is possible to calculate the number of coefficients 

and state variables required to implement the algorithm. The number of coefficients 

is shown in Table 4.1, and the number of state variables is shown in Table 4.2. 

Coefficients description 
Coefficient matrix A 
Coefficient matrix B 
Coefficient matrix C 
Coefficient matrix D 
Total: 

No of values 
n 

na 
fJn 
{la 

n + na + fJn + {la 

Table 4.1 Number of values in coefficient format 

57 



CHAPTER FOUR 

Variables description 
Input values 
Output values 
State variables 
cr value 
Total: 

CONTROLLER FORMULATION 

No of values 
a 
/3 
n 
1 

a+/3+n+l 

Table 4.2 Number of values is state variable format 

4.4.3 Summary of modified () formulation 

In summary, the advantages of using the modified /) form are: 

• It minimises coefficient sensitivity. The percentage of accuracy required for the 

coefficients is the same, as that required for the overall characteristics of the 

controller. This is in contrast to the z-operator formulations, for which the 

coefficients often need to be hundreds of times as accurate [Forsythe91]. 

• Preserves a structured A matrix with large number of O's and 1 's, which makes 

full matrix multiplication unnecessary. 

• Internal variables are all well-scaled. They all have the same nominal maximum 

values, which are of the same magnitude as that of the input. 

• Avoids the need to convert the controller into cascaded 1 stl2nd order sections, 

something that is almost essential for high-order controllers using formulations 

based upon the z-operator [Forsythe91]. 

• It is superior numerically to any structure based upon the z-operator, particularly 

at fast sampling rates. 

58 



CHAPTER FOUR CONTROLLER FORMULATION 

The possibility of using either operator provides a design freedom that the designer 

can use; for a given control law the most appropriate set of states can be freely 

chosen to optimise the controller formulation from the numerical point of view. 

However it is important to appreciate that these are only optimal in the strict 

mathematical sense because generally the controller A matrix will be fully 

populated with elements, for each of which a multiplication is required. Other 

formulations may be strictly sub-optimal by comparison, but many of the A matrix 

elements will be 0 or I. If the full matrix equation is calculated this makes no 

difference, but if the structure of the A matrix is recognised it is possible to extract 

the essential equations from the full matrix formulation and thereby reduce 

considerably the number of computations which are needed. 

4.5 NUMERICAL REPRESENTATIONS 

The accuracy and dynamic range of coefficients and state variables directly 

influence the overall system response. When the digital controller is implemented in 

a general-purpose processor, it may be sufficient to find coefficient and state 

variable word lengths that can be represented with the data types provided by the 

processor and that satisfy the system response requirements. 

Very high sample frequencies result in long word length requirements for both 

coefficients and state variables. This is because the difference between successive 

values of the input and output become increasingly small. The /) -operator avoids 

some of the problems especially with respect to the coefficients [Forsythe91]. 

However, the variable's word lengths need to be carefully chosen to ensure that the 

full value and dynamic range of the variables involved in the calculation can be 

accommodated. 

Although it is possible to select arbitrarily large word lengths when the controller is 

implemented using flexible processing elements or dedicated hardware, it is 

important to keep them to a minimum. The selected word lengths will determine the 

59 



CHAPTER FOUR CONTROLLER FORMULATION 

size of the arithmetic blocks, which has a major impact on the amount of hardware 

resources, maximum speed, and power consumption. 

4.5.1 Coefficient format 

The low coefficient sensitivity of the formulation allows the use of short word 

lengths to represent the coefficients. Figure 4.5 shows a general format for the 

coefficients. They are held in a simple low-precision floating-point form, with a 6-

bit mantissa in two's complement format and a 5-bit exponent. The position of the 

binary point in the mantissa is predetermined to allow for fractional values. This is 

because the coefficients are always less than unity, with values that become 

progressively smaller as the sample frequency is increased. The exponent has a 

biased range of +6 to -25. The positive end of the exponent range is provided to 

implement gains greater than unity, which is common in control systems. On the 

other side, a negative exponent value allows to represent values that are 

significantly smaller that unity, which is a characteristic of the controller 

formulation based in the I) -operator. This format will allow representing any 

coefficient with an accuracy of I %, which is more that enough for most control 

applications [Forsythe91, Goodall92]. 

Mantissa Exponent 
00000 

ODDDDD X 2 
'---v---J 

6 bits 5 bits 

Figure 4.5 Coefficient format 

4.5.2 State variable format 

The use of the modified form described in Section 4.4 has the effect of scaling the 

state variables such as they are of similar size to the input values. This allows the 

60 



CHAPTER FOUR CONTROLLER FORMULATION 

use of a fixed-point format to represent the state variables. The overall bit resolution 

required is determined by the number of bits used to sample the input data and the 

number of bits required to handle internal underflow and overflow. 

The number of bits per sample is determined by the of the analogue-digital and 

digital-analogue conversion hardware used. As described in Section 3.5, a word 

length of 12 bits has been adopted such that the controller can be used for general 

application. 

Section 4.4 explained that the state variables are of similar size to the input. 

However, 3 overflow bits are provided in order to ensure correct operation and to 

reduce the number of overflow checks. 

The state values are formed by an accumulation of small values. Thus, underflow 

bits are provided to ensure that small input values will not be truncated when 

multiplied by a small coefficient value and their effect will propagate through the 

controller. The number of underflow bits can be derived from the structure in terms 

of coefficients and the required fractional output accuracy for small inputs. 

A simple criterion used to determine the number of underflow bits is described in 

[GoodaIl85]. Consider the filter shown in Figure 4.4. It is desired that X2 responds 

to a one least significant bit change in v. In order that X2 changes it must have a 

resolution of lIa2 bits (i.e. log2 (lIa2)) and following the same criterion, XI should 

have a resolution of lIa2al. This can be extended for larger filter following the same 

pattern. A reasonable number of underflow bits would in the range of 8-16 bits, 

which will allow to support a wide range of controllers. 

The state variable format can also be used to represent the input and outputs values 

of the controller. This will permit common procedures to be used to perform 

arithmetic operation, such as multiplication and addition. Thus, the position of the 

binary point is chosen so the input/output values map directly into the state variable 

format. The input values are brought in as signed integer form in two's complement 

61 



CHAPTER FOUR CONTROLLER FORMULATION 

[onnat. The input value is sign-extended to the left to fill the overflow bits and the 

underflow bits are set to zero. Figure 4.6 shows the general state variable fonna!. 

Overflow 1/0 Underflow 

DDD DDDDDDDDDDDD.DDDDDDDDDDDD " ) V 
-12 bits 

~-------~ --------_/ 
V 

> 24 bits 

Figure 4.6 State variable fonnat 

The adoption of these particular fonnats offers a significant reduction in 

computation time by avoiding the need of complex operations using standard 

floating-point fonnats. Of course if there are exceptional requirements it is always 

possible to redefine the fonnats, maintaining the essential principles but extending 

the precision as required by a particular application, although the test results later 

will show that they are sufficient even for extremely demanding applications. 

4.6 SUMMARY OF THE CHAPTER 

This chapter has described a controller fonnulation that is suitable to be efficiently 

implemented in hardware. It identified the state-space models of control systems as 

specially suited to implementations using computer solutions because the number of 

functions that are required is quite limited and specific. 

The numerical problems associated with z-operator when implemented at fast 

sampling rates were identified, and it was pointed that the use of the 15 -operator 

overcomes a number of those problems. 

62 



CHAPTER FOUR CONTROLLER FORMULATION 

From a numerical point of view it is preferable to use the 8 -operator rather than the 

z-operator when implementing discrete transfer functions. This is because it offers a 

more robust implementation and improved performance under similar 

implementation constraints, such as finite word length for the filter coefficients and 

state variables. It is recognised that the use of the 15-operator overcomes the 

numerical problems associated with the z-operator [Middleton90, Goodwin92]. A 

study that shows the superiority of the 15-operator over the z-operator is found in 

[Forsythe9l) and [Gooda1l93). 

To conclude this chapter, we can identify a number of properties of the algorithm 

that facilitate its hardware implementation: 

• A set of inputs is used to produce a set of outputs within each sample period 

• There are no data dependent operations 

• The algorithm loop must be executed continuously 

63 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

Chapter 5 

CSP hardware implementation 

5.1 OBJECTIVES OF THE CHAPTER 

This chapter develops a hardware implementation alternative that is suitable for the 

controller formulation described in chapter 4. The proposed architecture takes 

advantage of the analysis of the specific control application to permit efficient and 

cost effective realisations of the required processing functions. The objectives of 

this chapter are: 

• To describe the process used to map the control algorithm directly onto a 

hardware structure 

• To provide an analysis of the CSP core 

• To explain the resulting CSP architecture and its external interface 

• To present the results of synthesising this architecture 

5.2 MAPPING THE CONTROL ALGORITHM INTO HARDWARE 

The match between the architecture of the processor and the structure of the 

algorithm that we wish to implement on this processor will determine the efficiency 

with which the algorithm is executed. The efficiency of the implementation can be 

measured in terms of speed, cost and power consumption. The main goal is to 

design an architecture that matches the algorithm and not vice versa. This implies 

64 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

choosing an interconnection scheme for the various hardware entities that will allow 

efficient execution of the instruction set we chose, preferably executing one 

instruction per clock cycle. It also implies designing an instruction set that best 

performs the type of operations required. The purpose of the mapping process is to 

determine the type and number of processing elements (PE), the size and number of 

the memories, and the required communications channels. 

5.2.1 Software model 

A model of the esp processor that implements the control algorithm defined in 

Section 4.4 is programmed in Java. This model is used to validate the correctness of 

the control algorithm to be implemented. The validation is done by comparing the 

results obtained by the model against the results of a Matlab program, which uses 

32-bit floating-point variables to perform the calculations. A correct analysis of the 

controller requirements should ensure that the esP's behaviour is satisfactory. If 

the results obtained by the model are not satisfactory, then it is necessary to increase 

the resolution of the state variables and/or coefficients to achieve the precision 

required. Thus, the software model can be seen as a functional specification of the 

processor. 

Another function of the software model is to produce test vectors that can be used to 

verify the hardware model of the esp. Test vectors can be created for each 

functional block of the esp, as well as for the whole processor. The test vector files 

are created during the execution of the software model. These files contain the 

inputs and expected outputs of each block stored in text format. 

5.2.2 Mapping process 

To map the algorithm to a hardware structure, the algorithm is divided into tasks or 

processes. These processes are data storage, instruction fetching and decoding, next 

instruction address calculation, and arithmetic operations. This partitioning should 

65 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

allow easy mapping of the processes into hardware structures. The main goal during 

this process should be to minimise the resources required. This process is simplified 

by the fact that the algorithm mainly involves straightforward arithmetic operations. 

The number of concurrent operations can determine the amount and functionality of 

the hardware structures. For example, the maximum number of simultaneous 

memory transactions determines the number of memory ports required and therefore 

the number of communication channels between the processing elements and 

memones. 

The execution of the control algorithm requires the repeated execution of a set of 

instructions. Because the number of instructions in the control loop can be small 

when implementing simple controllers, the overhead imposed by the instructions 

that manipulate the program counter may be relatively large [Lapsley97]. Thus, 

special attention must be given to a control structure that implements loops of 

instructions. Thus, the CSP should provide a looping mechanism that introduces a 

short, or ideally, zero overhead. 

The final step is to create a hardware model that supports the operations needed to 

implement the algorithm. This hardware model is programmed using the hardware 

specification language VHDL. The hardware model is then simulated and verified 

using as reference the test vectors produced by the software model. Finally, the 

model is synthesised, and the netlists downloaded into the programmable device 

that will be used to perform a final verification. 

5.2.3 Architecture options 

In this section we discuss the factors that affect the selection of an appropriate 

architectural structure for the control system processor. The motivation to search for 

a specialised structure lies in the fact that the control algorithms to be performed are 

well defined and, as described in the summary of Chapter 4, present characteristics 

that can be exploited to achieve efficient execution. 

66 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

At the architectural level, the main interest is to look at the general organisation of 

the system, this involves the definition of components such as processing elements 

and memories, and the specification of interfaces and control strategy. The design of 

the system architecture is affected by several parameters such as memory capacity, 

access time, word length, and processing times. 

While designing the system architecture, we must be able to estimate the system 

performance to identify and correct potential bottlenecks. The basic idea is to design 

an architecture where processing elements execute operations indicated by a 

program, and that the processing elements are supported by appropriate 

communication channels and memories. 

There are three basic approaches to implement the esp. 

• At one extreme, a single PE executes all the arithmetic operations. The PE must 

be able to execute all the operations. The processing time will equal to the 

product of the PE processing time and the total number of operations. This 

approach is power and area efficient. 

• At the other extreme, one dedicated PE is assigned to each basic operation. The 

PE can therefore be optimised to execute a specific operation. The maximum 

number of PEs is determined by the parallelism in the algorithm. The slowest PE 

as well as data availability determines the maximum sample rate. This approach 

leads to a high throughput at the expense of large power consumption and chip 

area. 

• An intermediate solution that combines the two approaches described above. 

The first approach will be used to implement the esp, mainly because our aim is to 

produce an architecture that uses a minimum amount of hardware resources. 

Furthermore, when implementing the control algorithm using a parallel architecture, 

the size and performance of the architecture depend on the system characteristics 

and can be difficult to predict, especially for large systems. 

67 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

5.3 PROCESSING ELEMENT 

Now that we have chosen an approach to implement the processor, we need to 

optimise it according to the systems requirements. Processing elements usually 

perform simple operations that map the input values to a single output value. 

Normally, they do not have storage capabilities and ideally perform the operation in 

a single clock cycle. 

5.3.1 MAC unit 

The most obvious processing elements to implement the sum of products (Equation 

2.1) required by the algorithm is multiply-and-accumulate (MAC) (Figure 5.1). 

A 

8 
R=IA ·8)+C 

c --)-----0( + )--+--? 

Figure 5.1 Processing element 

The MAC unit performs the operation D=A *B+C, where A is a coefficient and B 

and C are state variables. To perform the multiplication A *B, the coefficient has to 

be divided into its mantissa and exponent parts. The mantissa is multiplied by the 

state variable B and the result is shifted according the exponent value. Finally, to 

complete the MAC operation, this result of the multiplication (already in state 

variable format) is added to the state variable C (Figure 5.2). The following sections 

describe the MAC unit components. Simulation and synthesis results are presented 

in Section 5.S. 

68 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

A Coefficient 

B state varicb le 1 

C state vari cble 2 R =(1'<' 8}1-C 

Figure 5.2 MAC unit 

5.3.2 Array multiplier 

The presence of a single-cycle mUltiplier is essential to achieve high performance 

for the CSP. This is because most of the operations performed by the processor 

involve a multiplication. There are many options to implement hardware 

multipliers. The multiplier selected for the CSP uses the Baugh-Wooley technique 

[Baugh73] [Pirsch98]. It multiplies two numbers in two's complement format. 

Figure 5.3 shows a block diagram of the array multiplier. The partial products are 

formed by an array of AND gates. These partial products are then added together to 

produce the results. To perform the addition, the multiplier includes several carry­

save adders (CSA) and one carry lookahead adder (CLA). 

Unlike carry propagate adders that evaluate the carries to determine the sum result. 

The idea of the carry-save adder is to 'save' the carry for the next stage. This means 

that the carry signals are not used for the current addition, but rather for the 

successive adders. A CSA consists of an array of full adders that merge three 

operands to one sum and one carry values. 

The number of CSA adders depends on the number of bits of the coefficient's 

mantissa. In Figure 5.3, the four CSA adders reduce the number of operands from 

six to two, which are then added by the CLA to produce the multiplication result. 

The carry lookahead adder consists of a series of full adders and, as its name 

indicates, also includes parallel logic to evaluate the carries, which speeds up the 

69 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

addition process. This compact and regular structure results in an efficient and fast 

multiplier. 

Figure 5.3 Block diagram of the array multiplier 

5.3.3 Shifter 

A shifter is placed immediately after the array multiplier to complete the 

multiplication process. Traditional shifters offer a left shift by one, a right shift by 

one, or no shift. Such shifters can also perform multibit shifts, but this is done one 

bit at a time and can be time consuming. Another kind of shifter, called barrel 

shifter, offers more flexibility by supporting shifts by any number of bits in a single 

cycle. Because, the input has to be shifted according to the exponent value, which 

has a biased range of -25 to +6 (see Section 4.5.1), a specially adapted barrel shifter 

in required. A 6-bit positive shift (left shift) indicated by a exponent value 31 will 

scale the input value by 26
, while a 25-bit negative shift (right shift) indicated by an 

exponent value 0 will scale the input by 225
• A no shift is indicated by an exponent 

value 25. 

A shift to the right duplicates the sign bit (either a one or zero) into the most 

significant bits (arithmetic shift). A shift to the left inserts zeros into the least 

significant bits. When shifting a value to the left, the shifter checks for overflow. If 

70 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

a positive overflow occurs, the output is set to the maximum positive value. While 

for a negative overflow, the output is set to the maximum negative value. 

5.3.4 Adder 

The shifter just described is used to complete the multiplication of the coefficient 

and one of the state variables. The multiplication result, which is already in state 

variable format, is added to the second state variable to complete the mUltiply­

accumulate operation. A CLA adder, like the one described as part of the array 

multiplier, is used to perform this final addition. 

5.3.5 MAC unit simulation 

To illustrate the MAC unit functionality, consider the waveform graph shown in 

Figure 5.4. The MAC operation is performed in a single clock cycle. The input data 

that was read from the data memory at the rising edge I is passed to the MAC unit 

CA). The coefficient is then divided into its mantissa and exponent parts CB and E 

respectively). The state variable 1 and the mantissa are used to feed the array of 

CSA adders to produce sum and carry vectors Cc) that are added to complete the 

multiplication CD). The result of the multiplication is then shifted according to the 

value of the exponent CE). And finally, the output of the shifter CF) is added to the 

state variable 2 to obtain the result of the MAC operation CG). 

71 



'"r1 
ciQ' 

'" @ 
V> 

~ 

2::: 
;I> 
n 

'" 2. ..., -N '" S· 
'" a o· 
::; 

'i! 
'" <: 
(1) 

C5' 
3 

':'<WaveForm Viewer(2 

CLK 

5TATE1(26 
5TATE2(26 
B(S do!.!nt.o b "010110 " 
50(31 
CO(26 
5(26 do!.!nt.o 

SHIFT (4 

5(32 do!.!nt.o 

1 2 

Cl 
I 
}> 

~ m 
;0 
." 

<: 
m 

Cl 
(J) 
"t1 
I 
}> 
;0 
0 
::E 
}> 
;0 
m 
s: 
"t1 
r-
m s: 
m 
Z 
--i 

~ 
6 z 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

5.4 MEMORY SYSTEM 

The MAC unit has been optimised to provide high performance multiply­

accumulate operations. Because one of the requirements to implement the CSP is 

that it should be able to execute one MAC operation per clock cycle, the memory 

system must allow the CSP to fetch an instruction while simultaneously fetching 

operands for the instructions and storing the result of the previous instruction. This 

involves the completion of complete several accesses to memory simultaneously. 

Thus, the organisation of memory and its interconnection with the MAC unit are 

critical to achieve high performance for the CSP. 

5.4.1 Memory architecture 

The memory elements store data so that the PE, in addition to implementing the 

algorithm, can access appropriate data without loss of any computational time slots. 

Since the PE requires several simultaneous inputs and outputs, we require that the 

memories be partitioned into several independent memories, or have several ports, 

which can be accessed in parallel. 

To achieve the required performance, the memory system must allow the CSP to 

perform the following processes within one instruction cycle: 

• Fetch the instruction to be executed 

• Read the appropriate operands 

• Write the result of the previous operation 

This means that the processor must make five accesses to memory in one instruction 

cycle (4-read, l-write). 

The simplest option is to have single bank of memory where all the instructions and 

data will be stored. However, the number of bits used to represent the coefficients is 

different to the number of bits in the state variables and instructions. This means 

73 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

that the memory must be wide enough to allocate the widest of them and in such 

case, entries used to store shorter words will be underutilised. To avoid this problem 

and to provide the ability of accessing instructions and data simultaneously, three 

independent memories will be used in the CSP: program memory, multiport data 

memory (three read, one write), and initialisation data memory. 

5.4.2 Data memory 

The data memory contains all the data required to perform the algorithm, namely: 

coefficients, state variables, input and output values, and partial products. A 

multiported memory is used to provide the three read and one write accesses to data 

needed for a MAC operation. The data memory has four independent sets of address 

and data connections, allowing independent memory accesses to proceed in parallel. 

As seen in Section 3.4.2, the A500K130 devices allows the implementation of 

multiported memories. Figure 5.5 shows the multiported data memory. The width of 

the memory blocks will depend on the number of bits used to represent the 

coefficients and state variables (whichever is wider). While the complexity of the 

controller will determine the number of total values required for the algorithm and 

therefore the depth of the required memory. 

Data memory 

Memory Data out 1 
block 1 

Data In 

I I 
Data out2 Memory 

block 2 

Data out 3 
Memory 
block 3 

Figure 5.5 Data memory organisation 

74 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

5.4.3 Program and initial data memories 

The program memory contains the program that will implement the control 

algorithm. While the initialisation data memory contains the coefficients and initial 

state values needed to initialise the processor before performing the control 

algorithm. 

For simplicity, the program and initial data memories are implemented on-chip. 

This is possible because the ProASIC devices offer the possibility of implementing 

hardwired memories using the logic tiles. This effectively creates on-chip non­

volatile ROM memories that can be programmed together with the rest of the CSP 

components. The overall architecture is simplified, as external memory interfaces 

are not required. 

5.4.4 Mapping input values into data memory 

Input sample values must be mapped to fit within the state variable format. As both 

types of variables are represented using two's complement format, the mapping is 

straightforward. Firstly, it is necessary to copy the most significant bit of the input 

value to every bit of the overflow part of the state variable. Then the input value is 

then copied to the integer part. Finally, O's are inserted in the underflow part to 

complete the state variable word. To extract an output value from the state variable 

format, the 12 least significant bits of the integer part must be read (Figure 5.6). 

12-bit 

I ! Input sample 

I I l 0'5 

~Decimal 
Point 

'-v---"~--~ ~ ___ ~A~ __ ~v_----' 

3-bit 12-bit -12-bit 

Overflow U nderflow 

Figure 5.6 Mapping an input sample into state variable format 

75 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

The output values produced by the esp, which are extracted from an internal 

variable in state variable format, have been rounded to the nearest integer. This 

means that if the value of the underflow bits is greater than or equal to 0.5, the 

output value will be increased by I. 

5.4.5 Data memory organisation 

Figure 5.8 shows how the coefficients and state variables can be grouped when 

stored in the data memory. Although the coefficients and other variable can be 

stored in any location in the data memory and the order shown in the figure does not 

necessarily has to be followed when implementing a controller, it is important to 

keep consistency so the design can be verified more easily. 

As Figure 5.7 shows, constant values are included in both, coefficient and state 

variable format. These constants can be included to add flexibility to the operation 

the CSP can perform. The number and value ofthese constants will depend upon the 

operations required to implement the algorithm. Further explanation including some 

example instructions is given in Chapter 6. 

5.4.6 Addressing mode 

The number and position of the variables involved in the CSP algorithm remain 

constant during the program execution. This is because the partial products and 

other auxiliary values needed to perform the algorithm are stored in predetermined 

memory locations and kept in the same location when updated. Also, the 

coefficients do not change during the program execution, in fact they can be 

considered as constants. And finally, when a state variable is updated, the new value 

is rewritten on the same location. 

76 



CHAPTER FIVE 

Coefficients 

State 
Variables 

CSP HARDWARE IMPLEMENTATION 

constant values 

A Matrix 

B Matrix 

C Matrix 

D Matrix 

constant values 

State Variables X 

Outputs Y 

Inputs U 

(j Value 

Auxiliary values 

· · • 

) n Values 

}nct Values 

} n~ Values 

} n~ Values 

} n Values 

} ~ Values 

} a Values 

Figure 5.7 Data memory organisation 

Thus it is possible to use a simple direct addressing mode to access the values stored 

in the memories. The addresses specified in the instruction point directly to the 

physical location of the variables. The number of bits needed to address the memory 

locations depends on the values ofn, ex, and ~. As an example, consider a 4th-order 

single-input single-output controller (n = 4, ex = I, ~ = I), the number of coefficients 

and state variables are 16 and 11 respectively. The number of bits needed to address 

data in the memory is 5, which will allow us to address up to 32 memory locations. 

5.5 CONTROL 

Control strategy is mainly concerned with the manner in which control signals 

direct the data flow in the system. The simple sequence of operations required to 

implement the algorithm allows the use of a simple centralised control scheme 

based on an instruction handler and a program counter. 

77 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

5.5.1 Program counter 

Before the CSP can execute an instruction, the instruction must first be read from 

the program memory and brought to the instruction handler. The program counter 

contains the address of the next instruction in memory to be executed. The process 

of fetching an instruction begins with the value of the program counter being used 

as address to access the program memory. Once the instruction has been read, the 

value of the program counter is incremented by I. In this way, the program counter 

indicates the next instruction while the current instruction is being executed. 

To perform its task, the program counter (PC) performs uses three values: program 

counter, initial address, and final address. The PC value points to the address of the 

next instruction. At the beginning of the algorithm execution, the program counter is 

initialised to zero by a reset signal and automatically increased by one after each 

instruction is executed. When the PC value reaches the final instruction addresses, 

the initial instruction address is copied to program counter. This procedure creates 

an loop to process the inputs and generates the outputs ofthe CSP. Figure 5.8 shows 

the program counter algorithm and Figure 5.9 shows how the algorithm is 

implemented in hardware. 

No Yes 
PC = Pcinitiai PC>PCfinai PC = PC +1 

Figure 5.8 Program counter algorithm 

78 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

A Comparator 
B A>B 

Figure 5.9 Program counter hardware 

5.5.2 Instruction handler 

The instruction handler decodes the instruction to be executed. It divides the 

instruction into fields. The operation code field indicates what CSP instruction is to 

be executed. The other fields contain the address of the data to be used by the 

instruction. The instruction handler generates signals to control the CSP operation 

according to the operation code read from the instruction. It also extracts the source 

and destination addresses and controls memory accesses by enabling read and write 

signals to the memories. 

5.6 CSP ARCHITECTURE 

Figure 5.10 shows a block diagram for the CSP system. The core of the CSP 

comprises the MAC unit and the data memory block. This architecture employs 

separate program and data buses to access separate data and program memories, an 

arrangement that increases speed since instructions and data can move in parallel 

and execute simultaneously rather than sequentially. The computation of the output 

values is done by iteratively executing multiply-accumulation (MAC) operations. 

The following steps are needed to complete an instruction execution cycle. 

79 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

I. The value of the program counter is transferred to the read address of the 

program memory 

2. The content of the specified memory locations is transferred to the instruction 

handler 

3. The instruction handler decodes the instructions. It places the appropriate 

memory addresses and control signals to control the data flow through the 

processor 

4. The program counter value is updated and the process repeats for the next 

instruction 

The process of reading and decoding the instruction and the pipeline stage produce a 

latency of 4 clock cycles between instructions issues and the result being written 

back to the data memory. 

The CSP architecture has also been designed to allow for 'block-structured' 

controllers, in which a number of transfer-function blocks, each implemented by the 

formulation described in Section 4.3, can be arbitrarily interconnected from inputs 

to outputs. This approach can be used to reduce controller complexity if it is 

possible to identify appropriate sub-structures. 

80 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

Initialisation 
Input R Data Data Address 

ROM 

\ MUX / 

Data 
In Control 

Data addresses Instruction Instruction 
Data handler 

Memory 

! Program 

Output ROM 
PC Input 

Program 
Data Data Data Counter Program Out 1 0",2 Out3 I PCstart I counter 

A B C I PS,top I 
MAC-Unft 

R=(A·B)+C 

R 

Figure 5.10 CSP block diagram 

5.7 PIPELlNING 

Pipelining is commonly used to speed up a processor by breaking the execution of 

instruction into smaller processes and executing these processes in parallel if 

possible. Thus, decreasing the time required to execute a sequence of instructions. 

Strictly speaking, the CSP architecture is pipelined as it performs the following 

tasks in parallel: 

• Fetch a new instruction from program memory 

• Decode the instruction 

• Retrieve data operands from data memory 

• Execute the operation 

Although the MAC unit can produce one result per clock cycle, the internal 

. pipelining results in a delay (or latency) of four cycles from the time the instruction 

81 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

is fetched from the program memory until the result is available at its output. This 

latency can result in data dependency if the result of one instruction is needed by the 

following instruction. The data dependency problem and how it can be solved is 

explained in Chapter 6. 

5.8 HARDWARE COMPLEXITY AND CLOCK SPEED 

5.8.1 Parameters used for hardware implementation 

The CSP design used to obtain the results shown in this section was implemented 

using the following parameters. 

• Coefficients format: Low-precision floating-point form, with a 6- bit mantissa in 

two's complement format and a 5-bit exponent. 

• State variable format: 27-bit signed form in two's complement format. 

• 110 data format: 12-bit signed integer form in two's complement format. 

• Data memory: 27-bit x 256 word 3-read I-write RAM. 

The CSP implements a 4th order single-input single-output controller. A full 

description of the structure of the CSP program is presented in Section 6.3.1 and a 

description of the controller example in Section 7.3.1. 

5.8.2 Synthesis results 

Table 5.1 shows the CSP complexity in terms of Actel's ProAsic device tiles and 

equivalent gates [ActelOOa]. Everything except the program and data memories are 

fixed in size; these memories are hard wired, and their size and speed depends upon 

82 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

the control algorithm being implemented. The figures shown are for the fourth-order 

single-input single-output filter described in Section 4.3. 

The synthesis of the CSP core results in an overall gate count of 1560 ProASIC 

logic tiles, which is equivalent to approximately 12000 system gates. The program 

and data ROM memories requires 980 logic tiles overall. The data memory block is 

implemented using 9 embedded RAM blocks provided by ProAsic devices. 

The relatively small size of the processor core leaves much of the FPGA free such 

that it can be used to carry out additional functions defined by the user. In this case, 

the CSP used about 20% of the area available in an A500K 130 device, which is a 

medium range device ofthe A500K family. 

Block ProAsic Equivalent 
Tiles gates 

Instruction 101 808 
Handler 
MAC Unit 1105 8840 
Program counter 175 1400 
VO Block 60 480 
Pipeline 120 960 
registers 
Program ROM 900 7200 
Data ROM 80 640 
Total 2541 20328 

Table 5.1 CSP complexity 

Table 5.2 shows the delay information for the CSP produced at different stages of 

the design flow. The first column shows the CSP parts, while the rest of the column 

shows the delay information for each part. The second column shows the delay 

information produced by the synthesis tool (Leonardo Express). The third column 

shows the delay information produced by ASICMaster after place and route and the 

third column shows the delay indicated by the static timing analyser (Flash Timer). 

83 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

The delay information produced by the different tools can vary considerably. For 

simplicity and following a recommendation from Actel, we will base our analysis 

on the results produced by the timing analyser. 

Module 
MAC 
Instruction 
Handler 
Program counter 
Program ROM 
Data ROM 

Synthesis 
75.61 
12.67 

21.65 
55.25 
15.05 

Place and route 
61.64 
10.41 

21.46 
53.34 
12.80 

Table 5.2 CSP delay information (ns) 

Timing analyser 
76.41 
12.45 

26.44 
64.92 
14.38 

It can be seen form Table 5.2 that the MAC unit and program ROM are the slowest 

parts of the design. As seen in Section 5.4.3, the program ROM is implemented 

using logic tiles, thus its size and delay depend on the CSP program to be 

implemented. For that reason, the placement and timing restrictions used to optimise 

one design may not produce good results for other designs. In fact, for larger 

controllers, the program ROM may contain the critical path of the design. However, 

it is important the remark that this problem is a consequence of the method used to 

implement the ROM and can be solved by using an external ROM to hold the CSP 

program. 

Unlike the program ROM, the MAC unit has a regular structure that can be 

exploited to improve its performance. The execution time of the MAC unit can be 

accelerated by the introduction of a pipeline stage. Ideally, the pipeline should be 

placed so it divides the MAC data path into two parts with similar delay. To identify 

the best location for the pipelined within the MAC unit data path, each block of the 

MAC unit was modelled in VHDL and synthesised individually. The multiplier was 

divided into its CSA and CLA parts, thus splitting the data path within the MAC 

into four sections: multiplier's CSA and CLA sections, barrel shifter, and CLA 

adder. A detailed low level design has been used to speed up each part of the MAC 

operation. This involves the introduction of a number of placement and timing 

constraints prior to placing and routing individual blocks in order to have the 

84 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

minimum possible delay between logic elements. To have an accurate estimate of 

the delays; registers were placed at the inputs and outputs of each block before 

doing the synthesis. Tables 5.3 to 5.6 show the results obtained after synthesising 

the different blocks. 

Tables 5.3 and 5.4 show the delays of the multiplier's CSA and CLA adders 

respectively. Table 5.5 shows the delay of the complete multiplier and Table 5.6 

shows the delay of the barrel shifter. From these table it can be seen that the delay 

of each of the four parts of the MAC unit is very similar to each other. Thus the 

most suitable position for the pipeline is located at the output of the multiplier as 

shown in Figure 5.11. This effectively divides the MAC unit into two parts that 

have similar delays, about 43ns for the multiplier and 39ns for the shifter and CLA 

adder. The delays shown in Table 5.5 were obtained by synthesising the CSA and 

CLA adders combined into a single block rather than just adding the delays of the 

CSA and CLA adders shown in Table 5.3 and Table 5.4 respectively 

Module 

Array of CSA adders 
Array of CS A adders with 
place & route constraints 

Synthesis 
21.15 
21.15 

Place and route 

18.48 
16.31 

Table 5.3 CSA adder delay information 

Module 

CLA adder 
CLA adder with 
place & route constraints 

Synthesis 
23.18 
23.18 

Place and route 

19.00 
17.13 

Table 5.4 CLA adder delay information 

Timing analyser 
23.32 
20.55 

Timing analyser 
23.44 
21.50 

Module Synthesis Place and route Timing analyser 

Multiplier with 42.74 34.95 43.48 
place & route constraints 

Table 5.5 Multiplier delay information 

85 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

Module Synthesis Place and route 
Shifter 
Shifter with 

13.58 
13.58 

12.40 
11.58 

place & route constraints 

Table 5.6 Shifter delay infonnation 

Co efficient 

mantissa 

exponent 
MULTIPLIER 

variable 1 1 A~~Y 1----1 Ag~R I -I SHIFTER I -
State 

State variable 2 

Pipeline 

Figure 5.11 Pipelined MAC unit 

.I 
I 

Timing analyser 
16.00 
15.41 

CLA I Result 
ADDER I 

Table 5.7 shows delay infonnation for the complete MAC unit. The first row 

contains the delay of MAC unit without any optimisation. The second row indicates 

the delays of the pipelined MAC, and the third indicates the delays of the pipelined 

MAC with place & route constraints. 

Module 
MAC 
Pipelined MAC 
Pipelined MAC with 
place & route constraints 

Synthesis 
75.61 
42.74 
42.74 

Place and route 
61.64 
42.01 
32.6 

Table 5.7 MAC unit delay infonnation 

Timing analyser 
76.41 
51.57 
39.12 

Because the MAC unit contains one pipeline stage, the MAC unit can process two 

sets of operands simultaneously. At the time that the operands specified by one 

instruction are being read from the data memory and transferred to the MAC unit 

86 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

inputs, the result from the previous instruction is produced at the output of the MAC 

unit and copied back to the data memory. 

Figure 5.12 shows a simulation waveform ofa MAC instruction cycle performed by 

the CSP. The program counter value (A) indicates the instruction to be executed. At 

rising edge I, the instruction is fetched form the program memory (B) and the 

addresses it contains (C) are used to read data from the data memory at rising edge 

2. The data (D) is then transferred to the MAC unit that produces a result after one 

clock cycle (E). The result of the operation is then stored in the data memory on 

rising edge 4, the location is indicated by the destination address (F) included in the 

MAC instruction. 

Figure 5.13 shows a simulation waveform of the pipelined MAC unit. The MAC 

operation is performed in two clock cycles. The input data that was read from the 

data memory at the rising edge I is passed to the MAC unit (D). The coefficient is 

then divided into its mantissa and exponent parts (G). The state variable I and the 

mantissa used to feed the array of CS A adders to produce sum and carry vectors (H) 

that are added to complete the multiplication (I). The result of the multiplication is 

then stored in a pipeline register. After rising edge 2, the result of the multiplication 

is shifted according to the value of the exponent (J). And finally, the output of the 

shifter (K) is added to the state variable 2 (L) to obtain the result of the MAC 

operation (H). Note that to ensure that the correct result is obtained on the MAC 

operation, the exponent (J) and the state variable 2 (L) are also pipelined so their 

values are available on the second clock cycle. 

Figure 5.14 shows the layout of the MAC unit on the ProASIC device and Figure 

5.15 shows the complete CSP layout. 

87 



'Tl 
OQ' 
C .... 
(1) 

v-

N 

() 
en 
'"0 

'" 00 3' 00 

C a o· 
::s 
~ 
~ 
(1) 

8' 
3 

WayeForm V,ewer(4) 1i!I~ El 

······nCLK 
I 
B}n PC(ll 

lil n INST (37 

liln Sl_ADDR(8 

b"OOOO1OOOO" 

tiln b"OOOOOOll001" 

ill·· n SIATE1 (26 , 
Elln STA.TE2(26 .: III 

illn Rl!SULT 0 
liln TdADDR(7 b"OOO1100l 11 

1 2 3 

() 
I » 
"1l 
-i 
m 
;0 
"Tl 

<: 
m 

() 
en 
"1l 
I » 
;0 

~ » 
;0 
m 
5: 
"1l 
r­
m 
5: 
m z g 
(5 
z 



'Tl 
ciQ' 
e:: 
(;l 
v. 

w 
'1:1 
.;' 
~ 
5' 
(1) 
0-

~ 
:> 

00 () 

'" e:: 
2, -en 
S' 
e:: 
0;--0' 
:l 

~ ., 
<: 
(1) 

S' 
§ 

',' WaveForm Viewer!l 0) ~~ 113 

1 L 3 
""illfT-II'~---'----"--'--~---------'----'''--'--'-- --'-"---"-'--"I">,,il 

() 
::c 
:l> 
'1l 
-i 
m 
;0 
"T1 
<: 
m 

() 
C/l 
'1l 
::c 
:l> 
;0 

~ 
:l> 
;0 
m 
;;:: 
'1l ,... 
m 
;;:: 
m 
Z 

g 
(5 
z 



.." 
~. .., 
(1) 

v. -.j>. 

>0 ~ 0 

n 
~ . 
~ 

0;-
~ 
c 
~ 

A JASIClIlclSlet V_, VeltJOn 5p2 1 De11gn C1P I!!I[;] £J 

Layout yj,ew Options Help 

..I. 

~ 
"'I" yln 

Ii\ m 
Zoom 

-'..,... LJ A:J 
JdJ m 

t·· - --
+~ ~t-

-< 
+- -~ 

~-'- s,l,rt 
+- -

+- -
Coli I ~ 

~ 

IOAru EnlISJge 

• - -t-
+ 
+- I , 

1" - . 

~ +-~ .1-.1-. ' .. - n_' 11 I 1 I r --++t+--+,-
N I 

I 

() 
I 
l> 
-u 
-f 
m 
;0 
'T1 
<: 
m 

() 
en 
-u 
I 
l> 
;0 

~ 
l> 
;0 
m 
~ 
-u ..... 
m 
;:: 
m 
Z 

E 
(5 
z 



"rj 
~. 
..., 
" V-

'" V-

n 
(/) 

'" 0;-

6 
c -

A JASICmasler Ve ,,(!'f Vemon 5p2 1 DeslQn csp "r-l EJ 

"'I MEMO yl 

, Ii\ lill .IF + 

I 

~ f 
Zoom 

itfft.;.jfp tj LJ 
W'- .$ l f EiJI 

~ 
Sdel;1. 

c·· 1 ~ 
ID Are. EnWg. 

, 

II f. i 
~ 

~ -1 

- .... 

o 
I » 
~ 
m 
:;0 

" <: 
m 

0 en 
"U 
I » 
:;0 
0 
:E » 
:;0 
m 
s: 
"U 
r 
m 
s: 
m 
Z 
--i 

~ 
6 z 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

5.8.3 Hardware testing 

The design was downloaded into an A500K130 device and verified for speed using 

a parallel tester. The parallel tester uses the test vectors to drive the design and 

compares the outputs against the expected output vectors provided by the user. The 

clock frequency and the strobe time are varied to produce a two-dimension plot 

(Shmoo Plot). The plot shows how the test passes or fails when both parameters are 

varied and the test is executed repeatedly. 

According to the results obtained with the software tools, the delay of the critical 

path of the CSP under worst conditions is approximately 43ns (see Table 5.5), 

which corresponds to a maximum frequency of 25 MHz. However, the results 

obtained from the parallel tester were much better than expected (see Figure 5.16). 

In this figure, the passes are indicated by a ,*, in the plot. The line formed with 'r' at 

the bottom of the graph indicates the minimum cycle time the parallel tester can 

operate at (20 ns), and the X and Y axis are shown as dotted lines. The maximum 

frequency in which the CSP operated correctly is 50 MHz, which is in fact, the 

maximum frequency the tester can operate at. This situation can be explained by the 

fact that at the time when the test were realised, the ProASIC devices were in the 

final stages of development prior to their market introduction. 

> < 
SOns + ..... **************************+ 

Q) 40ns 

E 
:;::; 
Q) 

CJ 
>-U 30ns 

I. **************************1 
I. **************************1 
I. **************************1 
I. **************************1 
+ ..... **************************+ 
I. **************************1 
I. ttttt.t.**t,t, ____ ._.,._., 

I. tt.t.t*t* ••••• _ ••• _._. .1 
I. tt.t.t •• t.ttt* __ .___ ., 

+ .....• ,"t,t.t,t** ___ ._, ....... + 

I· **************************1 
I. ttt*tt_t_*._,_ '**********1 
I. tt.t.tttt_._ '**********1 
I. tt*t_tt*__ ***********1 

20ns +rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr+ 
+---------+---------+---------+ 

20ns 30ns 40ns SOns 

Strobe 

Figure 5.16 Parallel tester results for the CSP (Shmoo Plot) 

92 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

Despite the fact that the results provided by the software tools do not match the 

results obtained by the hardware tests. The main purpose of testing the design, 

which was to demonstrate that the design works properly at high frequencies, was 

accomplished. 

5.9 SYSTEM INTERFACE 

The processor will be embedded within the complete control system and will 

normally be programmed in a separate programming system (see Section 3.4.3). A 

group of analogue-digital and digital-analogue converters provide the interface to 

the physical system. A number of configuration options exist and the exact 

configuration will depend on specific system requirements and available resources. 

Figure 5.17 shows just a proposed configuration where external data buses are used 

to connect the ADCs and DACs to the CSP input and output ports. This 

configuration allows sampling of analogue input at the same time, thus a single CSP 

control signal is required. Assuming that the outputs of the ADCs are registered, 

each input can be accessed at any time between consecutive samples because they 

are each stored in their own dedicated register. Another advantage of this 

configuration is that the number of IJO pins remains constant regardless of the 

number of input and output signals of the system. 

93 



CHAPTER FIVE 

Analog 
Inputs 

1 

2 

0. 

r 

I----t 

~ 

input 
Bus 

ADC, -
ADC, - Dig.al 

input 

ADC. -
Clk 

Clock 
Generator 

CSP HARDWARE IMPLEMENTATION 

Analog 

Output 
Outputs 

Bus 

':- DAC,l 
1 

Digttal 
output "I DAC, 

2 

Control 
System 

Processor -I DAC, I ~ 

Figure 5.17 CSP interface 

5.10 SUMMARY OF THE CHAPTER 

This chapter has described the proposed architecture to implement the CSP. It 

described the process used to create the architecture. Special attention was given to 

the design of the MAC unit, which performs high-speed multiply-and-accumulate 

operations on operands represented using the special formats described in Section 

4.5. An analysis of the requirements and detailed low level design resulted in a 

compact MAC unit capable of producing one result per clock cycle. The memory 

system of the CSP consists of three separate memories, program memory, data 

memory and initial data memory. In order to provide data at the speed required by 

the MAC unit, the data memory was designed to support four data operations 

simultaneously (three read, one write). 

The results of synthesising the design were presented. These results show that CSP 

can easily fit in medium range ProASIC device, which allows the possibility of 

integrating extra functions in required by a specific application. The CSP design 

was downloaded into an A500KI30 ProASIC device and tested for speed. It was 

94 



CHAPTER FIVE CSP HARDWARE IMPLEMENTATION 

capable of running at 50MHz, which is about twice as fast as the speed estimated by 

the software tools. 

In summary, the CSP has been designed to execute a well-defined control task, 

which is defined by the controller formulation explained in Chapter 4. This 

architecture takes advantage of our analysis of the specific control application to 

permit efficient and cost effective realisations of the required processing functions. 

95 



CHAPTER SIX CSP SOFTWARE 

Chapter 6 

CSP software 

6.1 OBJECTIVES OF THE CHAPTER 

In Chapter 4 we identified the operations that need to be executed to perform the 

control algorithm and in Chapter 5 a hardware architecture to perform those 

operations was developed. This chapter looks into the software that will implement 

the control algorithms within the CSP and the software environment needed to 

support this implementation. The objectives of this chapter are: 

• To define the CSP instruction set 

• To identify a suitable software structure for the CSP program 

• To describe the supporting software suite 

6.2 INSTRUCTION SET 

6.2.1 Description of the instructions 

Most of the operations needed to perform the control algorithm are the multiply­

and-accumulate operations performed by the MAC unit described in Chapter 5; thus 

it is natural to have an instruction to perform such operation. The MAC instruction 

indicates to the CSP to perform the operation 

R=(A*B)+C 

96 



CHAPTER SIX CSP SOFTWARE 

where A is a coefficient and B, C and R are value represented in state variable 

format. 

A READ instruction allows the CSP to read the initialisation values form data 

memory. It also reads input samples when the algorithm loop has begun. The values 

are copied into the register file location indicated by the instruction. A WRITE 

instruction is used to transfer a value from the register file to an output chaonel. 

Finally, to provide support for unconditional jumps, the program counter unit 

requires an initial and a final address value. The WRITEPC instruction is used to 

copy those from the initialisation data memory into program counter registers. Table 

6.1 summarises the CSP instruction set. 

Mnemonic Description 
MAC 
WRITEPC 
READ 
WRITE 

Multiply-and-accumulate operation 
Write to program counter registers 
Read input sample or initial values 
Extract output values 

Table 6.1 CSP instruction set 

The instruction formats used for the CSP instruction are very simple. The first field 

of all the instructions contains the operation code (OP) that indicates which 

instruction is to be executed. Table 6.2 shows the value of the 2-bit operation code 

for each instruction. A more detailed description of each instruction is given in the 

following sections. 

Instruction 
MAC 
WRITEPC 
READ 
WRITE 

OP 
00 
01 
ID 
II 

Table 6.2 Operation code for the CSP instructions 

97 



CHAPTER SIX CSP SOFTWARE 

6.2.2 MAC instruction 

The MAC instruction perfonns a multiply-and-accumulate operation. The addresses 

of the operands are included in the instruction fields. The second field contains the 

location in the register file where the result of the operation is to be placed. The 

following three fields indicate the location of the values involved in the operation 

(Figure 6.1). 

Syntax: 

Operation: 

Source 1 Source 2 Source 3 

Figure 6.1 MAC instruction fonnat 

MAC RI, R2, R3, R4 

RI +- R2 * R3 + R4 

Note that the order in which the operands are indicated in the MAC instructions 

detennines which operands will be multiplied, and which will be added to the 

multiplication result. The Source] field must point to a coefficient value, and 

Source2 and Souree3 fields must point to values in state variable format. The result 

of this operation will be stored in state variable fonnat. 

It was mentioned in Section 5.4 that the register file can be used to store some 

constants in order to add flexibility to the MAC unit operation. Some useful 

constant values are 0, I and -1. Note that to implement the control algorithm, it is 

not necessary to store these three constants in both fonnats (coefficient and state 

variable). However, they will be included in all the program and simulation 

examples to maintain consistency. The inclusion of these constants allows the MAC 

instruction to perfonn a number of different operations as shown in Table 6.3. Note 

that the CSP was not intended to support these operations. It is recognised that the 

MAC unit is not the best approach to implement these operations. However, the 

inclusion of a specialised unit to perfonn them operations is not justifiable because 

these operations are rarely needed. 

98 



--------------------- -

CHAPTER SIX CSP SOFTWARE 

Instruction Syntax Operation 
No operation MAC R2, I, R2, 0 R2 ..... R2 
Move MAC R2, I, R3, 0 R2 ..... R3 
Addition MAC R2, I, R3, R4 R2 ..... R3+R4 
Multiplication MAC R2, R3, R4, 0 R2 ..... R3 * R4 
Sign invert MAC R2, -I, R4, 0 R2 ..... -I * R4 
Increment MAC R2, I, R4, I R2 ..... R4+ I 
Decrement MAC R2, I, R4,-1 R2 ..... R4 - I 

Table 6.3 Additional operations that can be implemented with the MAC instruction 

6.2.3 READ instruction 

The READ instruction contains four fields (Figure 6.2). The operation OP field 

identifies the instruction. The destination field indicates the section and location in 

the data memory where the input value is to be stored. The Input Sel field indicates 

where the input value is to be read from, data memory or input port. In the former 

case, the source field contains the location of the value in the memory. In the latter 

case, the value of the Input Sel field can be used to point to specific inputs in the 

case where several inputs channels are being used (see Section 5.9) and the Source 

field is not used. 

OP I Destination I Input Sel Source 

Figure 6.2 READ instruction format 

Syntax: READ RI, Sel, Saddr 

Operation: 

IfSel = 0 

RI ..... data[Saddr] ; Read from data memory 

else 

RI ..... ADC[Sel] ; Read from ADC number Sel 

99 



-- -------

CHAPTER SIX CSP SOFTWARE 

6.2.4 WRITE instruction 

The WRITE instruction contains only three fields (Figure 6.3): The OP field 

identifies the instruction, the Output Sel field that selects the appropriate output 

where the output value is transferred, and the Source field that contains the location 

of the output value in the state variable data memory. The information in the Output 

Sel field is only relevant when several output channels are being used. 

Syntax: 

Operation: 

OP loutput Sel I Source 

Figure 6.3 WRITE instruction format 

WRITE Sel, RI 

DAC[Sell- RI 

6.2.5 WRITE PC instruction 

The WRITEPC instruction also contains three fields (Figure 6.4). The OP field 

identifies the instruction, the Destination field that selects the appropriate register in 

the Program Counter (see Section 5.5.1) module where the input value is to be 

stored and the Source filed that contains the location of the input value in the data 

memory. 

OP I Destination I Source 

Figure 6.4 WRITEPC instruction format 

Syntax: 

Operation: 

ifsel =0 

WRITEPC Sel, Addr 

pcstart +- datal Addr 1 
else 

pc stop - datal Addr 1 

; Update initial address register 

; Update final address register 

100 



CHAPTER SIX CSP SOFTWARE 

6.3 SOfTWARE STRUCTURE 

In this section the overall structure of the program that implements the control 

algorithm and the calculation schedule are described. The CSP program controls 

how the operations are sequenced to perform the algorithm. To generate the CSP 

program it is necessary consider the order in which operations must be done, the 

number of inputs, the number of outputs and the order of the control system to be 

implemented. 

6.3.1 Program scheme 

Although the CSP program is modified according to the system to be controlled, the 

overall scheme remains the same. The structure adopted to implement the digital 

controller program is shown in Figure 6.5. It is divided in two main parts: 

initialisation and algorithm loop. The program begins with an initialisation process 

where each controller state variable is set to zero, and the other variables used in the 

program are given initial values. All the coefficients and state variable initial values 

are transferred from the external data ROM to the register file. Also, the program 

counter registers that specify the initial and final instruction for the algorithm loop 

are updated. Finally, the program enters an infinite loop where the input samples are 

used to calculate the output values to the control system. 

Due to the simplicity of the control algorithm, the CSP will not include support for 

subroutine calls. This means that all the instructions will be coded in the order of 

their execution within the main program loop. This approach avoids the delays 

associated with subroutine calls and will dramatically reduce the amount of 

hardware resources required to implement the processor. 

The fact that the control algorithm to be implemented does not reqUIre data 

dependent branching operations facilitates the scheduling of the operations. A fixed 

schedule helps to achieve one of the main goals of this software scheme, which is to 

have a constant sample rate. 

101 



CHAPTER SIX 

Load Coefficients 

Initialize State Variables 
and Program Counter 

Loop Forever 

Get Input Data 

Ca Iculate Next State 
Va riables and Outputs 

Write Output Data 

Supplementary 
Processes 

Figure 6.S CSP program scheme 

CSP SOFTWARE 

For a given clock frequency, the time between successive input samples or the time 

required to perform an entire loop of the program depends on the number of 

instructions executed and the number of clock cycles needed for each instruction. 

The main advantage of this structure is its simplicity, though any modification in the 

number of instruction within the loop will have an affect on the sampling period. 

6.3.2 Calculation schedule 

The overall sequence of operations within the algorithm loop, with the objective of 

minimising the computational delay between the arrival of the input U and 

generating the output Y is shown in Figure 6.6. 

The calculation CXk+1 is performed once Xk+l is available and prior to the next 

sampling time. Thus after the new inputs are available, only DUk needs to be 

calculated and added to the already calculated values of CXk+1 (now CXk) to obtain 

102 



CHAPTER SIX CSP SOFlWARE 

the output values Y k. The value of er k+1 can be calculated by adding the state 

variables as soon as they are available. In this way after the next sample point (k -+ 

k+ I) the value is already known. 

Sample 
Time 

k-k+1 Yk 

Calcuaticn /Alailcble 
Daay 

r--'--> 

Sample 
Time 

k-k+1 

CXk+1 DUk AXk CXk+l DU. 

Figure 6.6 Calculation schedule within the algorithm loop 

As an example consider a 2nd order filter. The state equations are: 

(5.1) 

(5.2) 

The equations used to calculate the outputs and to update the state variables are (see 

Section 4.4.1): 

(5.3) 

(5.4) 

(5.5) 

When the input value is available, the output is obtained using Equation 5.3, which 

requires 3 MAC operations. 

103 



CHAPTER SIX CSP SOFTWARE 

To follow the calculation schedule described in Figure 6.2, the previous equations 

are split into the following equations: 

y=p+du (5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

Note that the product CX is calculated immediately after the state variables are 

updated and assigned to an auxiliary variable p. In the way, the new output value 

can be produced shortly after the next sampling time by addingp to the product DU. 

Note that after reading the input value, only one MAC instruction is now required to 

obtain the corresponding output value. The value of the auxiliary variable cr, which 

contains the accumulated value of the state variables, is obtained immediately after 

the state variables are updated (see Section 4.4.2). 

The instructions required to implement these equations are shown in Figure 6.7. 

READ U,O ; Read Input from ADC 1 

MAC Y,D,U,P ; y=p+du 

WRT 0, YO ; Write Output to DAC 0 

MAC Xl, AI, X2, Xl ; XI = XI + al x2 

MAC X2, A2, Rs, X2 ; x2 = x2 + a2cr + a2u 
MAC X2, A2, U, X2 

MAC Rs, 1, XO, Xl 

MAC Rs, -1, Rs, 0 

MAC P, Cl, Xl, 0 

MAC P, C2, X2, P 

Figure 6.7 Segment ofa CSP program 

104 



CHAPTER SIX CSP SOFTWARE 

A general example CSP program that can be used as a model to implement any 

controller using the selected formulation is shown in appendix A. 

6.3.3 Data dependency 

One problem generated by pipe lining is data dependency, in which some sequences 

of instructions do not produce the expected results because the current operation 

requires a result form the previous operation which has not yet stored the result back 

into memory. To illustrate this, consider the following sequence of operations: 

I. MAC RIO, RI, R2, R3 
2. MAC RII, RI, R2, RIO 
3. MAC R12, R4, R5, R6 

;RIO~ RI *R2+R3 
; RII ~ RI * R2 + RlO 
; Rl2 ~ R4 * R5 + R6 

Instruction 2 begins execution when the result of instruction I has not been written 

back. This means that instruction 2 will use the old value of RIO and therefore 

produce a wrong result. A rearrangement in the order of the instructions solves this 

problem, by executing instruction 3 before instruction 2, the result of instruction I is 

written back into the register file before it is read as a source operand by instruction 

2. The new sequence of instruction is: 

I. MAC RIO, RI, R2, R3 
2. MAC R12, R4, R5, R6 
3. MAC RII, RI, R2, RIO 

;RIO~ RI *R2+R3 
;RI2~ R4*R5+R6 
;Rll~ RI *R2+RIO 

Note that when the pipelined MAC is used in the CSP, an extra clock cycle is 

needed to complete an instruction (see Section 5.7), therefore it is necessary to 

insert an extra instruction after instruction I to ensure proper operation. This 

rearrangement of instructions, which is done manually, results in additional design 

effort creating a CSP program. 

105 



CHAPTER SIX CSP SOFlWARE 

6.3.4 CSP program size 

The number of instructions required to perform the control algorithm depends on 

the complexity of the controller. The sub-tasks contained within the CSP program 

are listed below indicating the number of CSP instructions required to perform each 

task. 

Task 
Load Coefficient values 
Initialise state variables 
Initialise PC values 
: Algorithm cycle start 
Get Input Data 
Calculate DUN 
Calculate Yn 
Write Output Data 
Calculate XN+1 

Calculate AXN 
Calculate BUN 

Calculate CXN+1 

: End Algorithm cycle 

Number ofCSP instructions 
n + net + (3n + ct{3 + 3 
a+ 2/3+ n + 3 
2 

a 
ct{3 
(3 
(3 
(2 + et)n 

n(3 

where a,p and n are defined as the number of input, the number of output and the 

number of internal state variables respectively. As an example consider a 4th order 

single-input single-output controller (a = l,p = l,n = 4), the number of instructions 

required to perform the operations within the algorithm loop is 20. The number of 

instruction within the algorithm loop and the frequency the CSP operates at will 

determine the speed at which input samples are processed. For example, if the CSP 

requires 20 instructions per algorithm cycle and the processor runs at 20MHz, the 

maximum sampling frequency is I MHz. 

6.4 SOFTWARE SUITE 

6.4.1 CSP model 

The purpose of the CSP Model is to provide a clear understanding of the algorithm 

and its numerical requirements, as well as a verified functional specification of the 

106 



CHAPTER SIX CSP SOFTWARE 

processor and test vectors to verify the hardware design. Input data to the model is 

provided from Matlab simulations or from the CSP signal generator and the 

program to be simulated is generated by the CSP program generator. 

6.4.2 Signal generator 

The CSP signal generator provides input test data to the CSP model. One of the 

basic analysis and design requirements is to evaluate the response of a system for a 

given input. Test input signals are used, both analytically and during testing, to 

verify the design of a control system. It is not practical to choose complicated input 

signals to analyse performance. Thus, usually standard test inputs are used. These 

inputs are impulses, steps, ramps, parabolas and sinusoids [NiseOOJ. 

Input Function Sketch 

Impulse d(t) T fll) ., 
lit) ... 

Step u(t) I 

~ .' 

Ramp tu(t) IL .' I 

Parabola I 'LL .. -t'u{t) 
2 

I 

/0) .. 
Sinusoid Sin (j) t I ru-·, 

Table 6.4 Test signal generated by the data generator 

107 



CHAPTER SIX CSP SOFTWARE 

6.4.3 Program generator 

The CSP program is created usmg the program generator. The number of 

instructions varies according to the number of inputs, outputs and order of the 

system. Thus, each calculation part is generated using these parameters to modify 

the source and destination addresses for each instruction. The program is generated 

in text format and then converted into VHDL (as a ROM element) and added to the 

VHDL code. This is then synthesised and placed and routed. Figure 6.8 shows a 

CSP that implements a 2nd order SISO controller like the one used as example in 

Section 4.4. The order in which the instructions are shown in this example program 

was chosen to facilitate the identification of the calculations required. However 

some instruction rearrangement is needed to avoid data dependency problems. A 

detailed sequence of instructions needed to perform the control algorithm is that 

illustrated in a template program shown in Appendix A. 

READ CFO 
READ CFl 
READ CF 1 
READ Al 
READ A2 
READ B1 
READ B2 
READ Cl 
READ C2 
READ D 

READ SVO 
READ SV1 
READ SV 1 
READ Xl 
READ X2 
READ Y 
READ U 
READ Rs 
READ Acc 

READ tmp1 
READ tmp2 
WRITEPC PC1 
WRITEPC PC2 

READ U 
MAC Y 
WRITE OPtO 
MAC X2 

PtO 
PtO 
PtO 
PtO 
PtO 
PtO 
PtO 
PtO 
PtO 
PtO 

PtO 
PtO 
PtO 
PtO 
PtO 
PtO 
PtO 
PtO 
PtO 

PtO 
PtO 
1 
1 

IPt1 
D 
y 

A2 

DROM CO 
DROM Cl 
DROM_C2 
DROM C3 
DROM C4 
DROM CS 
DROM C6 
DROM C7 
DROM CB 
DROM C9 

DROM SO 
DROM 51 
DROM 5 1 
DROM SO 
DROM SO 
DROM SO 
DROM SO 
DROM SO 
DROM SO 

DROM P 0 
DROM P 1 
tmp1 0 
tmp2 0 

U P 

Xl X2 

108 

Copy coefficients 
to data memory 

Initialise state 
variables 

Initialise program 
counter 

Algorithm loop 
Read Inputs 
Calculate DUk 
Write Outputs 
Calculate 



CHAPTER SIX CSP SOFlWARE 

MAC Xl Al Rs Xl Xk+l = AXk + BUk 
MAC X2 B2 U X2 
MAC Acc 1 0 X2 
MAC Xl Bl U Xl 
MAC Rs 1 Acc Xl 
MAC Rs -1 Rs 0 Calculate Rs = -Rs 
MAC P C2 X2 0 Calculate CXk+l 
MAC P Cl Xl P 

End algorithm loop 

Figure 6.8 CSP program that implements a 2nd order SISO controller 

6.5 SUMMARY OF THE CHAPTER 

This chapter looked into the program that implements the control algorithms within 

the CSP and the software environment used to support this implementation. It 

explained the software scheme adopted to implement the control algorithm and the 

CSP instruction set. 

The sequence of operations performed within the algorithm loop allows minimising 

the computation delay between the arrival of the sample inputs and generating the 

corresponding outputs. The problem of data dependency was also explained 

together with a simple procedure to solve it. 

The reduced instruction set and CSP architecture allows us to implement the control 

algorithm in a very simple way. The reduced number of operations required to 

implement the control algorithm results in a short CSP program, where the actual 

number of instructions is determined by the control system characteristics. The 

operations to be performed will be indicated by the program and realised recursively 

with the state variables updated for the next step and output produced during each 

algorithm loop. 

109 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Chapter 7 

CSP system test and benchmark 

7.1 OBJECTIVES OF THE CHAPTER 

This chapter presents the results of benchmarking the esp against other processors 

and some simulations results. The objectives are: 

• To show that the esp can satisfy a range of high sample rate controller 

examples 

• To prove the numerical aspects of its operation 

• To describe the controller examples used to evaluate the esp 

• To benchmark the esp against other processors running the same algorithms 

7.2 METHODOLOGY 

A comprehensive set of tests has been undertaken to prove the esP's operation for a 

variety of filter types over a range of input conditions. A Matlab program is used to 

implement and simulate some example controllers using 32-bit floating-point 

variables to represent the coefficients and state variables. Additionally, a hardware 

implementation of the esp is tested using the same input signals to compare the 

results against those obtained with the Matlab program. 

110 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Additionally, the CSP performance is compared against the performance of some 

popular commercially available processors. The processors included in the 

benchmark are listed in Table 7.1. To evaluate the performance of these processors, 

the controller examples were programmed in C and compiled to produce assembly 

code targeted at each processor. The assembly code is then analysed to produce an 

estimate of the computation time for each example and compare the results against 

those obtained with the CSP. 

Manufacturer 
Texas Instruments 
Texas Instruments 
Infineon 
Intel/ARM 
Intel 

Processor 
TMS320C31 
TMS320C54 
CI67 
Strong-ARM 
PentiumIII 

Device type 
Digital signal processor 
Digital signal processor 
Microcontroller 
General-purpose processor 
General-purpose processor 

Table 7.1 Processors included in the benchmark 

The benchmark includes a companson of the computation time, the number of 

instruction required to perform the control algorithms, average clock cycles needed 

to perform an instruction. Additionally, a comparison table that includes data such 

as power consumption, voltage supply, technology and hardware complexity, is 

presented. 

7.3 EXAMPLE CONTROLLERS DESCRIPTION 

7.3.1 Validation example - a 4th order 1Hz Butterworth low pass filter 

A general-purpose single-input single-output filter has been as chosen an example to 

assess the CSP's performance. This example was also used to explore the limits of 

the numerical formulation provided within the CSP. Sample frequencies of 100Hz, 

I kHz, 5kHz and 10kHz were used for testing, with results for some frequencies 

presented here. The transfer function of the filter is: 

111 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

I 
H(s) = 2 

( 
S S2) 1+1.4-+-
W w2 

(7.1) 

where w = 2lt. The transfer function was converted into the modified 8 form. 

Figure 7.1 shows a diagrammatic representation of the filter. Appendix B gives the 

sets of coefficients for the sample frequencies used in the simulations. 

y 

Figure 7.1 4th order SISO filter in modified 8 form 

7.3.2 Example controllers 

Two medium and one high order example controller have been selected to establish 

the performance of the esp, drawn from real control applications. The purpose is to 

demonstrate that the esp can implement multiple-input multiple-output controllers 

satisfactorily. The performance results of these implementations are included in the 

benchmark. 

7th order two-input two-output controller 

This controller resulted from a H", design to provide robust control performance for 

an industrial process control application, and although some simulation tests have 

been undertaken it is included principally for the purposes of benchmarking. It is a 

typical example of the kind of controller generated by modem control system design 

methods, with interaction between both inputs and the outputs, and of higher 

112 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

dynamic complexity than normally generated by classical control approaches. It has 

a number of closely related eigenvalues between 0.1 and 1Hz, and when operating 

at sample frequencies of 1kHz and higher represents a difficult control processing 

requirement. Figure 7.2 shows a diagram of the controller. 

Subsystem 1 

~l(s) 

Subsystem 2 

Cl:) 
1 ~/s) 

Sum 

Subsystem 3 

2 ~l(s) 
2 

Subsystem 4 Sum 

~2(s) 

Figure 7.2 7th order two-input two-output example controller 

The corresponding transfer functions are: 

Subsystem 1: 

() 
- 0.0013s' - 0.0258s6 - 0.2065s' - 0.9244s' - 2.4146s3 

- 3.6751s2 
- 2.7490s - 0.7462 

HI! s 2 
O.OOOls' + 0.0024s6 + 0.0237s' + 0.1385s' + 0.5086s3 + 1.1917s + 1.660Ss + 1.1218 

Subsystem 2: 

- 0.0005s' - 0.0094s6 - 0.0726s' - 0.3177s' - 0.8484s3 
- 1.3781s' -1.2358s - 0.4522 

HI2 (s) = -O":.O':':O":O":'ls'-',,-+-O"':. 0.:.:0:.:2..:.4-':s6;-+-0-'."-02'--3-=7..:.s';-+-0."'13-'8-5-'-'s ·;-+.....,.0.'-5':..08...:6,-ST3 -+-1.-1'-91-:7'-s" -+-:-I.--=6-:-60:':8-s-+--=I-.1-:-2-:-18=-

Subsystem 3: 

() 
0.0007s' + 0.0 130s6 + 0.0996S.' + 0.4158s' + 0.9593s3 + 1.1684s' + 0.4179s - 0.1197 

H,! s = 3 , 
O.OOOls' + 0.0024s6 + 0.0237s' + 0.1385s4 + 0.5086s + 1.1917s + 1.6608s + 1.1218 

113 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Subsystem 4: 

H () 
_ - 0.0004s7 -0.0066s· -0.0583s' - 0.3110s' -1.0679s' - 2.3202s' - 2.9721s -1.7233 

22 s -
0.0001s7 + 0.0024s· + 0.0237s' + O. 1385s' + 0.5086s' + 1.1917s' + 1.6608s + 1.1218 

Appendix B gives the sets of coefficients for the sample frequencies used in the 

simulations. 

13th order three-input one-output Maglev loop controller 

This example is a classically-designed active suspension controller having a single 

output and three inputs, i.e. a main feedback signal plus two additional inner 

feedback signals in a cascade feedback structure. The classical design approach 

means that the controller is in block structured form and the various transfer 

function elements in the controller have frequencies that vary from 0.1 Hz to 20Hz. 

Figure 7.3 shows a diagram of the controller. 

46th order twelve-input four-output Maglev vehicle Controller 

The most complex example tested is a classically designed controller. It provides 

the control of the vertical modes of a magnetically suspended vehicle [GoodaIl78]. 

This was selected because it is a real example originally implemented in analogue 

form. It was the most dynamically-complex control example which could be found, 

and having a mUlti-input multi-output formulation provided a very demanding 

example to benchmark the CSP against the other processors. Figure 7.4 shows a 

diagram of the controller. 

The value of the parameters indicated in Figure 7.3 and 7.4 and the set of 

coefficients used to implement these controller examples can be found in Appendix 

B. 

114 



'Tl 
ciQ0 

" .., 
Cb 
-.J 
V.l -V.l -:r- 1 fl--. 
0 a 2 Sum 

Cb .., -[ CD-
Cb , 
.g' 
" - Subsystem 4 

v. 0 
::; 
Cb , 
0 

't s 

$3 + 2"wis2 + 2awt"2s+wfA3 

" .g Sel1·zeroing double integrator 1 

" -s;: 
'" (JO 

" <: 
0" 
0 
"0 
(") 

0 
::; -2-

Subsystem 5 

~ 4 s 

s2.1.4"wibs+wib"2 
- r • 'Su;;;s' 

SeIt·zerong flux integrator 1 

" .., 

Subsystem 1 

2'ws"'2s+ws"'3 
Subsystem 2 

s3+2"wsS42"ws"2s+ws"3 
~~ G"k'aw ,s+O I 

~ I 
Bounce suspension titter 

tsw.s+1 
50m3 Bounce loop ph .adv 

Subsystem 6 

tawb.s+1 

tewb"tawh.s4tawb.s 

FlJx loop compensator 1 

Subsystem 3 

s2+wn"2 
~ 

84.1 "wns+wn"'2 

Bounce loop notch filter 

'1""' . '-'-' 

() 
I » 
~ m 
:u 
(J) 

~ 
m 
Z 

() 
(J) 

" (J) 

-< 
~ 
m 
s: 
-I 
m 
~ 
~ 
o 
to 
m 
Z 
() 
I 
s: » 
:u 
;>;: 



'Tj 
00' 
s:: ... 
(1) 

-.) 

~ 
.j>. 
0\ 
~ • ::r 
0 

s 10 a 
s3+2·~+2·wi"2s+wi"'3 

(1) ... 
~ Self-zeroing double integreltor 1 

11 !!. s <: 
s3+ 2"wis2 .. 2"wi"2s+wi"3 

(1) 
0 

S· Self-zeroing double integrator 2 
'0 s:: 
~ s 

0' s3+2"~+2'wi"'2s+wi"'3 

'" s:: 
SeIf-zerohg doUble i'iegrstor 3 ';' 

0 
13 s:: s 

-6 s3+ 2"wjs2 + 2*wt"2s+wi"'3 s:: 
~ 

s: Self-zerong dot.tlIe iltegral:or .. 

'" (JQ 0 e;-
sl+1.4"Wibs .. wib""2 <: 

.,,>< , < SeIf-zer flux in!: 
(1) 

0 I ::r (S. s2+1 .• "wm+w1Y'2 
e;-

Self-I flux" 
() 
0 • 

s41.4"wibs+wib"'2 ::l 
~ g. SeIf·z fluxn 
e;-... s 

s2t1.4~wib"'2 

Sdf-zeror.g fklx integrator" 

Sum2 
Roll suspension filer 

9..m9 

Gb_.O"" 41-_-+1 

t .s+1 

Pitch loop ph .8dv 

Gr"\(r"lr .s+Gr 6 
I---.t 

tr.s+1 

RcI loop ph.odv 

tlSWb.s+1 18 

tawb"tawh.s 4tswb.s 

FkD< <><, 
tswb.s+1 19 

tewb"lawh.s4t8wb.s 

F'" c nsator 2 

tawb.s+1 

tawb"lawh.s 2..tetWb.s 

FiJx klop CompeMator 3 

tawb.s+1 

tawb"lWlh.s4tawb.s 

AJx loop COl 1....,..1Sdtui .. 

S 4\1Yf\b"2 7 

sz...1*wrm+wnb"'2 

Bounce loop nc1ch filer 

s4wnp"2 8 

s4.1 "wnps+WflI"'2 

Plch loop nctch filer 

9 

s4.1·wrn+WTY"'2 

RoIloop notch filler 

2 

3 

4 

() 
I » 
" -i 
m 
;U 
(f) 
m 
< m z 

() 
(f) 

" (f) 

-< 
(f) 
-i 
m 
s: 
-i 
m 
(f) 
-i 
» 
Z 
0 
OJ 
m z 
() 
I 
s: » 
;U 
;>; 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

7.4 REVIEW OF SELECTED PROCESSORS 

7.4.1 Texas Instruments' TMS320C31 

The Texas instruments' TMS320C31 is 32-bit floating-point digital signal 

processors. It is targeted at digital audio, data communications, and industrial 

automation and control. The data path consists of a multiplier, a barrel shifter and 

ALU. Its has a large address space, multiprocessor interface, one external interface 

port, two timers, one serial port, and multiple-interrupt structure. It can perform 

parallel mUltiply and ALU operations on integer or floating-point data in a single 

cycle. It also possesses a general-purpose register file, a program cache, internal 

dual-access memories, one DMA channel supporting concurrent VO, and a short 

machine-cycle time [TexasOOa). 

7.4.2 Texas instruments' TMS320CS4 

The Texas instruments' TMS320C54 is a 16-bit fixed-point digital signal processor. 

It is designed to support personal and portable products like digital music players, 

3G cell phones, and digital cameras as well as MIPS-intensive voice and data 

applications and single-channel applications. It has a modified Harvard architecture 

that has one program memory bus and three data memory buses. It also provides an 

ALU that has a high degree of parallelism, application-specific hardware logic, on­

chip memory, on-chip peripherals, and RISC-like instruction set [TexasOOb). 

7.4.3 Infineon's C167 

The Infineon's C167 is a 16-bit fixed-point microcontroller. It is one of the world's 

most successful 16-bit architectures. It is targeted towards low cost applications and 

is found in real-time embedded control applications such as automotive, industrial 

control, compllter peripherals and data communications. Its main key features are: 

117 



-----------------------------------------------

CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

RISC register based architecture, 16-bit CPU with 4 stage pipeline and jump cache, 

32 bit bus to internal ROM, and von Neumann address space [lnfineonOO]. 

7.4.4 Intel's StrongARM SA-110 

The Intel's StrongARM SA-I I 0 processor is a 32-bit microprocessor targeted 

towards low power applications. It is used In a wide range of embedded 

applications, including high-bandwidth network switching, intelligent office 

machines, storage systems, remote access devices, Internet appliances, smart 

handheld, handheld personal computers, and mobile phones [InteIOOa]. 

7.4.5 Inte\'s Pentium III 

The Intel's Pentium III processor is a 32-bit floating-point processor. The Pentium is 

targeted at general-purpose desktop and mobile computing. It has a superscalar 

architecture, large on-chip caches, 64-bit data bus, extended instruction set that 

includes instructions optimised for signal processing, and branch prediction logic. 

The Pentium has been described as having a RISC core for a subset of its 

instructions, but in reality the Pentium contains a mixture of hard-wired simple 

instructions and microcoded complex instructions [lnteIOOb]. 

Processor Data format Frequency Main applications 
(MHz) 

CSP Special format 50 Real-time control 

TMS320C3l 32-bit floating point 60 Digital audio, data communications, and 
industrial automation and control 

TMS320C54 l6-bit fixed-pint 160 Portable products, voice and data 
applications 

Cl67 l6-bit fixed-pint 25 Automotive, computer peripherals, 
industrial control and data 
communications 

Strong-ARM 32-bit fixed-point 233 Embedded applications 

Pentium III 32-bit floating point 500 Desktop and mobile computing 

Table 7.2 Summary of processors' features 

118 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

7.S BENCHMARKING 

7.S.1 Assumptions and considerations for bench marking 

The real-time code for these processors has been carefully assessed to ensure that a 

comparison as fair as possible is presented. Figure 7.5 shows the main routine of a 

C program that implements the 4th order filter described in Section 7.3.1. 

void main() 
{ 

do 
( 

U read_input(); 

Y = P + D*U; 

X[3] = X[3] + A[3]*X[2] + B[3]*U; 
X[2] = X[2] + A[2]*X[1] + B[2]*U; 
X[l] X[l] + A[l]*X[O] + B[l]*U; 
X [0] X [0] - A[O] *Rs + B [0] *U; 
Rs = X[3] + X[2] + X[l] + X[O]; 
P = C[O]*X[O] + C[l]*X[l] + C[2]*X[2] + C[3]*X[3]; 

write_output(Y); 

} while (TRUE) 
} 

Figure 7.5 C program for a 4th order S1SO filter 

Tab]e 7.3 shows the resolution and data format used to represent the coefficients 

and state variables for each processor. For the CSP, I I-bit coefficient (6 bits for the 

mantissa and 5 bits for the exponent) and a 27 -bit state variable format were used 

(see Chapter 4). The table also shows the resolution used to perform the 

multiplication of a coefficient and a state variable. As mentioned in Section 4.5 it is 

possible to find coefficient and state variable word lengths that can be represented 

with the data types provided by the processor, which satisfies the system response 

requirements. Thus, instead of emulating the special word formats used to represent 

the data within the CSP, the C programs use data types supported by the processors 

to perform the calculations. 

119 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Processor State Variable Coefficient Multiplication 

CSP 27-bit fixed-point I I-bit floating point 27x5 mixed fonnat 

TMS320C31 32-bit float 32-bit float 32 x 32 floating-point 

TMS320C54 32-bit integer 16-bit integer 32 x 16 fixed-point 

C167 32-bit integer 16-bit integer 32 x 16 fixed-point 

Strong-ARM 32-bit integer 32-bit integer 32 x 32 fixed-point 

Pentium III 32-bit float 32-bit float 32 x 32 floating-point 

Table 7.3 Data fonnat used to represent the state variables and coefficients 
for each processor 

All the inputs are specified as signed integers within the 12-bit input/output variable 

range. The output values produced by the CSP, which are extracted from an internal 

variable in state variable fonnat, have been rounded to the nearest integer. This 

means that if the value of the underflow bits is greater than or equal to 0.5, the 

output value will be increased by I (see Section 5.4.2) 

The same general structure of the C program shown in Figure 7.5 was used to 

program the higher order controllers. Each program was compiled and optimised to 

produce assembly code so the number and type of instructions required to perfonn 

the algorithm can be identified. The compilers used to produce the assembly code 

for each processor are shown in Table 7.4. 

Processor Compiler Manufacturer 

TMS320C31 Code composer studio Texas Instruments 

TMS320C54 Code composer studio Texas Instruments 

CI67 Keil C compiler Keil Software 

Strong-ARM High C/C++ compiler for ARM Metaware 

Pentium III Developer studio, Visual C++ Microsoft 

Table 7.4 Compilers used to generate the assembly code used to 
evaluate the processors' perfonnance 

120 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Modem processors include features that allow them to input and output continuous 

streams of data efficiently. Thus, it is assumed that the processes of reading the 

sampled inputs and writing the output values from/to the 110 interface require a 

single load/store instruction, which can be performed in a single instruction cycle. 

This assumption may not be strictly true for some processors. However, the 

computation time is mostly determined by the number of instructions required to 

complete algorithm loop that is much higher than the number of 110 instructions. 

7.5.2 Benchmark results 

This section summarises the results of the benchmark. Tables 7.5 to 7.8 show the 

computation times and maximum frequencies that the CSP and the other processors 

can achieve for each of the filter and controller examples described in section 7.3. 

The first column of these tables presents the processors included in the benchmark. 

The second column indicates the average clock cycles in which the processors 

perform an instruction. The average was obtained by dividing the total number of 

clock cycles required to perform a program loop by the number of instructions 

within the loop. The third and fourth columns indicate the number of instructions 

and time required by the processor to complete an algorithm cycle. Finally, the last 

column indicates the maximum sample rate that can be achieved by the processors. 

The computation time is obtained by multiplying the following three values: clock 

period, clock cycles per instruction and number of instructions. 

The sample frequencies obtained with the CSP are 2MHz for the 4th order filter, 

and even for the complex multi-input multi-output 46th order controller a 

remarkably high sample frequency of 170kHz is possible. 

121 

l 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Processor Average Number of Computation Maximum 

clock cycles instructions time (j.LS) sample 

per instruction frequency (kS/s) 

CSP-50 1 23 0.460 2173 

TMS320C31 2 48 1.603 623 

TMS320C54 1.49 450 4.190 238 

CI67 3.34 194 25.920 38.5 

Strong-ARM 1.79 43 0.331 3021 

Pentium III 1.15 49 0.113 8823 

Table 7.5 Benchmark results for the 4th order filter 

Processor Average Number of Computation Maximum 

clock cycles instructions time (j.LS) sample 

per instruction frequency (kS/s) 

CSP-50 1 54 1.080 925 

TMS320C31 2 134 4.475 223 

TMS320C54 1.49 882 8.213 121 

CI67 3.17 529 67.077 14.9 

Strong-ARM 1.99 118 1.007 992 

Pentium III 1.16 134 0.310 3216 

Table 7.6 Benchmark results for the 7th order controller 

Processor Average Number of Computation Maximum 

clock cycles instructions time (j.LS) sample 

per instruction frequency (kS/s) 

CSP-50 I 75 1.500 666 

TMS320C31 2 183 6.112 163 

TMS320C54 1.49 1058 9.893 101 

CI67 3.47 823 114.240 8.75 

Strong-ARM 1.69 160 1.162 860 

Pentium III 1.19 191 0.456 2193 

Table 7.7 Benchmark results for the 13th order controller 

122 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Processor Average Number of Computation Maximum 

clock cycles instructions time (~) sample 

per instruction frequency (kS/s) 

CSP-50 293 5.860 170.6 

TMS320C31 2 672 22.444 44.5 

TMS320C54 1.49 3745 35.000 28.5 

CI67 3.12 2890 361.600 2.76 

Strong-ARM 1.72 598 4.418 226.3 

Pentium III 1.09 779 1.700 588 

Table 7.8 Benchmark results for the 46th order controller 

Table 7.6 summanses how the CSP compares with the other processors. The 

computation time shown in tables 7.S to 7.8 have been normalised to that of the 

CSP running at SOMHz. The closest OSP in performance is the TMS320C31 device, 

which still takes 3,48 times as long to compute the 4th order filter example, while 

the TMS320CS4 fixed-point OSP takes 9.1 times as long as the CSP. The C167 

microcontroller required the largest computation. Only the Strong-ARM and the 

Pentium III processors were faster than the CSP; they took 0.72 and 0.24 times 

respectively. 

4th order 7th order 13th order 46th order 

CSP I 

TMS320C31 3.48 4.14 4.07 3.83 

TMS320C54 9.10 7.6 6.59 5.97 

CI67 56.34 62.1 76.16 61.7 

Strong-ARM 0.72 0.93 0.77 0.75 

Pentium III 0.24 0.28 0.303 0.29 

Table 7.9 Normalised computation time (CSP = I) 

To understand why the CSP is able to compete against some high performance 

processors and in fact to outperform some OSPs, we need to analyse closely the 

assembly code for each processor. The following paragraphs analyse segments of 

assembly code for some of the processors included in the benchmark. 

123 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Figure 7.6 shows one line of the C program that implements the 4th order filter and 

the corresponding assembly code for the TMS320C31 DSP. 

II x [3] = X[3] + A[3] *X[2] + B[3]*U; 
LDFU @Oa03fh, RI 
LDFU @Oa049h, RO 
MPYF @Oa017h, RO 
MPYF @OaOIah, RI 
ADDF @Oa04ah, RO 
ADDF3 RO, RI, RO 
STF RO, @Oa04ah 

Figure 7.6 Segment of assembly code for the TMS320C31 DSP 

A total of 7 instructions are needed to perform the operation. The first two 

instructions load data into the register file. Then, two multiply and one addition 

instructions are executed with operands read both from the memory and register file. 

A final addition of two values stored in registers produces the final result, which is 

then stored again in memory. As can be seen in the assembly code, this DSP can 

perform operations where some operands are read directly form memory. This 

reduces the number of load instructions that move data from memory to the register 

file, and as a consequence reduces the computation time. 

Figure 7.7 shows the assembly code required to perform the same operation using 

the C167 microcontroller. Unlike the TMS320C3l DSP, the C167 requires the 

operands used for multiplications and additions to be stored in registers. Also the 

C167 can only handle 16-bit words. As a consequence, the code includes a large 

number of 'move' instructions to load/store memory data to/from the registers. The 

number of instructions is also increased by calling a subroutine that performs the 

multiplication and also because two instructions are needed per addition. A total 34 

instructions are required to complete the operation, which combined with the 

number high average clock cycles per instruction and slow clock frequency, result 

in large computation times. 

124 



------------------- --

CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

II X [3] = X[3] + A[3]*X[2] +B[3]*U; 

Mav R6, DPP2:0xOOOC 
Mav R7, DPP2:0xOOOE 
Mav R4, DPP1:OxOO34 
MaV RS, DPP1:OxOO36 
CALLA CC_UC, ?C_LMUL (Ox21E) 
Mav R8, R4 
Mav R9, RS 
ADD R8, DPP2:0xOO1O 
ADDC R9, DPP2:0xOO12 
MaV R4, DPP2:0xOO24 
MaV RS, DPP2:0xOO26 
MaV R6, R14 
MaV R7, R1S 
CALLA CC_UC, ?C LMUL (Ox21E) -
ADD R4, R8 
ADDC RS, R9 
MaV DPP2:0xOO1O, R4 
MaV DPP2:0xOO12, RS 

?C LMUL: 
MULU RS, R6 
MaV RS, DPP3:0x3EOE 
MULU R7, R4 
ADD RS, DPP3:0x3EOE 
MULU R4, R6 
ADD RS, DPP3:0x3EOC 
MaV R4, DPP3:0x3EOE 
RET 

Figure 7.7 Segment of assembly code for the C167 microcontroller 

Figure 7.8 shows the assembly code required to perform the operation using now 

the Strong-ARM processor. This processor also required the operands to be stored 

in memory but it can handle 32-bit words. Thus, only a few load instructions are 

required. To complete the operation, only two multiply-accumulate instructions are 

required. The result is stored back into memory by a single store instruction. 8 

instructions are required to complete the operation, which is one more than the 

number required by the TMS320C31. However, because of the high clock 

frequency at which this processor operates, the computation time is reduced 

significantly. 

125 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

II X[3] = X[3] + A[3]*X[2] + B[3]*U; 

Idr %r3, [%rl0, #A+12 - . LOOSTRING2] 
Idr hp, [%r9, #X+8-. LOOBSS] 
Idr %r2, [%r9, #X+12- .LOOBSS] 
rnla %r2 , hp, %r3 , %r2 
Idr %r3, [%rl0, #B+12 - . LOOSTRING2] 
Idr %r4, [%r8, #U - . LO ODATA] 
rnla %r2 , %r3 , %r4, %r2 
str %r2, [%r9, #X+12-.LOOBSS] 

Figure 7.8 Segment of assembly code for the Strong-ARM processor 

In contrast to the processors shown so far, the CSP is able to perform the operation 

with just two instructions. This is because all the operands are stored in the register 

file and therefore can be accessed without delay, and because the MAC instruction 

that completes the multiply-and-accumulate operation in a single cycle (see Figure 

7.9). 

II X[3] = X[3] + A[3]*X[2] + B[3]*U; 

IICSP code Operation 
MAC X3, A3, X2, X3 
MAC X3, B3, U X3 

II X[3] = A[3]*[X]2 + X[3] 
II X[3] = B[3]*U + X[3] 

Figure 7.9 CSP instructions example 

To complement the benchmark, Table 7.10 shows how the CSP compares with the 

other processors in terms of complexity and power consumption. Technology and 

voltages supplies are also shown. 

Processor Technology Complexity I/O Power Core Power Power 
Supply Supply Consumption 

CSP 0.25 12k gates 3.3 V 3.3 V 0.82 W 

TMS320C31 0.6 5 M transistors 3.3 V 1.8 V 2.6W 

TMS320C54 0.6 • 5V 5V • 
CI67 0.5 1.6 M transistors 5V 5V 1.5 W 

Strong-ARM 0.35 525k gates. 3.3 V 2.0V IW 

Pentium III 0.25 28 M transistors N/A 2.0V >20W 

Table 7.10 Complexity and power consumption comparison 

126 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

The power consumption is directly proportional to the clock frequency; thus it is 

possible to reduce the power consumption by reducing the clock frequency. Instead 

of clocking the CSP at the maximum possible speed, it is sufficient to use a clock 

frequency that will allow the CSP to perform the operations sufficiently fast to 

satisfy the requirements of the control system to be implemented. 

7.6 SIMULATION RESULTS 

This section shows some simulation results. The controller examples were 

implemented in the CSP and simulated using a variety of input signals and sample 

frequencies. The outputs of the CSP are compared with the 'ideal' results obtained 

with a Matlab program that uses standard full precision 32-bit floating-point format 

to represent the variables. 

Figure 7.10 shows responses to step inputs of magnitude 10 and 100 sampled at 

I kHz. These results indicate that the CSP's performance accuracy is very good. 

There is an inevitable quantisation effect with the smaller input, but it can be seen 

that the output is essentially following the ideal response. 

Frequency Sample = 1kHz Input = 10 

12r---------------------, 

10 
tu 
C :;)a 
>-

~ 6 « 
::;;4 

2 

00 0.5 1 1.5 2 2.5 
TIME (sec) 

tu 
C 
:;) 

!::: 
z 
Cl « ::;; 

Frequency Sample = 1kHz Input = 100 

120r--------------------, 

100 

80 

60 

40 

20 

00 

MATLAB~~---------_l · csp 

0.5 1 1.5 2 2.5 
TIME (sec) 

Figure 7.10 Response of 4th order filter to step inputs of 10 and 100 

127 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Similar results were observed when sinusoid inputs were used. Figures 7.11 and 

7.12 show responses to sinusoid inputs of 0.1 and 1 Hz. The maximum magnitude 

of the signals is 512 and the sample frequency is 1kHz. 

400 /~. 
@200 \ CSp 

z Of-- \ 

~ MATLAB \ 
::E -200 

-400 \,~/ 
-600'--~~_~~~_~~_~~---1 

o 5 10 

TIME (sec) 

Figure 7.11 Response of 4th order filter to sinusoid input of O.IHz 

300r-----~--~--~----~--~ 

200 
w 
§ 100 
I-
Z 0 
~ 
== -100 

-200 

~OOL---~----~--~----~--~ 
o 0.5 1 1.5 2 2.5 

TIME (sec) 

Figure 7.12 Response of 4th order filter to sinusoid input of 1Hz 

As described in Chapter 4, the internal variable wordlength was chosen with a 

sufficient number of fractional bits to ensure that a response would be obtained with 

the smallest possible input (i.e. value of unity), over a very wide range of sample 

frequencies. But of course there is a limitation even with the most optimised 

128 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

numerical scheme. The differences observed in the outputs are the consequence of 

quantisation of both the coefficients and the variables within the esp. 

Figure 7.13 shows a set of step responses with small inputs at very high sample 

frequency, and graph (a) shows that with an input of 1 with a sample frequency of 

10kHz no output is obtained. If the input is doubled at the same frequency, graph 

(b), some movement is seen on the output, although it is substantially different from 

the exact output. Alternatively, keeping the smallest input of 1 and having the 

sample frequency of 5kHz gives an output which, although coarsely quanti sed, is 

clearly following the general trend, see graph (c). The final graph (d) has an input of 

2 with 5kHz, and is beginning to show a reasonable response. 

a) 

Frequency Sample ~ 10kHz Input ~ 1 
1.4,--------~-__, 

1.2 

w 1 
o MATLAB 
E 0.8 
z 
Cl 0.6 « 
:E 0.4 

0.2 

o L...L_~_~..::c::::S"_p~_~ _ _=_' 
o 0.5 1 1.5 2 2.5 

TIME (sec) 

c) 

Frequency Sample ~5kHz Input ~ 1 
1.4,-----------, 

1.2 

w 1 
o MATLAB 
i= 0.8 
Z 
Cl 0.6 « 
:E 0.4 

0.2 

CSP 

O~----L~--------~ o 0.5 1 1.5 2 2.5 
TIME (sec) 

b) 

Frequency Sample ~10kHz Input ~ 2 
2.5r--------~-__, 

2 
w 
o 
::> 1.5 
t:: 
z 
Cl 1 « 
:E 

0.5 

MATLA~--______ ~ 

CSP 

OL...L __ ~ __ ~ __ ~ __ ~ __ ~ 
o 0.5 1 1.5 2 2.5 

TIME (sec) 

d) 

Frequency Sample ~5kHz Input ~2 
2.5,--------~-__, 

2 
MATLAl-~e..:=:= _______ _l 

w [ ,,' 0 
::> 1.5 
~ 

Z 
~ 1 
:E 

0.5 ) 
0 

0 0.5 1 1.5 2 2.5 
TIME (sec) 

Figure 7.13 Response of 4th filter to step inputs ofl and 2 sampled at 5 and 10kHz 

129 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

It is important to realise these limiting conditions nevertheless represent an 

impressive performance - a fourth-order filter sampled at 10,000 times its cut-off 

frequency is extremely demanding for digital filtering applications, and is 

substantially more demanding than normally required for real-time control. A few 

more fractional bits in the variable word length would of course restore proper 

operation in the unlikely circumstance of it being necessary. For this particular 

example,5 bits are needed to restore proper operation as can be seen in Figure 7.14. 

The results shown were obtained using 32-bit state variables (5 additional bits for 

underflow). 

a) 

F requency Sample = 10kHz Input = 1 
1.4 

1.2 

w 1 
0 MAT LAB 
Eo.a CSP 
z 
Cl 0.6 
< 
::;: 0.4 

0.2 

0 
0 0.5 1 1.5 2 2.5 

TIME (sec) 

b) 

w 

Frequency Sample = 10kHz Input = 2 
2.5;-----------..., 

2 

0 
::;) 1.5 
!::: 
z 
Cl 1 < ::;: 

0.5 

0 
0 0.5 1.5 2 2.5 

TIME (sec) 

Figure 7.14 Response of 4th filter to step inputs of 1 and 2 sampled at 10kHz 

with 5 extra bits for underflow 

The CSP was also simulated USIng the higher order controllers. It would be 

impractical to present the results of all simulations 

Figure 7. 15 shows the output response when step signals with magnitude of 512 are 

applied in parallel to the three inputs (see Figure 7.3) and the sample frequency is 

I kHz. Figure 7.16 shows the responses when a sinusoid of amplitude of 512 and 

frequencies of 0.1 (7.12a) and 1Hz (7.12b) is applied to input I. Step signals of 

magnitude 512 are applied to inputs 2 and 3, the sample frequency remains at 1 kHz. 

130 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

Finally, Figure 7.17 shows a response of the 46th order controller when step signals 

of magnitude 512 are applied to all the inputs. The sample frequency is 1kHz. 

Despite the complexity of these examples, the comparison of the esP's output with 

the exact response remains excellent. 

Figure 7.15 Response of the 13th order controller to step inputs of512 

sampled at 1kHz applied simultaneously to the three inputs 

40.----------------------. 

g~ (, 
~ 0 I 
::; ·20 J 

CSP 

, 

"-../ 
MATLAB 

40~--------------------~ o 5 10 
TIME (sec) 

40.---------------------, 

w 20 
o 
:::> 
>­Z 0 

~ 
::; ·20 

40~----~------~------~ o 1 2 3 
TIME (sec) 

Figure 7.16 Response of the 13th order controller to a sinusoid input of 0.1 and 

1 Hz sampled at 1 kHz applied to input 1 and step inputs of magnitude 512 

applied to inputs 2 and 3 

131 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

1200 

~~ 1000 

800 
UJ CSP 
0 600 
:J 
I-

400 Z 
(!) 

200 « 
:E 

0 

-200 
0 1 2 3 4 5 

TIME (sec) 

Figure 7.17 Output 1 response of the 46th order controller to step inputs of 512 

sampled at 1 kHz applied simultaneously to all three inputs 

7.7 SUMMARY OF THE CHAPTER 

The main features of the selected processors and controller examples used for the 

benchmark were described. The benchmark shows that the CSP can satisfy the 

requirements of a range of high sample rate controller examples. This is because of 

the good numerical properties of the algorithm combined with an architecture 

optimised to implement that algorithm. 

The benchmark showed that the CSP outperforms some commercially available 

high-speed DSPs in terms of computation time and power consumption. An analysis 

of the assembly code revealed that fixed-point processors required up to 10 times 

more instructions than the CSP to implement the same algorithms. Even the 

floating-point processors required at least twice the number of instructions. 

Also, simulation results where the CSP output is compared against the output of a 

Matlab program that uses full precision to represent the coefficients and internal 

132 



CHAPTER SEVEN CSP SYSTEM TEST AND BENCHMARK 

variables were shown. The simulation showed that the CSP produces almost 

identical results to those obtained with the Matlab program. 

As mentioned in Section 4.5.1, the coefficient format adopted to implement the CSP 

allows representing any coefficient with an accuracy of I %, which is more that 

enough for most control applications [Forsythe91, Gooda1l92). Thus, if the 

controller does not produce the expected results, additional bits should be added to 

the state variable format to restore proper operation. 

133 



CHAPTER EIGHT CONCLUSIONS 

Chapter 8 

Conclusions 

8.1 OBJECTIVES OF THE CHAPTER 

This chapter concludes this thesis and evaluates the results obtained. The objectives 

of this chapter are: 

• To review the original objectives of this thesis 

• To present a summary of results and conclusion presented in previous chapters 

• To discuss strengths and shortcomings of this work 

• To present a framework of potential future work 

8.2 REVIEW OF OBJECTIVES AND INVESTIGATIONS 

The objective of this work is to investigate whether by providing customised 

hardware support for delta law control it is possible to provide a low-cost high­

performance embedded controller. 

From the review of existing approaches to implement digital control presented in 

Chapter 2 and from the analysis presented in Chapter 3, the following investigations 

were identified. 

134 



CHAPTER EIGHT CONCLUSIONS 

• The identification of efficient controller fonnulation to implement the control 

algorithm, which may be exploited to reduce the number of required operations 

and is suitable for hardware implementation 

• The design of a hardware architecture to support the control algorithm and a 

software structure to implement the CSP program 

• The identification a comprehensive set of tests to prove the CSP's operation for 

a variety of filters types over a range of input conditions. 

8.3 CONCLUSIONS 

An introduction to this thesis was presented in Chapter I. It briefly discussed the 

problems faced by the control engineers when implementing high performance 

control systems using general-purpose processors. Also, it explained the potential 

benefits of using special-purpose architectures to implement such systems. 

Chapter 2 defined digital control systems and presented a review of relevant 

background needed to appreciate this work. It presented a detailed analysis of the 

current approaches used to implement digital controllers and a review of relevant 

past work on special-purpose architectures specially those applied to control 

systems. The main conclusion of this chapter is that the best solution to implement a 

real-time high performance control systems largely depends on the particular 

requirements of each application. Factors like cost, performance, integration, easy 

of development, power consumption, development tools, will determine which 

option is the most suitable to implement a specific control system. 

Chapter 3 describes the methodology and design flow used to implement the CSP. 

In Chapter 4, the controller fonnulation used to implement the CSP was introduced. 

It was shown that state-space approach using the 1i operator offers a number of 

advantages when implementing control systems if compared with the traditional 

135 



CHAPTER EIGHT CONCLUSIONS 

approaches. The reduced dynamic range of controller states and low coefficient 

sensitivity characteristics of this formulation results in a short internal variable and 

coefficient wordlength. Also, other proprieties of the algorithm that facilitate its 

hardware implementation where discussed. 

Chapter 5 looks into the hardware implementation of the CSP. The design 

methodology involved the identification of the number and types of processing 

elements, the size and number of the memories, and the required communications 

channels. This general process starts with the specification of the main components 

and an overall system specification was defined as the design progressed. The 

proposed architecture takes advantage of the analysis of the control algorithm in 

Chapter 4 to permit efficient and cost effective realisations of the required 

processing functions. 

Chapter 6 looks into the software that implements the control algorithms within the 

CSP and the software environment needed to support this implementation. It 

explains the software scheme adopted to implement the control algorithm and the 

CSP instruction set. The reduced number of operations required to implement the 

control loop results in a short CSP program, where the actual number of instructions 

is determined by the control system characteristics. 

Finally, Chapter 7 presented the results of benchmarking the CSP against other 

processors running the same algorithms and the results of some simulations. It 

includes an explanation of the selected example controllers and processors used. It 

is shown that the CSP can satisfy a range of high sample rate controller examples 

due to its good numerical properties. The results showed that the CSP outperforms 

some commercially available high-speed DSPs by a significant margin. This is 

possibly due to a simplified hardware realisation that fully exploits the 

characteristics of the control algorithm. 

136 



CHAPTER EIGHT CONCLUSIONS 

8.4 ANALYSIS OF RESULTS 

8.4.1 Achievements ofthis work 

From the conclusions of each chapter we can conclude that the objectives of this 

work have been fulfilled. By identifying the requirements to implement real-time 

L TI control and by exploiting the numerical properties of the 8 operator, a new 

method and processor architecture to implement real-time L TI controller has been 

proposed. The numerical properties of the controller formulation results in a stable, 

low instruction count algorithm. 

The design of a simplified hardware multiply-and-accumulate unit results in a high­

speed, low power, low cost numerically stable processor for embedded control. A 

comprehensive set of tests has shown that the CSP operates correctly on a variety of 

filter types over a range of input conditions. The results of a benchmark indicate that 

the control system processor outperforms some comercially available high-speed 

DSPs when implementing the example controllers. The control system processor 

was successfully implemented and verified on a programmable device. 

The CSP is a compact, high-speed special purpose processor, which enables a low­

cost solution to a wide range of L TI control problems. It offers a very effective 

implementation for embedded control and it is applicable to any solution of HR 

filters. It is important to appreciate that, although the CSP outperforms some 

commercially available high-speed DSPs by a significant margin, it is much 

simpler. The modest gate count confers a number of advantages, namely reduced 

cost due to small die size and simpler packaging, and low power. 

8.4.2 Limitation of this work 

This section describes some limitations of this work. 

137 



CHAPTER EIGHT CONCLUSIONS 

• The proposed method and architecture only applies to the linear time-invariant 

controllers 

• Although the esp was successfully implemented into a ProASle device and its 

functionality and speed verified, it was not tested in real control environments 

due to time limitations. 

• Extra effort may be required to solve data dependency problems when 

programming the esp 

8.S FUTURE WORK 

This section presents some areas that have been identified as potential extension to 

this work. Also, some other possible approaches to implement a esp processor are 

introduced. 

8.S.1 Extension of current research 

The esP's dedicated architecture and careful numerical formulation ensure that it 

will perform deterministically in a real-time embedded control environment, 

although it is recognised that other functions are necessary in such applications for 

which the esp is not well suited. It is necessary to address ways in which the 

variety of functions required for high-performance real-time control can be most 

effectively achieved. 

The introduction of support for adaptive control would provide a more powerful and 

flexible alternative to implement real-time control. To achieve this, an adaptation 

mechanism that identifies certain characteristic parameters of the system has to be 

defined. Based on those parameters, the values of the coefficients can be modified 

to adjust the signal processing in order to minimise a previously adopted error 

measure at the output of the system. 

138 



CHAPTER EIGHT CONCLUSIONS 

The CSP can be considered as a specialised peripheral of a larger system included to 

relieve the general-purpose processor of performing fixed repetitive functions that 

can be performed more efficiently by dedicated hardware. It can also be integrated 

directly as an extra processing component within the general-purpose processor 

architecture. Furthermore, opportunities for the CSP are as an IP core to enable 

systems integrators to utilise its capabilities to provide high-performance 

computation as part of a more complex system-on-a-chip solution. 

8.5.2 Other investigations 

The implementation of the CSP concept can also be explored using the following 

approaches: 

Single bit processing 

Single bit processing is based on the use of bit-serial arithmetic and represents a 

viable alternative to the traditional bit-parallel arithmetic. A major advantage of 

using bit-serial arithmetic is that it significantly reduces chip area by eliminating 

wide buses and by using small processing elements. Additionally, Two's 

complement representation is suitable for use with bit-serial arithmetic. 

Single instruction processor 

The CSP can be seen as a single-instruction processor, where MAC is the only 

instruction. To achieve this, memory space can be partitioned into several sections 

where memory cells are associated with each input/output port. In this case, the 

processor only task is to move data between the MAC unit and memory cells. As 

there is only one instruction, no instruction decoding is necessary. Thus, the 

'instruction' will only contain the source and destination address. This idea can be 

extended to include more that one processing element. In this case, special attention 

must be given to the schedule of operations to avoid data dependency problems and 

to use the available hardware resources efficiently. 

139 



CHAPTER EIGHT CONCLUSIONS 

Reconjigurable architectures 

Reconfigurable architectures offer potential solutions to satisfy the demands of 

complex systems where a number the different functions required. They are based 

on two basic ideas. First, the architecture fits the algorithm and not vice versa, and 

second, to provide hardware support only for the algorithmic functions that are 

active at any particular time. This requires a device that can be configured 'on-the­

fly' at very high speed. This concept, where algorithms are directly mapped onto 

dynamic hardware, is also known as adaptable computing. 

8.6 SUMMARY 

This chapter has presented the conclusions and main results of the investigations 

described in this thesis. A review of the objectives together with a summary of each 

chapter also been included. It presented a summary of the achievements of this work 

based on the objectives set on Chapter 1 and identified the limitations of this work. 

Finally, this chapter identified future potential investigations to extend the work of 

this research and explained other possible approaches that can be used to implement 

the CSP concept. 

140 



APPENDIX A 

Appendix A 

General CSP program 

A.I GENERAL CSP PROGRAM 

This appendix shows a general fonn of a CSP program. The actual number of 

instruction will depend on the order of the controller and the number of inputs and 

outputs. Note that the order in which the instructions within the control loop are 

executed may need to be rearrangement to avoid data dependency problems. 

// Coefficient initialisation 

READ Co, IPIo, DRCo 
READ Cl, IPIo, DRC, 
READ C" IPIo, DRC., 
READ a" IPIo, DRa, 

READ an, IPIo, DRan 
READ b,." IPIo, DRbl.l 

READ bn.a , IPIo, DRbn.a 

READ Cl.l, IPIo, DRcl.l 

READ cp.n, IPIo, DRcp.n 
READ d,." IPIo. DRd,., 

READ dp.a • IPIo. DRdp.a 

11 Store constant 0 in coefficient format 
11 Store constant 1 in coefficient format 
11 Store constant -1 in coefficient format 
11 Store matrix A 

11 Store matrix B 

11 Store matrix C 

11 Store matrix D 

11 State variables and partial product initialisation 

READ So. IPIo. DRSo 
READ S" IPIo, DRS, 

READ u" IPIo. DRSo 

11 Store constant 0 in State Variable format 
11 Store constant 1 in State Variable format 

11 Initialise Input 1, U, = 0 

141 



READ Un, IPIo, DRSo 

READ y" IPIo, DRSo 

READ yp, IPIo, DRSo 

READ Xo, IPIo, DRSo 

READ Xn, IPIo, DRSo 

READ Plo IPIo, DRSo 

READ Pp, IPIo, DRSo 

READ s, IPIo, DRSo 

WRITEPC PCo, rt 
WRITEPC PC" rt 

: BEGIN ALGORITHM CYCLE 

1/ Read Sampled Inputs 

READ u" IPt, 

APPENDIX A 

// Initialise Input 1, Un = 0 

// Initialise Output 1, Y, = 0 

// Initialise Output 1, Yp = 0 

// Initialise State variable 1, X, = 0 

// Initialise State variable n, Xn = 0 

// Partial product 1, P, = 0 

// Partial product 13, Pp = 0 

// ao = 0 

// Initialise PC Start 
// Initialise PC Stop 

// Algorithm cycle 

// Copy Sample Input J to register file 

// Copy Sample Input a to register file 

// Calculate DUN and add the results to CXN (stored as partial product) to obtain the output 
II data YN 

MAC P" d" u" p, 

MAC Plo d12, U" p, 

// Execute the first product of DUN needed to 
// calculate Y, and add to the partial product 
// obtained in the previous algorithm cycle. 
// Execute the rest of products to obtain Y, 

// Last product to calculate Y, 

// Repeat the previous instructions to calculate Y" ... , Yp 
// At this step, the output data vector Y N is available. 

// Copy Outputs values to Output Ports 

WRITE OPIo, y, 

WRITE OPtp." yp 

1/ Calculate Xn+, = AXN + BUN 

1/ Calculate Xn.N+' 
MAC Xn,N+h an, Xn-I,N, Xn.N 

MAC Xn.N+h bn,h UIt Xn.N+l 

MAC Xn.N+h bn,2, U2, Xn.N+1 

// Copy Output 1 

II Copy Output 13 

1/ Execute the first MA C operation to calculate 

1/ Xn.N+' 
1/ Execute the second MAC operation to calculate 

1/ Xn.N+' 

142 



MAC Xn.N+h bn,a, Ua., Xn,N+l 

MAC acc, Co, So, Xn.N+' 

// Calculate Xn.'.N+' 
MAC Xn-i,N+h an-h X n-2,N, Xn_I.N 

MAC Xn-I,N+h bn-I,1t U" Xn-I,N+I 

MAC Xn-1.N+h bn-I,2, U2, Xn-I,N+I 

MAC Xn-l,N+h bn_l,a, Ua, X n-1.N+! 

MAC ace, Ch ace, Xn-I,N+1 

// Last product to calculate Xn.N+' 
// First addition to calculate CJN+' 

APPENDIX A 

// Execute the first MAC operation to calculate 

1/ Xn-'.N+' 
// Execute the second MAC operation to calculate 

// Xn-'.N+' 

// Last product to calculate Xn.'.N+' 
// Second addition to calculate CJN+' 

// Repeat the previous instructions to calculate Xn-J.N+', ... , X'.N+' 

// Calculate X'.N+' 
MAC XI,N+h a), S, Xt,N // Execute the first MAC operation to calculate 

// X'.N+' 
// (use CJN) 
// Execute the second MAC operation to calculate 

// X'.N+' 

// Last product to calculate X'.N+' 

// When the X'.N+' value is obtained, the MAC instruction will copy the result ofaccl + 
// X'.N+' directly to the register that contains CJN+' 

MAC s, Ch ace, XI,N+l // Last addition to calculate CJN+' 

// Calculate CXN+, and store as partial product 

MAC Plo CII, X'.N+', So // Execute the first MAC operation to calculate 
II partial product I (P,) 

// Execute the last MAC operation to calculate 
II partial product I (P ,) 

// Repeat the previous instructions to calculate P" ... , P~ 

: END ALGORITHM CYCLE 

Where: 

Ui is the address of input data Ui 
Yi is the address of output data Y i 
Xi,N is the address of state variable Xi,N 
Pi is the address of partial product Pi 
ai is the address of coefficient Ai 
bij is the address of coefficient Bij 
Cij is the address of coefficient Cij 

143 



d;j is the address of coefficient D;j 
s is the address of (J value 
acc is the address of accumulator value 
X;,N is the value of state variable i at time N 
UN is the input vector at time N 
XN is the state variable vector at time N 
Y N is the output vector at time N 
!Pt; is the input channel i 
OPt; is the output channel i 
DRx is the address of variable x in memory Data ROM 
Ck is the constant k stored in Coefficient format 
Sk is the constant k stored in State Variable format 

144 

APPENDIX A 



APPENDIX B 

Appendix B 

Sets of Coefficients used for simulations 

This appendix shows the set of coefficients for the controllers used to obtain the results 

shown in Section 7.6. 

B.14TH ORDER 1Hz BUTTERWORTH LOW PASS FILTER 

Sample frequency = 100Hz 

1 2.1446e-2 0 0 0 

0 1 4.345ge - 2 0 0 
A= B= 

0 0 1 8.6931e - 2 0 

-1.759Ie -I -1.759Ie -I -1.7591e -I 8.240ge -I 1.7591e -I 

C = [3.9676e - 5 1.399 le - 3 4.2951e - 2 I] D = [8.9206e - 7] 

Sample frequency = 1kHz 

1 2.2340e -3 0 0 0 

0 1 4.4330e - 3 0 0 
A= B= 

0 0 1 8.8665e -3 0 

-1.7594e - 2 -1.7594e- 2 -1.7594e - 2 9.8241e -I 1.7594e - 2 

145 



APPENDIX B 

C = [4.3807 e - 8 l.4855e - 5 4.467ge - 3 I] D = [9.6556e -11] 

Sample frequency = 5kHz 

I 4.4852e - 4 0 0 0 

0 I 8.8814e - 4 0 0 
A= B= 

0 0 I l.7764e-3 0 

- 3.5186e - 3 -3.5186e-3 - 3.5186e - 3 9.9648e-1 3.5186e - 3 

C = [3.5357e -10 5.9736e -7 8.967ge - 4 0.9997] D = [1.5558e -13] 

Sample frequency = 10kHz 

I 2.238ge -4 0 0 0 

0 I 4.4417e - 4 0 0 
A= B= 

0 0 I 8.8842e -4 0 

-1.7593e- 3 -1.7593e - 3 -1.7593e - 3 9.9824e-1 l.7593e - 3 

C = [4.365ge -11 l.4973e - 7 4.5033e - 4 l.007l] D = [9.7700e -15] 

B.2 7TH ORDER TWO-INPUT TWO-OUTPUT CONTROLLER 

Subsystem 1 

J.42857e- I 0 0 0 0 0 

0 I J.0507e-3 0 0 0 0 

0 0 I 2.3407e- 3 0 0 0 

A= 0 0 0 I 3.6662e-3 0 0 

0 0 0 0 I 5.8833e-3 0 

0 0 0 0 0 I J.OIOO6e-2 

-2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 - 2.34ge-2 9.765e- I 

146 



APPENDIX B 

0 

0 

0 

B= 0 C = [-23.9359 -5.22161 9.9371 8.32588 6.40424 4.371 2.12578) 

0 

0 

2.34ge - 2 

D = [-13.06409] 

Subsystem 2 

I 1.42857e-1 0 0 0 0 0 

0 I 1.0507e-3 0 0 0 0 

0 0 I 2.3407e-3 0 0 0 

A= 0 0 0 I 3.6662e- 3 0 0 

0 0 0 0 I 5.8833e-3 0 

0 0 0 0 0 I 1.01006e-2 

-2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 9.765e-1 

0 

0 

0 

B= 0 C=[-16.172 -13.529 -5.721 -4.791 -3.678 -2.4803 -1.142) 

0 

0 

2.34ge - 2 

D = [6.6721] 

Subsystem 3 

1 1.42857e -1 0 0 0 0 0 

0 1 1.0507e-3 0 0 0 0 

0 0 1 2.3407e-3 0 0 0 

A= 0 0 0 1 3.6662e-3 0 0 

0 0 0 0 1 5.8833e-3 0 

0 0 0 0 0 1 1.01006e-2 

-2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 9.765e-1 

147 



0 

0 

0 

B= 0 

0 

0 

2.34ge- 2 

D = [-5.2864] 

Subsystem 4 

A= 

B= 

1 

0 

0 

0 

0 

0 

-2.34ge-2 

o 
o 
o 
o 
o 
o 

2.34ge - 2 

D=[-3.82474] 

APPENDIX B 

C = [1.7864 0.7149 4.1203 3.621 2.997 2.2303 1.288] 

1.42857e -1 0 0 0 0 0 

1 1.0507e-3 0 0 0 0 

0 1 2.3407e-3 0 0 0 

0 0 1 3.6662e-3 0 0 

0 0 0 1 5.8833e-3 0 

0 0 0 0 1 1.01006e-2 

-2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 -2.34ge-2 9.765e-1 

C = [14.824 5.253 1.8937 1.7257 1.5807 1.3668 1.0128] 

B. 3 13TH ORDER THREE-INPUT ONE-OUTPUT MAGLEV LOOP CONTROLLER 

System parameters 

wi = I 
wib=2 
ws=8 
G= 10 
k=5 
taw = 0.01 

Accelerometer integrator frequency (rad/s) 
Flux integrator frequency (rad/s) 
Suspension filter frequency (rad/s) 
Main loop gain 
Main loop phase advance ratio 
Main loop phase advance time constant (s) 

148 



wn= 120 
tawb = 0.01 
tawh = 0.001 

Main loop notch filter (rad/s) 
Flux loop PI time constant (s) 
Flux loop high freq. filter time constant (s) 

Sample frequency = 1kHz 

Subsystem 1 

A= 0 [ 1 

- 0.016 

C = [0.0079 

Subsystem 2 

A = [0.90625] 

C = [- 0.375] 

Subsystem 3 

A-

0.004 

O~8l I 

- 0.016 0.984 

I I] 

[ 

I 

-0.1264 
0.1071] 
0.8736 

C = [- 0.8364 0.0564] 

Subsystem 4 

[ 

I 

A= 0 

-0.002 

5.0e-4 0 1 
I 0.001 

- 0.002 0.998 

C = [5.0e - 4 0.4996 -I.Oe - 4] 

149 

[ 0 1 B- 0 

0.016 

D = [3 .180ge - 5] 

B = [0.09375] 

D = [0.48437] 

D = [0.9436] 

[ 
0 1 B- 0 

0.002 

D = [2.4975e - 7] 

APPENDIX B 



APPENDIX B 

Subsystem 5 

[ 
I 0.0014] 

A = _ 0.0028 0.9972 B = [0.0~28] 
C=[-0.3561 -5.0e-4] D = [4.993e - 4] 

Subsystem 6 

[ 
I 0.00 ] 

A = _ 0.6667 0.3333 B=[0.6~67] 
C=[O -6.0048] D = [0.35] 

B.4 46TH ORDER TWELVE-INPUT FOUR-OUTPUT MAGLEV VEHICLE CONTROLLER 

System parameters 

wi = I 
wib=2 
wsb=8 
wsp=6 
wsr=5 
Gb= 10 
kb=5 
tb = 0.01 
wnb = 120 
Gp= 10 
kp=5 
tp = 0.01 
wnp = 120 
Gr= JO 
kr= 5 
tr = 0.01 
wnr= 120 
tawb = om 
tawh = 0.001 
Sample frequency = 1kHz 

Accelerometer integrator frequency (rad/s) 
Flux integrator frequency (rad/s) 
Bounce suspension filter frequency (rad/s) 
Pitch suspension filter frequency (rad/s) 
Roll suspension filter frequency (rad/s) 
Bounce loop gain 
Bounce loop phase advance ratio 
Bounce loop phase advance time constant (s) 
Bounce loop notch filter (rad/s) 
Pitch loop gain 
Pitch loop phase advance ratio 
Pitch loop phase advance time constant (s) 
Pitch loop notch filter (rad/s) 
Rollloop gain 
Rollloop phase advance ratio 
Roll loop phase advance time constant (s) 
Roll loop notch filter (rad/s) 
Flux loop PI time constant (s) 
Flux loop high Freq. filter time constant (s) 

150 



Subsystems 1, 2, and 3 

[ 

1 

A= 0 

-1.599ge - 2 

3.3976e - 3 

1 

-1.599ge - 2 

C = [7.9283e-3 0.9999 0.999) 

Subsystem 4, 5 and 6 

A = [0.904762) 

C=[-3.8095) 

Subsystems 7, 8 and 9 

[ 1 5.4545e -I] 
A= -2.6148e-2 0.973851 

C = [- 4.486e -I - 5.942ge - 3) 

Subsystems 1 0, 11, 12 and 13 

[ 

1 

A= 0 

-1.999ge-3 

4.9962e-4 

1 

-1.999ge - 3 

7.983~e- 3] 
0.984001 

[ 
0 1 8- 0 

1.5999 - 2 

D = [3.180ge - 5) 

8 = [9.5238e - 2) 

D = [4.8095) 

8 = [2.614~e _ 2] 
D = [9.9405e -I) 

79.99~4e - 4] 
0.998 

[ 
0 ] 8- 0 

1.9999 - 3 

C = [3.4992e - 3 4.9962e -I - 2.4975e - 7) D = [2.4975e - 5) 

151 

APPENDIX 8 



Subsystems 14, 15, 16 and 17 

[ 
1 

A-
-2.8e-3 

1.4265e - 3] 
0.9971 

C = [3.5613e -I - 4.993e - 4] 

Subsystems 18, 19,20 and 21 

[ 1 -1.6653e - I] 
A = _ 6.6666e _ 1 0.3333 

C = [7.5 - el - 6.00479] 

152 

B=[2.8~_3] 
D=[4.993e-4] 

B = [6.666

0

6e -I] 
D = [3.499ge -I] 

APPENDIX B 



REFERENCES 

References 

[Ackenhusen99] John G. Ackenhusen, "Real-time signal processing: design and 

implementation of signal processing systems", pp. 25-76, Prentice 

Hall, 1999. 

[ActelOOa] 

[ActelOOb] 

[Agrawal95] 

[Baugh73] 

[BdtiOO] 

Actel ProASIC A500K Family User's Guide. Actel Corp. 2000. 

MEMORYmaster User's Guide. Actel Corp. 2000. 

J. P. Agrawal, E. Bouktache, O. Farook and C. R. Sekhar, 

"Hardware software system design of a generic embedded 

controller for industrial applications," Conference record of the 

1995 IEEE Industry applications conference, Vol. 3, pp. 1887-

1892,1995. 

C. R. Baugh and B. A. Wooley, "A Two's Complement Parallel 

Array Multiplication Algorithm," IEEE Transactions of 

Computers, C-22, pp. 1045-1047, Dec. 1973. 

"Choosing a DSP processor", white paper, Berkeley Design 

Technology, Inc., www.bdti.com. 

153 



[Cady97] 

[Catthoor91] 

[Chen91] 

[Costa97] 

REFERENCES 

Frederick M. Cady, "Micro controllers and microcomputers, 

principles of software and harware engineering", pp. 4-24, Oxford 

university press, 1997. 

F. Catthoor, F. Franssen, K, Cools, C. Hendriks, F. Demeester, J. 

De Schutter and H. De Man, "An application-specific microcoded 

architecture for a robot control application", VLSI Signal 

Processing, IV, pp. 452-461, IEEE Pres, 1991. 

D. C. Chen and J. Rabaey, "PADDI: Programmable Arithmetic 

Devices for DIgital Signal Processing", VLSI Signal Processing, 

IV, pp. 240-249, IEEE Pres, 1991. 

A. Costa, A. De Gloria, F. Giudici and M. Olivieri, "Fuzzy logic 

microcontroller," IEEE Micro, Vol. 17, Issue 1, pp. 66-74, Jan.­

Feb. 1997. 

[Darbyshire95] E. P. Darbyshire and C. J. Kerry, "A multiprocessor architecture 

for large scale real-time control", IEE Colloquium on 

Multiprocessor DSP (Digital Signal Processing) - Applications, 

Algorithms and Architectures. 1995. 

[Dettlof89] 

[Donald94] 

[Eyre98] 

Wayne D. Dettloff and Hiroyuki Watanabe "A Fuzzy Logic 

Controller with Reconfigurable, Cascadable Architecture", IEEE 

1989. 

Donald L. Hung "Custom design of a hardware fuzzy logic 

controller", IEEE World Congress on Computational Intelligence. 

Proceedings of the Third IEEE Conference on Fuzzy Systems, 

1994. 

Jennifer Eyre, Jeff Bier, "DSP processors hit the mainstream", 

IEEE computer, August 1998. 

154 



[EyreOO] 

[Feuer96] 

[Forsythe91] 

[Fujioka96] 

[Furber99] 

[ Garberg96] 

[Garberg98] 

[Goodwin92] 

[GoodwinOl] 

REFERENCES 

Jennifer Eyre, JeffBier, "The evolution ofDSP processors", IEEE 

signal processing magazine, March 2000. 

Arie Feuer, Graham C. Goodwin, "Sampling in digital signal 

processing and control", pp. 122-245, Birkhauser, 1996. 

W. Forsythe and R. M. Goodall, "Digital control: Fundamentals, 

theory and practice," pp. 122-170, McGraw-Hill, 1991. 

Y. Fujioka, M. Kameyama, N. Tomabechi, "Reconfigurable 

parallel VLSI processor for dynamic control of intelligent robots" 

lEE Proc.-Comput. Digit. Tech. Vol. 143, No. 1, January 1996. 

S. B. Furber, J. D. Garside, P. Riocreux, S. Temple, P. day, J. Liu 

and N. Paver, "AMULET2e, an asynchronous embedded 

controller," Proceedings of the IEEE, Vol. 87, No. 2, February 

1999. 

B. Garbergs and B. Sohlberg, "Specialised hardware for state 

space control of a dynamic process," Proceedings of the 1996 

IEEE TENCON- Digital Signal Processing Applications, Vol. 2, 

pp. 895-899, 1996. 

B. Garbergs and B. Sohlberg, "Implementation of a state space 

controller in FPGA", 9th Mediterranean Electrotechnical 

Conference, MELECON 98, 1998. 

Graham C. Goodwin, Richard H. Middleton, H. Vincent Poor, 

"High-speed digital signal processing and control", Proceedings of 

the IEEE, Vol. 80, No. 2, February 1992. 

Graham C. Goodwin, Stefan F. Graebe, Mario E. Salgado, 

"Control system design", pp. 1-33, Prentice Hall, 2001. 

155 



[Goodall78] 

[Goodall85] 

[Goodall90] 

[Goodall92] 

[Gooda1l93] 

[Goodall 00] 

[Grout95] 

REFERENCES 

R M. Goodall, Williams R A and BaIWick R W, "Ride quality 

specification and suspension controller design for a magnetically 

suspended vehicle," Proceedings InstMC Symp on Dynamic 

Analysis of Vehicle Ride and Maneuvering Characteristics, pp 79-

89, Nov 1978. 

R. M. Goodall and D. S. Brown, "High speed digital controllers 

using an 8-bit microprocessor," Software and Microsystems, vol. 

4, pp. 109-116, 1985. 

R. M. Goodall, "The delay operator Z-I - inappropriate for use in 

recursive digital filters?", Transactions of the Institute of 

Measurement and Control, Vo112, No5, 1990. 

R. M. Goodall, "A practical method for determining coefficient 

word length in digital filters", IEEE Transactions on signal 

processing, Vol. 40, No. 2, April 1992. 

R. M. Goodall and B. J. Donoghue, "Very high sample rate digital 

filters using the 0 operator" lEE Proceedings-G, 140, pp. 199-

206, 1993. 

R. M. Goodall, "Perspectives on processing for real-time control," 

Proceedings ofIFAC workshop AARTC2000, Palma de Mallorca, 

Spain, May 2000. 

1. A. Grout, S. E. Burge and A. P. Dorey, "Design and testing of a 

PI controller ASIC", Microprocessors and Microsystems, Vol. 19, 

No.l, pp. 15-22, Feb 1995. 

t56 



[HerpeI93] 

[InfineonOO] 

[InteIOOa] 

[InteIOOb] 

[lrwin98] 

[Jaswa85] 

[Lapsley97] 

[Lang84] 

[Ling88] 

REFERENCES 

H.-J. Herpel, N. Wehn, M. Gasteier and M. Glesner, "A 

reconfigurable computer for embedded control applications," 

Proceedings of the IEEE workshop on FPGAs for Custom 

Computing Machines, pp. 111-120,1993. 

"C 167 Derivatives, User's manual", Infineon Technologies AG, 

www.infineon.com. 

"Pentium III processor Data sheet", Intel Corp. www.intel.com. 

"StrongARM-IIO Microprocessor Data sheet", Intel Corp. 

www.intel.com. 

George W. Irwin, "Computing & control: back to the future", 

Computing & control engineering journal, lEE, February 1998. 

V.C. Jaswa, C. E. Thomas and J. Pedicone, "CPAC: Concurrent 

processor architecture for control," IEEE Transactions on 

computers, vol. 34, pp. 163-169, 1985. 

Phi I Lapsley, Jeff Bier, Amit Shoham, Edward A. Lee, "DSP 

processor fundamentals", IEEE Press, 1997. 

J. H. Lang, "On the design of a special-purpose digital control 

processor", IEEE Transactions on Automatic Control, Vol. AC-29, 

No.2, March 1984. 

Y. L. C. Ling, P. Sadayappan, "A VLSI robotics vector processor 

for real-time control" Proceedings of the 1988 IEEE International 

Conference on Robotics and Automation, 1988. 

157 



[Liu91] 

[Liu99] 

[Martin98] 

REFERENCES 

J. Liu, Z. Q. Mao, G. Z. Lu and W. H. Han, "A new VLSI 

architecture for real-time control of robot manipulators," 

Proceedings of the 1991 IEEE International Conference on 

Robotics and Automation, Vo!. 2, pp. 1828-1835, April 1991. 

J. Liu, M. Brooke, "A fully parallel learning neural network chip 

for real-time control, " International Joint Conference on Neural 

Networks, UCNN '99, Vo!. 4, pp. 2323-2328, 1999. 

Daniel Martin, Robert O. Owen, "A RISC architecture with 

uncompromised digital signal processing and microcontroller 

operation", Proceedings of the 1998 IEEE International 

Conference on Speech and Signal Processing, 1998. 

[Middleton90] R. H. Middleton and G. C. Goodwin (1990), "Digital control and 

estimation - a unified approach," pp. 54-82, 456-481, Prentice 

Hall, 1990. 

[Nadehara95] K. Nadehara, M. Hayashida and I. Kuroda, "A low-power, 32-bit 

RISC processor with signal processing capability and its multiply­

adder", Workshop on VLSI Signal Processing, VIII, IEEE Signal 

Processing Society, 1995. 

[Nekoogar99] Farzad Nekoogar, Gene Moriarty, "Digital control using digital 

signal processing", pp. 1-24, Prentice Hall, 1999. 

[NiseOO] 

[Palmer94] 

Norman S. Nice, "Control systems engineering", pp. 1-33, 703-

747, The BenjaminlCummings Publishing Company, Inc., 2000. 

Richard P. Palmer, Peter A. Rounce "An architecture for 

application specific neural network processors", Computing & 

Control Engineering Journal, pp. 260-264, December 1994. 

158 



[Patyra96] 

[Pirsch98] 

[Predko99] 

[Proakis96] 

[Samet98] 

[Santina94] 

[Schlett98] 

[Spray9l] 

[TexasOOa] 

[TexasOOb] 

REFERENCES 

Marek J. Patyra, J anos L. Grantner and Kirby Koster, "Digital 

Fuzzy Logic Controller: Design and implementation", IEEE 

Transactions on Fuzzy Systems, Vo!. 4, No. 4, November 1996. 

P. Pirsch, "Architectures for Digital Signal Processing," pp. 245-

283, 305-353, Wiley, 1998. 

Michael Predko, "Title Handbook of microcontrollers" McGraw­

Hill,1999. 

John G. Proakis, Dimitris G. Manolakis, " Digital signal 

processing: principles, algorithms, and applications", Prentice 

Hall, 1996. 

L. Samet, N. Masmoudi, M. W. Kharrat and L. Kamoun, "A 

digital PID controller for real-time and multi loop control: a 

comparative study," 1998 IEEE International conference on 

Electronics, Circuits and Systems, Vo!. I, pp. 291-296,1998. 

Mohammed S. Santina, Alien R. Stubberud, Gene H. Hostetter, 

"Digital control system design", pp. 490-566, Saunders College 

Publishing, 1994. 

Manfred Schlett, "Trends in embedded-microprocessor design", 

IEEE computer, August 1998. 

A. Spray and S. Jones, "PACE: A regular array for implementing 

regularly and irregularly structured algorithms," lEE Proceedings­

G, vo!. 138, pp. 613-619, 1991. 

"TMS320C3x User's guide", Texas Instruments Inc., www.ti.com 

"TMS320C54x User's guide", Texas Instruments Inc., 

www.ti.com 

159 



[Tokhi95] 

REFERENCES 

M. O. Tokhi and M. A. Hossain, "Parallel DSP for real-time 

control", IEE Colloquium on Multiprocessor DSP (Digital Signal 

Processing) - Applications, Algorithms and Architectures. 1995. 

[Tsunekawa95] Yoshitaka Tsunekawa, Mamoru Miura, "High-performance VLSI 

architecture suitable for control systems for state-space digital 

filters usmg distrubuted arithmetic", Electronics and 

communications in Japan, Part 3, Vol. 78, No. 5,1995. 

[Wanhammar99] Lars Wanhammar, "DSP integrated circuits", pp. 1-27, 225-267, 

Academic Press, 1999. 

160 



PUBLICATIONS 

Publications 

R. Goodall, S. Jones, R.A. Cumplido-Parra, F. Mitchell, S. Bateman, "A Control 

System Processor Architecture For Complex LT! Controllers", Proceedings, 6th 

IFAC Workshop on Algorithms and Architectures for Real-Time Control, (AARTC 

2000), Palma de Mallorca, Spain, May 2000. 

Rene A. Cumplido-Parra, Simon R. Jones, Roger M. Goodall, Fiona Mitchell and 

Stephen Bateman,"High Performance Control System Processor", Proceedings of 

the 3rd Workshop on System Design Automation - SDA 2000, Dresden, Germany, 

March 2000. 

Previous Paper selected for publication on: "System Design Automation: 

Fundamentals, Principles, Methods, Examples", Edited by Renate Merker and 

Wolfgang Schwarz, Kluwer Academic Publishers, ISBN 0-7923-7313-8, pp. 140-

151, March, 200 I. 

Roger Goodall, Simon Jones and Rene Cumplido-Parra, "Digital Filtering for High 

Performance Real-Time Control," lEE Colloquium on Digital Filters: An enabling 

technology, London, April 1998. 

Rene Cumplido, Simon Jones, Roger Goodall and Stephen Bateman "A High 

Performance Processor for embedded Real-Time Control" Submitted to IEEE 

Transactions on Control System Technology. 

161 






