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Abstract 
 
The torsional dynamics of a vehicle differential hypoid gear pair is investigated. The 
model comprises applied torque, representing transmitted engine power, including 
engine order vibration. A number of gear teeth pairs transmit the applied torque 
through their lubricated conjunctions. Tooth contact analysis (TCA) is used to obtain 
the appropriate geometrical, kinematic and meshing parameters. These enable the 
evaluation of contact loads, film thickness and friction for conjugate teeth pairs, 
which are subject to mixed thermo-elastohydrodynamic regime of lubrication. It is 
shown that the lubricant undergoes non-Newtonian shear in line with the Eyring 
regime of traction. The inclusion of combined thermal non-Newtonian shear and 
boundary interactions has not hitherto been reported for the tribo-dynamics of hypoid 
gear pairs. When rate of change of gear teeth contact radii is included in the analysis 
more complex system dynamics (loss of teeth contact) result, particularly at higher 
speeds. The stated features constitute the main contributions of the current work, 
which have not hitherto been reported in literature. It is also shown that teeth contact 
separation ensues when resonant conditions are noted. This is regarded as the main 
root cause of a noise and vibration phenomenon, known as axle whine.     
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1. Introduction 
 
Gears have been studied extensively for a very long time, initially because of their 
inherent unreliability due to poor lubrication and, now in addition, as a noise and 
vibration concern. There are a multitude of reasons underlying gear vibration; 
including backlash and errors in the form and finish of mating gear teeth pairs, 
defined as kinematic transmission error. These errors and misalignment of gear pairs 
and their supporting shafts are important causes of vibration and noise, as well as 
poor lubrication, friction and wear. Therefore, besides studying the effect of machine 
and cutter tool settings to reduce mal-form and finish, the dynamic response of gear 
sets, when in situ, has also been extensively researched. The latter area is due to 



2 
 

the effect of various system non-linearities. Consequently, an array of modelling 
techniques is used, depending on the conditions pertaining to a defined problem [1].  

 
A significant number of models have been proposed to obtain the dynamic response 
of parallel axes gears in order to ascertain the extent of system stability and 
attainment of desired periodic motions. Implementation of lumped parameter models 
is a common practice, followed by analytical expressions for time varying 
parameters, such as for the meshing stiffness. The main source of non-linearity in 
these formulations is the presence of backlash, promoting impacts which can lead to 
impulsive actions and potential chaotic behaviour [2-10]. Similar analyses on 
crossed-axes gear sets have shown more complex responses. For example, hypoid 
gears, used in a wide range of applications, present complex meshing geometry. 
Consequently, there is a lack of analytical expressions to quantify the effect of their 
underlying governing parameters. Prior to the development of Tooth Contact 
Analysis (TCA) tools, experimental and empirical formulations were commonplace 
[11-12]. These early models precluded the exact meshing geometries. Instead, they 
were based on simplifications to the meshing force vector used in purely torsional 
dynamic analyses.  

 
The first attempt to build a hypoid gear vibration model, based on exact geometry, 
was made by Cheng and Lim [13]. Generation of gear pair surfaces and the 
discretisation of the elliptical contact area resulted in the development of a three-
degree of freedom (DOF) model. The significance of this approach was in relating 
the meshing parameters to the actual gear geometrical characteristics. Moreover, it 
allowed for the transmission of mesh load to the structural components of the 
differential unit [13]. A further study [14] included backlash non-linearity and time-
dependent meshing parameters, enabling the identification of resonant modes and, 
therefore, the study of the effect of load torque on system dynamics. Wang et al [15] 
focused on a hypoid gear pair, describing the dependence of meshing parameters’ 
variation with the dynamic response of the system. An original two-DOF system was 
reduced to a single DOF and its dynamic response was computed using two different 
models. The first model only included the fundamental harmonics of the meshing 
parameters, whilst the second one imported their exact values. The generation of 
impact phenomenon was discussed, as well as the transition of system response 
from a periodic motion to a chaotic state with the variation of load torque and 
introduction of damping. 

 
As already noted, friction generated in gearing systems is also an important area of 
investigation as this determines the efficiency of transmission and differential 
systems, as well as affecting their dynamic response. Confining oneself to some 
representative studies, it is important to note that gear teeth are often only partially 
lubricated as many fore-running contributions have shown [16-17]. This is known as 
mixed elastohydrodynamic regime of lubrication, where the mechanisms contributing 
to friction are viscous shear of a thin lubricant film and interaction of asperities on the 
contiguous surfaces with an insufficient film thickness. This is referred to as 
boundary friction and is prevalent in gear teeth interactions [18].  Vaishya and Singh 
[19-21] developed a dynamic model with viscous friction on gear flanks. Neglecting 
the effect of backlash and simplifying the derivation of coefficient of friction, they 
were able to perform a stability analysis for gear pairs using the Floquet theory [22]. 
Another study by He et al [23] concentrated on the effect of sliding friction upon the 
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dynamic response of a gear set, while assuming empirical formulae for the 
coefficient of friction. Similar analyses were conducted for helical gears by Velex and 
Cahouet [24], Velex and Sainsot [25], as well as Kar and Mohanty [26]. The common 
approach in the above studies was the dependence of friction on the variation of 
length of line of contact. A method based on TCA was introduced by He et al [27] for 
modelling the bearing force on a twelve-DOF system.  

 
For helical gear pairs, De la Cruz et al [18, 28] have reported models for a transaxle 
transmission system, where a combined tribological and vibration analysis was 
carried out. In their model the unselected loose gear teeth pairs were modelled as 
lightly loaded thermo-hydrodynamic conjunctions with viscous friction, whilst the 
engaged gear pairs were subject to a mixed thermo-elastohydrodynamic regime of 
lubrication. They showed that thermal effects in the gear teeth pair contacts 
significantly reduce lubricant film thickness. An analytic solution to energy equation 
for the determination of lubricant temperature in the contact was used [29], whilst 
Grubin’s [30] analytical solution was employed for the loaded elastohydrodynamic 
conjunctions of teeth pairs of engaged gears. This provided a quasi-steady solution, 
one which does not take into account the enhanced load carrying capacity of the 
teeth pair contact conjunctions due to any lubricant squeeze film effect. The 
approach, including the squeeze film effect was advocated by Rahnejat [31-32] 
subject to various regimes of lubrication, including isothermal elastohydrodynamic 
conditions. It was shown that the lubricant film behaviour is frequency dependent. An 
extension of this work by Mehdigoli et al [33], representing a pair of gears as wavy 
surfaced discs showed that fluid film lubrication possesses insignificant damping 
under elastohydrodynamic conditions, which verified the earlier experimental findings 
of Johnson and Gray [34]. However, these studies did not include the effects of 
viscous or boundary friction, nor shear thinning of the lubricant in a thermal contact. 
Another numerical quasi-steady mixed isothermal EHL solution, combined with 
torsional vibration of gear pairs, was highlighted by Li and Kahraman [35] for line 
contact condition, applicable to spur gears and as an approximation for helical gears.          

 
A few tribodynamics’ studies have been reported for hypoid gears; including the 
effects of viscous and boundary friction. Geometrical complexities of hypoid gears in 
mesh and the need to determine the instantaneous area of contact necessitates use 
of numerical methods, rather than the simpler analytical approaches. The sliding 
velocities of mating gear teeth pairs and the sense of application of friction cannot be 
calculated analytically due to the time varying nature of the mesh vector. As already 
noted, an approach to obtain the friction vector has been reported by Cheng and Lim 
[14], based upon a simulated geometry, whereas the derivation of kinematic contact 
properties was described by Xu and Kahraman [36]. Authors validated the various 
empirical formulae for representation of coefficient of friction against an 
elastohydrodynamic lubrication model. Good agreement with experimental results 
was shown and a formula describing the results was obtained.  

 
A number of other researchers have also focused on transient EHL representation of 
the contact zone between the gear flanks. These include the works reported by 
Holmes et al [37-39], who treated the contact zone of pairs of hypoid gear teeth as a 
point contact problem, which is a reasonable approximation. Isothermal solution of 
gear lubrication problem has received more attention than those including thermal 
effects. An investigation of thermal effects was also reported by Handschuh and 
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Kircher [40], who calculated the temperature distribution inside the contact zone due 
to heat generation. 

 
In this work, TCA is used to determine the kinematic and geometrical properties of 
the hypoid gears, necessary for the thermo-elastohydrodynamic analysis. The rate of 
change of the teeth contact radii has been considered in the analysis. This is the 
main contribution of the current work compared with those previously published. It 
reveals a more pronounced dynamics, characterised by teeth separation near 1:1 
resonant conditions. Asperity contribution to friction is also included by 
characterisation of the tooth flank topography and use of Greenwood and Tripp [41] 
friction model. Therefore, the analysis in this paper is that of a quasi-steady mixed 
thermo-elastohydrodynamics of hypoid gear teeth pairs, and its effect upon the 
dynamics of a hypoid gear pair of a vehicle differential unit. Such an approach has 
not hitherto been reported in literature.  
 
2. Methodology 
 
2.1 Gear Dynamics 
 
The primary objectives of the current analysis are prediction of the vibration 
response of hypoid gear pairs in automotive differentials and their transmission 
efficiency. Both these are affected by the friction generated in the gear teeth pair 
lubricated conjunctions. A lumped parameter two-DOF dynamic model similar to that 
proposed by Wang et al [15] is developed. The core model in figure 1 is based on 
the fundamental gear pair models as in other fore-running contributions [2-9]. It takes 
into account only the torsional motions of the pinion and its conjugate gear wheel, 
where meshing takes place along the line of action shown in Figure 1. 
 
The equations of motion with respect to the angular rotations p  and g  of the pinion 

and gear wheel, respectively, can be written as: 
 

௣ܫ   ሷ߮௣ ൅ ܴ௣ܿ௠ݔሶ ൅ ܴ௣݇௠ሺݐሻ݂ሺݔሻ ൌ ௣ܶ   (1) 
௚ܫ   ሷ߮௚ െ ܴ௚ܿ௠ݔሶ െ ܴ௚݇௠ሺݐሻ݂ሺݔሻ ൌ െ ௚ܶ        (2) 

 
where the terms )(xcm    and )()( xftkm  express the overall damping and elastic 

forces developed during mesh. The meshing stiffness is represented by the term 
)(tkm  whereas mc  is the mesh damping coefficient. The variable x  is a function of 

angles ( )p t  and ( )g t , the radii pR  and gR  and the static transmission error under 

no load condition, )(te , thus: 

 

0 0

( ) ( ) ( ) ( )
t t

p p g g

t t

x t R t dt R t dt e t               (3) 
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Figure 1: The hypoid gear pair mesh model 
 
Function )(xf  defines the effect of backlash non-linearity in terms of approach and 

separation of teeth pairs within their nominal backlash. If the quantity b2 is the total 
gear backlash, then: 
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The variation of meshing stiffness with respect to time is crucial for the dynamic 
response of the system and can be calculated through TCA [15, 26, 42]. Due to time 
variation of the meshing vector, affected by the hypoid gear geometry, the radii pR  

and gR  also follow the same trend. In the case of a parallel axes gear set, these are 

the base radii of the pinion and the gear wheel respectively. This variation explains 
the integral form of the dynamic transmission error in equation (3). TCA is also 
involved in the definition of pR  and gR  [13-15]. The free body diagram of the 

examined system is shown in Figure 2. The coordinate systems used in the 
determination of the contact geometric parameters are shown in Figure 3. 
 
It is noteworthy that some previous studies of parallel axis gear pairs [2-7] take the 
common simplifying assumption that the rate of change of the radii pR  and gR  is 

insignificant through mesh, thus: 0 gpgp RRRR  . Therefore, system dynamics 

may be reduced to an equivalent single DOF torsional system. A similar technique 
was also used in [15] for the case of hypoid gears. Whilst this simplifying assumption 
may be upheld at low rotational speeds, in the case of high speed gearing systems 
the aforementioned derivatives can become significant. Hence, the current analysis 
includes the rate of change of these radii. This is also the reason behind the 
definition of the dynamic transmission error in an integral form in this work - equation 
(3) - contrary to the previous studies, for example in [15]. Therefore, the current 
method essentially yields in an irreducible two-DOF system.    
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Figure 2: Free body diagram of the hypoid gear pair 

 

 
 

Figure 3: Coordinate systems used in TCA 
 
2.2 Inclusion of friction torque  

 
During meshing, the contacting teeth pairs undergo combined rolling and sliding 
motions. Velex and Cahouet [24] note that sliding is the main source of friction, thus 
responsible for the power losses in helical gears, particularly at low to medium 
speeds. The underlying tribological reason is the reduced lubricant film thickness at 
lower surface velocities. This also results in higher friction and consequently 
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generated heat. In hypoid gears in particular, because of the axial offset, increased 
longitudinal sliding occurs [43]. For the above reasons, one may surmise that when 
considering hypoid gears, the sliding effect dominates any pure rolling contact, which 
contributes little to friction in lubricated contacts [29].   
 
It has been shown that sliding friction in the gear meshing problem can act as an 
external source of excitation, with a periodic nature and as a non-linear coupling 
agent, as well as a significant source of energy dissipation [19]. It is, therefore, 
obvious that friction is coupled in a non-linear manner with the dynamic behaviour of 
a gear pair [19-20]. Therefore, an accurate prediction of system dynamics requires 
representative description of friction.  

 
Based on the above consideration the equations of motion in presence of friction are 
altered to: 

 
௣ܫ   ሷ߮௣ ൅ ܴ௣ܿ௠ݔሶ ൅ ܴ௣݇௠ሺݐሻ݂ሺݔሻ ൌ ௣ܶ ൅ ௙ܶ௥,௣  (5) 
௚ܫ   ሷ߮௚ െ ܴ௚ܿ௠ݔሶ െ ܴ௚݇௠ሺݐሻ݂ሺݔሻ ൌ െ ௚ܶ ൅ ௙ܶ௥,௚        (6) 

 
The above equations have the same stiffness and damping properties as those in (1) 
and (2). The terms pfrT ,  and gfrT ,  represent the induced frictional torques at the 

pinion and gear wheel, respectively. The sense of friction torques depends on the 
direction of generated friction. This means that the torque exerted through friction 
can either assist or resist the motion of the system [26-27].  

 
The calculation of friction torque is a two step process. The first step is to determine 
the sense of friction. This opposes the direction of sliding. The geometrical 
complexity of the system necessitates the implementation of TCA [42]. The second 
step involves the definition of the underlying mechanism of friction. In the case of 
viscous shear this is inversely proportional to the lubricant film thickness [29]. Of 
course, as already noted, there is also boundary friction due to asperity interactions 
on the contiguous surfaces when the lubricant film thickness is insufficient to guard 
against their direct interactions.   

 
For the case of spur [19-20] and helical [26-27] gears, the direction of friction and 
consequently its moment arm are given by analytical expressions as the direction of 
sliding is always known. For hypoid gears, such expressions do not exist, hence 
numerical methods are used. A method for obtaining the kinematic properties of 
hypoid gears was proposed by Xu and Kahraman [36]. This approach evaluates the 
surface velocities of the contacting surfaces with the aid of Rodrigues’ formula, using 
the angular velocities and the surface curvatures. Nevertheless, it is noteworthy that 
in their analysis a line contact is implied rather than a more realistic elliptical point 
contact.   
 
2.3 Elastohydrodynamic conjunctions 
 
2.3.1 Contact kinematics 
 
In this paper, the kinematic properties are derived with the aid of CALYX [42]. This is 
a TCA piece of software, simulating quasi-statically the meshing of a hypoid gear 
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teeth pair. At each simulation time step, CALYX yields the curvatures and contact 
properties for a set of points which are assumed to lie along the major axis of the 
Hertzian elastostatic contact ellipse. The orientation of the elliptical contact area, as 
well as the radii of curvature along its semi-major and semi-minor axes can be 
defined by the corresponding data for an assumed equivalent single point of contact. 
In gear teeth pairs the lubricant entrainment into the contact usually occurs at an 

angle to the minor axis of the contact ellipse. If  Tzyx rrrr 


 denotes the 

position vector at the mesh point and  Tzyx  


 is the unit vector along the 

sliding direction, the surface velocity of the pinion along this direction is obtained as: 
 

   ( ) ( ) ( ) ( ) ( )
,

p p p p pS S S S S
s p p p p p fr pv r j r r          

    
     (7) 

 

where  Tpp 00  


 is the pinion angular velocity and pj


 is the unit vector 

along the rotational direction py  of the pinion. All vectors in equation (7) are defined 

with respect to a coordinate system ),,( pppp zyxS  fixed at the centre of the pinion. 

It is then clear that: 
 

  )()()()()()(
,

pppppp S
x

S
z

S
z

S
x

S
p

S
pfr rrrjr  


      (8) 

 
A similar expression also exists for the gear wheel, if all vectors are expressed with a 
coordinate system ),,( gggg zyxS , fixed at the centre of the gear wheel: 

 

  )()()()()()(
,

gggggg S
x

S
z

S
z

S
x

S
g

S
gfr rrrjr  


     (9) 

 
Radii  pfrr ,  and gfrr ,  represent the moment arms for friction torque applied to the 

pinion and gear wheel, respectively. When multiplied by the angular velocity they 
yield the instantaneous surface velocities of a meshing teeth pair. As shown by 
Cheng and Lim [14], these are related to the tangential friction component at the 

contact point in the sliding direction 


. They depend on the position of the contact 
point and the orientation of the contact ellipse. This information is derived from 
CALYX [42], based on a numerical representation of the gear pair geometry. 
 
2.3.2 Elastohydrodynamic lubricant film 
 
The contact between a pair of hypoid gears is subjected to elastohydrodynamic 
regime of lubrication with the lubricant viscosity altering with generated pressure and 
temperature. A numerical solution for the derivation of the tribological properties 
requires a significant computation time [36-39], taking into account the multiple teeth 
pairs in simultaneous contact. Therefore, the solution for film thickness is obtained in 
this work through use of Grubin’s extrapolated oil film thickness formula [30]. 
Therefore, for an elliptical point contact, the film thickness 0h  in the parallel region of 

an elastohydrodynamic conjunction is defined as: 
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

  
         

        (10) 

  
The effect of gear geometry is described by the equivalent radius of curvature along 
the sliding direction zxR . Parameter   is a correction factor appended to the original 

Grubin’s formula by Gohar [17] to take into account the side leakage of lubricant 
from an elliptical conjunction: 
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           (11) 

 
The required input quantities are obtained by CALYX with respect to the pinion 
angle. After an interpolation scheme (expansion in terms of Fourier series), they are 
used in the numerical code as a function of the pinion angle.  
 

The reduced elastic modulus *E and the equivalent radii of curvature zxR , zyR  along 

the x and y axes of the contact ellipse are described in reference [17]. 
 
2.3.3 Contact load and speed of entraining motion 

 
Under the quasi-steady conditions taken into account in this work, the mechanism of 
lubricant film formation is through entraining motion of the lubricant into gear teeth 
pair conjunctions. The speed of entraining motion U  is obtained as [20-21]: 

 

 , ,

1

2 g fr g p fr pU r r             (12) 

 
The geometric and kinematic parameters at the contact ellipse are depicted in Figure 
4. 
 
The contact load per teeth pair is also a function of the dynamic response of the 
system. However, its distribution among teeth pairs in simultaneous contact is 
defined quasi-statically. A load distribution factor is calculated as a function of the 
pinion angle for all such contacts. This is the ratio of the applied load iW  on a given 

flank under consideration to the total transmitted load totalW : 

 

total

i

W

W
lf             (13) 

 
A similar technique was followed for spur and helical gears in [19, 27]. With an 
interpolation technique this parameter is inserted into the dynamic model, defining 
the meshing load on each flank under consideration. In this manner, the dynamic 
parameters comprise two sets; one obtained through numerical integration of 
equations of motion and the other through quasi-static contact analysis. This is the 
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most efficient way to account for the geometrical complexities posed by the hypoid 
gear transmissions. 

 

 
 

Figure 4: Geometric and kinematic properties at contact ellipse 
 
2.3.4 Thermal Analysis  
 
Thin films formed in gear teeth pair conjunctions are often subject to thermal non-
Newtonian shear. This behaviour is determined by a limiting shear stress, first 
defined by Eyring [44]. Johnson and Greenwood [45] showed that in the flat parallel 
region of a thin elastohydrodynamic film the dominant mechanism giving rise to 
contact temperature is viscous shear at the effective viscosity of the lubricant: 
 

*
0

0
sinhe
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z

   

 

      


   (14) 

 
Because of the thinness of the film, any variation in the Eyring shear stress 0  

across the film may be neglected. The heat generated through shear is conducted 
away through the bounding surfaces in contact [29, 45], thus the energy equation 
becomes:  

 
* 2

2
e

u
K

z z

 


 
  

     (15)    

 
Lubricant viscosity is dependent on pressure p and temperature  . Using Houpert’s 
equation [46]: 
    

)exp( *
0 pae       (16) 
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where: 
 

   
0

* 9
0

0

138
ln 9.67 1 5.1*10 1

138

S
Z

ep p 



                                          (17)    

 

 
and 0 0 273   , 273e e   . 

 
In the above equations of state, 0  is the atmospheric lubricant dynamic viscosity at 

a reference temperature. In the current analysis the effects of both pressure and 
temperature are taken into account in order to determine the effective lubricant 
viscosity in the contact. However, for evaluation of film thickness from equation (10), 
the effective viscosity is only due to the effective temperature, not pressure as the 
latter is implicit in Grubin’s original assumption. Therefore, one needs to obtain the 
effective temperature e  and the corresponding effective viscosity e .  

 
An analytical solution to equation (15) can be made when an average value for 
lubricant temperature in the contact is assumed [29] (effective temperature e ), using 

average values for ),,,( *
0 K . Furthermore, both surfaces are assumed to be at 

the same temperature and act as perfect conductors of heat. This implies that their 
temperature would remain the same as that of the bulk oil inlet temperature into the 
conjunction. They would conduct away equal portions of heat generated in the 
contact. Therefore, Johnson and Greenwood [45] derived the traction behaviour of 
such a thin lubricant film as a Eyring fluid: 
 

*

*2

0

4

U

XXA







         (18) 

 
where:  ΔU*, A, X and X are provided in reference [45] and the sliding velocity is 
given by: 
 

, ,g fr g p fr pU r r                (19) 

 
Using equation (14) and employing equations (16) and (18), yields [17, 29]: 

 

X

X
U

U

XXA *
*

*

*24
sinh 









  

   (20) 

 
On the grounds that sliding velocity U  is obtained from contact kinematics 
(equation (19)), equation (20) can be solved in an iterative manner, using an initial 
guess value for the temperature rise 0e     . This yields the effective 

temperature and viscosity. Note that the film thickness is adjusted for temperature 
only, ' ( )e    for equation (10). 

 
The mean Hertzian pressure value in the contact zone is [29]: 
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  (21) 

 
The surfaces of gear flanks are rough and the thickness of lubricant film may be 
insufficient to guard against asperity pair interactions. The typical gear teeth 
composite root mean square roughness is mRq 5.0  (for lapped finished gears). 

Then, the Stribeck oil film parameter 
qR

h
  can be obtained at any instant of time 

for each pair of interacting gear pair flanks. The surface roughness of gear flanks 
were assumed to be represented by a Gaussian distribution according to the 
roughness parameter  . Then, the asperity area of contact is obtained as [47]: 
 

 22
2 ( )aA AF       (22) 

 
where F2(λ) is defined in reference [47]. 
 
The contribution due to viscous friction is obtained as: 
 

 v aF A A      (23) 

 
Where, the overall contact area is that of an elliptical Hertzian form: 
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. The boundary friction is obtained as in [41]: 

 

aab mPAF  0     (24) 

 
In this equation m  is the pressure coefficient of the boundary shear strength (0.17 
for steel on steel contact) [47]. The overall friction force is the sum of these two 
individual components of friction: v bF F . The coefficient of friction   is defined as 

the quotient of the total friction force at each flank to the corresponding dynamic 

mesh force: v bF F

W
 
  

 
Note that any temperature rise in the contact due to localised flash temperature of 
asperity pair interactions is assumed to have a negligible effect on the bulk lubricant 
effective viscosity. 

 
A comment should be made with regard to the sense of friction force. The sign of 
friction force (and corresponding torque) is governed by the sign of the relative 
sliding velocity [21, 26]. If the latter is negative, friction opposes the pinion motion 
and assists the motion of the gear if the situation is reversed for the case of positive 
sliding velocity. Nevertheless, even though the friction torque on a pinion flank during 
an instant of the meshing cycle might be positive, the total friction torque exerted by 
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all teeth pairs in contact, is always negative. The opposite applies for the gear 
member. The energy deficit induced by the generation of friction can be calculated 
from the algebraic sum of the power incurred from the frictional moments: 

 

  
i i

gifrgifrgpifrpifrpdeficit FrFrP ,,,,


    (25) 

 
3. Results and discussion 
 
Figure 5 is the flow chart of the computational procedure used. At the outset, a 
quasi-static TCA is undertaken using CALYX [42]. This is in order to determine the 
contact parameters required for the solution of equations of motion. The contact 
pattern is obtained, taking into account the localised contact teeth deflections as well 
as the global deflection of the overall tooth shape. If a change in the external torque 
loading conditions is made, then a new analysis should be conducted. This is 
because the contact pattern alters with the applied external load. The total mesh 
force and its direction are calculated by summation of the load distribution given by 
CALYX, taking into account all the flanks in simultaneous contact. Additionally, the 
line of action of the mesh force is obtained by equating the total moment of the load 
distribution with the moment arising from the total contact forces. The locus of those 
points yields the line of action of the mesh load. 
 
All the required data are expressed as Fourier series functions with respect to the 
pinion angle. The meshing stiffness, mk  and the curvature radii of contact, pR and gR  

are periodic functions of the gear meshing frequency, mesh . Neglecting any tooth-

to-tooth variations, the fundamental period is NT  2  (in angular form), where 

N  is the number of pinion teeth [48]. For instance, the pinion contact radius pR  can 

be expressed in a Fourier series with respect to the pinion angular position p  as: 

 

   0
1

( ) cos sinp p p pci p psi p
i

R R R iN R iN  




    
  

 (26) 

 
On the other hand, the principal radii of curvature of contact zxR  and zyR , the friction 

moment arms pfrr ,  and gfrr , , as well as the load distribution factor lf  are all 

functions of the frequency  meshf  , where   is the gear contact ratio. This is 

because the above quantities depend on the meshing sequence for each individual 
flank. For example, referring to flank (I): 

 

௙௥,௣ݎ
ሺூሻ ൫߮௣൯ ൌ ௙௥,௣଴ݎ ൅෍ሾݎ௙௥,௣௖௜ cos ൬݅

ܰ
ߝ
߮௣൰ ൅ ሺ݅	sin	௙௥,௣௦௜ݎ

ܰ
ߝ
߮௣ሻሿ

∞

௜ୀଵ

												ሺ27ሻ 

 



14 
 

 
 

Figure 5: Computational flowchart 
 
In the hypoid gear set considered in the current study, the maximum number of teeth 
pairs in simultaneous contact is three. Therefore, three functions similar to equation 
(27) should be defined. There will be an angular phase difference equal to the 
meshing period T  between these consecutive flanks. Hence: 

      

Set initial conditions of the problem 

Determination of contact parameters through a quasi-
static analysis (CALYX) 

Static transmission error 0  

Mesh Stiffness mk  

Contact Radii pR , gR  

Radii of curvature zxR , zyR  

Friction moment of arm pfrr , , gfrr ,  

Load distribution 

Eyring fluid thermal analysis 
 

Dynamic Mesh Force 
 

Entraining and Sliding Velocities  U , U  
 

Film thickness of parallel region 0h  (Grubin) 
 

Temperature rise 0e   

Frictional Forces / Torques 
 

Viscous vF  and Boundary bF  Friction / Frictional Torque  

Numerical Solution of Equations of motion  
 

(Runge-Kutta method) 

Dynamic Response 
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This means that flank (II) leads the flank (I), whilst flank (III) trails behind flank (I). 
The other sets of contact parameters are defined in a similar manner.  
 

(a)   

(b)  
 
 
 
 
 
 
 
 
 
 
 

Figure 6 ……. (continued) 
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 (c)  
 

Figure 6: Dimensionless mesh parameters with respect to pinion angular rotation: 

(a) Mesh Stiffness mk̂ , (b) Pinion contact radius pR̂ , (c) Gear contact radius gR̂ . 

     NmTp 20 ,            NmTp 50 ,            NmTp 100 ,            NmTp 250  

 
Figure 6 is a representation of the dimensionless stiffness and contact radii with 
respect to the instantaneous pinion angle. The mean values of k0, Rp0 and Rg0 have 
been used for non-dimensionalistion. 
 
The geometric characteristics of the hypoid gear pair under consideration are listed 
in Table 1 (CALYX [42]). The gear pair normal backlash is m150 , corresponding to 
a typical automotive differential hypoid gear set. Previous studies on the dynamics of 
hypoid gear pairs have shown that loss of contact and flank separation can occur 
over some frequency range [15], depending on the meshing parameters and system 
excitation. The current study addresses the behaviour of the system within and away 
from such resonant region, which is defined as [3, 7 and 14]:  
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In the above expression, the denominator eqm  corresponds to the equivalent mass 

of the system, where the mean values of meshing stiffness and contact radii are 
used. Despite the fact that these quantities vary with the pinion angular position, the 
above equation provides a reasonable approximation of the torsional natural 
frequency.   
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Table 1: Gear pair parameters and machine/cutter settings 
(Gleason face hobbed gear set) 

 
Pinion parameters:  
Number of pinion teeth 13 
Pinion face width (mm) 33.851 
Pinion face angle (deg) 29.056 
Pinion pitch angle (deg) 29.056 
Pinion root angle (deg) 29.056 
Pinion spiral angle (deg) 45.989 
Pinion pitch apex (mm) -9.085 
Pinion face apex (mm) 1.368 
Pinion Outer cone distance (mm) 83.084 
Pinion offset (mm) 24.0000028 
Pinion hand Right 

  
Gear parameters:  
Number of gear teeth 36 
Gear face width (mm) 29.999 
Gear face angle (deg) 59.653 
Gear pitch angle (deg) 59.653 
Gear root angle (deg) 59.653 
Gear spiral angle (deg) 27.601 
Gear pitch apex (mm)               8.987 
Gear face apex (mm) 10.948 
Gear Outer cone distance (mm) 95.598 
Gear offset (mm) 24 

 
Pinion machine and cutter parameters:  
Inside cutter blade angle (IB) (deg) 21.529 
Outside cutter blade angle (OB) (deg) 16.743 
Machine center to back (mm) -0.288 
Basic swivel angle (deg) -32.865 
Basic cradle angle (deg) 64.433 
Tilt angle 31.736 
Sliding base (mm)               20.647 
Ratio of roll 2.762 
Blank offset (mm) 23.908 
Machine root angle (deg) 0.202 
Cutter point radius (mm) 63.743 
Radial setting (mm) 86.983 

 
Gear machine and cutter parameters:  
Machine root angle (deg) 59.653 
Machine center to back (mm) 7.026 
Horizontal setting (mm) 66.650 
Vertical setting (mm) 62.642 
Inside cutter blade angle (deg)               22.436 
Outside cutter blade angle (deg)               15.815 
Cutter point radius (mm) 64.185 

 
The main source of excitation in hypoid transmissions is the static transmission error, 
which appears because of geometric imperfections and contact misalignments, but is 
also affected by design specification for optimised response under load transfer [12, 
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49]. Its variation during a meshing cycle can be derived either experimentally [50] or 
through TCA [42]. Figure 7 shows an estimate of the static angular transmission 
error for the gear pair under consideration under no load condition. This is obtained 
numerically and is imported into the computational model as a Fourier series with 
respect to the pinion angle. As anticipated, the meshing frequency is dominant. This 
type of excitation is responsible for tonal noise generation, leading to a phenomenon 
known as the axle whine, particularly in differential systems [12, 14-15 and 51]. The 
dynamic response of the system is then exacerbated with subsequent generation of 
structure-borne and air-borne noises. Besides this source of excitation, a variation of 
the input torque with the pinion rotational frequency is considered. This is of similar 
nature to that introduced by internal combustion engine’s crankshaft torsional 
oscillations, known as engine order vibration [52]: 
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The static component 0pT  of the input torque has been selected so that under 

steady state conditions, the idealised kinematic condition based on the 
instantaneous transmission ratio is achieved as: 
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(32) 

 

 
 

Figure 7: Static transmission error during a complete meshing cycle 
 
The first objective of the current investigation is to compare the proposed initial 
formulation for dry contact with previously reported models which have relied on 
reducing the system model to a single DOF [14]. Integration of the equations of 
motion is achieved, using the ‘ODE45’ solver in MATLAB, which is based on the 
Runge-Kutta numerical integration algorithm. The total integration time is kept at a 
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sufficient level in order to ensure that transient phenomena have fully decayed. The 
following set of data was used: 
  

2226
0

3 1081.5101734,50,/102781.2 kgmIandkgmINmTmNsc gpp
   

 
The meshing damping coefficient c  is chosen to correspond to a damping ratio of 
0.03 (in accordance with typical values stated in reference [15]). 
 
Figure 8a shows the dynamic transmission error variation with respect to the 
meshing frequency for both the single and two DOF models. The latter exhibits 
periodic solutions of higher amplitudes for a wide frequency region compared to the 
single DOF system. As a result, the two DOF system shows teeth separation at 
much lower frequencies (Figure 8b). 
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Figure 8: (a) Comparison of the dynamic transmission error amplitude variation for single 
and two DOF systems and dynamic response of the two DOF system at 

(b) nmesh  65.0  
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The comparison of dynamic transmission error as acquired by both approaches is 

depicted in Figure 9 (where 
n

nT

2

 ), and the corresponding FFT spectra are shown 

in Figure 10. In this case the ratio of the meshing to natural frequency is found to be 
0.3. From both the dynamic response histories and their spectra, it can be seen that 
the oscillating component of dynamic transmission error assumes higher values and 
shows more complex variations when the two DOF model is used. Additionally, there 
is the possibility of a super-harmonic resonance lying within this meshing frequency 
region, since the excitation frequency is close to one third of natural frequency. The 
above occurs as the result of the inclusion of rate of radii change in the equations of 
motion. Therefore, the energy contributions in the FFT spectra are also visible after 
the third meshing order of the two DOF model, whereas in the case of the single 
DOF model, this is absent. This explains the sharper peaks evident in the dynamic 
response when the two DOF model is considered. It seems that these peaks 
correspond to the contribution of the natural frequency with the possibility for the 
presence of a super-harmonic response.  

(a)  

(b)  
 

Figure 9: Time histories of the dynamic transmission error when nmesh  3.0 ; 

(a) general view (b) enhanced view 
           single DOF - reduced order system (old formulation) 
           double DOF (current formulation) 
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(a)  

(b)  
 

Figure 10: FFT spectra of the dynamic transmission error when nmesh  3.0 ; 

(a) single DOF (b) two DOF system 
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(a)  

(b)  
 

Figure 11:  Time histories of the dynamic transmission error when nmesh   ; 

(a) general view (b) zoomed-in view 
           single DOF - reduced order system (old formulation),  
           double DOF (current formulation) 

 

The same effect can be observed in the frequency region in the vicinity of the 
primary resonance, namely when the meshing frequency coincides with the natural 
response (Figures 11 and 12). In this case, the two DOF system reveals a more 
dramatic loss of contact and tooth separation compared with the single DOF model, 
since the absolute relative displacement drops below the backlash limits (±75μm). 
The contribution of the resonance in the corresponding FFT spectra is again under-
estimated by the single DOF model, where the oscillating term of the dynamic 
transmission error is almost 50% lower than that predicted by the two DOF model. 
This is verified by the contribution of the first meshing order in the FFT spectra of 
Figure 12. As seen from Figure 11, the single DOF analysis hardly captures any loss 
of contact at the primary resonance. On the other hand, the two DOF model predicts 
a distinct loss of contact, showing that the non-linear effects are strongly related to 
the rate of change of contact radii, corresponding to the varying mesh vector. 



23 
 

However, in order to draw more comprehensive conclusions, a thorough comparison 
of the dynamics of the two systems should be made for a broader frequency range 
while considering several levels of magnitude of external excitation. 
 

(a)   

(b)  
 

Figure 12: FFT spectra of the dynamic transmission error when nmesh   ; 

(a) single DOF (b) two DOF system 
 
At this point it was deemed necessary to compare the response of the two DOF 
system with constant contact radii (equal to their mean values) versus that of the 
single DOF model. Figure 13 shows the comparison of the predicted responses, 
whereas Figure 14 depicts the corresponding FFT spectra. It can be clearly seen 
that when the contact radii are kept constant the system response is very close to 
that predicted by the single DOF system. Therefore, a single DOF system provides 
sufficient accuracy for cases with constant contact radii, this being a characteristic of 
spur gear pairs. The formulation proposed in this paper reveals aggravated dynamic 
response near resonant conditions by considering the spatial variation of the contact 
radii. Previous modelling approaches seem to have overlooked the importance of the 
contact radii variation, however small its magnitude may be (Figures 6b, 6c). It has 
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been previously suggested [15] that only a variation above 2% in the contact radii 
would play a significant role in the dynamics of a hypoid gear set. However, even 
with a smaller variation this effect can be significant, particularly at higher rotational 
speeds (meshing frequencies) – as it has been shown in the current analysis. 
 

(a)  

(b)  
 

Figure 13: Time histories of the dynamic transmission error for constant contact radii when 
(a) nmesh  3.0 , (b) nmesh    

           single DOF - reduced order system (old formulation),      
           constant radii 

 
The following section of this study describes the effect of friction in the gear pair 
dynamics. The lubricant, whose properties are listed in Table 2, is a typical 
differential oil used in light trucks and SUVs. 
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(a)   

(b)  
 

Figure 14:  FFT spectra of the dynamic transmission error for constant contact radii when (a) 

nmesh  3.0 , (b) nmesh    

 
Table 2: Lubricant properties 

Kinematic viscosity at C0100  (cSt) 16.7 

Kinematic viscosity at C040  (cSt) 109.1 

Dynamic viscosity at C0100  (Pa·s) 0.0145 

Dynamic viscosity at C040  (Pa·s) 0.09483 

Density (kg/m3) 870 

Thermal conductivity at C0100  (W/mK) 0.1077 

Thermal conductivity at C040  (W/mK) 0.1121 

Pressure viscosity coefficient (Pa-1) 14.4*10-9
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Figure 15:  Representation of a meshing cycle inside a traction map for a high viscosity 
mineral oil (ωmesh = 0.3ωn) (after Evans and Johnson [53]) 

 
Since all the necessary parameters with respect to the angular positions of the gears 
are known for every time step of simulation, the lubricant film thickness can be 
calculated. This is accomplished by setting up an iterative process, when applying 
the Grubin’s analytic solution - given by equation (10) - combined with the thermal 
analysis, highlighted in section 2.3.4. After the in situ lubricant properties are derived, 
viscous and boundary friction contributions are calculated. The total frictional torque 
is incorporated in the equations of motion as an additional external excitation term 
(as depicted in the computational flowchart). It is important to note that the Eyring 
formulation is consistent with two facts observed during the numerical simulations: 
(a) the shear stress derived by a thermal Newtonian model exceeds the limiting 
Eyring shear stress and (b) the regime of traction falls within the Eyring region [53] 
(Figure 15). The prevailing region of lubricant traction for the current analysis is 
indicated on the traction map.  
 
In Figures 16 and 17, the dynamic response of the system is depicted, when the 
mating surfaces are subjected to a mixed thermo-elastohydrodynamic regime of 
lubrication. The inlet temperature of the lubricant is 40˚C and the RMS composite 
roughness is 0.5μm. It can be seen that the two response curves of Figure 16 are 
almost identical (dry versus lubricated conditions).  
 
The magnitude of teeth friction is not significant enough to result in high levels of 
torque variation. Furthermore, friction acts in a direction coincident with the relative 
sliding of the gear flanks. This direction is always normal to the line of action, where 
the torsional motion takes place. As a result, its effect on torsional dynamics is 
negligible [54]. Nevertheless, if additional lateral degrees of freedom were 
considered in the system and/or higher resisting loads were applied, then the 
influence of friction on the forces transmitted to the bearings could become 
significant [51]. 
 

α0η0U/Rzx 
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(a)  

(b)  
 

Figure 16: Time histories of the dynamic transmission for nmesh  3.0 : 

(a) general view, (b) zoomed-in view 
           Dry conditions,                 Lubricated conditions   

 
A dimensionless representation of the meshing cycle contact properties for the 
lubricated case is illustrated in Figure 18. The meshing frequency is 30% of the 

natural frequency. In these plots: me 7
0 106.9   is the mean value of the static 

transmission error and sec/
3.0

0 rad
N

n
p

   is the pinion angular velocity, when 

nmesh  3.0 . Figure 18 (a) shows the geometric and kinematic parameters 

influencing the lubricant film thickness, namely the equivalent radius of curvature and 
the entraining velocity of the lubricant along the direction of sliding. Both quantities 
increase during mesh prior to dropping at the end of the cycle, as expected. The 
temperature rise inside the contact occurs mainly due to the viscous shear of the 
lubricant, with its maximum value rising 3% above the inlet lubricant temperature 
(Figure 18b). The lubricant viscosity undergoes a significant increase by almost two 
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orders of magnitude with respect to the inlet pressures due to the high contact 
pressures in the EHL regime (Figure 18b). 

(a)  

      (b)  

 
Figure 17: Time histories of the dynamic transmission for nmesh   : 

(a) general view, (b) zoomed-in view 
           Dry conditions,                 Lubricated conditions   

 
The contact load gradually increases inside the cycle, reaching a maximum value at 
the midpoint before decreasing until contact of the current teeth pair terminates 
(Figure 18c). The film thickness is almost constant throughout the mesh (Figure 
18c). From equation (10) it can be seen that film thickness is mostly influenced by 
the effective curvature radius, entraining velocity and effective viscosity. It seems 
that any increase in film thickness on the account of the first two parameters is offset 
by the viscosity drop due to the contact temperature rise (Figure 18c). Therefore, the 
film varies only slightly, between 0.4 and 0.5 μm. The contact area depends primarily 
on the contact load and, therefore, it follows a similar pattern (Figure 18d). The shear 
rate seen in the same figure increases continually as an effect of the sliding velocity; 
a slight decline is observed at the end of the cycle. 
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(a)  

 (b)  

 (c)  
 

 

 

Figure 18 ……. (continued) 
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d)  

(e)  

(f)  
 

Figure 18: Teeth contact properties (ωmesh = 0.3ωn , composite surface 
roughness σ = 0.5 μm, lubricant inlet temperature 40˚C); 
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The contribution of asperity interactions to the total friction force is minimal as 
depicted in Figure 18e; the latter is dominated by viscous shear. The coefficient of 
friction (Figure 18f) is typical of the EHL regime of lubrication. Nevertheless, the 
magnitude of frictional torque is trivial with respect to the external excitation. Hence, 
the torsional dynamics of the system remains almost unaffected. 

 

 (a)  

(b)  
 

Figure 19: (a) Traction curve and (b) viscosity plot (ωmesh = 0.3ωn, 
surface roughness Srms = 0.5 μm, lubricant inlet temperature 40˚C) 

 
The evidence for Eyring shear is visible in Figure 19a. The deviation from the 
linearity of Newtonian behaviour at 01.0/ p  is clear. The curve bends, and the 

magnitude of shear stress falls off from one which would be predicted by idealized 
Newtonian shear. The shape of the curve is qualitatively comparable to the 
experimental results derived by disc machine experiments [53]; the wiggling effect 
can be explained by the varying pressure and temperature values during meshing. 
The significant viscosity rise with respect to the mean pressure eventually leads to 
the attainment of a non-Newtonian Eyring regime of traction (Figure 19b, also see 
Figure 15).  
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When the angular velocity of the pinion increases and approaches the natural 
frequency of the system, primary resonance occurs, which is marked by the onset of 
loss of contact. These contact conditions are shown in Figure 20. The loss of contact 
is clearly associated with zero contact load, which is present for almost one third of 
the meshing cycle (Figure 20c). Besides the impulsive nature of contact load due to 
tooth separation, the resonant conditions also induce a significant increase in the 
contact load at other times (compared with the results shown in Figure 18c for ωmesh 
= 0.3ωn).  
 

(a)   

(b)  
 
 
 
 
 
 

Figure 20 ……. (continued) 



33 
 

 (c)  

(d)  

(e)  
 

Figure 20 ……. (continued) 
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(f)  
 

Figure 20: Teeth contact properties (ωmesh = ωn, composite surface 
roughness σ = 0.5 μm, lubricant inlet temperature 40˚C) 
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However, the film thickness remains independent of load owing to the thermal EHL 
conditions at high loads and rapid replenishment of a lubricant film subsequent to 
any momentary loss of contact (Figure 20c). Due to a higher angular velocity, the 
lubricant entraining velocity is increased (Figure 20a) and presents reduced 
fluctuations. This is as a result of the limited time that the teeth remain in contact. 
The entraining velocity has almost tripled compared with that in Figure 18a. Similar 
observations can be drawn for the radius of curvature, which also reaches higher 
values compared with that in Figure 18a. Consequently, aggravated viscous shear 
(as depicted in Figure 20b) results in a contact temperature rise of 20% in excess of 
the bulk lubricant temperature at the contact inlet meniscus. Thus, effective viscosity 
of the lubricant is reduced compared with that in Figure 18b by almost a third. The 
combined effect of increased entraining motion and reduced viscosity yields the 
double peak in the time history of the lubricant film thickness. The peak value is 
almost 1μm. The increase in the contact area (Figure 20d) as an effect of increased 
contact load combined with the shear effect results in higher levels of viscous friction 
(Figure 20e). Nevertheless, due to loss of contact, the frictional mechanism remains 
rather ineffective over a considerable part of the meshing cycle. 
 
The influence of  lubricant temperature at the contact inlet is depicted in Figure 21 for 
ωmesh = 0.3ωn. The inlet temperature is now set at 100˚C. The dimensionless 
temperature and viscosity graphs (Figure 21a) are derived for the parameters shown 
in Figure 18, so that an effective comparison can be made. In this case, the high 
contact velocity results in a significant drop in the lubricant viscosity, which is now 
almost a third of that in Figure 18. However, the temperature rises in the contact by 
around 20% (reaching a value of 145°C), compared with a mere rise of 1-3% 
(corresponding to 41°C maximum temperature) in the case shown in Figure 18b. In 
turn, the film thickness (Figure 21b) is reduced to almost a fifth of that predicted in 
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Figure 18c (the maximum value in Figure 21b is just above 0.13μm). This dramatic 
shear thinning of the lubricant film (also exhibiting shear rate values of more than two 
times those in Figure 18d) yields increased boundary friction. This contribution now 
exhibits comparable values to the viscous friction of the lubricant film (in Figure 21d, 
the boundary friction magnitude is about 20% of the maximum viscous friction 
values), when compared with that in Figure 18e. The simultaneous increase in shear 
rate and boundary friction together with a decline in effective viscosity yields a rise in 
frictional torque (Figure 21e). However, this only represents a rise of 0.5% compared 
with the results in Figure 18e. 
 

(a)  

 (b)  
 
 
 
 
 
 
 
 

 
Figure 21 ……. (continued) 



36 
 

(c)  

 (d)  

(e)  
 

Figure 21: Contact properties (ωmesh = 0.3ωn, composite surface 
roughness σ = 0.5 μm, lubricant inlet temperature 100˚C) 
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4. Conclusions 
 
A new method for analyzing dynamics of hypoid gear pairs is presented. The 
mathematical model relies essentially on two torsional degrees of freedom due to the 
rate of change of contact radii. The main difference from previously reported 
formulations is the introduction of the dynamic transmission error in an integral form, 
accounting for the variation in the contact radii. The current method predicts an 
aggravated dynamic response compared with the investigations previously reported 
in the literature, while yielding more severe non-linear effects near the primary 
resonance. These are characterised by severe loss of contact, which is typical of 
gear pair systems with high impacts, which sometimes lead to powertrain Noise, 
Vibration and Harshness phenomena (e.g. rattle, axle whine). Therefore, the 
presented method aims to contribute to more accurate investigations of the root 
causes of powertrain NVH issues. 
 
The interaction of friction with the system dynamics is investigated by including an 
analytical thermal model to represent lubricated contact characteristics in a more 
realistic manner, where temperature plays an important role, not often acknowledged 
in reported analyses. Due to relatively high conjunctional pressures and sliding 
velocity, the regime of traction lies within the Eyring region. This indicates thin films 
with increasing asperity interactions and rising contact temperatures. However, 
friction torque appears to only marginally affect the torsional dynamics of the system. 
Nonetheless, the effect can be more significant if the lateral motions of the gear 
wheels were to be considered and/or in cases of high transmitted loads. This needs 
to be thoroughly investigated in a future parametric study. 
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Appendix 
 
Nomenclature 
 
A   dimensionless quantity expressing the lubricant properties 
A   apparent contact area (Hertzian) 

aA   asperity contact area 

b    half gear backlash 

mc    damping coefficient in the direction of mesh 

d   minor half-width of contact ellipse 
)(te     static transmission error 

E    modulus of elasticity 
)(xf   deflection function due to backlash 
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frF   total friction force 

bF   boundary friction 

vF   viscous friction 

0h   elastohydrodynamic film thickness  

pI , gI  mass moments of inertia of pinion and gear  

pj


, gj


 normal unit vectors  

mk    mesh stiffness 

K    thermal conductivity of lubricant oil 
lf   load distribution factor 

m   pressure coefficient of the boundary shear strength 

eqm   equivalent mass of gear pair 

N     number of pinion teeth 
p   contact pressure due to dynamic mesh force 

 mp   mean Hertzian contact pressure 

aP   load carried by asperities 

Pe   Peclet number 
Psi  angle of entraining motion 
r


  mesh point position vector 

pfrr , , gfrr ,  moment arms for friction force 

pR , gR   pinion and gear contact radii 

zxR  equivalent radius of curvature along the minor axis of the contact 

ellipse 

zyR  equivalent radius of curvature along the major axis of the contact 

ellipse 

0S   parameter in Houpert’s equation 

t   time 

pT , gT  externally applied torques to the pinion and gear 

pfrT , ,  gfrT ,  frictional moments at pinion and gear 

U   speed of entraining motion 

sv   surface velocity  

W   dynamic mesh force 
*, XX  dimensionless parameters expressing rise in lubricant film temperature 

x    dynamic transmission error 
z   direction across the film thickness 
Z   pressure exponent in Houpert’s equation 

*a   pressure-viscosity coefficient 
   lubricant’s coefficient of thermal expansion 

*   temperature-viscosity coefficient 

    shear rate 
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U   sliding velocity 
*U   dimensionless sliding velocity 

∆φ0  static angular transmission error under no load 
    gear pair contact ratio 
   asperity density per unit area 
   dynamic viscosity  

0   dynamic viscosity at atmospheric pressure and inlet temperature 

e   effective viscosity 

    lubricant temperature 

0   bulk oil temperature 

e   effective lubricant temperature  

1s , 2s  contact temperature of pinion and gear surfaces  

   average asperity tip radius 
   coefficient of friction 




  unit vector along the sliding direction 
   lubricant density 
   composite surface roughness Ra 

rms   RMS value of surface roughness 

   shear stress 

0   Eyring shear stress of the lubricant oil 
*   product of viscosity multiplied by the shear rate 

p  , g  pinion and gear angle of rotation 

   lubricant side leakage parameter 

p   pinion angular velocity 

mesh   meshing frequency 

n   gear pair natural frequency 
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FIGURE CAPTIONS 

Figure 1: The hypoid gear pair mesh model 
 
Figure 2: Free body diagram of the hypoid gear pair 
 
Figure 3: Coordinate systems used in TCA 
 
Figure 4: Geometric and kinematic properties at contact ellipse 
 
Figure 5: Computational flowchart 
 
Figure 6: Dimensionless mesh parameters with respect to pinion angular rotation: (a) 

Mesh Stiffness mk̂ , (b) Pinion contact radius pR̂ , (c) Gear contact radius gR̂ . 

     NmTp 20 ,            NmTp 50 ,            NmTp 100 ,           NmTp 250  

 
Figure 7: Static transmission error during a complete meshing cycle 
 
Figure 8: (a) Comparison of the dynamic transmission error amplitude variation for 
single and two DOF systems and dynamic response of the two DOF system at (b) 

nmesh  65.0  

 
Figure 9: Time histories of the dynamic transmission error when nmesh  3.0 ; (a) 

general view (b) enhanced view 
           single DOF - reduced order system (old formulation),                  double DOF (current 

formulation) 
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Figure 10: FFT spectra of the dynamic transmission error when nmesh  3.0 ; (a) 

single DOF (b) two DOF system 
 
Figure 11:  Time histories of the dynamic transmission error when nmesh   ; (a) 

general view (b) enhanced view 
           single DOF - reduced order system (old formulation),                  double DOF (current 

formulation) 

 
Figure 12: FFT spectra of the dynamic transmission error when nmesh   ; (a) 

single DOF (b) two DOF system 
 
Figure 13: Time histories of the dynamic transmission error for constant contact radii 
when (a) nmesh  3.0 , (b) nmesh    

           single DOF - reduced order system (old formulation),                  constant radii 
 
Figure 14:  FFT spectra of the dynamic transmission error for constant contact radii 
when (a) nmesh  3.0 , (b) nmesh    

 
Figure 15:  Representation of a meshing cycle inside a traction map for a high 
viscosity mineral oil (ωmesh = 0.3ωn) (after Evans and Johnson [53]) 
 
Figure 16: Time histories of the dynamic transmission for nmesh  3.0 : (a) general 

view, (b) enhanced view 
           Dry conditions,                 Lubricated conditions   

 
Figure 17: Time histories of the dynamic transmission for nmesh   : (a) general 

view, (b) enhanced view 
           Dry conditions,                 Lubricated conditions   

 
Figure 18: Teeth contact properties (ωmesh = 0.3ωn , composite surface 

roughness σ = 0.5 μm, lubricant inlet temperature 40˚C); 
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Figure 19: (a) Traction curve and (b) viscosity plot (ωmesh = 0.3ωn, surface roughness 
Srms = 0.5 μm, lubricant inlet temperature 40˚C) 
 
Figure 20: Teeth contact properties (ωmesh = ωn, composite surface roughness σ = 
0.5 μm, lubricant inlet temperature 40˚C) 
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Figure 21: Contact properties (ωmesh = 0.3ωn, composite surface roughness σ = 0.5 
μm, lubricant inlet temperature 100˚C) 
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Table 1: Gear pair parameters and machine/cutter settings 
(Gleason face hobbed gear set) 

 
Pinion parameters:  
Number of pinion teeth 13 
Pinion face width (mm) 33.851 
Pinion face angle (deg) 29.056 
Pinion pitch angle (deg) 29.056 
Pinion root angle (deg) 29.056 
Pinion spiral angle (deg) 45.989 
Pinion pitch apex (mm) -9.085 
Pinion face apex (mm) 1.368 
Pinion Outer cone distance (mm) 83.084 
Pinion offset (mm) 24.0000028 
Pinion hand Right 

  
Gear parameters:  
Number of gear teeth 36 
Gear face width (mm) 29.999 
Gear face angle (deg) 59.653 
Gear pitch angle (deg) 59.653 
Gear root angle (deg) 59.653 
Gear spiral angle (deg) 27.601 
Gear pitch apex (mm)               8.987 
Gear face apex (mm) 10.948 
Gear Outer cone distance (mm) 95.598 
Gear offset (mm) 24 

 
Pinion machine and cutter parameters:  
Inside cutter blade angle (IB) (deg) 21.529 
Outside cutter blade angle (OB) (deg) 16.743 
Machine center to back (mm) -0.288 
Basic swivel angle (deg) -32.865 
Basic cradle angle (deg) 64.433 
Tilt angle 31.736 
Sliding base (mm)               20.647 
Ratio of roll 2.762 
Blank offset (mm) 23.908 
Machine root angle (deg) 0.202 
Cutter point radius (mm) 63.743 
Radial setting (mm) 86.983 

 
Gear machine and cutter parameters:  
Machine root angle (deg) 59.653 
Machine center to back (mm) 7.026 
Horizontal setting (mm) 66.650 
Vertical setting (mm) 62.642 
Inside cutter blade angle (deg)               22.436 
Outside cutter blade angle (deg)               15.815 
Cutter point radius (mm) 64.185 
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Table 2: Lubricant properties 

Kinematic viscosity at C0100  (cSt) 16.7 

Kinematic viscosity at C040  (cSt) 109.1 

Density (kg/m3) 870 

Thermal conductivity at C0100  (W/mK) 0.1077 

Thermal conductivity at C040  (W/mK) 0.1121 
Pressure viscosity coefficient (Pa-1) 14.4*10-9

 
 


